
M A N N I N G

Jort Rodenburg

Clean Code Checklist
Use this short checklist when encountering code that you are unfamiliar with or while
writing new code.

GENERAL

✓ My code reads like a narrative. I write code for humans, not machines.
✓ I document my code only when necessary. My code should speak for itself.
✓ I provide clear instructions on how to build and release my codebase. Where appro-

priate, I provide working build scripts/makefiles or CI/CD setup instructions.
✓ I use native functionalities instead of implementing my own libraries, unless for a

very good reason.
✓ My code is consistent in its design patterns, documentation, and naming conven-

tions. I do not change things mid-development and go against established patterns.
✓ I have added logging to my application, so I or other developers can debug when

things go awry.

CLASSES

✓ My class has the strictest access modifier possible.
✓ My class is named accurately.
✓ My class performs operations on only one specific object and, therefore, adheres to

the single-responsibility principle.
✓ My class lives in the right folder within my project.
✓ If I struggle with implementing my class, I take a step back and come up with a brief

description of the class and its intended functionality. This refocus can help write
cleaner code. If my class should do multiple things, split it up.

METHODS

✓ My method has the strictest access modifier possible.
✓ My method is named accurately and correctly describes the logic within (leaving

nothing out).
✓ My method performs only one general operation or collects information from other

methods related to its operations. It adheres to the single-responsibility principle.
✓ If my method has a public access modifier, we do not perform any operations

within the method. The public method calls other, smaller, methods and organizes
the outputs.

✓ I have unit tests backing my method. The unit tests should cover the major success
and failure logic branches.

Continues on inside back cover

Code Like
a Pro in C#

JORT RODENBURG

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Marina Michaels
Senior technical development editors: Eric Lippert and Enrico Buonanno

Technical developmental editor: Jean-François Morin
Manning Publications Co. Review editor: Mihaela Batinic
20 Baldwin Road Production editor: Andy Marinkovich
PO Box 761 Copy editor: Pamela Hunt
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Tanya Wilke
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617298028
Printed in the United States of America

www.manning.com

contents
preface ix
acknowledgments xi
about this book xiii
about the author xvii
about the cover illustration xviii

PART 1 USING C# AND .NET...1

1 Introducing C# and .NET 3

1.1 Why work in C#? 5
Reason 1: C# is economical 6 ■ Reason 2: C# is maintainable 6
Reason 3: C# is developer friendly and easy to use 7

1.2 Why not work in C#? 7
Operating system development 8 ■ Real-time operating system
embedded development in C# 8 ■ Numerical computing
and C# 9

1.3 Switching to C# 9
1.4 What you will learn in this book 12
1.5 What you will not learn in this book 12
iii

CONTENTSiv
2 .NET and how it compiles 15
2.1 What is the .NET Framework? 16
2.2 What is .NET 5? 17
2.3 How CLI-compliant languages are compiled 19

Step 1: C# code (high-level) 20 ■ Step 2: Common Intermediate
Language (assembly level) 23 ■ Step 3: Native code (processor
level) 29

PART 2 THE EXISTING CODEBASE...................................33

3 How bad is this code? 35
3.1 Introducing Flying Dutchman Airlines 36
3.2 Pieces of the puzzle: Taking a look at our

requirements 38
Object-relational mapping 38 ■ The GET /flight endpoint:
Retrieving information on all flights 39 ■ The GET /flight/
{flightNumber} endpoint: Getting specific flight information 40
The POST /booking/{flightNumber} endpoint: Booking a flight 41

3.3 Coming to terms with the existing codebase 43
Assessing the existing database schema and its tables 43
The existing codebase: Web service configuration files 44
Considering models and views in the existing codebase 50

4 Manage your unmanaged resources! 58
4.1 The FlightController: Assessing the GET

 /flight endpoint 60
The GET /flight endpoint and what it does 60 ■ Method
signature: The meaning of ResponseType and typeof 61
Collecting flight information with collections 63 ■ Connection
strings, or how to give a security engineer a heart attack 64
Using IDisposable to release unmanaged resources 65 ■ Querying
a database with SqlCommand 67

4.2 The FlightController: Assessing GET /flight/
{flightNumber} 70

4.3 The FlightController: POST /flight 73
4.4 The FlightController: DELETE /flight/

{flightNumber} 77

CONTENTS v
PART 3 THE DATABASE ACCESS LAYER.............................81

5 Setting up a project and database with Entity
Framework Core 83
5.1 Creating a .NET 5 solution and project 84
5.2 Setting up and configuring a web service 88

Configuring a .NET 5 web service 89 ■ Creating and using
HostBuilder 91 ■ Implementing the Startup class 93 ■ Using the
repository/service pattern for our web service architecture 96

5.3 Implementing the database access layer 98
Entity Framework Core and reverse-engineering 98 ■ DbSet and the
Entity Framework Core workflow 100 ■ Configuration methods and
environment variables 102 ■ Setting an environment variable on
Windows 103 ■ Setting an environment variable on macOS 104
Retrieving environment variables at run time in your code 104

PART 4 THE REPOSITORY LAYER109

6 Test-driven development and dependency injection 111
6.1 Test-driven development 113
6.2 The CreateCustomer method 117

Why you should always validate input arguments 118 ■ Using
“arrange, act, assert” to write unit tests 119 ■ Validating against
invalid characters 120 ■ In-lining test data with the [DataRow]
attribute 123 ■ Object initializers and autogenerated code 123
Constructors, reflection, and asynchronous programming 125
Locks, mutexes, and semaphores 127 ■ Synchronous to
asynchronous execution . . . continued 129 ■ Testing Entity
Framework Core 130 ■ Controlling dependencies with
dependency injection 132

7 Comparing objects 140
7.1 The GetCustomerByName method 141

Question marks: Nullable types and their applications 143
Custom exceptions, LINQ, and extension methods 144

7.2 Congruence: From the Middle Ages to C# 149
Creating a “comparer” class using EqualityComparer<T> 150
Testing equality by overriding the Equals method 153
Overloading the equality operator 154

CONTENTSvi
8 Stubbing, generics, and coupling 160

8.1 Implementing the Booking repository 161
8.2 Input validation, separation of concerns, and

coupling 164
8.3 Using object initializers 169
8.4 Unit testing with stubs 172
8.5 Programming with generics 176
8.6 Providing default arguments by using optional

parameters 177
8.7 Conditionals, Func, switches, and switch expressions 179

The ternary conditional operator 180 ■ Branching using an array
of functions 181 ■ Switch statements and expressions 181
Querying for pending changes in Entity Framework Core 183

9 Extension methods, streams, and abstract classes 188

9.1 Implementing the Airport repository 189
9.2 Getting an Airport out of the database by its ID 190
9.3 Validating the AirportID input parameter 192
9.4 Output streams and being specifically abstract 194
9.5 Querying the database for an Airport object 199
9.6 Implementing the Flight repository 206

The IsPositive extension method and “magic numbers” 208
Getting a flight out of the database 214

PART 5 THE SERVICE LAYER...219

10 Reflection and mocks 221

10.1 The repository/service pattern revisited 222
What is the use of a service class? 223

10.2 Implementing the CustomerService 225
Setting up for success: Creating skeleton classes 225 ■ How to
delete your own code 227

10.3 Implementing the BookingService 229
Unit testing across architectural layers 234 ■ The difference
between a stub and a mock 235 ■ Mocking a class with the
Moq library 236 ■ Calling a repository from a service 243

CONTENTS vii
11 Runtime type checking revisited and error handling 248
11.1 Validating input parameters of a service layer

method 249
Runtime type checks with the is and as operators 253 ■ Type
checking with the is operator 253 ■ Type checking with the as
operator 255 ■ What did we do in section 11.1? 255

11.2 Cleaning up the BookingServiceTests class 256
11.3 Foreign key constraints in service classes 258

Calling the Flight repository from a service class 259

12 Using IAsyncEnumerable<T> and yield return 273
12.1 Do we need an AirportService class? 274
12.2 Implementing the FlightService class 276

Getting information on a specific flight from the FlightRepository 276
Combining two data streams into a view 280 ■ Using the yield return
keywords with try-catch code blocks 288 ■ Implementing
GetFlightByFlightNumber 292

PART 6 THE CONTROLLER LAYER.................................301

13 Middleware, HTTP routing, and HTTP responses 303
13.1 The controller class within the repository/service

pattern 304
13.2 Determining what controllers to implement 306
13.3 Implementing the FlightController 308

Returning HTTP responses with the IActionResult interface
(GetFlights) 309 ■ Injecting dependencies into a controller using
middleware 312 ■ Implementing the GET /Flight/
{FlightNumber} endpoint 320

13.4 Routing HTTP requests to controllers and methods 324

14 JSON serialization/deserialization and custom
model binding 332

14.1 Implementing the BookingController class 333
Introduction to data deserialization 335 ■ Using the [FromBody]
attribute to deserialize incoming HTTP data 339 ■ Using a
custom model binder and method attribute for model binding 340
Implementing the CreateBooking endpoint method logic 343

CONTENTSviii
14.2 Acceptance testing and Swagger middleware 349
Manual acceptance testing with an OpenAPI specification 349
Generating an OpenAPI specification at runtime 354

14.3 The end of the road 360

appendix A Exercise answers 363
appendix B Clean code checklist 371
appendix C Installation guides 373
appendix D OpenAPI FlyTomorrow 377
appendix E Reading list 380

index 385

preface
My first introduction to C# came when I joined Fujifilm Medical Systems in 2016. I
had previous experience in Java and Python, but when C# came around, I did not
look back. I loved its low barrier of entry and (at first excruciatingly infuriating) focus
on explicit typing. Throughout my time at the company, I annoyed my coworkers with
questions about C# and how to best use it. Getting started was easy, but becoming pro-
ficient was another matter altogether. Everybody can write a “Hello, World” applica-
tion within 10 minutes, no matter their background, but using a language to its fullest
strengths while knowing why certain things are implemented the way they are simply
takes time. After a while, I felt like I had plateaued in my C# knowledge and was look-
ing for resources to take me to the next level. Quickly, I realized that there were three
major types of books dealing with .NET and C#: books about language-transcending
topics (clean code, architecture, infrastructure, and the like) that happened to use
C#, books on how to start programming using C#, and books that are so advanced that
you might just be qualified to become the CTO of Microsoft after reading them. I
wanted there to be a book that sat in the middle of all three: a book that deals with
clean code and bridges the gap between beginner and advanced topics. That book did
not exist, so I wrote it. This is that book.

 If you are a software engineer (or developer, or coder, or whatever your title may
be) with previous experience in a (preferably object-oriented) programming lan-
guage and want to jump into C#, this is the book for you. You will not have to learn
how to write an if statement, nor will I explain what an object is to you. What you
will find in this book are skills and topics that prepare you for deeper study into the
ix

PREFACEx
language and platform. Of course, I can’t promise to cover everything a more difficult
resource assumes you know, but within the limited page count of this book, I sure
tried. I very much hope you enjoy this book and learn a thing or two. And if not, well,
it never hurts to go over things you know again.

acknowledgments
When I first started talking with Manning about writing this book, I had little idea of
how it would take over my life for about a year or so. To be fair, I was warned on multi-
ple occasions that authors tend to underestimate the time needed to write a book. I,
being stubborn, thought I would be the exception. I was not. From December 2019 to
March 2021, I put many hours into this book. On multiple occasions, I thought to
myself that “this will surely be the end.” Every single time (but one, obviously), it was
not. Luckily, I have a very patient wife and plenty of time to kill.

 It is with that in mind that I would first like to thank my wife for sticking by me on
this roller coaster and to apologize to her for disappearing from her life for a year. I
could not have written this book without her unwavering support. She was the rock on
which this book was built. I also want to thank my family, who were always very excited
to hear about new developments and updates. I took the liberty of naming the CEO of
the company in the business case we follow through the book by combining the first
name of my maternal grandfather (Aljen) and the surname of my paternal grand-
mother (van der Meulen).

 I also have to thank the exceptional team at Manning. In particular, I want to sin-
gle out Marina Michaels. As my editor, she shaped this book into something more
than a random collection of incoherent rants. Thanks to Marina, I have developed a
healthy fear of using the word will anywhere in writing. I also had a very valuable team
in Jean-François Morin, Tanya Wilke, Eric Lippert, Rich Ward, Enrico Buonanno, and
Katie Tennant. This intercontinental team of superheroes/ninjas/rockstars pro-
vided amazing feedback and caught an immense amount of (often very embarrassing)
xi

ACKNOWLEDGMENTSxii
technical mistakes. I also want to thank all the reviewers and MEAPers who read the
manuscript before publication and gave fantastic feedback, often in no uncertain
terms. I do not claim this book to be a masterpiece, but I do hope you will get some-
thing useful out of it.

 To all the reviewers, thanks: Arnaud Bailly, Christian Thoudahl, Daniel Vásquez
Estupiñan, Edin Kapic, Foster Haines, George Thomas, Goetz Heller, Gustavo Filipe
Ramos Gomes, Hilde Van Gysel, Jared Duncan, Jason Hales, Jean-François Morin, Jeff
Neumann, Karthikeyarajan Rajendran, Luis Moux, Marc Roulleau, Mario Solomou,
Noah Betzen, Oliver Korten, Patrick Regan, Prabhuti Prakash, Raymond Cheung,
Reza Zeinali, Richard B. Ward, Richard DeHoff, Sau Fai Fong, Slavomir Furman,
Tanya Wilke, Thomas F. Gueth, Víctor M. Pérez, and Viktor Bek. Your suggestions
helped make this a better book.

 And finally, there are a few people I want to thank for either having helped me
with some part of this book or my career in general. First up are David Lavielle and
Duncan Henderson: thank you for taking a chance on me and giving me my first job
in software development. Jerry Finegan: thanks for introducing me to C# and letting
me ask one dumb question after the other. Your patience and feedback were much
appreciated. Michael Breecher: you had a hand in shaping some of the content
around congruence in this book (forced by my late-night texts asking weird math
questions about notation), and the book is better for it. Szymon Zuberek: the first
draft of chapter 2 was written in your New York apartment. Thanks for letting us crash
on your couch any time we wanted to visit and, as always, for providing conversational
fodder. And I thank the wonderful people at Acronis and Workiva, who have had to
listen to me drone on about “this book I am writing” for what feels like forever.
They’ve been good sports (mostly).

about this book
This book builds on your existing programming skills to help you seamlessly upskill
your coding practice or transition to C# from Java or another object-oriented lan-
guage. You’ll learn to write the kind of idiomatic C# code that’s essential for enter-
prise development. This book discusses essential backend skills and puts them into
practice with a common career challenge: refactoring a legacy codebase to be secure,
clean, and readable. By the time you’re done, you’ll have a professional-level under-
standing of C# and be ready to start specializing with advanced-level resources.

 There’s no “Hello, World” or Computer Science 101 basics—you’ll learn by refac-
toring an out-of-date legacy codebase, using new techniques, tools, and best practices
to bring it up to modern C# standards. Throughout this book, we take an existing
codebase (written in the .NET Framework) and refactor it, with a simplified API, to
.NET 5.

Who should read this book
If you are a developer proficient in an object-oriented programming language, be it
Java, Dart, C++, or what have you, this book can help you get up to speed in C# and
.NET without completely starting over. A lot of your knowledge carries over, so why
learn how to write an if statement for the 500th time?

 Similarly, if you are proficient in a programming language like Go, C, JavaScript,
Python, or any other mainstream language, after reading this book you can write
clean, idiomatic C#. You may want to read up on some object-oriented design princi-
ples, but this should not prove to be a steep barrier to entry (if you’re coming from
xiii

ABOUT THIS BOOKxiv
Go, make sure to pay extra attention whenever we use interfaces; they do not work
the same).

 Lastly, if you are a developer who has been using C# for a while now and is wonder-
ing how to “level-up” your knowledge: this book is for you. A lot of advanced C#
resources assume knowledge that is not covered in introductory or beginner resources.
This book aims to bridge that gap.

How this book is organized: A roadmap
This book has a somewhat unconventional approach to its structure compared to a
regular technical book. Most technical books are reference books or can be read in
any order. This book is not a reference book, and to get the most out of it, you need to
read the chapters in order. The book is structured around the following six parts, as
shown in figure figure 1:

1 “Using C# and .NET”—In chapter 1 we discuss what this book is, what it
teaches, and what it does not teach. Chapter 2 is a brief tour of the C# language
and .NET ecosystem, focusing on what sets .NET apart from other platforms
and the C# compilation story.

2 “The existing codebase”—In this part, I guide you through the exploration of
the codebase we inherit. This part is a detailed walk-through of the existing
codebase, with a discussion on potential improvements and design flaws.

3 “The database access layer”—Following part 2, we start to rewrite the entire ser-
vice. In part 3, we focus on creating a new .NET Core project and learn how we
can use Entity Framework Core to connect to a cloud (or local) database. Other
discussed topics include the repository/service pattern, virtual methods and
properties, and sealed classes.

4 “The repository layer”—In part 4, we step into the land of the repository/service
pattern and implement five repository classes. You also learn about dependency
injection, multithreading (including locking, mutexes, and semaphores), custom
equality comparisons, test-driven development, generics, extension methods,
and LINQ.

5 “The service layer”—The next step is to implement the service layer classes. In
part 5, we write four service layers from the ground up and talk about reflec-
tion, mocking, coupling, runtime assertions and type checks, error handling,
structs, and yield return.

6 “The controller layer”—Part 6 is the final step in our rewrite of the service we
initially inherited in part 2. This part sees us writing two controller classes and has
us perform acceptance testing. Besides those topics, we also broach ASP.NET
Core middleware, HTTP routing, custom data binding, data serialization and
deserialization, and generating an OpenAPI specification at runtime.

A lot of chapters in this book (and some sections within chapters) have exercises
designed to test your knowledge of the material. You can complete these exercises

ABOUT THIS BOOK xv
quickly. I encourage you to complete these when you encounter them and to revisit
sections you may have skimmed or misunderstood.

About the code
At the time of writing, the .NET landscape can be divided into three major pieces:
.NET Framework 4.x, .NET Core 3.x, and.NET 5. The entire book uses .NET 5, except
for chapters 3 and 4 (for reasons you will understand after reading those chapters).

 The C# language versions used are C# 3 and C# 9 (we do not use any C# 9–specific
features in most of the book, so an installation of C# 8 works as well). Because C# lan-
guages are backward compatible, you just need to install the latest version (at the time
of writing, either C# 8 or C# 9 preview). The chapters with provided source code are
2, 3 and 4 (combined), 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14.

 To run the code, you need to install a version of .NET Framework higher than 3.5
(if you want to run the code in chapters 3 and 4) and .NET 5. If you want to run the
database used in the book locally or have trouble installing anything needed in this

1. Start reading

Part 1

2. Read chapters

1 and 2

3. Read chapters

3 and 4

Yes

Part 2

No

Interested only

in the “best

practices”?

4. Read chapter 5Part 3

Part 4

5. Read chapters 6–9 Part 5

6. Read chapters

10–12

Part 6

7. Read chapters

13 and 14

8. Done

Figure 1 A flowchart of suggested routes to read this book. Follow the steps, and answer the
questions to achieve your ideal reading experience. This flowchart is inspired by the book structure
flowcharts in Donald Knuth’s The Art of Computer Programming series.

ABOUT THIS BOOKxvi
book, you can find installation instructions in appendix C (“Installation guides”). This
book mostly uses Visual Studio as its IDE, but you can use any IDE that supports C#
(or none at all) if you please. Visual Studio 2019 has a free version called Visual Studio
2019 Community. When we encounter things that require Visual Studio, the book
notes this as such. The code and .NET 5 should run on Windows, macOS, and Linux.
The book uses the command line (or terminal, for you macOS users) wherever possi-
ble to avoid a reliance on any particular IDE or operating system.

 This book contains many examples of source code both in numbered listings and
in-line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; line breaks were
added, and indentation was reworked to accommodate the available page space in the
book. In some cases, even this was not enough, and listings include line-continuation
markers (➥). Code annotations accompany many of the listings, highlighting import-
ant concepts. Also note that curly braces typically have been placed on the preceding
lines for new code blocks. This is not the appropriate real-world C# convention but
was done to preserve space. The source code itself does not use this convention.

liveBook discussion forum
Purchase of Code Like a Pro in C# includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go to
https://livebook.manning.com/book/code-like-a-pro-in-c-sharp/welcome/v-9/. You
can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

https://livebook.manning.com/book/code-like-a-pro-in-c-sharp/welcome/v-9/
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

about the author
JORT RODENBURG is a software engineer, author, and public speaker. He specializes in
C# and has worked on software in a variety of fields, such as financial compliance and
reporting, inkjet printing, medical imaging, distributed systems, and cyber security.
Jort has mentored engineers proficient in a different programming language to help
them get up to speed in C# and .NET. Jort also speaks on all things C#, .NET, and pro-
gramming at conferences and meetups.
xvii

about the cover illustration
The figure on the cover of Code Like a Pro in C# is captioned “Homme Samojede,” or
“Samojede Man.” The illustration is taken from a collection of dress costumes from
various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de
Différents Pays, published in France in 1797. Each illustration is finely drawn and col-
ored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us viv-
idly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xviii

Part 1

Using C# and .NET

In this first part of the book, we’ll take a brief tour of the C# language and
talk about some of its features. Chapter 1 covers what C# and .NET are and why
you would (and would not) use them for your projects. Chapter 2 dives deeper
into the various iterations of .NET and takes a C# method through its compila-
tion process, stopping at each major step along the way.

 Although this part is truly the introduction of this book, it still provides
invaluable information to somebody familiar with C#. Some of the knowledge
introduced in these first two chapters are things you need to know before mov-
ing on to more advanced topics.

Introducing C#
and .NET
Another book on C#, you say? Yes, another one. Plenty of books are written about
C# and .NET, but this book has one fundamental difference: I wrote this book to
help you develop clean, idiomatic C# code in your day-to-day life. This book is not a
reference book but rather a practical guide. This book does not cover things like
how to write an if statement, what a method signature is, or what an object is. We
are not concerned about syntax but instead focus on concepts and ideas. There is a
difference between knowing the syntax of a language and being able to write clean,
idiomatic code. After going through this book, that is exactly what you will be able
do. Whatever your background is and whatever programming languages you know,
as long as you understand object-oriented programming, this book helps you shift
into the C# and .NET ecosystem, as shown in figure 1.1.

 What do organizations like Microsoft, Google, and the US government have
in common? They all use C#—and for good reason. But why? C# is just another

This chapter covers
 Understanding what C# and .NET are

 Learning why you would use C# for your projects
(and why you wouldn’t)

 Switching to C# and how to get started
3

4 CHAPTER 1 Introducing C# and .NET
programming language. It bears similarities to Java and C++, allows for both object-
oriented and functional programming, and enjoys wide support from a large open
source community. Great. Now, why should you care? In this chapter, we’ll explore
that question in depth, but let me reveal a couple of spoilers: C# excels at allowing you
to create scalable software. To start writing C#, all you need is the .NET SDK of your
choice (more on that in chapter 2) and perhaps an IDE. The language and runtime
are open source.

 Any time you look online for C#, chances are, you come across the .NET Frame-
work. You can think about the .NET Framework as your warm blanket, a warm fire,
and a mug of hot chocolate on a winter day, providing you with everything you need:
libraries that encapsulate low-level Windows APIs, expose commonly used data struc-
tures and provide wrappers for complicated algorithms. Daily development in C#
almost certainly involves the .NET Framework, .NET Core, or .NET 5, so we’ll explore
these frameworks where appropriate.

 Figure 1.2 shows where this book’s topics fit in a general .NET web architecture. It
also shows the architecture we use to completely rewrite an existing application, which
we’ll start in chapter 5 (the green/dashed arrows indicate this path).

 For those of you with prior experience in C#: this book sits between beginner
and advanced resources. With the skills taught in this book, you can bridge the
knowledge gap and prepare yourself for advanced skills. The first two chapters may

+ Introducing C# and .NET: 1

+ .NET and how it compiles: 2

Part 1: Using C# and .NET + How bad is this code?: 3

+ Manage your unmanaged

resources!: 4

Part 2: The existing codebase

+ Setting up a project and database

using Entity Framework Core: 5

Part 3: The database access layer

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Reflection and mocks: 10

Part 5: The service layer

+ Runtime type checking revisited

and error handling: 11

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

Figure 1.1 Every chapter introduction contains a progress diagram, which allows you to quickly figure
out where you are in the book.

5Why work in C#?
seem a bit basic to you, but I invite you to not skim over these. It is always good to
refresh your knowledge.

1.1 Why work in C#?
If you are already familiar with a programming language other than C# and like using
it, why should you use C#? Perhaps you were hired by a company that uses only C#. Or
maybe you just want to see what all the fuss is about.

 I promise not to repeatedly tell you that C# is a “strongly typed object-oriented pro-
gramming language that enables cross-platform development of scalable enterprise
software.” You are likely aware of that, and it is hardly the most exciting sentence to
dissect. In this section, we cover the buzzwords in that definition once and do not
touch on it again. At the risk of sounding like I’m employed by Microsoft’s marketing
department, for the rest of this section, we’ll focus on the following highlights and use
cases of C#:

 C# (and the .NET ecosystem) enables the development of software in an eco-
nomical way. Economical solutions are important because enterprise develop-
ment is the bread and butter of C#.

 C# can improve code stability and is maintainable because of its support for self-
documenting code, secure libraries, and ease of use.

 C# is developer friendly and easy to use. There’s nothing worse than discover-
ing that the programming language you want to use does not have good sup-
port for the things you love (such as a stable package manager, good support
for unit testing, and a cross-platform runtime).

Of course, writing scalable, maintainable, and developer-friendly “clean code” can be
done in most (if not all) programming languages. The difference lies in the developer
experience. Some languages are really good at guiding you in writing clean code,
whereas others are not. C# is not perfect, but it does try to help you in this regard.

A typical web architecture on a Microsoft stack

Client tier Presentation layer Business logic layer Data access layer Data tier

Database cache
Redis, DynamoDB, Memcached

Relational database
MSSQL, PostgreSQL, MySQL

Streams and messages
Apache Kafka, RabbitMQ, NATS

Nonrelational database
Neo4j, Project Voldemort, MongoDBRemote HTTP

service call

Blazor or TypeScript

frontend

Web service

Controllers

ASP.NET Core

Middleware

Service classes
Data models

Entity Framework Core

Figure 1.2 An example of a typical web service architecture on a Microsoft stack. This book follows the
approach shown by the green/dashed arrows. This book covers the presentation, business logic, and data
access layers.

6 CHAPTER 1 Introducing C# and .NET
1.1.1 Reason 1: C# is economical

C# is free to use and develop in. The language and platform are fully open source, all
documentation is free, and most tooling has free options. For example, a common C#
setup includes an installation of C# 8, .NET 5, and Visual Studio Community. All these
are free and used in this book. No license fee is required for the runtime, and you can
deploy the end product wherever you want.

1.1.2 Reason 2: C# is maintainable

When we talk about maintainability in this book, we mean the ability to fix bugs, change
functionality, and address other issues without unintended side effects. This sounds like
an obvious requirement for any programming language, but it is very hard to imple-
ment. C# has features that improve the maintainability (and, therefore, safe extensibil-
ity) of large codebases. Think, for example, about generics and Language-Integrated
Query (LINQ). We’ll discuss these two things throughout the book, but they are exam-
ples of the platform exposing functionalities that can help you write better code.

 For a company, maintainability might not be the number one priority on the sur-
face, but if you develop code that is maintainable (meaning clean code that is easily
extendable and backed by tests), development costs drop. Development costs drop-
ping when writing maintainable code may seem counterintuitive at first: maintainable
code takes longer to write and architect, driving up the initial costs of development.
However, imagine what happens after a little while when a user discovers a bug or they
want an additional feature. If we write maintainable code, we can quickly and easily
find the bug (and fix it). Adding the feature is simpler because the codebase is exten-
sible. If we can easily extend and fix a codebase, development costs go down.

Open/Closed Principle
In 1988, the French computer scientist Bertrand Meyer (creator of the Eiffel program-
ming language) released a book called Object-Oriented Software Construction (Prentice
Hall, 1988). The release of Meyer’s book was a pivotal moment in the history of object-
oriented programming and design, because in it, he introduced the Open/Closed Prin-
ciple (OCP). The OCP is aimed at improving the maintainability and flexibility of software
designs. Meyer says the OCP means that “software entities (classes, modules, func-
tions, etc.) should be open for extension, but closed for modification.”

But what does the OCP mean in practical terms? To examine that, let’s apply the OCP
to a class: we deem a class “open” for extension and “closed” to modification if we
can add functionality to the class without changing the existing functionality (and,
therefore, potentially breaking parts of our code). If you abide by that rule, the odds
of you introducing a regression (or new bug) in the existing code are much smaller
than if you try to force in the bug fix or new feature with no regard for maintainability
and extensibility. When you work with code that is more complicated (and coupled;
discussed in chapter 8), you are more likely to introduce new bugs due to misunder-
standing the side effects of your changes. This is what we want to avoid at all costs.

7Why not work in C#?
1.1.3 Reason 3: C# is developer friendly and easy to use

Enterprise development is the bread and butter of C# development and where C# and
.NET shine. What would your ideal codebase look like in an enterprise environment?
Perhaps you would like a codebase that is easily navigable with a solid package man-
ager and backed by tests (unit, integration, and smoke). Let’s also throw in excellent
documentation and cross-platform support.

DEFINITION Self-documenting code means code that is written clearly enough
that we need no comments to explain the logic. The code documents itself.
For example, if you have a method called DownloadDocument, others can have
some inkling of what it does. There is no need to add a comment saying that
the logic inside the method downloads a document.

To top things off, perhaps we can have good integration with a cloud service for con-
tinuous integration and delivery (CI/CD). A pragmatic view tells us that the likeli-
hood of you having such a codebase is not very high. Of course, this wish list is
unrealistic for most scenarios. However, if you want to do some of these things (or all
of them, if you are adventurous), C# does not work against you. It offers existing work-
flows, functionalities, and native libraries to get you 99% of the way there.

 Developers coming from a language such as Java should see some similarities in
the project structure. Although some differences exist, they are not large. We’ll dis-
cuss the C# project structure in depth throughout the book.

 .NET also has support for several popular testing frameworks. Microsoft provides
the Visual Studio Unit Testing Framework, which contains (and by extension is some-
times called) MSTest. MSTest is just the command-line runner for the Visual Studio
Unit Testing Framework. Other commonly used testing frameworks are xUnit and
NUnit. You can also find support for mocking frameworks such as Moq (Moq is simi-
lar to Java’s Mockito or Go’s GoMock. We’ll learn more about using Moq with unit
tests in section 10.3.3.), SpecFlow (behavior-driven development similar to Cucum-
ber), NFluent (a fluent assertion library), FitNesse, and many more.

 Last, you can run C# on a host of platforms, albeit with some limitations (some
older platforms are restricted to older versions of C# and the .NET Framework). With
.NET 5, you can run the same code on Windows 10, Linux, and macOS. This function-
ality got its start as .NET Core, a spinoff of the .NET Framework that has since merged
with .NET Framework (and other frameworks) to create .NET 5. You can even run C#
code on iOS and Android through Xamarin and on PlayStation, Xbox, and Nintendo
Switch platforms through Mono.

1.2 Why not work in C#?
C# isn’t the best choice for everybody under every circumstance. It is imperative that
you choose the best tool for the job. C# works well in a wide variety of situations, but a
few use cases you might not want to use C# and .NET for follow:

8 CHAPTER 1 Introducing C# and .NET
 Operating system development
 Real-time operating system–driven code (embedded development)
 Numerical computing

Let’s examine briefly why C# might not be an ideal fit for these use cases.

1.2.1 Operating system development

Operating system (OS) development is an incredibly important corner of software
engineering, yet not many people develop OSes. Developing an OS takes a lot of time
and commitment, with codebases routinely going into millions of lines of code, devel-
oped and maintained over many years and sometimes decades.

 The main reason C# is not suitable for OS development comes down to spotty sup-
port for manual memory management (unmanaged code) and C#’s compilation pro-
cess. Although C# allows the use of pointers when using “unsafe” mode, it does not
rival a programming language like C in ease of use for manual memory management.

 Another problem with using C# to develop an OS is its partial reliance on a just-in-
time (JIT) compiler (more on this in chapter 2). Imagine having to run your operat-
ing system through a virtual machine. Performance would be a problem because the
virtual machine has to play catch-up all the time to run the JIT-compiled code, which
is similar to what happens when .NET code runs on your machine. This critique
means that a fully statically compiled language is a better fit for OS development.

 Yet, examples of OSes developed in higher-level languages do exist. For example,
Pilot-OS (created by Xerox PARC in 1977) was written in Mesa,1 a predecessor of Java.

 If you want to learn more about operating system development, the wiki for the
osdev.org community is an excellent resource (wiki.osdev.org). There you can find
guides to get started, tutorials, and reading suggestions. Resources for learning C
include Jens Gustedt’s Modern C (Manning, 2019) and the classic book, The C Program-
ming Language, by Brian Kernighan and Dennis Ritchie (Prentice Hall, 1988).

1.2.2 Real-time operating system embedded development in C#

Similar to OS development (section 1.2.1), real-time operating system (RTOS)–driven
code, which you most often find in embedded systems, experiences large perfor-
mance issues when run through a virtual machine. An RTOS scans code linearly, in
real time, and executes the instructions at a configurable interval ranging from one
operation per second to many times per microsecond, depending on the wishes of the
developer and the capabilities of the microcontroller or programmable logic control-
ler (PLC) the code runs on. A virtual machine gets in the way of true real-time execu-
tion due to added latency and overhead at run time.

 If you want to learn more about RTOS-driven code and embedded development,
you can check out several highly regarded books, such as David E. Simon’s An Embedded

1 The name “Mesa” is a pun, referring to the programming language being high level, just like an isolated, ele-
vated hill with a flat top.

http://wiki.osdev.org

9Switching to C#
Software Primer (Addison-Wesley Professional, 1999), or Elecia White’s Making Embed-
ded Systems: Design Patterns for Great Software (O’Reilly Media, 2011).

1.2.3 Numerical computing and C#

Numerical computing (also called numerical analysis) concerns the study, development,
and analysis of algorithms. People (usually computer scientists or mathematicians)
working in numerical computing use numerical approximation to solve problems in
just about every branch of science and engineering. From a programming language
perspective, it presents unique challenges and considerations. Every programming
language can evaluate mathematical statements and formulas, yet some are specifi-
cally built for this purpose.

 Consider plotting graphs. C# can absolutely handle plotting, but what perfor-
mance and ease of use does C# offer when compared with something like MATLAB?
(MATLAB is both a computing environment and a programming language created by
MathWorks.) The short answer is that it doesn’t compare. Graphics programming in
C# sees you working in either something like WPF (which uses Direct3D), OpenGL,
DirectX, or a different third-party graphics library (usually aimed at video games).
With MATLAB, you have a language that ties into an environment built to render
complicated 3-D graphs. You can literally call plot(x, y), and MATLAB plots your
graph for you.

 So, C# can do numerical computing but does not offer the same ease of use as a
language with high-level libraries and abstractions dealing with graph plotting as
MATLAB does. If it interests you to learn more about MATLAB or numerical comput-
ing, some available resources on these topics include Richard Hamming’s Numerical
Methods for Scientists and Engineers (Dover Publications, 1987), Amos Gilat’s MATLAB:
An Introduction with Applications (Wiley, 2016), and the Cody tutorial program for
MATLAB (https://www.mathworks.com/matlabcentral/cody).

1.3 Switching to C#
Because of the similarity among languages, developers with a good understanding of
the syntax of a Java virtual machine (JVM) language (most notably Java, Scala, and
Kotlin) or C++ may have an easier time with this book than somebody coming from a
non-C-style language, non-virtual-machine-esque-based language, or web and cloud-
focused languages such as Dart, Ruby, or Go. Coming from a non-C-style language
background does not mean that C# is impossible to understand. You may find yourself
rereading some passages twice, but in the end, you’ll get there just fine.

 If you come from an interpreted language such as Python, the .NET compilation
process may seem odd at first. Languages within the confines of .NET use a two-step
compilation process. First, code is compiled statically to a lower-level language called
Common Intermediate Language (CIL, IL, or MSIL for short; MS for Microsoft—it is
somewhat similar to Java bytecode, for the Java developers among us), which in turn
compiles just-in-time (JIT) to native code when the .NET runtime executes the code

https://www.mathworks.com/matlabcentral/cody

10 CHAPTER 1 Introducing C# and .NET
on the host. All this might sound like a lot to digest suddenly, but in a few chapters,
you will understand it all.

 If you come from a scripting language such as JavaScript, static typing might seem
to limit and frustrate you. But once you get used to knowing what your type is at all
times, I think you’ll like it.

 And if you come from a language such as Go or Dart, where native libraries are
sometimes hard to find, .NET 5 may surprise you with its rich store of libraries. By pro-
viding functions for most things you can think of, the .NET libraries are your primary
source for functionality. A lot of applications written with .NET never use any third-
party libraries.

 To get the housekeeping out of the way, let’s discuss tooling. We will not dive into
how to install an IDE or the .NET SDK in this chapter. If you have not installed a .NET
SDK or an IDE and want some help, you can find a couple of quick installation guides
in appendix C. To follow along with this book, you need to install the latest versions of
the .NET Framework and .NET 5. In this book, we’ll start with an old codebase that
uses the .NET Framework. Because of that, we’ll use the .NET Framework to run that
old codebase as we migrate the code to .NET 5.

 As mentioned earlier, C# is open source and maintained by the community with
help from Microsoft. You don’t need to pay for a runtime, SDK, or IDE license. Con-
cerning IDEs, Visual Studio (the IDE we’ll use in the examples in this book) has a
free Community edition that you can use to develop personal projects and open
source software. If you like your current IDE, chances are you can find a C# plugin
for it. You can also use the command line to compile, run, and test C# projects,
although I encourage you to give the dedicated C# tooling (Visual Studio) a chance
because it provides the smoothest experience and easiest route to writing idiomatic
C# code.

 Many concepts and techniques you have picked up elsewhere transfer to C#, but
some don’t. C# has matured more on the backend than it has on the frontend,
because it is traditionally mostly used for that purpose. A historical focus on backend
development for C# does not mean that the frontend experience is any less impres-
sive. You can write a full-stack application in C# without the need to touch JavaScript.
Although this book focuses on backend development, many of the concepts taught
here help you on the frontend as well.

 Have you ever come across a monster method with five nested for loops, a bunch
of hardcoded numbers (so-called magic numbers), and more comments than code?
Imagine you are a new developer who just joined a team. How would you feel when
you boot up your IDE, pull down the source code, and see this method? Despair
would not quite cover it. Now imagine that you placed all the individual actions in
your monster method in their own small methods (perhaps fewer than 5 to 10 lines
of code). What would your monster method look like? Instead of being a bunch of
difficult-to-follow conditionals and assignments, with no clear path to understanding
unless you have specific domain knowledge, the code almost reads like a narrative. If

11Switching to C#
you name your methods well, your main method should read like a recipe that even
the worst cooks can follow.

 When I mention “clean code,” I am referring to the coding practices evangelized
by Robert C. Martin in his videos (https://cleancoders.com/videos) and books Clean
Code (Prentice Hall, 2008), Clean Architecture (Prentice Hall, 2017), and, with Micah
Martin, Agile Principles, Patterns, and Practices in C# (Pearson, 2006), and as well as through
his compilation of the “SOLID” principles (Single Responsibility Principle, Open/
Closed Principle, Liskov Substitution Principle, Interface Segregation Principle, and
Dependency Inversion Principle). I explain clean code principles fully when they
come up in the book along with practical information on how to actually use them.

 At the end of the day, why bother writing clean code? Clean code works like a wash-
ing machine for bugs and incorrect functionality. If we put our codebase in the clean
code washing machine, as shown in figure 1.3, we see that once you refactor some-
thing to be more “clean,” bugs come out and incorrect functionality stares at you with
no place to hide. After all, “it all comes out in the wash.” Of course, it is also risky to
refactor production code; often unintended side effects are introduced. This makes it
difficult for management to approve big refactors without added functionality. How-
ever, with the right tools (some of which are discussed in this book), you can minimize
the chances of negative side effects and improve the quality of the codebase.

This book contains sidebars with information on clean code topics. If the sidebars are
clean code related, I denote them as such and explain both the concepts and how to
apply them to the real world. Appendix B contains a clean code checklist. You can use

Code

Code

Bugs

Refactor

Figure 1.3 Clean code is like a washing machine for your code. It takes your
dirty laundry (your code), adds soap and water (clean code principles), and
separates the dirt from the clothes (separates the bugs from the code). What
it leaves you with are clothes (code) with less dirt (bugs) than you started with.

https://cleancoders.com/videos

12 CHAPTER 1 Introducing C# and .NET
the checklist to determine whether you need to refactor existing code. The checklist
serves as a reminder for some of the more forgettable (but still important) concepts.

1.4 What you will learn in this book
This book will teach you to write idiomatic and clean C# code. It does not teach the
C# language, .NET 5, or programming from the ground up. We follow a pratical
approach: a business scenario in which we refactor an old API to be more clean and
secure. Along the way, you’ll learn many things. A few highlights follow:

 Taking an old codebase and refactoring it for security, performance, and
cleanliness

 Writing self-documenting code that can pass any code review
 Using test-driven development to write unit tests alongside your implementa-

tion code
 Safely connecting to a cloud database through Entity Framework Core
 Introducing clean code principles into an existing codebase
 Reading Common Intermediate Language and explaining the C# compila-

tion process

So, what do you need to know to get the most out of this book? The expectation is that
you understand the basic principles of object-oriented programming (inheritance,
encapsulation, abstraction, and polymorphism) and are familiar with another pro-
gramming language that supports developing code through an object-oriented approach
(be it C++, Go, Python, or Java).

 After reading this book, you’ll write clean, secure, testable C# code that follows
good object-oriented design principles. Additionally, you’ll be ready to further deepen
your knowledge in C# through advanced resources. Some suggested readings for after
this book are Jon Skeet’s C# in Depth, 4th edition (Manning, 2019), Jeffrey Richter’s
CLR via C#, 4th edition (Microsoft Press, 2012), Bill Wagner’s Effective C#, 2nd edition
(Microsoft Press, 2016), Dustin Metzgar’s .NET Core in Action (Manning, 2018), John
Smith’s Entity Framework Core in Action, 2nd edition (Manning, 2021), and Andrew
Lock’s ASP.NET Core in Action, 2nd edition (Manning, 2021).

1.5 What you will not learn in this book
This book aims to fill the gap between beginner and advanced C# resources. With that
goal come some consequences regarding what assumptions I make about your under-
standing of C# and programming. As briefly discussed here, I expect you to have some
professional programming experience and that you are comfortable with either the
basics of C# or a different object-oriented programming language.

 What do I mean by that? To get the most out of this book, you should understand
object-oriented principles and be able to develop basic applications or APIs in your
favorite programming language. As a result, this book does not teach you some of the
following topics often present in a beginner programming book:

13What you will not learn in this book
 The C# language itself. This is not a book along the lines of Code C# from
Scratch. Instead, I teach you how to take your existing C# or object-oriented
programming knowledge to the next level.

 Syntax around conditionals and branching statements not specific to C# (if,
for, foreach, while, do-while, etc.).

 What polymorphism, encapsulation, and inheritance are (although we use
these concepts regularly in this book).

 What a class is and how we model real-world objects through classes.
 What a variable is, or how to assign a value to one.

If you are new to programming, I highly recommend going through a book such as
Jennifer Greene’s Head First C#, 4th edition (O’Reilly, 2020) or Harold Abelson, Ger-
ald Jay Sussman, and Julie Sussman’s Structure and Interpretation of Computer Programs,
2nd edition (The MIT Press, 1996)2 before reading this book.

 This book also doesn’t cover these more specialized ways to use C#:

 Microservice architecture. This book does not go into depth on what microser-
vices are and how to use them. Microservice architecture is very much the trend
and is useful in many use cases but is not related to C# or how you code like a
pro. Three wonderful resources to learn more about microservices are Chris
Richardson’s Microservices Patterns (Manning, 2018), Prabath Siriwardena and
Nuwan Dias’s Microservices Security in Action (Manning, 2019), and Christian
Horsdal Gammelgaard’s Microservices in .NET Core (Manning, 2020).

 How to use C# with containerized environments such as Kubernetes and/or
Docker. Although very practical and used in many enterprise development envi-
ronments, knowing how to use Kubernetes or Docker does not guarantee you
can “code like a pro” in C#. To learn more about these technologies, see Marko
Lukša’s Kubernetes in Action, 2nd edition (Manning, 2021), Elton Stoneman’s
Learn Docker in a Month of Lunches (Manning, 2020), and Ashley Davis’s Bootstrap-
ping Microservices with Docker, Kubernetes, and Terraform (Manning, 2021).

 Concurrency with C# beyond multithreading and locks (discussed inchapter 6).
We often find this topic in highly threaded and performance-critical scenarios.
Most developers don’t work with such code much. If you do find yourself in that
position, an excellent resource to learn more about concurrent programming
in C# is Joe Duffy’s Concurrent Programming on Windows (Addison-Wesley, 2008).

 The deep internal details of either the CLR or the .NET Framework themselves.
Although the CLR and .NET 5 are interesting, knowing every little detail about
them is of little practical use for most developers. This book covers the CLR and
.NET Framework in some detail but stops where things get unpractical or
unwieldy. The “bible” for the CLR and .NET Framework is Jeffrey Richter’s CLR
via C#, 4th edition (Microsoft Press, 2012).

2 Available for free from The MIT Press at https://mitpress.mit.edu/sites/default/files/sicp/index.html.

https://mitpress.mit.edu/sites/default/files/sicp/index.html

14 CHAPTER 1 Introducing C# and .NET
You have two ways to read this book. The recommended way is to read the entire
book, front to back and in order. If you are interested only in refactoring and best
practices, you can just read parts 3 through 6.

Summary
 This book doesn’t cover “Programming 101.” It assumes knowledge of object-

oriented programming. This allows us to focus on practical concepts.
 C# and .NET 5 shine at scalable enterprise development with a focus on stabil-

ity and maintainability. This makes C# and .NET a perfect platform of choice
for both companies and individual developers.

 C# and .NET 5 do not shine at operating system development, RTOS-embedded
development, or numerical computing (or analysis). For those tasks, C and
MATLAB fit better.

.NET and how it compiles
In 2020, Microsoft released .NET 5, an all-encompassing software development
platform. Before that, in the late 1990s and early 2000s, Microsoft created the .NET
Framework, which was the precursor to .NET 5. The original use case for the
.NET Framework was developing enterprise Windows applications. In fact, we’ll use
the .NET Framework to examine exactly such a codebase in chapters 3 and 4. The
.NET Framework ties together a large collection of libraries. Although the .NET
Framework and C# are frequently used together, we do encounter use cases for the
.NET Framework without C# (most notably, using a different .NET language). The
two most important pillars of the .NET Framework are the Framework Class Library
(FCL; a humongous class library that is the backbone of the .NET Framework) and
the Common Language Runtime (CLR; the runtime environment of .NET that con-
tains the JIT compiler, garbage collector, primitive data types, and more). In other
words, the FCL contains all the libraries you are likely to use, and the CLR executes
the code. Later on, Microsoft introduced .NET Core, aimed at multiplatform devel-
opment. See figure 2.1 for where this chapter falls in the book’s scheme.

This chapter covers
 Compiling C# to native code

 Reading and understanding Intermediate
Language
15

16 CHAPTER 2 .NET and how it compiles
In this chapter, we’ll discuss a couple of features of .NET 5 and contrast them against
implementations (and sometimes the lack thereof) in other platforms such as Java,
Python, and Go. After that, we’ll learn about the C# compilation process by showing
how a C# method is translated from C# to Common Intermediate Language (CIL) to
native code. These fundamental building blocks allow us to have a solid foundation in
our knowledge of the C# language and the .NET ecosystem. If you are already familiar
with C# and .NET, this chapter is bound to have some repetition for you. If nothing
else, I suggest you read through section 2.3. The discussion on the C# compilation
process is deeper than what you find in most resources and is assumed knowledge in
some advanced C# resources. To test your knowledge of the respective topics, sec-
tions 2.2 and 2.3 have exercises for you to try.

2.1 What is the .NET Framework?
In the beginning . . . there was the .NET Framework—the old-school way of using
.NET. The .NET Framework was introduced in the early 2000s by Microsoft. Develop-
ers could use C# with it to write enterprise desktop applications. Because Microsoft
had an intrinsic interest in targeting Windows, the .NET Framework works only on
Windows and relies on many Windows APIs to perform graphic operations. If you
work on any desktop application written in C# before late 2020 (and the introduc-
tion of .NET 5), I guarantee you it was written using .NET Framework.

+ Introducing C# and .NET: 1

+ .NET and how it compiles: 2

Part 1: Using C# and .NET + How bad is this code?: 3

+ Manage your unmanaged

resources!: 4

Part 2: The existing codebase

+ Setting up a project and database

using Entity Framework Core: 5

Part 3: The database access layer

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Reflection and mocks: 10

Part 5: The service layer

+ Runtime type checking revisited

and error handling: 11

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

Figure 2.1 So far, you’ve learned about what to expect in this book. In this chapter, we’ll dive into
what .NET and its flavors are. By discussing the .NET ecosystem, we’ll gain a baseline understanding
that will serve us well in the rest of the book.

17What is .NET 5?
 The .NET Framework has gone through various iterations over time, but the most
recent release (July 2019) is 4.8.0. There will be no further releases of the .NET
Framework because it’s been replaced with .NET 5, but its many legacy applications
will live on. A lot of the material covered in this book applies to .NET Framework. In
fact, we’ll see a .NET Framework application in chapters 3 and 4.

2.2 What is .NET 5?
In this section, we’ll talk about what .NET 5 is and why it exists. Since 2016, .NET has
existed as two major streams: .NET Framework and .NET Core. The new .NET 5 com-
bines these two streams (as well as different auxiliary streams such as Xamarin and
Unity), as shown in figure 2.2. In effect, .NET 5 is a rebranding of .NET Core as it
forms the basis for a new .NET. We should therefore see .NET 5 as not just another
iteration of the .NET Framework or .NET Core but rather as a reboot and merger of
previous technologies.

 Housing all .NET technologies under one umbrella gives you access to all the tools
and use cases you want. You can develop enterprise software, websites, video games,
Internet of Things (IoT), embedded applications running on Windows/macOS/
Linux, ARM processors (ARM32/64), machine learning services (ML.NET), applica-
tions, cloud services, and mobile apps, all throughout the same framework. And
because the .NET Framework adheres to the .NET Standard, all existing codebases
and libraries should be compatible with .NET 5 (as long as .NET 5 supports the
underlying packages and features used by the codebase).

.NET 5, just like the .NET Framework and .NET Core, is an implementation of the

.NET Standard—a specification that has been used to develop a variety of implemen-
tations of .NET: .NET 5, .NET Framework, .NET Core, Mono (the cross-platform tech-
nology that .NET Core is built on), Unity (video game development), and Xamarin
(iOS and Android development). These have different use cases but are inherently
very similar. Developing an implementation against the .NET Standard means that
code sharing between implementations is as seamless as possible.

 The .NET Standard contains information on what APIs are available for use when
interacting with the CLR (the runtime on which C# depends). Before the .NET

.NET 5

ARM32/64 Xamarin
.NET Core 3

Unity
.NET Framework 4

ML.NET

Figure 2.2 .NET 5 merges .NET Framework 4
with ARM32/64, Xamarin, .NET Core 3, Unity,
and ML.NET. This allows us to use all those
.NET variations under one umbrella: .NET 5.

18 CHAPTER 2 .NET and how it compiles
Standard, we had no real way of making sure that our code or library would work
across .NET implementations, besides using Portable Class Libraries (PCL). PCLs are
libraries that can be shared among projects but can target only a specific version of a
.NET implementation (or “profile”). Today we call these PCLs “profile-based PCLs.”
Libraries targeting a .NET implementation adhering to the .NET Standard are also
PCLs, but instead of targeting a specific implementation, they target a version of the
.NET Standard. To differentiate between profile-based PCLs, we call these “.NET Stan-
dard-based PCLs.” The .NET Standard encapsulates a lot of the Windows APIs used by
libraries written in the pre–.NET Standard era (and, therefore, profile-based PCLs).
As a result, we can use those libraries in any .NET Standard implementation of .NET
without a problem. The first version of the .NET Framework to implement the .NET
Standard was 4.5.

 In keeping with Microsoft’s push for open source software, .NET 5 and all its
related repositories are open source and available on GitHub (https://github.com/
dotnet). For more information on new features slated to be included in new versions
of .NET, see the CoreFX roadmap at https://github.com/dotnet/corefx/milestones.
You can access the .NET Standard at https://github.com/dotnet/standard.

Exercises
EXERCISE 2.1
Which one of the following operating systems is not supported by .NET 5?

a Windows
b macOS
c Linux
d AmigaOS

EXERCISE 2.2
What does the term “CLR” stand for?

a Creative License Resources
b Class Library Reference
c Common Language Runtime

EXERCISE 2.3
Fill in the blanks: The .NET Standard is a(n) __________, which dictates implementa-
tion details for all .NET platforms to enable code sharing.

a implementation
b precursor
c tool
d specification

https://github.com/dotnet
https://github.com/dotnet
https://github.com/dotnet
https://github.com/dotnet/corefx/milestones
https://github.com/dotnet/standard

19How CLI-compliant languages are compiled
2.3 How CLI-compliant languages are compiled
In this section, you’ll get an in-depth look at how C# (and other Common Language
Infrastructure–compliant languages; see section 2.3.2) compiles. Knowing the entire
compilation story prepares you to take advantage of all of C#’s features while under-
standing some of the pitfalls related to memory and execution. The C# compilation
process knows three states (C#, Intermediate Language, and native code) and two
stages, as shown in figure 2.3: going from C# to Common Intermediate Language and
going from Intermediate Language to native code.

NOTE Native code is sometimes referred to as machine code.

By looking at what it takes to go from one step to the other and follow a method as the
compiler and CLR compile the high-level C# code down to runnable native code, we
gain an understanding of the complex machine that is C# and .NET 5. A good under-
standing of this process is often a resource gap found in beginner resources, but
advanced resources require you to understand this.

 We use a combination of static compilation and JIT compilation to compile C# to
native code as follows:

1 After a developer writes the C# code, they compile their code. This results in
Common Intermediate Language stored within Portable Executable (PE for 32
bit, PE+ for 64 bit) files such as .exe and .dll files for Windows. These files are
distributed or deployed to users.

2 When we launch a .NET program, the operating system invokes the Common
Language Runtime. The Common Language Runtime JIT compiles the CIL to
the native code appropriate for the platform it is running on. This allows CLI-
compliant languages to run on a lot of platforms and compiler types. However,

High level

C# code

Assembly level

Processor level

Native code

Intermediate Language

S
ta

tic
 c

o
m

p
ila

tio
n
 (d

e
v
e
lo

p
e
r)

J
u
s
t-in

-tim
e
 c

o
m

p
ila

tio
n
 (C

L
R

)

Figure 2.3 The complete C#
compilation process. It goes from
C# code to Common Intermediate
Language to native code.
Understanding the compilation
process gives us knowledge about
some of the internal choices made
around C# and .NET.

20 CHAPTER 2 .NET and how it compiles
it would be amiss not to mention the major negative implication of using a vir-
tual machine and JIT compiler to run your code: performance.

A statically compiled program has a leg up at execution time because you don’t need
to wait on a runtime to compile the code.

DEFINITION Static and JIT compilation are two commonly used ways of com-
piling code. C# uses a combination of static compilation and JIT compilation.
This entails that the code is compiled down to bytecode at the last possible
moment. Static compilation compiles all the source code ahead of time.

2.3.1 Step 1: C# code (high-level)

The first time I encountered the Pythagorean theorem was in 2008. I was in the Dutch
version of high school and saw in the mathematics textbook that we would cover the
Pythagorean theorem that year. A couple of days later, late at night, I was in the car
with my father. We had been driving for a while, so the conversation had reached a
natural slow point. In a completely out-of-character moment, I asked him, “What is
the Pythagorean theorem?” The question clearly took him aback because I had shown
little academic interest, especially in mathematics, at that point in time. For the next
ten minutes, he attempted to explain to me, somebody with the mathematical abilities
of a grapefruit, what the Pythagorean theorem was. I was surprised I actually under-
stood what he was talking about, and now, years later, it has proven to be an excellent
resource to show you the first step in the C# compilation process.

 In this section, we’ll look at the first step in the C# compilation process: compiling
C# code, as shown in figure 2.4. The program we’ll follow through the compilation
process is the Pythagorean theorem. The reason for using a program representing the
Pythagorean theorem to teach you that the C# compilation process is straightforward:
we can condense the Pythagorean theorem to a couple of lines of code that are under-
standable with a high school level of mathematical knowledge. This lets us focus on
the compilation story instead of on implementation details.

NOTE If a quick refresher is in order, the Pythagorean theorem states that
a2 + b2 = c2. We commonly apply the Pythagorean theorem to discovering the
length of a right-angled triangle’s hypotenuse by taking the square root of the
resulting value, which is the sum of the squared lengths of the two sides adja-
cent to the right-angled triangle.

High level

Step 1C# code

S
ta

tic
 c

o
m

p
ila

tio
n

Figure 2.4 The C# compilation
process, step 1: C# code. This is
the static compilation phase.

21How CLI-compliant languages are compiled
We’ll start by writing a simple method that proves the Pythagorean theorem when
given two arguments, as shown in the next listing.

public double Pythagoras(double sideLengthA, double sideLengthB) {
 double squaredLength = sideLengthA * sideLengthA + sideLengthB * sideLengthB;
 return squaredLength;
}

If we run this code and give it the arguments of [3, 8], we see that the result is 73,
which is correct. Alternatively, because we are using 64-bit floating-point numbers
(doubles), we can also test argument sets like. The result is 12037.7057.

Now we compile the code. Let us assume that the method in listing 2.1 is part of a
class called HelloPythagoras, which is part of a project and solution also called
HelloPythagoras. To compile a .NET 5 (or .NET Framework/.NET Core solution) to

Listing 2.1 Pythagorean theorem (high level)

Access modifiers, assemblies, and namespaces
C# knows six access modifiers (from most open to most restrictive): public, pro-
tected internal, internal, protected, protected private, and private. The two you use
the most in daily life are public and private. Public signifies availability across all
classes and projects (this is the concept of “exported” in some languages; unlike
some of those programming languages, the capitalization of a method name does
not matter when it comes to access modifiers in C#), and private means visible only
from the current class.

The other four (internal, protected, protected internal, and private protected) are used
less often but good to know. Internal gives access to all classes in its own assembly,
and protected limits access to only classes that derive from the original class. That
leaves internal protected. This access modifier is a combination of the internal and
protected access modifiers. It grants access to derived classes and its own assem-
bly. Private protected gives access within its own assembly but only to the code in the
same class or in a derived class.

C# access modifiers from open to restricted. Using the correct access modifier helps with
encapsulating our data and protecting our classes.

We declare a method with a public access modifier,
returning a floating-point number, called Pythagoras,
that expects two floating-point (double) arguments:
sideLengthA and sideLengthB.

We perform the Pythagorean
theorem and assign the result

to a variable called
squaredLength.

Public
Protected

internal
Internal Protected Private

protected

Access modifiers

Private

Most accessible Least accessible

22 CHAPTER 2 .NET and how it compiles
Intermediate Language stored in a PE/PE+ file, you can either use the build or com-
piler button in your IDE or run the following command in your command line:

dotnet build [solution file path]

A solution file ends with the file extension .sln. The command to create our solution
follows:

dotnet build HelloPythagoras.sln

After we run the command, the compiler launches. First, the compiler restores all the
required dependency packages through the NuGet package manager. Then the
command-line tool compiles the project and stores the output in a new folder called
bin. Within the bin folder are two potential options for further folders, debug and
release, depending on the mode we set the compiler to (you can define your own
modes if you want to). By default, the compiler compiles in debug mode. Debug
mode contains all the debug information (stored in .pdb files) that you need to step
through an application with breakpoints.

 To compile in release mode through the command line, append the
--Configuration release flag to the command. Alternatively, in Visual Studio,
select debug or release mode from the drop-down list. This is the easiest, quickest,
and the likeliest way you will compile your code.

Debug and release build modes
In daily life, the practical difference between the debug and release modes are per-
formance and security. By including references to the .pdb files in the debug build’s
output code, the runtime has to iterate over more code to do the same logic than you
would in a release mode where those references are not present. As a result, the
Intermediate Language required to model that code is larger and takes longer to com-
pile when compared to release mode.

Additionally, if you include debugging information, somebody with malicious intent
could potentially use that information to their advantage and have an easier window
into your codebase. This is not to say that compiling in release mode removes any
need for good security practices. Intermediate Language can easily be decompiled
(whether originally compiled in debug or release mode) to something similar to the
original source code. If you want to appropriately protect your source code, consider
looking into obfuscators (Dotfuscator, .NET Reactor) and threat models.

A good rule of thumb is to develop using debug mode and test with both debug and
release modes. Often this takes the form of testing locally under debug mode and
doing user acceptance testing in a dedicated environment with a release build.
Because the code between modes is slightly different, you may find bugs in the
release mode that you don’t find in the debug mode. You do not want to be in a sit-
uation where you tested only the debug build and find a blocking bug in the release
build right before your deadline.

23How CLI-compliant languages are compiled
At this point, the C# high-level code is compiled into an executable file containing the
Intermediate Language code.

2.3.2 Step 2: Common Intermediate Language (assembly level)

From a day-to-day perspective, your job is done. The code is in an executable form,
and you can wrap up your ticket or user story. From a technological perspective, the
journey is just getting started. The C# code is statically compiled down to Common
Intermediate Language, as shown in figure 2.5, but IL cannot be run by the operat-
ing system.

But how do you get from IL to native code? The missing piece is the Common Lan-
guage Runtime (CLR). This part of .NET 5 translates Common Intermediate Language
to native code. It is the “runtime” of .NET. We can compare the CLR to the Java Vir-
tual Machine (JVM). The CLR has been part of .NET since the very beginning. It is
also good to note that with the movement toward .NET Core and .NET 5, a new
implementation of the CLR is taking the place of the old CLR: CoreCLR. The expla-
nations in this book regarding the CLR are valid for both the traditional CLR and
CoreCLR, and the term CLR is used for both the regular Common Language Run-
time and CoreCLR.

 Any code that is written using an implementation of a technical standard called
Common Language Infrastructure (CLI), such as .NET 5, can be compiled down to
Common Intermediate Language. The CLI describes the infrastructure behind.NET,
whose specific flavors are implementations of the CLI themselves, and gives languages
a basis around which to form their type system. Because the CLR can take any piece of
Intermediate Language (IL), and the .NET compiler can generate this IL from any
CLI-compliant language, we can have IL code generated from mixed-source code. C#,
Visual Basic, and F# are the most common .NET programming languages, but a
bunch more are also available. See table 2.1 for a roundup of these acronyms.

 Until 2017, Microsoft also supported J#, a CLI-compliant implementation of
Java. Theoretically, you could download the compatible compiler and use J#, but
you would miss out on some modern Java features in exchange for developing on
the .NET platform.

Assembly level

Intermediate Language

J
u

s
t-in

-tim
e

Step 2

Figure 2.5 The C# compilation
process, step 2: Intermediate
Language. Here we go from static
to just-in-time compilation.

24 CHAPTER 2 .NET and how it compiles
NOTE The CLR is an immensely complicated piece of software. If you want to
know more about the (traditional, Windows-based) CLR, see Jeffrey Richter’s
CLR via C# (4th edition; Microsoft Press, 2012).

Because the compiler embeds IL in files, we need to use a disassembler to view the
CIL. All .NET flavors come with Microsoft’s own dissembler called ILDASM (Interme-
diate Language Disassembler). To use ILDASM, we need to run the Developer Com-
mand Prompt for Visual Studio, which is installed alongside Visual Studio. This is a
command-prompt environment that gives us access to .NET tools. Be aware that
ILDASM is available only for Windows.

Once in the developer command prompt, we can invoke ILDASM on our compiled
file and specify an output file as follows:

>\ ildasm HelloPythagoras.dll /output:HelloPythagoras.il

If we do not specify an output file, the command-line tool launches the GUI for
ILDASM. In there, you can also view the IL code of the disassembled executable. The
output file can be of whatever file extension you want, because it is a simple binary
text file. Note that in the .NET Framework, ILDASM operates against the .exe file, not
the .dll. .NET 5 and .NET Core use the .dll file.

 When we open the HelloPythagoras.il file in a text editor or look at the ILDASM
GUI, a file filled with mysterious code opens. This is the IL code. We focus on the IL
for the Pythagoras method (if compiled in debug mode), as shown next.

.method public hidebysig static float64
 Pythagoras(float64 sideLengthA,
 float64 sideLengthB) cil managed {

Table 2.1 .NET acronyms summarized

Acronym Expansion Description

CLR Common Language Run-
time

The .NET virtual machine runtime. The CLR manages critical
things like code execution, garbage collection, threads, and
memory allocations.

CLI Common Language
Infrastructure

A specification describing what executable code in the .NET
ecosystem looks like and how it should be executed.

CIL Common Intermediate
Language

A language that can be JIT compiled by the CLR to execute
CLI-compliant code. This is what C# compiles down to in the
first compilation stage.

IL Intermediate Language Another term for CIL.

MSIL Microsoft Intermediate
Language

Another term for CIL.

Listing 2.2 Pythagorean theorem (Common Intermediate Language)

25How CLI-compliant languages are compiled
 .maxstack 3
 .locals init ([0] float64 squaredLength,
 [1] float64 V_1)
 IL_0000: nop
 IL_0001: ldarg.0
 IL_0002: ldarg.0
 IL_0003: mul
 IL_0004: ldarg.1
 IL_0005: ldarg.1
 IL_0006: mul
 IL_0007: add
 IL_0008: stloc.0
 IL_0009: ldloc.0
 IL_000a: stloc.1
 IL_000b: br.s IL_000d
 IL_000c: ldloc.1
 IL_000e: ret
}

If you have ever worked in or seen assembly-level programming, you might notice
some similarities. Common Intermediate Language is definitely harder to read and
more “close to the metal” than regular C# code, but it is not as mysterious as it
might look. By stepping through the IL line by line, you see that this is just a differ-
ent syntax for programming concepts you already know. The IL code generated by
the compiler on your machine may look slightly different (especially the numbers
used with the ldarg opcode), but the functionality and types of opcodes should be
the same.

 The very first thing we see is the method declaration, shown next:

.method private hidebysig static float64
 Pythagoras(float64 sideLengthA,
 float64 sideLengthB) cil managed

We can easily see that the method is private, static, and returns a 64-bit floating-point
number (known as a double in C#). We can also see that the method is named
Pythagoras and takes in two arguments called sideLengthA and sideLengthB, both
64-bit floating-point numbers. The two terms that seem odd are hidebysig and cil
managed.

 First, the term hidebysig tells us that the Pythagoras method hides every other
method with the same method signature. When omitted, the method hides all meth-
ods with the same name (not limited to signature match). Second, cil managed means
that this code is Common Intermediate Language and that we are running in man-
aged mode. The other side of the coin would be unmanaged. This refers to whether
the CLR can execute the method, potentially has manual memory handling, and has
all the metadata that the CLR requires. By default, all your code runs in managed
mode unless you explicitly tell it not to by enabling the compiler “unsafe” flag and
designating code as “unsafe.”

26 CHAPTER 2 .NET and how it compiles
 Moving on to the method itself, we can split the method into two parts: the setup
(constructor) and execution (the logic). First, let’s look at the constructor, shown next:

.maxstack 3
 .locals init ([0] float64 squaredLength,
 [1] float64 V_1)

There are some unfamiliar terms here. To start, .maxstack 3 tells us that the maxi-
mum allowed elements on the memory stack during execution is three. The static
compiler automatically generates this number and tells the CLR JIT compiler how
many elements to reserve for the method. This part of the method code is import-
ant—imagine not being able to tell the CLR how much memory we need. It may
decide to reserve all available stack space on the system, or not reserve any at all.
Either scenario would be catastrophic.

 Next up is

.locals init (…)

When we declare a variable in a CLI-compliant programming language, the compiler
assigns the variable a scope and initializes the variable’s value to a default value at
compile time. The locals keyword tells us the scope of the variables declared in this
code block are local in scope (scoped to the method, not the class), whereas init
means that we are initializing the declared variables to their default values. The com-
piler assigns it to null or a zeroed-out value, depending on whether the variable is a
reference or value type.

 Expanding the .locals init (…) code block reveals the variables we are declaring
and initializing as follows:

.locals init (
 [0] float64 squaredLength,
 [1] float64 V_1

The IL declares two local variables and initializes them to zero values: squaredLength
and V_1.

 Now, you might say, hang on a second! We only declared one local variable in our
C# code: squaredLength. What is this V_1 business? Have a look at the following C#
code again:

public double Pythagoras(double sideLengthA, double sideLengthB) {
 double squaredLength =

➥ sideLengthA * sidelengthA + sideLengthB * sideLengthB;
 return squaredLength;
}

We explicitly declared only one local variable. However, we are returning squared-
Length by value rather than by reference. This means that under the hood, a new vari-
able is declared, initialized, and assigned the value of squaredLength. This is V_1.

27How CLI-compliant languages are compiled
 To summarize, we looked at the method signature and the setup. Now we can dive
into the weeds of the logic. Let’s also split the following part up into two sections—the
evaluation of the Pythagorean theorem and the returning of the resulting value:

IL_0000: nop
IL_0001: ldarg.0
IL_0002: ldarg.0
IL_0003: mul
IL_0004: ldarg.1
IL_0005: ldarg.1
IL_0006: mul
IL_0007: add
IL_0008: stloc.0

To start, we see an operation (we also call these operations opcodes) called nop. This is
also called the “Do Nothing Operation” or “No Operation” because, on its own, a nop
operation does nothing. They are widely used in IL and assembly code to enable
breakpoint debugging. Along with the PDB file that is generated in debug builds, the
CLR can inject instructions to stop program execution at a nop operation. This allows
us to “step through” code at runtime.

 Next up, we look at the evaluation of the Pythagorean theorem itself, as follows:

 double squaredLength =

➥ sideLengthA * sideLengthA + sideLengthB * sideLengthB;

The following two operations are a doubleheader: two ldarg.0 operations. The first
operation (IL_0001) loads the first sideLengthA occurrence onto the stack. The second
operation (IL_0002) loads the second sideLengthA occurrence onto the stack as well.

 After we have loaded the first mathematical evaluation’s arguments onto the stack,
the IL code calls the following multiplication operation:

IL_0003: mul

This results in the two arguments loaded during IL_0001 and IL_0002 being multi-
plied and stored into a new element on the stack. The garbage collector now purges
the previous (now unused) stack elements from the stack.

 We repeat this process for the squaring of the sideLengthB arguments as follows:

IL_0004: ldarg.1
IL_0005: ldarg.1
IL_0006: mul

So now we have elements in the stack containing the values of sideLengthA2 and
sideLengthB2. To fulfill the Pythagorean theorem, and our code, we have to add these
two values and store them in squaredLength. This is done in IL_0007 and IL_0008, as
shown next:

IL_0007: add
IL_0008: stloc.0

28 CHAPTER 2 .NET and how it compiles
Similar to the mul operations (IL_0003 and IL_0006), the add operation (IL_0007)
evaluates the addition of the previously stored arguments and places the resulting
value into an element on the stack. The IL takes this element and stores it into the
squaredLength variable we initialized in the setup ([0] float64 squaredLength)
through the stloc.0 command (IL_0008). The stloc.0 operation pops a value from
the stack and stores it at the variable on index 0.

 We have now fully evaluated and stored the Pythagorean theorem result into a vari-
able. All that remains is to return the value from the method, as shown next, just like
we promised in our original method signature:

IL_0009: ldloc.0
IL_000a: stloc.1
IL_000b: br.s IL_000d
IL_000c: ldloc.1
IL_000e: ret

First, we load the value of the variable at location 0 into memory (IL_0009). In the
previous segment, we ended with storing the value of the Pythagorean theorem into
the variable at location 0, so that must be squaredLength. But, as mentioned earlier,
we are passing the variable by value, not by reference, so we create a copy of squared-
Length to return out of the method with. Luckily, we declared and initialized a vari-
able just for this purpose at index 1: V_1 ([1] float64 V_1). We store the value into
index 1 through the stloc.1 operation (IL_000a).

 Next up, we see another strange operation: br.s IL_000d (IL_000b). This is a
branching operator that signifies that the return value is calculated and stored away
for returning. The IL uses a branching operator for debugging purposes. A branching
operator is similar to a nop operation. All different branches of your code (condition-
als with other return values) jump to the br.s operator when return is called. The
br.s operator takes up two bytes and, therefore, has two IL locations (IL_000b and
IL_000d); one opcode usually takes up one byte. Because the br.s operator has a size
of two bytes, IL_000c (ldloc.1) is wrapped in the branching operator. This allows the
debugger to stop executing at the loading of the stored return value and manipulate
it, if necessary.

 Finally, we are ready to return out of the method through IL_000c and IL_000e as
follows:

IL_000c: ldloc.1
IL_000e: ret

The ldloc.1 (IL_000c) operation loads the previously stored return value. This is fol-
lowed by the ret operator, which takes the value we loaded at IL_000c and returns it
from the method. See the entire code sample in listing 2.3.

 That brings us to the end of the section. Hopefully, you are now a bit more com-
fortable with the nitty-gritty parts of the static compilation step of C# and .NET.

29How CLI-compliant languages are compiled

not
oper

us
debugge

breakp

T
sideL
argu
load

m

The
v

sideLeng
sideLeng
added t
and sto
stack e
.method private hidebysig static float64
 Pythagoras(float64 sideLengthA,
 float64 sideLengthB) cil managed {
 .maxstack 3
 .locals init ([0] float64 squaredLength,
 [1] float64 V_1)
 IL_0000: nop
 IL_0001: ldarg.0
 IL_0002: ldarg.0
 IL_0003: mul
 IL_0004: ldarg.1
 IL_0005: ldarg.1
 IL_0006: mul
 IL_0007: add
 IL_0008: stloc.0
 IL_0009: ldloc.0
 IL_000a: stloc.1
 IL_000b: br.s IL_000d
 IL_000c: ldloc.1
 IL_000e: ret
}

2.3.3 Step 3: Native code (processor level)

The last step in the compilation process is the conversion from Common Intermedi-
ate Language to native code, shown in figure 2.6, which the processor can actually
run. Until now, the code has been statically compiled, but that changes here. When
.NET 5 executes an application, the CLR launches and scans the executable files for
the IL code. Then, the CLR invokes the JIT compiler to convert the IL into native
code as it runs. Native code is the lowest level of code that is (somewhat) human-
readable. A processor can execute this code directly because of the inclusion of
predefined operations (opcodes), similar to how Common Intermediate Language
includes the IL operation codes.

Listing 2.3 The IL source code of the Pythagorean theorem method

Start of a method that is
private, static, returns a double,

and hides other methods with
the same signature

The method is called
Pythagoras. It expects
two arguments of type
float64 (double).

This is a CIL (Common
Intermediate Language)
method and runs in
managed mode.

The maximum number
of simultaneous
elements needed on
the stack is three.

Two local variables of type
float64 are declared and
initialized: squaredLength at
index 0 and V_1 at index 1.

A “do
hing”
ation;
ed by
rs for
oints

he first
engthA
ment is
ed into
emory.

The two sideLengthA values loaded
into memory are multiplied and
stored in a stack element.

The first sideLengthB argument
is loaded into memory.

The two sideLengthB values loaded
into memory are multiplied and
stored in a stack element.

squared
alues of
thA and
thB are
ogether
red in a
lement. The squared values previously stored in a

stack element are stored in a new stack
element designated for the variable at
index 0: squaredLength.

The value for squaredLength is
loaded into memory.

The previously loaded-into-memory value of
squaredLength is stored in the stack element
for the variable with index 1: V_1.

The branching operator; signifies the
completion of the method and

storage of the return value

The return value (variable
V_1) is loaded into memory.

We return out of the
method with the

value of V_1.

30 CHAPTER 2 .NET and how it compiles
JIT compiling our code comes at a performance
cost, but also means that we can execute .NET-
based code on any platform supported by the CLR
and a compiler. We can see this in practice with
.NET Core and the new CoreCLR. The CoreCLR
can JIT-compile Intermediate Language to Win-
dows, macOS, and Linux, as shown in figure 2.7.

 Because of the JIT nature of this compilation
step, viewing the actual native code is a bit tricky.
The only way to view native code generated from
your Intermediate Language would be to use a
command-line tool called ngen, which comes prein-
stalled with .NET 5. This tool allows you to generate
so-called native images containing native code from
the Common Intermediate Language stored in a
PE file ahead of time. The CLR stores native code
output in a subfolder of %SystemRoot%/Assembly/
NativeAssembly (only available on Windows). Be
aware, however, that you cannot use the regular file
explorer to navigate here, nor would the resulting
output be legible. After running ngen, the CLR sees
that the IL is already compiled (statically) to native
code and executes based on that. This comes with
the expected performance boost; however, the
native code and IL code can get out of sync when a
new build is released and have unexpected side
effects if the CLR decides to use the older statically
compiled native image instead of recompiling the new, updated code.

 In day-to-day operations, you likely don’t touch IL all that much or are overly con-
cerned about the IL-to-native-code compilation. However, understanding the compila-
tion process is a fundamental block of knowledge because it sheds light on design
decisions in .NET 5 that we’ll encounter throughout the book.

Step 3

Processor level

Native code Figure 2.6 The C# compilation
process, step 3: native code. This is
the JIT phase of the process.

C
om

pi
le

r

Linux

CILCIL

Windows
MacOS

CoreCLR

Figure 2.7 CoreCLR can JIT-compile
for targets such as Linux, Windows,
and macOS. This allows for cross-
platform execution of C# code.

31Exercises
Exercises
EXERCISE 2.4
What are the steps and order of the .NET compilation process?

a .NET code -> Intermediate Language -> Native code
b Intermediate Language -> .NET code -> Native code
c .NET code -> Native code
d Java -> JVM

EXERCISE 2.5
Fill in the blanks: A __________ compiler compiles the code right before it is needed,
whereas code compiled ahead of time was done through a __________ compiler.

a static
b JIT
c dynamic

EXERCISE 2.6
Where is Intermediate Language stored?

a DOCX files
b Text files
c HTML files
d Font files
e Portable Executable files

EXERCISE 2.7
Fill in the blank: If we have to make a copy of a stack element to pass around a vari-
able, that variable is a __________ type.

a reference
b pirate
c value
d nullable

EXERCISE 2.8
Fill in the blank: If we can manipulate a variable value through a pointer to an ele-
ment on the heap, that variable is a _________ type.

a reference
b pirate
c value
d nullable

32 CHAPTER 2 .NET and how it compiles
Summary
 .NET 5 consumes and rebrands .NET Core and .NET Framework (and other

.NET implementations) and effectively becomes .NET Core 4 in all but name.
 .NET uses a combination of static and JIT (“just-in-time”) compilation. This

allows for faster execution when compared to a fully JIT language and cross-
platform execution.

 The C# compilation process has three states of being: (1) C# code, (2) Interme-
diate Language code, and (3) native code.

 The C# compilation process has two steps: C# to Intermediate Language (static
compilation) and Intermediate Language to native code (JIT compilation).

 Intermediate Language is stored in portable executable files (such as .exe and
.dll on Windows). The CLR scans these files for the embedded IL and executes
it, JIT compiling it to the appropriate native code.

 The Common Language Runtime is invoked on the launch of a .NET applica-
tion and JIT compiles the Intermediate Language code to native code.

 A 64-bit floating-point number is of type “double” in C#.
 C# has six separate access modifiers: public, protected internal, internal, pro-

tected, protected private, and private. These are used to control access to your
methods.

 The command line can compile C# through the dotnet build [solution file
path] command. You can also compile through an IDE such as Visual Studio.

 The Common Language Infrastructure is a technical standard that provides a
base for all languages targeting .NET. This allows us to use languages such as F#
and VB.NET along with C#.

 Intermediate Language commands translate roughly to bytecode opcodes.

Part 2

The existing codebase

After reading part 1, you are familiar with C# and the various flavors of the
.NET Framework. You know how C# is compiled and why you would (or would
not) want to use it for your own projects. In this part, I’ll introduce you to Flying
Dutchman Airlines. This company acts as our business case throughout the rest
of the book.

 In the next two chapters, we’ll work on an existing codebase and examine it
in depth, taking stock of where we can make improvements and why.

How bad is this code?
In this chapter, we’ll meet Flying Dutchman Airlines, who have hired us to refactor
their legacy codebase. Flying Dutchman has told us their business needs and given
us their requirements for the refactor. Their legacy application, which we’ll exam-
ine in this (and the next) chapter, is a backend web service developed on the .NET
Framework following the Model-View-Controller (MVC) pattern. The code has
many readability and security issues, so don’t be surprised if there are pieces of
code in this chapter that you don’t like. The point of this chapter is for us to deter-
mine where we can change the existing codebase. We’ll look in-depth at the mod-
els, views, and configuration of the (messy) codebase in this chapter to prepare for
refactoring the code in later chapters. Figure 3.1 shows where we are in the scheme
of the book.

 Flying Dutchman Airlines, whose logo is shown in figure 3.2, is a low-cost airline
based in Groningen, the Netherlands. The airline serves 20 destinations, including
London, Paris, Prague, and Milan. Established in 1977, the company has had its

This chapter covers
 HTTP routes, resources, and endpoints

 Auto-properties and init-only setters

 Configuring an ASP.NET service
35

36 CHAPTER 3 How bad is this code?
difficulties in the marketplace. Flying Dutchman Airlines markets itself as an “ultra-
low-cost airline.” Now that we are in the middle of the twenty-first century, manage-
ment has decided it is time to bring the business into this century as well. This is
where you come in. In this section, we’ll meet our new boss and get the specifications
for the product we are to create.

3.1 Introducing Flying Dutchman Airlines
It is the first day at your new job, and you pull up ten minutes early into the parking
lot. Your button-down shirt is washed, steamed, ironed, and pressed. You are ready for
your first day at work. Your arrival is heavily anticipated, and the first order of the day,
after the obligatory HR paperwork and ID badge photos, is to meet with the CEO. You
are the first in-house software engineer they have hired in a long time and expecta-
tions are high.

+ How bad is this code?: 3

+ Manage your unmanaged

resources!: 4

Part 2: The existing codebase

+ Setting up a project and database

using Entity Framework Core: 5

Part 3: The database access layer

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Reflection and mocks: 10

Part 5: The service layer

+ Runtime type checking revisited

and error handling: 11

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

+ Introducing C# and .NET: 1

+ .NET and how it compiles: 2

Part 1: Using C# and .NET

+ Introducing C# and .NET: 1

Figure 3.1 In this chapter, we’ll start part 2: The existing codebase. We’ll look at what requirements
are laid out for us to address in the rest of the book and what models and views the existing codebase
contains.

Figure 3.2 The Flying Dutchman Airlines logo. Flying Dutchman Airlines is the
company we are working for in this book.

37Introducing Flying Dutchman Airlines
The CEO strikes up a conversation and points you to a chair. He tells you that his name
is Aljen van der Meulen and that he joined Flying Dutchman Airlines only recently, but
he sees room for a lot of potential improvements at the airline, especially in the technol-
ogy department. The Flying Dutchman Airlines website works fine, but there is no way
for people to book a flight through a search aggregator. (An aggregator is a type of
search engine that collects, or aggregates, information from specific sources. In this
case, FlyTomorrow aggregates available flights for booking from airlines.)

 As a result, Aljen signed a contract with the flight aggregator FlyTomorrow.com.
FlyTomorrow is the most-visited airline-related website over the last year and has some
specific requirements for airlines to abide by if they want to integrate with their search
engine. The existing codebase for the airline’s internal systems does have an API for
searching and booking flights, but it is a big mess and needs thorough refactoring.
Aljen slides over a piece of paper and motions for you to take a look. As shown in fig-
ure 3.3, it is the part of the contract between FlyTomorrow and Flying Dutchman Air-
lines that highlights the technological requirements needed to fulfill the contract.

The two most important requirements are the presence of HTTP GET and HTTP POST end-
points in the current API. FlyTomorrow uses these to query for available flights (GET) and
book them (POST). Furthermore, the API has to return error codes where appropriate.

Figure 3.3 Some of the API-related language in the contract between Flying Dutchman Airlines and
FlyTomorrow. The contract contains information about the endpoints we need to implement to fulfill the
requirements.

38 CHAPTER 3 How bad is this code?
NOTE If you are unfamiliar with HTTP actions such as POST and GET, or HTTP
and web development in general, you should consider exploring those topics a
bit further. A fine resource is Mozilla’s documentation on HTTP request meth-
ods: https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods.

3.2 Pieces of the puzzle: Taking a look at our requirements
George, the CTO, steps into the office. Not wasting time, he launches into a discus-
sion on the codebase. The existing codebase is small but messy. Everything is written
in a prehistoric version of C# (C# 3.0, to be precise), and the version of .NET Frame-
work used is 4.5. The database runs on a locally hosted Microsoft SQL Server and is
queried without an object-relational mapping (ORM) framework. George would love
for the refactored version to run on .NET 5 and use the latest version of C#. Although
we cannot change the database schema, we do have access to it. In fact, George has
gone ahead and deployed it to Microsoft Azure.

3.2.1 Object-relational mapping

When you want to make changes to a database, you often use a database manage-
ment tool such as SQL Server Management Studio (SSMS), MySQL Workbench, or
Oracle SQL Developer. You can use these tools to write SQL queries and execute
them against a database, as well as do things like set up stored procedures and per-
form backups. How can we query and interact with the database through the code at
runtime? We can use a tool for object-relational mapping. ORM is a technique for
mapping data from a database to a representation in your codebase and vice versa.
In practical terms, imagine you have a database called BookShop. This database
might have tables such as Books, Customers, and Orders. How would you model
those in an object-oriented codebase? Likely by using models called Books, Customers,
and Orders.

DEFINITION An entity refers to a definition in a database that models the real
world, whereas a model is a class representation of such a model (or any other
real-world object). Just remember, entity is database, and model is code.

It is also a fair assumption that the developers have synchronized the fields to be the
same in both the database and in the code. This does not mean that they are of the same
type, however. Take Books, for example: when queried for a particular book, the
database returns a record in Book as some sort of stream, often in JSON or binary.
The model in the code is of the type Book, but we defined this class ourselves. The
database does not know of the existence of this class. The database table and codebase
model representations are not inherently compatible but do map to each other. This
is an isomorphic relationship, something we’ll explore further in section 3.3.3.

 George and Aljen see the contract with FlyTomorrow as an opportunity to revamp
the existing codebase because the company intends to grow its user base and increase
its scalability. FlyTomorrow has even provided the airline with an OpenAPI specification

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

39Pieces of the puzzle: Taking a look at our requirements
to check the endpoints against (an endpoint is an entry point for a different service
calling our service into our codebase). FlyTomorrow requires the following three
endpoints:

 GET /flight
 GET /flight/{flightNumber}
 POST /booking/{flightNumber}

DEFINITION OpenAPI (formerly Swagger) is an industry-standard way of spec-
ifying APIs. Within an OpenAPI specification, you often find the endpoints
an API has and guidance on how to interact with an API.

3.2.2 The GET /flight endpoint: Retrieving information on all flights

In this section, we’ll explore the first endpoint: GET /flight. The /flight endpoint
accepts a GET request and returns information about all flights in the database. Figure 3.4
tells our endpoint requirements story.

According to the OpenAPI specification from FlyTomorrow, the GET /flight end-
point should return a list of all available flights. The flight data should contain the
flight number and two pieces of airport metadata. The airport model contains the city

Figure 3.4 A screenshot of a generated
OpenAPI GET /flight endpoint specification.
It accepts a GET response and can return an
HTTP status of 200 (along with information on
all available flights), 404, or 500.

40 CHAPTER 3 How bad is this code?
the airport serves and the International Air Transport Association (IATA) airport
code. When no flights are found (meaning no flights are in the database), we should
return an HTTP code of 404 (not found). If an error occurred, whatever it may be,
the return value should be an HTTP code 500 (internal server error) response.

3.2.3 The GET /flight/{flightNumber} endpoint: Getting specific
flight information

The second endpoint that FlyTomorrow requires is GET /flight/{flightNumber}. In
figure 3.5, the OpenAPI specification shows us the expected input and outputs of the
endpoint.

This endpoint has a path parameter of {flightNumber}, specifying which flight’s
details are returned to the caller.

Figure 3.5 A screenshot of a generated OpenAPI
specification for the GET /flight/{flightNumber}
endpoint. This endpoint returns detailed information about a
specific flight in the database when given a flight number.

41Pieces of the puzzle: Taking a look at our requirements
The API should return an HTTP code 400 (bad request) if an invalid flight number is
provided in the path. An invalid flight number could be a negative number or a string
that contains only letters. If a requested flight number does not map to a flight in the
database, then an HTTP code 404 (not found) is returned.

3.2.4 The POST /booking/{flightNumber} endpoint: Booking a flight

The last required endpoint is a POST endpoint with the path /booking/{flightNumber},
as shown in figure 3.6.

GET / fl ghti / {fl ghtNumberi }

HTTP action
An HTTP action of lets us retrieve informationGET

in the form of an HTTP status code (hopefully a
200 OK, or 20 reated) and/or a body containing1 c
any pertinent data returned by the server.

Resource
The resource tells us the type of data we are operating on.
In this case, our resource is of type .flight

Path parameter
A path parameter lets us pass in
a data point for consideration by
the server. In this case, we pass
in a flight number. Not all HTTP
routes have path parameters.

Figure 3.6 The OpenAPI
specification for the POST
/booking/{flightNumber}
endpoint. The endpoint requires us to
pass in a first and last name, as well
as use the flight number we wish to
book as a path parameter. It returns
an HTTP status code value 201 along
with booking information on success.
On failure, it returns an HTTP status
code value of 404 or 500.

42 CHAPTER 3 How bad is this code?
The POST endpoint has a URL path parameter of {flightNumber} and requires a
request body with two fields: firstName and lastName, both strings. The endpoint
either returns an HTTP status code 201 (created) on success or an HTTP status code
500 on failure to book due to a logical or database error. See figure 3.7.

NOTE The full OpenAPI file can be viewed (in YAML format) in appendix D.

The workflow, as shown in figure 3.8, that FlyTomorrow uses to search and book
flights is as follows:

1 FlyTomorrow queries our GET /flight endpoint to list all the flights to the
consumer.

2 When the consumer selects a flight to get details for, FlyTomorrow queries our
GET /flight/{flightNumber} endpoint with the flight number.

3 When the customer is ready to book the flight, FlyTomorrow sends a POST
request to POST /booking/{flightNumber} to book the flight.

POS /booking/{flightNumber}T

H 201 (created)TTP

id

Flig infoht

Cus er infotom

H 404 (not found)TTP

SUC
SS

CE F
A

IL

NOT FO DUN

ER
R
O

R

H 500 (internal error)TTP

Figure 3.7 The request-return life cycle of the POST /booking/{flightNumber}
endpoint. On success, the endpoint returns an HTTP status of 201 along with a booking
ID, flight information, and customer information. In case the service cannot find the
appropriate flight, it returns an HTTP status 404. When there is an internal error, it
returns HTTP status 500.

Sea h flightsrc

G light/{flightNumber}ET/fG lightET/f P flight/{flightNumber}OST/

Cli flight Book flightck

S 1tep S 2tep S 3tep

Figure 3.8 The Search -> Click -> Book workflow and API calls. This is the workflow used by our client and
the one around which we model our codebase.

43Coming to terms with the existing codebase
3.3 Coming to terms with the existing codebase
For the remainder of this chapter, we’ll walk through the part of the code we inher-
ited: the models, views, and configuration code. We’ll discuss points of improvement,
clean code, and security. We’ll also touch on the database schema and how the inher-
ited code’s models compare to the schema.

WARNING The rest of this chapter (and the next) deals with the existing code-
base. This means that we will see sloppy and incorrect code, diversions from the
given requirements, and all-around bad things. We will fix them all in later
chapters.

This chapter serves as the foundation on which we can build our improved service.
After reading this chapter and the next, you’ll be intimately familiar with the code-
base we are trying to improve and itching to start refactoring in part 3.

3.3.1 Assessing the existing database schema and its tables

Now that we have our OpenAPI file and know what is expected of us, it is time to look at
the existing codebase and database. The code we have inherited has a lot of pain points
that we can improve on. We can change anything we want, according to George and
Aljen, but not the database. Because it is our only rock-solid foundation block, let’s start
by looking at the database schema. The database is deployed to Microsoft Azure and is a
regular, run-of-the-mill SQL database with only a couple of tables, as follows:

 Airport
 Booking
 Customer
 Flight

In this section, we’ll look at the database schema, shown in figure 3.9, and dissect the
key constraints the schema provides us.

Figure 3.9 The
database schema
and foreign key
constraints of the
Flying Dutchman
Airlines database
hosted in Microsoft
Azure. This schema
shows the tables we
use throughout the
book.

44 CHAPTER 3 How bad is this code?
As George told us, no ORM is used in the existing codebase, but even without one,
you would expect to see some objects modeled after these tables.

NOTE If you are unfamiliar with databases and/or SQL in general, you may
want to read up on the basics. Two good resources are Cornell University’s
Relational Databases Virtual Workshop at https://cvw.cac.cornell.edu/databases/
and The Manga Guide to Databases (No Starch Press, 2009) by Mana Takahashi,
Shoko Azuma, and Trend-Pro Co., Ltd.

3.3.2 The existing codebase: Web service configuration files

Looking at the solution’s structure gives us some insight into how the project was laid
out. In this section, we are looking at the source files dealing with the configuration of
the service, as shown in figure 3.10.

C# uses a hierarchical relationship for solutions and projects to organize its code-
bases. A solution can have many projects, but a project typically is part of only one
solution. It is very much a parent (solution) -child (project) pattern. Note, however,
that a project cannot contain subprojects. Figure 3.10 gives us a clear look at the lay-
out of the codebase. We see folders with names such as App_Start, Controller, and
Objects. These show the use of a Model-View-Controller pattern, albeit with slightly
different terms.

Figure 3.10 The folder structure of
FlyingDutchmanAirlinesExisting.sln, as
shown in the Solution Explorer in Visual
Studio 2019. This is the structure we’ll
explore in the remainder of the chapter.
The solution consists of a single project
that has configuration, controller, object,
and view files.

https://cvw.cac.cornell.edu/databases/

45Coming to terms with the existing codebase
Looking from the top, we see that the solution name is FlyingDutchmanAirlines-
Existing and that it contains a project with the same name. That brings us to our first
source code file: AssemblyInfo.cs. This file is in the project’s root folder, but Visual
Studio visualizes it in a separate Properties category.

 The AssemblyInfo file is not a file you venture into very much in daily life. It con-
tains metadata about your assembly, such as the assembly title and version.

 In contrast to AssemblyInfo.cs, the next file is of much interest. Because we are
dealing with a web service, we need to have some kind of routing for our endpoints.
This is served by the RouteConfig class in the App_Start folder.

OPENING UP THE ROUTECONFIG FILE

 As shown in the next listing, opening up RouteConfig, we see that the class only has
one method: RegisterRoutes.

public class RouteConfig {
 public static void RegisterRoutes(RouteCollection routes) {
 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}"
 };
 }
}

The Model-View-Controller design pattern
One of the most used design patterns in software development, the Model-View-
Controller (MVC) pattern distances any user and external interfaces from the busi-
ness logic and the stored data. The MVC pattern has grown in popularity in the last
decade because it is immensely useful for both desktop and web development.

When using MVC, the model layer does most of the work. We store all our data in
models and perform most necessary business logic in the models themselves. To
interact with this data, we usually want some kind of user interaction. That is where
the controller and view layers come in. A controller acts as a funnel, routing user
requests to the model layer. The view layer consists of objects that represent spe-
cific “views” of the data in the model layer. The controller layer returns these views
to the user.

Throughout this book, bit by bit, you will gain an in-depth understanding of how to use
MVC-like patterns and models. After reading this book, you will be intimately familiar
with models, views, and controllers.

Another good resource on the MVC pattern (and other design patterns) is Eric Free-
man, Elisabeth Robson, Bert Bates, and Kathy Sierra’s Head First: Design Patterns
(O’Reilly, 2004).

Listing 3.1 RouteConfig.cs

46 CHAPTER 3 How bad is this code?
Listing 3.1 shows the RouteConfig class minus routine things such as a namespace
declaration and package imports.

NOTE Most source code listings in this book do not include the required
imports because they would take up a lot of space in every listing.

The RegisterRoutes method allows us to specify a pattern for mapping incoming
HTTP routes to endpoints in our code. RegisterRoutes returns no value (void) and
takes in an instance of RouteCollection, a class of the ASP.NET Framework.

DEFINITION ASP.NET is a web framework that ties deeply into the .NET Frame-
work, .NET Core, and .NET 5. ASP.NET adds web development capabilities to
C# such as WebAPI support and URL routing. Because of its deep integration
into the .NET ecosystem, people sometimes do not realize they are calling
libraries from ASP.NET. Throughout this book, we’ll use ASP.NET but won’t
explicitly call out when we do. For more information on ASP.NET, see Andrew
Lock’s excellent ASP.NET Core in Action (2nd edition; Manning, 2020).

The only operation executed in the RouteConfig.RegisterRoutes method is the call
to the MapRoute method, which is part of the RouteCollection instance passed into

Should you avoid static?
Being able to access your methods or fields without having to create an instance of
the class can be very useful. It certainly is easy to access your code wherever you
want and whenever you want (assuming what you are trying to access is also public).
But before you mark everything as static, I would urge you to reconsider.

Yes, you can access a static method or field without creating an object instance, but
so can somebody else. You are unlikely to be the only developer working in a given
codebase, and as a result, you can’t predict their needs and assumptions.

For example, consider the following code found in an imaginary video game:

public record Player {
 public static int Health;
}

We have a record type called Player and a public static string field representing the
player’s health. When the player’s health is damaged, the game loop logic calls
as follows:

Player.Health--;

This decreases the health of the player by 1. All is well for a single-player adventure,
but what if we want multiple players, perhaps for a local co-op or split-screen feature?
We’ll just instantiate another Player! But now we have two instances of Player,
both using the same static Health field. When we now decrease health for one player,
it’s decreased for all. This could be a neat game-play twist, but in general, we want
to avoid changing the state across instances through static.

47Coming to terms with the existing codebase

The r
me

part
WebAp

cla
De

the RegisterRoutes method. MapRoute takes in two things: what we want to call the
routing pattern (Default) and what the actual routing pattern is ({controller}/
{action}/{id}). When you add an ID to a routing pattern, as we have done, it
becomes a URL path variable parameter. A common use case for a URL path variable
is using them with HTTP GET calls to specify a specific resource to get by a resource
ID, as shown in the next listing.

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}"
};

We’ll see more of this routing pattern and how it works in action when we look at the
FlightController in chapter 4.

LOOKING AT THE WEBAPICONFIG FILE

The next file we see is WebApiConfig.cs. When we open the file, we see something pecu-
liar: there is another class inside of WebApiConfig, as shown in the next code sample.

public class WebApiConfig {
 public class Defaults {
 public readonly RouteParameter Id;

 public Defaults(RouteParameter id) {
 Id = id;
 }
 }

 public static void Register(HttpConfiguration config) {
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 "DefaultApi",
 "api/{controller}/{id}",
 new Defaults(RouteParameter.Optional)
);

 GlobalConfiguration.Configuration.Formatters.JsonFormatter.Add(
 new System.Http.Formatting.RequestHeaderMapping(
 "Accept",
 "text/html",
 StringComparison.InvariantCultureIgnoreCase,
 true,
 "application/json")
);
 }
 }
}

Listing 3.2 Setting up HTTP routes

Listing 3.3 WebApiConfig.cs and its nested class, Defaults

MapRoute scans the codebase
for matching routes.

We specify the name of
the route as Default.

The route we scan for is determined here.

Defaults is
a nested
class.

egister
thod is
 of the
iConfig
ss, not
faults.

Calling
MapHttpAttributeRoutes
enables attribute
routing.

We map routes following
the API/Controller/ID
pattern.

Allows
for JSON
responses
to be
returned

48 CHAPTER 3 How bad is this code?
In C#, you can have nested classes and access them just like regular classes (depend-
ing on their access modifier). Nested classes come in handy when creating a dedi-
cated class file would bring more confusion to the overall project structure than you
want. Sometimes, a “throw-away” class inside the only class you use the nested class in
can be cleaner than creating a new file. We’ll discuss how to improve this code in
section 5.2.3.

DEFINITION The code in listing 3.3 has a keyword we haven’t seen yet:
readonly. When something is designated as read-only in C#, it means the
value is immutable after assignment.

To access a public nested class from outside the class it is nested in, use the enclosing
class to access it. For example, we can access the nested defaults class by using WebApi-

Config.Defaults. You can use a nested class with any access modifier, but you are still
at the mercy of the outer class’s access modifier. If the outer class has an access modi-
fier of internal and the nested class is public, you still need to meet the access
requirements of the outer class before accessing the nested class.

NOTE For developers coming from Java: nested classes in C# do not have an
implicit reference to the outer class. This is a difference in the practice of
static nested classes in Java and nested classes in C#. C# also allows multiple
non-nested classes in one file, as opposed to Java. This is not good practice,
but it is allowed.

The Register method requires a parameter of type HttpConfiguration. It uses the
HttpConfiguration instance to do the following two things:

 The runtime scans and maps all endpoints with route method attributes.
 The runtime allows for routes with optional URL parameters.

A method attribute (called a method annotation in Java) can mark any method and is
used to give it some metadata. Some examples of when we would use attributes follow:

 To mark which fields should be serialized
 To mark which methods are obsolete
 To mark whether the method has a specific HTTP route assigned to it

In the case of the existing code, we see method attributes with routing in the Flight-
Controller class. A method attribute comprises two enclosing brackets with the respec-
tive attribute sandwiched in (e.g., [MyMethodAttribute]).

 The config.Routes.MapHttpRoute is similar to the routes.MapRoute method in
RouteConfig (listing 3.1). The code in RouteConfig configured the routes for end-
points with URL path parameters, but now we need to also configure routes to allow
for routes without them. Once again, we pass in a name (DefaultApi) and a template
(api/{controller}/{id}), but this time we also pass in a new Defaults object with
the Id set to RouteParameter.Optional. This allows us to route both endpoints with
and without the parameter (because it is now optional).

49Coming to terms with the existing codebase
 Finally, we set the accepted MediaTypeMappings to application/json in the call to
GlobalConfiguration.Configuration.Formatters.JsonFormatter.MediaTypeMappings.

CHARTING ASP.NET AND CONFIGURATION FILES: GLOBAL.ASAX, PACKAGES.CONFIG, AND WEB.CONFIG

Let’s skip the folders called Controller, Objects, and ReturnViews, and look at the
three source files at the bottom of the solution in the next listing: Global.asax, pack-
ages.config, and Web.config.

namespace FlyingDutchmanAirlinesExisting {
 public class WebApiApplication : System.Web.HttpApplication {
 protected void Application_Start() {
 GlobalConfiguration.Configure(WebApiConfig.Register);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 }
 }
}

What is this strange file extension .asax? We have not seen this extension before. An
.asax file indicates a global application class. These classes are used in an ASP.NET
application to execute code in response to lower-level system events such as the
launching or ending of the service. The logic inside a global application class is the
very first piece of code executed that we can manipulate. We can execute code at the
start of our application by creating an Application_Start method, as in listing 3.4.
To execute code at the end of an application, put it in an Application_End method.

 The Application_Start method has an access modifier state of protected and
returns nothing. The GlobalConfiguration.Configure call registers a callback to
where the WebApiConfig registers its routes.

DEFINITION A callback is a function that is slated to be executed after the execu-
tion of the current function. You can think of it as a queuing system where the
callback is enqueued (or cuts in line, depending on your perspective) for exe-
cution right after the current method’s processing is done. A caller calls the cal-
lee, passing it back a callback, which the callee invokes after its work completes.

Following the registration of the callback to register the routes, RegisterRoutes is
called on the RouteConfig, and the RouteTable’s routes are passed in. This results in
the areas of the routes (things between slashes, e.g., “/flight/” means flight is an
area) that are defined in the RouteTable being registered and usable. We need to reg-
ister the callbacks and call RouteConfig at launch because we could not execute them
otherwise. Because the routes would not be registered, we could not kick off any exe-
cution by triggering an endpoint.

 Two other files remain that we can square into the configuration camp: pack-
ages.config and Web.config. Packages.config is a file tied to the NuGet package man-
ager. The NuGet package manager is the default package manager for .NET and is
deeply integrated with Visual Studio. The packages.config file specifies what packages

Listing 3.4 Global.asax

50 CHAPTER 3 How bad is this code?
(and versions of said packages) are referenced and installed in solutions and projects.
A target ASP.NET Framework is also specified. For example, this being an ASP.NET
application and ASP.NET being a framework separate from .NET (but with heavy inte-
gration and mostly automatic installation support), it is referenced in the packages
.config file as follows:

<package id="Microsoft.AspNet.WebApi" version="5.2.7"
 ➥ targetFramework="net45" />

Web.Config provides us with settings that configure how the application is supposed
to run, what version of the .NET Framework to use (remember, this codebase runs on
the .NET Framework), and compiler settings. For example, the compile mode we are
running under is debug (the default mode). This is defined in the following line:

 <compilation debug="true" targetFramework="4.5"/>

That brings us to the end of the configuration files. We’ll skip the FlightController
class for now and look at the models and views we were provided: Booking.cs, Cus-
tomer.cs, Flight.cs, and FlightReturnView.cs.

3.3.3 Considering models and views in the existing codebase

In the MVC pattern, models should mirror the structure of database tables, whereas
views are driven by clients. Views act as a representation of the data, determined by
the client. We’ll discuss what that means further in section 10.1.1. In this section, we’ll
look at the models and views that the inherited codebase contains. The project has
the following three models:

 Booking

 Customer

 Flight

The code also has one view: FlightReturnView. In an ideal world, the models closely
resemble what is present in the database, but it looks like the existing code is not quite
there yet.

UNCOVERING THE BOOKING MODEL AND ITS INTERNAL DETAILS

Models represent an important cornerstone of a web service. They hold data that we
can spin and twist into perspectives and show different angles through views. The first
model we’ll look at is the Booking model. The idea behind this model is to provide an
object to hold data about the booking of a flight, as shown in the next code sample:

namespace FlyingDutchmanAirlinesExisting.Objects {
 public class Booking {
 public string OriginAirportIATA;
 public string DestinationAirportIATA;
 public string Name;
 }
}

51Coming to terms with the existing codebase
We see that the Booking model is fairly simple and contains three fields (Origin-
AirportIATA, DestinationAirportIATA, and Name), all with a public access modifier.
This would be an opportunity to introduce some encapsulation by adding a backing
field, getter, and setter.

WHY GETTERS AND SETTERS MATTER (AUTO-PROPERTIES AND INIT-ONLY SETTERS)
Encapsulation: you’ve heard the term many times before, but it is tricky to do it right.
A major motivation for encapsulation is to provide controlled access to your code. You
can fine tune how you want others to interact with your work and provide access
guidelines through access modifiers. Opponents of getters and setters say it bloats the
code and that it is time consuming to write getters and setters for every property. Pro-
ponents would counter by pointing out that controlling access to a property is not
code bloat and that it increases speed in the long run.

 Imagine having a codebase like the one we are considering right now. Perhaps you
are getting the Booking.Name string in 50 places by directly accessing it. What would
happen if you need to change the original property’s name to Booking.NewName? You
would have to change the call in 50 different locations, making your life miserable.
Some IDEs do have functionality that can automate this process for you, but then you
are relying on an IDE to fix your code smell. I prefer having the code be clean so we
don’t have to use a tool to automate a fix for us.

 Now imagine you write a (what some people call “Java-style”) getter (Booking.Get-
Name) and a setter (Booking.SetName(string name)) and use those to access and
change your property? You would need to change things in only one place: the origi-
nal class. Getters and setters have another critical purpose: they control access to your
property and dictate who can do what with it. Another use case for getters and setters
is making your property readonly but only to outside classes. If you were to apply the
readonly modifier to the field, it would hold for everybody. Instead, you can accom-
plish the same thing by being strategic with getters and setters. If you make the setter
private but the getter public, code outside of the encapsulating class can access but
not edit the property. You can also add logic inside the setters and getters. For exam-
ple, do you need to do some validation of the passed-in arguments before setting the
property to a new value? Add the logic in the setter.

 Some of the ways you can use getters and setters in C# include the following:

 The traditional dual-method technique where you create two new methods (a
dedicated getter and a dedicated setter method) and use those

 Auto-properties
 Init-only setters1

1 Init-only setters were introduced as part of C# 9. Only .NET 5 (and later versions) support C# 9. Init-only setters
(and C# 9) are not supported on .NET Framework or .NET Core.

52 CHAPTER 3 How bad is this code?
With auto-properties, you can inline the getters and setters and let the compiler do
the work of creating the methods under the hood. This is one place where you can
take the abstraction .NET provides and use it to your advantage.

 Let’s compare and contrast the two approaches by applying them to a name field.
First up is the traditional dual-method option, shown here:

private string _name;
public string GetName() {
 return _name;
}

protected void SetName(string value) {
 _name = value;
}

The field containing the value is private (in C#, private fields are often prefixed with
an underscore) and named _name. This field is sometimes called a “backing field”
because the field “backs” the getter and setter. Two methods are created to regulate
setting and getting _name: GetName and SetName. In this example, everybody can get
the name, but only this class and classes inheriting from this class can set the name
field (protected). To better regulate access (and improve readability), we can use an
auto-property as follows:

public string Name { get; protected set; }

The auto-property is only one line, yet it provides the same functionality as the dual-
method technique. If no access modifier is provided, the getter or setter defaults to
the property’s method accessor, as seen with get in this example. You can also provide
method bodies to the getter and setter just by adding curly braces and a body.

 With C# 9, a new way of using setters was introduced: init-only setters. This tech-
nique allows you to create immutable properties (often wrapped in an object) by
using the init keyword. We start as if we create an auto-property, but instead of speci-
fying a getter, we use init. Let’s say the Name property we’ve been using is part of a
class called Person and uses an init-only setter as follows:

class Person {
 public string Name { get; init; }
}

We can create an instance of Person pretty easily, but because we used the init-only setter
for Name, we can’t come back and set a value for Name after instantiation, as shown here:

Person p = new Person();
p.Name = "Sally";

This puts us in a bit of a bind. If we try to assign a value to Name, we get a compiler
error telling us we cannot assign to the init-only property unless we are in an object
initializer, a constructor, or an init accessor. We’ll look at object initializers much

53Coming to terms with the existing codebase
further in section 6.2.5, but to give you a little preview, we can assign the initial value
to Person.Name with an object initializer as follows:

Person p = new Person() {
 Name = "Sally"
};

This sets the value for Name to "Sally" at object creation rather than attempting to set
the value after the object is created. This restriction forces you to assign to an init-only
setter in a very specified way, and it stops people from overwriting the values after they
are set.

COMPARING THE BOOKING MODEL AND TABLE

If we compare the Booking model with the Booking table in the database, we see some
discrepancies, including one that would have a security engineer cry foul. None of the
fields in the Booking model match the Booking table in the database. There even
seem to be some erroneous additions, as shown in figure 3.11.

There is one positive thing to say about the Booking class: it has the right name. But
that is about it. As we can see, the model contains no representations of Flight-
Number, BookingID, or CustomerID. Looking back at figure 3.9, we see that those fields
are involved with key constraints (BookingID is a primary key. FlightNumber and
CustomerID have foreign key relationships). The model contains fields for the origin
airport IATA code, destination airport IATA code, and the customer name.

THE CUSTOMER MODEL AND ITS INTERNAL DETAILS

With some hesitation, we look at the next model, which follows—Customer:

namespace FlyingDutchmanAirlinesExisting.Objects {
 public class Customer {
 public int CustomerId;
 public string Name;

 public Customer(int customerID, string name) {
 CustomerID = customerID;

Figure 3.11 The isomorphic relationship between the Booking class and dbo.Booking.
Every field is incorrect; this is not good. The Xs indicate fields with an incorrect isomorphic
relationship.

54 CHAPTER 3 How bad is this code?
 Name = name;
 }
 }
}

The damage is fairly controlled in the Customer class. Customer also has good isomor-
phism between database tables, as shown in figure 3.12.

From what we can tell, no changes are needed to get Customer up to date with the
database table.

BOARDING THE FLIGHT CLASS AND ITS INTERNAL DETAILS

Turning to the Flight class, we see in the following code sample that Flight has three
fields, all of them integers, which almost map completely to the database table Flight:

namespace FlyingDutchmanAirlinesExisting.Objects {
 public class Flight {
 public int FlightNumber;
 public int OriginID;
 public int DestinationID;

 public Flight(int flightNumber, int originID, int destinationID) {
 FlightNumber = flightNumber;
 OriginID = originID;
 DestinationID = destinationID;
 }
 }
}

Comparing the Flight class’s fields to the database table, we see that, in essence, the
model is correct. But we are in the business of writing clean code, and that also means that
we have consistency across the codebase and database when it comes to field names. It is
also worth mentioning that the whole foundation of having database models in your
codebase (be it through ORM or manually) relies on the practice of the closest interpre-
tation of the isomorphic relationship between a database row and a class.2 It’s important

2 For more information on isomorphic relationships and how they map true statements to interpreted theorems
(e.g., database schemas to models), see chapter 2 (“Meaning and Form in Mathematics”) of Douglas R. Hof-
stadter’s Pulitzer Prize–winning Gödel, Escher, Bach: An Eternal Golden Braid (Basic Books, 1977) and Richard J.
Trudeau’s Introduction to Graph Theory (2nd edition; Dover Publications, 1994).

Figure 3.12 The isomorphic relationship between the (abbreviated) Customer class and
dbo.Customer. CustomerID and Name map correctly.

55Coming to terms with the existing codebase
to keep in mind that even though the name of a field might be the same as the name
of a column in the database, it is still an abstraction. They are not the same; yet to us,
they are as close as they can get.

 Applying an isomorphic relationship to database and codebase communication
makes a strong case for always using ORM, because you get the closest match between
representation in code and representation in the database.

 As designated in figure 3.13 by the “?!” icons, we have a mismatch in two field
names:

 OriginID versus Origin
 DestinationID versus Destination

In situations like this, the database rules. When we start our work on the refactored
version of the API, Entity Framework Core makes sure that these discrepancies do
not occur.

 Flight, Booking, and Customer make up the contents of the Models folder. But
wait a second, let’s have another look at our database schema. It looks like there may
be something missing . . .

 As we can deduce from figure 3.14, we did not encounter any class that could be
said to model the Airport table. So, does the code work?

 If we had some tests, we may have been able to say one way or the other, or if cover-
age was spotty and not in the right places, we could at the very least attempt a sort of
proof by induction3 based on the tests that do exist to prove the correct functionality
of the methods. It might be very true that without the Airport class we can still per-
form all the functions we want and provide value to the customer. It is also true that
the developers of this code have likely made their life harder by not sticking to the for-
mat of their source data.

3 If you want to learn more about proof by induction, I recommend two resources. First, watch the initial three
video lectures (Introduction and Proofs, Induction, and Strong Induction) of MIT’s Mathematics for Computer Science
6.042J course (MIT OpenCourseWare, 2010) at https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-042j-mathematics-for-computer-science-fall-2010/index.htm. Second, I recommend sec-
tion 1.2.1 (“Mathematical Preliminaries / Mathematical Induction”) in Donald Knuth’s The Art of Computer Pro-
gramming, Volume 1: Fundamental Algorithms (3rd edition; Addison Wesley Longman, 1977).

Figure 3.13 The isomorphic relationship between the (abbreviated) Flight class and dbo.Flight.
The Origin/OriginID and Destination/DestinationID are very close matches. FlightNumber
is a solid match.

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/index.htm
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/index.htm

56 CHAPTER 3 How bad is this code?
THE FLIGHTRETURNVIEW VIEW AND ITS INTERNAL DETAILS

Having thoroughly explored the models and how they match up with the database, we
turn our view to the ReturnViews folder. A View allows us to represent the data encap-
sulated in a model (or many models) in any way that we want. As shown next, there is
only one view in the ReturnViews folder—FlightReturnView:

namespace FlyingDutchmanAirlinesExisting.ReturnView {
 public class FlightReturnView {
 public int FlightNumber;
 public string Origin;
 public string Destination;
 }
}

FlightReturnView is a very simple class with just three fields: FlightNumber (integer),
Origin (string), and Destination (string). A view is a slice of an object(s) molded to
reflect only a subsection of details or a combination of details from many models (a
denormalized view). Here, the developers wanted to return FlightNumber, Origin,
and Destination fields to the user. Returning the Flight class would not be sufficient
because that does not contain Origin or Destination. Likewise, returning the Book-
ing class also would not have sufficed as it only contains FlightNumber, and not
Origin or Destination. Using views to return data is a powerful design pattern often
used in API development. It can be construed as having powers similar to the JOIN
SQL operation, because you can join multiple datasets in any way you want. That being

Figure 3.14 The database schema when contrasted to the codebase’s models. Models representing
the tables Flight, Booking, and Customer are present in the codebase; Airport is not. This means there
is an incomplete isomorphic relationship between the codebase and the database.

57Summary
said, if we can get away with not using one, that would be better, because it increases
the complexity of the codebase.

Summary
 An object-relational mapping tool allows us to deal with databases at a higher

abstraction level than querying them directly with SQL.
 A C# repository usually contains one solution, which in turn contains multiple

projects. Keeping with this pattern makes your codebase easier to navigate for
seasoned C# developers.

 The ASP.NET Framework is a framework aimed at developing web services and
is part of the .NET ecosystem. We can use ASP.NET in the .NET Framework,
.NET Core, and .NET 5. We use ASP.NET to create web services.

 We need to define and register HTTP routes through the use of a RouteConfig.
If we do not do this, we cannot reach our endpoints.

 We can attach attributes to methods, fields, and properties. An example of an
attribute is [FromBody].

 A callback is a function that is to be executed after the current function. We can
use callbacks to queue certain methods to execute when we want them instead
of immediately.

 The NuGet package manager is C#’s premier package manager. We can use it to
install third-party packages or the packages of .NET that are not part of the reg-
ular SDK, such as ASP.NET.

Manage your
unmanaged resources!
In chapter 3, the CEO of Flying Dutchman Airlines, Aljen van der Meulen, assigned
us a project to revamp Flying Dutchman Airlines’ backend service so that the com-
pany can integrate with a third-party system (a flight aggregator called FlyTomorow).
We were given an OpenAPI specification and took a look at the database schema
and the configuration, model, and view classes. Figure 4.1 shows where we are in
the scheme of the book.

WARNING This chapter deals with the existing codebase written in the
.NET Framework. This means that we will see sloppy and incorrect code,

This chapter covers
 Discovering the underlying type of an object at

compile time and run time

 Writing code that uses IDisposable and using
statements to dispose of unmanaged resources

 Using method and constructor overloading

 Using attributes

 Accepting a JSON or XML input in an endpoint
and parsing it into a custom object
58

59
diversions from the given requirements, and all-around bad things. We will fix
them all in later chapters and migrate to .NET 5.

Our understanding of the existing codebase is gradually increasing, and we have almost
covered the entirety of it. In this chapter, we’ll look at the last remaining part (the only
controller in the codebase) and dive into the endpoints one by one as follows:

 GET /flight—This endpoint allows users to get information on all flights in the
database.

 GET /flight/{flightNumber}—This endpoint allows users to retrieve informa-
tion about a specific flight, given a flight number.

 POST /flight/{flightNumber}—This endpoint allows users to book flights
when given a flight number.

 DELETE /Flight/{flightNumber}—This endpoint allows the user to delete a
flight from the database when given a flight number.

We’ll also discuss connection strings, enumerable types, garbage collection, method
overloading, static constructors, method attributes, and much more. After reading
this chapter, you should have a clear idea of where we can make improvements, what
improvements we can make, and why.

+ How bad is this code?: 3

+ Manage your unmanaged

resources!: 4

Part 2: The existing codebase

+ Setting up a project and database

using Entity Framework Core: 5

Part 3: The database access layer

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Reflection and mocks: 10

Part 5: The service layer

+ Runtime type checking revisited

and error handling: 11

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

+ Introducing C# and .NET: 1

+ .NET and how it compiles: 2

Part 1: Using C# and .NET

Figure 4.1 In this chapter, we’ll bring part 2 to a close. We’ll look at the existing codebase’s
controller class and discuss potential improvements we can make to the code.

60 CHAPTER 4 Manage your unmanaged resources!

Gen
documen

on

conn
str

hardc
whic

se
pro

 is

f

S
G

4.1 The FlightController: Assessing the GET
 /flight endpoint
Now we come to the meat and potatoes of the codebase we are supposed to fix and
polish. As we learned in chapter 3, FlyTomorrow plans to use this endpoint to display
all the possible flights users can book. The question before us is this: how close does
the original codebase get to that intent?

 The previous chapter covered the database schema, configuration, and supporting
models. That’s all very important stuff, but we want to actually process some data (or
book some flights) with all these models, schemas, and configurations. This is where a
controller comes in (within the context of an MVC pattern), and this codebase has
only one: FlightController.cs. This code is larger than the previous code files, so make
sure you read through the code carefully. Combing through the code in this way gives
us a very clear understanding of where we can make improvements and bug fixes.

4.1.1 The GET /flight endpoint and what it does

In this section, we’ll explore the FlightController class by way of the first endpoint:
the GET flight, as shown in listing 4.1. We’ll see how you can utilize a method attri-
bute to generate documentation on the fly, how we can determine the type of an
object at run time and compile time, why you may not want to hardcode a database
connection string, and how to return an HTTP status from a controller. Hopefully,
after looking over the existing code, we’ll get a sense of where we can make improve-
ments and why we would want to make them.

// GET: api/Flight
[ResponseType(typeof(IEnumerable<FlightReturnView>))]
public HttpResponseMessage Get() {
 var flightReturnViews = new List<FlightReturnViews>();
 var flights = new List<Flight>();

 var connectionString =

➥ "Server=tcp:codelikeacsharppro.database.windows.net,1433;Initial

➥ Catalog=FlyingDutchmanAirlines;Persist Security Info=False;User

➥ ID=dev;Password=FlyingDutchmanAirlines1972!;

➥ MultipleActiveResultSets=False;Encrypt=True;

➥ TrustServerCertificate=False;Connection Timeout=30;";

 using (var connection = new SqlConnection(connectionString)) {
 connection.Open();

 // Get Flights
 var cmd = new SqlCommand("SELECT * FROM flight", connection);

 using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 flights.Add(new Flight(reader.GetInt32(0),

➥ reader.GetInt32(1), reader.GetInt32(2)));

Listing 4.1 FlightController.cs GET /flight

A comment that attempts
to describe the code. We
should remove comments
like this.

erates
tation
the fly

This
ection
ing is
oded,
h is a
curity
blem.

The using
statement
used for
disposing o
disposable
objects.

Opens the connection
to the database

ets up a
ET SQL
query Reads the

database
return

61The FlightController: Assessing the GET /flight endpoint

Fo

g
dest

Fo
fligh
the
 }
 }

 cmd.Dispose();

 foreach (var flight in flights) {
 // Get Destination Airport details
 cmd = new SqlCommand("SELECT City FROM Airport WHERE AirportID =

➥ " + flight.DestinationID, connection);

 var returnView = new FlightReturnView();
 returnView.FlightNumber = flight.FlightNumber;

 using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 returnView.Destination = reader.GetString(0);
 break;
 }
 }

 cmd.Dispose();

 // Get Origin Airport details
 cmd = new SqlCommand("SELECT City FROM Airport WHERE AirportID =

➥ " + flight.OriginID, connection);

 using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 returnView.Origin = reader.GetString(0);
 break;
 }
 }

 cmd.Dispose();

 flightReturnViews.add(returnView);
 }

 return Request.CreateResponse(HttpStatusCode.OK,

➥ flightReturnViews);
}

4.1.2 Method signature: The meaning of ResponseType and typeof

Welcome to the deep end. Listing 4.1 is a fair bit of code with a lot of things that may
be new to us. All endpoints in the controller look similar to this one. They all use the
same patterns to get and return the data, so after we fully understand what is happen-
ing here, the other endpoints are going to be a breeze.

 In this section, we’ll look at the method signature of the /flight’s Get method.
We’ll start by examining the ResponseType attribute, followed by a discussion on the
typeof keyword and what it does. Last, we’ll glimpse how the ResponseType attribute

An alternative
method to dispose
of objects

r every
flight,

ets the
ination
Airport
details

r every
t, gets
 origin

Airport
details

Adds the resulting
view to an internal
collection

Returns an HTTP
200 and the flights

62 CHAPTER 4 Manage your unmanaged resources!
uses the IEnumerable interface and typeof operator. What does the method signature
look like? See the following:

[ResponseType(typeof(IEnumerable<FlightReturnView>))]
public HttpResponseMessage Get()

The ResponseType attribute is used to generate documentation on the fly and is not
often used in a situation where we deal with OpenAPI (or Swagger) specifications.
This attribute is very helpful if you do not use some kind of automatic OpenAPI gen-
eration. The ResponseType attribute has no impact on what type we can return from
the method but does require us to specify the type. The attribute then wraps our
returned data into an HTTPResponseMessage type and returns out of the method. To
figure out what type an instance is, we can use the typeof operator, into which we can
pass an argument to be tested. The typeof operator returns an instance of System
.Type, which contains data that describes the type you passed into the typeof opera-
tor. This is done by the compiler at compile time.

READONLY AND CONST Expression and statement values determined at com-
pile time can be assigned to both readonly and const properties. Values
determined dynamically at run time cannot be assigned to a const property
because a constant cannot change after compile time, whereas a readonly
property can be written to once (either at the declaration or in a construc-
tor). Using readonly and const prevents reassignment at run time. In effect,
this allows you to prohibit unwanted changes to your code, which enforces
the intention that a value should not change at run time and could minimize
the number of unintended side effects stemming from changes made by
other developers.

If we wanted to get the type of an instance at run time (through reflection,1 discussed
in section 6.2.6), we could use the GetType method that the object type exposes (and
because object is the base class of all types, as shown in figure 4.2, it is exposed on all
types). If we were to omit the typeof operator, the attribute would cause a compiler
error because ResponseType expects an instance of System.Type.

NOTE You often encounter data structures that implement the IEnumerable
interface directly or indirectly. The IEnumerable interface allows you to cre-
ate enumerators to loop over collections in a variety of ways (most notably the
foreach construct). If you want to create your own data structure that has an
enumerator, just implement the IEnumerable interface.

1 Even though the Object.GetType method is not part of the reflection namespace, I do consider it part of
the “reflection” workflow. Reflection invariably starts by using Object.GetType, and it is used to get data from
an instance at run time. This a very “reflection”-like operation. For more information, see section 6.2.6 or Jef-
frey Richter’s CLR via C# (4th edition; Microsoft Press, 2012).

63The FlightController: Assessing the GET /flight endpoint
The Get method returns an instance of type HttpResponseMessage. This type con-
tains the data used to return an HTTP response, including an HTTP status code and
a JSON body.

4.1.3 Collecting flight information with collections

We are ready to dive into the FlightController’s GET method. In this section, we’ll
take our first steps to return information on every flight in the database to our users.
We’ll discuss the method instance collections we’ll use to achieve this goal, as well as the
connection string that is hardcoded into the source code and why this is less than ideal.

 Looking at the following first line of code, we see something that we could change:

var flightReturnViews = new List<FlightReturnView>();

The code declares a variable called flightReturnViews and assigns it to an empty
instance of type List of FlightReturnView.

NOTE I prefer using explicit types instead of the var keyword. To me, it
makes the code more readable because I can easily spot what type I am work-
ing with. In this book, I use explicit typing, but you could definitely use the
var keyword if you’d like. The code will generally run fine whether you use
explicit typing, implicit typing, or a mix of both. Opinions vary greatly, and
discussions inevitably heat up on whether to use the var keyword. It’s up to
you to pick which one to use in what scenario.

The var keyword
Using the var keyword is a quick and easy way to declare variables. The compiler
infers the type and you can move on. The other side of the story is that using the var

Figure 4.2 The common denominator of all types is Object. These screenshots were produced
using Visual Studio’s Object Browser, which lets you inspect any object for its base types.

64 CHAPTER 4 Manage your unmanaged resources!
The next two lines share a similar story:

var flights = new List<Flight>();
var connectionString =

➥ "Server=tcp:codelikeacsharppro.database.windows.net,1433;Initial

➥ Catalog=FlyingDutchmanAirlines;Persist Security Info=False;User

➥ ID=dev;Password=FlyingDutchmanAirlines1972!;MultipleActiveResultSets=False;

➥ Encrypt=True;TrustServerCertificate=False;Connection Timeout=30;";

Take a minute to look over the two variables flights and connectionString, and
think about ways to improve the code.

4.1.4 Connection strings, or how to give a security engineer
a heart attack

When considering the hardcoded connection string in section 4.1.3, what went
through your mind? Did you see any problems with this? If so, what were they? The
problem is not with the actual content of the connection string. The connection
details are correct, and we want to have a list holding objects of type Flight. The
problem is that we have a hardcoded connection string in our controller.

 A hardcoded connection string is usually a major security and operational vulnera-
bility. Imagine committing this code to a source control system and having it acciden-
tally available for the public to see. It may be an unlikely scenario, but I have seen it
happen once or twice (and may have caused it myself once). Now you have opened
yourself up to all kinds of nasty things when it comes to your database. If that doesn’t
convince you, let me try this: you’ve hardcoded your connection string instead of pull-
ing it from some central storage (be it a config file or an environment variable injected
in a containerized environment), and a different developer accidentally backspaces one

(continued)

keyword can lead to unnecessary ambiguity. For example, compare the following two
statements:

var result = ProcessGrades();
List<Grades> result = ProcessGrades();

If you were to use the var keyword, you would have to look into the ProcessGrades
method to find out what the return type is. This promotes the idea of not needing to
know any implementation details on the code you call. On the other hand, if you
explicitly write down the return type as part of the variable declaration, you always
know what type you are operating on. Knowing the type could allow us to make differ-
ent decisions on how to implement a certain piece of code.

The var keyword can help you write code faster and, depending on your background,
more intuitively. Sometimes, you don’t need to know the underlying type—you just
want to get on with writing your code.

65The FlightController: Assessing the GET /flight endpoint
too many times and deletes part of the connection string. Of course, the developer
didn’t run any tests, and the code was reviewed and merged when you were on vaca-
tion. Now everything is broken. The moral of the story is this: it’s a small effort to not
hardcode your connection strings (we’ll see how to use local environment variables
for connection strings in section 5.3.3).

NOTE The connection string listed in this chapter is, in fact, the correct con-
nection string for use with our database. The database is deployed through
Microsoft Azure and publicly accessible. If you cannot connect (or do not
want to) to the database, a local SQL version of the database is provided with
the source code files of this book. Instructions on installing and spinning up a
local version of the deployed database are in appendix C.

Instead of hardcoding a connection string, it would be better to either

 Store the connection strings in some kind of configuration file, or
 Access them through an environment variable

We’ll explore the trade-offs between these two approaches when it comes time for us
to fix this security issue.

4.1.5 Using IDisposable to release unmanaged resources

The next code block is a statement that wraps some logic, and we have seen some-
thing like it before. This section deals with the using statement, shown next, and
the IDisposable interface. We’ll learn how they tie into garbage collection and how
to use them.

using (var connection = new SqlConnection(connectionString)) {
 …
}

When we use a using statement in this way, we scope the enclosing variable to the
using code block and automatically dispose of it when we are through with the using
block. So, in this example, the connection variable of type SqlConnection is desig-
nated as ready for garbage collection once we reach the closing bracket of the using
statement.

 But why is this important? C# is a managed language with a garbage collector that
is supposed to handle this for us. This means we do not have to do manual memory
allocation and deallocation like you would do in an unmanaged language like C. Some-
times, though, we need to help the garbage collector out a little bit when it could get
confused. For example, how does the garbage collector know when it can collect on
something if that something may need to live on beyond the current code block or
variable scope?

 The .NET garbage collector scans the code during run time for objects that no lon-
ger have any “links” to them. These links can be things like method calls or variable
assignments. To do this, it uses so-called generations. These generations are running

66 CHAPTER 4 Manage your unmanaged resources!
“lists” of objects that are either ready for collection or may be ready for collection in
the future. The longer the object has lived, the higher its generation (the garbage col-
lector uses three generations in total). Objects in the third generation are visited less
often by the garbage collector than earlier generations. Let’s say we have an object
that holds a property of type integer, assigned a value of 3. This property acts as a
counter in a conditional. If this variable lives on for a while after the method is over
(its variable scope is longer than the code block) waiting for the garbage collector to
collect on it, it is no big deal. The amount of memory taken by the variable is small,
and it is not blocking any other execution. When an object such as this has no remain-
ing links (often because its variable scope has expired), the garbage collector flags the
object as safe for collection, frees up the appropriate memory on its next iteration,
and removes the corresponding entry from its generation lists.

 Now imagine we have a connection to a SQL database, as in the code on the previous
page. If that connection were to “live on” beyond its intended use case, it could prove to
be an issue. We may run into issues where the connection remains open, blocking other
code to execute on the same database, or we may even open ourselves up to buffer over-
flow hacks. To combat such a memory leak, we dispose of resources that are “unman-
aged.” Unlike managed resources, which are garbage-collected anytime after the variable
scope has concluded, we need to deal with unmanaged resources more directly. Yet, dis-
posing of unmanaged resources correctly is an easy thing to forget. Typically, we want to
dispose of an unmanaged resource whenever we are done with it as opposed to when all
references (or links) to the object have disappeared and the garbage collector says we are
done with it. Unmanaged resources typically implement the IDisposable interface, so to
free an unmanaged resource, we call the Dispose method.

 Freeing an unmanaged resource can take the form of calling the Dispose method
at the end of the method. But what if you have branching code with multiple return
opportunities? You would have to have multiple Dispose calls. That may work for
small methods but can quickly get confusing when dealing with large code blocks of
conditionals and multiple paths of traversal through your code. The using statement
is a solution for that. Under the hood, the compiler converts the using statement to a
try-finally code block. An example of this is shown in figure 4.3.

A try-finally is a subset of the try-catch-finally construct we often use when
dealing with error handling. When we wrap code in a try code block, followed by a

Com lerpi

Figure 4.3 A using statement is
converted to a try-finally block
by the compiler. Using a try-catch
allows us to abstract the manual
Dispose call.

67The FlightController: Assessing the GET /flight endpoint
catch code block, if an exception is thrown, it is caught in the catch code block ver-
sus having our code hard-crash. A finally is an optional code block attached to the
end of the catch that executes code as it leaves the code block, whether or not there
was an error caught. We could call the Dispose method in the finally code block,
ensuring that the Dispose method is always called after the method has been exe-
cuted, no matter what the outcome is or if any errors were thrown.

NOTE Calling Dispose on a resource implementing IDisposable does not
cause an immediate garbage collection to happen. We are merely flagging it
safe for collecting and requesting for it to happen at the next opportunity to
do so. No impromptu garbage collection is initiated, but we take the manage-
ment of when the resource is determined safe for collection into our own
hands as opposed to letting the garbage collector decide.

4.1.6 Querying a database with SqlCommand

The constructor for SqlConnection takes in a parameter of type string that rep-
resents the connection string for us to connect to. After entering the using block, we
can now operate on our newly created SqlConnection and query the database. In the
next code listing, the code opens a connection to the database.

connection.Open();

// Get Flights
var cmd = new SqlCommand("SELECT * FROM Flight", connection);

using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 flights.Add(new Flight(reader.GetInt32(0), reader.GetInt32(1),

➥ reader.GetInt32(2)));
 }
}

cmd.Dispose();

If the database cannot be reached through the provided connection string, the code
throws an exception (which is unhandled). Following that, a SqlCommand is created with
a query to select all records from the Flight table ("SELECT * FROM Flight"). The eagle-
eyed reader might have spotted that a couple of lines down, cmd.Dispose is called. We
would have to call Dispose on reader as well if we did not use a using statement. It
looks like our predecessors were not consistent in using using statements or manual dis-
posal requests. We are going to fix that. The code in listing 4.2 has a using statement
that creates a reader object, rendered from the cmd.ExecuteReader() method.

 The reader allows us to parse the database response into a more manageable
form. We can see this in action if we step inside the using statement, where we create
a new Flight object, as shown in figure 4.4.

Listing 4.2 FlightController.cs GET Flight: inside the SqlConnection using
statement

Opens the database
connection Creates a

SqlCommand
with a SQL
query to select
all flights

Creates new
flight instances

Disposes of the
cmd instance

68 CHAPTER 4 Manage your unmanaged resources!
The Flight object takes three parameters, all 32-bit integers (int): flightNumber,
originID, and destinationID. These also are the columns of our Flight table (if we
take into account the slight misnaming we discussed earlier in this chapter). We know
the order the columns are returned in, because we know the database schema. It
probably would have been cleaner to specify what columns the query should return. If
we explicitly say what columns we want to be returned, we can control the data flow
better and know exactly what we are going to get. It does not require a developer
unfamiliar with the code or database schema to do more research to find out what the
expected returns are.

 The code in listing 4.2 calls the reader’s GetInt32 method and passes in the
value’s index we are looking for. Once the Flight object is created, it is added to the
flights collection. Moving on, take a minute to look over the code in listing 4.3.
Hopefully, you’ll see some very familiar things.

// Get Origin Airport details
cmd = new SqlCommand("SELECT City FROM Airport WHERE AirportID = " +

➥ flight.OriginID, connection);

using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 returnView.Origin = reader.GetString(0);
 break;
 }
}

cmd.Dispose();

flightReturnViews.Add(returnView);

The code in listing 4.3 creates a new SqlCommand to select the City column from the
Airport table, where AirportID is equal to flight.OriginID (last time around it was
the flight.destination). The code executes the SqlCommand and reads the return

Listing 4.3 FlightController.cs GET Flight: getting the Origin Airport details

Scope of reader

Figure 4.4 The scope of a variable created in a using statement. The reader instance is scoped
to the using statement and is not accessible when the code leaves the using code block.

Creates a SQL query to
select the City column of
a specific Airport

Executes the
SqlCommand

Reads the response
from the database

Assigns the first element
of the database response

to returnView.Origin

69The FlightController: Assessing the GET /flight endpoint
value into the returnView.Origin field. Then the code disposes of SqlCommand and
adds the returnView to the flightReturnViews collection. And with that, we’ve finally
come to the end of this endpoint. There’s only one more line of code to consider:

return Request.CreateResponse(HttpStatusCode.OK, flightReturnViews);

Remember when we looked at the method signature? We discovered that we are sup-
posed to return a HttpResponseMessage, and that is exactly what Request.Create-
Response gives us.

TIP If you ever want to find out more about specific namespaces or classes of
the .NET Framework, .NET Core, or .NET 5, the Microsoft online documen-
tation is excellent and can be found at https://docs.microsoft.com/en-us/. For
example, the .NET Framework documentation for HttpRequest is at https://
docs.microsoft.com/en-us/dotnet/api/system.web.httprequest?view=netframe
work-4.8.

The CreateResponse method has several method overloads we can use, but for this,
we want to pass in both an HTTP status code and an object to be serialized and returned
to the caller.

Method overloading and static constructors
Method overloading, also called function overloading, allows multiple methods with the
same name (but different parameters) in the same class. This means that we can
have the methods public uint ProcessData(short a, byte b) and public uint
ProcessData(long a, string b) in the same class with no problem. When we call
the ProcessData method, our request is routed by the CLR to the appropriate method
based on the input parameter types. What we cannot do is have two (or more) methods
with the same name and input parameters. The reason for this is that the method call
then becomes ambiguous. How is the CLR supposed to know where to direct our call?
This also means that if we have the methods internal void GetZebra(bool isReal-
Zebra) and internal bool GetZebra(bool isRealZebra), we get a compiler error.
Just changing the return type does not make the call less ambiguous to the CLR.

Overloading ProcessData. The compiler routes the ProcessData calls to the appropriate
overloaded methods at compile time. A compiler error is generated if no overloaded method is matched.

public uint (ProcessData long a, string b) public uint (ProcessData short a, byte b)

Class DataProcessor ?! COMPILER ERROR ?!

Processor. (1, "zebra");ProcessData

Processor. (1, 0);ProcessData

Processor. (false, 23);ProcessData

DataProcessor processor = new DataProcessor();

https://docs.microsoft.com/en-us/
https://docs.microsoft.com/en-us/dotnet/api/system.web.httprequest?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.web.httprequest?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.web.httprequest?view=netframework-4.8

70 CHAPTER 4 Manage your unmanaged resources!
To pass in a status code, we cannot simply pass in an integer. The CreateResponse
method requires us to pass in our selection of the HttpStatusCode enum field, in this
case, HttpStatusCode.OK (which maps to a status code of 200). And with the return
executed, our job in this method is done.

 In summation: although the GET Flight endpoint had some good things about it,
we saw plenty of opportunities to refactor and improve.

4.2 The FlightController: Assessing GET
/flight/{flightNumber}
Now that we have looked at the endpoints to get all the flights from the database, let’s
examine how the previous developers implemented the logic to get a specific flight
from the database. In this section, we’ll explore the GET flight/{flightNumber} end-
point and consider its strengths and flaws. We’ll also consider whether we can remove
extraneous comments and see an example of code as a narrative.

 In listing 4.4, we’ll lift the veil on the GET /flight/{flightNumber} endpoint and
see familiar non-optimal practices, such as a hardcoded connection string. A lot of the
code in listing 4.4 is code you should be able to read without a problem. The differ-
ences are in the details: we’ll discuss the abundance of comments, the HttpResponse-
Message class, and assigning null to implicit types (denoted by the var keyword).

(continued)

We can also overload constructors. We call this constructor overloading, but it is the
same principle as method overloading. We can use overloaded constructors to have
multiple paths to object instantiation. For constructors, there is also the static con-
structor. Because we are dealing with static, there can be only one static constructor,
and, therefore, it cannot be overloaded. When instantiating a class or calling a static
member on a class, a static constructor is always called before instantiation or static
member access. We can have static constructors and regular constructors, but the
runtime always calls the static (once) before the very first regular constructor you
use. Consequently, a static constructor is always parameterless, and static con-
structors do not contain access modifiers (a static constructor is always public).

Static and default constructors. The static constructor is called first before any other constructor.
Step 1: static constructor; step 2: default (or explicitly declared) constructors.

For the Java programmers out there, note that Java’s anonymous static initialization
block is equivalent to a static constructor in C#. C# can have only one static construc-
tor, however, whereas Java can have multiple anonymous static initialization blocks.

DataProcessor class

public DataProcessor () {}

DataProcessor DataProcessorprocessor = new ;()

static DataProcessor () {}

DEFAULT CONSTRUCTOR

STATIC CONSTRUCTOR

71The FlightController: Assessing GET /flight/{flightNumber}
// GET: api/Flight/5
[ResponseType(typeof(FlightReturnView))]
public HttpResponseMessage Get(int id) {
 var flightReturnView = new FlightReturnView();
 Flight flight = null;

 var connectionString =

➥ "Server=tcp:codelikeacsharppro.database.windows.net,1433;Initial

➥ Catalog=FlyingDutchmanAirlines;Persist Security Info=False;User

➥ ID=dev;Password=FlyingDutchmanAirlines1972!;MultipleActiveResultSets=False;

➥ Encrypt=True;TrustServerCertificate=False;Connection Timeout=30;";

 using(var connection = new SqlConnection(connectionString)) {
 connection.Open();

 // Get Flight
 var cmd = new SqlCommand("SELECT * FROM Flight WHERE FlightNumber =

➥ " + id, connection);

 using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 flight = new Flight(reader.GetInt32(0), reader.GetInt32(1),

➥ reader.GetInt32(2));
 flightReturnView.FlightNumber = flight.FlightNumber;
 break;
 }
 }

 cmd.Dispose();

 // Get Destination Airport Details
 cmd = new SqlCommand("SELECT City FROM Airport WHERE AirportID = "

➥ + flight.DestinationID, connection);

 using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 flightReturnView.Destination = reader.GetString(0);
 break;
 }
 }

 cmd.Dispose();

 // Get Origin Airport Details
 cmd = new SqlCommand("SELECT City FROM Airport WHERE AirportID = "

➥ + flight.OriginID, connection);

 using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 flightReturnView.Origin = reader.GetString(0);
 break;
 }
 }

Listing 4.4 FlightController.cs GET flight/{flightNumber}

72 CHAPTER 4 Manage your unmanaged resources!
 cmd.Dispose();
 }

 return Request.CreateResponse(HttpStatusCode.OK, flightReturnView);
}

As you can see, 99% of the endpoint logic comprises patterns and code from the pre-
vious endpoint (listing 4.1), but there are some differences. The first is something we
can find in the method signature, as shown next:

public HttpResponseMessage Get(int id)

The Get flight/{flightNumber} endpoint takes in an argument of type integer,
stored in a variable called id. This maps directly to the {flightNumber} in the API
path: "/flight/{flightNumber}". The other difference is the following declaration
of a Flight object instead of a list of flights. This makes sense because we want to deal
with only an individual flight, not a whole bunch.

Flight flight = null;

It may look strange at first that the developers did not use the var keyword here, but
that would not have compiled correctly. You cannot assign null to a variable declared
with the var keyword, because when using var, the type is implicitly deduced from the
assigned expression. Because null does not contain any type information, the devel-
opers had to declare the type for flight explicitly.

 The code being very similar allows us to take a step back and uncover some other
unclean bits of code without having to focus on what we already know. Foremost,
what is up with the comments describing the logic? They are undoubtedly meant to
act like breadcrumbs for you to follow as you struggle your way through the method:

 // Get Flight
 // Get Destination Airport Details
 // Get Origin Airport Details

Wouldn’t it be nice if we put those in little small methods that could be reused by
other endpoints? I have done exactly that in listing 4.5. Imagine a method that reads
like a narrative or list of steps, containing only a couple of small methods, instead of
the gigantic mess we have now. Listing 4.5 takes the code from listing 4.4 and imagines
a world where a developer has extracted out internal details into separate methods,
calling them in one public method. Compare listings 4.5 and 4.4. The difference in
complexity is enormous. Of course, we are now using multiple database connections
to retrieve the data related to one item. There’s always a drawback, and that is one
that may be too much for some people to bear. All the logic dealing with the how of
getting things from the database has been abstracted away into private methods. A
developer who is not intimately familiar with this class can now look at this method

73The FlightController: POST /flight
and instantly know what it does without knowing all the implementation details.
Knowing the general flow of the method is often more than enough knowledge for a
developer to gain. Notice that there is no code dealing with connection strings, open-
ing database connections, and disposing of objects in the public method.

[ResponseType(typeof(FlightReturnView))]
public HttResponseMessage Get(int id) {
 Flight flight = GetFlight(id);

 FlightReturnView flightReturnView = new FlightReturnView();
 flightReturnView.FlightNumber = flight.FlightNumber;

 flightReturnView.Destination =

➥ GetDestinationAirport(flight.DestinationID);
 flightReturnView.Origin = GetOriginAirport(flight.OriginID);

 return Request.CreateResponse(HttpStatusCode.OK, flightReturnView);
}

In listing 4.5, I extracted all the nitty-gritty details into their own private methods. The
method in listing 4.5 is far from perfect (there is no error handling, for starters), but
it is an improvement.

 The next endpoint is a POST endpoint that creates a booking in the database. It is
also similar but sees us dealing with JSON deserialization.

4.3 The FlightController: POST /flight
We have seen logic to get flights in two ways: get all of them at once, or get a single
one based on the flight number. But what if we want to book a flight? This section
examines the POST /flight endpoint, shown in the next listing, which allows users to
book a flight. It is similar to the previous endpoints but sees us dealing with JSON
deserialization for the first time. Besides JSON deserializing, this section touches on
the Don’t Repeat Yourself (DRY) principle and the ModelState static class. One thing
to note, however, is that FlyTomorrow’s OpenAPI specification said we needed a POST
/booking endpoint, not a POST /flight endpoint. Let’s make a note of that, and fix it
when the time comes.

[ResponseType(typeof(HttpResponseMessage))]
public HttpResponseMessage Post([FromBody] Booking value) {
 var connectionString =

➥ "Server=tcp:codelikeacsharppro.database.windows.net,1433;Initial

➥ Catalog=FlyingDutchmanAirlines;Persist Security Info=False;User

➥ ID=dev;Password=FlyingDutchmanAirlines1972!;MultipleActiveResultSets=False;

➥ Encrypt=True;TrustServerCertificate=False;Connection Timeout=30;";

Listing 4.5 Example of a cleaned-up FlightController.cs GET flight/{flightNumber}

Listing 4.6 FlightController.cs POST /flight

Gets flight
details from
database Creates a new

instance of
FlightReturnView

Populates the
returnView’s
FlightNumber field

Populates the returnView’s
Destination field Populates the returnView’s Origin field

Returns an HTTP 200 and the returnView

74 CHAPTER 4 Manage your unmanaged resources!

G
dest

fr
da

G

fr
da

G
de
th
w
t

 using (var connection = new SqlConnection(connectionString)) {
 connection.Open();

 // Get Destination Airport ID
 var cmd = new SqlCommand("SELECT AirportID FROM Airport WHERE IATA

➥ = "‘" + value.DestinationAirportIATA + "’", connection);
 var destinationAirportID = 0;

 using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 destinationAirportID = reader.GetInt32(0);
 break;
 }
 }

 cmd.Dispose();

 // Get Origin Airport ID
 var cmd = new SqlCommand("SELECT AirportID FROM Airport WHERE IATA

➥ = ‘" + value.OriginAirportIATA + "’", connection);
 var originAirportID = 0;

 using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 originAirportID = reader.GetInt32(0);
 break;
 }
 }

 cmd.Dispose();

 // Get Flight Details
 cmd = new SqlCommand("SELECT * FROM Flight WHERE Origin = " +

➥ originAirportID + " AND Destination = " + destinationAirportID,

➥ connection);

 Flight flight = null;

 using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 flight = new Flight(reader.GetInt32(0), reader.GetInt32(1),

➥ reader.GetInt(2));
 break;
 }
 }

 cmd.Dispose();

 // Create new customer
 cmd = new SqlCommand("SELECT COUNT(*) FROM Customer",

➥ connection);
 var newCustomerID = 0;

 using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {

ets the
ination
Airport
om the
tabase

ets the
origin

Airport
om the
tabase

ets the
tails of
e flight
e want
o book

SQL query to count
all customers in
the database

75The FlightController: POST /flight

Execu
co

l

a

d

 newCustomerID = reader.GetInt32(0);
 }
 }

 cmd.Dispose();

 cmd = new SqlCommand("INSERT INTO Customer (CustomerID, Name)

➥ VALUES (‘" + (newCustomerID + 1) + "’, ’" + value.Name + "’)",

➥ connection);
 cmd.ExecuteNonQuery();
 cmd.Dispose();

 var customer = new Customer(newCustomerID, value.Name);

 // Book flight
 cmd = new SqlCommand("INSERT INTO Booking (FlightNumber,

➥ CustomerID) VALUES (" + flight.FlightNumber + ", ‘" +

➥ customer.CustomerID + "’)", connection);
 cmd.ExecuteNonQuery();
 cmd.Dispose();

 return Request.CreateResponse(HttpStatusCode.Created), “Hooray! A

➥ customer with the name \"" + customer.Name +

➥ "\" has booked a flight!!!");
 }
}

That has got to be the longest, most convoluted endpoint we have seen yet. Because
our previous approach proved somewhat successful, let’s rinse and repeat. Once
again, we see a method signature with the ResponseType attribute applied:

[ResponseType(typeof(HttpResponseMessage))]
public HttpResponseMessage Post([FromBody] Booking value)

This is a mostly familiar story to us by now. We also return an HttpResponseMessage.
But there is a difference in this method signature when compared to the endpoints we
looked at before: the Post method takes in a parameter of type Booking, and there’s
an attribute applied to this parameter as well.

NOTE You can apply attributes not only to methods but also to variables,
classes, delegates, interfaces, and much more. You can’t use attributes on vari-
ables because all data related to an attribute must be known at compile time.
This cannot be guaranteed for a variable.

You can use the FromBody attribute to automatically parse an XML or JSON body into
any class you want (as long as the properties match between the input and the speci-
fied class). Here, the sent-in JSON body is mapped by the CLR to an instance of the
Booking class. This magical little attribute is one of the most time-saving things you
encounter in C#. A valid JSON payload for this endpoint would be as follows:

Assigns the count of all
customers in the database
to newCustomerID

SQL command to insert a new
customer into the databasetes the

mmand

Creates an interna
Customer object
that mimics the
in-database oneCreates

booking
in the

atabase

Returns an HTTP Status 201
and a message with sensitive
customer data

76 CHAPTER 4 Manage your unmanaged resources!
{
 "OriginAirportIATA": "GRQ",
 "DestinationAirportIATA": "CDG",
 "Name" : "Donald Knuth"
}

These values map directly to the fields in the Booking class. The .NET Framework
takes the JSON and spits out our new Booking instance with those values, as shown in
figure 4.5. Because this process binds a parameter to a model, we call the mapping
process model binding. We’ll dive deep into model binding in chapter 14.

With model binding, we still rely on the quality of the input data. If the input data is
missing a field, the underlying code for [FromBody] throws an exception, and the
method automatically returns an HTTP status code of 400. If all the fields are in the
JSON body, but the CLR cannot parse one of the fields for whatever reason, the CLR
sets the global ModelState.IsValid property to false. It is therefore always a good
thing to check for this, and we’ll do that when we go to refactor this method.

 As we scan through the method, we quickly realize that we have seen this all
before. In fact, until we hit the last code block of the method, everything is old news—
an enormous warning sign that this code violates the DRY principle.

The Don’t Repeat Yourself principle
Previously, we discussed refactoring methods into small pieces. This results in meth-
ods that read like narratives, following a couple of simple steps to produce the out-
put. We do this to increase readability, but there is another angle to examine: the
DRY principle.

DRY stands for “don’t repeat yourself” and was coined in the book The Pragmatic Pro-
grammer (Addison-Wesley, 1999), written by Andrew Hunt and Dave Thomas. Hunt
and Thomas defined the DRY principle to mean that “Every piece of knowledge must
have a single, unambiguous, authoritative representation within a system (27).” In
practical terms, this often means that you write the same code only once. In other
words: don’t duplicate code.

N

Figure 4.5 Deserializing a JSON payload into a C# class. The [FromBody] attribute takes a JSON
or XML body and parses it to a model.

77The FlightController: DELETE /flight/{flightNumber}

Exec

comm

Disp
o

SqlComm
ob
The last code block of the method, shown in the next listing, is short and almost sur-
prisingly to the point.

// Book Flight
cmd = new SqlCommand("INSERT INTO Booking (FlightNumber, CustomerID) VALUES

➥ (" + flight.FlightNumber + ", ‘" + customer.CustomerID + "’)",

➥ connection);
cmd.ExecuteNonQuery();
cmd.Dispose();

return Request.CreateResponse(HttpStatusCode.Created, "Hooray! A customer

➥ with the name \"" + customer.Name + "\" has booked a flight!!! ");

The code in listing 4.7 creates a new SqlCommand to insert a new record into the
Booking table, then executes on that query and disposes of the SqlCommand. Finally, it
returns a response with an HTTP status code of 201 and a text blurb containing
customer.Name.

4.4 The FlightController: DELETE /flight/{flightNumber}
We have looked at most of the endpoints in the FlightController class throughout
this chapter and have found many ways in which we could improve the code. We have
only one more endpoint to go in the controller: DELETE flight/{flightNumber}. Per-
haps mercifully and appropriately, this method is less than 20 lines long. We can trim
it down by extracting the connection string, but overall, we have seen much worse
code in this chapter.

 There is nothing new in this DELETE method (besides a different query passed into
the SqlCommand constructor), and I am not going to take too much of your time going
over it in detail in the next listing. There are two peculiarities, however: the OpenAPI
specification we received from FlyTomorrow in chapter 3 did not specify we need a
DELETE /flight/{flightNumber} endpoint at all. After all, why would we want to
allow users to delete flights from the database? This endpoint is therefore not some-
thing we improve upon and not part of the requirements. Instead, we omit it and
don’t bother refactoring it in the coming chapters.

If you find yourself, for example, copying and pasting the same foreach loop (per-
haps with a different collection to iterate over) multiple times in the same method,
class, or even codebase, extract it out into a dedicated method and call it. This does
two things: first, it makes the methods calling this extracted method much easier to
read because you have encapsulated implementation details. Second, if you ever
need to change the implementation of this foreach loop, you have to do it in only
one spot versus everywhere in your codebase. So, as with comedy, keep it DRY!

Listing 4.7 FlightController.cs POST /flight: Inserting a Booking object in the database

SQL Query command to insert a
booking into the database

utes
the
and

oses
f the
and
ject

Returns an HTTP status 201 along with sensitive customer data

78 CHAPTER 4 Manage your unmanaged resources!
[ResponseType(typeof(HttpResponseMessage))]
public HttpResponseMessage Delete(int id) {
 var connectionString =

➥ "Server=tcp:codelikeacsharppro.database.windows.net,1433;Initial

➥ Catalog=FlyingDutchmanAirlines;Persist Security Info=False;User

➥ ID=dev;Password=FlyingDutchmanAirlines1972!;MultipleActiveResultSets=False;

➥ Encrypt=True;TrustServerCertificate=False;Connection Timeout=30;";

 using (var connection = new SqlConnection(connectionString)) {
 connection.Open();

 var cmd = new SqlCommand("DELETE FROM Booking WHERE BookingID = ‘"

➥ + id + "’", connection);
 cmd.ExecuteNonQuery();
 cmd.Dispose();

 return Request.CreateResponse(HttpStatusCode.OK);
 }
}

And with that, we have finished our exploration of the existing codebase. We can
improve on a lot of things, and we also have some security problems that we must fix.

Exercises
EXERCISE 4.1
True or false? You can apply attributes only to methods.

EXERCISE 4.2
True or false? You can’t apply attributes to variables.

EXERCISE 4.3
True or false? The IEnumerable interface allows us to create new enums.

EXERCISE 4.4
What are bad practices with database connection strings?

a Commit hardcoded connection strings to an SCM.
b Never hardcode connection strings.
c Store connection strings in a configuration file or environment variable.
d Write connection strings on a sticky note and place it in your favorite copy of

Harry Potter and the Chamber of Connection Strings.

EXERCISE 4.5
Why do we need to dispose of a class implementing the IDisposable interface?

a Otherwise, it becomes indisposed.
b Classes implementing IDisposable typically hold on to some resources that can

cause a memory leak if not disposed of.
c You don’t have to dispose of a class implementing the IDisposable interface.

Listing 4.8 FlightController.cs DELETE flight/{flightNumber]

79Summary
EXERCISE 4.6
If we call Dispose on a class, when does the garbage collector collect on the resource?

a The next time it encounters the respective resource during its garbage collec-
tion rounds

b Immediately
c At the end of the method

EXERCISE 4.7
Which one of these is not an appropriate technique for disposing of objects?

a Wrap the object creation in a using statement code block.
b Call Dispose at every exit point in your method.
c Remove the IDisposable implementation from the object’s source code.

EXERCISE 4.8
True or false? A static constructor is run before default or defined (regular) constructors.

EXERCISE 4.9
True or false? A static constructor is run every time an object is instantiated.

Summary
 We can use the typeof operator to determine the type of an object at compile

time or the GetType method (from the object base type) at run time.
 Object is the base type for all types in C#. This means that, through polymor-

phism, all the methods that object exposes are useable on all types (such as
GetType). This allows us to use a basic set of methods on every type in C#.

 By implementing the IEnumerable interface, we can create classes with enumer-
ators. We can use these classes to represent collections and perform operations
on the elements they contain. This comes in useful when we want to create a
collection that is not provided by the .NET ecosystem.

 We should never hardcode a connection string. This is a security problem.
Instead, store connection strings in a configuration file or environment variable.

 The .NET garbage collector scans memory at run time for resources that have
no remaining “links,” flags them, and frees up their memory the next time the
garbage collector runs. This is what makes C# a managed language. Because of
this, we do not have to manually and explicitly deal with pointers and memory
allocation in C#.

 The compiler resolves a using statement to a try-finally code block. This
allows us to abstract away the Dispose call we find in a try-finally block when
using classes that implement IDisposable. Abstracting away the Dispose call
decreases the chances of forgetting to correctly dispose of the object and, there-
fore, creating a possible memory leak.

 A try-catch code block can catch and handle exceptions. Whenever you have
code that throws exceptions (expected or unexpected), consider wrapping it in

80 CHAPTER 4 Manage your unmanaged resources!
a try-catch block. When you wrap code in a try-catch block and catch excep-
tions, you are given a chance to elegantly handle the exception and log it, or
gracefully shut down the application.

 The finally code block in a try-catch-finally or try-finally is always exe-
cuted right before the code block is exited, even if an exception was caught.
The finally block is an optional addition to the try-catch code block. This is
useful if you need to perform teardown or cleanup operations (such as disposal
of an object implementing IDisposable).

 C# supports method overloading. This means we can have methods with the
same name but with different arguments. Method calls are routed at run time
by the CLR to the appropriate method. This is useful when extending an exist-
ing class’s functionality without changing the original method.

 A static constructor is always executed once before the first instantiation of an
object. This can be used to set values to static properties before any logic execu-
tion that uses them.

 The [FromBody] attribute allows you to do parameter binding and deserialize a
JSON body into a model. This is a big time saver when dealing with HTTP end-
points because you do not have to write your own JSON mapping logic.

 The Don’t Repeat Yourself (DRY) principle tells us to not duplicate code. Instead,
refactor the code into an extracted method and call that. Using the DRY princi-
ple promotes code maintainability.

Part 3

The database access layer

In part 2, we examined the existing code base of Flying Dutchman Airlines in
depth. We came up with things we could change and talked about why these
changes would be necessary. In this part, we’ll take things one step further and
start our rewrite of the service. You will learn how to create a new .NET 5 project,
and how to connect to, query, and reverse-engineer a database with Entity Frame-
work Core.

Setting up a project
and database with

Entity Framework Core
The time has finally come. You are probably eager to fix some of the issues we saw
in chapters 3 and 4, and now we’ll get to do that. First things first, let’s come up
with a game plan on how to tackle this refactoring. We already know a couple of
things that we need to do differently:

 In chapter 3 we were told to use .NET 5 instead of the .NET Framework for
the new version of the Flying Dutchman Airlines service.

 We need to rewrite the endpoints to be clean code (in particular, adhering to
the DRY principle).

 We need to fix the security vulnerability—a hardcoded connection string.

This chapter covers
 Refactoring a legacy codebase to be clean and

secure

 Using Entity Framework Core to query a database

 Implementing the repository/service pattern

 Creating a new .NET 5 solution and project using
the command line
83

84 CHAPTER 5 Setting up a project and database with Entity Framework Core
 The object names do not match the database column names. We should fix
that to ensure a perfect isomorphic relationship between the codebase and
the database.

 We need to adhere to the OpenAPI file discussed in chapter 3 and shown in
appendix D.

Although not necessarily part of the requirements, we would like to include some addi-
tional deliverables to improve the quality of the job, thus ensuring a job well done:

 We want to use test-driven development to write unit tests that back the codebase.
 We want to use Entity Framework Core to revamp the database layer by reverse-

engineering the deployed database.
 We want to autogenerate an updated OpenAPI file on the launch of the service

to compare against the provided OpenAPI from FlyTomorrow.

Of course, we will do much more than just these improvements, but it is good to have
some general broad strokes in mind. We are also in a very interesting position: we are
stuck somewhere in the middle of having to keep the old codebase alive and working
and greenfield development.

DEFINITION Greenfield development means that we are working on a project that
isn’t held back by any previous design decisions or old code. In practice, this
usually means a brand-new project.

We have set requirements and an old codebase that we need to mimic (where appro-
priate and possible), but we also start with an empty project. In the real world, you will
often encounter this scenario. You no doubt have had the experience of trying to cre-
ate a new version of an existing product—a “next-gen” version, if you will. Figure 5.1
shows where we are in the scheme of the book.

 Our first order of business is to create a new .NET 5 solution.

5.1 Creating a .NET 5 solution and project
In this section, we’ll create a new .NET 5 solution and project. We’ll also look at what
predefined solution and project templates exist for .NET 5. You have the following
two ways to create a new .NET 5 solution:

 You can use a command line, be it the Windows command line or a macOS/
Linux terminal.

 You can use an IDE like Visual Studio. Using Visual Studio automates the pro-
cess somewhat. Most things you can do in a command line or terminal with C#
you can also do in Visual Studio with a couple of clicks.1

1 Installation instructions for Visual Studio can be found in appendix C. If you want to learn more about Visual
Studio, see Bruce Johnson’s Professional Visual Studio 2017 (Wrox, 2017) and Johnson’s Essential Visual Studio
2019 (Apress, 2020). Disclaimer: The author was the technical reviewer for Essential Visual Studio 2019: Boosting
Development Productivity with Containers, Git, and Azure Tools.

85Creating a .NET 5 solution and project
The outcome of using either route is the same: you end up with a new .NET 5 solu-
tion. We’ll be using the command line. Creating a new, empty .NET 5 solution or proj-
ect is very simple, as shown here:

\> dotnet new [TEMPLATE] [FLAGS]

NOTE Before you attempt to create a .NET 5 project, please make sure you
have installed the latest .NET 5 SDK and runtime. Installation instructions are
in appendix C.

We can use a variety of templates. Some of the more common ones are web, webapp,
mvc, and webapi. For our purposes, we use perhaps two of the most popular of all: sln
and console. The dotnet new sln command creates a new solution, whereas dotnet
new console creates a new project and a “hello, world” source file. As discussed in sec-
tion 3.3.2, C# uses solutions and projects to organize its codebases. A solution is the
top-level entity and contains multiple projects. We write our logic within the projects.
Projects can be thought of as different modules, packages, or libraries, depending on
our language of preference.

+ Setting up a project and database

using Entity Framework Core: 5

Part 3: The database access layer

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Reflection and mocks: 10

Part 5: The service layer

+ Runtime type checking revisited

and error handling: 11

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

+ Introducing C# and .NET: 1

+ .NET and how it compiles: 2

Part 1: Using C# and .NET + How bad is this code?: 3

+ Manage your unmanaged

resources!: 4

Part 2: The existing codebase

Figure 5.1 In this chapter, we’ll start the process of reimplementing the Flying Dutchman Airlines
codebase. We’ll start with the database access layer. In the following chapters, we’ll look at the
repository layer, service layer, and controller layer.

86 CHAPTER 5 Setting up a project and database with Entity Framework Core
We also pass the -n flag along with the creation command. This allows us to specify a
name for our solution and project. If we do not explicitly specify a name for our solu-
tion, the name of our project or solution defaults to the name of the folder in which
we create the files.

 To create our starting point, run the following command. Note that the command-
line tool does not let you create a new solution folder when creating a new solution. If
you want to do this, you can either use Visual Studio (which does allow for it) or create
the folder first and then run the following command in the solution folder.

\> dotnet new sln -n "FlyingDutchmanAirlinesNextGen"

The command creates only one thing: a solution file called FlyingDutchmanAirlines-
NextGen.sln, shown in figure 5.2. We could open this solution file in Visual Studio,
but we cannot do much without a project.

Now that we have a solution file, we should create a project called FlyingDutchman-
Airlines. To create a new project, we use the console template, as shown next. This
creates a .NET 5 console application, which we’ll then change to be a web service.

\> dotnet new console -n "FlyingDutchmanAirlines"

After running the command, we are greeted by a message saying that “Restore
succeeded.” A restore is a process that the .NET CLI performs before the creation of

.NET CLI basic commands
The .NET CLI (accessed through dotnet)
expects a basic command to determine
its execution process. The new command
instructs the .NET CLI to create a new
project, configuration file, or solution,
based on a provided template. Other
available commands include restore,
build, .and run

Templates
To create a new project, configuration file, or solution through the command,dotnet new

we need to specify a template. Templates define the created item’s type and file structure.
Examples of templates are ,web console, mvc, , and .webapi mstest

Flags
The dotnet new command allows us to pass in a wide
variety of flags. These flags can, for example, tell the
.NET CLI what the name of our created object should
be or in what folder the output should be stored.
A template has default values that are used if no
appropriate flag is provided.

Figure 5.2 After running the command to create a new .NET solution, the command line lets
us know that the operation was successful.

87Creating a .NET 5 solution and project
a new project and before compiling after a “clean” operation (“clean” deletes all local
executable files, including dependencies) or first compilation, to gather required
dependencies. We can also run this command on its own by saying

\> dotnet restore

A restore can come in handy when dealing with dependency troubles. The restore
command also creates a new folder next to our solution file called FlyingDutchman-
Airlines (the same as the project name we passed in), as shown in figure 5.3. When we
enter the folder, we see another folder called obj. The obj folder contains configura-
tion files for NuGet and its packages. Back in the root folder for the project, we have a
project file and a C# source file.

Our project is created, but we still need to add it to the solution. When you create a
project, dotnet does not scan any subdirectories looking for a contained solution. To
add a project to a solution, use the “solution add” command as follows:

\> dotnet sln [SOLUTION PATH] add [PROJECT PATH]

The [SOLUTION PATH] points to the path of the solution file to which you want to add
a project. The [PROJECT PATH], similarly, points to a csproj file to be added to the solu-
tion. You can add multiple projects at the same time by adding multiple [PROJECT
PATH] arguments to the command.

>\ dotnet new sln -n "FlyingDutchmanAirlinesNextGen"

>\ dotnet new console -n "FlyingDutchmanAirlines"

Figure 5.3 The folder structure after running the command-line commands to create a solution and
project. The FlyingDutchmanAirlines folder was created using the command to create a project, whereas
the FlyingDutchmanAirlinesNextGen.sln file was created using the command to create a new solution.

Modify a solution file
The dotnet sln command lets us operate
on a solution file. We can use this to add
or remove any references to projects or
list all projects in the solution.

Project path
To add or remove one or more project references
to a solution, we need to provide the paths to
any project files (.csproj) we want to add/remove.
Project paths are space delimited.

add argument
To add a project reference to a solution, we use the add

argument. To remove a reference, use the argument.remove

These arguments add or remove the specified project(s)
to/from the provided solution file.

Solution path
In order to manipulate a solution, we need to
provide a path to a .sln file. This is a required
argument for the dotnet sln command.

88 CHAPTER 5 Setting up a project and database with Entity Framework Core
In our situation, running from the root FlyingDutchmanAirlinesNextGen folder, the
command takes just the one csproj into account, as shown here:

\> dotnet sln FlyingDutchmanAirlinesNextGen.sln add

➥ .\FlyingDutchmanAirlines\FlyingDutchmanAirlines.csproj

The terminal lets us know with a message—Project `FlyingDutchmanAirlines\
FlyingDutchmanAirlines.csproj` added to the solution.—that we were successful
in our effort. If we open up the FlyingDutchmanAirlinesNextGen.sln file in a text edi-
tor, we see a reference to the FlyingDutchmanAirlines.csproj file as follows:

Project("{…}") =

➥ "FlyingDutchmanAirlines",

➥ "FlyingDutchmanAirlines\FlyingDutchmanAirlines.csproj", "{…}"
EndProject

This is the reference added by the solution add command. The reference tells an
IDE and the compiler that there is a project with the name FlyingDutchmanAirlines as
part of this solution.

5.2 Setting up and configuring a web service
In section 5.1 we created a new solution and project to use for the next-gen version of
the Flying Dutchman Airlines service. In this section, we’ll look at the source code
generated as a result of the actions we took in section 5.1 and configure the console
application to function as a web service.

 The only source file in the solution (and project) at this point is Program.cs,
shown in the next listing. This file is automatically generated through the console
template we used in section 5.1 to create a new project. It contains the entry point for
the program—a static method called Main—which returns nothing. Here, it also
accepts a string array called args. This array contains any command-line arguments
passed in on launch.

using System;

namespace FlyingDutchmanAirlines {
 class Program {
 static void Main(string[] args) {
 Console.WriteLine("Hello World!");
 }
 }
}

Using the command line to run the FlyingDutchmanAirlinesNextGen project, it out-
puts “Hello World!” to the console. Let’s remove the "Hello World!" string from the
code. This puts us in a good spot to change the console application to something
more functional: a web service.

Listing 5.1 Program.cs with the Main method

A static void Main is the
default entry point for a
C# console application.

89Setting up and configuring a web service
5.2.1 Configuring a .NET 5 web service

We need to configure our brand-new .NET 5 app to accept HTTP requests and route
them to the endpoints we’ll implement. To do this, we also need to set up Host, which
is the underlying process that runs the web service and interacts with the CLR. Our
application lives inside the Host, which in turn lives inside the CLR.

NOTE We can draw similarities between web containers (such as IIS) and
Tomcat. To put it in Java terms, .NET 5 is your JVM and Spring, whereas Host
is your Tomcat.

We configure Host to launch a “host process” that is responsible for app startup and
lifetime management. We also tell Host that we want to use WebHostDefaults. This
allows us to use Host for a web service, as shown in figure 5.4. At a minimum, the host
configures the server and request-processing pipeline.

My preferred way of configuring the Host in .NET 5. is to follow these three steps:

1 Use the CreateDefaultBuilder method on the static Host class (part of the
Microsoft.Extensions.Hosting namespace) to create a builder.

2 Configure the Host builder by telling it we want to use WebHostDefaults and
set a startup class and a startup URL with a port specified.

3 Build and run the built Host instance.

When we try to configure a startup class for our builder’s returned Host instance, we
have to use the UseStartup class. This comes as part of ASP.NET, which is not installed
through .NET 5 by default. To access this functionality (and anything in ASP.NET), we
need to add the ASP.NET package to the FlyingDutchmanAirlines project. We can do
this through the NuGet package manager in Visual Studio or through our trusty com-
mand line when we are inside the project folder, as follows:

\> dotnet add package Microsoft.AspNetCore.App

After executing the command, the command line lets you know that the package was
successfully added to the project.

Com n Language Runtimemo

H tos

Web rvicese

Hos lives inside the CLRt

Web rvice lives inside Hostse
Figure 5.4 A web service
runs inside the Host, which
runs inside the CLR. This
model allows the CLR to
spin up a Host that can
execute our web service.

90 CHAPTER 5 Setting up a project and database with Entity Framework Core
NOTE The command also executes a restore action. For more details on
restore, see section 5.1.

If we try to build the project now, we get a warning saying that we should be using a
framework reference instead of a package reference. This is due to some shuffling
that went on with .NET namespaces in the last couple of years. This warning doesn’t
prohibit us from using the code as it is now, but we can get rid of it pretty easily. In a
text editor such as Notepad++ or (for the brave) Vim, open the FlyingDutchmanAir-
lines.csproj file. In that file, add the boldface code and remove the package reference
to ASP.NET:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net5.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <FrameworkReference Include="Microsoft.AspNetCore.App" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.App" Version="2.2.8" />
 …
 </ItemGroup>
</Project>

Now that the Microsoft.AspNetCore package is installed (as a framework reference),
and we got rid of the compiler warning, we can use ASP.NET functionality. The first
thing we want to do is tell the compiler we want to use the AspNetCore.Hosting name-
space, as shown in the next listing. In this book, the namespace imports are often
omitted from code listings. This is done because they take up precious space and can
be autopopulated in most IDEs.

using System;
using Microsoft.AspNetCore.Hosting;

namespace FlyingDutchmanAirlines {
 class Program {
 static void Main(string[] args) {

 }
 }
}

Listing 5.2 Program.cs with no “Hello, World!” output

We use the
Microsoft.AspNetCore.Hosting
namespace.

We no longer output
“Hello, World!” to
the console.

91Setting up and configuring a web service
5.2.2 Creating and using HostBuilder

In this section, we’ll

1 Create an instance of HostBuilder.
2 Say we want to use the Host as a web service.
3 Set the startup URL to be http://0.0.0.0:8080.
4 Build an instance of Host using HostBuilder.
5 Run the Host.

In the program’s Main method, we add a call to Host.CreateDefaultBuilder. This
call returns a HostBuilder, with some defaults already. We then tell the resulting
builder we want to use a specific URL and port by calling UseUrls. Then we call Build
to build and return the actual Host. We assign the output to a variable of type IHost.
We assign our new Host to an explicitly typed variable of type IHost. Finally, the code
starts the Host by calling host.Run(), as shown next:

using System;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

namespace FlyingDutchmanAirlines {
 class Program {
 static void Main(string[] args) {
 IHost host =

➥ Host.CreateDefaultBuilder().ConfigureWebHostDefaults(builder => {
 builder.UseUrls("http:/ /0.0.0.0:8080");
 }).Build();

 host.Run();
 }
 }
}

Step 1

Create instance of
HostBuilder.

Step 2
Use Host as
web service.

Step 4
Build Host instance. Step 3

Set startup URL.

Step 5
Run the Host.

http://0.0.0.0:8080

92 CHAPTER 5 Setting up a project and database with Entity Framework Core
If you try to compile and run the service in this state, the service launches but then
terminates with an InvalidOperationException. This exception tells us we do not
have a Startup class configured and tied to the Host. But before we create this
Startup class, let’s leave the Program class in the best shape possible. We have our
Host creation and call to Run in the Main method, but should it really be in there?

 In section 1.4, we discussed the importance of writing methods that read like a nar-
rative. If I am a new developer, looking at a public method (in this case Main), I prob-
ably do not care about implementation details. Instead, I want to get an understanding
of the broad strokes of what the method does. To that end, we can extract the initial-
ization and assignment of host and the call to host.Run into a separate, private
method as follows:

private static void InitalizeHost() {
 IHost host = Host.CreateDefaultBuilder()
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseUrls("http:/ /0.0.0.0:8080");
 }).Build();

 host.Run();
}

Having extracted the Host creation logic into a separate method is a good step, but we
can do just a bit more. We should consider two other things. First, we don’t need to
store the result of the HostBuilder in a variable, because we use it only to call Run.
Why don’t we just call Run directly after Build and avoid the unnecessary memory
assignment, as shown next:

IHost host = Host.CreateDefaultBuilder()
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseUrls("http:/ /0.0.0.0:8080");
 }).Build().Run();

The second thing we should consider is changing the method to an “expression”
method, as shown next. Similar to a lambda expression, an expression method uses =>
notation to indicate that the method will evaluate the expression to the right of the =>
and return its result. You can think of the => operator as a combination of assign-
ment and evaluation algebraically (=) and a return statement (>). Lambda expres-
sions may look a bit funny at first, but the more you see them, the more you want to
use them.

private static void InitalizeHost() =>
 Host.CreateDefaultBuilder()
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseUrls("http:/ /0.0.0.0:8080");
 }).Build().Run();

93Setting up and configuring a web service
How does this impact our Main method? Not much. All we have to do is call the
InitializeHost method as follows:

namespace FlyingDutchmanAirlines {
 class Program {
 static void Main(string[] args) {
 InitializeHost();
 }

 private static void InitalizeHost() =>
 Host.CreateDefaultBuilder()
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseUrls("http:/ /0.0.0.0:8080");
 }).Build().Run();
 }
}

Our code is clean and readable, but we still have that runtime exception to deal with.
Clean code is nice, but if it doesn’t have the required functionality, it isn’t good
enough. The exception said that we need to register a Startup class with the Host-
Builder before we build and run the resulting IHost. I guess we have no choice but to
make that our next item of work.

5.2.3 Implementing the Startup class

We do not have a Startup class yet, but we can remedy that by creating a file called
Startup.cs (in the project’s root folder is fine for this purpose) as follows:

namespace FlyingDutchmanAirlines {
 class Startup { }
}

To configure our Startup class, create a Configure method in the Startup class. This
method is called by the HostBuilder and contains a crucial configuration option,
shown in the next listing, which allows us to use controllers and endpoints.

public void Configure(IApplicationBuilder app) {
 app.UseRouting();
 app.UseEndpoints(endpoints => endpoints.MapControllers());
}

The small method in listing 5.3 is the core of our configuration code. When Use-
Routing is called, we tell the runtime that certain routing decisions for the service are
made in this class. If we did not have the call to UseRouting, we would not be able to
hit any endpoint. UseEndpoints does what it says it does: it allows us to use and specify

Listing 5.3 Startup.cs Configure method

Uses routing and makes
routing decisions for
the service in this class

Uses an endpoint pattern for routing web requests.
MapControllers scans and maps all the controllers in our service.

94 CHAPTER 5 Setting up a project and database with Entity Framework Core
endpoints. It takes in an argument of a type we have not encountered before: Action.
This is an instance of a delegate.

Delegates and anonymous methods
A delegate provides a way to reference a method. It is also type-safe, so it can point only
to a method with a given signature. The delegate can be passed around to other meth-
ods and classes and then invoked when wanted. They are often used as callbacks.

You can create delegates in one of the following three ways:

 Using the delegate keyword
 Using an anonymous method
 Using a lambda expression

The oldest way of creating them is by explicitly declaring a type of delegate and creat-
ing a new instance of that delegate by assigning a method to the delegate as follows:

delegate int MyDelegate(int x);
public int BeanCounter(int beans) => beans++;

public void AnyMethod(){
 MyDelegate del = BeanCounter;
}

This code is readable but a bit clumsy. As C# matured, new ways were introduced to
work with delegates.

The second option is to use an anonymous method. To create a delegate with an
anonymous method, we specify the method return type and body inside a new dele-
gate instantiation, as shown here:

delegate int MyDelegate(int x);
public void AnyMethod() {
 MyDelegate del = delegate(int beans) {
 return beans++;
 };
}

Notice the difference between the original and anonymous ways of creating a dele-
gate. An anonymous method can clean up your code tremendously but comes with a
big warning: you should use an anonymous method only if you are required to do so
or if you are confident that you can adhere to the DRY principle. If you need to execute
the same logic somewhere else in your codebase and you are not passing in the del-
egate to that location, use a normal method instead and call it from both places.

The third, and current, evolution of this process is a fairly easy step to reach from the
anonymous method: lambda expressions, shown next:

delegate int MyDelegate(int x);
public void AnyMethod() {
 MyDelegate del = beans => beans++;
}

95Setting up and configuring a web service
We pass in a lambda expression, which when executed will configure the app’s end-
points by calling MapControllers. A handy method, MapControllers scans our code-
base for any controllers and generates the appropriate routes to the endpoints in our
controllers.

 The only thing remaining to do before registering our Startup class with the Host
is to create a ConfigureServices method and call AddControllers on the passed-in
IServiceCollection, as shown in the next code sample. The IServiceCollection
interface allows us to add functionalities to the service, such as support for controllers
or dependency-injected types. These functionalities get added to an internal service
collection.

public void ConfigureServices(IServiceCollection services) {
 services.AddControllers();
}

Why do we need to add controller support to the service collection? Didn’t we just
scan for the controllers and add routes to the RouteTable? At runtime, Host first calls
ConfigureServices, giving us a chance to register any services we want to use in our
app (in this case, our controllers). If we skipped this step, MapControllers would not
find any controllers.

 To use IServiceCollection, we need to use the Microsoft.Extensions
.DependencyInjection namespace, shown in the next code snippet. Dependency injec-
tion is used by the runtime to provide the current, up-to-date ServiceCollection. You
can find more information about dependency injection in section 6.2.9.

namespace FlyingDutchmanAirlines {
 class Startup {
 public void Configure(IApplicationBuilder app){
 app.UseRouting();
 app.UseEndpoints(endpoints => endpoints.MapControllers(); });
 }

 public void ConfigureServices (IServiceCollection services) {
 services.AddControllers();
 }
 }
}

We simply determine what we want the input to be in our anonymous method (beans)
and what logic we want to perform and return (beans++). Additionally, you can add
and subtract methods from a delegate by using the addition (+) and subtraction (-)
operators. If you have multiple methods tied to the same delegate, the delegate
becomes a multicast delegate.

Finally, to use a delegate, call the Invoke method, shown next. This invokes the
underlying Action, executing whatever code you have attached to it.

del.Invoke();

96 CHAPTER 5 Setting up a project and database with Entity Framework Core
We are done with the Startup class. Now, let’s configure it to be used by the Host-

Builder. We do this by going back to Program.cs and adding a call to UseStartup
<Startup>() to the HostBuilder:

namespace FlyingDutchmanAirlines {
 class Program {
 static void Main(string[] args) {
 InitializeHost();
 }

 private static void InitalizeHost() =>
 Host.CreateDefaultBuilder()
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseStartup<Startup>();
 builder.UseUrls("http:/ /0.0.0.0:8080");
 }).Build().Run();
 }
}

Now when we launch the application, we get a console window telling us that the ser-
vice is running and listening on http://0.0.0.0:8080. This code looks slightly different
from what the autogenerated template would give us. The functionality remains the
same, and both are good jumping-off points.

 Now that we have the prerequisites out of the way, we can start adding some logic
to our service.

5.2.4 Using the repository/service pattern for our web service
architecture

The architectural paradigm we plan to use for the Flying Dutchman Airlines next-gen
service is the repository/service pattern. With this pattern, we use an upside-down
development strategy, where we work from the bottom up: first implement the low-
level database calls, then work our way up to creating the endpoints.

 Our service architecture comprises the following four layers:

1 The database access layer
2 The repository layer
3 The service layer
4 The controller layer

The benefit we get by working from the bottom up is that the code complexity grows
organically. Typically, that would be a very bad thing. But in this case, we have the tools
to control this growth and keep it in check.

 We can examine the data flow of our architecture (figure 5.5) by taking any end-
point and walking through the required steps to satisfy the requirements. For exam-
ple, let’s take POST /Booking/{flightNumber}. First, an HTTP request enters the
Booking controller. That would have an instance of a BookingService (every entity

http://0.0.0.0:8080

97Setting up and configuring a web service
will have its own service and repository), which would call the BookingRepository
and any other services it needs for any entity it may need to interact with. Then the
BookingRepository calls any appropriate database methods. At that point, the flow is
reversed, and we go back up the chain to return the result value to the user.

 As mentioned before and shown in figure 5.6, all entities have their own set of service
and repository classes. If there is a need for an operation on another entity, the initial ser-
vice makes the call to that entity’s service to request the operation to be performed.

Controller

Service

Repository

Database access

Layers

Figure 5.5 The repository pattern used in
FlyingDutchmanAirlinesNextGen.sln. Data
and user queries flow from the controller
to the service to the repository to the
database. This pattern allows us to easily
separate concerns between layers and do
incremental development.

FlightController

BookingService AirportService CustomerService

Database access

FlightRepository AirportRepository CustomerRepositoryBookingRepository

FlightService

Figure 5.6 The repository pattern applied to the database entities. The FlightController holds
instances of a service for every entity it needs to operate on. An entity’s service holds (at least) an
instance of the respective entities’ repositories. Services can call other repositories, if necessary. This
graphic traces the dependencies flow for Airport (the colored boxes).

98 CHAPTER 5 Setting up a project and database with Entity Framework Core
5.3 Implementing the database access layer
If we look back at chapter 4, we are reminded of the curious way that database access
was handled in the previous version of the application. The connection string was
hardcoded into the class itself and no ORM was used. To refresh our minds: an
object-relational mapping tool is used to map code against a database, ensuring a
good match (or isomorphic relationship). Our two major goals in this section are to

1 Set up Entity Framework Core and “reverse-engineer” the deployed database.
2 Store the connection string securely through the use of an environment variable.

One of the most powerful features of Entity Framework Core is the ability to “reverse-
engineer” a deployed database. Reverse-engineering means that Entity Framework
Core autogenerates all the models in your codebase from a deployed database, saving
you a lot of time. Reverse-engineering also guarantees that your models work with the
database and are mapped correctly to the schema. In chapter 3, we discussed the need
for a correct isomorphic relationship between model and schema, and using an ORM
tool to reverse-engineer models is a way to achieve that.

5.3.1 Entity Framework Core and reverse-engineering

In this section, we’ll learn how to use Entity Framework Core to reverse-engineer the
deployed database and automatically create models to match the database’s tables.
Because we reverse-engineer the database, we can be assured that we are working with
compatible code to query the database.

 To reverse-engineer our database, we first need to install Entity Framework Core by
running the dotnet install command, as shown next. Entity Framework Core (EF
Core) does not come automatically installed with .NET 5 as it is a separate project.

\> dotnet tool install -–global dotnet-ef

On success, the command line lets you know that you can invoke the tool by using the
dotnet-ef command and which version you just installed. Entity Framework Core can
connect to many different types of databases. Most databases (SQL, NoSQL, Redis)
have packages (also called database drivers) that allow Entity Framework Core to con-
nect to them. Because our database is a SQL Server, we install the respective driver. We
also need to add the Entity Framework Core Design package. These packages contain
the functionality we need to connect to a SQL Server database (the SqlServer name-
space) and reverse-engineer the models (the Design namespace).

 Make sure you run the following commands from your project’s root folder (Flying-
DutchmanAirlines, not the solution’s root folder, FlyingDutchmanAirlinesNextGen):

\> dotnet add package Microsoft.EntityFrameworkCore.SqlServer
\> dotnet add package Microsoft.EntityFrameworkCore.Design

The commands install all required packages and dependencies for connecting to a
SQL Server with the help of Entity Framework Core.

99Implementing the database access layer
 We can now reverse-engineer the database by using the next command:

\> dotnet ef dbcontext scaffold [CONNECTION STRING] [DATABASE DRIVER] [FLAGS]

The command contains two unfamiliar terms—dbcontext and scaffold:

 dbcontext refers to the creation of a class of type DbContext. A dbcontext is
the main class we use to set up our database connection in the code.

 scaffold instructs Entity Framework Core to create models for all database
entities in the database we are connected to. Much like real-life scaffolding, it
creates a sort of wrap around the original item (a house or a building) that we
can use to modify the said item. In our case, it puts a scaffold around the
deployed SQL database.

We can use flags to specify the folder of the generated models and dbContext. We’ll
save these into a dedicated folder as follows, to avoid having a bunch of model files in
our project root folder:

\> dotnet ef dbcontext scaffold

➥ "Server=tcp:codelikeacsharppro.database.windows.net,1433;Initial

➥ Catalog=FlyingDutchmanAirlines;Persist Security Info=False;User

➥ Id=dev;Password=FlyingDutchmanAirlines1972!;

➥ MultipleActiveResultSets=False;Encrypt=True;

➥ TrustServerCertificate=False;Connection Timeout=30;"

➥ Microsoft.EntityFrameworkCore.SqlServer -–context-dir DatabaseLayer

➥ –-output-dir DatabaseLayer/Models

If you run into issues running the command, please double-check all spaces, line
breaks (there should be none), and flags. The command starts by building the cur-
rent project. Then, it tries to connect to the database with the given connection string.
Finally, it generates the dbContext class (FlyingDutchmanAirlinesContext.cs) and the
appropriate models. Let’s examine the created FlyingDutchmanAirlinesContext
class. A generated DatabaseContext has the following four major pieces:

 Constructors
 Collections of type DbSet containing entities
 Configuration methods
 Model-creation options

But before we look at these items, there is something peculiar in the class declaration:

public partial class FlyingDutchmanAirlinesContext : DbContext

What is this partial business?
 If you look at the generated class, you’ll notice it has two different constructors. By

default, in C#, if you do not provide a constructor, the compiler generates a parame-
terless constructor for you under the hood. This constructor is called the default con-
structor, or the implicit constructor. C# creates the default constructor whenever
there is no explicit constructor so you can instantiate a new instance of the said class.

100 CHAPTER 5 Setting up a project and database with Entity Framework Core
As seen in listing 5.4, both constructors can create an instance of FlyingDutchman-
AirlinesContext. In the case of FlyingDutchmanAirlines, you can create a new
instance with or without passing in an instance of type DbContextOptions. If you do
pass that instance into the constructor, it invokes the constructor of its base class
(DbContext in this case).

public FlyingDutchmanAirlinesContext() { }

public FlyingDutchmanAirlinesContext(DbContextOptions

➥ <FlyingDutchmanAirlinesContext> options) : base(options) { }

For more information on method and constructor overloading, see chapter 4.

5.3.2 DbSet and the Entity Framework Core workflow

In this section, we’ll discuss the DbSet type as well as the general workflow when using
Entity Framework Core. Looking past the constructors, we see four collections of type
DbSet, each holding one of our database models. The DbSet types are collections
that we consider part of the internals of EF Core. Entity Framework Core uses the
DbSet<Entity> collections to store and maintain an accurate copy of the database
tables and their contents.

 We also see a familiar concept: auto-properties. The collections are public, but
they are also virtual, as shown next:

public virtual DbSet<Airport> Airport { get; set; }
public virtual DbSet<Booking> Booking { get; set; }
public virtual DbSet<Customer> Customer { get; set;}
public virtual DbSet<Flight> Flight { get; set; }

Partial classes
You can use the partial keyword to break up the definition of a class across multi-
ple files. In general, it creates a bit of a readability mess but can be useful. Partial
classes are especially useful for automatic code generators (like Entity Framework
Core), because the generator can put code in partial classes, thus allowing the devel-
oper to enrich the class’s implementation.

That said, we know we are not going to be providing more functionality to Flying-
DutchmanAirlinesContext in a different file, so we can remove the partial key-
word from the class. This is a good example of making sure that the code that is
automatically generated is exactly how you want it. Just because a generator or tem-
plate did it a certain way does not mean you cannot edit it.

public class FlyingDutchmanAirlinesContext : DbContext

Note that this change is optional.

Listing 5.4 FlyingDutchmanAirlinesContext constructors

An explicit default constructor

An overloaded constructor with a parameter that calls the base constructor

101Implementing the database access layer
When you declare something virtual, you tell the compiler that you allow the prop-
erty or method to be overridden in a derived class. If you do not declare something as
virtual, you cannot override it.

Like many other ORM tools, Entity Framework Core often behaves unintuitively at
first. All operations you would normally make directly against the database are done
against an in-memory model before they are saved to the database. To do this, Entity
Framework Core stores most available database records in the DbSet. This means that
if you have added a Flight entity with a primary key of 192 in the database, you also
have that particular entity loaded into memory during runtime. Having access to the
database contents from memory at runtime allows you to easily manipulate objects
and abstract away that you are using a database at all. The drawback is performance.
Keeping lots of records in memory can become quite the resource hog, depending on
how large your database is (or becomes). As shown in figure 5.7, the normal workflow
for operating on an entity through Entity Framework Core follows:

Hiding parent properties and methods/sealing classes
In a world where you have a class that implements a base class containing proper-
ties or methods not declared as virtual, we cannot override the implementation
of said properties and methods. What to do? Well, we have a workaround for this
problem. We can “hide” the properties and methods of the parent by inserting the
new keyword into the method or property signature, as shown in the next code. This
keyword tells the compiler that, instead of providing a new implementation to the
existing parent method, we just want to call this brand-new method that happens
to have the same name. In practice, it allows you to “override” nonvirtual properties
and methods.

public new void ThisMethodWasNotVirtual() {}

Be warned, however, that hiding is frowned on. In an ideal world, the developer of the
original class has the know-how to predict which properties and methods to declare
as virtual. If you need to do things outside of the system (using a workaround to
perform unexpected and uncontrolled overrides), think twice before hitting that com-
mit code button. The original developer did not expect you to do this, nor did they
want you to override it in the first place (if they did, they would have provided you with
a virtual property or method).

From the perspective of the developer of the base class, how can you prevent your
nonvirtual methods and properties from being hidden in a derived class? Unfortu-
nately, there is no atomic way of specifying this per property or method. We do have,
however, a more nuclear option: the sealed keyword. You can declare a class sealed
with the sealed keyword, as shown next. This is a good option to safeguard your
classes because you cannot create a derived class based on a sealed class.
Because inheritance is off the table, so is overriding or hiding anything.

public sealed class Pinniped(){}

102 CHAPTER 5 Setting up a project and database with Entity Framework Core
1 Query the appropriate DbSet for the object you want to manipulate (not needed
for INSERT/ADD operations).

2 Manipulate the object (not needed for READ operations).
3 Change the DbSet appropriately (not needed for READ operations).

It is good to keep in mind that just because changes have been made in a DbSet, they
are not necessarily made in the database yet. Entity Framework Core still needs to
commit these changes to the database, and we’ll explore how to do that further in
this chapter.

5.3.3 Configuration methods and environment variables

The third building block of the FlyingDutchmanAirlinesContext class comprises
two configuration methods: OnConfiguring and OnModelCreating, shown in the next
code. OnConfiguring is called on the configuration of the DbContext, which is done
automatically at launch, whereas OnModelCreating is called during model creation (at
runtime, during launch).

protected override void OnConfiguring(DbContextOptionsBuilder

➥ optionsBuilder) {
 if (!optionsBuilder.IsConfigured) {
 optionsBuilder.UseSqlServer(

➥ "Server=tcp:codelikeacsharppro.database.windows.net,1433;Initial

➥ Catalog=FlyingDutchmanAirlines;Persist Security Info=False;User

➥ ID=dev;Password=FlyingDutchmanAirlines1972!;

➥ MultipleActiveResultSets=False;

➥ Encrypt=True;TrustServerCertificate=False;Connection Timeout=30;");
 }
}

The OnConfiguring method takes in an argument of type DbContextOptionsBuilder.
The OnConfiguring method is called by the runtime automatically on the configura-
tion of the DbContext and uses dependency injection to provide the DbContext-
OptionsBuilder. Here, we should configure any settings related to how we connect to
the database. Therefore, we need to provide a connection string.

 But, unfortunately, the hardcoded connection string rears its ugly head once
more. Surely there must be a better way to do this. I propose we use environment

Query the DbSet Manipulate the object Change the DbSet

Figure 5.7 The three general
steps to make changes to a
database through Entity
Framework Core: query the
DbSet, manipulate the object,
and then change the DbSet.

103Implementing the database access layer
variables for this. An environment variable is a key-value pair, {K, V }, which we set at
the operating system level. We can retrieve environment variables at run time, making
them excellent for providing variables that either change per system or deployment or
values that we do not want hardcoded in our codebase.

NOTE Environment variables are often used for web services deployed through
containerized orchestration systems such as Kubernetes. If you do not want to
(or cannot) set an environment variable on the operating system level, you
can instead use cloud solutions such as Azure Key Vault and Amazon AWS
Key Management Service. For more information on Kubernetes, see Ashley
David’s Bootstrapping Microservices with Docker, Kubernetes, and Terraform (Man-
ning, 2021) or Marko Lukša’s Kubernetes in Action (2nd edition; Manning,
2021).

Every operating system does environment variables slightly differently—we’ll discuss
the practical differences between Windows and macOS in a moment. The way we
retrieve an environment variable in C# does not change based on the operating system,
however. In the System.IO namespace is a method called GetEnvironmentVariable
that we can use for that exact purpose, as shown here:

Environment.GetEnvironmentVariable([ENVIRONMENT VARIABLE KEY]);

You just pass it in the key of the environment variable you want to retrieve (ENVIRONMENT
VARIABLE KEY), and the method does so for you. If the environment variable does not
exist, it returns a null value without throwing an exception, so you need to do some
validation based on that null value. What would your environment variable look like?
Because it is a key-value pair, and because environment variables cannot contain any
spaces, you can do something like {FlyingDutchmanAirlines_Database_Connection_
String, [Connection String]}.

TIP Because environment variables are system wide, you cannot have envi-
ronment variables with duplicate keys. Keep this in mind when choosing a
value for the key.

5.3.4 Setting an environment variable on Windows

The process of setting environment variables differs slightly from operating system
to operating system. In Windows, you set an environment variable through the Win-
dows command line, using the setx command, followed by the desired key-value pair,
as follows:

\> setx [KEY] [VALUE]
\> setx FlyingDutchmanAirlines_Database_Connection_String

➥ "Server=tcp:codelikeacsharppro.database.windows.net,1433;Initial

➥ Catalog=FlyingDutchmanAirlines;Persist Security Info=False;User

➥ ID=dev;Password=FlyingDutchmanAirlines1972!;

➥ MultipleActiveResultSets=False;Encrypt=True;

➥ TrustServerCertificate=False;Connection Timeout=30;"

104 CHAPTER 5 Setting up a project and database with Entity Framework Core
If successful, the command line reports that the value was saved successfully (SUCCESS:
Specified value was saved.). To verify that the environment variable was saved,
launch a new command line (newly set environment variables do not show up in
active command-line sessions), and run the echo command for the environment vari-
able. If you do not see the environment variable show up, as shown next, you may have
to reboot your machine:

\> echo %FlyingDutchmanAirlines_Database_Connection_String%

If everything went all right, the echo command should return the value of the envi-
ronment variable (in this case, our connection string). We can now use this environ-
ment variable in our service!

5.3.5 Setting an environment variable on macOS

Like Windows, we use a command-line environment to set environment variables on
macOS: the macOS terminal. Setting an environment variable is just as easy on macOS
as it is on Windows, as shown here:

\> export [KEY] [VALUE]
\> export FlyingDutchmanAirlines_Database_Connection_String

➥ "Server=tcp:codelikeacsharppro.database.windows.net,1433;Initial

➥ Catalog=FlyingDutchmanAirlines;Persist Security Info=False;User

➥ ID=dev;Password=FlyingDutchmanAirlines1972!;

➥ MultipleActiveResultSets=False;Encrypt=True;

➥ TrustServerCertificate=False;Connection Timeout=30;"

And you can verify by using echo on macOS as well, like so:

\> echo $FlyingDutchmanAirlines_Database_Connection_String

On macOS, things are somewhat trickier when we run the service and try to grab the
environment variables when debugging a codebase through Visual Studio. In macOS,
environment variables defined through the command line do not automatically
become available to GUI applications such as Visual Studio. The workaround is to
launch Visual Studio through the macOS terminal or to add the environment vari-
ables in Visual Studio as part of the runtime configurations.

5.3.6 Retrieving environment variables at run time in your code

Having set the environment variable, we can now grab it in our code. We want to
grab it in the OnConfigure method instead of hardcoding the connection string. We
can use the Environment.GetEnvironmentVariable method for this. Because the
Environment.GetEnvironmentVariable returns a null value if it cannot find the envi-
ronment variable, we use the null coalescing operator (??) to set it to an empty string
in that case, as follows:

protected override void OnConfiguring(DbContextOptionsBuilder

➥ optionsBuilder) {

105Implementing the database access layer

e
 if(!optionsBuilder.IsConfigured) {
 string connectionString = Environment.GetEnvironmentVariable(

➥ "FlyingDutchmanAirlines_Database_Connection_String")

➥ ?? string.Empty;
 optionsBuilder.UseSqlServer(connectionString);
 }
}

We could have handled the null case in a couple of different ways (most notably by
using either a conditional or by inlining the GetEnvironmentVariable call along with
the null coalescing operator into the UseSqlServer method), but this is my preferred
way. It is readable yet succinct. By doing this little trick, we increased the security of
our application tenfold, especially when you consider the problems caused by a hard-
coded connection string committed to a source control management system.

 The remaining code we have not touched on yet in the FlyingDutchmanAirlines-
Context are the OnModelCreating methods, shown in the next listing.

protected override void OnModelCreating(ModelBuilder modelBuilder) {
 modelBuilder.Entity<Airport>(entity => {
 entity.Property(e => e.AirportId)
 .HasColumnName("AirportID")
 .ValueGeneratedNever();

 entity.Property(e => e.City)
 .IsRequired()
 .HasMaxLength(50)
 .IsUnicode(false)

 entity.Property(e => e.Iata)
 .IsRequired()
 .HasColumnName("IATA")
 .HasMaxLength(3)
 .IsUnicode(false)
 });

 modelBuilder.Entity<Booking>(entity => {
 entity.Property(e => e.BookingId).HasColumnName("BookingID");

 entity.Property(e => e.CustomerId).HasColumnName("CustomerID");

 entity.HasOne(d => d.Customer)
 .WithMany(p => p.Booking)
 .HasForeignKey(d => d.CustomerId)
 .HasConstraingName("FK__Booking__Custome_71D1E811");

 entity.HasOne(d => d.FlightNumberNavigation)
 .WithMany(p => p.Booking)
 .HasForeignKey(d => d.FlightNumber)
 .OnDelete(DeleteBehavior.ClientSetNull)
 .HasConstraintName(“FK__Booking__FlightN__4F7CD00D”);
 });

Listing 5.5 FlyingDutchmanAirlinesContext OnModelCreating

Overrides
the base’s

OnModelCreating
method

Prepares the
EF Core to use
the Airport
model

Prepares the
EF Core to us
the Booking
model

106 CHAPTER 5 Setting up a project and database with Entity Framework Core
 modelBuilder.Entity<Customer>(entity => {
 entity.Property(e => e.CustomerId)
 .HasColumnName("CustomerID")

 entity.Property(e => e.Name)
 .IsRequired()
 .HasMaxLength(50)
 .IsUnicode(false)
 });

 modelBuilder.Entity<Flight>(entity => {
 entity.HasKey(e => e.FlightNumber);

 entity.Property(e => e.FlightNumber).ValueGeneratedNever();

 entity.HasOne(d => d.DestinationNavigation)
 .WithMany(p => p.FlightDestinationNavigation)
 .HasForeignKey(d => d.Destination)
 .OnDelete(DeleteBehavior.ClientSetNull)
 .HasConstraintName("FK_Flight_AirportDestination");

 entity.HasOne(d => d.OriginNavigation)
 .WithMany(p => p.FlightOriginNavigation)
 .HasForeignKey(d => d.Origin)
 .OnDelete(DeleteBehavior.ClientSetNull);
 });

 OnModelCreatingPartial(modelBuilder);
}

partial void OnModelCreatingPartial(ModelBuilder modelBuilder);

Note that the exact constraint names may differ on your system, because they are auto-
generated. The OnModelCreating method sets up the entities internally for Entity
Framework Core, along with the key constraints defined in the database schema. This
allows us to operate on the entities without directly messing with the database (which
is the whole idea of Entity Framework Core). A generated method (and a call to it) is
also called OnModelCreatingPartial. The Entity Framework Core console toolset
generated the OnModelCreatingPartial method, so you can execute additional logic
as part of the model-creation process. We are not going to do that, so we can remove
the OnModelCreatingPartial method and the call to it. Do be aware that if you have
to rerun the reverse-engineering process (or any other code-generator tool), your
changes will be overwritten again.

Prepares the
EF Core to use
the Customer
model

Prepares the
EF Core to use
the Flight
model

Calls the partial
OnModelCreatingPartial method

Defines the partial
OnModelCreatingPartial method

107Summary
Exercises
EXERCISE 5.1
If we want to prevent somebody from deriving from a class, what keyword do we need
to attach to the class?

a Virtual

b Sealed

c Protected

EXERCISE 5.2
If we want to allow somebody to override a property or method, what keyword do we
attach?

a Virtual

b Sealed

c Protected

EXERCISE 5.3
Fill in the blanks: “A __________ is the underlying process that runs the web service.
It, in turn, lives inside the __________.

a host
b Tomcat
c JVM
d CLR

EXERCISE 5.4
True or false? When using a Startup class, you need to register it with the Host.

EXERCISE 5.5
Try it yourself: Write an expression-body-style method that accepts two integers and
returns their product. This should be a one-line solution. Hint: Think about lambda.

EXERCISE 5.6
Within the context of a repository/service pattern, how many controller, service, and
repository layers should there be?

Summary
 We can create .NET 5 solutions and projects by using predefined templates in

the command line such as console and mvc. Templates are ways to easily create
common flavors of solutions and projects.

 A restore is an operation that gets all necessary dependencies for a project to
compile.

 We can add a project to a solution by using the dotnet sln [SOLUTION] add
[PROJECT] command.

108 CHAPTER 5 Setting up a project and database with Entity Framework Core
 A Host is a process living inside the CLR that runs a web application, providing
an interface between the CLR and the user.

 Methods that just return the value of an expression can be written succinctly
using a syntax similar to lambda expressions. This is called an expression-bodied
method and can make our code more readable.

 In a Startup class, we can set up routes and allow for the use of controllers and
endpoints. This is important for MVC web applications because it allows us to
call endpoints and use the concept of controllers.

 The repository/service pattern comprises multiple repositories, services, and
controllers (one per entity). This easy-to-follow paradigm helps us control the
flow of data.

 Entity Framework Core is a powerful object-relational mapping tool that can
reverse-engineer deployed databases by scaffolding them. This saves the devel-
oper a lot of time and allows for a near-perfect isomorphic relationship between
the database and the codebase.

 Use the partial keyword to define classes and methods that have their imple-
mentation spread across multiple fields. The partial keyword is often used by
automatic code generators.

 When declaring something as virtual, you say that this property, field, or
method can be overridden safely. This is useful when balancing the needs for
the extensibility and the sanctity of your codebase.

 You can “hide” nonvirtual properties and methods by adding the new keyword
to a method or property signature.

 When a class is sealed, you cannot inherit from it. In effect, sealing a class stops
any class from deriving from it. Sealing classes becomes useful when you know
for a fact that your class is the lowest level of inheritance there is and you want
to prevent tampering with your code.

 Environment variables are key-value pairs that can be set in an operating sys-
tem. They can store sensitive data such as connection strings or passwords.

Part 4

The repository layer

In part 3, we started our implementation of the next-gen Flying Dutchman
Airlines service. We created a new .NET 5 project and wrote a database access
layer. In this part, we’ll implement the repository layer classes. In the following
chapters, you’ll learn about test-driven development, custom comparison classes,
generics, extension methods, and much more.

Test-driven development
and dependency injection
In chapters 3 and 4, we looked at the codebase we inherited and discussed poten-
tial improvements. To solve the issues we found, we started a new version of the Fly-
ing Dutchman Airlines service and implemented the database access layer with
Entity Framework Core in chapter 5. In this chapter, we’ll start implementing the
business logic by moving into the repository layer and creating the Customer-
Repository class. Figure 6.1 shows where we are in the scheme of the book.

 The repository layer is the meat and potatoes of our service. In the repository
layer we do the following two things:

1 Query and manipulate the database by communicating with the database
access layer

2 Return the requested entities or information to the service layer

We want to create isolated, small, clean, and readable methods that follow the single-
responsibility principle (SRP). Following the SRP makes it easier to test and maintain
our code because we can quickly understand every method and fix any potential bugs.

This chapter covers
 Using locks, mutexes, and semaphores

 Converting between synchronous and
asynchronous methods

 Using dependency injection with unit tests
111

112 CHAPTER 6 Test-driven development and dependency injection
The single-responsibility principle
One of the clean code tenets identified by Robert Martin, the single-responsibility
principle (SRP) is the harmonica of clean code: easy to play, but mastery takes years
of practice. The SRP builds on the concept of “separation of concerns” as evange-
lized (and coined) by Edsger Dijkstra in his paper “On the Role of Scientific Thought.”a

In practice, the SRP means that a method should do only one thing and do that well.
This goes back to the monster methods we discussed earlier in the book. More for-
mally, according to Martin in a blog post published in 2014 (https://blog.cleancoder
.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html), the SRP states that
“each software module should have one and only one reason to change.”

Going back to practical terms, how do you know whether you violated the SRP? The
easiest way I have found is to ask yourself if you are doing more than one thing in
the method. If you need to use the word “and” in either your explanation of the
method or in the method name, that usually means you are violating the SRP. The
SRP is closely tied to the Liskov principle, which I discuss in chapter 8.

a Edsger Dijkstra wrote his papers with a fountain pen and numbered them “EWD [N],” where N
is the number of the paper (EWD stands for his full name: Edsger Wybe Dijkstra). “On the Role of
Scientific Thought” is EWD 447 and can be found in Dijkstra’s Selected Writings on Computing:
A Personal Perspective (Springer-Verlag, 1982).

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Reflection and mocks: 10

Part 5: The service layer

+ Runtime type checking revisited

and error handling: 11

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

+ Introducing C# and .NET: 1

+ .NET and how it compiles: 2

Part 1: Using C# and .NET + How bad is this code?: 3

+ Manage your unmanaged

resources!: 4

Part 2: The existing codebase

+ Setting up a project and database

using Entity Framework Core: 5

Part 3: The database access layer

Figure 6.1 After having implemented the database access layer in chapter 5, we’ll move on to
implementing the CustomerRepository in this chapter.

https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html

113Test-driven development
When we consider the endpoints in the existing codebase we looked at in chapters 3
and 4, we see that a lot of the methods do multiple things. They call multiple database
tables and perform multiple processing tasks. We want to separate those operations into
individual methods, so we can reuse the code and be confident in our code quality.

6.1 Test-driven development
Using test-driven development (TDD) to implement your code sets you apart from a
lot of developers. Your code will be more robust and better tested than that of your
peers who don’t use TDD. If you have never used TDD, I’ll guide you through the pro-
cess of actually using TDD practically. Test-driven development is, at its most funda-
mental level, the practice of writing unit tests before writing the code that implements
what you are trying to test. You update your tests and code in tandem and build them
up simultaneously, which promotes good design and solid code because the feedback
loop is tight and you are acutely aware of any code that breaks your tests. In this sec-
tion, we’ll use TDD to write unit tests for the CustomerRepository.

NOTE In this book, I practice what I like to call TDD-light. In theory, you
should write a test before any actual logic. In practice, however, people typi-
cally tend not to do that. You will see this approach throughout the book. It is
not “pure TDD,” but it’s a practical solution to balancing the workload of
TDD and quick iteration.

To do TDD (or any kind of testing), we should create a test project in our solution. We
do that by using a template as we did in chapter 5 and adding a new reference to the
solution that points to the new csproj file as follows:

\> dotnet new mstest -n FlyingDutchmanAirlines_Tests
\> dotnet sln FlyingDutchmanAirlinesNextGen.sln add

➥ FlyingDutchmanAirlines_Tests\FlyingDutchmanAirlines_Tests.csproj

We now have a testing project running on the MSTest platform in our solution. A vari-
ety of supported testing frameworks for C# exists besides MSTest, such as xUnit and
NUnit. We’ll use MSTest in this book because MSTest comes supplied with .NET.

 The new project also contains an autogenerated unit test file called UnitTest1.cs,
shown next:

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace FlyingDutchmanAirlines_Tests {
 [TestClass]
 public class UnitTest1 {
 [TestMethod]
 public void TestMethod1() { }
 }
}

114 CHAPTER 6 Test-driven development and dependency injection
NOTE If your test class does not have an access modifier of public, the
MSTest runner cannot find the class, and, therefore, the tests inside the class
are not run.

Throughout this chapter, we’ll use the UnitTest1.cs file and adapt it to suit our needs
for the first repository: CustomerRepository. Why start with CustomerRepository as
opposed to FlightRepository or BookingRepository? To refresh our memories, when
we finish implementing them, we will have one repository per database model (Cus-
tomer, Flight, Airport, and Booking). Within these repositories, we perform create,
read, update, and delete (CRUD) operations that query or manipulate the database.
The Customer entity does not have any outgoing foreign key constraints, so we are less
likely to go down the rabbit hole of needing to create a repository for a different
entity before we can finish the one we really want to work on. In my experience, it is
easier working from the lowest (most nested/least foreign key constraints) entity up
to the highest. By the time you reach the entity with the most constraints, you have all
the dependencies already done. This is the same argument as to why we started (in
chapter 5) with the database access layer and not the controller level for the imple-
mentation of our next-gen service.

 Before we write our first unit test, let’s create the repository class and the skeleton
of our first method: CreateCustomer. The CreateCustomer method accepts an input
of type string representing a customer’s name, validates that input, and inserts a new
entity into the database. CustomerRepository lives in a new folder called Repository-
Layer in the FlyingDutchmanAirlines project, as shown next:

namespace FlyingDutchmanAirlines.RepositoryLayer {
 public class CustomerRepository {
 public void CreateCustomer(string name) { }
 }
}

The CustomerRepository doesn’t look like much at this point—just a class declara-
tion and one method, both with a public access modifier—but it is enough to get us
started with our first unit test. In keeping with TDD tradition, we follow a binary strat-
egy akin to a red-green traffic light pattern, as shown in figure 6.2.

 With the TDD traffic light, we continually go from the “red” stage, where our tests
don’t compile or pass, to the “green” stage, where all is well and we can implement
some more code. This workflow is the core strength of test-driven development.

 Let’s switch back to our test project. We need to add a reference to the Flying-
DutchmanAirlines if we want to call any of the methods in there. We can run a
command similar to how we added the FlyingDutchmanAirlines.csproj to the Flying-
DutchmanAirlinesNextGen.sln in chapter 5 as follows:

\> dotnet add

➥ FlyingDutchmanAirlines_Tests/FlyingDutchmanAirlines_Tests.csproj

➥ reference FlyingDutchmanAirlines/FlyingDutchmanAirlines.csproj

115Test-driven development
Then, we can rename UnitTest1.cs as CustomerRepositoryTests.cs and change the
namespace and method name to something more appropriate. Now we can instanti-
ate our CustomerRepository class and call our new CreateCustomer method, like so:

using FlyingDutchmanAirlines.RepositoryLayer;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace FlyingDutchmanAirlines_Tests.RepositoryLayer {
 [TestClass]
 public class CustomerRepositoryTests {
 [TestMethod]
 public void CreateCustomer_Success() {
 CustomerRepository repository = new CustomerRepository();
 }
 }
}

This test actually tests nothing yet, so before we move on, let’s add the simplest asser-
tion of all: that repository should not be null. You may say that is just verifying a lan-
guage feature and not our code because we are just calling the default constructor,
and, yes, you are right. In my mind, however, testing a constructor can still be valu-
able, because you never know when somebody changes the implementation to an
explicit constructor with no arguments or does something else unexpected.

The test-driven development traffic light

STOP! Fix your code,
and make the test pass.

GO! Add assertions to
your test to test new code.

Figure 6.2 The test-driven-development traffic light. We go from red
(compilation problems and test failures) to green (all tests pass and
code compiles) back to red in a vicious cycle. This promotes an iterative
development life cycle.

116 CHAPTER 6 Test-driven development and dependency injection
 To add an assertion with the MSTest framework, use the pattern Assert
.[Assertion]([Arguments]).[TestMethod] as follows:

public void CreateCustomer_Success() {
 CustomerRepository repository = new CustomerRepository();
 Assert.IsNotNull(repository);
}

To run our unit tests, we can either use Visual Studio’s Unit Test Explorer or we can
invoke the testing framework through the command line. Either way, we need to com-
pile the code first and then execute the tests. To run all tests in a solution, use the
next command in the command line:

\> dotnet test

If you ever have trouble running the tests in this book through Visual Studio (if you
use Visual Studio), give dotnet test a try.

 Once the test run finishes, we see that our first test passed, as shown in figure 6.3.
Note, though, that unit tests are meant to be isolated from other tests and test only
individual methods. Therefore, the order in which the MSTest runner executes tests is
not guaranteed to be sequential or the same from session to session.

Exercises
EXERCISE 6.1
What does the single-responsibility principle advocate?

a All method names should be only one word long.
b Don’t perform the same logic in two separate places.
c Make your methods only do one thing.

EXERCISE 6.2
True or false? With test-driven development, you write tests before and during
implementation.

Figure 6.3 The MSTest framework runs our unit test, and it passes.
Making sure our tests pass after every change helps catch bugs sooner
rather than later.

117The CreateCustomer method
EXERCISE 6.3
True or false? A test runner can see your test classes as long as they have an access
modifier of internal.

6.2 The CreateCustomer method
In this section, we’ll implement the CreateCustomer method in the CustomerReposi-
tory class. We want to accept an argument of type string representing the customer’s
name and return a Boolean value indicating whether the customer was successfully
added to the database.

 In the existing codebase (discussed in chapters 3 and 4), a massive method called
FlightController.Post adds a Customer instance to the database. The Post method
was about 80 lines long and also executed logic to get details on airports. It also
retrieved and booked a flight. Doing more than one thing in a method violates the
single-responsibility principle. The FlightController.Post method does not just do
one thing (as the principle prescribes); instead, it does many things. The actual code
concerning creating a customer is only eight lines long, as shown in the next listing.

// Create new customer
cmd = new SqlCommand("SELECT COUNT(*) FROM Customer", connection);
var newCustomerID = 0;
using(var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 newCustomerID = reader.GetInt32(0);
 break;
 }
}

The code snippet in listing 6.1 is not the worst we have seen, but we can definitely
make the following improvements:

 Our code should be self-documenting. Somebody unfamiliar with the logic should
be able to read the code and understand, in broad strokes, what is going on. We
should delete the comment.

 Using hardcoded SQL statements is a potential stumbling block for maintain-
ing a service. If the database schema changes, we now need to change the SQL
query as well. It is safer to use an ORM tool, like Entity Framework Core, to
abstract away the SQL query.

With those improvements identified, let’s start with our new implementation by creat-
ing the method signature of the new CreateCustomer method:

public bool CreateCustomer(string name) {}

Listing 6.1 How the old codebase dealt with creating a customer in the database

We should write code that is clear
enough without comments.

The connection variable is
instantiated before this

code snippet.

A good use of the using statement,
but uses an implicit type

Reads the return from the
database into an ID variable

118 CHAPTER 6 Test-driven development and dependency injection
Our CreateCustomer method doesn’t have any actual logic implemented at this point,
so let’s change that. To create a customer entry in our database, we need to do the fol-
lowing four things:

1 Validate the input argument of name.
2 Instantiate a new Customer object.
3 Add the new Customer object to the Entity Framework Core’s internal

DbSet<Customer>.
4 Tell Entity Framework Core that we want to commit our change.

We follow this general pattern in all of our repository methods. Being consistent
makes our codebase easier to read and maintain, because developers can come to rely
on the expectation of seeing this pattern.

6.2.1 Why you should always validate input arguments

In an ideal world, people never pass null or invalid arguments into your methods. The
unfortunate truth is that we don’t live in an ideal world. To counteract unreliability in
other people, the best thing we can do is to lead by example. If we consider a method to
be nothing more than a mathematical function, we can treat it as a black box into which
we can input any information and return an acceptable outcome. If we pass into this
black box an invalid value and we assumed that another developer handled the valida-
tion upstream, we are in trouble and heading for the land of runtime exceptions.

 Let’s validate our input by considering what criteria our string representing a cus-
tomer name must adhere to. First, I think it is safe to assume that we never want our
name string to be null. In the case of null, we should return out of the method with a
false Boolean, indicating that we could not successfully add a new Customer object to
the database with the given input parameters, as shown next:

public bool CreateCustomer(string name) {
 if (string.IsNullOrEmpty(name)) {
 return false;
 }

 return true;
}

ISNULLOREMPTY As part of the string class, .NET exposes the IsNullOr-
Empty method. This method returns a Boolean indicating whether the given
string is null or empty.

We added the second return statement to satisfy the method signature. If we do not
have the return true statement, the compiler throws an error saying that not all code
paths in the CreateCustomer method return a value of type bool. If returning a bool
type value based on input validation was the only thing we did in the CreateCustomer
method, we could have just returned the resulting Boolean value of string.IsNullOr-
Empty. But, alas, we have other logic to include. Let’s update our existing unit test,

119The CreateCustomer method
which is the success scenario, to call the CreateCustomer method and pass along a
valid name string, then check whether the method returned a true value, as follows:

[TestMethod]
public void CreateCustomer_Success() {
 CustomerRepository repository = new CustomerRepository();
 Assert.IsNotNull(repository);

 bool result = repository.CreateCustomer("Donald Knuth");
 Assert.IsTrue(result);
}

Go ahead and run the test; it should pass. We introduced the following two new return
branches for our method:

 The name argument is null.
 The name argument is an empty string.

We should add unit tests that cover these possibilities.

6.2.2 Using “arrange, act, assert” to write unit tests

In this section, we’ll dive deeper into test-driven development by examining its core
testing philosophy. We’ll also continue writing the CreateCustomer_Success unit test
by following the same pattern for tests we have followed in this book so far: instantiate
an object, call it, and assert that the output is correct. This section examines the
“three As” of testing: arrange, act, and assert, as shown in figure 6.4.

[TestMethod]
public void CreateCustomer_Failure_NameIsNull() {
 CustomerRepository repository = new CustomerRepository();
 Assert.IsNotNull(repository);

 bool result = repository.CreateCustomer(null);
 Assert.IsFalse(result);
}

[TestMethod]
public void CreateCustomer_Failure_NameIsEmptyString() {
 CustomerRepository repository = new CustomerRepository();
 Assert.IsNotNull(repository);

1. ARRANGE

Set up your tests’ instances so

they have all the information

required to test the piece of

code you are evaluating.

2. ACT

Using the instances set up in

the arrange phase, run the

method you want to test and

store the output.

3. ASSERT

Using the data retrieved in the

act phase, perform assertions

to verify the output is correct.

Figure 6.4 “The three As of testing”: arrange, act, and assert. Using them allows
us to write tests in an organized and predictable manner.

120 CHAPTER 6 Test-driven development and dependency injection
 bool result = repository.CreateCustomer("");
 Assert.IsFalse(result);
}

EMPTY STRINGS "" and string.Empty are both valid ways to describe an
empty string. In fact, string.Empty resolves to "" under the hood. Use which-
ever one you want. I like to use string.Empty because it is more explicit. In
this book, I use them both.

And just like that, we are up to three tests. Now, when we make any further changes
to the method, we can run these tests and be confident that the existing code did
not break.

6.2.3 Validating against invalid characters

The second item on our to-do list for validating the input is checking the actual con-
tent of the name string for invalid characters. We don’t expect a name to contain spe-
cial characters, such as the following:

 Exclamation point: !
 At sign: @
 Pound sign: #
 Dollar sign: $
 Percentage sign: %
 Ampersand: &
 Asterisk: *

We cannot possibly limit our allowed character set based on the characters we allow.
The list of possible Unicode characters is gigantic, especially when you take into con-
sideration the special notation of letters in a language such as Vietnamese and Arme-
nian. So how do we check for special characters?

 We could create a character array and loop over the string, then loop over the
character array for every character in the string. That would both be many lines long
and fairly inefficient.1 We could also use a regular expression (regex) to match against
a regex string, but that would be overkill for our problem. The easiest and cleanest
way to determine whether a string contains a given character is to specify an array with
forbidden characters and then use the LINQ Any method to iterate over the source
string, passing in an Action that checks whether any of the elements in the collec-
tion contain an element from the forbidden characters collection. The Any method
checks whether an expression (through an Action) is valid for any of the elements

1 The runtime complexity of iterating over a set of N characters for every character in a given string is O(n2).
This is calculated by taking the runtime of iterating over a set of N characters ({N }):O(n) and multiplying that
by the runtime iterating over every character in a string, also {N }. This gives us O(n) * O(n), which we can fur-
ther combine into O(n * n), and once more into the final runtime of O(n2). To summarize: O(n) * O(n) = O(n
* n) = O(n2). There is a chance that the regex implementation does its processing with the same concepts and
runtime complexity.

121The CreateCustomer method
in a collection. LINQ can be difficult to understand the first time you look at it, so
let’s unpack our LINQ code step-by-step next:

char[] forbiddenCharacters = {'!', '@', '#', '$', '%', '&', '*'};
bool containsInvalidCharacters = name.Any(x =>

➥ forbiddenCharacters.Contains(x));

Although the runtime complexity of using the Any LINQ method and character array
approach is the same as the nested for loop described earlier (since we are basically
throwing some syntactical sugar on top of it), it is more readable and more idiomatic
C#. LINQ (Language-Integrated Query) is a sort of programming language inside of
C# that allows us to perform (and chain) operations to query and change collections.
Here, we call a method (Any) in the LINQ library using normal C# syntax.

 First, we declare, initialize, and assign a variable of type array of char and call it
forbiddenCharacters. This array contains the characters we do not allow. Second,
we initialize a Boolean variable called containsInvalidCharacters and assign it to
the result of our LINQ query. We can read the LINQ query as a narrative: “If any ele-
ment in the string called name contains a character from the forbiddenCharacters
collection, return false, else return true.”

 The call to Any evaluates to true if the passed-in expression results to true for any
of the values in the collection (in this case for any of the characters in the name
string). We pass in an expression to be evaluated through a lambda expression. We
use the Contains method on forbiddenCharacters to evaluate whether the forbidden-
Characters collection contains the passed-in value. Combined with the Any call, this
means that if we evaluate the Contains call to be true (which it is for a character rep-
resenting a forbidden character), it also means that the Any returns true, meaning
that there was a forbidden character in the string.

 We could just put the forbidden character code after our conditional to check
whether the name string was null or empty, or even inline it into the conditional, but I
vote for a different approach. If I tell you that those are implementation details,
unnecessary for the casual reader to know intimately, where should we put the code?
That’s right, in a separate private method.

 We should extract the IsNullOrEmpty conditional into its own method and add
the invalid character code. We can call the method IsInvalidCustomerName and have
it return a Boolean (note that we also have to import the System.Linq namespace to
use LINQ queries), as shown in the next listing.

using System.Linq;

namespace FlyingDutchmanAirlines.RepositoryLayer {
 public class CustomerRepository {
 public bool CreateCustomer(string name) {
 if (IsInvalidCustomerName(name)) {

Listing 6.2 CustomerRepository.cs with extracted IsInvalidCustomerName

122 CHAPTER 6 Test-driven development and dependency injection
 return false;
 }

 return true;
 }
 }

 private bool IsInvalidCustomerName(string name) {
 char[] forbiddenCharacters = {'!', '@', '#', '$', '%', '&', '*' };
 return string.IsNullOrEmpty(name) || name.Any(x =>

➥ forbiddenCharacters.Contains(x));
 }
}

As you can see in listing 6.2, we extracted the code into its own separate method. We
also immediately return based on the resulting Boolean value of combining the condi-
tional and LINQ query.

SHORT-CIRCUITING AND LOGICAL OPERATORS An alternative approach would be
to use the “exclusive OR” operator (XOR, ^) instead of the conditional logi-
cal OR operator (||). The XOR operator evaluates to true if one, and only
one, option is true. If both the IsNullOrEmpty and Any Contains checks are
valid, something really strange is going on (a string cannot be both null or
empty and contain an invalid character), so using an XOR operator could
work for us. Because XOR is a “logical” operator, it evaluates both sides of the
equation before returning a verdict on true or false. Logical operators can be
less performant than conditional operators (such as ||) because logical oper-
ators do not evaluate the left-hand side of the equation if the right-hand side
is false. This is also called “short-circuit evaluation.”

Coming back to the forbiddenCharacters array, a memory-conscious reader may
object and say, “You’re allocating memory for the forbiddenCharacters array when
there is a possibility that you never use it because of name potentially being null.” To
that objection I would reply by agreeing with your factual statement but also counter
by saying that it is a small price to pay for readability.

 We almost fulfilled the first of our goals: validate the input argument of name. The
logic is in place, but we don’t have any unit tests backing this new logic yet. That is not
very TDD compliant of us. How do we go about writing a test for this new logic? Are
we okay with testing only the new private method, or do we also want to test the
remaining CreateCustomer method as it calls the private method?

 We do not want to directly test any private methods. In an ideal world, all private
methods are called by a public method (this could be directly or indirectly through
another private method(s)) and are tested through that public method. Because we
are already testing the success case with our general CreateCustomer success case test,
we don’t need to create another success case (or “happy path”) test. We do need a test
for the failure case, however.

123The CreateCustomer method
6.2.4 In-lining test data with the [DataRow] attribute

We want to test for all invalid characters, which, if we had a unit test for every single
character, would require us to write N tests, where N is the number of invalid charac-
ters. That would be a lot of work for little reward. Luckily, MSTest has the [DataRow]
attribute that we can use with the MSTest platform. We can use [DataRow] to specify
an input parameter for the test method, as shown in the next listing. This allows us to
just add a bunch of [DataRow] attributes to one test.

[TestMethod]
[DataRow('#')]
[DataRow('$')]
[DataRow('%')]
[DataRow('&')]
[DataRow('*')]
public void CreateCustomer_Failure_NameContainsInvalidCharacters(char

➥ invalidCharacter) {
 CustomerRepository repository = new CustomerRepository();
 Assert.IsNotNull(repository);

 bool result = repository.CreateCustomer("Donald Knuth" +

➥ invalidCharacter);
 Assert.IsFalse(result);
}

The test in listing 6.3 passes in a string containing the full name “Donald Knuth”
postfixed by one of the invalid characters (as dictated by the [DataRow] attribute),
for example: "Donald Knuth%". Using "Donald Knuth%" as an input argument to the
CreateCustomer method returns a false Boolean on which we assert. If we now run
the test, we can see that everything passes and we are back to great coverage of our
codebase.

 When I talk about coverage in the context of testing, I do not mean the percentage
of your code covered by a test. For more information on code coverage and unit test-
ing, see Vladimir Khorikov’s Unit Testing Principles, Practices, and Patterns (Manning,
2020)2 and Roy Osherove’s The Art of Unit Testing (3rd edition; Manning, 2020).

6.2.5 Object initializers and autogenerated code

Coming back to the CreateCustomer method in CustomerRepository, we are ready to
tackle the next item on our list: “Instantiate a new Customer object,” shown in the
next code listing.

Listing 6.3 CreateCustomer_Failure_NameContainsInvalidCharacters
with [DataRow]

2 The author was a tech reviewer for Vladimir Khorikov’s Unit Testing Principles, Practices, and Patterns (Manning,
2020).

124 CHAPTER 6 Test-driven development and dependency injection
Customer newCustomer = new Customer();
newCustomer.Name = name;

We can clean up the code in listing 6.4 a little bit by using what we call an “object ini-
tializer.” Using an object initializer allows you to directly set field values of an instance
at creation as follows:

Customer newCustomer = new Customer() {
 Name = name
};

Object initializers are great for when you need to set values manually, but what hap-
pens if a new developer comes in and accidentally changes the code to not set that
name value; or, perhaps, for whatever reason, somebody creates an instance of type
Customer somewhere else in the code without knowing they should set that property
to a valid value?

 Perhaps it is better if we control how the object gets instantiated. We can define
how Customer is instantiated by forcing the use of a constructor that takes in a param-
eter of type string for the name. But we first need to verify that we can add a new con-
structor with no issue by looking at the Customer.cs class, shown next:

using System;
using System.Collections.Generic;

namespace FlyingDutchmanAirlines.DatabaseLayer.Models {
 public partial class Customer {
 public Customer() {
 Booking = new HashSet<Booking>();
 }

 public int CustomerId { get; set; }
 public string Name { get; set; }

 public virtual ICollection<Booking> Booking { get; set; }
 }
}

The Customer class is completely autogenerated by Entity Framework Core. It maps to
the Customer table in our database and holds a list of Bookings. Entity Framework
Core created this list, having found the relative foreign key constraint in the database.
In my ideal world, properties and fields come before constructors, so they are visible
at first glance when browsing a class, but that is not the case in the Entity Framework
Core autogenerated files. If you wish, you can reorganize your files to reflect that pat-
tern. In this book, I rearranged all models to that style. We can see the result of the
rearrangement in listing 6.5. We also remove the partial keyword from the model’s
respective class signature. We can do this because we are not going to use the partial

Listing 6.4 CustomerRepository.cs CreateCustomer creates a new customer

125The CreateCustomer method
feature, and it is safer to get into the habit of removing code you know you are not
going to use. Removing unused code promotes cleanliness in your code, and some-
body reading through your classes in the future will thank you. Many developers get
into the trap of keeping code that “they may use/need later.” This only promotes a
cluttered codebase in my opinion.

using System;
using System.Collections.Generic;

namespace FlyingDutchmanAirlines.DatabaseLayer.Models {
 public class Customer {
 public int CustomerId { get; set; }
 public string Name { get; set; }

 public virtual ICollection<Booking> Booking { get; set; }

 public Customer() {
 Booking = new HashSet<Booking>();
 }
 }
}

6.2.6 Constructors, reflection, and asynchronous programming

We already have a constructor for the Customer class. It doesn’t take any arguments
but assigns a new instance of a HashSet of Booking to the Booking property. We want
to keep the assignment because a reference type does not default to a zero value (an
empty collection in this case). Instead it defaults to null.

NOTE You can assign the default value for any type explicitly by using the
default keyword instead of a value. This can come in helpful when dealing
with nonprimitive value types, where the default value can be unknown to
you. Reference types always have a default value of null.

We don’t want to pass in an argument of type HashSet<Booking>, however. We want to
let Entity Framework Core deal with any key constraints. But we do want to have an
argument of type string reflecting the customer’s name. Additionally, we also should
make sure that nobody can inherit from our Customer object and consequently use
polymorphism to add that to the database. So, we also seal our class by using the
sealed keyword. Sealing a class means we need to remove the virtual keyword from
the Booking property, because you cannot have virtual members or properties in a
sealed class. We should also seal the other models in our codebase, as follows:

using System;
using System.Collections.Generic;

namespace FlyingDutchmanAirlines.DatabaseLayer.Models {
 public sealed class Customer {

Listing 6.5 Customer.cs (EF Core–generated and reorganized)

126 CHAPTER 6 Test-driven development and dependency injection
 public int CustomerId { get; set; }
 public string Name { get; set; }

 public ICollection<Booking> Booking { get; set; }

 public Customer(string name) {
 Booking = new HashSet<Booking>();
 Name = name;
 }
 }
}

When we attempt to compile the code, we get a compilation error because we are not
passing in the required parameter when we instantiate our Customer object in the
CustomerRepository. In fact, we are still using the object initializer. Let’s fix that
as follows:

Customer newCustomer = new Customer(name);

We can now compile, and our tests still pass. The third item on our list is to add the
new Customer object to the Entity Framework Core’s internal DbSet<Customer>. Why
do we need to do this? As discussed earlier, Entity Framework Core operates under the
assumption that any changes to the database are first made to the in-memory datasets.
To add a new object of type Customer to the database, we first have to add it to the in-
memory DbSet<Customer>. To access the DbSet, we need to create a new instance of
the database context class.

 We can use two methods on a DbContext to add models to a DbSet: Add and
[Entity].Add. If we call the general Add method, C# uses reflection to determine the
entity type and add it to the correct set. I prefer using the explicit [Entity].Add
because it leaves no room for ambiguity and saves some overhead (reflection is very
expensive!).

Reflection
Reflection is a powerful technique in C# used to access information at run time about
assemblies, types, and modules. In practice, this means that you can find out what the
type is of an object or change some of its properties while executing your code. You
can use reflection for much more than that, however. The opportunities are surprising.

For example, you can use reflection to create custom method attributes, create new
types, or invoke code in a file you don’t know the name of yet, all at runtime. You can
even access private fields from outside classes (but please do not do that; respect
the developers’ access guidance).

As you can imagine, reflection is not the cheapest thing to execute in terms of mem-
ory and CPU cycles. To perform some of its operations, it has to load in and keep
track of a lot of metadata in memory. Imagine the amounts of processing needed to
detect the type of an unknown object at run time. Libraries and frameworks often

127The CreateCustomer method
Because the DbContext class implements the IDisposable interface, we need to dis-
pose of it correctly. The DbContext class needs to be disposable because it can hold
connection objects for infinite amounts of time. Finally, to commit and save our refer-
ence changes to the database, we call the SaveChangesAsync method in the context,
as shown here:

using (FlyingDutchmanAirlinesContext context = new

➥ FlyingDutchmanAirlinesContext()) {
 context.Customer.Add(newCustomer);
 context.SaveChangesAsync();
}

This little snippet is what Entity Framework Core is all about. If we did not have the
abstraction of Entity Framework Core (or a different ORM tool), we would have to
instantiate a SQL connection, open it, write actual SQL to insert the new customer,
and then execute that query. The code to do that is more complex and longer than
what we have written now.

 There is one little snag with this code, however: we call an asynchronous method,
yet execute the method synchronously. For this particular method, building the code
does not throw a compile error because it saves the changes synchronously. To convert
a synchronous method to an asynchronous method, we need to follow three steps:

1 Use the await keyword on method calls we execute asynchronously and wait for.
2 Return an object of type Task from the method.
3 Add the async keyword to the method signature.

To not wait for (in other words, asynchronously execute) a method, C# uses the await
keyword. People often confuse asynchronous programming with multithreaded pro-
gramming. There is a big difference: asynchronous programming allows us to per-
form multiple things at the same time, coming back to something once it is done
executing. Multithreaded programming typically refers to running multiple sets of
logic in parallel, taking advantage of extra threads to speed up our code.

6.2.7 Locks, mutexes, and semaphores

Locking resources and controlling thread access are the bane of many software engi-
neers’ existence. Code blows up in complexity once you deal with multiple threads
because the number of places errors can crop up increases rapidly. To lessen the bur-
den on developers, C# exposes one statement (lock) and two main types of synchro-
nization primitives to save you: mutexes and semaphores.

cannot make assumptions about the type of objects they operate on, so they use
reflection to gather metadata and make decisions based on that data.

Before using reflection, reflect on your use case.

128 CHAPTER 6 Test-driven development and dependency injection
 What are their differences, and when would you use one over the other? The easi-
est to use is the standard lock statement. To lock a resource using the lock statement
and allow only one thread at a time to operate on it, use the lock([RESOURCE]){…}
syntax as follows:

decimal netWorth = 1000000;
lock(netWorth) {
 …
}

The netWorth variable is locked for the duration of the lock code block (after the
code leaves the code block, the lock is released) and can be accessed by only one
thread at a time. It is also worth noting that the lock statement prohibits two threads
to lock the same resource at the same moment. If two threads could instantiate a lock
at the same time, a lock would not be able to fulfill its “one thread at a time” promise.
This is what we call a deadlock: two threads holding onto the same resource, waiting for
the other to release that resource. Belaboring the obvious, we try to avoid deadlocks
in our code because they are notoriously hard to debug.

 We can make an analogy to canal locks: to raise and lower boats across a canal’s ele-
vation changes, we use canal locks. When a ship is second in line for the canal lock, a
different ship uses the canal lock. Therefore, the initial ship “owns” and locks the
canal lock. Only when the initial ship leaves the canal lock (the resource) is the canal
lock freed and back in an available state. The second ship can now enter and use the
canal lock. Programmatic locks come in handy when modeling queuing systems deal-
ing with critical systems such as canal locks.

 The lock statement works very well for locking properties within a specific process
(e.g., a running program). If you want to lock a resource across multiple processes
(e.g., multiple instances of your program running and interacting with your instance),
use a mutex. When you finish using a mutex, you have to explicitly release it. This
extra bit of verbosity makes a mutex easier to develop with than a lock.

USING MUTEXES FOR CROSS-PROCESS THREAD CONTROL

Unlike with a lock, we don’t need a keyword to use a mutex. Instead, we instantiate a
static instance of the Mutex class. Why static? Mutexes are cross-process and cross-
thread, so we want only one instance for the entire application. An important differ-
ence between locks and mutexes is that we don’t place mutexes on a property.
Instead, we place mutexes within methods and use them to gate the execution of said
methods. When a thread encounters a method with a mutex, the mutex tells the
thread it must wait for its turn by using the WaitOne method. To release a mutex, use
the ReleaseMutex method, as shown next:

private static readonly Mutex _mutex = new Mutex();
public void ImportantMethod() {
 _mutex.WaitOne();

129The CreateCustomer method
 …

 _mutex.ReleaseMutex();
}

The first thread that calls the ImportantMethod has no problems entering and passing
the mutex gate. When the mutex lets the thread in, the thread takes ownership of the
Mutex instance object. If a second thread tries to enter ImportantMethod while the first
thread owns the mutex, the second has to wait until the first thread releases the mutex
and relinquishes ownership. There is only one mutex to go around after all, because it
is static. When the first thread no longer owns the mutex, the second thread takes
ownership, and the cycle repeats itself.

USING SEMAPHORES TO ALLOW ACCESS BY MULTIPLE CONCURRENT THREADS
So, we can lock a resource (by using a lock) or gate the execution of a method (by
using a mutex). But what if we want to gate the execution of a method but not create
a bottleneck of a queue where only one thread at a time can execute the method?
This is what a semaphore is for. People sometimes explain semaphores as “generalized
mutexes” because semaphores offer functionality similar to mutexes but with an
added twist: they allow for a specified number of threads to be in a gated method at
the same time. To use a semaphore, we instantiate a static instance of the Semaphore
class. The constructor for the Semaphore class takes in two arguments: the initial count
of threads inside the method (usually 0), and the maximum concurrent threads in the
method, as shown next:

private static readonly Semaphore _semaphore = new Semaphore(0, 3);
public void VeryImportantMethod() {
 _semaphore.WaitOne();

 …
 _semaphore.Release();
}

When a thread wishes to execute the VeryImportantMethod method, the semaphore
checks its internal thread counter and decides whether or not to let the thread in. In
this example, the semaphore allows up to three concurrent threads in the method. A
potential fourth thread has to wait until the semaphore’s internal thread counter
returns to two. Releasing the semaphore decreases its internal counter.

6.2.8 Synchronous to asynchronous execution . . . continued

The second step to convert a synchronous method to an asynchronous method is to
change the return type of the method to be of type Task<[type]>, where [type] is
the type you want to return (you can use Task<void> if you want to return no specific
type). A Task is a wrapper around a unit of operation that we can wait on. We use the
Task class with asynchronous methods so we can verify that a task is performed and
return information along with task metadata. In the CreateCustomer method’s case,

130 CHAPTER 6 Test-driven development and dependency injection

we returned bool when executing synchronously, so we should return Task<bool>
when operating asynchronously. When returning a Task<T>, we only return the type
we want to embed in the type. The compiler automatically converts the return to a
Task<T>. For example, to return a Task<bool> from a method that has Task<T> as its
return type, we just need to do the following:

return myBool;

When a Task completes its duties, the Common Language Runtime returns the Task
to the caller method with its CompletedTask property (of type bool) set to true.

 For the third step, we need to add the async keyword to the method signature, as
shown in the next listing. The async keyword indicates that the method is asynchro-
nous (and, therefore, should return a Task<T>). The compiler throws a warning if you
have an asynchronous method with no await calls.

public async Task<bool> CreateCustomer(string name) {
 if (IsInvalidCustomerName(name)) {
 return false;
 }

 Customer newCustomer = new Customer(name);
using (FlyingDutchmanAirlinesContext context = new

➥ FlyingDutchmanAirlinesContext())
 {
 context.Customer.Add(newCustomer);
 await context.SaveChangesAsync();
 }

 return true;
}

One final note: when you try to run your tests, you will encounter compiler errors in
each of them. This is because they now call an asynchronous method without an
await or them being asynchronous themselves. We need to fix this.

 Use your newfound knowledge and convert the failing tests from executing syn-
chronously to asynchronously and await the call to CreateCustomer method. Keep in
mind that unit test methods return void when executing synchronously. If you get
stuck, you can find the solution in appendix A.

6.2.9 Testing Entity Framework Core

How would we go about testing that an object was added to the database? Sure, we can
run the existing test, but that would interact with the database—a giant no-go for a
unit test. But we want to verify that the tested method actually added an object to
the database, and we do not have the code to route actual HTTP requests to the

Listing 6.6 CustomerRepository.cs CreateCustomer asynchronous

The CreateCustomer
method signature
contains the async
keyword and returns a
type of Task<bool>.

The context.SaveChangesAsync call is
awaited, blocking the current thread
until the changes have been saved.

The return of type bool is automatically
converted to a type of Task<bool>.

131The CreateCustomer method
repository. Here is what I propose: we run the existing success case unit test once,
check the database for the newly created entry, and then figure out a solution for the
unit test’s connectivity issue.

 If we execute the CreateCustomer_Success unit test, we can query the actual
deployed database for the created customer ("SELECT * FROM [dbo].[Customer]")
outside of our code using a database management tool such as SQL Server Manager.
The resulting customer entry is shown in figure 6.5.

But we do not want to create a new entry in the actual database every time we run our
unit test. Entity Framework Core has the concept of an in-memory database, which
allows us to spin up a database (with the same structure as our cloud or locally
deployed database) in memory on our machine whenever we run a test. To facilitate
this, we need to install the Microsoft.EntityFramework.Core.InMemory package in
the FlyingDutchmanAirlines_Tests project. We also need to import the namespaces of
Microsoft.EntityFrameworkCore and FlyingDutchmanAirlines.DatabaseLayer

into the test class.

METHOD ATTRIBUTES FOR UNIT TESTING AND DEPENDENCY INJECTION

Besides creating an in-memory database, it would be useful if we could create a new
context with the appropriate in-memory options for every test with the same code
block. What if I told you there is a method attribute that allows us to create a method
and run it before every single test?

 As shown in table 6.1, the method attribute that accomplishes this is [Test-
Initialize]. There are also method attributes to run a method after each test
([TestCleanup]), run a method before the test suite starts ([ClassInitialize]), and
one for cleanup after the test suite is run ([ClassCleanup]). A test suite is all the tests
in one class.

Let’s add a TestInitialize method using the [TestInitialize] method attribute in
the CustomerRepositoryTests class as follows:

Table 6.1 Test method attributes and when the method runs

Method attribute When does the method run?

[ClassInitialize] Before any of the tests in a class

[TestInitialize] Before every test in a class

[TestCleanup] After every test in a class

[ClassCleanup] After all the tests in a class

Figure 6.5 The result of the query to select all the customers in
the database. Your mileage may vary on the number of customers
in the database due to the database being deployed online.

132 CHAPTER 6 Test-driven development and dependency injection
private FlyingDutchmanAirlinesContext _context;

[TestInitialize]
public void TestInitialize() {
 DbContextOptions<FlyingDutchmanAirlinesContext> dbContextOptions = new

➥ DbContextOptionsBuilder<FlyingDutchmanAirlinesContext>()

➥ .UseInMemoryDatabase("FlyingDutchman").Options;
 _context = new FlyingDutchmanAirlinesContext(dbContextOptions);
}

We create a private field of type FlyingDutchmanAirlinesContext called _context
to hold our database context so we can use it in our tests. Then we provide the initializer
method (TestInitialize). In TestInitialize we first create an object of DbContext-
Options<FlyingDutchmanAirlinesContext> that uses the Builder pattern to create a
DbContextBuilder, specify that we want to use an in-memory database with the name
FlyingDutchman, and return the options for setting up a context in memory.

 Then, we pass those options into our FlyingDutchmanAirlinesContext construc-
tor (autogenerated by Entity Framework Core). FlyingDutchmanAirlinesContext has
two constructors: one constructor with no arguments (we have used this one before)
and one that takes in an argument of type DbContextOptions<FlyingDutchman-
Airlines> and allows us to create the in-memory context in this case.

 By using this context, we can run the unit tests against an in-memory database,
rather than a real database. Entity Framework Core creates a perfect copy of the data-
base schema (with no existing data) and acts as if we were acting against the deployed
database. This allows us to perform unit tests without messing with an actual database.

 But wait a second! How do we actually use the context? We are not passing in the
context to the repository layer. In fact, it creates a new context in CustomerRepository.
This is where dependency injection shows up again.

6.2.10 Controlling dependencies with dependency injection

Dependency injection (DI) is a term coined by Martin Fowler in a 2004 article called
“Inversion of Control Containers and the Dependency Injection Pattern,” but it really is an evo-
lution of the dependency injection technique as first written about by Robert Martin
(of clean code fame) in a paper posted to the comp.lang.c++ Usenet group in 1994
called OO Design Quality Metrics: An Analysis of Dependencies.3

 Dependency injection, in its most basic terms, is a technique to provide classes
with all the dependencies they need rather than instantiating them in the class them-
selves. This means that we can resolve dependencies at run time rather than at com-
pile time. When used with interfaces, dependency injection also becomes a powerful
tool for testing because we can pass in mocks as dependencies whenever we want.

3 The original post to the comp.lang.c++ usenet group can be found at https://groups.google.com/forum/
#!msg/comp.lang.c++/KU-LQ3hINks/ouRSXPUpybkJ.

https://groups.google.com/forum/#!msg/comp.lang.c++/KU-LQ3hINks/ouRSXPUpybkJ
https://groups.google.com/forum/#!msg/comp.lang.c++/KU-LQ3hINks/ouRSXPUpybkJ
https://groups.google.com/forum/#!msg/comp.lang.c++/KU-LQ3hINks/ouRSXPUpybkJ

133The CreateCustomer method
 A traditional class without DI may have a dependency on an AWS (Amazon Web
Services) client object (let’s call it AwsClient and also have it implement an interface
called IAwsClient). This object is to be the communicator between AWS and our
codebase. We can create this classwide object and assign it to a new instance of the
AwsClient class in the class’s constructor as follows:

public class AwsConnector {
 private AwsClient _awsClient;
 public AwsConnector() {
 _awsClient = new AwsClient();
 }
}

Now imagine that we want to test this class. How do we test the _awsClient to control
its returns? Because it is a private member, we cannot directly access it. We could use
reflection to access the private member by doing some clever code magic, but that
would be painful and computationally expensive as well as very unclean and compli-
cated code. The alternative is to use dependency injection.

 With dependency injection, instead of assigning the _awsClient to a new instance
of AwsClient in the constructor, we pass in that new instance to the constructor. We
need to ensure that the dependency is on an interface, in this case, IAwsClient, as
shown in the next code example. That way, we can make new classes that inherit from
IAwSClient, making testing much easier.

public class AwsConnector {
 private readonly IAWSClient awsClient;
 public AwsConnector(IAWSClient injectedClient) {
 awsClient = injectedClient;
 }
}

Every class that wants to instantiate a new copy of AwsConnector now has to pass in an
instance of a class that inherits from IAwsClient. To prevent _awsClient from being
changed anywhere else, it is read only and private. The power of dependency injec-
tion is that it inverts the control of the dependency. Instead of the class having control
of the dependency and how it is instantiated, now the calling class has this control.
This is what we mean by “inversion of control.”

 Let’s change the CustomerRepository to use dependency injection for the Flying-
DutchmanAirlinesContext. To do this, we need to do the following five things:

1 In CustomerRepository, add a private readonly member of type Flying-
DutchmanAirlinesContext.

2 Create a nondefault constructor for the CustomerRepository constructor that
requires an argument of type FlyingDutchmanAirlinesContext.

134 CHAPTER 6 Test-driven development and dependency injection
3 In the new constructor, assign the private FlyingDutchmanAirlinesContext to
the injected instance.

4 Change the class to use the private member instead of creating a new Flying-
DutchmanAirlinesContext in the CreateCustomer method.

5 Update our test to inject an instance of FlyingDutchmanAirlinesContext into
the CustomerRepository.

We start by adding the private readonly member of type FlyingDutchmanAirlines-
Context and the new CustomerRepository constructor. Currently, we only have the
default (nonexplicit) constructor, so we have to create a new constructor that matches
our needs, as shown in the following code snippet. This constructor takes the place of
the default constructor, because we do not want to create an overloaded constructor
without arguments. We want to force the use of our DI constructor.

private readonly FlyingDutchmanAirlinesContext _context;

public CustomerRepository(FlyingDutchmanAirlinesContext _context) {
 this._context = _context;
}

That takes care of the first three items on our list. This code does contain a keyword
that I haven’t used in this book before: the this keyword.

Accessing a current instance’s data using the “this” keyword
Why did we have to use this? Imagine if we did not: we would have an assignment
that assigns a variable called _context to another variable called _context.

_context = _context;

But what are we assigning to what? The class field is called _context (incorrect
naming convention notwithstanding), but so is the passed-in argument. There are
two ways to resolve this conundrum: either we rename one of them (the likely can-
didate would be the constructor argument), or we find a way to specify which one
we mean at what time. The this keyword refers to the current instance of a class.
So what we are really saying when we do this._context is “the variable called
_context in the current instance of the class.” And with that differentiator, we can
safely assign the argument to the field. It is up to you to determine whether adding
the this keyword is an acceptable alternative to renaming your variables, fields, or
members.

My litmus test boils down to this: if you have to change the name to something that
makes it less clear what you are trying to convey, use the this keyword. Otherwise,
rename it.

135The CreateCustomer method
Now we have to make sure that the CreateCustomer method uses our newly initialized
context instead of creating one within the method. To do this we strip the assignment
of context to a new instance of FlyingDutchmanAirlines from the method and wrap
the context member in the using statement as follows:

public async Task<bool> CreateCustomer(string name) {
 if (IsInvalidCustomerName(name)) {
 return false;
 }

 Customer newCustomer = new Customer(name);
 using (_context) {
 _context.Customer.Add(newCustomer);
 await _context.SaveChangesAsync();
 }

 return true;
}

You’ve now changed an existing method to use dependency injection. But what hap-
pens if the SaveChangesAsync method throws an error? Perhaps we cannot connect to
the database anymore. Or there is something wrong with the deployed schema? We
can wrap the database access code in a try-catch block, catching any exception so we
can handle the exception (by returning false) instead of crashing the service, as
shown next:

CustomerRepository class
context argument

class instanceprivate readonly FlyingDutchmanAirlinesContext _context;

public CustomerRepository (FlyingDutchmanAirlinesContext _context)

_context = _context;
{

}

?
_context member

CustomerRepository class
context argument

STACK

STACK

class instance

_context member

private readonly FlyingDutchmanAirlinesContext _context;

public CustomerRepository (FlyingDutchmanAirlinesContext _context)

this._context = _context;
{

}

136 CHAPTER 6 Test-driven development and dependency injection
public async Task<bool> CreateCustomer(string name) {
 if (IsInvalidCustomerName(name)) {
 return false;
 }

 try {
 Customer newCustomer = new Customer(name);
 using (_context) {
 _context.Customer.Add(newCustomer);
 await _context.SaveChangesAsync();
 }
 } catch {
 return false;
 }

 return true;
}

The last thing that remains is to update our tests to injected dependency and create a
unit test for the error case.

UNIT TESTING WITH TRY-CATCHES

To use dependency injection and asynchronous methods with our existing tests, we
first have to make sure that all our test methods calling an asynchronous method
(using await) return a type of Task and are asynchronous. Go ahead and update all tests.
Then, we need to add the in-memory database context (_context) to the Customer-
Repository instance creations, as shown here:

[TestMethod]
public async Task CreateCustomer_Success() {
 CustomerRepository repository = new CustomerRepository(_context);
 Assert.IsNotNull(repository);

 bool result = await repository.CreateCustomer("Donald Knuth");
 Assert.IsTrue(result);
}

All we did was add the _context instance to the new CustomerRepository constructor
call. Do this for the other tests in the file, and you should be set on that front.

NOTE I like using the following template for my test names: {METHOD NAME}
_{EXPECTED OUTCOME}. It uses snake casing to separate the method under
test from the result: CreateCustomer_Success.

For the unit test, we can take two approaches to testing whether the method throws an
Exception (by asserting that the method returned a Boolean with a value of false):

 Pass in null instead of the correctly instantiated _context.
 Stub FlyingDutchmanAirlinesContext, and have it throw an error based on a

predefined condition.

137The CreateCustomer method
For this test, we are going with the first approach: passing in null instead of _context
to the CustomerRepository constructor. We’ll discuss and use stubs in chapter 8. Pass-
ing in a null value for the dependency in the CustomerRepository constructor
means that CustomerRepository._context is set to null and, therefore, causes a null
pointer exception when trying to add a new Customer. This is sufficient for us to test
the try-catch failure case as follows:

[TestMethod]
public async Task CreateCustomer_Failure_DatabaseAccessError() {
 CustomerRepository repository = new CustomerRepository(null);
 Assert.IsNotNull(repository);

 bool result = await repository.CreateCustomer("Donald Knuth");
 Assert.IsFalse(result);
}

If we run all the tests, we see that they pass. We are now testing with a completely in-
memory database. Is there anything we can clean up before we move on? Well, yes,
there is. If we look at our unit tests, we notice the following two repeating lines of code:

CustomerRepository repository = new CustomerRepository(_context);
Assert.IsNotNull(repository);

This is an excellent moment to apply the DRY principle. How about we extract the
creation of the CustomerRepository into the TestInitialize method we created
earlier, then expose it as a private member on the class for the tests to use, as shown
next? It is updated before every test with a fresh instance of the CustomerRepository,

so we are still guaranteed an isolated environment.

private FlyingDutchmanAirlinesContext _context;
private CustomerRepository _repository;

[TestInitialize]
public void TestInitialize() {
 DbContextOptions<FlyingDutchmanAirlinesContext> dbContextOptions = new

➥ DbContextOptionsBuilder<FlyingDutchmanAirlinesContext>()

➥ .UseInMemoryDatabase(“FlyingDutchman”).Options;
 _context = new FlyingDutchmanAirlinesContext(dbContextOptions);

 _repository = new CustomerRepository(_context);
 Assert.IsNotNull(_repository);
}

With the CustomerRepository creation now in the TestInitialize method, we can
remove it for every test. For example, listing 6.7 shows how this impacts the Create-
Customer_Failure_NameIsNull unit test. Note, however, that we do not want to do
the same for CreateCustomer_Failure_DatabaseAccessError, because it relies on
instantiating the repository with a null value as its input argument.

138 CHAPTER 6 Test-driven development and dependency injection
[TestMethod]
public void CreateCustomer_Failure_NameIsNull() {
 CustomerRepository repository = new CustomerRepository(context);
 Assert.IsNotNull(repository);

 bool result = _repository.CreateCustomer(null);
 Assert.IsFalse(result);
}

So, to recap: we created a CreateCustomer method in CustomerRepository (along
with the appropriate unit tests). The CreateCustomer method allows us to add new
Customer objects to the database. But we also want to return the Customer objects
when given a CustomerID. So, why don’t we create a method that does that in the next
chapter? By now you know the trick of TDD: we are going to create a unit test until we
get stuck (that is, until we cannot compile or pass the test anymore), then we add the
next piece of logic, then rinse and repeat.

Exercises
EXERCISE 6.4
Fill in the blanks: The three A’s of testing are 1. __________, 2. __________, and
3. __________.

a affirm; assert; align
b affix; advance; await
c arrange; act; assert
d act; alter; answer

EXERCISE 6.5
True or false? With Language-Integrated Query, we can use query collections by pass-
ing in C++ code, which gets upgraded to C# and executed.

EXERCISE 6.6
How many checks does a conditional logical OR operator (||) make if the first condi-
tion evaluates to false?

a One
b Two
c Three
d It depends.

EXERCISE 6.7
How many checks does an exclusive OR operator (^) make if the first condition evalu-
ates to false?

a One
b Two

Listing 6.7 CustomerRepositoryTest updated CreateCustomer_Failure_
NameIsNull

139Summary
c Three
d It depends.

EXERCISE 6.8
True or false? To convert a synchronous method to an asynchronous method, the
method needs to return a type of Task<[original return type]> or Task, have the
async keyword in the method signature, and await any asynchronous calls.

EXERCISE 6.9
Fill in the blanks: When unit testing, we perform operations against __________
database.

a an in-memory
b a deployed
c a broken

EXERCISE 6.10
True or false? With dependency injection, we invert control over dependencies from
the class to the caller.

Summary
 The single-responsibility principle tells us to do only one thing in a method and

to do it well. If we heed this creed, we end up with code that is maintainable
and extensible.

 Test-driven development has two stages: red (tests failing or not compiling) and
green (tests are passing). Switching between the two stages (red and green)
allows us to write tests in conjunction with features. In the red stage, the tests
don’t pass or the code does not compile. Our job in the red stage is to make the
test pass and make the code compile. In the green stage, the code compiles and
the tests pass. During the green stage, we write new code that implements the
next step of our feature. This makes the tests fail, and, therefore, we are back in
the red stage.

 Language-Integrated Query (LINQ) allows us to perform SQL-like queries
against collections. We can use this to simplify our code tremendously when
dealing with databases.

 We can use dependency injection (DI) with unit tests to provide more granular
control on calls to dependencies. When using DI, the data flow is reversed, and
the calling method needs to provide dependencies, as opposed to having them
instantiated on the spot.

Comparing objects
In the previous chapter, we implemented the CustomerRepository where we can
add a customer to the database. We also learned how to use dependency injection
to write testable code. This is a splendid start, but we are not done yet. We can add
a Customer instance to the database, but how about retrieving one? See figure 7.1
for where we are in the scheme of the book.

 In this chapter, we’ll create the GetCustomerByName method that returns an
appropriate Customer object when given a string containing the customer’s name.
Implementing this method allows us to touch on some technical concepts we may
have missed otherwise. As before, we’ll use test-driven development “light” to ensure

This chapter covers
 Implementing the GetCustomerByName method

 Viewing methods through the lens of lambda
calculus

 Using nullable types

 Using custom exceptions

 Operator overloading and custom equality
comparisons
140

141The GetCustomerByName method
our code quality is adequate. Even though the API doesn’t require an endpoint to get
customers from the database, this method will prove useful for us when we implement
our booking endpoint.

7.1 The GetCustomerByName method
To get started, let’s create the following new unit test that does absolutely nothing
besides an attempt to call our new (not yet created) method:

[TestMethod]
public async Task GetCustomerByName_Success() {
 Customer customer =

➥ await _repository.GetCustomerByName("Linus Torvalds");
}

After switching to the CustomerRepository class, let’s add the GetCustomerByName
method. Let’s also add an argument of type string to the method signature, signify-
ing the CustomerName we want passed in. We’ll also add code to return a new instance
of type Customer, to satisfy the return type of Task<Customer> in the method signa-
ture. We do not have any await calls in the method yet, so the compiler warns us of
that (and we’ll handle it in section 7.1.1). For now, we are okay with executing Get-
CustomerByName synchronously as follows:

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Reflection and mocks: 10

Part 5: The service layer

+ Runtime type checking revisited

and error handling: 11

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Introducing C# and .NET: 1

+ .NET and how it compiles: 2

Part 1: Using C# and .NET + How bad is this code?: 3

+ Manage your unmanaged

resources!: 4

Part 2: The existing codebase

+ Setting up a project and database

using Entity Framework Core: 5

Part 3: The database access layer

Figure 7.1 In this chapter, we’ll continue the implementation of the CustomerRepository we
started in chapter 6. This is the first step in implementing all the repositories for the Flying Dutchman
Airlines service.

142 CHAPTER 7 Comparing objects
public async Task<Customer> GetCustomerByName(string name) {
 return new Customer(name);
}

With the compilation warning resolved, we can attempt another test run. Of course, we
aren’t testing anything yet. We want the unit test to check for and assert the following:

 The returned Customer instance is not null.
 The Customer instance has valid data for the CustomerId, Name, and Booking

fields.

Those assertions should be fairly simple to write. Let’s assert that the returned Customer
instance is not null as follows:

[TestMethod]
public async Task GetCustomerByName_Success() {
 Customer customer =

➥ await _repository.GetCustomerByName("Linus Torvalds");
 Assert.IsNotNull(customer);
}

If we remember the red-green traffic light of test-driven development, we see that we
have transitioned from the red stage (not compiling) to the green stage (compiling
and our tests work). Now let’s make the light red again. The red-green instant feed-
back loop provides small, gratifying wins throughout the procedure, making TDD
very satisfying to use.

 Now that we are in the red stage, we can add some new tests to assert based on
code we have not written yet. So, what do we want to do in GetCustomerByName? As
shown in figure 7.2:

1 Validate the input parameter (name, string).
2 Check the internal database set of Entity Framework Core for the appropriate

customer.
3 Return the found customer or throw an exception saying we did not find the

customer.

1. Validate inputs.

You guys are

fantastic inputs. Do I have this customer

in the database?

2. Check the database. 3. Return customer
or exception.

Billy Bob McGee Exception

Figure 7.2 The three steps to implementing GetCustomerByName are (1) validate the
input parameters, (2) check the database for an existing customer, and (3) return the
found customer or an exception.

143The GetCustomerByName method
There’s a lot to unpack, so let’s start with the simplest (and first) item in the list: vali-
dating our input parameters. You may recall that we discussed input validation in sec-
tion 6.2.1.

 Before we move on, let me offer another argument about why we want to validate
all our input parameters, regardless of whether they should have been validated
and/or sanitized upstream. If we examine the abstract concept of a method through
the lens of lambda calculus, we could say that any method (if visualized as a function),
at its most basic level, is an isolated construct of an input, a function body, and an
output. We can write this using some simple syntax where the lambda is wrapped ()
in parentheses with the input followed by a period and the output, as shown in fig-
ure 7.3.

We should treat this method as a so-called black box. We do not have any insight into
the inner workings of the function, so how are we supposed to know whether a certain
input is correct? The function should return a valid output for any input, regardless of
how it processes the data. If we assume that a parameter is validated in an earlier
method in the code and we pass in an invalid value to the method, we cause our (pro-
grammatic) method in code to hard crash. We do not comply with this lambda calcu-
lus black box thing we have going on. Note that because lambda calculus deals with
mathematical functions, it’s not the function itself that crashes but rather our flawed
code implementation of the system.

7.1.1 Question marks: Nullable types and their applications

Now that we have a skeleton for the CustomerRepositoryTests.GetCustomerByName
_Success unit test and the CustomerRepository.GetCustomerByName method, we can
validate the input into GetCustomerByName. What are the rules for our input argu-
ments to abide by? Well, we never want a null value, so that should be the first check.

 Until C# 8, any reference type was nullable. This meant you could assign a null
value to reference types and prevent the compiler from throwing an error when it
found a null value. In practice, this often was the reason why we saw null-pointer
exceptions being raised at runtime. Many times, you did not know a reference type
would be null, yet you’d still try to use it somehow. To combat runtime null-pointer
exceptions, C# 8 introduced explicit nullable reference types, which lets us make a
reference type null by explicitly signaling that we want to do so. The overarching
goal behind nullable reference types is to remove unexpected null-pointer exceptions

(x.y)λ

“This function has an input of x and an output of y.”

Input OutputFunction

(x λ y)

Figure 7.3 A method can be seen as a
lambda function. It has an input, some logic
that operates on that input, and a resulting
output. Using lambda functions helps with
adhering to the “code should read like a
narrative” principle because you have room
to do only one atomic operation.

144 CHAPTER 7 Comparing objects
in C#. If the only time a reference type can be null is when you explicitly allow it to
be null, you are in control. Instead of guessing whether a reference type could be
null when you try to use it (or digging through lots of code to find out), you can
look at its underlying type. If it is nullable, assume that it can be null and perform
null checks.

 To enable nullable reference types, either add the <Nullable>enable</Nullable>
flag to your project file (.csproj) or add the #nullable enable tag per source file, if
you do not want to enable nullable reference types for the entire project. (You can
also use #nullable disable to disable nullable for a particular source file when
enabling nullable for the entire project.) In effect, when using C# 8 or higher with the
nullable reference type support enabled, if you want a reference type to be null, you
need to declare the type to be nullable by post-fixing a question mark to the type, for
example, int? or Customer?. Nullable value types have been present in C# since C#
2.0 and follow the same pattern. The provided name always needs to be valid. A valid
name means a non-null or empty string. Let’s say name is an invalid value—what then?
We could throw an exception or return a null value up to the controller. In general, a
good frame of mind is to limit any null returns. Because it is a value people rarely expect
to be returned (unless the return type is Nullable<T> or an explicit nullable reference
type), we should not throw the receiving method a curveball. Let’s go with a custom
Exception. Alternately, you can use one of the exceptions that .NET provides us. Some
suggested choices are ArgumentNullException or InvalidOperationException (also
discussed in section 14.1.1).

7.1.2 Custom exceptions, LINQ, and extension methods

Every exception in C# inherits from the Exception class. Of course, intermediate lay-
ers of inheritance can exist, but in the end, it all boils down to the Exception class.
For example, the InvalidCastException class inherits SystemException, which
inherits the Exception class, as shown in figure 7.4.

InvalidCastException

SystemException

Exception

ISerializable

Figure 7.4 InvalidCastException inherits
from SystemException, which inherits from
Exception. Exception inherits from and
implements the ISerializable interface.

145The GetCustomerByName method
The Exception inheritance tree means that if we create a class that inherits from
Exception, we can use SystemException and InvalidCastException like they are any
other instance of Exception. I propose we use inheritance from the Exception class to
create a class called CustomerNotFoundException. Throughout the book, the exception-
handling strategy used boils down to the following four major steps:

1 Check if an exception needs to be thrown.
2 Create an instance of a custom exception.
3 Raise the custom exception.
4 Catch the exception one layer above where it was thrown, and decide whether

to handle there or rethrow it.

If customerName is an invalid name (we can use the IsInvalidName method we cre-
ated in section 6.2.3), we “throw” our new exception. If we want to throw an exception
(or “raise” it, as some languages would say), we use the throw keyword with the excep-
tion we want to throw. And because we want to be organized, we should also create a
dedicated folder for custom exceptions (aptly named “Exceptions”), as shown next:

namespace FlyingDutchmanAirlines.Exceptions {
 public class CustomerNotFoundException : Exception { }
}

Because we do not need any functionality from CustomerNotFoundException besides
what the Exception class already gives us, this code is the entire exception. After add-
ing the appropriate import to the CustomerRepository class (using FlyingDutchman-
Airlines.Exceptions), we can use our new exception and validate the input of name
as follows:

public async Task<Customer> GetCustomerByName(string name) {
 if (IsInvalidCustomerName(name)) {
 throw new CustomerNotFoundException();
 }

 return new Customer(name);
}

We could have used an ArgumentException instead of our custom exception, but to
me, it makes sense that a method that retrieves customer names from a database can
return an exception called CustomerNotFoundException. By running our existing
tests, we verify that the new code does not break any existing functionality. We can test
for the invalid input by creating a new test in CustomerRepositoryTests that passes a
negative integer to GetCustomerByName and then checks that the method threw an
exception of type CustomerNotFoundException during execution. In section 4.1.2, we
discussed how to check the type of an object through the typeof keyword. We use this
knowledge in our failure case test. We can check for a thrown exception with MSTest
in the following ways:

146 CHAPTER 7 Comparing objects
 Decorate the test method with a method attribute of type [ExpectedException
(typeof([your exception]))].

 Add a try-catch block in the code, and assert that the exception is the cor-
rect type.

For us, both approaches would work. There is a slight caveat with the first approach: the
method attribute of type ExpectedException(typeof([your exception]) does not
allow us to access any of the properties of the thrown exception. So, if you attach some
kind of message, custom data, or stack trace to your exception, you cannot access it
unless you use the second approach. Not having access to a stack trace is not an issue
for us, so let’s use the first approach, as shown here:

[TestMethod]
[DataRow("")]
[DataRow(null)]
[DataRow("#")]
[DataRow("$")]
[DataRow("%")]
[DataRow("&")]
[DataRow("*")]
[ExpectedException(typeof(CustomerNotFoundException))]
public async Task GetCustomerByName_Failure_InvalidName(string name) {
 await _repository.GetCustomerByName(name);
}

Run the test; it should pass. If it does not, check whether your ExpectedException is
of the right type (CustomerNotFoundException).

 Switching back to the success case test, we can move on to the second item on our
list of items to do in the GetCustomerByName method: check the internal database set
of the Entity Framework Core for the appropriate customer. To test the logic, we must
first have a Customer instance to check against. Before we can access a Customer
instance, we need to add one to the in-memory database. Following that, we use the
GetCustomerByName method to retrieve it. How about we add that in the Test-
Initialize method so we have access to Customer in the database in every test?

 We already wrote code to add a Customer instance to a database in the Create-
Customer method, so let’s use that (rather than calling the method itself in an initial-
ization method). To add a Customer instance to the in-memory database, we need to
add a new instance of Customer to the internal database set for Customer and save the
changes through Entity Framework Core, as shown in the next listing. Because we
should await the SaveChangesAsync call, we need to convert TestInitialize to an
asynchronous method.

[TestInitialize]
public async Task TestInitialize() {
 DbContextOptions<FlyingDutchmanAirlinesContext> dbContextOptions = new

➥ DbContextOptionsBuilder<FlyingDutchmanAirlinesContext>().UseInMemoryDatabase

Listing 7.1 CustomerRepositoryTests.cs TestInitialize with in-memory database

147The GetCustomerByName method
➥ ("FlyingDutchman").Options;
 _context = new FlyingDutchmanAirlinesContext(dbContextOptions);

 Customer testCustomer = new Customer("Linus Torvalds");
 _context.Customer.Add(testCustomer);
 await _context.SaveChangesAsync();

 _repository = new CustomerRepository(_context);
 Assert.IsNotNull(_repository);
}

As we can see by the bold code in listing 7.1, adding a new Customer object to the
database is pretty straightforward. Let’s hop back to the GetCustomerByName_Success
test and see if we can get that Customer object back from the GetCustomerByName
method. Remember, though, that what we inevitably get back from the method is not
the same instance as what we stored in the database, but it is congruent to that
instance (more on congruence in section 7.2). We know that the Customer object in
the database has a CustomerName of "Linus Torvalds", so we do not need to adjust
that part of the existing test.

 We want GetCustomerByName to search the database for an existing Customer object
matching the input argument. We need to change this to grab the correct Customer
object from the database. We grab the correct element from the database by access-
ing the database context’s DbSet<Customer> and requesting the Customer instance
with the given CustomerName. When querying a collection for an element, we can use
the DbSet<Customer> and find our wanted Customer instance in two ways:

 We can loop over the collection with a foreach, while, or for loop.
 We can use LINQ.

We have seen examples of both in the book so far. Let’s contrast these approaches. To
use a loop to select our customer, we could end up with the following code:

foreach (Customer customer in _context.Customer) {
 if (customer.CustomerName == name) {
 return customer;
 }
}

throw new CustomerNotFoundException();

There is nothing wrong with that code. It is readable and to the point. Still, there is a
better way to do it: with LINQ commands to query collections, as follows:

return _context.Customer.FirstOrDefault(c => c.Name == name)

➥ ?? throw new CustomerNotFoundException();

That is definitely shorter but also looks more intimidating. Let’s unpack what this one-
liner does. We access the DbSet<Customer> by using context.Customer—nothing we

Creates a new
instance of
Customer. The
customer’s name
field is set to
"Linus Torvalds".

Adds the testCustomer object
to the DbSet<Customer>
by calling the database
context and accessing the
DbSet<Customer>

Saves the changes to the
in-memory database

148 CHAPTER 7 Comparing objects
haven’t seen before. But the next part is a bit odd: FirstOrDefault(c => c.Name ==
name). The lambda expression finds matches between name properties, but we have
not seen FirstOrDefault before. FirstOrDefault is an extension method defined in
System.Linq.

The FirstOrDefault LINQ extension method selects the first element in a collection
that matches a provided predicate. If no matching elements are found, the First-
OrDefault method returns the default value for the return type. What we want, in this
code, is to find the first element in the context.Customer set that has a matching
Name to our input argument of name. If no first matching Customer is found, First-
OrDefault returns a null value (the default value for Customer).

 That brings us to the second unfamiliar part of the return statement: ?? throw new
CustomerNotFoundException();. As you may recall from section 5.3.6, we call the ??
operator the “null-coalescing operator.” A null-coalescing operator allows us to say, “If
this thing is null, use this other value instead.” So, in our case, “If the FirstOrDefault
returns a null value (the default value for Customer), throw an exception of type
CustomerNotFoundException instead.” The asynchronous version of FirstOrDefault
is FirstOrDefaultAsync, as shown next:

public async Task<Customer> GetCustomerByName(string name) {
 if (IsInvalidCustomerName(name)) {

Extension methods
Extension methods are static methods, and we call them on specific types. For exam-
ple, we can call the FirstOrDefault LINQ extension method on any instance imple-
menting the IQueryable interface. How do we know what type an extension method
operates on and can be used with? Look at the method signature of an extension
method: extension methods always have an argument that starts with the this key-
word, followed by the specific type (or interface) they want to operate on. For exam-
ple, public static string MyExtensionMethod(this IDisposable arg) signifies
an extension method that any object implementing IDisposable can call that returns
a string.

public static T? FirstOrDefault<T> (this IEnumerable<T> source, Func<T, bool> predicate)

A generic representing the type of
the source. Also called “TSource”
in the Microsoft documentation.

The return type is nullable.
This method returns either
an instance of type set toT

a value or set to null.

This extension method operates
on types that implement.
IEnumerable<T>.

Implicitly accept the
following (first) argument,
making this method
an extension method.

The predicate function is applied
to every element in the input
IEnumerable<T>. This allows us to
further filter the elements we want
to return.

149Congruence: From the Middle Ages to C#
 throw new CustomerNotFoundException();
 }

 return await _context.Customer.FirstOrDefaultAsync(c => c.Name == name)

➥ ?? throw new CustomerNotFoundException();
}

We can now go back to our success case test and run it once more, verifying that all
tests pass.

7.2 Congruence: From the Middle Ages to C#
According to myth and legend, local medieval legend Grutte Pier (a seven-foot-tall
rebel leader with a massive sword, shown in figure 7.5) used a Frisian saying as a shib-
boleth to determine whether he faced an enemy (usually the Habsburgs and Saxons)
or a true Frisian. Because Frisian is one of the closest linguistic relatives to Old English
(modern-day English is still part of the Anglo-Frisian language group), see if you can
pick out its meaning and give it a whirl:

“Bûter, brea, en griene tsiis; wa’t dat net sizze kin is gjin oprjochte Fries”

When translated to English, that strange-looking text means: “Butter, bread, and
green cheese; who cannot say this is not a sincere Frisian.” (The green cheese refers to
a Frisian cheese embedded with cumin and cloves. The cheese’s natural rind can take
on a greenish hue.) So, what does a shibboleth have to do with C# or programming?
Well, not a whole lot, but I can use it to show you the following example of equality
and congruence:

You see, Grutte Pier was testing whether somebody was a Frisian. Was Pier testing if
person A was equal (in the sense of identical properties, not social equality) to person
B? No. Person A may have blond hair, whereas person B may not. He tested for congru-
ence between person A and the Frisian people. If you could say his shibboleth, he
deemed you congruent to a Frisian and, therefore, you got to live. And you said congru-
ence never saved somebody’s life! If we use mathematical set notation and state that a
set A is equal to {bûter,brea,grieneTsiis} and set B equals {aachje ... zeppelin} representing all
Frisian words in somebody’s vocabulary, we can say {x |x A x B } frisian.

 In section 7.1, we implemented and tested the CustomerRepository.GetCustomer-
ByName method, which accepts an input parameter representing a customer’s name
and returns the appropriate Customer instance from the database. Before we call it a

A set containing
these elements

is congruent to
person.
a Frisian

150 CHAPTER 7 Comparing objects
day, however, I want to take a slight detour and see whether there is anything else we
can do to improve the unit tests in the CustomerRepositoryTests class.

 I’d say we have the following, more elegant ways to check for equality (or, rather,
congruity) between the Customer instance in the database and the Customer instance
we used to assert in the GetCustomerByName_Success unit test:

 Creating a custom comparer class using EqualityComparer<T> (section 7.2.1).
 Overriding object.Equals (section 7.2.2).
 Operator overloading (section 7.2.3).

In the following three sections, we combine these approaches into one unified way of
testing for equality. If you are just looking for the simplest way of achieving this, over-
riding object.Equals is the easiest (and a common) way of doing equality checks.

7.2.1 Creating a “comparer” class using EqualityComparer<T>

A “comparer” class allows us to define how to compare two instances of the same type
and when they are “equal.” We already discussed congruence, and, in this section, we
apply the concept of congruence to equality comparisons.

 In my opinion, the use of the term “equality” is unfortunate because we really say
that something is congruent, not equal, to something else. But, alas, these are the

Figure 7.5 A drawing of Grutte Pier by Pieter Feddes
van Harlingen (1568–1623). The Latin inscription at
the bottom of the painting roughly translates to “we
assert to the great liberty of Pier.” Pier is the keeper
of liberty for the Frisian people.

151Congruence: From the Middle Ages to C#
cards .NET 5 and C# have dealt us. A “comparer” class derives from the Equality-
Comparer<T> class. The EqualityComparer<T> class is an abstract class that contains the
following two abstract methods that the compiler forces us to override and implement:

 bool Equals(T argumentX, T argumentY)
 int GetHashCode(T obj)

By overriding and implementing the Equals and GetHashCode methods, we adhere to
the requirements of the EqualityComparer<T> base class. At first, you may think it
strange we need to implement the GetHashCode method. After all, don’t we just want
to determine something is equal to something else? Yes, but GetHashCode (as well as
Equals) is a method present on the Object class in .NET. Because every class in .NET
derives ultimately from the Object class, the GetHashCode method is present in every
class, be it explicitly or implicitly through inheritance up to the object class. Dictionar-
ies use hash codes under the hood to perform element lookups and equality compari-
sons. This means that a dictionary is a conceptual hash table. (C# does have an
explicit Hashtable implementation. The difference is that a dictionary is generic,
whereas Hashtable is not.) By using hash codes, we get the benefit of very quick
lookup, insert, and delete operations when compared to a regular list (which does not
use hash codes).1 Hash codes operate under the assumption that the same hash code
is always generated for the same object. So, if two objects are identical, two identical
hash codes are generated. If by chance two objects are not different but the same hash
code is generated for both of them, we speak of a hash collision. This means we have to
come up with some other way to insert the items into the array.2

 Because GetHashCode is present on every object in .NET, we can come up with a
somewhat dynamic way of generating a hash code by using another class’s GetHash-
Code implementation. To generate a hash code, we do need some seed information.
The Customer object has only two fields we can use on which to base our hash code–
generation logic. We can use a combination of the length property of Customer.Name,
the Customer.CustomerID property, and a “randomly” generated integer, as shown in
the next listing. Note that a lot of discussions arise around when and when not to use
GetHashCode. I would refer you to the Microsoft documentation for the most up-to-
date information on this (as well as for the plethora of warnings to keep in mind when
using GetHashCode).

1 The average time complexity of a hash table’s insert, lookup, and search operations (and, by extension, a dic-
tionary) is O(1). The worst case for these operations is O(n). A generic list in C#, (List<T>), acts as a dynamic
array. For a dynamic array, the average and worst-case time complexity for search, insertion, and deletion is
O(n), where n is the number of elements in the dynamic array.

2 A hash collision is an unwanted result but not a rare occurrence. Donald Knuth writes about the “Birthday Par-
adox” in The Art of Computer Programming Volume 3: Sorting and Searching (2nd edition; Addison-Wesley, 1998):
given a hash function that generates hash codes based on a person’s birthday and a room with at least 23 peo-
ple (a map of n people to a table of size 365, one entry for each day of a non–leap year, where n 23), the
probability of at least two people sharing the same birthday (and generating the same hash code) is 0.4927.

152 CHAPTER 7 Comparing objects
internal class CustomerEqualityComparer : EqualityComparer<Customer> {
 public override int GetHashCode(Customer obj) {
 int randomNumber = RandomNumberGenerator.GetInt32(int.MaxValue / 2);
 return (obj.CustomerId + obj.Name.Length + randomNumber).GetHashCode();
 }
}

We can generate “random” numbers in C# using the following two general methods:

 Use the Random class.
 Use the RandomNumberGenerator class.

At first glance, they may seem similar, but if we dig a little deeper, we see differences.
The Random class lives in the (root) System namespace, whereas the RandomNumber-
Generator class lives in the System.Security.Cryptography namespace. The name-
spaces in which the respective classes live provide a major hint at why they both exist:
the Random class is a low-overhead random-number picker that is very good at quickly
spitting out a number based on a time seed number. The RandomNumberGenerator
class excels at generating “random” numbers through a variety of cryptography con-
cepts, making sure that numbers are fairly unique and somewhat equally distributed
in a range over time.

 In other words, if you were to use the Random class in a high throughput applica-
tion and request two random numbers at the same time, chances are you would get
the same number back from the “random” generator. Generating a pseudo-random
number is fine for a lot of applications, but for a web service, where we cannot predict
what load the system could be under, it is unsuitable. We may very well be in a situa-
tion where two people want to retrieve information for the same flight at the exact
same moment. We now have two customers generating the same hash code and a secu-
rity flaw on our hands. That is why we should use the RandomNumberGenerator class
instead of the Random class.

As you explore the world of random numbers and cryptography in C#, you
may come across people advocating the usage of the RNGCryptoService-
Provider class. The RandomNumberGenerator class is a wrapper around the
RNGCryptoServiceProvider class and much easier to use. A good resource
for further cryptography information is David Wong’s Real-World Cryptography
(Manning, 2021).

We overrode and implemented the GetHashCode method, so now it is time to do the
same for the Equals method.

Listing 7.2 CustomerEqualityComparer’s GetHashCode implementation

Overrides the abstract
GetHashCode method

Generates a random
number up to half of the
maximum integer valueConcatenates variables and fields

and hashes the resulting value

153Congruence: From the Middle Ages to C#
7.2.2 Testing equality by overriding the Equals method

Before we override Equals, let’s settle on what things need to be equal to say that Cus-
tomer instance X is “equal” to Customer instance Y. The Customer class does not have
a lot of properties to check for: only CustomerId and Name are usable. The Booking
field is a collection representing any foreign key constraints on the Customer model.
But, for our congruence check, those properties are not relevant because we don’t
use them to establish congruence, so we don’t use the collection in our check. If
Customer X has the same Name and CustomerId property values as Customer Y, they
are equal (and so, we return a bool set to true out of the Equals method, as shown in
the next listing).

“Random” is never random
Imagine you want to listen to some music through your favorite music-streaming
application. You probably have a playlist with thousands of songs but don’t want to
start at the top every time you want to listen to music. You would tire of listening to
the same songs in the same pattern very quickly. So, you press the “shuffle” button,
assuming that your application shuffles your playlist randomly and plays the songs in
a new order. Unfortunately, I am here to burst that bubble. Shuffling a playlist rarely
gets you a true random representation of your music. Applications like Spotify use a
shuffling algorithm that attempts to create an on-the-fly playlist shuffle experience
where no songs from the same album or artist are played after each other. We have
all had that experience, though. Why is it that shuffling a playlist is such a tricky prob-
lem? The issue is that randomness in computing is never completely random.

It all boils down to the fact that computers have to be told how to pick a random num-
ber. Random-number pickers use an algorithm that bases their starting point on a
“seed” number, often the current timestamp. A seed number of X always returns the
same return Y. If you use the current time as your seed number, running the same
algorithm in parallel starting at the same moment, you get two identical (but “ran-
dom”) outputs. This makes picking a random number a potential security issue. If you
know the seed number and algorithm used by the picker, you can predict the next
output value.

Hackers use “random-number-generator attacks” to exploit this vulnerability. A his-
torical example of problems around randomness in computing is failing to generate
a correct random value for an elliptic curve digital signature algorithm in Sony’s Play-
station 3 video game console. By exploiting this error, hackers could tell the system
that homebrew applications (and as a result, pirated video games) were valid appli-
cations and, therefore, to run them.

I leave you with this quote by computing pioneer John von Neumann, intended as a
lighthearted warning against misunderstanding the limits of randomness in computing:

“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”

154 CHAPTER 7 Comparing objects
public override bool Equals(Customer x, Customer y) {
 return x.CustomerId == y.CustomerId
 && x.Name == y.Name;
}

We want to call our Equals method every time we compare two instances of type
Customer. We could expose an Equals method in the Customer class and call the
CustomerEqualityComparer.Equals method. That would work very well, because
Equals is part of object and, therefore, available to most derived types. It is probably
what you want to do in real life, and I am assuming you can implement this on your
own. However, this presents an excellent opportunity for me to talk about something
else: if we are already going down a bit of a rabbit hole by implementing a “comparer”
class, we may as well go all the way. Probably the most common technique of checking
equality in two objects is by using the equality operator: ==.

7.2.3 Overloading the equality operator

Most of the time, you never think twice about the functionality behind the equality
operator. Sure, you probably mistype and accidentally put down the assignment oper-
ator (=) at times, but surely the actual functionality of the equality operator is some-
what set in stone. In general, you can rely on the equality operator doing reference-
type equality checks, but that functionality doesn’t work for us. Checking the refer-
ence pointers on two objects is not sufficient for comparing two Customer objects
because the result would always be false. What to do? The solution is simple: if there
is an implementation that does not meet your needs for a specific set of inputs, over-
load the implementation. In C#, we can overload operators.

 Overloading an operator works much like overriding (more so than overloading) a
method. In the world of operators, their programmatic names are their symbols (e.g.,
the plus sign, +, for the addition operator). One enormous difference between
method and operator overloads, however, is that operator overloads are always static
and public. It makes little sense to create an operator that is instance-level (static).
Non-instance-level overridden operators create a confusing scenario where you have
multiple versions of the same operator for the same type floating around with no clear
boundaries to the casual observer. The syntax for using an operator does not allow for
an [instance].[operator], or string.+ construct (this is allowed in languages such
as Scala). As far as the public access modifier is concerned, when you use an operator
on a specific type, you are not operating within that type’s class file.

 To overload an operator, use the following syntax: public static [return type]
operator [operator name] (T x, T y) { … }, where T stands for the type you want to
operate on. In our overload of the equality operator inside the Customer class, we
want to call the CustomerEqualityOperator’s Equals method and return the result,
as shown in the next code sample.

Listing 7.3 CustomerEqualityComparer’s Equals method implementation

Verifies that both Customer
instances have the same
CustomerId valueVerifies that both Customer instances

have the same Name value

155Congruence: From the Middle Ages to C#
NOTE When overloading operators, if the operator has a matching operator
(e.g., == and !=), you have to overload both operators.

public static bool operator == (Customer x, Customer y) {
 CustomerEqualityComparer comparer = new CustomerEqualityComparer();
 return comparer.Equals(x, y);
}

public static bool operator != (Customer x, Customer y) => !(x == y);

Right now, we create a new instance of the comparer every time we call the overloaded
operator. In an actual production codebase, you should consider moving the instanti-
ation to the instance level. This sidesteps incurring the overhead of instantiation on
every call to the overloaded operator.

 The overload of the != operator calls our overload of the equality operator and
negates the result from that method’s execution. Now comes the fun part: we get to
use the overloaded operators in our CustomerRepositoryTests.GetCustomerByName
_Success unit test instead of having to check for congruity by comparing object fields.

 To check the instance in the database against the returned Customer from the
GetCustomerByName method, we first need to grab the Customer from the in-memory
database using the LINQ First method, as shown in the next listing.

[TestMethod]
public async Task GetCustomerByName_Success() {
 Customer customer =

➥ await _repository.GetCustomerByName("Linus Torvalds");
 Assert.IsNotNull(customer);

 Customer dbCustomer = _context.Customer.First();

 bool customersAreEqual = customer == dbCustomer;
 Assert.IsTrue(customersAreEqual);
}

In listing 7.4, we used our overloaded equality operator to test for our definition of
equivalence between two instances of Customer. Before we wrap up this chapter, I’m
going to let you in on one other secret: we can condense the code in listing 7.4 even
more and make it more idiomatic. The Assert.AreEqual method calls the object’s
Equal method, which in turn (depending on the provided implementation) uses the
equality operator. Because we overloaded the equality operator for Customer, the CLR
(indirectly) calls the overloaded equality operator when we use the Assert.AreEqual
method on two instances of Customer! Let’s give it a whirl:

Listing 7.4 Use LINQ’s First method on a database’s internal set (EF Core)

Gets a Customer from
the in-memory database

Grabs the first
(and only) element
directly from the
in-memory database

Uses the overloaded
equality operator

Verifies that both Customer
instances are “equal”

156 CHAPTER 7 Comparing objects
[TestMethod]
public async Task GetCustomerByName_Success() {
 Customer customer =

➥ await _repository.GetCustomerByName("Linus Torvalds");
 Assert.IsNotNull(customer);

 Customer dbCustomer = _context.Customer.First();

 Assert.AreEqual(dbCustomer, customer);
}

How about we actually run the GetCustomerByName_Success test? Did it pass? Good.
Now run all the other unit tests as well. Every unit test should pass, as shown in fig-
ure 7.6. If one doesn’t, please go back to the respective section and see what went
wrong before moving on.

We can now add a new customer to the database and get it back when given an ID.
That covers all the functionality we need from the CustomerRepository. We use the pat-
terns used in the CustomerRepository in the remaining repositories. In section 6.2, we
examined how the inherited codebase handled adding a new customer to the database.

 Let’s recap our findings there. We determined that the major design flaws of the
existing codebases with adding a Customer object to the database were as follows:

 The code should be self-documenting.
 We should not use hardcoded SQL statements.
 We should use explicit types instead of implicit types (the var keyword).

I think we did very well in addressing those concerns. Our code is readable and clean.
The code is self-documenting, and we use Entity Framework Core to abstract away any
SQL queries. How did the existing code retrieve Customer objects from the database?
Well, it did not retrieve any Customer objects from the database at all! That seems odd
at first. If the existing codebase retrieved nothing from the Customer table, why does

Figure 7.6 All our existing tests pass (as shown in the Visual Studio Test
Explorer). The checkmarks represent tests that have passed. We also see
the run time for the tests both individually and combined.

157Exercises
our service retrieve Customer entities? Keep in mind that to book a flight, we need
access to an up-to-date Customer object. The old service created a new Customer
object every time somebody booked a flight through its API, resulting in potentially
duplicate entries in the database for the same Customer. We know better and do not
have that issue, as long as we pass the correct information to our methods. In this
chapter, you also learned how to use an equality “comparer” class and operator over-
loads to test for your definition of equivalency (or rather, congruity).

Exercises
EXERCISE 7.1
Currently, there is no unit test around a possible null condition when returning from
GetCustomerByName when the given name does not match a Customer object in the
database. How would we test for this?

EXERCISE 7.2
Which of the following is a valid nullable type?

a Customer!

b Customer?

c ^Customer

EXERCISE 7.3
Fill in the blank: A custom exception has to inherit from the __________ class so we
can throw it where appropriate.

EXERCISE 7.4
What does the LINQ extension method FirstOrDefault return if it cannot find a
matching item in the collection?

a A null value
b -1

c The default value for the collection’s type

EXERCISE 7.5
What does the equality operator test for in this code snippet, and what is its verdict?

int x = 0;
int y = 1;
x == y;

a The equality operator tests for reference equality. It returns false.
b The equality operator tests for reference equality. It returns true.
c The equality operator tests for value equality. It returns false.
d The equality operator tests for value equality. It returns true.

158 CHAPTER 7 Comparing objects
EXERCISE 7.6
What does the equality operator test for in this code snippet, and what is its verdict?

Scientist x = new Scientist("Alan Turing");
Scientist y = new Scientist("John von Neumann");
x == y;

a The equality operator tests for reference equality. It returns false.
b The equality operator tests for reference equality. It returns true.
c The equality operator tests for value equality. It returns false.
d The equality operator tests for value equality. It returns true.

EXERCISE 7.7
True or false? When we overload an equality comparison operator, we can determine
congruence between two types and return our own definition of equality.

EXERCISE 7.8
When we overload the equality comparison operator, we also need to overload

a !=

b ^=

c ==

EXERCISE 7.9
True or false? By using the Random class to generate a random number, we are guaran-
teed a perfect random number.

EXERCISE 7.10
True or false? By using the RandomNumberGenerator class to generate a random num-
ber, we are guaranteed a perfect random number.

EXERCISE 7.11
True or false? In many (pseudo) random-number-generation algorithms, using the
same seed number twice results in the same random numbers.

Summary
 We can examine input validation through the lens of lambda calculus. If we

treat any function as a black box, with just an input and an output, separated
from all other functions, we have to do input validation or risk a bad outcome.
We shouldn’t rely on the validation of arguments elsewhere.

 Nullable reference types allow us to explicitly state which reference types may
have a null value. Using nullable reference types helps to avoid unexpected
null-pointer exceptions.

 To designate a type as nullable, you add the ? operator: int? myNullableInt = 0;.
 Every thrown exception (ultimately) derives from the Exception base class.

This allows us to create our own (custom) exceptions and throw them like any
other. Custom exceptions promote atomic error handling.

159Summary
 You can check if a method throws a specific exception during a unit test run by
adding the [ExpectedException(typeof([your exception]))] method attri-
bute to your unit test. This allows you to unit-test failure scenarios of your code.

 Entity Framework Core can operate under an “in-memory” mode. This allows
you to spin up a local, in-memory database identical to your real one. Because
we don’t want to unit-test against live data, this provides us with the “fake” data-
base we need.

 You can use a custom Comparer class to create equivalency checks between two
types if the standard reference equivalency check does not suffice. This allows
you to reconcile two different instances of the same object, with the same values
but different pointers.

 We can overload operators such as the equality operator to provide our own
definition of equality and congruence. This is useful when wanting to compare
two reference types for congruence instead of pure equality (the memory address
matches).

Stubbing, generics,
and coupling
This chapter sees the continuation of our short-term mission to implement reposi-
tories for every entity in the database. If we look at the larger picture, we can
remind ourselves why we implement these repositories in the first place: Aljen van
der Meulen, the CEO of Flying Dutchman Airlines, wants us to bring their old
codebase into the modern era. We received an OpenAPI specification to adhere to
(the service needs to integrate with a flight search aggregator), and we settled on
using the repository/service pattern in our new codebase. Figure 8.1 shows where
we are in the scheme of the book.

This chapter covers
 Creating the Booking repository class using test-

driven development

 Separation of concerns and coupling

 Programming with generics

 Unit testing with stubs
160

161Implementing the Booking repository
In chapters 6 and 7, we implemented the repository class for the Customer entity. This
time around, we’ll focus on the Booking entity. After reading this chapter, I hope you
are familiar with the following:

 The Liskov substitution principle
 Separation of concerns and coupling
 How to use generics
 How to write watertight input-validation code
 Using optional parameters

And, of course, much more.

8.1 Implementing the Booking repository
So far in our quest to refactor and implement a new version of the FlyingDutchman-
Airlines codebase, we have set up Entity Framework Core and implemented a data-
base access layer (chapter 5) as well as a Customer repository class (chapters 6 and 7).
In this section, we’ll start writing the BookingRepository class, shown in figure 8.2.
Revisiting the Booking model, we see we have three fields: BookingID (the primary
key), FlightNumber, and CustomerID (the foreign key to Customer.CustomerID). The
integer is nullable because there may not be a foreign key. Of course, a booking with-
out a customer is an oddity, so this should not happen.

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Reflection and mocks: 10

Part 5: The service layer

+ Runtime type checking revisited

and error handling: 11

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Introducing C# and .NET: 1

+ .NET and how it compiles: 2

Part 1: Using C# and .NET + How bad is this code?: 3

+ Manage your unmanaged

resources!: 4

Part 2: The existing codebase

+ Setting up a project and database

using Entity Framework Core: 5

Part 3: The database access layer

Figure 8.1 In this chapter, we’ll implement the BookingRepository class. In chapters 6 and 7,
we implemented the CustomerRepository class. That just leaves the AirportRepository and
FlightRepository classes for the repository section of our codebase. We’ll implement those in the
next chapter.

162 CHAPTER 8 Stubbing, generics, and coupling
We only have one endpoint dealing with Booking, POST /Booking, which creates a new
booking in the database. Because we are doing only one thing, we need only one pub-
lic method in our new BookingRepository: CreateBooking. But first things first—we
should create the BookingRepository class in the RepositoryLayer folder and the
respective test class in the FlyingDutchmanAirlines_Tests project (along with the
skeleton for the success test case), as shown in the next code sample. At the risk of
repeating myself, the plan is to create one repository per database entity (Customer,
Booking, Airport, and Flight). A repository class contains small methods that inter-
act with the database through the database access layer. A service layer class calls those
repositories, gathering information to present back to a controller class. We discussed
the repository/service pattern in section 5.2.4.

namespace FlyingDutchmanAirlines.RepositoryLayer {
 public class BookingRepository {
 private readonly FlyingDutchmanAirlinesContext _context;

 public BookingRepository(FlyingDutchmanAirlinesContext _context) {
 this._context = _context;
 }
 }
}

As in the previous chapters, we’ll use test-driven development to ensure our code
functions the way we want it to and to prevent future regressions when extending the
code. In section 6.1, I introduced test-driven development (light) as a technique to
increase the likelihood of our code being correct and testable. In test-driven develop-
ment, we create unit tests before we write logic implementations. Because we build
up both the tests and the actual logic at the same time, we keep verifying the code
against our expectations during development, saving us the hassle of having to fix
bugs that come up if we were to write unit tests after implementing all the code, as
shown in the next listing.

Figure 8.2 The Booking class and Booking table. Because the Booking class is reverse-engineered from
the database schema, the isomorphic relationship between code and database is strong.

163Implementing the Booking repository

namespace FlyingDutchmanAirlines_Tests.RepositoryLayer {
 [TestClass]
 public class BookingRepositoryTests {
 private FlyingDutchmanAirlinesContext _context;
 private BookingRepository _repository;

 [TestInitialize]
 public void TestInitialize() {
 DbContextOptions<FlyingDutchmanAirlinesContext>
 ➥ dbContextOptions =
 ➥ new DbContextOptionsBuilder<FlyingDutchmanAirlinesContext>()
 ➥ .UseInMemoryDatabase("FlyingDutchman").Options;
 _context = new FlyingDutchmanAirlinesContext(dbContextOptions);

 _repository = new BookingRepository(_context);
 Assert.IsNotNull(_repository);
 }

 [TestMethod]
 public void CreateBooking_Success() { }
 }
}

Before we move on, let’s revisit how the old code implemented the Booking-related
code and the improvements we identified. The old code crammed all the code related
to every entity into one class: FlightController. When you have implementation
details inside of a controller, especially those that deal with a different entity than the
controller does, you tightly couple the implementation details of the database to the
controller. Ideally, we would have some abstraction layers (such as services, reposito-
ries, and database access layers) between the controller and the database. Let’s imag-
ine that, after developing the codebase, you want to change the database vendor from
Microsoft Azure to Amazon AWS. If you tightly couple your controllers to the data-
base, you have to change every controller you have when you switch vendors. If you
abstracted the database logic by introducing a repository/service pattern with a data-
base access layer, loosening the coupling between database and controller, you would
have to make changes only in the database access layer. For us, within the context of a
BookingRepository, we want to extract out the code that actually inserts a new Book-
ing object into the database as follows:

cmd = new SqlCommand("INSERT INTO Booking (FlightNumber,

➥ CustomerID) VALUES (" + flight.FlightNumber + ", ‘" +

➥ customer.CustomerID + "’) ", connection);
cmd.ExecuteNonQuery();
cmd.Dispose();

The rest of the original code also manually grabs some of the data tied to foreign
key constraints. We’ll look at how to deal with foreign keys in a service layer class in
section 11.3.

Listing 8.1 A skeleton BookingRepositoryTests class

The TestInitialize
method runs before
every test.

Creates an
in-memory
SQL
database

Creates an instance
of BookingRepository,
using DI to pass in the
database context

Asserts that the
BookingRepository
instance was
created
successfully

164 CHAPTER 8 Stubbing, generics, and coupling
8.2 Input validation, separation of concerns, and coupling
In this section, we’ll mimic the approach we took when adding a customer to the data-
base in chapter 6 and apply it to bookings as follows:

 Validate the inputs.
 Create a new instance of type Booking.
 Add the new instance to Entity Framework Core’s DbSet<Booking> by calling it

through the database context.

The CreateBooking method has two inputs: a customerID and a flightNumber. They
are both of type integer and have the following identical validation rules:

 customerID and flightNumber must be positive integers.
 customerID and flightNumber need to be valid when matched against existing

flights and customers.

The proposed validation rules mean we need to check the DbSet collections for Cus-
tomer and Flight to verify that they contain entries matching the input information.
The issue is, however, that we do not want to deal with DbSets of entities other than
Booking in the BookingRepository due to separation of concerns. Additionally, we do
not want to deal with the foreign key constraints on the repository level but rather on
the service level. For a repository/service architecture, a good rule of thumb is this:
keep your repositories dumb and your services smart. This means that your repository
methods should be methods with a stringent adherence to the single-responsibility
principle (discussed in the introduction of chapter 6), whereas this adherence is a bit
laxer on the service side.

 Services can call whatever repository methods they need to fulfill their tasks. A
repository method should not have to call a different repository to do their job. If you
find yourself cross-calling between repositories, take a step back and reread section 5.2.4
on the repository/service pattern again. In the BookingService in chapters 10 and
11, we’ll look at how to write a service that manages these concerns, but for now, it
suffices to understand why we do not want to call DbSet<Customer> and DbSet<Flight>
in BookingRepository. In the end, it all boils down to separation of concerns and
coupling.

Separation of concerns and coupling
“Separation of concerns” is a term coined by Edsger Dijkstra in his paper “On the
Role of Scientific Thought” (EWD 447, Springer-Verlag, 1982). At its most basic level,
it means that a “concern” should do only one concrete thing. But what is a “concern”?
A concern is a mental model of a programming module, which can take the form of
things like methods or a class. When we take separation of concerns to the class
level and apply it to BookingRepository, we might say that the BookingRepository
should concern itself only with operations on the Booking database table. This means
that retrieving information from the Customer table, for example, is not within the
scope of the concern. If we apply it to a method, we could say that a method needs

165Input validation, separation of concerns, and coupling
How much of CustomerRepository and FlightRepository must be known to under-
stand BookingRepository? How strong is the interconnection between the reposito-
ries? If we handle the coupling at the service level, the repositories should have very
loose coupling and a high degree of separation of concerns.

 Going back to input validation: although we do not have to check whether the for-
eign key constraints between the customer and flight database tables are valid, we do
implicitly check them when we save the changes to the database. The database balks if
a change is requested that violates a key constraint.

 Remember when we discussed having methods that can take any input, even faulty
ones, and still return an appropriate result? If we get a bad customerID or flight-
Number input, the call to update the database will throw an exception and we’ll catch
it. By catching the exception, we can control the data and execution flow and throw a
custom exception of our own to tell the user something went wrong, as shown in the
next listing. Validating our inputs becomes easy: check whether the input is a positive
integer, and we are set.

to do one singular thing and nothing else. This is a very important clean code tenet
because it helps us to develop code that is readable and maintainable.

We discussed the concept of writing code that reads like a narrative using small
methods before. This is that same concept. In his monumental work Clean Code: A
Handbook of Agile Software Craftsmanship (Prentice-Hall, 2008), Robert C. Martin
touches on this subject many times. One particular occasion is the section appropri-
ately titled “Do One Thing.” He tells us that “Functions should do one thing. They
should do it well. They should do it only.” If we hold this message in the back of our
heads when we write code, we are one step ahead of the curve when it comes to writ-
ing amazing code. We discussed the single-responsibility principle, which concerns
itself with writing clean methods that do only one thing, in chapter 6.

What is coupling, and how does it relate to the idea of separation of concerns? Cou-
pling is a different angle with which to approach the problem of separation of con-
cerns. Coupling is a metric that quantifies how integrated one class is with another.
If classes are highly coupled, it means that they depend highly on each other. We
call this tight coupling. We do not want tight coupling. Tight coupling often results in
methods calling a lot of other methods at the wrong architectural level: think about
the BookingRepository calling the FlightRepository to retrieve information
about a flight.

Loose coupling is when two methods (or systems) are not very dependent on each
other and can execute independently (and, therefore, be changed with minimal side
effects). Larry Constantine coined the term coupling, which first appeared in the book
Structured Design: Fundamentals of a Discipline of Computer Program and Systems
Design (Prentice-Hall, 1979) by Constantine and Edward Yourdon. When trying to
determine the amount of coupling between two things, one can ask the question that
Constantine and Yourdon pose in their book: “How much of one module must be
known to understand another module?”

166 CHAPTER 8 Stubbing, generics, and coupling
namespace FlyingDutchmanAirlines.RepositoryLayer {
 public class BookingRepository {
 public async Task CreateBooking(int customerID, int flightNumber) {
 if (customerID < 0 || flightNumber < 0) {
 throw new ArgumentException("Invalid arguments provided");
 }
 }
 }
}

C# provides an exception that we can use when arguments are invalid in a method:
ArgumentException. We want to throw an exception of type ArgumentException when
customerID or flightNumber is not a positive integer. To throw an ArgumentException,
we pass in an error message (of type string) to the ArgumentException and use the
throw new pattern to instantiate and throw a new instance of ArgumentException.

Within C#, certain types have classes that wrap the type and extend on them
by providing additional functionality. An example of this is the String class
and the string type. Note the casing on both the class and the type. It is C#
convention that a class starts with an uppercase character, whereas a type
often starts with a lowercase one. For most types and their wrapping classes,
you can often use them interchangeably (until you need to use a method
exposed by the class—for String, this could be IsNullOrEmpty). Do note that
String and string typically resolve to the same underlying Intermediate Lan-
guage code.

After the input-validation code throws the ArgumentException, a developer may see
the message we passed in and wonder what went wrong. Developers would love to see
what the actual arguments are, but we don’t want to return the input arguments in an
error message and expose those outside of the method (or potentially to the end
user). Can you imagine using an application and getting back an error message con-
taining the actual input argument values? Surely any UI engineer or UX designer
would take issue with that. Of course, there are always exceptions to this (perhaps you
also control the only client this service ever uses). We would do well to at least log
these arguments to the console so that a developer stands a better chance at recover-
ing these values. Some companies use technologies such as Splunk to automatically
capture logs written to the console and store them in a searchable database. To write
to the console, we use the Console.WriteLine method, as shown in the next listing. If
you don’t want to write to the console, ASP.NET has dedicated logging functionality
you can use (see the MSDN ASP.NET documentation for more information). You
could also use a third-party logging library such as Log4net or NLog. I prefer to use
the simplest type of logging that gets the job done. In this case, logging to the console
is good enough.

Listing 8.2 BookingRepository.CreateBooking method with basic input-validation logic

CreateBooking requires a
customerID and flightNumber.

Validates the input arguments: customerID and
flightNumber need to be positive integers.

If the input arguments are invalid,
throws an ArgumentException

167Input validation, separation of concerns, and coupling
public async Task CreateBooking(int customerID, int flightNumber) {
 if (customerID < 0 || flightNumber < 0) {
 Console.WriteLine($"Argument Exception in CreateBooking! CustomerID

➥ = {customerID}, flightNumber = {flightNumber}");
 throw new ArgumentException("Invalid arguments provided");
 }
}

The string we write to the console is an interpolated string. With string interpolation,
we can interpolate (or inline) expressions and values in a string without having to
explicitly concatenate multiple strings together (string concatenation still happens
under the hood). We create interpolated strings by prefixing the string itself with the
dollar character: $. Then, we insert values and expressions (even method calls)
directly into the string by wrapping them in curly braces. The string {customerID}
interpolates the value of customerID, as shown in figure 8.3.

The compiler converts an interpolated string to a C# statement that concatenates a
bunch of strings. The syntactical sugar provided by string interpolation is an excellent
and idiomatic way of crafting readable strings. Because strings are immutable, using
string interpolation does not remove the performance drawbacks of using string con-
catenation. String interpolation can actually perform worse than normal string concate-
nation because of the additional overhead involved, with strings being immutable. We
also need to unit-test our input-validation logic. The unit test should make assertions
based on invalid input arguments and verify that the input-validation logic throws an
error of type ArgumentException when the input arguments are invalid (negative
integers), as shown in the next listing.

Listing 8.3 BookingRepository.CreateBooking method with string interpolation

Logs the invalid argument values to the
console by using string interpolation

“Argument Exception in CreateBooking!

CustomerID = 92, flightNumber = 361”

92 361

Figure 8.3 String interpolation allows us to inline variable values into
strings. When using string interpolation, prefix the string with a dollar
character ($) and wrap the variables you want to use in curly braces
({[variable]}).

168 CHAPTER 8 Stubbing, generics, and coupling
[TestMethod]
[DataRow(-1, 0)]
[DataRow(0, -1)]
[DataRow(-1, -1)]
[ExpectedException(typeof(ArgumentException))]
public async Task CreateBooking_Failure_InvalidInputs(int customerID,

➥ int flightNumber) {
 await _repository.CreateBooking(customerID, flightNumber);
}

The CreateBooking_Failure_InvalidInputs unit test combines a couple of different
techniques we used before, described next:

 Using the [DataRow] method attribute, we provide the unit test with test data
without having to write separate unit tests for all three test cases.

 Using the [ExpectedException] method attribute, we tell the MSTest runner
that the method should throw an exception of type ArgumentException during
test execution.

 Assigning the _repository field to a new instance of BookingRepository in the
TestInitialize method.

When the CreateBooking_Failure_InvalidInputs unit test runs, and we use the
[DataRow] method attribute, we check for three separate test cases, as shown in table 8.1.

All test cases in table 8.1 are sets of input arguments to CreateBooking that fail the
input-validation logic, causing the CreateBooking method to throw an Argument-
Exception.

Exercises
EXERCISE 8.1
Fill in the blank: Within the context of separation of concerns, a concern refers to
__________.

a a worrisome thought
b a business
c a logical module

Listing 8.4 Using the DataRow method attribute

Table 8.1 Three different test cases run in BookingRepositoryTests.cs
CreateBooking_Failure_InvalidInputs

customerID flightNumber

–1 0

 0 –1

–1 –1

The [DataRow] method attribute runs
tests with the specified test data.

This test expects an
exception of type
ArgumentException
to be thrown.

Calls the CreateBooking method and awaits it

169Using object initializers
EXERCISE 8.2
True or false? If two classes heavily depend on each other, we speak of loose coupling.

EXERCISE 8.3
Fill in the blanks: In a repository/service architecture, actual database queries should
be made on the __________ level, whereas calls to the methods doing the database
queries should be made on the __________ level.

a repository; service
b service; repository
c service; service
d repository; repository

EXERCISE 8.4
What would this print to the console if fruit is “kiwi”? Console.WriteLine($"I enjoy
eating {fruit} ");

a Nothing; it results in a compiler error.
b “I enjoy eating {fruit}”
c “I enjoy eating kiwi”
d “$I enjoy eating kiwi”

EXERCISE 8.5
True or false? A string is mutable. This means it is a reference type where every change
made to a string overwrites the same location in memory.

8.3 Using object initializers
In the previous section, we validated the input arguments to CreateBooking and
learned about separation of concerns, coupling, and string interpolation. In this sec-
tion, we’ll take the method a step further by adding the logic to add a new booking to
the database. To add a booking to the database, we need to perform the following
four major steps:

1 Create a new instance of type Booking in the CreateBooking method.
2 Populate the new instance of Booking with the customerID and flightNumber

arguments.
3 Add the new instance of Booking to Entity Framework Core’s internal DbSet

<Booking>.
4 Save the changes to the database asynchronously.

To start, we can easily take care of the first two steps: create a new instance of type
Booking in the CreateBooking method, and populate it with the customerID and
flightNumber arguments, as shown in the following listing.

170 CHAPTER 8 Stubbing, generics, and coupling

V
t

ar
public async Task CreateBooking(int customerID, int flightNumber) {
 if (customerID < 0 || flightNumber < 0) {
 Console.WriteLine($"Argument Exception in CreateBooking! CustomerID

➥ = {customerID}, flightNumber = {flightNumber}");
 throw new ArgumentException("Invalid arguments provided");
 }

 Booking newBooking = new Booking();
 newBooking.CustomerId = customerID;
 newBooking.FlightNumber = flightNumber;
}

There we go, just as ordered: one instance of type Booking. We also populated the
CustomerId and FlightNumber properties with our validated input arguments. Some-
thing irks me about the code in listing 8.5, though: it’s possible for the population of
fields on a new instance to become very cumbersome if we have to keep typing
[instance].[property] = [value]. Remember our discussion of object initializers in
section 6.2.5? This minor change in syntax (another case of syntactic sugar), shown
here, can make a sizeable difference when initializing an object with large amounts of
properties you need to set:

Booking newBooking = new Booking {
 CustomerId = customerID,
 FlightNumber = flightNumber
};

It really is a “squashing” of the regular object property assignment code into one
block, as shown in figure 8.4. Object initializers also work when dealing with collec-
tions such as lists (they are called collection initializers when using them on collections;
of course, you could nest an object initializer inside a collection initializer).

 All that is left for us to do is attempt to add newBooking to the database and save
the changes to the database asynchronously. We need to make sure that we have no issues
in adding the Booking instance to the database, so we wrap the logic to save the changes
in a try-catch statement, throwing a custom exception (CouldNotAddBookingTo-
DatabaseException, which inherits from CouldNotAddEntityToDatabaseException,
which inherits from Exception) when a database error occurs. When this exception is
thrown (as with any exception in the repository layer), we catch the exception again
back in the service layer. I leave it to you to create the custom exceptions.

 To save the new booking to the database using SaveChangesAsync, we need to
await the SaveChangesAsync call. Awaiting the CreateBooking method means it has
to execute asynchronously. To accomplish this, we change the type of the method to
be Task and add the async keyword to the method signature, as shown in the follow-
ing listing.

Listing 8.5 BookingRepository.CreateBooking: create and populate a Booking
instance

alidates
he input
guments

Creates a new instance
of type Booking

Assigns the customerID input
argument to the appropriate
property in newBookingAssigns the flightNumber input argument to

the appropriate property in newBooking

171Using object initializers

V
t

ar

Saves
to the
asynch
public async Task CreateBooking(int customerID, int flightNumber) {
 if (customerID < 0 || flightNumber < 0) {
 Console.WriteLine($"Argument Exception in CreateBooking! CustomerID

➥ = {customerID}, flightNumber = {flightNumber}");
 throw new ArgumentException("invalid arguments provided");
 }

 Booking newBooking = new Booking {
 CustomerId = customerID,
 FlightNumber = flightNumber
 };

 try {
 _context.Booking.Add(newBooking);
 await _context.SaveChangesAsync();
 } catch (Exception exception) {
 Console.WriteLine($"Exception during database query:

➥ {exception.Message}");
 throw new CouldNotAddBookingToDatabaseException();
 }
}

Instead of using hardcoded SQL statements and messing with disposing of objects
and using statements, we used Entity Framework Core and simple code to achieve the
same result.

Listing 8.6 BookingRepository.cs CreateBooking complete

List<Animal> animals = new List<Animal>();
animals.Add(new MajesticGiraffe());
animals.Add(new AngryPenguin());
animals.Add(new DangerousCorgi());

ZooKeeper john = new ZooKeeper();
john.Subordinates = animals;
john.isQualified = false;

ZooKeeper john = new ZooKeeper {

Subordinates = new List<Animal> {

new MajesticGiraffe(),
new AngryPenguin(),
new DangerousCorgi()

},
isQualified = false

};

Old school

Object initializer

Figure 8.4 Contrasting approaches to object initialization: with and without using an object initializer.
John is an unqualified zookeeper who looks after a majestic giraffe, an angry penguin, and a dangerous
corgi.

alidates
he input
guments

Creates and initializes a new
instance of Booking using an
object initializer

Adds the new booking to EF Core’s
internal DbSet<Booking> changes

database
ronously Catches any exception that was

thrown in the try-block

Writes developer
information to
the console

Throws an exception of type
CouldNotAddBookingToDatabaseException

172 CHAPTER 8 Stubbing, generics, and coupling
 So, what is next? I’m sure you know by now: we need to fix our success case unit
test. That should be easy enough, though. All we need to do is send in valid input
arguments. But what if we have a database error? We can have valid values for custo-
merID and flightNumber and still error out because of a database exception.

8.4 Unit testing with stubs
In this section, I introduce you to the wonderful world of stubbing. Stubbing, within
the context of unit testing, is the act of executing a stub class (a class that acts as a cer-
tain class but overrides implementations) instead of the original class. We left the pre-
vious section as we were about to test for the possibility of the CreateBooking method
throwing a CouldNotAddBookingToDatabase exception because of a database error.
To test for a thrown Exception, we need to set aside the success test case for a bit lon-
ger and focus on stubbing and a new test method: CreateBooking_Failure_Database-
Error. I prefer using snake case for test unit tests, as shown in the next code sample,
but opinions differ on this:

[TestMethod]
public async Task CreateBooking_Failure_DatabaseError() { }

A stub is a piece of code (potentially a whole class) that takes the place of a normal
class at runtime. A stub redirects to itself method calls made to the original class and
executes overridden versions of those methods. Method redirection and overriding
are especially useful in unit testing because they allow us to mimic error conditions by
redirecting method calls and throwing exceptions when we want them thrown.

 Looking at the CreateBooking method, we want to verify that we can handle an
error coming out of the database or the internals of Entity Framework Core correctly.
But how do we handle a database exception? The easiest way is to expand on our redi-
rection of the dependency injection FlyingDutchmanAirlinesContext. We still want to
use an in-memory database, but we also want to make sure we throw an exception
when a certain method is called. What if we create a class (a stub) that inherits from
FlyingDutchmanAirlinesContext and then inject that into CreateBooking, as shown
in figure 8.5?

 Let’s create a new folder in the FlyingDutchmanAirlines_Tests project called Stubs
and a new class called FlyingDutchmanAirlinesContext_Stub, as shown in the next
listing. This class inherits from FlyingDutchmanAirlinesContext.

namespace FlyingDutchmanAirlines_Tests.Stubs {
 class FlyingDutchmanAirlinesContext_Stub :

➥ FlyingDutchmanAirlinesContext { }
}

Going back to BookingRepositoryTests, we swap in the stub for the context and see
if our tests still pass, as shown in the following code sample.

Listing 8.7 A skeleton stub for FlyingDutchmanAirlinesContext

The class inherits from the
original nonstubbed class,
allowing us to use it in its place.

173Unit testing with stubs

g
e
namespace FlyingDutchmanAirlines_Tests.RepositoryLayer {
 [TestClass]
 class BookingRepositoryTests {
 private FlyingDutchmanAirlinesContext _context;
 private BookingRepository _repository;

 [TestInitialize]
 public void TestInitialize() {
 DbContextOptions<FlyingDutchmanAirlinesContext>

➥ dbContextOptions = new

➥ DbContextOptionsBuilder<FlyingDutchmanAirlinesContext>.UseInMemoryDatab

➥ ase("FlyingDutchman").Options;
 _context = new

➥ FlyingDutchmanAirlinesContext_Stub(dbContextOptions);

 _repository = new BookingRepository(_context);
 Assert.IsNotNull(_repository);
 }
 }
}

The code in listing 8.8 does not compile. Because we did not define an explicit con-
structor for the stub, the CLR creates an implicit default constructor when we create a
new instance of FlyingDutchmanAirlines_Stub. But FlyingDutchmanAirlinesContext
(the base/nonstubbed class) has a second constructor that takes in the DbContext-
Options<FlyingDutchmanAirlinesContext> type that we need if we want to use an in-
memory database. Because the stub inherits from the nonstub, we should be able to

Listing 8.8 BookingRepositoryTests initializing a stub instead of the original class

BookingRepository(FlyingDutchmanAirlinesContext)

CreateBooking
_context.SaveChangesAsync()

override SaveChangesAsync()
base.SaveChangesAsync()
switch {...}

FlyingDutchmanAirlinesContext_Stub

FlyingDutchmanAirlinesContext

SaveChangesAsync()
Save changes to database

Figure 8.5 Redirecting SaveChangesAsync through FlyingDutchmanAirlinesContext_Stub.
The repository calls the SaveChangesAsync method on the dependency injection FlyingDutchman-
AirlinesContext_Stub. The stub calls the base class and determines what value to return in a
switch statement.

The backing
field’s type is the
nonstubbed class.

The DbContextBuilder
pattern uses the
nonstubbed class
for a generic type.

We can assign the backin
field a new instance of th
stub because of
polymorphism.

The repository accepts
our stub in place of

the nonstubbed class.

174 CHAPTER 8 Stubbing, generics, and coupling
call FlyingDutchmanAirlinesContext_Stub’s parent’s constructor, as depicted in fig-
ure 8.6. The parent is FlyingDutchmanAirlinesContext, after all.

To make the code compile and be able to use the stub in place of the nonstubbed
class, we need to create a constructor that can deliver an instance of the stub with all
the hooks to the base class (the nonstub) intact. We have overridden no methods in
the stub yet, so every call to the stub should automatically go to the nonstub. To redi-
rect the method call to our stubbed logic, we need a constructor that calls the base
class’s constructor. Adding a constructor that calls the base class’s constructor guaran-
tees us an instance of the base class that we can use in our redirection story.

 To call a base class’s constructor, add : base ([arguments]) to a regular construc-
tor, replacing [arguments] with whatever arguments you want to pass into the base’s
constructor, as shown in the next code snippet. This is similar to using the super key-
word in Java or Python. Note that the CLR always calls a base’s constructor before our
own (a derived) constructor. So, if you want to do processing in your own constructor
that has a base constructor call, be aware of that.

namespace FlyingDutchmanAirlines_Tests.Stubs {
 class FlyingDutchmanAirlinesContext_Stub :

➥ FlyingDutchmanAirlinesContext {
 public FlyingDutchmanAirlinesContext_Stub

➥ (DbContextOptions<FlyingDutchmanAirlinesContext> options)

➥ : base(options) { }
 }
}

Explicitly defining this constructor forces the code to always pass in a type of DbContext-
Options<FlyingDutchmanAirlinesContext> to instantiate a new FlyingDutchman-
Airlines_Stub. Now we can compile the code and run all the tests. Everything passes
because, besides a redirect to the stub, nothing has changed. All method calls to the
stub currently still go to the nonstubbed version of FlyingDutchmanAirlinesContext
because of inheritance and the lack of overridden methods in the stub. We can use
FlyingDutchmanAirlinesContext_Stub as if it were an instance of FlyingDutchman-
AirlinesContext.

Figure 8.6 When a derived class’s constructor includes a call to the base
class’s constructor, the base class’s constructor always executes first. Here, the
constructor of RockAndRollHallOfFame executes before the constructor of
RosettaTharpe.

175Unit testing with stubs
Before we implement any logic, according to the TDD gods, we need to add an asser-
tion to our unit test and make it fail. (If we remember the stoplight phases of TDD, we
are now in the green phase, going to red.) The code path we want to test (but have
not yet implemented) results in a thrown exception of type CouldNotAddBookingTo-
DatabaseException. In the try-catch block surrounding the code where we add the
new booking to the database, we call and wait on the SaveChangesAsync method.
What if we could make that method throw an exception based on a certain condition,
such as if we set the customerID on the new Booking object to something else besides
1? We can achieve that goal by overriding the SaveChangesAsync method in our stub.
The method signature for the overridden version of SaveChangesAsync in our stub is
a bit gnarly (when overriding a method, one has to keep the same method signature),
but we can get through it step by step, as shown here:

public async override Task<int> SaveChangesAsync(CancellationToken

➥ cancellationToken = default) {
 return await base.SaveChangesAsync(cancellationToken);
}

Besides override (which you should be familiar with), we see the following two unfa-
miliar concepts wrapped in overridden method:

 Generics (which we have seen in action before)
 Optional parameters

Settle in, because those are two exciting topics.

The Liskov substitution principle (polymorphism)
This type of polymorphism is most often attributed to Barbara Liskov, a computer sci-
entist (and winner of both the John von Neumann Medal and the Turing Award) who,
together with Jeannette Wing, published a paper that describes the Liskov substitu-
tion principle:

“Let ø(x) be a property provable about objects x of type T. Then ø(y) should be
true for objects y of type S where s is a subtype of T.”a

You may have to read that twice to get the gist of it. What Liskov and Wing tell us is
that when using the Liskov substitution principle flavor of polymorphism, if you have
a type (Kit-Kat) that is a subtype of a different type (Candy), the type S (Kit-Kat)
should be able to do everything that T (Candy) can do. One can apply the duck-typing
test to such an object—“If it looks like a duck, swims like a duck, and quacks like a
duck, then it’s probably a duck”—to determine whether we can use type S as if it
were type T. The Liskov substitution principle is often considered one of the major
tenets of clean code and helps us write code that is reusable with an appropriate
level of abstraction.

a Barbara H. Liskov and Jeannette M. Wing’s A Behavioral Notion of Subtyping (ACM Transactions on
Programming Languages and Systems (TOPLAS), 1994).

176 CHAPTER 8 Stubbing, generics, and coupling
8.5 Programming with generics
In this section, I lift the veil on a topic we have seen quite a few times already in the
book but have never explored beyond its funky syntax: generics. We have worked with
generics right from the start. Anytime you see this pattern, you are working with generics:
[type]<[differentType]>. Examples of generics syntax in action are List<string>,
DbSet<Customer>, and EntityEntry<TEntity>. If you are familiar with Java generics
or C++ templates, this section should feel familiar to you.

 Generics is a concept that allows us to restrict classes, methods, and collections in
terms of what types they can deal with. For example, a collection often has a generic
version and a nongeneric version: A List is nongeneric, whereas a List of Tigers
(List<Tiger>) is generic. The List<Tiger> collection works with any class that can be
cast to Tiger (the Tiger class itself or a derived class). A HashSet is nongeneric,
whereas a HashSet of Baklava (HashSet<Baklava>) is generic. An example of a
method using a generic argument in the “wild” is the Heapsort method, used by the
Sort method in Systems.Collections.Generic.ArraySortHelper class to perform
the heap sort algorithm1 on the input, as shown here:

private static void Heapsort(T[] keys, int lo, int hi,

➥ IComparer<T> comparer) {
 int n = hi - lo + 1;
 for (int i = n / 2; i >= 1; i = i - 1) {
 DownHeap(keys, i, n, lo, comparer);
 }

 for (int i = n; i > 1; i = i - 1) {
 Swap(keys, lo, lo + i - 1);
 DownHeap(keys, 1, i - 1, lo, comparer);
 }
}

The Heapsort method accepts a generic argument of T[], representing an array of
keys to be sorted, and a generic argument of IComparer<T>, representing a compari-
son object.

 Even though you typically encounter generics in collections, methods and classes
are not immune to using them, either. So, what does a generic type look like? We
know how to use them, but not yet how to make them. A generic class or method uses
the “generic type” of <T>. Any letter is fine, however, as long as you are consistent
within the scope of the class or method signature. You may want to restrict the types
that can use your method or class. Constricting the use of generics to a specific type or
subset of types is done by using generic constraints.

1 For details on the heapsort algorithm, see A. K. Dewdney’s New Turing Omnibus, chapter 40, “Heaps and
Merges” (W.H. Freeman and Company, 1993) or Robert Sedgewick and Kevin Wayne’s Algorithms, chapter 2.7,
“Heapsort” (4th edition; Pearson Education, Inc., 2011).

177Providing default arguments by using optional parameters
 To create a generic constraint, postfix a clause to the respective method or class sig-
nature saying “where T : [type].” For example, if we wanted to create a generic class
that would accept only instances of type Attribute for T, we would do the following:

public class MyGenericClass where T : Attribute

Or, when we want to create a generic method that accepts only Lists of 16-bit inte-
gers (signified as Int16 or short) we can say

public void MyGenericMethod<T>(T shorts) where T : List<short>

Methods can also have input parameters of a generic type (be it T, X, Y, or whatever let-
ter you fancy). Finally, we can have multiple generic types in one class or method and
multiple generic constraints, as shown next:

public void MyGenericMethod<T, Y>(T key, Y encryption) where T :

➥ List<Int16> where Y : RSA

Here, MyGenericMethod has two generic types: T, which maps to List<Int16>, and Y,
which is constrained to be of type RSA. The RSA type is the base class for all Rivest–
Shamir–Adleman (RSA) encryption functionality in .NET. Y being constrained to RSA
does not mean that classes using polymorphism to act as an RSA type are forbidden;
you can use those without a problem. Constraints are rarely used, but it is good to be
aware of them. In fact, to find a reasonably good example of constraints used in .NET
itself, we have to dig quite deep. We can find it, however, in the WindowsIdentity class
through the GetTokenInformation method, shown here:

private T GetTokenInformation<T>(TokenInformationClass

➥ tokenInformationClass) where T : struct {
 using (SafeLocalAllocHandle information =

➥ GetTokenInformation(m_safeTokenHandle, tokenInformationClass)) {
 return information.Read<T>(0);
 }
}

The GetTokenInformation method returns the requested field (determined by the
passed-in TokenInformationClass instance) from the currently held Windows token.
The type of the requested field can be anything, as long as it is a struct. This is signi-
fied by the constraint on the generic T.

8.6 Providing default arguments by using optional
parameters
In the previous section, we started our dissection of the new concepts in the Save-
ChangesAsync method signature by looking at generics. In this section, we’ll finish
that expedition and consider optional parameters.

 Optional parameters are parameters in a method signature that have a default
value assigned to them (inside the signature). The CLR uses the default assigned

178 CHAPTER 8 Stubbing, generics, and coupling
value as the argument value if you do not pass in an appropriate argument. Consider
the following method signature:

public void BuildHouse(int width, int height, bool isPaid = true)

The isPaid parameter is assigned a value directly in the method signature. This is
what we call an optional parameter.

The CLR assigns an optional parameter to the default value specified in the method
signature if we pass in no matching argument. The parameter is truly optional but is
still available to the method with the set value. We can call the BuildHouse method in
two ways, as shown in the next listing.

BuildHouse(10, 20);
BuildHouse(10, 20, false);

In the first example, we use the optional parameter’s (isPaid) default assigned value
of true. In the second one, we assign a value of false. In both cases, the method’s
logic has access to an initialized version of isPaid.

METHOD OVERLOADING WITH OPTIONAL PARAMETERS If you overload a method
with only the addition of an optional parameter and do provide not an argu-
ment for the optional parameter, the CLR ignores the overload with the
optional parameter and calls the original method. For example, if we have
two methods called BuildHouse(int width, int height) and Build-
House(int width, int height, bool isPaid = true) and we do not pass in an
argument for isPaid, the CLR calls the BuildHouse(int width, int height)
version.

A word of caution, however: we can never follow optional parameters with non-
optional parameters. The compiler requires optional parameters to be the last in the
line of arguments. The compiler requiring optional parameters to come last in the

Listing 8.9 Calling a method on optional parameters

Optional parameter
Optional parameters always come
last in the list of method parameters.
They are assigned a “fallback” value.
Here, isPaid is an optional parameter
of type with a default value of .bool true

The optional parameter
isPaid has the value
of true.The optional parameter isPaid

has the value of false.

179Conditionals, Func, switches, and switch expressions
parameter list means that the following change of the BuildHouse method signature
does not compile:

public void BuildHouse(int width, bool isPaid = true, int height)

Under the hood, an optional argument functions as a regular argument but has the
additional [opt] keyword added to the generated Intermediate Language code. Because
the argument of type CancellationToken is optional in the SaveChangesAsync
method, it is up to us whether we want to pass it in. Keep in mind that we need to add
it to our method signature because we want to override the base’s SaveChangesAsync
method, whose signature contains the optional CancellationToken parameter.

Our stub’s overridden SaveChangesAsync method currently has the following one
statement inside it:

return base.SaveChangesAsync(cancellationToken);

The overridden SaveChangesAsync method returns a call to the base (nonstub) class’s
version of AddAsync. Returning a call to the base class’s method does not work for us.
In effect, we overrode the SaveChangesAsync method only to have it act like a non-
overridden version of it. We need to replace the call to the nonstub base version of the
SaveChangesAsync method with our implementation. We’ll do this in the next section.

8.7 Conditionals, Func, switches, and switch expressions
Let’s remember why we are going through this ordeal in the first place: we want to
unit-test the database exception code path and make sure the code handles the excep-
tion gracefully. In this section, we’ll take a step forward and implement the logic inside
the stubbed SaveChangesAsync method. We’ll discuss conditionals, the Func type,
switches, and switch expressions.

 To use the stubbed SaveChangesAsync method, we need some way to differentiate
between success and failure paths. We definitely do not want to throw an exception
every single time the CreateBooking method calls SaveChangesAsync. Because the

The CancellationToken class
You can cancel database queries in progress by using an instance of Cancellation-
Token and calling the CancellationToken.Cancel() method. Cancellation tokens
are also used to notify other parts of your code of a canceled request. We don’t use
these in our code because our requests are simple insertions and retrievals of single
records with limited foreign key constraints.

If you were to kick off a stored procedure that could take minutes to execute, you may
want to cancel it under some edge condition. In that case, use a cancellation token.
If we do not pass in an instance of CancellationToken, the CLR assigns a new
instance to the argument on its own.

180 CHAPTER 8 Stubbing, generics, and coupling
value of customerID is within our control, why don’t we base our stub logic around
that? If we throw an exception when we set the entity.CustomerID to any positive
integer but “1” (an arbitrary number—we just need a number to control the code flow
with), we can test the database exception code branch without breaking existing tests.

 We can use a variety of ways to check whether entity.CustomerID is a positive
integer of value 1. We could write a simple conditional that checks whether the
CustomerID is 1 and return the base class’s AddAsync result, or else throw an excep-
tion, as shown in the next listing. We do, however, need to grab the Booking object we
just added to the internal DbSet<Booking> through the CreateBooking method from
the context because the Booking object is not passed into the SaveChangesAsync
method.

public async override Task<int> SaveChangesAsync(CancellationToken

➥ cancellationToken = default) {
 if (base.Booking.First().CustomerId != 1) {
 throw new Exception("Database Error!");
 }
 return await base.SaveChangesAsync(cancellationToken);
}

Because there is only one Booking in the base’s Booking DbSet (we added it in Create-
Booking before calling SaveChangesAsync), we can use the First LINQ method to
select the booking.

8.7.1 The ternary conditional operator

To condense the code further, we can also combine the conditional into a simple
return statement paired with the ternary conditional operator (?:), as shown in the
following code listing.

public async override Task<int> SaveChangesAsync(CancellationToken

➥ cancellationToken = default) {
 return base.Booking.First().CustomerId != 1
 ? throw new Exception("Database Error")
 : await base.SaveChangesAsync (cancellationToken);
}

TERNARY CONDITIONAL OPERATOR MNEMONIC If you ever get confused as to
what the order of operations in a ternary conditional operator is, a good mne-
monic is “expression ? true : false.”

Listing 8.10 Implementing a stubbed version of SaveChangesAsync

Listing 8.11 Using a ternary conditional operator to condense a conditional return block

Overrides the nonstub’s
SaveChangesAsync method

Checks if the entity’s
CustomerID is 1 or not

Throws an exception if
the CustomerID is not 1

Calls the base’s SaveChangesAsync
if CustomerID is 1

Is the Booking’s
CustomerID set to 1?

True condition:
throws an
exception

False condition: Calls the
nonstub’s SaveChangesAsync

181Conditionals, Func, switches, and switch expressions

rns

sync

Swi

bra
b
o

Custom

Both using an if statement and the ternary conditional operator approaches would
work fine, but what if we ever want to expand on our conditional branches? Sure, we
could create unlimited else clauses to tack onto the conditional, but that would
become an annoyance when the number of conditional clauses grows larger and larger.

8.7.2 Branching using an array of functions

We could also do something more technical, such as creating an array of Func<Task
<int>> objects that use a lambda delegate and calling them using the value of
CustomerID as the index to the list, then invoking the delegate to execute the appro-
priate logic, as shown in the next code sample.

public async override Task<int> SaveChangesAsync(CancellationToken

➥ cancellationToken = default) {
 Func<Task<int>>[] functions = {
 () => throw new Exception("Database Error!"),
 async () => await base.SaveChangesAsync(cancellationToken)
 };

 return await

➥ functions[(int)base.Booking.First().CustomerId].Invoke();
}

Using a Func<Task<int>>[] is surely a bit excessive and works only for specific index
values. If the functions array has only two elements, and the CustomerID is 2 (remem-
ber, in C# collections are zero-based), we would receive an out-of-range exception
because the requested element’s index is higher than the last element in the collection.

8.7.3 Switch statements and expressions

Instead of using a simple conditional, a conditional with a ternary conditional opera-
tor, or invoking a Task based on an index, I advocate for the use of the trusted old
switch statement, shown next.

public async override Task<int> SaveChangesAsync(CancellationToken

➥ cancellationToken = default) {
 switch(base.Booking.First().CustomerId) {
 case 1:
 return await base.SaveChangesAsync(cancellationToken);

 default:
 throw new Exception("Database Error!");
 }
}

Listing 8.12 Using a Func<Task<int>> and invoking lambda delegates by index

Listing 8.13 Using a regular switch statement to branch code

Creates an array of Func’s of Task of Integer (Func<T<Y>>)

This Task throws
an exception.

This Task retu
the base call’s
SaveChangesA
integer result.

Invokes a Task using Booking.CustomerID as the index to functions

tches
logic

nches
ased
n the
erId

value

If CustomerId is 1,
calls the nonstub
SaveChangesAsync

If no other cases match, executes
the default: throws an exception

182 CHAPTER 8 Stubbing, generics, and coupling
In the switch statement of listing 8.13, we execute the regular, nonoverridden
SaveChangesAsync path for CustomerIds of 1. In a switch statement, if no cases
match, it looks for a default case and executes that. If you do not provide a default
case, and there are no case matches, the switch statement won’t execute any case.
Here, the default case is when CustomerId is anything but 1. Our default case throws
an exception.

 C# 8 introduced a new feature for switch statements called switch expressions. It
allows us to write slightly more concise switch statements by using syntax similar to
lambda expressions, as shown in the following listing.

public async override Task<int> SaveChangesAsync(CancellationToken

➥ cancellationToken = default) {
 return base.Booking.First().CustomerId switch {
 1 => await base.SaveChangesAsync(cancellationToken),
 _ => throw new Exception("Database Error!"),
 };
}

Using a switch expression can condense your long switch statements quite a bit. We
should also see whether the code throws a CouldNotAddBookingToDatabaseException.
To do this, the appropriate unit test must use the following [ExpectedException]
method attribute:

[TestMethod]
[ExpectedException(typeof(CouldNotAddBookingToDatabaseException))]
public async Task CreateBooking_Failure_DatabaseError() {
 await _repository.CreateBooking(0, 1);
}

Let’s run the test. Lo and behold, it passes! We are now ready to come back to, and
wrap up, our final test for BookingRepository: BookingRepository_Success.

 As things stand now, we have only a skeleton of a method, but all we have to do is
pass in valid arguments to CreateBooking, as shown in the next listing. There is no out-
put from the CreateBooking method, so any assertions we make need to be done on
Entity Framework Core’s internal DbSet<Booking>. We want to assert that a Booking was
indeed created in the in-memory database and that it has a CustomerID of 1.

[TestMethod]
public async Task CreateBooking_Success() {
 await _repository.CreateBooking(1, 0);
 Booking booking = _context.Booking.First();

Listing 8.14 Using switch expressions to branch code

Listing 8.15 Completed BookingRepository.CreateBooking_Success unit test

Returns the result
of the switch
statement

Calls the nonstub
SaveChangesAsync
if CustomerID is 1

The default case:
throws an exception

Creates the booking in
the in-memory database

Retrieves the booking from
the in-memory database

183Conditionals, Func, switches, and switch expressions

V
th

boo
n

 Assert.IsNotNull(booking);
 Assert.AreEqual(1, booking.CustomerId);
 Assert.AreEqual(0, booking.FlightNumber);
}

Let’s run the test and see what happens. Hang on! The CreateBooking_Success test
fails. But why? It says the method threw an exception of type CouldNotAddBooking-
ToDatabaseException. We fell into one of the most common pitfalls that Entity
Framework Core offers: we did not save our changes to the DbSet<Booking> (and to
the database) before accessing it.

8.7.4 Querying for pending changes in Entity Framework Core

If we look back at the SaveChangesAsync method in the stub, we see that we access
context.Booking before calling base.SaveChangesAsync. Accessing the Booking DbSet
before saving any changes we made to the internal DbSets to the database means that
there is nothing in the booking collection yet, causing a NullReferenceException,
which we catch in the CreateBooking method. The CreateBooking method then throws
a CouldNotAddBookingToDatabaseException.

 The solution is simple: call base.SaveChangesAsync before accessing context
.Booking. Because we are using an in-memory database, we can commit a Booking
object to the database during the failure path unit test because the TestInitialize
method creates a new instance of the database context (and implicitly wipes the data-
base) before the next test. The important part of the test is that the exception gets
thrown. That means we do not need the default case in our switch statement any-
more. That being said, let’s change the executed logic on the non-default statement
to return an integer of value 1. The SaveChangesAsync method returns (in a non-
stubbed scenario) the number of entries written to the database. I see no reason to
deviate from that pattern in the stub. We are mimicking its operations, after all.

 The only purpose of the nondefault switch value (in this scenario) is to satisfy the
required return type of Task<int>. By returning a value of 0, we complete the method
and do no harm. We still throw an exception in case CustomerID is anything but 1, as
shown in the next listing.

public override async Task<int> SaveChangesAsync(CancellationToken

➥ cancellationToken = default) {
 await base.SaveChangesAsync(cancellationToken);

 return base.Booking.First().CustomerId switch {
 1 => 1,
 _ => throw new Exception("Database Error!")
 };
}

Listing 8.16 Stubbed SaveChangesAsync method with base SaveChangesAsync call

erifies
at the
king is
ot null

Verifies that the
booking has the
correct CustomerIDVerifies that the booking has

the correct FlightNumber

Calls the nonstub
SaveChangesAsync

Switches
based on the
CustomerId

If the CustomerID
is 1, returns a 0

If the CustomerID is not 1,
throws an exception

184 CHAPTER 8 Stubbing, generics, and coupling
If we run the test now, we see it passes. However, we have an additional problem to
consider here. Currently, we’re throwing an exception if the CustomerId is anything
but 1, but our changes have already been saved to the database. We really should test
the CustomerID before saving to the database. To do this, we need to be able to access
the pending changes to the database. Entity Framework Core lets us do this by query-
ing its internal StateTracker for entities with an EntityState of Added as follows:

IEnumerable<EntityEntry> pendingChanges =

➥ ChangeTracker.Entries().Where(e => e.State == EntityState.Added);

The resulting IEnumerable collection contains only our pending changes. What we
really want, though, is the Entity objects on the pending changes. We can use a LINQ
Select statement to grab only the Entity objects, as shown here:

IEnumerable<object> entities = pendingChanges.Select(e => e.Entity);

From here, we can cast the EntityEntry to our Booking type and grab the CustomerId.
To cast (and select only) the entities mapped to a Booking, we can use the OfType<T>
method on the IEnumerable as follows:

IEnumerable<Booking> bookings =

➥ pendingChanges.Select(e => e.Entity).OfType<Booking>();

We can use these instances of Booking to verify we don’t have any pending changes
with a CustomerId of 1, like so:

bookings.Any(c => (b => b.CustomerId != 1)

All we have to do is throw an exception in case we do have such a pending change. If
we don’t, then we can go ahead and save the changes to the database, as shown in the
following code sample.

public override async Task<int>

➥ SaveChangesAsync(CancellationToken cancellationToken = default) {
 IEnumerable<EntityEntry> pendingChanges = ChangeTracker.Entries()

➥ .Where(e => e.State == EntityState.Added);
 IEnumerable<Booking> bookings = pendingChanges

➥ .Select(e => e.Entity).OfType<Booking>();
 if (bookings.Any(b => b.CustomerId != 1)) {
 throw new Exception("Database Error!");
 }

 await base.SaveChangesAsync(cancellationToken);
 return 1;
}

To make sure we didn’t break anything, let’s run all the unit tests in the solution. It
seems that the CreateBooking_Success test case passes when run individually but not

Listing 8.17 Checking for valid CustomerID in stub before saving to the database

185Exercises
when run in tandem with the other tests. The test runner reports back that an
exception of type CouldNotAddBookingToDatabaseException was thrown. Well, we
went straight from an Entity Framework Core pitfall into an inheritance pitfall:
when creating a new instance of a class, the base class does not get instantiated if it
already exists. When we request a new instance of FlyingDutchmanAirlinesContext
_Stub, the CLR does not instantiate an instance of its parent (FlyingDutchman-
AirlinesContext) if one already exists. In practical terms, this means we are deal-
ing with the same database context across unit tests, and, therefore, the contents of
the in-memory database do not get wiped after every test. Therefore, when we exe-
cute the CreateBooking_Success test case, there is a chance that a lingering Booking
instance remains in the database. Because we request the first booking’s CustomerID
from the context in our overridden SaveChangesAsync method, we could end up get-
ting one with a wrong CustomerID. What can we do about this? Either of the following
two approaches may work for us here:

 Manually clear the database’s DbSet<Booking> in the TestInitialize method.
 Use Entity Framework Core’s EnsureDeleted method, which checks whether a

database is deleted. If the database is still alive, EnsureDeleted unceremoni-
ously deletes the database anyway.

Both approaches work equally well, but to keep things interesting, let’s try our hand
at using the EnsureDeleted method. We could call the EnsureDeleted method in
either the TestInitialize method or in the constructor of FlyingDutchmanAirlines
_Stub. In my view, we are better off putting it in the stub’s constructor, as shown in
the next listing. Using the EnsureDeleted method is very much related to us using a
stub, and I like to keep the TestInitialize methods as similar as possible between
test classes.

public

➥ FlyingDutchmanAirlinesContext(DbContextOptions

➥ <FlyingDutchmanAirlinesContext> options) {
 base.Database.EnsureDeleted();
}

If we now run all our tests, we see that the CreateBooking_Success test case passes
quite nicely.

 And with that, we’ve completed the BookingRepository. You are now well versed
in the worlds of generics, optional parameters, switch expressions, and the Liskov sub-
stitution principle.

Exercises
EXERCISE 8.6
True or false? When using a stub, you have to overload the base class’s methods.

Listing 8.18 Use EnsureDeleted to delete an in-memory database

Deletes the nonstub’s
in-memory database

186 CHAPTER 8 Stubbing, generics, and coupling
EXERCISE 8.7
Because of which principle were we able to use an instance of FlyingDutchman-
Context_Stub as if it were an instance of type FlyingDutchmanContext?

a The Liskov substitution principle
b The DRY principle
c The Phragmén–Lindelöf principle

EXERCISE 8.8
When programming with generics, can I add an instance of type float to a List<bool>?

a Yes
b No
c Let me Stack Overflow that for you.

EXERCISE 8.9
What is this an example of? where T : Queue<int>

a A generic collection
b A generic generalization
c A generic constraint

EXERCISE 8.10
True or false? We can use generics only with classes.

EXERCISE 8.11
True or false? Classes with generics can have only one generic constraint.

EXERCISE 8.12
True or false? You cannot have a generic type as a type of method parameter.

EXERCISE 8.13
True or false? The use of optional parameters is optional.

EXERCISE 8.14
In a method’s parameter list, where do optional parameters go?

a At the start
b At the end
c Anywhere

EXERCISE 8.15
True or false? Like a default implicit constructor, if you do not declare a default case
in a switch statement, the compiler generates it for you and executes the first case
you specified.

Summary
 Separation of concerns means that we want to isolate modules of logic from

each other. This ensures that our code is testable and atomic. Atomic code is
more readable and extendable.

187Summary
 Coupling refers to how integrated two “concerns” are. Tight coupling can mean
that a certain class deeply depends on another class, whereas loose coupling
between two classes means a class can be changed and expanded without caus-
ing an issue for the other class. Classes with tight coupling are more difficult to
maintain, because you can easily introduce side effects when you don’t know
the full extent of the dependencies.

 You can inline values from variables into a string by using string interpolation.
This makes it easy to construct complex strings without using the explicit con-
catenation operator.

 Strings are immutable. Any operator (concatenation, deletion, replacements)
on a string causes the CLR to allocate a new area in memory for the new copy of
the string. This means that if you do a lot of operations of a string, every step
(concatenation, deletion) along the way results in new memory allocations.
This is important to keep in mind when dealing with many concatenations or
deletions.

 When assigning numerous properties to values after instantiating a new object,
using the object initializer allows for condensed and more readable syntax.
Object initializers are the idiomatic way to instantiate complex objects when no
appropriate constructor is provided.

 The Liskov substitution principle states that a subtype of a type should be able
to do everything the parent type can do. This means that we can use a subtype
as if it were the parent type. The Liskov substitution principle explains why we
can use polymorphism.

 A stub is a piece of code that uses the Liskov substitution principle to act as if it
were its parent class (or functionality) while overriding and redirecting certain
methods to guarantee certain functionality. Stubs are very useful for throwing
exceptions and returning specific responses when unit testing.

 Generics allow us to constrict classes, methods, or types to work with a certain
type. For example, a Stack<MaineCoon> or a List<ISnack> uses generics to
constrain their functionality to a certain type or group of types. Constraining
your code in this way is a useful technique to control your data types and ensur-
ing that they stay within your expectations throughout your code.

 Optional parameters allow us to define nonrequired arguments for methods.
An optional parameter takes on the value of the defined value if no matching
argument is passed into the method. Optional parameters are useful when our
code relies on multiple possible sets of parameter values, but we can continue
processing if we do not pass in a specific parameter.

 The Entity Framework Core EnsureDeleted method checks whether a data-
base is deleted. If it is not, it deletes it. This comes in handy when working
with an in-memory database during testing to ensure no remnants of previous
test data remain.

Extension methods,
streams, and

abstract classes
In sections 3.1 and 3.2, the CEO of Flying Dutchman Airlines tasked us with creat-
ing a new version of the existing FlyingDutchmanAirlines codebase. The existing
codebase is old and riddled with design flaws, and does not play nice with the new
API requirements put in place by a newly signed business deal with a search
aggregator. In chapters 3 and 4, we considered the existing codebase and ear-
marked potential improvements. In chapter 5, we started our refactor and imple-
mented a database access layer with Entity Framework Core. Following that, in

This chapter covers
 Using streams to redirect console output

 Using abstract classes to provide common
functionality across derived classes

 Using the AddRange LINQ method to add many
things to a collection at once

 Using the SortedList collection

 Using extension methods to extend existing
types with new functionality

 Refactoring “magic numbers”
188

189Implementing the Airport repository
chapters 5 through 8 we implemented (and tested) two repositories out of the fol-
lowing four required classes:

 CustomerRepository—We implemented this repository class in chapters 6 and 7.
 BookingRepository—We implemented this repository class in chapter 8.
 AirportRepository—We implement this repository class in this chapter.
 FlightRepository—We implement this repository class in this chapter.

See figure 9.1 for where we are in the scheme of the book.

Having learned things such as test-driven development, the DRY principle, Liskov sub-
stitution principle, and LINQ, as well as being familiar with the overall structure and
testing patterns of these repositories by now, we can pick up speed as we finish the
repository layer in this chapter by implementing AirportRepository and Flight-
Repository. We’ll also learn about abstract classes (an alternative to interfaces that
forces us to implement the same method in all derived classes) and revisit extension
methods (section 9.6) so we can provide new functionality to existing types.

9.1 Implementing the Airport repository
In chapters 6 through 8, we followed a basic first step when starting an implementa-
tion: creating skeleton classes for both the repository and unit tests. I follow the same
approach in this chapter.

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Runtime type checking revisited

and error handling: 11

+ Using IAsyncEnumerable<T>

and : 12yield return

responses: 13

Part 5: The service layer

+ Middleware, HTTP routing, and HTTP

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

+ Reflection and mocks: 10

Figure 9.1 In this chapter, we’ll implement both the AirportRepository and FlightRepository
classes. These are the last two required repositories to finish the repository section of our refactor.

190 CHAPTER 9 Extension methods, streams, and abstract classes
 The AirportRepository skeleton uses dependency injection, which injects an
instance of type FlyingDutchmanAirlinesContext into AirportRepository’s explicit
(nondefault) constructor, as shown in figure 9.2. The constructor assigns the injected
FlyingDutchmanAirlinesContext to a private backing field. Additionally, the access
modifier of the AirportRepository class is public. The AirportRepositoryTest class
has a TestInitialize method that initializes the FlyingDutchmanAirlinesContext
and assigns it to a private backing field, so we can use a fresh instance of the in-memory
database in every unit test. The TestInitialize method also instantiates and assigns
a new instance of AirportRepository to a private backing field. A [TestClass] attri-
bute annotates the AirportRepositoryTest class. If any of that sounds confusing to
you, please revisit chapters 6 and 7, where I show you in detail how to set up these skel-
eton classes.

When we deal with the Airport entity, what HTTP actions do we need to support?
Conventional wisdom says that for every entity, we need logic that corresponds to the
commonly grouped create-read-update-delete (CRUD) actions. I beg to differ. I say,
only expose and implement what you need to do your job. With Airport, it makes lit-
tle sense for us to expose the ability to create, update, or delete data in the Airport
table through the API. All we need is a read operation.

9.2 Getting an Airport out of the database by its ID
What does a read operation map do within the context of the AirportRepository?
We need to “read” the Airport entity from the database, meaning we should return
an Airport when given its ID. We did something similar in section 6.2, where we
returned a Customer object from the database when given its ID. In this section, we’ll
start our implementation of the method needed to return an Airport from the data-
base: GetAirportByID.

 But, as always, first comes the red-light stage of test-driven development—the suc-
cess case unit test for GetAirportByID, shown next:

[TestMethod]
public void GetAirportByID_Success() {
 Airport airport = await _repository.GetAirportByID(0);
 Assert.IsNotNull(airport);
}

Regular class Test class

Create class file

Add dependency

injection to class and

constructor

Create TestInitialize
method

Figure 9.2 Whether you create a regular
class or a test class, the first step is to
create the actual class file. If you are
working on a regular class, proceed to
add dependency injection to the class
and constructor. If you created a test
class, you could also set up an optional
TestInitialize method.

191Getting an Airport out of the database by its ID
When we attempt to compile this, not only do we get a compile error saying that the
compiler cannot find GetAirportByID (which we expected because we have not imple-
mented the method yet), but we also have another compile error, as follows:

"The await operator can only be used within an async method."

You will undoubtedly get this error many times throughout your C# career, because it
is easy to forget to mark a method that is awaiting something as async and with the
appropriate return value (Task).

NOTE As discussed in section 6.2.8, asynchronous methods expect a return of
type Task. If you want to return nothing (void), use the nongeneric version:
Task. If you want to return an actual value, use the generic version Task<T>,
where T is your return type. For example, to return a Boolean1 value along with
a Task, use Task<bool>. Task represents a single unit of work (a concern).

To refresh our memories, if we want to convert a method from executing synchro-
nously to executing asynchronously, we need to use the async keyword and a return
type of Task or Task<T> (if the Task returns some data) in the method signature as
follows:

[TestMethod]
public async Task GetAirportByID_Success() {
 Airport airport = await _repository.GetAirportByID(0);
 Assert.IsNotNull(airport);
}

To compile the code and pass the success case unit test (the green stage of test-driven
development), we need to create a GetAirportByID method that accepts an argument
of type integer in AirportRepository, as shown here:

public async Task<Airport> GetAirportByID(int airportID) {
 return new Airport();
}

If we compile our code and run the GetAirportByID_Success test case now, we see
that it passes. Obviously, the code in GetAirportByID is not really doing much for us.
It simply returns a new instance of type Airport instead of a particular entry from the
database. I want to try an experiment with you, my dear reader: for one minute, I want
you to think about the four major steps necessary to retrieve an Airport object from
the database. Ready? Go!

1 Why is Boolean capitalized and bool is not? When we speak of Boolean values, we mean truth values (true and
false) through the lens of Boolean algebra. Boolean algebra was invented by English mathematician George
Bool and first showed up in his work The Mathematical Analysis of Logic: Being an Essay towards a Calculus of Deduc-
tive Reasoning (Bool, 1847). When we talk about a bool, we mean the type inside the C# programming lan-
guage representing Boolean truth values and backed by System.Boolean.

192 CHAPTER 9 Extension methods, streams, and abstract classes
 A minute has passed? Are you sure? Okay, then, let’s move on. In broad strokes,
the four major steps we need to undertake follow and are shown in figure 9.3:

1 Validate the given airportID.

2 Retrieve the correct Airport from the database.
3 Handle any potential Exception from the database with a custom exception.
4 Return the found Airport instance.

If you feel adventurous, I invite you to implement the GetAirportByID method follow-
ing those broad steps. Come back to the book after you have completed the imple-
mentation and compare my implementation with yours. If my implementation differs
from yours, that is okay. If you have the tests to back up your functionality, and they
pass, you can be assured your code is great. (Your code being clean is a different mat-
ter altogether and not measurable by tests. To check the cleanliness of your code, use
the clean code checklist in appendix B.)

 I offer you one last word of advice before embarking on this grand adventure: keep it
simple. Early in my career, I thought I was being clever when using very obscure corners
of a programming language and odd algorithms. This led to code that was unreadable
for anybody (including me) and, by extension, unmaintainable. Be clever by keeping it
simple (or just complicated enough, depending on your outlook on life).

9.3 Validating the AirportID input parameter
As discussed in section 9.2, the four steps to getting an Airport from the database
follow:

1 Validate the given airportID.
2 Retrieve the correct Airport from the database.
3 Handle any potential Exception from the database with a custom exception.
4 Return the found Airport instance.

Validate

airportID

Get airport

from DB
DB problem?

Handle exception

Return airport

Yes

NoValidation

issue?

No

Handle

exception

Yes

Figure 9.3 The steps involved with returning an Airport from the database. First, we check if the given input
arguments are valid. If not, we throw and handle the exception. If the inputs are valid, we attempt to get the
correct Airport from the database. If the database encounters a problem, we throw and handle the exception.
If we encountered no errors, we return the found Airport instance.

193Validating the AirportID input parameter
In this section, we’ll tackle the first of the four: validate the user input. The Get-
AirportByID method accepts one argument of type integer. The AirportID should
be a positive integer (an integer greater than or equal to 0). To test that AirportID is
a positive integer, we use a similar conditional to the one we wrote in the GetCustomer-
ByID and CreateBooking methods: if the argument’s value is invalid, write a log to
the console and throw an ArgumentException exception, as shown in the next list-
ing. The log written to the console uses string interpolation to inline the value of
airportID.

public async Task<Airport> GetAirportByID(int airportID) {
 if (airportID < 0) {
 Console.WriteLine($"Argument Exception in GetAirportByID! AirportID
➥ = {airportID}");
 throw new ArgumentException("invalid argument provided");
 }

 return new Airport();
}

That looks good. But you know what is coming next, don’t you? We need to add a fail-
ure case unit test that checks for invalid input values. We know we can use the
[DataRow] method attribute to supply the failure case unit test with a multitude of test
data, but what data should we supply? Well, we have only one invalid input data point
we need to test: a negative integer.

 Because we need to test only one data point, we don’t need the [DataRow] method
attribute. We can use the [DataRow] method attribute with a unit test that deals with
only one piece of data, but that would be overkill. If we’re testing only one data point,
it is cleaner to do without the [DataRow] method attribute, as shown next:

[TestMethod]
public async Task GetAirportByID_Failure_InvalidInput() {
 await _repository.GetAirportByID(-1);
}

The GetAirportByID_Failure_InvalidInput unit test passes a negative (and, there-
fore, invalid) integer to the GetAirportByID method. We expect the GetAirportByID
method to see we supplied it with an invalid AirportID argument. Following that, we
expect the method to log a message to the console and throw an ArgumentException.
How do we verify that the GetAirportByID method threw the expected exception
of type ArgumentException? We need the [ExpectedException(typeof(Argument-
Exception))] method attribute annotating the unit test as follows:

Listing 9.1 Validating the airportID argument in GetAirportByID

Determines whether airportID has a valid value

Logs the AirportID value to
the console for developers

Throws an
exception of type
ArgumentExceptionReturns a new instance of

Airport. We’ll change this
implementation in this chapter.

194 CHAPTER 9 Extension methods, streams, and abstract classes
[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public async Task GetAirportByID_Failure_InvalidInput() {
 await _repository.GetAirportByID(-1);
}

We run the tests, and everything passes. Is there anything else we can test for input val-
idation? With GetCustomerByName, we were satisfied with asserting that the input vali-
dation code in GetCustomerByName threw an exception of type ArgumentException in
case of invalid input. But the GetAirportByName method also logs a message to the
console. We should probably check for that.

9.4 Output streams and being specifically abstract
To verify that we logged a message to the console, we need access to the console’s con-
tents. The trick to retrieving console output is to provide an alternative output and set
the console to write to that output. In this section, we’ll discuss how to circumvent
console output to our own data stream.

WARNING The concept of a stream in C# differs from using the Streams API
in Java. In Java, using the Streams API is almost akin to using LINQ in C#.
This section explains the C# concept of streams.

The Console class is a wrapper around an input and an output stream of data. A
stream represents a sequence of data, often in bytes. The Console class deals with the
following three data streams, shown in figure 9.4:

 A System.IO.TextReader, which represents the input stream
 A System.IO.TextWriter, which represents the output stream
 A System.IO.TextWriter, which represents the error stream.

Within the context of a Console application, the input stream handles any keyboard
input. The output stream is where we write anything we want displayed in the output.
The error stream is where exceptions are logged. We do not have access to the default
TextReader and TextWriters, but we can specify our own by using the Console’s Set-
Out, SetIn, and SetError methods.

From keyboard input to console output

Error stream

Input stream

Output stream

3 4
Figure 9.4 A possible life cycle from input to output.
First, keyboard input (1) is sent to the input stream (2).
Then, some processing is done inside the application
(this can be anything you want). Following processing,
if an exception was thrown, the error is written to the
error stream (3). If there is no exception, information is
written to the output stream (3). Finally, the error and
output streams are displayed in the console (4).

195Output streams and being specifically abstract
By instantiating our instance of type StringWriter (a data stream dealing with
strings) and hanging onto a reference to that variable while using it as the Console’s
output stream, we can get the history data pretty easily. Instead of writing to some
intangible output stream, the Console.WriteLine method writes to our String-
Writer, as shown in figure 9.5. Take note that some programming languages such as
Java distinguish between input and output streams on a type level. C# does not do this.
You can use any Stream-derived class as an input or output stream.

The Stream base class is the foundation for all data streams. Stream is an abstract
class and the base class for many derived classes (such as StringWriter) that deal with
a sequence of bytes. A StringWriter is a stream that deals with a sequence of bytes
and exposes functionalities based on those bytes representing strings (and because,
under the hood, a string is an array of characters—therefore, characters). Because all
derived classes from Stream implement the IDisposable interface, we need to clean
up the instantiated Stream once we are done with it, or we risk a memory leak.

Abstract classes
An abstract class is a class that cannot directly be instantiated or be static. You can
instantiate a concrete subclass of an abstract class, which indirectly instantiates the
abstract class. We can make a class abstract by using the abstract keyword in the
class’s signature. Abstract classes are a different way of supporting inheritance and,
by extension, polymorphism. We often use abstract classes as “base” classes, sitting

From keyboard input to console output

Error stream

Input stream

Output stream

3

StringWriter instance

Figure 9.5 When redirecting console output to a StringWriter instance, the
output and error streams write to the StringWriter instance instead of to the
regular console output. The life cycle from figure 9.4 changes: first, keyboard
input (1) is sent to the input stream (2). Then, some processing is done inside
the application (this can be anything you want). Following processing, if an
exception was thrown, the error is written to the error stream (3). If we don’t get
an exception, information is written to the output stream (3). Finally, the error
and output streams are written to our StringWriter instance (4).

196 CHAPTER 9 Extension methods, streams, and abstract classes
To use our Console output stream, we need to instantiate an instance of type String-
Writer, wrap the stream in a using statement, and set it to the console’s output
stream. Then, once all processing is done, we retrieve the StringWriter’s contents
and assert that the output matches our expectations, as shown next.

[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public async Task GetAirportByID_Failure_InvalidInput() {
 using (StringWriter outputStream = new StringWriter()) {
 Console.SetOut(outputStream);
 await _repository.GetAirportByID(-1);

 Assert.IsTrue(outputStream.ToString().Contains("Argument Exception in
➥ GetAirportByID! AirportID = -1"));
 }
}

Run the test. You’ll see it passes. But what if I told you that the test passing is a red her-
ring? It’s great that the test passes, but are we actually testing everything we want to
test? I think not. Let’s step through the code execution as follows:

1 The TestInitialize method executes.
2 The GetAirportByID_Failure_InvalidInput method starts.
3 The unit test creates a StringWriter, sets it as the console’s output stream, and

enters GetAirportByID.
4 We check if the passed-in AirportID is valid or not (it is not).
5 The code writes an error log to our StringWriter stream.
6 The method throws an Exception of type ArgumentException.
7 The method is aborted.
8 The test stops execution because an Exception was thrown and not caught.
9 The test determines that the expected Exception was thrown and marks the

test as “passed.”

(continued)

on top of an inheritance chain. As opposed to interfaces, abstract classes can pro-
vide method bodies (as long as the method itself is not abstract) and use access
modifiers. This means that abstract classes are often used to spread a specific
implementation of a method across derived classes. An abstract method must be
overridden in a concrete implementation. Abstract methods are implicitly virtual
and can be said to indicate an “incomplete” method because they cannot contain a
method body. Abstract methods can live only in abstract classes. Derived classes
must override abstract methods and extend functionality per their requirements or be
marked as abstract themselves.

Listing 9.2 Define our console output stream

Creates a
StringWriter,
and promises to
dispose of it safely

Sets our StringWriter instance as the Console’s output

GetAirportByID writes to the
StringWriter and throws an exception.

Asserts that the outputStream
contains the expected logged output

197Output streams and being specifically abstract
Turns out, we did not assert based on the console’s output stream at all. Because we
did not catch the ArgumentException thrown in GetAirportByID, the unit test stopped
executing before the code got to the outputStream assertion.

 To fix this, we should catch the ArgumentException, execute the output stream
assertion, and then throw another exception of type ArgumentException to satisfy
the ExpectedException method attribute, all inside the GetAirportByID_Failure_
InvalidInput unit test, as shown in the next listing.

[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public async Task GetAirportByID_Failure_InvalidInput() {
 try {
 using (StringWriter outputStream = new StringWriter()) {
 Console.SetOut(outputStream);
 await _repository.GetAirportByID(-1);
 }
 } catch (ArgumentException) {
 Assert.IsTrue(outputStream.ToString().Contains("Argument Exception in
➥ GetAirportByID! AirportID = -1");
 throw new ArgumentException();
 }
}

There is one catch, though. This code does not compile, because once the Get-
AirportByID throws ArgumentException and the unit test’s try-catch block catches
the exception, outputStream is out of scope, as shown in figure 9.6.

Because outputStream is out of scope, we cannot access it or its value anymore. If
only we could extend the scope of outputStream but also correctly dispose of the
instance. We could put the entire try-catch inside the using statement, but I prefer
to have the using statement contain as little code as possible. Perhaps we can use the

Listing 9.3 Catching the thrown ArgumentException in a unit test

Catches the
ArgumentException
thrown in GetAirportByID

Asserts that outputStream’s
content and the logged error
are equalThrows a new ArgumentException

for the ExpectedException attribute

outputStream’s scope

Figure 9.6 The outputStream variable is out of scope in the catch code block.
The scope of outputStream reaches until the end of the using code block.

198 CHAPTER 9 Extension methods, streams, and abstract classes
old-fashioned way of manually disposing of outputStream by adding a call to output-
Stream.Dispose in a finally block. We would also need to instantiate the String-
Writer outside of the try-catch-finally, then, as shown in the following code sample.

[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public async Task GetAirportByID_Failure_InvalidInput() {
 StringWriter outputStream = new StringWriter();
 try {
 Console.SetOut(outputStream);
 await _repository.GetAirportByID(-1);
 } catch (ArgumentException) {
 Assert.IsTrue(outputStream.ToString().Contains("Argument Exception in

➥ GetAirportByID! AirportID = -1");
 throw new ArgumentException();
 } finally {
 outputStream.Dispose();
 }
}

Now that the outputStream variable is within scope, when we assert that the output-
Stream contents contain the error logged in GetAirportByID, we can compile the
unit test and run it. It passes. We can now point to the GetAirportByID_Failure_
InvalidInput and say that we know that our input validation code works.

Listing 9.4 Correcting the scope issue for outputStream

Rethrowing exceptions and keeping your stack traces
The code in listing 9.4 has us catch an exception of type ArgumentException and
then throw a new exception of the same type. This works fine for a lot of use cases,
but what if you want to rethrow the same exception? You have two simple ways of
doing this: you can use the throw keyword with or without a reference to the caught
exception variable as follows:

catch (Exception exception) {
 throw;
}

catch (Exception exception) {
 throw exception;
}

Both ways of rethrowing exceptions work. There is one catch, however: rethrowing an
exception can result in a loss of the stack trace information preserved along with an
exception. To make sure you have access to the exception’s stack trace after
rethrowing the exception, we need to do things slightly differently and dive deep into
a dark corner of .NET: the ExceptionDispatchInfo class.

Creates our
outputStream

Tells the console to
use outputStream as
the output stream

Calls the GetAirportByID method

Catches the ArgumentException
thrown in GetAirportByID

Asserts that outputStream’s
contents match the expected
error log

Throws a new
ArgumentException for the
ExpectedException attribute

Disposes of outputStream

199Querying the database for an Airport object
9.5 Querying the database for an Airport object
After section 9.4, we have the foundation for the AirportRepository.GetAirport-
ByID method along with input validation of the AirportID argument. We know what
an abstract class is and how to use a stream. In this section, we’ll finish the implemen-
tation of GetAirportByID. To do so, we need to the following:

 Query Entity Framework Core’s DbSet<Airport> for the matching Airport object.
 Make sure that, in case of a database problem, we throw the appropriate custom

exception.
 Have unit tests that cover both success and failure code branches.

We asked Entity Framework Core to give us an entity when given an ID before (sec-
tion 7.1.2), so I won’t hold your hand too tightly through implementing the following
code for that. In fact, if you feel like it, give it a whirl before moving on. For bonus
points, use test-driven development to verify your code.

public async Task<Airport> GetAirportByID(int airportID) {
 if (airportID < 0) {
 Console.WriteLine($"Argument Exception in GetAirportByID! AirportID

➥ = {airportID}");
 throw new ArgumentException("invalid argument provided");
 }

 return await _context.Airport.FirstOrDefaultAsync(a => a.AirportId ==

➥ airportID) ?? throw new AirportNotFoundException();
}

Let’s take a quick look now at the return statement, which is where the meat and
potatoes of this section takes place:

return await _context.Airport.FirstOrDefaultAsync(a => a.AirportId ==

➥ airportID) ?? throw new AirportNotFoundException();

The ExceptionDispatchInfo class allows us to save a specific state of an excep-
tion, including its stack frame. Doing this prevents the exception stack frame from
being wiped out by a new stack frame when rethrowing. To save an exception’s state,
we need to pass in the exception’s InnerException property (which contains the
state that threw the original exception) to the ExceptionDispatchInfo.Capture
method. After that, we can call the Throw method, as follows, and it is business as
usual:

catch (Exception exception) {
 ExceptionDispatchInfo.Capture(exception.InnerException).Throw();
}

Rethrowing an Exception by capturing its current state through the Exception-
DispatchInfo class safeguards your original exception’s internal information, includ-
ing the stack trace, from being overridden.

200 CHAPTER 9 Extension methods, streams, and abstract classes
We can break down the return statement into the following four steps:

1 await—Execute the expression asynchronously and wait for completion.
2 _context.Airport.FirstOrDefaultAsync—Retrieve the first match (based on

the expression in step 3) or the default value for the entity (null in the case of
Airport) asynchronously.

3 a => a.AirportId == airportID—This is the predicate that is the matching
expression for step 2. The predicate says to return the first element in the
Airport collection that matches its AirportId.

4 ?? throw new AirportNotFoundException();—Using the null-coalescing oper-
ator, if steps 2 and 3 returned the default value of null, we throw an Airport-
NotFoundException.

In that brief return statement, we combined six separate techniques that make C#
awesome: asynchronous programming is used to get the expression’s completion and
return values; Entity Framework Core lets us query its internal DbSets for entities,
maintaining an isomorphic relationship between the database and running code; the
FirstOrDefaultAsync LINQ method enumerates over a collection and returns a
value based on a predicate; we use a lambda expression as the predicate to match
Airport objects to AirportID’s; the null-coalescing operator checks for a returned
null pointer and executes its expression; and a custom exception, using inheritance,
is thrown.

We kind of cheated on implementing GetAirportByID with test-driven development:
we did not follow the red-green stoplight pattern to its minutest detail. That is okay.
Like every technique (and like everything I tell you to do), we shouldn’t be hamstrung
by the rules, as long as we make sure we deliver everything correctly. For us, that
means we need to finish the success case unit test for GetAirportByID.

 What do we need to finish the GetAirportByID_Success test case (and with that,
the AirportRepository)?

1 Add an Airport object to the in-memory database in the TestInitialize
method.

2 Attempt to retrieve the newly added Airport object from the database by call-
ing GetAirportByID along with the appropriate airportID.

Asynchronous
programming

Lambda expression predicate

Null-coalescing operator

return await _context.Airport.FirstOrDefaultAsync(a => a.AirportId == airportID)

?? throw new AirportNotFoundException();

Entity Framework Core

LINQ
Custom exception

201Querying the database for an Airport object
3 Assert that the returned object is the same as the Airport object we stored in
the database before calling GetAirportByID.

[TestInitialize]
public async Task TestInitialize() {
 DbContextOptions<FlyingDutchmanAirlinesContext> dbContextOptions =
 ➥ new DbContextOptionsBuilder<FlyingDutchmanAirlinesContext>()
 ➥ .UseInMemoryDatabase("FlyingDutchman").Options;
 _context = new FlyingDutchmanAirlinesContext_Stub(dbContextOptions);

 Airport newAirport = new Airport {
 AirportId = 0,
 City = "Nuuk",
 Iata = " GOH"
 };

 _context.Airport.Add(newAirport);
 await _context.SaveChangesAsync();

 _repository = new AirportRepository(_context);
 Assert.IsNotNull(_repository);
}

[TestMethod]
public async Task GetAirportByID_Success() {
 Airport airport = await _repository.GetAirportByID(0);

 Assert.IsNotNull(airport);
 Assert.AreEqual(0, airport.AirportId);
 Assert.AreEqual("Nuuk", airport.City);
 Assert.AreEqual("GOH", airport.Iata);
}

When we run the test, however, it does not pass. The compiler throws an exception
because, as shown next, we use the FlyingDutchmanAirlinesContext_Stub, which
overrides the SaveChangesAsync method and throws an exception when there are no
Booking instances in the database with a CustomerId of 1:

public override async Task<int> SaveChangesAsync(CancellationToken

➥ cancellationToken = default) {
 IEnumerable<EntityEntry> pendingChanges =

➥ ChangeTracker.Entries().Where(e => e.State == EntityState.Added);
 if (pendingChanges.Any(c => ((Booking) c.Entity).CustomerId != 1)) {
 throw new Exception("Database Error!");
 }

 await base.SaveChangesAsync(cancellationToken);
 return 1;
}

Listing 9.5 Basic TestInitialize method and a skeleton GetAirportByID unit test

Creates a new instance
of Airport (Nuuk,
Greenland; GOH)

Adds the Airport
instance to EF
Core’s internal
database set

Saves the Airport object to
the in-memory database

Asserts that the retrieved
Airport matches the
saved Airport

202 CHAPTER 9 Extension methods, streams, and abstract classes
This is what I like to call “controlled biting in the ass,” and I’m sorry for leading you
down the wrong path on purpose. If we had taken a moment to reflect on our imple-
mentation when we wrote the code, we could have seen this coming, but then a teach-
ing moment would have been lost.

 Because we did not add any bookings to the database in the AirportRepository-
Test’s TestInitialize method, the SaveChangesAsync method throws an exception.
To solve this, let’s create a conditional in the stub’s SaveChangesAsync method that
checks whether we have an entity in the Booking DbSet. If no booking exists in the
database, the code skips the Booking code block. Alternatively, you could create a dif-
ferent stub for this test. The thinking behind this is that a stub should only ever have
the logic for one specific test. This is a valid approach, but for the sake of brevity and
simplicity, we are sticking with the one stub. Similarly, we can check if there are any
pending changes for an Airport model, as shown next.

public override async Task<int> SaveChangesAsync(CancellationToken

➥ cancellationToken = default) {
 await base.SaveChangesAsync(cancellationToken);

➥ cancellationToken = default) {
 IEnumerable<EntityEntry> pendingChanges = ChangeTracker.Entries()

➥ .Where(e => e.State == EntityState.Added);
 IEnumerable<Booking> bookings = pendingChanges

➥ .Select(e => e.Entity).OfType<Booking>();
 if (bookings.Any(b => b.CustomerId != 1)) {
 throw new Exception("Database Error!");
 }

 IEnumerable<Airport> airports = pendingChanges

➥ .Select(e => e.Entity).OfType<Airport>();
 if (!airports.Any()) {
 throw new Exception("Database Error!");
 }

 await base.SaveChangesAsync(cancellationToken);
 return 1;
}

By adding the extra logic in the stub, the test passes. As always, let’s ask ourselves, what
more can we test? Well, we covered our major code branches, but what if we want to
make sure that we can get an airport from a database that contains more than one
Airport object? So far, all the in-memory databases we used in our testing have con-
tained only one record of the entity we were testing on. We can use the techniques we
picked up before, as well as a new concept I shall introduce you to in just a second that
adds multiple instances of Airport to the in-memory database and makes assertions
on them.

 Think about this for a minute: what is a suitable way to add multiple objects of the
same type to a collection? What if I tell you that to do that, we need to operate on a

Listing 9.6 Overriding SaveChangesAsync in our stub

Retrieves all pending
changes for Airport

Checks if pending
changes for Airport
are found

If no pending changes for
Airport are found, throws
an exception

203Querying the database for an Airport object
collection? I hope you jumped out of your chair (or bed, if you use this book to fall
asleep at night) and cried, “We can use a LINQ method!”

ADDRANGE AND SORTEDLIST<T>
The LINQ method AddRange lets you add multiple entries to a collection at once.
“Range” refers to a range of objects, usually stored in a different collection. Because
this is a LINQ method, it is not only available with Entity Framework Core, it’s also
available across the entire C# landscape. To use the AddRange functionality, we need
the following two things:

1 A collection of objects we want to put into a different collection. We use a col-
lection created and populated in the TestInitialize method for this.

2 A collection to store the objects in—in this case, EF Core’s DbSet<Airport>.

First, we create a collection. The System.Collections and System.Collections
.Generics namespaces contain many collections we can sample and use. There are the
usual candidates such as List<T>, ArrayList<T>, LinkedList<T>, and Dictionary
<T, X>, but we also have more esoteric collections such as BitArray or Synchronized-
ReadOnlyCollection<T>. We can use the AddRange method on any of the collections
(generic or not) that C# provides.

 Why don’t we have some fun, take the scenic route, and use a special collection
called SortedList<T>? Alternatively, you could add all entries to a generic List<T> and
call its Sort method. Because SortedList<T> is a generic collection, we find it in the
System.Collections.Generics namespace. If we want to use the System.Collections
.Generics namespace, that means we also have to import the namespace.

 A SortedList allows for the collection to be sorted. To use a SortedList, we just
have to add some data and, sometimes, specify how we want to sort the elements. A
SortedList containing integers sorts elements by integer value, whereas a Sorted-
List containing strings sorts elements alphabetically. If we want to sort an object
(such as instances of type Airport), however, there is a catch: SortedList, when used
with a nonprimitive type, turns into SortedList<K, V>, where K is a sortable primitive
type and V is our object.

 We want to sort objects of type Airport. Let’s keep things interesting and sort
them alphabetically by IATA code, rather than AirportID. This means we use the
string primitive type as the first generic type in SortedList<K, V>.

 We start by creating a SortedList<string, Airport> in the TestInitialize
method and populate it with a handful of objects. Beginning with the airport we
already added in the TestInitialize method (GOH—Nuuk, Greenland), we add
Airport elements for PHX (Phoenix, AZ), DDH (Bennington, VT), and RDU (Raleigh-
Durham, NC) as follows:

SortedList<string, Airport> airports = new SortedList<string, Airport> {
 {
 "GOH",
 new Airport
 {

204 CHAPTER 9 Extension methods, streams, and abstract classes
 AirportId = 0,
 City = "Nuuk",
 Iata = "GOH"
 }
 },
 {
 "PHX",
 new Airport
 {
 AirportId = 1,
 City = "Phoenix",
 Iata = "PHX"
 }
 },
 {
 "DDH",
 new Airport
 {
 AirportId = 2,
 City = "Bennington",
 Iata = "DDH"
 }
 },
 {
 "RDU",
 new Airport
 {
 AirportId = 3,
 City = "Raleigh-Durham",
 Iata = "RDU"
 }
 }
};

When inspecting the SortedList<string, Airport> after all those additions, we see
an alphabetically sorted collection shown in figure 9.7: "DDH" -> "GOH" -> "PHX" ->
"RDU".

To add the values from the sorted list to the in-memory database, we use the AddRange
LINQ method on the context’s DbSet<Airport> as follows:

_context.Airport.AddRange(airports.Values);

Figure 9.7 SortedList takes in data and sorts that data based on a sorting type. In this example, we sort
based on the string primitive type. This results in an alphabetically sorted collection.

205Querying the database for an Airport object

Adding all the values from the SortedList<string, Airport> to the DbSet<Airport>
using AddRange is a piece of cake. Back when I asked you to think about what the best
way to add a collection of elements to a different collection was, you may have thought
we had to use a foreach loop and manually add all elements to the database. Under the
hood, that is exactly what is happening when we use AddRange, but I for one am very
thankful for the syntactical sugar that LINQ offers us. It saves a lot of typing, and using
AddRange increases code clarity as well because the code is still very readable and con-
densed. That being said, we need to be sure we call the SortedList<string, Airport>’s
Value property in the AddRange call, or else we would get the key-value pairs in the list
instead of the Airport instances. Because DbSet<Airport> has a generic constraint
around the Airport type, we cannot add instances of type string to the collection.

 To be safe, let’s run all existing tests and verify we broke nothing with this imple-
mentation. It looks like we are good. Now for the fun part: asserting that the entities
entered into the database are there and that we can retrieve them. We can inline the
AirportIds by using the familiar [DataRow] method attribute. Then, we call Get-
AirportByID and contrast the returned Airport instance to what we retrieve from the
database directly from the context by using the airportId passed in by the MSTest
runner, as shown in the next listing.

[TestMethod]
[DataRow(0)]
[DataRow(1)]
[DataRow(2)]
[DataRow(3)]
public async Task GetAirportById_Success(int airportId) {
 Airport airport = await _repository.GetAirportById(airportId);
 Assert.IsNotNull(airport);

 Airport dbAirport =

➥ _context.Airport.First(a => a.AirportId == airportId);
 Assert.AreEqual(dbAirport.AirportId, airport.AirportId);
 Assert.AreEqual(dbAirport.City, airport.City);
 Assert.AreEqual(dbAirport.Iata, airport.Iata);
}

We could also have created a hardcoded Airport instance, added that to the database
in our test setup, and used it to check that the correct Airport was inserted. This
approach is fine, but I prefer to query the in-memory database in every test. This is more
explicit because you don’t rely on some code done in a different spot to run the test you
are looking at. All that is left for us to do before declaring the AirportRepository fin-
ished is to write a unit test for the database exception logic branch.

TESTING FOR A DATABASE EXCEPTION WITH A STUB

In this section, we’ll test the logic branch where the database encounters an error
during the call to SaveChangesAsync. To test the database exception logic path, we

Listing 9.7 Using the DataRow attribute to test for GetAirportByID success

Uses the [DataRow] method
attribute to inline test data

Retrieves the
matching
Airport (based
on AirportId)
from the
database

Asserts the retrieved
Airport instance against
the one in the database

206 CHAPTER 9 Extension methods, streams, and abstract classes
have to update FlyingDutchmanContext_Stub’s overridden SaveChangesAsync method
to perform a switch based on the airport’s ID. If AirportID evaluates to anything
other than 0, 1, 2, or 3 (because we used those values for AirportIds in the success
test case), the stub throws an exception. How about we use an integer value of 10 for
this, as shown in the next code sample? It’s as good as any number.

public override async Task<int> SaveChangesAsync(CancellationToken

➥ cancellationToken = default) {
 await base.SaveChangesAsync(cancellationToken);

➥ cancellationToken = default) {
 IEnumerable<EntityEntry> pendingChanges = ChangeTracker.Entries()

➥ .Where(e => e.State == EntityState.Added);
 IEnumerable<Booking> bookings = pendingChanges

➥ .Select(e => e.Entity).OfType<Booking>();
 if (bookings.Any(b => b.CustomerId != 1)) {
 throw new Exception("Database Error!");
 }

 IEnumerable<Airport> airports = pendingChanges

➥ .Select(e => e.Entity).OfType<Airport>();
 if (!airports.Any(a => a.AirportId == 10)) {
 throw new Exception("Database Error!");
 }

 await base.SaveChangesAsync(cancellationToken);
 return 1;
}

Now, for the unit test, let’s create a new unit test method called GetAirportByID_
Failure_DatabaseException. Because the GetAirportByID method throws an excep-
tion of type AirportNotFoundException when a database error occurs, the unit test
needs to expect this. We use our trusted [ExpectedException] method attribute for
this as follows:

[TestMethod]
[ExpectedException(typeof(AirportNotFoundException))]
public async Task GetAirportByID_Failure_DatabaseException() {
 await repository.GetAirportByID(10);
}

The test should pass. And with that, we wrapped up AirportRepository. We have only
one more to go before we implement the service layer.

9.6 Implementing the Flight repository
Although it may not seem like it, we are actually almost done with most of the heavy
work required to implement the Flying Dutchman Airlines next-gen API for Fly-
Tomorrow. Because we perform most of the logic in the repository layer classes, the

Listing 9.8 Changing the stub’s SaveChangesAsync to test AirportRepository

Switches expression
based on AirportId

If AirportID is 10,
throws an exception

The default case: returns
out of the method

207Implementing the Flight repository
services and controllers act more as pass-throughs and data combiners. The most com-
plicated logic inside a codebase often finds itself inside the repository layer due to the
inherent complexity of dealing with a database. In a repository/service pattern, after
implementing all the repositories, you have the logic that manipulates the state of a
model wrapped up. But we are not quite there yet: in this section, we’ll implement the
FlightRepository along with the appropriate unit tests.

 Go ahead and create the skeleton classes of FlightRepository and Flight-
RepositoryTests. As with AirportRepository, we need only one method in Flight-
Repository: GetFlightByFlightNumber. Before continuing, please also create a
barebones GetFlightByFlightNumber method in FlightRepository. If you get stuck,
see chapters 6 and 7 for more detailed walk-throughs.

 The GetFlightByFlightNumber method accepts the following three parameters of
type integer:

 flightNumber
 originAirportId

 destinationAirportId

The originAirportId and destinationAirportId parameters signify the airports from
which the flight departs (originAirportId) and arrives (destinationAirportId). The
IDs of the airports are subject to a foreign key constraint in the database. This means
that in a Flight instance, the originAirportId and destinationAirportId point to
specific Airport instances in the database matched based on their IDs. All three input
parameters need to be a non-negative integer. We could use only the flight number to
identify the flight and not bother with the extra airport details. In order to teach you
how to retrieve data by using foreign key constraints, we’ll use and retrieve the airport
IDs. Previously, in the BookingRepository.CreateBooking method, we defined a con-
ditional code block that checked whether the input parameters of customerID and
flightNumber were valid arguments matched against the same validation rule we have
for originAirportId and destinationAirportId (they need to be positive integers)
as follows:

public async Task CreateBooking (int customerID, int flightNumber) {
 if (customerID < 0 || flightNumber < 0) {
 Console.WriteLine($"Argument Exception in CreateBooking! CustomerID = {

➥ customerID}, flightNumber = { flightNumber}");
 throw new ArgumentException("invalid arguments provided");
 }
 …
}

We can use this code for the input validation of the originAirportId and destination-
AirportId parameters of GetFlightByFlightNumber. But we don’t just want to copy
and paste the code: that would be a violation of the DRY principle, and copying and
pasting is just bad practice in general. Instead, we should extract the conditional into
a method accessible to both the BookingRepository and the FlightRepository.

208 CHAPTER 9 Extension methods, streams, and abstract classes
 We could name the method IsPositive, have it take an integer as a parameter,
check whether it is more than (or equal to) zero, and return that result. Then, we
could instantiate a new instance of BookingRepository in FlightRepository and
access the IsPositive method, as shown next:

public class BookingRepository {
 ….

 internal bool IsPositive(int toTest) {
 return toTest >= 0;
 }
}

public class FlightRepository {
 public async Task<Flight> GetFlightByFlightNumber(int flightNumber, int

➥ originAirportId, int destinationAirportId) {
 BookingRepository bookingRepository = new BookingRepository(_context);
 if (!bookingRepository.IsPositive(originAirportId) ||

➥ !bookingRepository.IsPositive(destinationAirportId)) {
 …
 }

 …
}

This seems messy and is a good example of bad coupling. If FlightRepository makes
a method call to BookingRepository, we banish them to a dependent and coexist-
ing life. In that scenario, changing the BookingRepository may have unintended
consequences in FlightRepository. Instead, we can create an extension method on
the integer type that determines whether an integer is positive (more than or equal
to 0).

9.6.1 The IsPositive extension method and “magic numbers”

First, we want to make sure we separate our extension method from other code. Let’s
create a new class called ExtensionMethods. We place this in the root of the Flying-
DutchmanAirlines project, as shown in figure 9.8, because creating a special folder
(also called ExtensionMethods) to contain a single class would be overkill (unless you
expect multiple files in the respective folder in the future).

 Our ExtensionMethods class can have an access modifier of internal because we
are not writing a unit test specifically for the extension method. The internal access
modifier is perfect for us in this case because we can scope the access to only the
FlyingDutchmanAirlinesNextGen solution. The unit test coverage for the Extension-
Methods class is implicit and done through unit tests that cover methods calling the
respective extension method. The ExtensionMethods class should also be static
because we want to use the same instance of the class across the codebase. There is no
need to instantiate a new instance of ExtensionMethods every time we want to check if
an integer is positive, nor does the extension method we write change any object

209Implementing the Flight repository
states. Previously, I held a diatribe about the pitfalls of using static. A class meant to
wrap a collection of ExtensionMethods is supposed to be static, as shown here:

internal static class ExtensionMethods { }

To create an extension method, as discussed in section 6.3.2, we use the this keyword
followed by the type we want to create an extension method for as part of the parame-
ter list. You can create extension methods for any type (interfaces, classes, primitive
types) as follows:

internal static bool IsPositive(this int input) { }

Within the scope of the FlyingDutchmanAirlinesNextGen project (because of
ExtensionMethods and IsPositive’s internal access modifier), we can now call the
IsPositive on every instance of type integer, as shown in figure 9.9.

Compiling extension methods
Extension methods sound great, but how are they executed? The call to the IsPositive
extension method is resolved by the compiler at compile time. When the compiler
encounters the IsPositive method call, it first checks if a method exists within the

Figure 9.8 The Extension-
Methods class is placed at the
root of the FlyingDutchmanAirlines
project. ExtensionMethods are
not an architectural layer, nor will
we have more than one of them, so
leaving the class in the root is fine.

internal static bool IsPositive (this int input)

This method is accessible only
by files in the same assembly.

This extension method can
be called only on integers.

210 CHAPTER 9 Extension methods, streams, and abstract classes

As far as the actual logic inside the IsPositive method goes, all we have to do is
return whether the input argument is more than or equal to zero as follows:

internal static bool IsPositive(this int input) => input >= 0;

Nice and simple. You just wrote your first extension method!
 We have a little cleanup to do before we move on. We need to remove the condi-

tional code block that validates the input arguments to the BookingRepository
.CreateBooking method, replacing it with a call to our brand-new IsPositive exten-
sion method. In the input validation code, we have to negate the call to IsPositive,
as shown next, because we want to know when the input argument is not a positive
integer.

(continued)

scope of the calling class. If not, which is the case we find ourselves in, the compiler
checks for any public static methods in static classes with the same name. If a
found static method also operates on the correct type (by using the this keyword
in the method’s parameter list), the compiler has found a match and generates the
Intermediate Language code that calls the method.

Do note that, as with any method, if you have two extension methods with the same
name and operating type but in different classes, the compiler cannot resolve which
one to call. When this happens, the compiler throws an ambiguity compiler error:
“CS0121 The call is ambiguous between the following methods or properties [method/
property 1] and [method/property 2].” To resolve an ambiguity error, you need to give
the compiler enough information so it can determine which method to call.

Figure 9.9 The IsPositive extension method is available to all integers.
For example, airportID can call the IsPositive method.

211Implementing the Flight repository
public async Task CreateBooking(int customerID, int flightNumber) {

 if (customerID < 0 || flightNumber < 0)
 if (!customerID.IsPositive() || !flightNumber.IsPositive()) {
 Console.WriteLine($"Argument Exception in CreateBooking! CustomerID

➥ = { customerID}, flightNumber = { flightNumber}");
 throw new ArgumentException("invalid arguments provided");
 }
 …
}

An identical conditional in AirportRepository.GetAirportByID remains that I leave
for you to remove and replace. Not only do we now adhere to the DRY principle, but
the calls to the IsPositive extension method are more readable than checking
whether something is more than or equal to zero. A new developer would not intui-
tively know why we are checking whether something is more than zero. A random
hardcoded number like that is what we call a “magic number.” By writing code that is
explicit and doesn’t use a magic number, any developer can see that we are checking
whether customerID and flightNumber are not positive integers.

Magic numbers
Suppose we are writing code to handle the steering of a car. Imagine what a method
to move a car forward looks like. Have a look at the following code block. Is there
anything wrong with it?

public double MoveCarForward(double direction) {
 if (direction == 0 || direction == 360) {
 GoStraight();
 }

 if (direction > 0 && direction <= 90) {
 GoEast();
 }

 if (direction >= 270 && direction < 360) {
 GoWest();
 }
}

The MoveCarForward method has the following two interesting aspects:

 First, we know we can use a switch or switch expressions to condense this
code a bit, but we’ll let that one go. We just want to clean up the code with
minimal destruction of the existing pattern.

 Second, the code determines the direction the car moves in by comparing the
direction input argument against predefined numbers. The numbers represent
cardinal points in degrees as mapped out on a unit circle. That is not clear from
the current code unless you have that knowledge. Numbers that appear ran-
domly in code, hardcoded and without context, are what we call magic numbers.

212 CHAPTER 9 Extension methods, streams, and abstract classes
Of course, we need to run the unit tests for BookingRepository before we move on. I
advise running every unit test in your test suite every time you make a change instead
of limiting yourself to the tests in just the file you are messing with. Luckily, they pass.
This is good because the only thing we did so far was extract existing logic into an
extension method.

(continued)

These numbers (0, 90, 270, and 360) are meaningless unless we know the
context of what they should represent. We can do better than that.

When hardcoding numbers like that, you risk a developer unfamiliar with your inten-
tions changing the number to “fix” something. If you had provided more context
around what they represent, the code would be more readable, and the developer
would likely not have touched their values. To do this, I suggest extracting the num-
bers into private constants. The value of a constant is defined at compile time and
cannot change at run time. This ensures that the value never changes from what you
defined it to be.

With MoveCarForward, we can isolate four potential constants: DEGREES_NORTH_
LOWER_BOUND, DEGREES_NORTH_UPPER_BOUND, DEGREES_WEST, and DEGREES_EAST.
It is my preference to always use snake casing (all letters are uppercase and punc-
tuation, including spaces, are replaced by underscores) for constants, as shown
next. This clarifies that a given variable has an immutable, predefined value.

private const int DEGREES_NORTH_LOWER_BOUND = 0;
private const int DEGREES_NORTH_UPPER_BOUND = 360;
private const int DEGREES_WEST = 270;
private const int DEGREES_EAST = 90

public double MoveCarForward(double direction) {
 if (direction == DEGREES_NORTH_UPPER_BOUND || direction ==

➥ DEGREES_NORTH_LOWER_BOUND){
 GoStraight();
 }

 if (direction > DEGREES_NORTH_LOWER_BOUND && direction <=

➥ DEGREES_EAST){
 GoEast();
 }

 if (direction >= DEGREES_WEST && direction <

➥ DEGREES_NORTH_UPPER_BOUND)){
 GoWest();
 }
}

This code is much more readable. We know now exactly what the magic numbers rep-
resent. In fact, there are no magic numbers anymore. Whenever you see a hardcoded
numerical representation of anything, ask yourself, should I refactor this magic num-
ber to a constant or a local variable?

213Implementing the Flight repository

ts
 Let’s use our new extension method to validate the originAirportId and
destinationAirportId input arguments in FlightRepository.GetFlightByFlight-
Number, as shown in the next listing. In case one of the input arguments is invalid, we
throw an exception of type ArgumentException and log a message to the console.

public class FlightRepository {
 public async Task<Flight> GetFlightByFlightNumber(int flightNumber,

➥ int originAirportId, int destinationAirportId) {
 if (!originAirportId.IsPositive() ||

➥ !destinationAirportId.IsPositive())) {
 Console.WriteLine($"Argument Exception in

➥ GetFlightByFlightNumber! originAirportId = {originAirportId} :

➥ destinationAirportId = {destinationAirportId}");
 throw new ArgumentException("invalid arguments provided");
 }

 return new Flight();
 }
}

To prove our code works as expected, we create the next two unit tests:

 GetFlightByFlightnumber_Failure_InvalidOriginAirport

 GetFlightByFlightnumber_Failure_InvalidDestinationAirport

Both the unit tests should verify that the GetFlightByFlightNumber method throws
an exception of type FlightNotFoundException during execution of the respective
test as follows:

[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public async Task GetFlightByFlightNumber_Failure_InvalidOriginAirportId(){
 await _repository.GetFlightByFlightNumber(0, -1, 0);
}

[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public async Task
GetFlightByFlightNumber_Failure_InvalidDestinationAirportId(){
 await _repository.GetFlightByFlightNumber(0, 0, -1);
}

That takes care of the input validation for the originAirportId and destination-
AirportId input arguments. But what about flightNumber? We can quickly add a
conditional to check whether flightNumber is a positive integer. If flightNumber is
not a positive integer, we want to log a message to the console and throw an error of
our new exception type (I leave this for you to implement) called FlightNotFound-
Exception as follows:

Listing 9.9 GetFlightByFlightNumber airport Ids input validation

Calls the extension
method to validate
the input arguments

Logs the
invalid
argumen
to the
console

Throws an
ArgumentException

if the input is invalid

Returns a temporary
new instance of
Flight. We’ll change
this implementation
in section 9.6.2.

214 CHAPTER 9 Extension methods, streams, and abstract classes

Creat
pop

an in
of
if (flightNumber < 0) {
 Console.WriteLine($"Could not find flight in GetFlightByFlightNumber!

➥ flightNumber = {flightNumber}");
 throw new FlightNotFoundException();
}

We also need a unit test to prove that the GetFlightByFlightnumber method throws
an error of exception FlightNotFoundException when flightNumber is an invalid
input argument, as shown here:

[TestMethod]
[ExpectedException(typeof(FlightNotFoundException))]
public async Task GetFlightByFlightNumber_Failure_InvalidFlightNumber() {
 await _repository.GetFlightByFlightNumber(-1, 0, 0);
}

9.6.2 Getting a flight out of the database

Let’s recap what we have done so far with the FlightRepository and Flight-
RepositoryTests classes. In the previous sections, we created and partially implemented
a GetFlightByFlightNumber method in the FlightRepository class. The GetFlight-
ByFlightNumber method currently performs input validation on the input if argu-
ments (flightNumber, originAirportId, and destinationAirportID) and returns a
placeholder Flight instance. We also created three unit tests in the FlightRepository-
Tests class that check the input validations for their invalid input argument cases.

 In this section, we implement the actual logic to retrieve a Flight instance from
the database given its flight number. To do this, we take the same approach as we have
done so many times before. We query the database’s DbSet<Flight> for the matching
flight. If the database throws an exception, we log the problem to the console with a
developer-friendly message and throw a new exception. If all goes well, we return the
found object of type Flight. But first, let’s create the success case unit test and success
setup code in TestInitialize shown next.

[TestInitialize]
public async Task TestInitialize() {
 DbContextOptions<FlyingDutchmanAirlinesContext> dbContextOptions = new

➥ DbContextOptionsBuilder<FlyingDutchmanAirlinesContext>().UseInMemoryDat

➥ abase("FlyingDutchman").Options;
 _context = new FlyingDutchmanAirlinesContext_Stub(dbContextOptions);

 Flight flight = new Flight {
 FlightNumber = 1,
 Origin = 1,
 Destination = 2
 };

 context.Flight.Add(flight);

Listing 9.10 Testing GetFlight

es and
ulates
stance
 Flight

Adds the flight object to the EF
Core’s internal DbSet<Flight>

215Implementing the Flight repository

G

fro
da

-

 await _context.SaveChangesAsync();

 _repository = new FlightRepository(_context);
 Assert.IsNotNull(_repository);
}

[TestMethod]
public async Task GetFlightByFlightNumber_Success() {
 Flight flight = await _repository.GetFlightByFlightNumber(1, 1, 2);
 Assert.IsNotNull(flight);

 Flight dbFlight = _context.Flight.First(f => f.FlightNumber == 1);
 Assert.IsNotNull(dbFlight);

 Assert.AreEqual(dbFlight.FlightNumber, flight.FlightNumber);
 Assert.AreEqual(dbFlight.Origin, flight.Origin);
 Assert.AreEqual(dbFlight.Destination, flight.Destination);
}

The GetFlightByFlightNumber_Success unit test fails because we are returning a
temporary new (empty) instance of Flight in GetFlightByFlightNumber. We should
change that to return the first match in the database when given the flightNumber.
We can use the same pattern for returning a database entity we used in Airport-
Repository.GetAirportByID: use a LINQ FirstOrDefaultAsync call to select an entity
or return a default value (null in this case), followed by the null-coalescing operator,
which throws an exception in case of null, as shown next:

public async Task<Flight> GetFlightByFlightNumber(int flightNumber,

➥ int originAirportId, int destinationAirportId) {
 if (flightNumber < 0) {
 Console.WriteLine($"Could not find flight in GetFlightByFlightNumber!

➥ flightNumber = {flightNumber}");
 throw new FlightNotFoundException();
}

 if (!originAirportId.IsPositive() ||

➥ !destinationAirportId.IsPositive()) {
 Console.WriteLine($"Argument Exception in GetFlightByFlightNumber!

➥ originAirportId = {originAirportId} : destinationAirportId =

➥ {destinationAirportId}");
 throw new ArgumentException("invalid arguments provided");
 }

 return await _context.Flight.FirstOrDefaultAsync(f =>

➥ f.FlightNumber == flightNumber) ?? throw new FlightNotFoundException();
}

This code either returns the correct instance of Airport as found in the database or
throws an exception of type AirportNotFoundException. But who is to believe us
without seeing the success case unit test pass and having a failure case unit test ready
as well? Well, fear no more. With this code change, the GetFlightByFlightNumber_
Success unit test passes.

Saves the flight to
the in-memory
database

Executes
GetFlightByFlightNumber

ets the
flight
m the

tabase

Compares
the flight from
GetFlightByFlight
Number against
the database’s
flight

216 CHAPTER 9 Extension methods, streams, and abstract classes
 All that is left for us to do before we wrap up both the FlightRepository and this
chapter is to create a unit test that proves the GetFlightByFlightNumber method
exception of type FlightNotFoundException if the input arguments of flightNumber,
originAirportId, and destinationAirportId are correct but a database error threw
an exception, as shown next. We have done this a couple of times by now, so if you
want to give it a shot on your own before looking at the code: go ahead, I’ll wait.

[TestMethod]
[ExpectedException(typeof(FlightNotFoundException))]
public async Task GetFlightByFlightNumber_Failure_DatabaseException() {
 await _repository.GetFlightByFlightNumber(2, 1, 2);
}

And voilà! There it is: one finished FlightRepository. We now have the following
four repositories in our FlyingDutchmanAirlinesNextGen codebase:

 AirportRepository

 BookingRepository

 CustomerRepository

 FlightRepository

That means we wrapped up the repository portion of the refactor. In the next chapter,
we’ll go up one level in our architecture and implement the service layer. But here is
the excellent news: we have completed the heavy lifting. Implementing the repository
methods first guarantees usable and small methods that do only one thing (and do
them well). This helps us in the service layer, where we can say “give me A, B, and C”
and have methods that do each of those operations without side effects.

Exercises
EXERCISE 9.1
In test-driven development, the red stage means that

a Your code compiles and the test passes.
b Your code does not compile or/and the test does not pass.

EXERCISE 9.2
In test-driven development, the green stage means that

a Your code compiles and the test passes.
b Your code does not compile or/and the test does not pass.

EXERCISE 9.3
True or false? You cannot use the [DataRow] attribute if you have only one data point
to test with.

217Summary
EXERCISE 9.4
Data streams usually store their data as a sequence of what?

a Slow-moving water that ripples through the landscape
b Bytes

EXERCISE 9.5
True or false? Classes that do not have any derived classes are implicitly abstract.

EXERCISE 9.6
True or false? Every method in an abstract class also needs to be abstract.

EXERCISE 9.7
True or false? An abstract method can live in a nonabstract class.

EXERCISE 9.8
True or false? Abstract methods cannot contain a method body. They are supposed to
be overridden by derived classes.

Summary
 The abstract class Stream is used as the base for many derived classes such as

StringWriter and TextReader. We can use streams to deal with continuous
streams of data such as strings or integers.

 We can redirect the console output to an instance of type StringWriter. This is
helpful when testing console output because we can retrieve the contents of a
StringWriter and check for the expected logged data.

 An abstract class is a class with the abstract keyword attached. Abstract classes
cannot be instantiated or be static. Abstract classes support methods with bod-
ies (given the methods are not abstract). They are often used as base classes to
provide identical implementations of specific methods to all derived classes.

 The LINQ AddRange method allows us to add the contents of one collection (or
“range” of objects) to another collection. This saves a lot of manual typing and
iterating over collections.

 A SortedList<T> is a generic collection that automatically sorts the input data.
SortedLists are useful for when you need to have a sorted collection and do
not want to perform manual sorting.

 Extension methods are static methods that extend the functionality of the type
they perform operations on. Extension methods are often used to execute com-
monly used functionality on primitive types. This means that extension meth-
ods are often useful in fixing DRY principle violations.

 Magic numbers are hardcoded values that have no additional context attached to
them. You often find them in algorithms or conditionals. When seeing a hard-
coded number with no explanation, it is often hard to figure out what it rep-
resents. Consider refactoring it out into a local variable of a class-level constant.

Part 5

The service layer

In part 4, we looked at the repository layer and implemented its classes. We
touched on concepts like asynchronous programming, dependency injection,
coupling, stubbing, streams, and more. In this part, we go up one architectural
layer and implement the service layer classes. These chapters discuss (among
other things) reflection, mocks, yield return, and error handling.

Reflection and mocks
In chapters 6 through 9, we implemented the repository layer of our Flying-
DutchmanAirlinesNextGen project. In this chapter, we’ll refresh our knowledge of
the repository/service pattern and implement (partially) two of the four following
required service classes:

 CustomerService (implemented in this chapter)
 BookingService (implemented in this chapter and chapter 11)
 AirportService (implemented in chapter 12)
 FlightService (implemented in chapter 12)

Figure 10.1 shows where we are in the scheme of the book.

This chapter covers
 A refresher on using the repository/service

pattern and views

 Testing with mocks using the Moq library

 Detecting coupling in multilayered testing
architectures

 Using preprocessor directives

 Using reflection to retrieve assembly information
at run time
221

222 CHAPTER 10 Reflection and mocks
As you may have guessed, as with the repository classes, we want one service class per
database entity. We’ll discuss why in section 10.1, followed by the CustomerService
implementation in section 10.2 and the start of the BookingService implementation
in section 10.3.

 Throughout the next couple of chapters, the speed of implementation increases
once we get used to implementing a service class. Section by section, I take a more
hands-off approach, leaving more and more implementation details for you to code.
If you ever get stuck, you can always look back at the appropriate section for more
details.

10.1 The repository/service pattern revisited
In section 5.2.4, we discussed the repository/service pattern. I showed you how, in a
repository/service pattern, for every database entity (Customer, Booking, Airport,
Flight) we have the following:

 Controller
 Service
 Repository

These controllers, services, and repositories sit atop a single database access layer,
which we implemented in chapter 5. The request life cycle in our repository/service
pattern, shown in figure 10.2, sees an HTTP request enter a controller. The controller

+ Reflection and mocks: 10

Part 5: The service layer

+ Runtime type checking revisited

and error handling: 11

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Middleware, HTTP routing, and HTTP

responses: 13

+ JSON serialization/deserialization and

custom model binding: 14

Part 6: The controller layer

Figure 10.1 This chapter is the start of the service layer implementation. We’ll implement
CustomerService and BookingService in this chapter. In the following chapters, we’ll
implement AirportService and FlightService.

223The repository/service pattern revisited
calls its respective entity’s service class. The entity’s service class calls whichever
repository classes it needs to deal with, organizing the information it needs to return
to the user. The service class returns to the controller, who in turn returns all data to
the user.

 In chapters 5 through 9, we implemented the repositories required for our archi-
tecture. Now it’s time to do the same for the services. Because a service is merely the
middleman between the repository and controller, services are fairly light in com-
plexity. Don’t be mistaken, however: the service layer is perhaps the most important
layer of all. Without it, we would have no abstraction layer dealing with how we want
to represent data to the customer. A service class calls a collection of repository
methods and returns a view of the data to the controller. A service class serves the
controller with data.

10.1.1 What is the use of a service class?

In the United States, to buy a car you have to navigate a myriad of eager salespeople,
followed by hours of paperwork. Experiences at car dealerships are often an example
of bad service. When looking at software architecture, we can also see bad service in
service classes. If a service class returns things to the controller the user did not ask
for, we have an example of bad service on our hands.

 For example, let’s imagine we are developing an API for a car dealership. The deal-
ership wants to display any car from their inventory to the user, withhold some of the
more valuable information, such as the true value of the car (usually much less than
the price they are asking). Whether withholding information for corporate gain is bad
service depends on who you are. If you are the car dealership, this sounds very reason-
able. If you are a buyer, you want as much information as possible. So how would you
implement such an API?

 An API to return car information consists of the following usual suspects:

 A controller accepting HTTP GET requests when given a specific car’s ID
 A service layer that retrieves information from repositories and presents them

to the controller
 A repository that collects car instances from the database

Response

Request Controller Service Repository

Controller Service Repository
Database

Figure 10.2 The controller-service-repository life cycle. When a request enters, it goes to the
controller. The controller calls a service, which calls one or more repositories. Data flows down
from the controller and back up from the repository.

224 CHAPTER 10 Reflection and mocks
The service class calls methods from the repository and constructs what we call a view.
We discussed views in section 3.3.2, but here is a quick refresher: a view is a “win-
dow” into a class. Views allow us to manipulate and spin a class’s appearance to suit
our needs.

NOTE Sometimes people say ReturnView instead of view. They mean the
same thing and you can use them interchangeably. This book tries to stick
with view.

A view of a Car class may contain information such as the VIN, the make of the car, the
year the car was built, and the model of the car, as shown in figure 10.3. But because it
is just a “window” into the model, we can choose not to display the true value of the
car or the total number of crashes it has seen in the last six months, in our view.

A service class may also trace down foreign key constraints, retrieving information
where needed to compile a full image of the required data. We see foreign key con-
straints in action throughout this book. We’ll also take another, deeper dive into
the world of unit testing. Yes, dear reader: this chapter sees us using test-driven
development once again, but this time, we’ll use TDD combined with a new testing
concept: mocks.

Exercises
EXERCISE 10.1
In a repository/service pattern, what is the correct data flow for an incoming request?

a Repository -> service -> controller
b Controller -> service -> repository

EXERCISE 10.2
True or false? A service class (in a repository/service pattern) typically directly inter-
acts with a database.

EXERCISE 10.3
True or false? When using a view, we can return a unified presentation of multiple dif-
ferent data sources.

VIN CarValue

CarID

ModelBrand

Year, Brand, Model View

Year

Figure 10.3 A view is a collection of elements
taken from one or multiple models, presented in
a way that makes sense for the user. In this
example, we took the Year, Brand, and
Model properties from the Car class.

225Implementing the CustomerService
EXERCISE 10.4
True or false? People often use view and ReturnView interchangeably to refer to the
same concept.

10.2 Implementing the CustomerService
Are you ready to implement your first service? In this section, we’ll implement the
CustomerService class. This class allows us to funnel information to and from a con-
troller and the CustomerRepository.

10.2.1 Setting up for success: Creating skeleton classes

What is the first thing we should do when starting work on a new class? Right, create
an accompanying unit test class. I do not show you how to create a test class this time;
just make sure you create one with a public access modifier and with a TestInitial-
ize method (no need to add anything to the TestInitialize method for now). Also,
to keep things somewhat organized, let’s mimic the folder structure we followed with
the repository test classes and create a ServiceLayer folder in the FlyingDutchman-
Airlines_Tests project, as shown in figure 10.4.

Before we can create a success case unit test, we need to figure out what methods we
need in the CustomerService class. You may recall that in chapter 7 we implemented
the following two methods in CustomerRepository:

 CreateCustomer
 GetCustomerByName

Should we mimic those method names in the CustomerService class? Well, yes, to an
extent. If we maintain an isomorphic relationship between method names in the
repository and the service, it makes our code more readable because we build up cer-
tain expectations. If a developer sees a method called GetCombineHarvester in both a
service and repository class, the developer expects the service version of the Get-
CombineHarvester method to call the repository version of the same method. Let’s
not let down the intuition of our fellow developers. Of course, a service method may
call multiple repository methods, so pick the one that best reflects your intentions.

NAMING SERVICE LAYER METHODS When deciding on a name for your service
layer method, consider naming the method the same as the main repository
layer method you call. This helps build intuition and makes your code more
navigable.

Figure 10.4 The CustomerServiceTests
file lives in the ServiceLayer folder inside
the FlyingDutchmanAirlines_Tests project.

226 CHAPTER 10 Reflection and mocks
That being said, no controller calls the CreateCustomer or GetCustomerByName meth-
ods directly. Instead, the only interaction we ever have with the Customer entity is
through other services. How do we know a controller will not call a service directly? In
figure 10.5, we see the following three required endpoints as laid out by the contract
between Flying Dutchman Airlines and FlyTomorrow (discussed in sections 3.1 and 3.2):

 GET /Flight
 GET /Flight/{FlightNumber}
 POST /Booking/{FlightNumber}

None of those endpoints interacts directly with the Customer entity. The word “cus-
tomer” does not show up either in an endpoint path or as a path parameter. I am pro-
posing something quite radical: if no controller ever calls a service, we do not need
said service. In fact, we can go as far as saying that we do not need a controller for that
entity, either. It would never get called anyway. In other words, we do not need a
CustomerService, nor do we need a CustomerController. Well, that really opens up
our day, doesn’t it? I always appreciate less work.

Figure 10.5 The three endpoints required by FlyTomorrow as discussed in chapter 3. There are two
GET endpoints and one POST endpoint.

227Implementing the CustomerService
10.2.2 How to delete your own code

At this point, I ask you to do something that may end up being the highlight of your
day: deleting code. I’m quite serious about that. If deleting code makes you uneasy,
this section is for you. I want you to view deleting code as a Zen-filled experience.
Allowing yourself to delete your own code when you find an alternative approach
(that works better) is a key skill for a developer and is harder than you think.

 In section 10.2.1, we created the following two classes:

 CustomerService

 CustomerServiceTests

The CustomerServiceTests class contains an unimplemented TestInitialize method.
We also determined that we don’t need the CustomerService and CustomerService-
Tests classes because they would never be called by a controller. In the real world, I
am unequivocally in favor of deleting code that needs to go. Think about empty
classes, commented-out code, and incorrect implementations. If you are worried about
breaking existing code (and you should be), then I hope you have a full suite of tests
you can rely on to verify the correctness of your refactoring. You should also use a
source control system so you can revert to a previous state if the deletion of code has
unexpected side effects (you should always use a source control system).

Deleting code
Deleting code is scary. A commonly used phrase for hesitation to delete your own
work is “kill your darlings.” Often, however, to deliver the best work possible, you
have to swallow your pride and delete your own (usually beautiful and elegant) code.
If you delete your code in favor of a better implementation, it is not defeat—quite
the opposite, it is a win. Even if you did not write the new implementation yourself,
you should consider this to be a positive change. The fresh approach is undoubtedly
more readable and maintainable, saving yourself (and others) a lot of heartache
down the road.

I want to draw your attention to a special case where you should be merciless in delet-
ing code, both of your own design and of others: commented-out code. I’m going to
say it, and I bet some of you disagree with me: commented-out code has no place in
a production codebase. Period. You do not merge commented-out code into the main
branch. Think about why the code is commented out in the first place. Is it something
that is an alternative approach to a solution? Is it an old implementation? Is it a half-
assed new implementation? Is it something that you might need in the future
(unlikely)? In my humble opinion, those reasons are not good enough to warrant you
spoiling my beautiful codebase with an ugly block of commented-out code. If you want
commented-out code in the codebase, you can either make it work (and uncom-
mented it), or you must not need it that badly.

For example, the following code block contains a method with an implementation but
has a comment with a different implementation:

228 CHAPTER 10 Reflection and mocks
So, grab your favorite destructive way to delete something (virtually; don’t go using a
jackhammer on your laptop—the publisher and I are not liable for your regrettable
life choices). I am partial to the good old command-line remove command shown in
figure 10.6: del /f [file] in Windows and rm -rf [file] in macOS.

There, didn’t that feel powerful? I sure got a boost out of it, but that might tell you
more about me than necessary. Let’s move on and do some actual work, shall we?

Exercises
EXERCISE 10.5
Why do we want to use the same name for a service class method name as the reposi-
tory method it calls?

a This establishes an isomorphic relationship between the two methods and helps
create valid expectations for other developers.

b We don’t want to do that. The code would not compile if the service and repos-
itory classes contained methods with the same name.

c We do want to do that, but only if there is a verb in the method name.

(continued)

// This code is too complicated! There is a better way.
// public bool ToggleLight() => _light = !_light;

public bit ToggleLight() => _light ^= 1;

Now, the comment in the code has a valid point. The IsToggleLight method running
uses a bitwise XOR operator to flip the _light bit. The implementation in the com-
ment may be easier to read, indeed. It also comes with some unknowns, however,
because it changes the return type of the ToggleLight method and the underlying
type of _light (both from bit to bool), but we could deal with that. Why was this
code never uncommented or implemented, though? Did it not pass code review?
Does it not work? Is this a passive-aggressive “for future reference” comment by a
disgruntled senior engineer or a new developer trying to impress somebody? It
doesn’t matter.

Figure 10.6 To delete a file in the Windows command line, use the del /f [FilePath] syntax. Feeling a
surge of power and yelping “by the power of the gods!” is optional.

229Implementing the BookingService
EXERCISE 10.6
You encounter a commented-out line of code that seems to indicate an alternative
approach to the currently running code. What do you do?

a Leave it be. It is not your problem.
b Ask for clarification by adding questions to the original comment.
c Figure out why it is there, and, in most cases, delete the commented-out code.

EXERCISE 10.7
What does the ^ operator represent?

a A logical OR operation
b A logical AND operation
c A logical NAND operation
d A logical XOR operation

EXERCISE 10.8
What is the effect of using the ^= operator on a Boolean value?

a The Boolean value flips (true becomes false, false becomes true).
b Nothing (true stays true, false stays false).
c The Boolean value flips twice (true stays true, false stays false).

10.3 Implementing the BookingService
After the refresher of the repository/service pattern in section 10.1 and the false start
to implementing an actual service class in section 10.2, we are finally at the point
where we start work on an actual service class—no joke this time. In this section, we’ll
implement a service for the Booking entity.

 When we discussed the need for service classes in section 10.2, we talked about not
needing a dedicated service layer if no controller class is ever going to call the respec-
tive service. This is some good advice, even if I say so myself, so let’s repeat that exer-
cise for the BookingService class. Is there an API endpoint that needs to use the
Booking entity directly? Well, let’s look at the following three required endpoints per
the FlyTomorrow contract again:

 GET /Flight
 GET /Flight/{FlightNumber}
 POST /Booking/{FlightNumber}

The POST /Booking/{FlightNumber} endpoint directly deals with the Booking entity,
as is evident from the path. FlyTomorrow uses the POST endpoint to create a new
booking in the database. And because we need to have a BookingController to
accept the HTTP request, it stands to reason that we should call a BookingService
from that controller. Remember that a service layer’s goal is to collect and organize
data from repositories. So, to create a booking, a controller calls a method in the
BookingService class, which calls the needed repositories to perform its promised
duty, as shown in figure 10.7.

230 CHAPTER 10 Reflection and mocks
By thinking about what functionality the BookingService should provide, we can
come up with the method needed to create a new booking: an asynchronous public
method that calls the BookingRepository.CreateBooking and returns the appro-
priate information to a controller. Here, the appropriate information could be a
Task<(bool, Exception)> representing that the CreateBooking method has executed
and completed. If the booking was unsuccessful, we get a false Boolean along with the
exception that the CreateBooking method threw: (false, thrownException). If the
booking was successful, we return a true Boolean and a null pointer (if you enabled
nullable reference types, you may have to make Exception a nullable type by postfix-
ing a question mark character: Exception?). If you don’t want to define a Boolean
return, you could alternatively rely on Task’s internal IsCompleted bool.

 We should also look at the database schema (figure 10.8). The Booking model has
the following two foreign key constraints:

 An outgoing foreign key constraint to Customer.CustomerID
 An outgoing foreign key constraint to Flight.FlightNumber

As part of our input validation, we should check whether the passed-in values repre-
senting CustomerID and FlightNumber are valid. We validate the values passed in by
calling the appropriate repository’s methods (in this case, CustomerRepository.Get-
CustomerByID and FlightRepository.GetFlightByFlightNumber). Validating the
input arguments also begs the question: what do we do if the passed-in CustomerID or
FlightID does not exist in the database? If the customer does not exist in the data-
base, that means they have not booked a flight with Flying Dutchman Airlines before.
We don’t want to lose any customers (and, therefore, revenue), so we call the Customer-
Repository.CreateCustomer method (implemented in chapter 11). If a flight does
not exist, the booking is unsuccessful because we do not have the authority to add a
new flight whenever we want.

 We will call our method CreateBooking, because that is what we do in the method,
and require two integers for input parameters (customerID and flightNumber). To
call the BookingRepository.CreateBooking method, we first need to instantiate an

BookingController BookingService BookingRepository

Request

Response

Request enters

controller.

Controller asks

for information.

Service delegates

work to repository.

Repository returns

database data.

Service creates

view for controller.

Controller returns

view to user.

Figure 10.7 The life cycle of the Booking entity. A request is handled through the
BookingController (not yet written), which calls the BookingService, which calls the
BookingRepository. Then, the path is walked back to the caller.

231Implementing the BookingService
instance of type BookingRepository. If you remember, when we implemented Booking-
Repository in chapter 8, we required an instance of FlyingDutchmanAirlinesContext
in the repository’s constructor. This was so we could “inject” the dependency and not
worry about how it gets instantiated. Well, we have to worry about that now because we
want to instantiate a BookingRepository and need to pass in the required Flying-
DutchmanAirlinesContext dependency. Maybe we can kick the can a little further
down the road instead. If we require the injection of an instance of BookingRepository
into the constructor of BookingService, as shown in the next listing, our problem is
solved . . . for now.

public class BookingService {
 private readonly BookingRepository _repository;

 public BookingService(BookingRepository repository) {
 _repository = repository;
 }
}

So, where do we get this instance of BookingRepository from at runtime? We may not
want the controller layer to mess with instantiating it because that would couple the
repository layer to the controller layer. This sounds to me like unwanted tight cou-
pling because the repository layer is already coupled to the service layer, and the ser-
vice layer is coupled to the controller layer, as shown in figure 10.9.

Listing 10.1 Injecting BookingRepository into BookingService

Figure 10.8 The Flying Dutchman Airlines database schema. The Booking model
has two outgoing foreign key constraints: one to Customer.CustomerID and
one to Flight.FlightNumber.

The backing field for
the injected instance

Injects an
instance of
BookingRepository

We can assign
readonly fields only
in a constructor

232 CHAPTER 10 Reflection and mocks
How do we avoid having to create an instance of BookingRepository in the controller
without losing the ability to create and use an instance of BookingService? The
answer lies in plain sight: dependency injection. When we get to the controller layer,
we inject an instance of BookingService into the BookingController. How this Book-
ingService is instantiated is a mystery I leave for you to ponder (we’ll discuss how to
set up dependency injection at service launch in chapter 13). For now, it suffices to
understand the basics of dependency injection and how we use it in conjunction with
BookingService. The BookingService should also have an injected instance of type
CustomerRepository so we can get customer details before booking them on a flight.
I leave this for you to do. If you get stuck, follow the preceding paragraphs. Of course,
you may want to rename the _repository variable to something along the lines of
_bookingRepository before injecting the CustomerRepository type, but that is up to
you. Think about what you would most like to see. What is most readable?

 Before we continue with the actual implementation of the BookingService.Create-
Booking method, we should create the backing unit test—we should at least attempt
to adhere to test-driven development practices. If you have not done so already, create
a skeleton test file (in a folder called ServiceLayer) called BookingServiceTests in
the FlyingDutchmanAirlines_Tests project, as shown in figure 10.10.

 To start our unit test, create a unit test method called CreateBooking_Success that
instantiates a BookingService and calls the (still imaginary) CreateBooking method as
shown next.

Coupled to BookingService Coupled to BookingRepository

Instance of BookingService Instance of BookingRepository

Tight coupling between andBookingController BookingRepository

Loose coupling between andBookingController BookingRepository

BookingRepository

Coupled to BookingService Coupled to BookingRepository

Instance of BookingRepository

BookingService BookingRepository

Instance of BookingService

BookingController

Instance of BookingRepository

BookingService BookingRepositoryBookingController

Figure 10.9 If we have an instance of BookingRepository inside BookingController, we
have a tight coupling between the two classes. If BookingController indirectly calls
BookingRepository through BookingService, we have loose(r) coupling.

233Implementing the BookingService

in-m
da
[TestClass]
public class BookingServiceTests {
 private FlyingDutchmanAirlinesContext _context;

 [TestInitialize]
 public void TestInitialize() {
 DbContextOptions<FlyingDutchmanAirlinesContext> dbContextOptions = new

➥ DbContextOptionsBuilder<FlyingDutchmanAirlinesContext>()

➥ .UseInMemoryDatabase("FlyingDutchman").Options;

 _context = new FlyingDutchmanAirlinesContext_Stub(dbContextOptions);
 }

 [TestMethod]
 public async Task CreateBooking_Success() {
 BookingRepository repository = new BookingRepository(_context);
 BookingService service = new BookingService(repository);
 (bool result, Exception exception) =

➥ await service.CreateBooking("Leo Tolstoy", 0);
 }
}

On the surface, it seems we just have to deal with the inevitable compilation error say-
ing that the compiler cannot find the CreateBooking method in BookingService. We
expected that error and can deal with it: add a skeleton method called CreateBooking
in the BookingService class. We’ll have the CreateBooking method accept two parame-
ters: an integer containing the customer name and an integer for the flight number,
as follows:

public async Task<(bool, Exception)>

➥ CreateBooking(int customerName, int flightNumber) {
 return (true, null);
}

There is another problem in listing 10.2: a snippet of code that is logically sound but
won’t quite do. I am talking about how we instantiate the BookingService in the
assignment to the service variable as follows:

BookingService service = new BookingService(repository);

Listing 10.2 A skeleton CreateBooking_Success unit test

Figure 10.10 The BookingServiceTests file lives in the ServiceLayer
folder inside the FlyingDutchmanAirlines_Tests project.

Sets
up an

emory
tabase

Creates a BookingRepository instance,
injecting the database context

Creates a BookingService
instance, injecting the

BookingRepository instance

234 CHAPTER 10 Reflection and mocks
In the next section, we’ll dissect the problem with this assignment further.

10.3.1 Unit testing across architectural layers

In this section, I’ll introduce you to the concept of scoping your unit tests to only your
immediate architectural layer. This section contains a somewhat unique element for a
technical book: a Socratic dialogue.

 Because the BookingService requires an injected instance BookingRepository
(through its only available constructor), we simply created a new instance of Booking-
Repository in listing 10.2. This is perfectly legitimate code in terms of syntax. But I
want to convince you otherwise. Let’s perform an experiment in (somewhat untrue to
form and inspired by Alcibiades II) the following Socratic dialogue:

PERSONS OF THE DIALOGUE: Socrates and Phaidra

Setting: A cubicle somewhere deep in Mount Olympus

SOCRATES: Are you testing the BookingService, Phaidra?

PHAIDRA: Yes, Socrates, I am.

SOCRATES: You seem troubled and cast your eyes to the ground. Are you
thinking of something?

PHAIDRA: Of what am I supposed to be thinking?

SOCRATES: Oh, of all kinds of things, I suppose. Perhaps how to correctly
test a code base, or the airspeed velocity of an unladen swallow?

PHAIDRA: Certainly.

SOCRATES: Do you not imagine, then, that it is of the utmost importance
that you determine what you are testing before you test it?

PHAIDRA: Certainly, Socrates. But you are speaking like a mad man; surely
you do not offer that I do not know what I test?

SOCRATES: Well, then, let’s discuss what it means to test something correctly.
Does testing an ox cart mean you test the ox? Does testing the pluck of a lyre
mean you test Apollo’s skill like Marsyas, the Muses, and the Nysean nymphs?

PHAIDRA: Certainly not.

SOCRATES: Nor does the accurate representation of the scribe’s hand reflect
a test on the orator’s vocals?

PHAIDRA: That is my opinion.

SOCRATES: Then does one need to test, and have an accurate representa-
tion of, a repository when dealing with a service?

PHAIDRA: Socrates, you are devious and cunning.

235Implementing the BookingService
SOCRATES: So, we are agreed that if you test the BookingService class, do
you need to also test the BookingRepository class?

PHAIDRA: We are agreed.

Even in ancient Greece, how to properly test code was a hot topic! Let us ask ourselves
a question: what do we want to test in the BookingService unit tests? Should we verify
that the BookingService returns the correct output when given an appropriate input?
Yes, that sounds about right. Should we also test whether BookingRepository does the
same? Well, yes, to a point.

 If BookingRepository does not function correctly, it has unwanted consequences
for BookingService. In testing BookingService, can we not assume that Booking-
Repository works correctly because we already have unit tests in place for that class?
Well, yes, that makes some sense. If we could somehow skip the BookingService code
and have it return valid information when we want it, we could control all the code
execution in the repository layer during the test. Additionally, if we instantiate a
BookingRepository and inject that into BookingService, the tests would operate on
the actual BookingRepository instance and, therefore, on the in-memory database as
well, as shown in figure 10.11.

When testing a multilayered architecture (such as the repository/service pattern we
are using), you typically don’t need to test the actual logic of a tier down from what
you are working on. If you are testing the repository layer, you can stub or mock the
database access layer (which is what we did with the FlyingDutchmanAirlinesContext
_Stub class). If you are testing the service layer, you don’t need to verify the logic of
the repository layer.

10.3.2 The difference between a stub and a mock

Throughout the book, we used the FlyingDutchmanAirlinesContext_Stub to unit-
test the repository layer of our FlyingDutchmanAirlines project. In this (and the fol-
lowing) section, I’ll introduce you to another approach to controlling code execution
during tests: mocks. We’ll also look at the difference between a stub and a mock.

Repository

Testing a repository Testing a service Testing a controller

Mock layer

Testing layer

Controller

Service

Repository

Testing layer
Stubbed layer

Testing layer

Controller

Service

Controller

Service

Repository

Figure 10.11 In a multilayered architecture, we test only the layer we are executing
code in and mock or stub one layer down. As a result, we don’t interact with layers
further down.

236 CHAPTER 10 Reflection and mocks
 A stub is very helpful when we want to execute different code than what the origi-
nal class does. For example, the context.SaveChangesAsync method saves the changes
made to the internal DbSets of Entity Framework Core to the database. In section 8.4,
we wanted to execute a different version of the method, so we made a stub (Flying-
DutchmanAirlinesContext_Stub) and overrode the parent class’s SaveChangesAsync
method.

 In a mock, we do not provide any new implementation for a method. When we use
a mock, we tell the compiler to instantiate a type of Mock<T> that masquerades as T.
Because of the Liskov substitution principle, we can use the mock as type T. Instead of
an actual instance of class T being instantiated and injected into a constructor, we
instantiate and inject the mock.

 In our case, we want a Mock<BookingRepository>. When, during a test, the code in
BookingService calls this mock’s CreateBooking, we want to do one of two following
things:

 Immediately return from the method (without actually creating the booking in
the database) when we want to mimic a success condition.

 Throw an Exception when we want to mimic a failure condition.

Because we need to do only these two simple things, and we do not have to perform
any logic that checks for entities within the in-memory database (like we do in the
stub), it is easier to use a mock. You’re not convinced? Well, hang on to your hats and
read the next section.

10.3.3 Mocking a class with the Moq library

In section 10.3.2, we briefly discussed the difference between a mock and a stub. It’s
now time for me to show you how we can use a mock in practice and what we need to
do to make that happen. First, neither C# nor .NET 5 has dedicated mocking func-
tionality, so we need to use a third-party (open source) library to mock our classes:
Moq. Of course, you can use plenty of other mocking libraries or frameworks (Telerik
JustMock, FakeItEasy, and NSubstitute are examples). I chose Moq because it is widely
used and easy to work with.

 To install Moq, you can either use the NuGet package manager within Visual Stu-
dio or use the command line in the FlyingDutchmanAirlines_Tests folder as we did in
section 5.2.1 and as shown next:

>\ dotnet add package Moq

This command adds the Moq package to the FlyingDutchmanAirlines_Test project.
To verify the Moq package was added, you can either check Visual Studio for a Moq
reference or open up the FlyingDutchmanAirlines_Test.csproj file and look for a
Moq package reference, as shown in figure 10.12.

 Before we can use Moq, we have to import its namespace into the Booking-
ServiceTests class. To create a mock of type BookingRepository and return the

237Implementing the BookingService
appropriate output from the CreateBooking method (a completed Task) we need to
do the following:

 Instantiate a Mock<BookingRepository>.
 Set up the Mock<BookingRepository> to return a completed task when we call

CreateBooking.

We know how to do the first item on the list—instantiate a Mock<BookingRepository>—
because instantiating a mock is no different from instantiating any other class. Let’s
create our instance of the mock in the CreateBooking_Success unit test as follows:

Mock<BookingRepository> mockRepository = new Mock<BookingRepository>();

You can use the mock.Setup([lambda expression to call method])).[return] syn-
tax to set up a mock where a method returns a specific value when called. Because we
want to call (and mock) the CreateBooking method, the lambda expression we can
use is repository => repository.CreateBooking(0, 0). We follow this by specifying
what we want to return: Returns(Task.CompletedTask), as shown next.

Mock<BookingRepository> mockRepository = new Mock<BookingRepository>();
mockRepository.Setup(repository =>

➥ repository.CreateBooking(0, 0)).Returns(Task.CompletedTask);

Unfortunately, the code in listing 10.3 won’t run correctly. Moq throws a runtime
exception, shown in figure 10.13, saying it cannot instantiate a mock from a class it
cannot override.

Listing 10.3 Setting up a mock of BookingRepository and calling CreateBooking

FlyingDutchmanAirlines_Tests.csproj
Visual Studio Solution Explorer

Figure 10.12 A reference to a package is added to a project’s .csproj file. Visual Studio scans this
file and shows the added packages in the Solution Explorer panel. Edits made in the .csproj or Visual
Studio automatically trickle down to both places.

We instantiate a new mock instance of BookingRepository.

If the mock calls CreateBooking with two parameters
with zero values, returns a Task.CompletedTask

238 CHAPTER 10 Reflection and mocks
The BookingRepository.CreateBooking is not a virtual method, so Moq cannot over-
ride the method to implement a new version of it. Moq also needs to be able to call a
parameterless constructor, which the BookingRepository does not have.

 To remedy these two issues, we first make the BookingRepository.CreateBooking
method virtual as follows:

public virtual async Task CreateBooking(int customerID, int flightNumber)

Then, we create a parameterless constructor for BookingRepository like so:

public BookingRepository() {}

But it would be a shame if all our work making sure developers instantiate an instance
of BookingRepository through the constructor with the injected FlyingDutchman-
AirlinesContext goes out the window. I really would like for the new constructor to
have an access modifier of private, but then the unit tests wouldn’t be able to access
them (because the unit tests live in a different assembly than the repository layer).
There are a couple of tricks that can help us here. The three most used follow:

 Use the [assembly: InternalsVisibleTo([assembly name])] attribute.
 Use the #warning preprocessor directive to generate a compiler warning.
 Verify that the executing assembly does not match the non–unit test assembly.

 Let’s unpack them one by one.

THE INTERNALSVISIBLETO METHOD ATTRIBUTE

First, the [assembly: InternalsVisibleTo([assembly name])] attribute, which you
can apply only to assemblies, allows a different assembly (the FlyingDutchmanAirlines
_Tests.ServiceLayer assembly, in our case) to access and manipulate methods,
properties, and fields of the containing assembly (FlyingDutchmanAirlines) flagged
with the internal access modifier. When the CLR sees the InternalsVisibleTo attri-
bute, it notes the given assembly and designates it as a “friend” assembly to the one it

Figure 10.13 Moq throws a runtime exception because we tried to mock a class that is not
overridable.

239Implementing the BookingService
is trying to access the internals of. In practical terms, the CLR treats a friend assembly
as the same assembly as the containing assembly when it comes to compiling down to
Intermediate Language.

 The problem with using friend assemblies and the InternalsVisibleTo attribute
approach is that the InternalsVisibleTo attribute is incredibly finicky. There are
oodles of pages on Stack Overflow with questions about how to get the attribute work-
ing correctly. Besides the usability issue, we also aren’t very keen on testing private
methods. Ideally, we would test all private methods through the public methods that
use them. Tests should not walk any paths that a normal user would not walk. Because
a normal user does not interact with a class by calling its private methods, neither
should a unit test. The InternalsVisibleTo method attribute is a good thing to know
about, but not a practical thing to use. The real pro tip when it comes to Internals-
VisibleTo is to save yourself the heartache of using it and just don’t.

TIP For more information on method and member accessibility, see the
“bible” of the CLR: Jeffrey Richter’s CLR via C# (4th edition; Microsoft Press,
2012). Be aware, however, that this book assumes a lot of the knowledge cov-
ered in this book.

PREPROCESSOR DIRECTIVES (#WARNING AND #ERROR)
Second, we can use preprocessor directives in our source code. Preprocessor direc-
tives are commands starting with the # character that are resolved before compilation.
The compiler scans the codebase for preprocessor directives and executes them
before compilation. To deal with compilation warnings and errors, we can use the
#warning and #error preprocessor directives. #warning throws a compiler warning,
and #error throws a compiler error when warnings and errors are encountered. To
add a compiler warning through the #warning directive in our public parameterless
constructor, add the directive along with a message to the constructor. It is good to
note that we always insert preprocessor directives into the source code with no inden-
tation (be they spaces or tabs), as follows:

 public BookingRepository() {
#warning Use this constructor only in testing
 }

Using the #warning preprocessor directive works decently well, but if we have a lot of
#warning directives, our compilation process would cause a lot of warnings, diminish-
ing the value of them collectively and making it easy to overlook other warnings. The
other downside is that just because there is a warning doesn’t mean that a developer
pays attention to it. See figure 10.14 for an example.

MATCHING EXECUTING AND CALLING ASSEMBLY NAMES

Third, I propose the possibility of doing a bit of a programmatic hack: by using reflec-
tion, we can access the name of the executing or calling assemblies (for a discussion
on what assemblies are, see section 2.3.1). When we call the parameterless constructor

240 CHAPTER 10 Reflection and mocks
of BookingRepository.CreateBooking from a class inside the FlyingDutchmanAirlines
assembly, the calling assembly is FlyingDutchmanAirlines. If we call the same construc-
tor from a different assembly, let’s say, the FlyingDutchmanAirlines_Tests assembly,
the CLR does not have the required info to provide us with the executing assembly
name because it often can retrieve information only on the executing assembly.

 We can take advantage of this by checking whether the calling assembly is equal to
the currently executing assembly. If it is, somebody is being sneaky and instantiating
BookingRepository in the wrong way. Of course, checking assembly names against
each other is not foolproof. Somebody could create a new assembly and use the incor-
rect constructor, but the amount of effort to do that makes it unlikely. We access the
names of the calling and executing assemblies by using the Assembly class, as shown
in the next listing.

public BookingRepository() {
 if(Assembly.GetExecutingAssembly().FullName ==

➥ Assembly.GetCallingAssembly().FullName) {
 throw new Exception("This constructor should only be used for

➥ testing");
 }
}

With the code in listing 10.4, if a developer tries to instantiate an instance of Booking-
Repository from within the FlyingDutchmanAirlines assembly and does not use the
appropriate constructor, the code throws an Exception at runtime because the names
of the executing assembly and calling assembly match.

 There is one caveat with using reflection to get the name of a calling assembly: the
CLR uses the last executed stack frame to get the calling assembly name, but if some
of the code was inlined by the compiler, there is a chance that this stack frame does
not contain the correct information.

Listing 10.4 Comparing executing and calling assembly names

Compiler method inlining
During compilation, when a compiler encounters a call to a method in a different
class, it is often beneficial for performance to replace the method call with the body
of the called method. This decreases the amount of cross-file computation and, in

Figure 10.14 The #warning preprocessor directive
generates a compiler warning with the given string. Here we
see the compiler warning as shown in Visual Studio 2019.

Compares the executing
assembly against the
calling assembly names

Throws an exception
if the constructor is
accessed incorrectly

241Implementing the BookingService
Luckily, we can tell the compiler to not inline the code in a specific method by using
the method implementation (MethodImpl) method attribute. The MethodImpl method
attribute allows us to specify how the compiler should treat our method, and lo and
behold, one option is to stop the compiler from inlining a given method. Let’s add the
MethodImpl method attribute to the constructor and ask the compiler not to inline
the method, as shown here:

[MethodImpl(MethodImplOptions.NoInlining)]
public BookingRepository() {
 if (Assembly.GetExecutingAssembly().FullName ==

➥ Assembly.GetCallingAssembly().FullName) {
 throw new Exception("This constructor should only be used for

➥ testing");
 }
}

Coming back to the CreateBooking_Success unit test, we now have a Mock<Booking-
Repository> instance that we can inject into the BookingService. Injecting an
instance of mock into the BookingService allows us to test the BookingService with-
out worrying about the implementation details of the BookingRepository class. To
inject a Mock<T>, we need to use the mock’s underlying object, which is the actual
mocked object: Object. If we do not use the Object property of a mock, we pass in the
actual instance of type Mock<T>, which does not match the required dependency. To
use a mock’s Object property, you call the [mock].Object property, as shown in the
following listing.

[TestMethod]
public async Task CreateBooking_Success() {
 Mock<BookingRepository> mockBookingRepository = new

➥ Mock<BookingRepository>();

general, improves performance. There is a point of diminishing returns, however.
When the called method is very large and contains calls to other large methods, the
compiler can get stuck in a rabbit hole. The compiler then copies the bodies of deeply
nested methods into the original calling class, and before you know it, your class
blows up in size and complexity. Modern compilers are very good at detecting this
sort of thing, so in general, it is not something you need to worry about.

Additionally, compilers generally do not attempt to inline recursive methods because
it would result in the compiler being stuck in an infinite loop where it tries to copy the
body of the same method into itself into perpetuity. For more information on compiler
inlining (and compilers in general), see Alfred V. Aho, Monica S. Lam, Ravi Sethi, and
Jeffrey D. Ullman’s Compilers: Principles, Techniques & Tools (2nd edition; Pearson
Education, 2007).

Listing 10.5 Injection a mocked instance into RepositoryService

Creates a mock of
BookingRepository

242 CHAPTER 10 Reflection and mocks

n
s
g
 mockBookingRepository.Setup(repository =>

➥ repository.CreateBooking(0, 0)).Returns(Task.CompletedTask);

 BookingService service = new

➥ BookingService(mockBookingRepository.Object);
 (bool result, Exception exception) =

➥ await service.CreateBooking("Leo Tolstoy", 0);

 Assert.IsTrue(result);
 Assert.IsNull(exception);
}

We also need a mock of the CustomerRepository that returns a new Customer object
when we call GetCustomerByName. We know what to do now. Go ahead and add the
virtual keyword to the GetCustomerByName method, and make sure that we can mock
the CustomerRepository (add a constructor similar to what we did for the Booking-
Repository), shown next:

[TestMethod]
public async Task CreateBooking_Success() {
 Mock<BookingRepository> mockBookingRepository = new

➥ Mock<BookingRepository>();
 Mock<CustomerRepository> mockCustomerRepository = new

➥ Mock<CustomerRepository>();

 mockBookingRepository.Setup(repository =>

➥ repository.CreateBooking(0, 0)).Returns(Task.CompletedTask);
 mockCustomerRepository.Setup(repository =>

➥ repository.GetCustomerByName("Leo

➥ Tolstoy")).Returns(Task.FromResult(new Customer("Leo Tolstoy")));

 BookingService service = new

➥ BookingService(mockBookingRepository.Object,

➥ mockCustomerRepository.Object);
 (bool result, Exception exception) =

➥ await service.CreateBooking("Leo Tolstoy", 0);

 Assert.IsTrue(result);
 Assert.IsNull(exception);
}

In terms of test-driven development, we are currently in the green stage and attempt-
ing to go to the red stage. Before we go on, we should do some quick cleanups.
Because we are using a mock, we do not need to use the stub of FlyingDutchman-
AirlinesContext or the dbContextOptions in this test class. We should remove the
instantiation of the stub, the corresponding backing field, and dbContextOptions
from the TestInitialize method now. I leave this for you to do.

 If we run our tests now, we see that they pass. Unfortunately, they pass for the wrong
reasons. In section 10.3, we added a skeleton body to BookingService.CreateBooking
along with a hardcoded return value. This is what makes the CreateBooking_Success

Sets up the
correct retur
of the mock’
CreateBookin
method

Injects the
mock into the
BookingService

The CreateBooking method
returns a named tuple.

243Implementing the BookingService
unit test pass. An important lesson to keep in mind with unit testing is to always make
sure your tests pass for the right reasons. It is easy to “fake” a successful test result by
providing hardcoded return values or by asserting on incorrect data. How do we
make sure the CreateBooking_Success unit test passes for the correct reasons? We
have to continue implementing the CreateBooking method, which we’ll do in sec-
tion 10.3.4.

10.3.4 Calling a repository from a service

We came out of section 10.3.3 with a skeleton implementation of BookingService
.CreateBooking and a finished unit test for the success case through Booking-
ServiceTests.CreateBooking_Success. In this section, we’ll look at further imple-
menting the CreateBooking method so it calls the appropriate repository method
and returns the correct information.

 To finish the CreateBooking method, we need to implement the following two
things:

 An asynchronous call to the BookingRepository. GetCustomerByName method
inside a try-catch block

 The appropriate set of tuple values for returning out of the method

Calling repository methods inside a try-catch block allows us to do error handling.
When an exception is raised inside the called repository method, the try-catch block
catches the exception, as shown here:

public async Task<(bool, Exception)>

➥ CreateBooking(string name, int flightNumber) {
 try {
 …
 } catch (Exception exception) {
 …
 }

 return (true, null);
}

Inside the try part of the try-catch code block, we want to use the class-level private
properties containing references to the injected CustomerRepository and Booking-
Repository instances: _customerRepository and _bookingRepository (during the
execution of our unit tests, this holds a reference to the mocked version of Booking-
Repository, as explained in section 10.3.3). We use the _customerRepository
instance to call its GetCustomerByName method. The GetCustomerByName method
retrieves the appropriate Customer instance or throws a CustomerNotFoundException,
which lets us know the customer was not found. If it does not exist, we call the Create-
Customer method and have it created. After that, we call the CreateBooking method
again, returning its return value. Calling into the same method in which you are
located is also called recursion. Because the GetCustomerByName method throws an

244 CHAPTER 10 Reflection and mocks
exception that we actually want to utilize, we wrap the call to GetCustomerByName
inside its own try-catch block, as shown in the next code sample.

DEFINITION Recursion happens when a method calls itself. When this hap-
pens, the CLR pauses the currently executing method to enter the new call of
the method. Recursion often comes with a heavy performance and complex-
ity penalty. Here it is used as a teaching device, but in production environ-
ments, it is often not the best (most performant) way to solve a particular
problem.

public async Task<(bool, Exception)>

➥ CreateBooking(string name, int flightNumber) {
 try {
 Customer customer;
 try {
 customer =

➥ await _customerRepository.GetCustomerByName(name);
 } catch (CustomerNotFoundException) {
 await _customerRepository.CreateCustomer(name);
 return await CreateBooking(name, flightNumber);
 }
 …
}

We can now use the _bookingRepository variable to call the CreateBooking method in
the BookingRepository. Because the BookingRepository.CreateBooking method
should execute asynchronously, we also await the call.

 When the Task is completed, because the try-catch code block caught no excep-
tions, and the code returns the BookingRepository.CreateBooking method, we
return a set of tuples representing a true Boolean state for the success variable and a
null reference for the exception variable. If the try-catch block caught an Exception
during the execution of the BookingRepository.CreateBooking method, we would
return a set of named tuples with the success variable set to a false state along with a
reference to the caught Exception instead. By terminating all code paths inside the
try-catch statement, we do not need the placeholder return of (true, null) any-
more, as shown next.

public async Task<(bool, Exception)>

➥ CreateBooking(string name, int flightNumber){
 try {
 Customer customer;
 try {
 customer = await _customerRepository.GetCustomerByName(name);
 } catch (CustomerNotFoundException) {
 await _customerRepository.CreateCustomer(name);

Listing 10.6 Recursive call into CreateBooking

Listing 10.7 The BookingService.CreateBooking method

Checks if the customer exists in the
database and gets its details if so

The customer does
not exist in the
database.

Adds the
customer to
the database

Recursively calls this method now that
the customer is in the database

245Exercises
 return await CreateBooking(name, flightNumber);
 }

 await _bookingRepository.CreateBooking(customer.CustomerId,

➥ flightNumber);

 return (true, null);
 } catch(Exception exception) {
 return (false, exception);
 }
}

We only have the following things left to do before we can officially wrap up the Booking-
Service class:

 Add input validation for the customerName and flightNumber input arguments.
 Verify that the requested Flight exists in the database. If it does not, we need to

gracefully exit out of the method.
 Add unit tests for input validation, Customer verification and creation, and

Flight verification.

We’ll do these three things in the next chapter and finish implementing Booking-
Service. In this chapter, we started implementing BookingService, learned about
using mocks (with the Moq package), and refreshed our knowledge of the reposi-
tory/service pattern.

Exercises
EXERCISE 10.9
True or false? When unit testing a multitiered architecture, we can replace the tier
immediately below our testing concern with a mock or a stub.

EXERCISE 10.10
Imagine you are unit testing a class in the controller layer of a repository/service
architecture. Which of these approaches is the correct approach?

a Mock the controller layer, stub the service, and use the repository layer.
b Stub the controller layer, do not use the service layer, and mock the repository

layer.
c Use the controller layer, mock the service layer, and do not use the repository

layer.

EXERCISE 10.11
True or false? By using a service layer to control access to the various repositories in a
repository/service pattern, the coupling between a controller and a repository is
decreased because the controller calls the repository indirectly through the service.

246 CHAPTER 10 Reflection and mocks
EXERCISE 10.12
True or false? Mocks are used to provide alternative implementations to existing
methods. To use a mock, you provide a new method body and write alternative logic
for the methods you override.

EXERCISE 10.13
True or false? The InternalsVisibleTo method attribute can be used to block other
assemblies from viewing the internals of the assembly the attribute is applied in.

EXERCISE 10.14
What preprocessor directive can you use to generate a compiler warning?

a #error

b ^&generate

c #warning

d ^&compiler::warning

EXERCISE 10.15
True or false? You can ask the CLR for the executing and calling assemblies’ names at
runtime by using reflection and methods inside the assembly namespace.

EXERCISE 10.16
When a compiler inlines a method, what happens to the code that calls the method?

a Nothing—inlining means we immediately execute the called method. The code
does not change.

b The compiler replaces the method call with the called method’s body
c The compiler replaces the method call with the contents of the method’s con-

taining class.

EXERCISE 10.17
If we add the attribute [MethodImpl(MethodImplOptions.NoInlining)] to a prop-
erty, what happens?

a We get a compilation error because you cannot use the MethodImpl attribute on
a property.

b The property calls are inlined.
c The property calls are inlined only if there is a significant performance gain to

be made.

Summary
 The repository/service pattern divides an application into three layers: a con-

troller, service, and repository. This helps us control the flow of data and sepa-
rate concerns.

 In a repository/service world, the controller holds an instance of the service,
and the service holds an instance of the repository. This is to ensure coupling is
as loose as possible between the individual classes. If the controller were to hold

247Summary
an instance of both the service and repository, we would have very tight cou-
pling to the repository.

 A view is a “window” into one or more models that are returned to a user. We
use views to collect and present information to the user.

 When testing a solution that follows the repository/service pattern (or any
other multilayered architecture), you need to test the logic only at the level you
want to test. For example, if you are testing a controller class, you may mock or
stub the service layer, but the test does not need to execute the actual logic in
the service layer. Consequently, the repository layer is not called at all in this
scenario. This helps us test only atomic operations, as opposed to entire stacks.
If we want to test across layers, we need an integration test.

 A mock is a class that returns a specific return when a method or property is
called. It is used instead of the original class. This helps us focus on the layer we
want to test.

 The InternalsVisibleTo method attribute is used to designate “friend” assem-
blies that can access internal methods, fields, and properties. This is helpful in
unit testing, where usually the tests live in a separate assembly than the code we
want to test.

 Preprocessor directives can generate compiler warnings (#warning) and com-
piler errors (#error). We can also use preprocessor directives to control our
data flow when access modifiers and encapsulation are not enough. Putting in a
compiler warning lets developers know that there is a potential pitfall at a spe-
cific location.

 Compiler inlining means that a compiler replaces a method call with the body
of the called method. This is useful for performance because it reduces cross-
file calls.

 By using the method implementation (MethodImpl) method attribute, we can
control the compiler’s inlining preferences. We can force the compiler not to
inline a method by adding [MethodImpl(MethodImplOptions.NoInlining)]
as a method attribute. This is useful to retain stack traces when rethrowing
exceptions.

Runtime type
checking revisited

and error handling
After having implemented the database access layer in chapter 5 and the repository
layer in chapters 6 through 9, we started to implement the BookingService in
chapter 10. I also introduced you to using mocks in unit testing, and we discussed
the repository/service pattern. In this chapter, we’ll use those concepts and draw on
our knowledge of service layers to wrap up the BookingService implementation. Fig-
ure 11.1 shows where we are in the scheme of the book.

 While we finish implementing the BookingService, this chapter also discusses
using the Assert.IsInstanceOfType test assertion to verify an object is of a certain

This chapter covers
 Using the Assert.IsInstanceOfType test

assertion

 Calling multiple repositories from a service
class

 Using the discard operator

 Using multiple catch blocks

 Checking types at runtime with the is and
as operators
248

249Validating input parameters of a service layer method
type (or derived of a certain type), the discard (_) operator and its effect on Interme-
diate Language, and using multiple catch blocks in a try-catch code block.

 To wrap up the BookingService implementation, we need to do the following:

 Validate the input parameters of the BookingService.CreateBooking method
(section 11.1).

 Verify that the flight we want to book exists in the database (section 11.3).

11.1 Validating input parameters of a service layer method
Many times, a service layer class acts as a pipe between a controller class and a reposi-
tory class. Even though not a lot of logic is involved, the service layer still provides an
important abstraction layer to combat tight coupling. For a discussion on coupling,
see section 8.2.

 Before we move on, we should recap where we left off in the BookingService
.CreateBooking method:

public async Task<(bool, Exception)>

➥ CreateBooking(string name, int flightNumber) {
 try {
 Customer customer;
 try {
 customer = await _customerRepository.GetCustomerByName(name);
 } catch (FlightNotFoundException) {
 await _customerRepository.CreateCustomer(name);

+ Reflection and mocks: 10

Part 5: The service layer

+ Runtime type checking revisited

and error handling: 11

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

+ Using IAsyncEnumerable<T>
and : 12yield return

Figure 11.1 In this chapter we finish implementing the BookingService class. In the next chapter,
we wrap up the Services layer by implementing the AirportService and FlightService classes.

250 CHAPTER 11 Runtime type checking revisited and error handling
 return await CreateBooking(name, flightNumber);
 }

 await _bookingRepository.CreateBooking(customer.CustomerId, flightNumber);
 return (true, null);
 } catch (Exception exception) {
 return (false, exception);
 }
}

To perform the required input validation, we can use the IsPositiveInteger exten-
sion method we implemented in section 9.6 and the string.IsNullOrEmpty method.
If the customer’s name is a null or empty string, or the flight number is not a positive
integer, we return a set of variables indicating (false,ArgumentException), as follows:

public async Task<(bool, Exception)>

➥ CreateBooking(string name, int flightNumber) {
 if (string.IsNullOrEmpty(name) || !flightNumber.IsPositiveInteger()) {
 return (false, new ArgumentException());
 }

 try {
 Customer customer;
 try {
 customer = await _customerRepository.GetCustomerByName(name);
 } catch (FlightNotFoundException) {
 await _customerRepository.CreateCustomer(name);
 return await CreateBooking(name, flightNumber);
 }

 await _bookingRepository.CreateBooking(customer.CustomerId,

➥ flightNumber);
 return (true, null);
 } catch (Exception exception) {
 return (false, exception);
 }
}

Now, we should add a unit test, shown next, complete with the [DataRow] method
attribute to inline test data that checks that a return value of (false,ArgumentException)
comes out of the BookingService.CreateBooking method when given invalid input
arguments. For this unit test, we do not need to set up the mock of BookingRepository
with a return value, because it would never get executed.

[TestMethod]
[DataRow("", 0)]
[DataRow(null, -1)]
[DataRow("Galileo Galilei", -1)]

Listing 11.1 Testing BookingService.CreateCustomer’s input validation

Inline test
data

251Validating input parameters of a service layer method
public async Task CreateBooking_Failure_InvalidInputArguments(string name,

➥ int flightNumber) {
 Mock<BookingRepository> mockBookingRepository =

➥ new Mock<BookingRepository>();
 Mock<CustomerRepository> mockCustomerRepository =

➥ new Mock<CustomerRepository>();
 BookingService service =

➥ new BookingService(mockBookingRepository.Object,

➥ mockCustomerRepository.Object);
 (bool result, Exception exception) = await

➥ service.CreateBooking(name, flightNumber);

 Assert.IsFalse(result);
 Assert.IsNotNull(exception);
}

That should do it for the invalid input arguments case. But what if the repository layer
throws an exception? We hope the try-catch block in the BookingService.Create-
Customer method catches the exception, but until we test for that, we do not know for
sure. I don’t like relying on my interpretation of what I think the code should do.
Instead, it’s best to “prove” our assumptions and create a unit test. We can create a
unit test called CreateBooking_Failure_RepositoryException and set up a mock of
BookingRepository that returns an Exception when BookingRepository.Create-
Booking is called.

 What type of Exception should we return? The repository returns either an
ArgumentException (on invalid input) or a CouldNotAddBookingToDatabaseException
exception. We could either check that those specific exceptions were thrown or check
for a general Exception.

 If a developer changes the type of exception thrown when a database error occurs
from CouldNotAddBookingToDatabaseException to AirportNotFoundException, and
we only test for the base Exception class to be thrown, we won’t catch the Airport-
NotFoundException exception at the earliest possible moment. This causes the test to
incorrectly pass. It is for that reason that I propose we set up the following two mock
return instances:

 If we pass in the parameter set of {0, 1} to the BookingService.CreateBooking
method, throw an ArgumentException exception.

 If we pass in the parameter set of {1, 2} to the BookingService.CreateBooking
method, throw a CouldNotAddBookingToDatabaseException exception.

To set up more than one return value on a mock, we can modify the mock logic to
cover all the different cases we want to test. There is no practical limit on the amount
of returned mocks we can add to a method, as long as they are all individually distin-
guishable for the compiler (as with any overridden method).

 To verify that a thrown Exception is of a certain type, we can use the Assert
.IsInstanceOfType assertion along with the typeof operator (discussed in section
4.1.2), shown in the next code.

Sets up
mocks

Calls the CreateBooking
method

The result should be
(false, Exception).

252 CHAPTER 11 Runtime type checking revisited and error handling
[TestMethod]
public async Task CreateBooking_Failure_RepositoryException() {
 Mock<BookingRepository> mockBookingRepository =

➥ new Mock<BookingRepository>();
 Mock<CustomerRepository> mockCustomerRepository =

➥ new Mock<CustomerRepository>();

 mockBookingRepository.Setup(repository =>

➥ repository.CreateBooking(0, 1)).Throws(new ArgumentException());
 mockBookingRepository.Setup(repository =>

➥ repository.CreateBooking(1, 2))

➥ .Throws(new CouldNotAddBookingToDatabaseException());

 mockCustomerRepository.Setup(repository =>

➥ repository.GetCustomerByName("Galileo Galilei"))

➥ .Returns(Task.FromResult(

➥ new Customer("Galileo Galilei") { CustomerId = 0 }));
 mockCustomerRepository.Setup(repository =>

➥ repository.GetCustomerByName("Eise Eisinga"))

➥ .Returns(Task.FromResult(new Customer("Eise Eisinga") { CustomerId = 1

➥ }));

 BookingService service = new BookingService(mockBookingRepository.Object,

➥ mockCustomerRepository.Object);
 (bool result, Exception exception) =

➥ await service.CreateBooking("Galileo Galilei", 1);

 Assert.IsFalse(result);
 Assert.IsNotNull(exception);
 Assert.IsInstanceOfType(exception, typeof(ArgumentException));

 (result, exception) = await service.CreateBooking("Eise Eisinga", 2);

 Assert.IsFalse(result);
 Assert.IsNotNull(exception);
 Assert.IsInstanceOfType(exception,

➥ typeof(CouldNotAddBookingToDatabaseException));
}

Assert.IsInstanceOfType is an invaluable assertion to have in your toolbox. Instead
of asserting the type of an object through regular code (using the typeof operator),
you can use this assertion in your tests. Alternatively, you could mimic the functional-
ity of the Assert.IsInstanceType by adding the is syntax (as discussed in the next
section) to the Assert.IsTrue check.

Listing 11.2 CreateBooking_Failure_RepositoryException

Sets up a logic
path to throw an

ArgumentException exception

Sets up a logic
path to throw a
CouldNotAdd-
BookingToDatabase
Exception exception

Calls the CreateBooking
method with (“Galileo
Galilei”, 1)

Asserts that the returned exception is of type
CouldNotAddBookingToDatabaseException

Calls the
CreateBooking

method with
(“Eise Eisinga”, 2)

253Validating input parameters of a service layer method
11.1.1 Runtime type checks with the is and as operators

Assert.IsInstanceOfType throws an Exception when it fails. This works very well in
unit tests, where an assertion failure means a test failure. In production code, things
can be different. Sometimes, we don’t want to throw an Exception when we encoun-
ter an object of unexpected type. We already know about the typeof operator. If we
need an object to be a specific type in production code, we can take the following two
other approaches:

 Check if we can cast type T to type Y by using the is operator.
 Convert type T to type Y by using the as operator and handling a potential null

return value.

Both the is and as operators are ways to use the Liskov principle to do type checking
at run time. Whereas the typeof operator only works at compile time, we can use the
is and as operators to dynamically determine what type something is at run time.

 In table 11.1 we see a comparison of the is and as operators, along with their use
cases and an example of their syntax.

Let’s take the table one step further and examine both operators a little more in depth.

11.1.2 Type checking with the is operator

First up: the is operator. We often use is when we want to do a runtime type check in
the vein of GetType (discussed in section 4.1.2). Let’s say we are writing a (very naïve)
implementation of an intercontinental internet package-switching system. We may
have a tree of nodes (switches) containing a root node (an intercontinental switch), a
continent or region switch, and dedicated country switches. I show such a setup in fig-
ure 11.2.

 Let’s also assume that two types derive from a base Packet class: ExternalPacket
and LocalPacket, where ExternalPacket means any packet that needs to go to a dif-
ferent continent given a specific destination. For example, a packet going from leaf 3
(Panama) to leaf 4 (Brazil) is of type LocalPacket because it needs to travel only
through the South/Middle America switch. A packet leaving from leaf 6 (Kenya) and
going to leaf 1 (Luxembourg) is an ExternalPacket, because it needs to go through
the Intercontinental switch.

 How would we write code that directs these packets to the correct switch? One
possible implementation assumes that we have a PacketTransfer class that attempts
to handle the routing for us. In a PacketTransfer, we might have a method called

Table 11.1 The is and as operators compared

Operator Use case Syntax

is Check whether type T is of type Y apple is Fruit

as Determine whether type T can be cast to type Y Peugeot as Car

254 CHAPTER 11 Runtime type checking revisited and error handling
DetermineNextDestination, which returns an object of type InternetSwitch. The
InternetSwitch class could have two derived types as well: ContinentalSwitch and
GlobalSwitch.

 To know where to route the packet, we need to figure out whether the packet is an
ExternalPacket or LocalPacket. In listing 11.3 you see a potential implementation of
logic to route external packets.

public InternetSwitch DetermineNextDestination(Packet packet) {
 if (packet is ExternalPacket) {
 if (packet.CurrentLocation is ContinentalSwitch) {
 return packet.CurrentLocation == PacketIsInDestinationRegion()

 ➥ ? packet.Destination : GetGlobalSwitch();
 }

 return GetContinentalSwitch(packet.Destination);
 }

 …
}

By using polymorphism and the is operator, we can easily deduct whether the packet
being routed is of type ExternalPacket. So, that is the is operator, but what about the
as operator?

Listing 11.3 Using the is operator for packet routing

South/Middle
Americas

Africa

Luxembourg

1 2 3 4 5 6

(European) Russia Panama Brazil Madagascar Kenya

Europe

Intercontinental switch

Figure 11.2 A possible and simplified network switch tree. The tree contains a root node acting as an
intercontinental switch, three child nodes acting as continental switches, and six country-specific switches.

Checks if the packet object can be
coerced into the ExternalPacket type

Checks if the packet destination object can
be coerced into the ContinentalSwitch type

Goes to the packet
destination or global
switch, depending on
the current location

If the packet is an ExternalPacket and not
at a ContinentalSwitch, sends it to one

255Validating input parameters of a service layer method
11.1.3 Type checking with the as operator

Let’s imagine we routed a packet to its destination. Now the destination switch wants
to accept the packet, but this particular switch accepts only local packets (not going
through the GlobalSwitch object). We could try to use the received packet as a
LocalPacket, as shown next, and see what happens.

public void AcceptPacket(Packet packet) {
 LocalPacket receivedPacket = packet as LocalPacket;
 if (receivedPacket != null) {
 ProcessPacket(receivedPacket);
 } else {
 RejectPacket(packet);
 }
}

When using the as operator, if the variable cannot be cast to the requested type, the
CLR assigns a null pointer to the variable. Using the as operator is a powerful tool
and can be useful when dealing with incoming unknowns.

 And now, for the grand finale: we combine both approaches by using pattern
matching in the next code sample.

public void AcceptPacket(Packet packet) {
 if (packet is LocalPacket receivedPacket) {
 ProcessPacket(receivedPacket);
 } else {
 RejectPacket(packet);
 }
}

11.1.4 What did we do in section 11.1?

In the CreateBooking_Failure_RepositoryException unit test, we tested and veri-
fied that we can handle exceptions thrown in the repository layer gracefully and as
expected. We also instantiated the Mock<BookingRepository> in the same way as we
did in the CreateBooking_Success and CreateBooking_Failure_InvalidInputs unit
tests. Perhaps we can extract the initialization of the mock into a TestInitialize
method and split up the CreateBooking_Failure_RepositoryExceptions into two
tests. We also learned about using the is and as operators for runtime type checking.

Listing 11.4 Using the as operator for packet acceptance

Listing 11.5 Using pattern matching for packet acceptance

Tries to use the
packet variable
as a LocalPacket
instanceVerifies the as

operator did not
return a null pointer

Processes the
LocalPacket instance

Rejects the not
LocalPacket instance

If a packet can be used as a
LocalPacket, it is assigned to
receivedPacket and processed.

If the packet cannot be used
as a LocalPacket, calls the
RejectPacket method

256 CHAPTER 11 Runtime type checking revisited and error handling
11.2 Cleaning up the BookingServiceTests class
In wrapping up section 11.1, we identified the following two cleanup areas for the
BookingServiceTests class:

 Extract the initialization of Mock<BookingRepository> to a TestInitialize
method. The current implementation sees us instantiate a mock of Booking-
Repository in every test, violating the DRY principle.

 Split the CreateBooking_Failure_RepositoryException into two unit tests:
one for the ArgumentException and one for the CouldNotAddBookingToData-
baseException exception.

Let’s start by extracting the initialization of Mock<BookingRepository> to the Test-
Initialize method, shown next. We also want to add a private backing field for us to
store the reference to Mock<BookingRepository>.

[TestClass]
public class BookingServiceTests {
 private Mock<BookingRepository> _mockBookingRepository;

 [TestInitialize]
 public void TestInitialize() {
 _mockBookingRepository = new Mock<BookingRepository>();
 }

 …
}

All we have to do is change the existing unit tests to use the _mockBookingRepository
field instead of instantiating their own mock. For example:

[TestMethod]
public async Task CreateBooking_Success() {
 Mock<BookingRepository> mockRepository = new Mock<BookingRepository>();
 _mockBookingRepository.Setup(repository =>

➥ repository.CreateBooking(0, 0)).Returns(Task.CompletedTask);

 BookingService service =

➥ new BookingService(mockBookingRepository .Object);

 (bool result, Exception exception) = await service.CreateBooking(0, 0);

 Assert.IsTrue(result);
 Assert.IsNull(exception);
}

We still want to set up any mocked returns because any existing mock instances are
reset every time we run a new test. Initializing no mocks in the TestInitialize
method allows us to set up different returned mock instances on a per-test basis.

257Cleaning up the BookingServiceTests class
 The second improvement we identified was to split the CreateBooking_Failure
_RepositoryException unit test into the following separate unit tests:

 CreateBooking_Failure_RepositoryException_ArgumentException

 CreateBooking_Failure_RepositoryException_CouldNotAddBookingToDatabase

The two new unit tests each test a logic branch that throws their respective Exception.
In listing 11.6, you see the CreateBooking_Failure_RepositoryException_Argument-
Exception unit test. I leave the CreateBooking_Failure_CouldNotAddBooking-
ToDatabase for you to implement. If you get stuck, you can mimic the pattern in
listing 11.6. My versions of both unit tests are provided in the source files for this book.

[TestMethod]
public async Task

➥ CreateBooking_Failure_RepositoryException_ArgumentException() {
 _mockBookingRepository.Setup(repository =>

➥ repository.CreateBooking(0, 1)).Throws(new ArgumentException());

 _mockCustomerRepository.Setup(repository =>

➥ repository.GetCustomerByName("Galileo Galilei"))

➥ .Returns(Task.FromResult(

➥ new Customer("Galileo Galilei") { CustomerId = 0 }));

 BookingService service =

➥ new BookingService(_mockBookingRepository.Object,

➥ _mockFlightRepository.Object, _mockCustomerRepository.Object);
 (bool result, Exception exception) =

➥ await service.CreateBooking("Galileo Galilei", 1);

 Assert.IsFalse(result);
 Assert.IsNotNull(exception);
 Assert.IsInstanceOfType(exception,

➥ typeof(CouldNotAddBookingToDatabaseException));
}

What have we accomplished in this section? We implemented the BookingService
and have the following three unit tests to back up the functionality in our service class:

 CreateBooking_Success—This unit test verifies our “happy path” scenario and
calls a mocked BookingRepository to mimic database operations.

 CreateBooking_Failure_RepositoryException_ArgumentException—This unit
test tells the BookingRepository mock to throw an ArgumentException. We ver-
ify whether our service method can appropriately handle the thrown Argument-
Exception.

 CreateBooking_Failure_CouldNotAddBookingToDatabase—This unit test tells
the BookingRepository mock to throw a CouldNotAddBookingToDatabase-
Exception exception. We verify whether our service method can appropriately
handle the thrown CouldNotAddBookingToDatabaseException exception.

Listing 11.6 CreateBooking_Failure_RepositoryException_ArgumentException
unit test

258 CHAPTER 11 Runtime type checking revisited and error handling
11.3 Foreign key constraints in service classes
In section 10.3, we determined that the BookingService has to deal with the following
two outgoing foreign key constraints (also shown in figure 11.3):

 An outgoing foreign key constraint to Customer.CustomerID
 An outgoing foreign key constraint to Flight.FlightNumber

How do we “handle” these foreign key constraints? We also determined in section 10.3
that we want to use the CustomerRepository.GetCustomerByName method to verify a
customer exists in the database with the passed-in Name value. The method returns
a Customer object if it is found, which contains the appropriate CustomerID value. If it
does not find a Customer object, we want to create it using the CustomerRepository
.CreateCustomer method. For the flightNumber parameter: if there is no matching
flight in the database, we should return out of the service method without creating
the booking (or a new flight) in the database.

 This is where the power of a service layer starts to show. Because we allow service
layers (and only service layers!) to make calls to repositories not directly related to
their immediate model, we can gather a collection of information to return a View
to the controller, as shown in figure 11.4. In the case of the BookingService, its imme-
diate model is the Booking entity. However, to correctly create a new booking in the
database, we need to use the Customer and Flight’s repository layer classes.

Figure 11.3 The Flying Dutchman Airlines database schema. The Booking model
has two outgoing foreign key constraints: one to Customer.CustomerID and
one to Flight.FlightNumber.

259Foreign key constraints in service classes
11.3.1 Calling the Flight repository from a service class

Because the business logic on the Flight model is stricter than on the Customer model,
the first check we should do (after input validation) is making sure that the requested
Flight instance lives in the database. Let’s see how far we get without getting stuck:

public async Task<(bool, Exception)>

➥ CreateBooking(string name, int flightNumber) {
 …

 FlightRepository flightRepository = new FlightRepository();

 …
}

Well, that’s not very far at all. The FlightRepository constructor requires us to pass
(or inject) in an instance of FlyingDutchmanAirlinesContext. We do not have access
to that instance in the service layer. We could instantiate an instance of FlyingDutchman-
AirlinesContext, but we could also take the same approach we did for the Booking-
Repository: use dependency injection to provide the BookingService class with a
ready-to-go instance of FlightRepository.

 To add an injected instance to the consuming class, we need to do the following, as
shown in figure 11.5 and listing 11.7:

1 Add a backing field of type T, where T is the injected type.
2 Add a parameter to the constructor of the consuming class of type T.
3 Inside the constructor, assign the injected instance of type T to the private back-

ing field created in step 1.

FlightController

BookingService AirportService CustomerService

Database ccessa

FlightRepository AirportRepository CustomerRepositoryBookingRepository

FlightService

Figure 11.4 The BookingService calls across the repository layer. It calls the
BookingRepository (its immediate concern), the FlightRepository, and
the CustomerRepository.

260 CHAPTER 11 Runtime type checking revisited and error handling
public class BookingService {
 private readonly BookingRepository _bookingRepository;
 private readonly FlightRepository _flightRepository;
 private readonly CustomerRepository _customerRepository;

 public BookingService(BookingRepository bookingRepository,

➥ FlightRepository flightRepository, CustomerRepository

➥ customerRepository) {
 _bookingRepository = bookingRepository;
 _flightRepository = flightRepository;
 _customerRepository = customerRepository;
 }
}

Now we have an injected instance of FlightRepository, assigned to a backing field,
that we can use in our CreateBooking method. There’s one problem: the code in list-
ing 11.7 does not compile. The compiler throws an exception, shown in figure 11.6,
saying that there are not enough arguments in the calls to the BookingService’s con-
structor during our unit tests.

To solve the compiler error, we need to add a Mock<FlightRepository> instance to
our existing unit tests in the BookingServiceTests class. Go ahead and add the
mock instance to the unit tests. If you mimic the pattern used to instantiate the Mock
<BookingRepository> object, you should be fine. If you get stuck, the provided source

Listing 11.7 BookingService injects an instance of FlightRepository

2. Add a parameter to the constructor.

3. Assign the injected parameter to the backing field.

1. Add backing field.

Figure 11.5 To use dependency injection, first add a backing field. Then inject
the wanted type. Finally, assign the injected parameter to the backing field.

Figure 11.6 The compiler throws an exception if you do not have enough parameters to call a
given method. In this case, we did not provide enough parameters to call the constructor of
BookingService (we are missing the customerRepository parameter).

261Foreign key constraints in service classes
code contains the answers. You don’t need to set up any return calls for the mocked
FlightRepository class. One final tip: you have to create a parameterless constructor
for FlightRepository. If you want more information on why you need to create a
parameterless virtual constructor, see section 10.3.3.

 Our code now compiles, and our existing unit tests pass. We can move on to verify-
ing the flight exists in the database. Our first step, as always, is to add a unit test.

 In BookingServiceTests, add a unit test called CreateBooking_Failure_Flight-
NotInDatabase. The success case is covered in the CreateBooking_Success unit test,
as long as we add a mock setup call to the FlightRepository.GetFlightByFlight-
Number method as follows:

_mockFlightRepository.Setup(repository =>

➥ repository.GetFlightByFlightNumber(0))

➥ .Returns(Task.FromResult(new Flight()));

Now, for the failure path, we implement the CreateBooking_Failure_FlightNotIn-
Database unit test, as shown here:

[TestMethod]
public async Task CreateBooking_Failure_FlightNotInDatabase() {
 BookingService service =

➥ new BookingService(_mockBookingRepository.Object,

➥ _mockFlightRepository.Object, _mockCustomerRepository.Object);
 (bool result, Exception exception) =

➥ await service.CreateBooking("Maurits Escher", 19);

 Assert.IsFalse(result);
 Assert.IsNotNull(exception);
 Assert.IsInstanceOfType(exception,

➥ typeof(CouldNotAddBookingToDatabaseException));
}

The CreateBooking_Failure_FlightNotInDatabase unit test compiles but does not
pass. However, that is exactly what we want at this stage. Remember, in test-driven
development, we go from not being able to compile or pass a test to implementing
just enough to make the test pass.

 In BookingService.CreateBooking, we want to make sure that we do not book a
customer on a flight that does not exist. Taking a look at FlightRepository.Get-
FlightByFlightID, we notice that the method accepts the following three parameters:

 flightNumber

 originAirportId

 desinationAirporId

Unfortunately, that doesn’t work for us anymore. Luckily, we shouldn’t be afraid to
change (or delete) our own code. I’d like to give you an assignment: make the Flight-
Repository.GetFlightByFlightID accept only the flightNumber argument and return

262 CHAPTER 11 Runtime type checking revisited and error handling
the correct flight. This allows us to use the method in our service layer and forces you to
get your hands dirty. If you get stuck, see this chapter’s source code. An example imple-
mentation is shown in listing 11.8. Also, make sure you update the unit tests.

 Now that the FlightRepository.GetFlightByFlightNumber method accepts only
a flightNumber, we can actually use it. Listing 11.8 shows my implementation. You can
see that the method offers only two possible return values: either the method returns
a Flight instance, or it throws a FlightNotFoundException.

public async Task<Flight> GetFlightByFlightNumber(int flightNumber) {
 if (!flightNumber.IsPositiveInteger()) {
 Console.WriteLine($"Could not find flight in

➥ GetFlightByFlightNumber! flightNumber = {flightNumber}");
 throw new FlightNotFoundException();
 }

 return await _context.Flight.FirstOrDefaultAsync(f =>

➥ f.FlightNumber == flightNumber) ?? throw new FlightNotFoundException();
}

A possible implementation of the flight-verification logic would consist of a call to
GetFlightByFlightNumber, as shown next. If no exception was caught by the try-catch
in BookingService.CreateBooking, things must be all right and we can move on.

await _flightRepository.GetFlightByFlightNumber(flightNumber);

This code would work perfectly fine until somebody decides to change the implemen-
tation of FlightRepository.GetFlightByFlightNumber. What if it suddenly returns a
null pointer instead of throwing an exception when the method cannot find the
matching flight in the database? The code would execute as if nothing happened and
allow a customer to be booked on a nonexisting flight.

 Instead, let’s do a little due diligence here and check the output of GetFlightBy-
FlightNumber, as shown in the following code sample. If it is null, we also throw an
Exception.

public async Task<(bool, Exception)>

➥ CreateBooking(string name, int flightNumber) {
 if (string.IsNullOrEmpty(name) || !flightNumber.IsPositiveInteger()) {
 return (false, new ArgumentException());
 }

 try {
 __ = await _flightRepository.GetFlightByFlightNumber(flightNumber)

➥ ?? throw new Exception();

Listing 11.8 FlightRepository.GetFlightByFlightNumber

Listing 11.9 A better implementation of the flight verification code

263Foreign key constraints in service classes
 …
 }

 …
}

Listing 11.9 handles the null case from GetFlightByFlightNumber proactively by
throwing an Exception. The code also uses the discard operator (_). You can use the
discard operator to “throw away” a returned value but still use operators relying on
value assignment (such as the null-coalescing operator).

The code in listing 11.9 is an improvement over what we see in listing 11.8, but we can
take it one step further. In section 4.2, we talked about code reading like a narrative.
The code in listing 11.9 seems like an excellent opportunity to put that into practice
by extracting the flight-verification logic into its own separate private method. We can
call the method FlightExistsInDatabase and have it return a Boolean value based
on whether or not the return value from FlightRepository.GetFlightByFlightNumber
is null, as shown next.

The discard operator and intermediate language
The discard operator (_) is an interesting case to think about. Does using the discard
operator mean we aren’t assigning the return value from a method to anything? Are
we just throwing away the assignment variable immediately? We can find an answer
by examining how a discard operator is compiled to Intermediate Language.

Let’s take the method call to FlightRepository.GetFlightByFlightNumber, as
shown in listing 11.9, and remove the null-coalescing operator so we can focus on
just the discard operator:

_ = await _flightRepository.GetFlightByFlightNumber(flightNumber);

This compiles to a lengthy list of MSIL opcodes, but the assignment portion ends with
the following:

stloc.3

The stloc.3 command stores information to location number 3 on the stack. It
seems that using the discard operator still results in some memory allocation. Of
course, the allocated spot in memory is collected by the garbage collector as soon
as possible because there are no calls to it.

So, to answer our initial question: yes, the discard operator allocates memory. But,
because we cannot directly point at a discard operator and use it like any other vari-
able, we still have performance benefits.

Another benefit of using the discard operator is clean code. It is often very confusing
to assign values to unused variables. By using the discard operator, you explicitly say,
“I am not going to use the return value from this method,”

264 CHAPTER 11 Runtime type checking revisited and error handling

ber
ll
s
public async Task<(bool, Exception)>

➥ CreateBooking(string name, int flightNumber) {
 if (string.IsNullOrEmpty(name) || !flightNumber.IsPositiveInteger()) {
 return (false, new ArgumentException());
 }

 try {
 if (!await FlightExistsInDatabase(flightNumber))
 throw new CouldNotAddBookingToDatabaseException();
 }

 …
 }

 …
}

private async Task<bool> FlightExistsInDatabase(int flightNumber) {
 try {
 return await

➥ _flightRepository.GetFlightByFlightNumber(flightNumber) != null;
 } catch (FlightNotFoundException) {
 return false;
 }
}

That should do it for the actual implementation of the flight-verification code. We still
need to update our unit tests, however, because we are not prepared to return a cor-
rect value when the mocked FlightRepository’s GetFlightByFlightNumber method
is called.

 You should be familiar with how to set up a mocked return value by now, so I’m
going to show you how to set up the return value for the CreateBooking_Failure_
FlightNotInDatabase and CreateBooking_Success unit tests, and you can try fixing
the other unit tests. If you get stuck, the provided source code has the answers.

 To tell the Mock<FlightRepository> that we want to throw an Exception of type
FlightNotFound (which is the real code’s logic) when we see a flightNumber of -1, we
use the same syntax as described in section 10.3.3 and shown in the next listing:
[MOCK].Setup([predicate to call method with arguments]).Throws(new [Type of Exception]).

NOTE As discussed in section 10.3.3, to mock a specific method call we need
to make the original method virtual. Making a method virtual allows the
Moq library to override the method. For a discussion on virtual methods, see
section 5.3.2.

Listing 11.10 Using FlightExistsInDatabase in CreateBooking

If the given flight
does not exist in
the database,
throws an
exception

If GetFlight-
ByFlightNum
returns a nu
value, return
false; else,
returns true

If GetFlightByFlightNumber
throws a FlightNotFound-
Exception, returns false

265Foreign key constraints in service classes
[TestMethod]
public async Task CreateBooking_Failure_FlightNotInDatabase() {
 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlightByFlightNumber(-1))

➥ .Throws(new FlightNotFoundException());

 BookingService service = new

➥ BookingService(_mockBookingRepository.Object,

➥ mockFlightRepository.Object, _mockCustomerRepository.Object);
 (bool result, Exception exception) =

➥ await service.CreateBooking("Maurits Escher", 1);

 Assert.IsFalse(result);
 Assert.IsNotNull(exception);
 Assert.IsInstanceOfType(exception,

➥ typeof(CouldNotAddBookingToDatabaseException));
}

With the setup as shown in listing 11.11, when the mock’s GetFlightByFlightNumber
method is called and a value of -1 is passed in as an input argument, the method
throws an Exception of type FlightNotFoundException (mimicking the existing
code). The BookingService.FlightExistsInDatabase method (which called the
GetFlightByFlightNumber method) checks whether or not the return value from
the method was null (it was null in this case because an exception was thrown) and
returns the value of that expression. Based on that result, the BookingService throws
an Exception of type CouldNotAddBookingToDatabaseException.

 To fix the CreateBooking_Success unit test, we need to set up our mock of
FlightRepository to return an instance of Flight when the GetFlightByFlightNum-
ber method is called.

 To add a mocked return of type Task<Flight> to the GetFlightByFlightNumber
method, we need to use the asynchronous version of the [MOCK].Setup syntax, as
shown in the next code snippet. If we used the synchronous version, the mock would
try to return a Flight instance instead of a Task<Flight> instance, causing a compiler
error, shown in figure 11.7.

[TestMethod]
public async Task CreateBooking_Success() {
 _mockBookingRepository.Setup(repository => repository.CreateBooking(0,

➥ 0)).Returns(Task.CompletedTask);

Listing 11.11 Setting up Mock<FlightRepository> exception return value

Figure 11.7 When trying to return a type not wrapped in a Task type, the compiler throws an error
saying it cannot convert T to Task<T>.

266 CHAPTER 11 Runtime type checking revisited and error handling
 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlightByFlightNumber(0)).ReturnsAsync(new Flight());

 BookingService service =

➥ new BookingService(_mockBookingRepository.Object,

➥ _mockFlightRepository.Object, _mockCustomerRepository.Object);

 (bool result, Exception exception) = await service.CreateBooking(0, 0);

 Assert.IsTrue(result);
 Assert.IsNull(exception);
}

CALLING THE CUSTOMER REPOSITORY

The second input we need to validate is the name parameter. To validate the name
parameter, the BookingService has to call the CustomerRepository’s GetCustomer-
ByName and (if the customer does not exist in the database) CreateCustomer methods.
In section 10.3.4, we implemented a version of this logic. It’s been a while since we
looked at those methods (we implemented them in chapter 7), so let’s refresh our
memories with the next code sample:

public virtual async Task<Customer> GetCustomerByName(string name) {
 if (IsInvalidCustomerName(name)) {
 throw new CustomerNotFoundException();
 }

 return await _context.Customer.FirstOrDefaultAsync(c => c.Name == name)

➥ ?? throw new CustomerNotFoundException();
}
public async Task<bool> CreateCustomer(string name) {
 if (IsInvalidCustomerName(name)) {
 return false;
 }

 try {
 Customer newCustomer = new Customer(name);
 using (_context) {
 _context.Customer.Add(newCustomer);
 await _context.SaveChangesAsync();
 }
 } catch {
 return false;
 }

 return true;
}

Our unit tests are now in good shape . . . so, let’s break them again! Remember, when
everything goes well, the next stage in test-driven development is to break the tests
again. In this case, let’s add a new unit test that tests the logic when a customer is not
in the database: CreateBooking_Success_CustomerNotInDatabase. Why is this unit

267Foreign key constraints in service classes
test a success case? Did the customer validation not fail? Yes, but that just means the
customer is not preexisting. In that case, we simply add the customer to the database
and proceed as usual, as shown in figure 11.8. To call any method in the Customer-
Repository from the BookingService, we use the injected instance of Customer-
Repository as follows:

private readonly BookingRepository _bookingRepository;
private readonly FlightRepository _flightRepository;
private readonly CustomerRepository _customerRepository;

public BookingService(BookingRepository bookingRepository, FlightRepository

➥ flightRepository, CustomerRepository customerRepository {
 _bookingRepository = bookingRepository;
 _flightRepository = flightRepository;
 _customerRepository = customerRepository;
}

The addition of a CustomerRepository parameter to the CustomerRepository’s con-
structor breaks the existing unit tests. You know what to do: add a Mock<Customer-
Repository> to the constructor call in the unit tests. I leave this for you to do. If you
get stuck, see the provided source code for this chapter. You will have to set up the
CustomerRepository test with a parameterless constructor and make the appropriate
methods virtual so Moq instantiates and uses Mock<CustomerRepository>.

Using the injected CustomerRepository instance, we start by creating two private
methods that check whether a customer exists in the database and add it to the database
if not. The CustomerRepository.GetCustomerByName method returns an Exception of
type CustomerNotFoundException. We can catch this specific error in a catch code

Does the customer exist in the database?

Yes

Create the booking.

Add the customer to the database.

No

Figure 11.8 If the customer does
not exist in the database, we add the
customer to the database. In both
scenarios, we create a booking.

268 CHAPTER 11 Runtime type checking revisited and error handling

block and create the customer anyway, as shown in the next listing. If a different type
of Exception is thrown, then we know something is wrong, so we rethrow the excep-
tion (the CreateBooking method catches and handles the exception). In section 9.4,
we discussed how to rethrow exceptions while preserving the stack trace of the origi-
nal problem.

private async Task<Customer> GetCustomerFromDatabase(string name) {
 try {
 return await _customerRepository.GetCustomerByName(name);
 } catch (CustomerNotFoundException) {
 return null;
 } catch (Exception exception){
 ExceptionDispatchInfo.Capture(exception.InnerException

➥ ?? new Exception()).Throw();
 return null;
 }
}

private async Task<Customer> AddCustomerToDatabase(string name) {
 await _customerRepository.CreateCustomer(name);
 return await _customerRepository.GetCustomerByName(name);
}

The GetCustomerFromDatabase and AddCustomerToDatabase methods are not called
anywhere yet, which gives us a good chance to think about how we can test their func-
tionality. We know we are going to call at least GetCustomerFromDatabase in every
execution of CreateBooking, so let’s start with that. GetCustomerFromDatabase can
determine the following three potential states:

1 The customer exists in the database.
2 The customer does not exist in the database.
3 An Exception other than CustomerNotFoundException was thrown in Customer-

Repository.GetCustomerByName.

As far as success cases are concerned, paths 1 and 2 are relevant. If the customer is not
found in the database, we add them by way of the AddCustomerToDatabase method.
There is some more logic involved with that path, so, let’s stick to the happy path (1)
for now. We’ll handle path number 3 (the total failure case) after dealing with the
happy paths.

 Before we can test any of the states, however, we need to add the customer data-
base logic to the CreateBooking method as follows:

public async Task<(bool, Exception)> CreateBooking(string name,

➥ int flightNumber) {
 if (string.IsNullOrEmpty(name) || !flightNumber.IsPositiveInteger()) {

Listing 11.12 GetCustomerFromDatabase and AddCustomerToDatabase methods

Attempts to
retrieve the
customer from
the database

If a CustomerNotFoundException is thrown, the
customer does not exist in the database.

If a different exception
was thrown, something
went wrong. Rethrow
the exception.

Adds a
customer to
the database

269Foreign key constraints in service classes
 return (false, new ArgumentException());
 }

 try {
 Customer customer = await GetCustomerFromDatabase(name)

➥ ?? await AddCustomerToDatabase(name);

 if (!await FlightExistsInDatabase(flightNumber)) {
 return (false, new CouldNotAddBookingToDatabaseException());
 }

 await

➥ _bookingRepository.CreateBooking(customer.CustomerId, flightNumber);
 return (true, null);
 } catch (Exception exception) {
 return (false, exception);
 }
}

To test the logic path where a customer does not exist in the database, we need to set
up the Mock<CustomerRepository> to throw an exception of type CustomerNotFound-
Exception when the GetCustomerByName method is called, as shown here:

[TestMethod]
public async Task CreateBooking_Success_CustomerNotInDatabase() {
 _mockBookingRepository.Setup(repository =>

➥ repository.CreateBooking(0, 0)).Returns(Task.CompletedTask);
 _mockCustomerRepository.Setup(repository =>

➥ repository.GetCustomerByName("Konrad Zuse"))

➥ .Throws(new CustomerNotFoundException());

 BookingService service =

➥ new BookingService(_mockBookingRepository.Object,

➥ _mockFlightRepository.Object, _mockCustomerRepository.Object);

 (bool result, Exception exception) =

➥ await service.CreateBooking("Konrad Zuse", 0);

 Assert.IsFalse(result);
 Assert.IsNotNull(exception);
 Assert.IsInstanceOfType(exception,

➥ typeof(CouldNotAddBookingToDatabaseException));
}

That leaves just the following two code paths we need to provide tests for before we
wrap up the BookingService implementation:

 The GetCustomerByName threw an exception other than CustomerNotFound-
Exception.

 The CreateCustomer method returned a false Boolean.

Luckily, both are easy unit tests to add. What if BookingRepository.CreateBooking
threw an Exception? The BookingService.CreateBooking code should return {false,

270 CHAPTER 11 Runtime type checking revisited and error handling
CouldNotAddBookingToDatabaseException}, but does it? There’s only one way to
find out:

[TestMethod]
public async Task

➥ CreateBooking_Failure_CustomerNotInDatabase_RepositoryFailure() {
 _mockBookingRepository.Setup(repository =>

➥ repository.CreateBooking(0, 0))

➥ .Throws(new CouldNotAddBookingToDatabaseException());
 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlightByFlightNumber(0))

➥ .ReturnsAsync(new Flight());
 _mockCustomerRepository.Setup(repository =>

➥ repository.GetCustomerByName("Bill Gates"))

➥ .Returns(Task.FromResult(new Customer("Bill Gates")));

 BookingService service =

➥ new BookingService(_mockBookingRepository.Object,

➥ _mockFlightRepository.Object, _mockCustomerRepository.Object);

 (bool result, Exception exception) =

➥ await service.CreateBooking("Bill Gates", 0);

 Assert.IsFalse(result);
 Assert.IsNotNull(exception);
 Assert.IsInstanceOfType(exception,

➥ typeof(CouldNotAddBookingToDatabaseException));
}

It turns out that all is well. And with that, we can wrap up the implementation of
BookingService and BookingServiceTests. In this section, we learned more about
using mocks in unit tests and how to implement a service layer class that calls across
the repository layer with dependency injection.

Exercises
EXERCISE 11.1
True or false? Repositories act as pass-throughs between controllers and services.

EXERCISE 11.2
Fill in the blanks: To add an injected dependency to a class, you have to add a class
scoped private __________, which is assigned to a value in a __________ that requires
an injected __________.

a method; constructor; property
b class; abstract method; variable
c field; constructor; parameter

271Exercises
EXERCISE 11.3
Let’s say I have two models in a dataset schema called Apple and Banana. The
Apple.ID column has an outgoing foreign key relationship to the Banana.TastyWith
column. Which service is allowed to call what repository?

a The Apple service is allowed to call the Banana repository.
b The Banana repository is allowed to call the Apple repository.
c The Kiwi repository is injected in both the Apple and Banana services and will

take it from there.

EXERCISE 11.4
True or false? A service class is allowed to call an unlimited number of repositories, as
long as it has a valid reason to call every one of them.

EXERCISE 11.5
If you try to instantiate a type without providing the parameters required by any of its
constructors, what do you get?

a A participation trophy
b A compilation error
c A runtime error

EXERCISE 11.6
True or false? The discard operator ensures you never allocate any memory to store an
expression’s return value.

EXERCISE 11.7
You have two catch blocks in a try-catch code block. The first is a catch on the
Exception class; the second is a catch on the ItemSoldOutException class. If an
ItemSoldOutException is thrown in the try part of the try-catch code block, which
catch block is entered?

a catch(Exception exception) {…}
b catch(ItemSoldOutException exception) {…}

EXERCISE 11.8
You have two catch blocks in a try-catch code block. The first is a catch on the
ItemSoldOutException class; the second is a catch on the Exception class. If an
ItemSoldOutException is thrown in the try part of the try-catch code block, which
catch block is entered?

a catch(ItemSoldOutException exception) {…}
b catch(Exception exception) {…}

272 CHAPTER 11 Runtime type checking revisited and error handling
Summary
 You can use the Assert.IsInstanceOfType to perform a test assertion on an

object to check whether it is of a certain type (or can be coerced to that type
using polymorphism). Checking types in unit tests can come in handy if you
need to be sure a specific type was returned; for example, checking the type of
Exception that was returned from a method.

 You can perform runtime type checks by using the is and as operators. This is
helpful when dealing with objects that you may not know the exact type of.

 Service classes are allowed to call repository classes where appropriate. You use
service classes to organize multiple data streams into one view. Calling reposi-
tory classes from a service also allows you to track down foreign key constraints.

 The discard operator (_) allows you to explicitly indicate that a method’s return
value is a throwaway value. Sometimes using the discard operator can improve
code readability.

 The discard operator does allocate blocks of memory, but the garbage collector
can collect on them as soon as possible because there are no pointers to said
block of memory. This helps speed up performance.

 You can have multiple catch blocks in a try-catch code block. Only the first
matching catch block is entered. This is useful when dealing with more than one
derived class of Exception, and your logic differs based on particular classes.

Using IAsyncEnumerable<T>
and yield return
In the previous chapters, we examined the codebase we inherited and noted where
we could make improvements. Then, we partially implemented our version of
the codebase, adhering to FlyTomorrow’s OpenAPI specification. In chapters 10
and 11, we implemented the BookingService class and decided that there was no
need for a CustomerService class. Figure 12.1 shows where we are in the scheme of
the book.

This chapter covers
 Using the generic Queue data structure

 Using yield return and IAsyncEnumerable<T>

 Creating views

 Using private getters and setters with auto-
properties

 How structs differ from classes

 Using checked and unchecked keywords
273

274 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
If we look at which classes we need to implement to complete our service layer, an
encouraging picture follows:

 CustomerService (chapter 10)
 BookingService (chapters 10 and 11)
 AirportService (this chapter)
 FlightService (this chapter)

We are halfway done with the service layer classes. In this chapter, we’ll wrap up the
service layer implementation by writing code for the AirportService and Flight-
Service classes. After this chapter, we are in an excellent spot to move on to our last
architectural layer: the controller layer.

12.1 Do we need an AirportService class?
In section 10.2, we determined that if a service class would never get called by a con-
troller class, we do not need to implement the service class. We also saw that you can
determine whether you need a particular controller by checking the controller’s
model name against the OpenAPI specification. If there is no need for a controller,
there is no need for a service class. As humans, being creatures of habit, let’s repeat
that process for the AirportService class.

+ Reflection and mocks: 10

Part 5: The service layer

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Runtime type checking revisited

and error handling: 11

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

Figure 12.1 In this chapter, we wrap up the services layer by implementing the AirportService
and FlightService classes. By implementing those classes, we finish the service layer rewrite of
the Flying Dutchman Airlines service.

275Do we need an AirportService class?
 The OpenAPI specification (as shown in figure 12.2) tells us we need to imple-
ment the following three endpoints:

 GET /Flight
 GET /Flight/{FlightNumber}
 POST /Booking/{FlightNumber}

Do any of those endpoints have a controller related to the Airport model in their
path? As shown in figure 12.3, I see two Flight controllers and one Booking control-
ler, but no endpoints requiring an Airport controller. Well, that settles it then: we do
not need to implement an AirportService class.

 On the other hand, we do have a use case to keep the AirportRepository class. If
we look at the database schema of our deployed database, we see that the Airport
table has the following two incoming foreign key constraints:

 Flight.Origin to Airport.AirportID
 Flight.Destination to Airport.AirportID

In section 12.2, we’ll dive deeper into those foreign key constraints and implement
them. From our experiences in chapter 11, we know that we need to use the receiving
table’s repository to trace down these foreign key constraints.

Figure 12.2 The OpenAPI specification from FlyTomorrow. We need to implement three endpoints: two
GETs and one POST.

276 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
12.2 Implementing the FlightService class
So far, we implemented the BookingService and decided not to implement services
for the Airport and Customer entities. In this section, we’ll finish the service layer by
implementing the FlightService class. As with the prior sections, let’s ask ourselves,
do we need to implement this class? We have two endpoints that require a Flight con-
troller. Both the GET /Flight and the GET /Flight/{FlightNumber} endpoints make
their requests against a Flight controller. Perfect—that means we need to implement
a FlightService class. Both endpoints return data that already exists in the database
and are fairly simple in their complexity. Let’s begin with the first: GET /Flight.

12.2.1 Getting information on a specific flight from the FlightRepository

In this section, we’ll implement the GET /Flight endpoint as discussed in section 12.1.
FlyTomorrow uses the GET /Flight endpoint to query our service for all available
flights. We don’t need to take into account (or validate) any special input parameters,
but we have some foreign key restrictions to track down. We’ll also create a View class
for Flight so we can return a combination of data stemming from the Flight and
Airport tables.

 But first, the starting point of all our endeavors: we need to create skeleton classes
for both the FlightService and FlightServiceTests classes, as shown in figure 12.4.
You know what to do.

 Now that we have the required classes in our projects, we can think about the
things we need our method to do. Our method—let’s call it GetFlights—has to return
data on every flight in the database. To do this, we should use an injected instance of

Figure 12.3 The Airport table has two incoming foreign key constraints. Both
come from the Flight table and retrieve Airport.AirportID. These foreign
key constraints can be used to retrieve information on a particular Airport.

277Implementing the FlightService class
the FlightRepository class. The FlightRepository class does not have a method to
return all flights from the database, however, so we need to add that.

 In FlightRepository, let’s add a virtual method called GetFlights. We don’t
need to make the method asynchronous, because we do not query the actual data-
base for the required information. Even though we want to get all the data from a
specific table in the database, remember that Entity Framework Core stores a lot of
metadata in memory. This brings us to one of the drawbacks of using an ORM: per-
formance at scale. If you have a database that contains millions of records, Entity
Framework Core still stores a lot of data locally. On the flip side, it means that we
can query Entity Framework Core’s internal DbSet<Flight> and see all flights cur-
rently in the database.

 The GetFlights method should return a collection of Flight, but which collec-
tion to use? We don’t need to access elements by some kind of key or index, so an
Array, Dictionary, or List is unnecessary. Perhaps a simple Queue<Flight> would
suffice.

 A queue is a “first-in, first-out” (often abbreviated to FIFO) data structure. The first
element to enter the queue is the first to come out, as shown in as shown in listing 12.1.
Having a FIFO structure is helpful in our case because we can ensure we have an iso-
morphic relationship between how we represent the flights in our data structure and
how they are represented in the database.

Figure 12.4 To start the
implementation of the
FlightService, create
two skeleton classes:
FlightService and
FlightServiceTests.
These classes form the basis
of our FlightService and
FlightServiceTests
implementations.

278 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
public virtual Queue<Flight> GetFlights() {
 Queue<Flight> flights = new Queue<Flight>();
 foreach (Flight flight in _context.Flight) {
 flights.Enqueue(flight);
 }

 return flights;
}

EF CORE FOREACH An alternative implementation to a foreach loop when
dealing with an Entity Framework Core DbSet<T> collection is to use EF
Core’s ForEachAsync method: _context.Flight.ForEachAsync(f => flights
.Enqueue(f));. Depending on your readability preferences and asynchro-
nous needs, this may be a good option for you.

That’s all for the FlightRepository.GetFlights method, but we need unit tests to
back this up. I’ll walk you through the success case unit test, but I want you to think
about some potential failure cases and write tests for them. If you find that you want to
change the FlightRepository.GetFlights method for any reason, please do so!

 If we look at the existing FlightRepositoryTest class’s TestInitialize method,
we see that only one flight is added to the in-memory database before each test. In an
ideal world, we would like to have at least two flights in the in-memory database so we
can assert against the order in the returned Queue<Flight> as follows:

[TestInitialize]
public async Task TestInitialize() {
 DbContextOptions<FlyingDutchmanAirlinesContext> dbContextOptions =

➥ new DbContextOptionsBuilder<FlyingDutchmanAirlinesContext>()

➥ .UseInMemoryDatabase("FlyingDutchman").Options;
 _context = new FlyingDutchmanAirlinesContext_Stub(dbContextOptions);

 Flight flight = new Flight {
 FlightNumber = 1,
 Origin = 1,
 Destination = 2
 };

 Flight flight2 = new Flight {
 FlightNumber = 10,
 Origin = 3,
 Destination = 4
 };

 _context.Flight.Add(flight);
 _context.Flight.Add(flight2);
 await _context.SaveChangesAsync();

Listing 12.1 FlightRepository.GetFlights

Creates a queue
to store flights

Adds every flight to
the queue (in order)

Returns
the queue

279Implementing the FlightService class
 _repository = new FlightRepository(_context);
 Assert.IsNotNull(_repository);
}

YIELD RETURN KEYWORDS If you are okay with using a generic class instead of
a concrete collection type such as Queue, List, or Dictionary, a neat concept
to use is the yield return keywords.

When dealing with collections that implement the IEnumerable<T> interface, we can
return the IEnumerable<T> type and not have to declare an actual collection inside a
method. That may sound a bit confusing, so let me show you in the next code sample
what the code in listing 12.1 looks like if we were to use this approach.

public virtual IEnumerable<Flight> GetFlights() {
 foreach (Flight flight in _context.Flight) {
 yield return flight;
 }
}

The code in listing 12.2 does not explicitly declare a collection in which to store the
Flight objects. Instead, by using the yield return keywords, we abstract away the col-
lection initialization and let the compiler do its magic. (This is a simple example, and
the code in listing 12.2 could also simply return the existing _context.Flight collec-
tion in this case.) This compiler magic consists of the compiler generating a class
implementing the IEnumerable interface under the hood and returning that. The
syntax suggests we are using the IEnumerable interface directly, but in fact, you are
using the compiler-generated wrapper class.

 You will also sometimes hear about the yield return keyword within the context
of lazy evaluation. Lazy evaluation means that we delay all processing/iterating until it
is absolutely necessary. The opposite of this is greedy evaluation, which does all pro-
cessing up front and then lets us iterate over the results once it has all the informa-
tion. By using the yield return keyword, we can come up with lazy logic that doesn’t
operate on the returned results until they are returned. This is explained further in
the discussion on IAsyncEnumerable<T> later in this section.

 Now that we can get a queue of all the flights in the database by calling the
FlightRepository.GetFlights method, we can start to assemble the view we want
to return to the controller. By default, the Flight object has three properties:
FlightNumber, OriginID, and DestinationID. This information is crucial to the cus-
tomer, so we want to return it. However, simply returning IDs for the origin and des-
tination airports is not very useful. If we look at the database schema, we see that we
can use foreign keys to get more information about the origin and destination air-
ports.

Listing 12.2 Using yield return and IEnumerable<Flight>

280 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
 The Flight table has the following two outgoing foreign key constraints, as shown
in figure 12.5:

 Flight.Origin to Airport.AirportID
 Flight.Destination to Airport.AirportID

If we were to trace down those foreign key constraints, we could get Airport informa-
tion based on their IDs. The AirportRepository class has the following method that
can help us here: GetAirportByID. The GetAirportByID method accepts an airport
ID and returns the appropriate airport (if found in the database). We know that the
Airport model has a property for its city name, so we can return the origin and desti-
nation city names along with the flight number to the controller. This amalgamation
of two data sources forms the thinking behind our yet-to-be-created FlightView class.

12.2.2 Combining two data streams into a view

In section 10.1.1, we discussed views. We talked about how a view can give us a window
into a model and combine data from various data sources. In this section, we’ll create
the FlightView class and populate it with data from both the Flight model and the
Airport model.

 We can easily create the FlightView class. It is a public class with the following
three public properties:

 FlightNumber of type string
 An Airport object containing OriginCity (type string) and Code (type string)
 An Airport object containing DestinationCity (type string) and Code (type

string)

Figure 12.5 The Flight table has two outgoing
foreign key constraints. This figure does not show
any other foreign key constraints (inbound or
outbound). We’ll use these foreign key constraints
to create a view in section 12.2.2.

281Implementing the FlightService class
The data for FlightNumber comes from the Flight model, whereas the data for the
Airport object and the OriginCity and DestinationCity properties comes from the
Airport model, as shown in figure 12.6. This information (for every flight in the data-
base) is the data we ultimately return to FlyTomorrow when they query the GET
/Flight endpoint.

To keep things organized, let’s create a new folder for the FlightView class called
Views. The folder lives in the FlyingDutchmanAirlines project. Even though we don’t
expect a lot of views in this project, it is always good to be somewhat organized.

STRUCTS How do we deal with this Airport object we want to add inside the
FlightView? Sure, we could add instances of Airport and ignore some fields,
but that seems heavy handed to me. This is a prime chance to use the struct
type. Many languages support either structs or classes, but C# does both. We
can think of structs (within the context of C#) as light-weight classes that store
simple information. Structs have less overhead than a full-fledged class, so
when you just want to store a little information, use a struct.

Let’s add a struct called AirportInfo inside the FlightView.cs file (Note: Not inside
the FlightView class.), as shown in the next code sample. The AirportInfo type
should store information about the City and Code of a destination. We could use IATA
instead of Code and reflect the database. However, because this is a view, we can
change the name of things if we feel they better represent the data. IATA is correct,
but Code is easier to understand for people unfamiliar with aviation terms.

public struct AirportInfo {
 public string City { get; set; }
 public string Code { get; set; }

 public AirportInfo((string city, string code) airport) {
 City = airport.city;
 Code = airport.code;
 }
}

FlightView

FlightNumber

Origin

City

IATA

Destination

City

IATA

Figure 12.6 The FlightView class
combines the FlightNumber data from the
Flight table with the city and code data from
the Airport table. This allows us to present
exactly the information we want from
multiple sources to the end user.

282 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
The AirportInfo constructor accepts a tuple containing two fields: city and code.
This brings us to the second cool thing about using a struct: when adding a constructor
to a struct, you need to assign every property a value. In a class, you do not need to
assign a value to all properties, but this does not fly with a struct! If we were to have an
AirportInfo constructor that assigns a value only to the City property, the compiler
would cry foul. By adding a constructor to a struct, you guarantee a complete setup of
the respective struct. We can use this for future-proofing against a (well-intended)
developer not completely initializing a struct as needed.

 Coming back to the FlightView class, we can do something cool with the proper-
ties there as well. We can use private setters to make sure code only within the struct
itself can change the value. We know that we don’t need to change the data once we
retrieve it from the database, so let’s make the properties reflect that as much as possi-
ble. We don’t want just anybody to come in and try to set these properties, anyway.

ACCESS MODIFIERS AND AUTO-PROPERTIES When using auto-properties, we
can have different access modifiers for setting and getting a property.

Let’s see what the FlightView class looks like with a split get and set system, as shown
here:

public class FlightView {
 public string FlightNumber { get; private set; }
 public AirportInfo Origin { get; private set; }
 public AirportInfo Destination { get; private set; }
}

In this situation, only code that can access the properties through their private access
modifiers can set new values, yet the get is still public. So where do we set these val-
ues? How about in a constructor? An alternative approach to using a private setter
would be to make the properties readonly, because you can only set readonly proper-
ties in a constructor.

 Let’s create a constructor that accesses the properties’ private setters and accepts
arguments to set them to as follows:

public FlightView(string flightNumber, (string city, string code) origin,

➥ (string city, string code) destination) {
 FlightNumber = flightNumber;

 Origin = new AirportInfo(origin);
 Destination = new AirportInfo(destination);
}

We should also do some input validation on the passed-in parameters. We can use the
String.IsNullOrEmpty method to see whether any of the input arguments are a null
pointer or an empty string. Alternatively, you can use the String.IsNullOrWhitespace,

283Implementing the FlightService class
which checks whether the string is null, empty, or just consists of whitespace. If they
are, we set them to appropriate values. We also use the ternary conditional operator,
as shown next:

public class FlightView {
 public string FlightNumber { get; private set; }
 public AirportInfo Origin { get; private set; }
 public AirportInfo Destination { get; private set; }

 public FlightView(string flightNumber,

➥ (string city, string code) origin,

➥ (string city, string code) destination) {
 FlightNumber = string.IsNullOrEmpty(flightNumber) ?
 ➥ "No flight number found" : flightNumber;

 Origin = new AirportInfo(origin);
 Destination = new AirportInfo(destination);
 }
}

public struct AirportInfo {
 public string City { get; private set; }
 public string Code { get; private set; }

 public AirportInfo ((string city, string code) airport) {
 City = string.IsNullOrEmpty(airport.city) ?

➥ "No city found" : airport.city;
 Code = string.IsNullOrEmpty(airport.code) ?

➥ "No code found" : airport.code;
 }
}

NOTE Technically, we could make the FlightNumber, Origin, Destination,
City, and Code properties to be “get” only and remove the private setter alto-
gether. The compiler is smart enough to realize that we want to privately set
the properties in the constructor. I like the verbosity of having the private set-
ter, however. Your mileage may vary.

Of course, we should also create a test class and some unit tests to verify the Flight-
View constructor logic. Figure 12.7 shows the newly created files.

 There are different trains of thought on testing constructors. Some people say that
testing a constructor is simply testing the instantiation of a new object and, therefore,
testing a language feature. Others say testing a constructor is useful because you never
know what happens with the code. I fall into the latter camp. Especially when testing a
constructor represents a minimal effort, having a test suite, such as the following
code, to back up your code is the way to go:

284 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
[TestClass]
public class FlightViewTests {
 [TestMethod]
 public void Constructor_FlightView_Success() {
 string flightNumber = "0";
 string originCity = "Amsterdam";
 string originCityCode = "AMS";
 string destinationCity = "Moscow";
 string destinationCityCode = "SVO";

 FlightView view =

➥ new FlightView(flightNumber, (originCity, originCityCode),

➥ (destinationCity, destinationCityCode));
 Assert.IsNotNull(view);

 Assert.AreEqual(view.FlightNumber, flightNumber);
 Assert.AreEqual(view.Origin.City, originCity);
 Assert.AreEqual(view.Origin.Code, originCityCode);
 Assert.AreEqual(view.Destination.City, destinationCity);
 Assert.AreEqual(view.Destination.Code, destinationCityCode);
 }

 [TestMethod]
 public void Constructor_FlightView_Success_FlightNumber_Null() {
 string originCity = "Athens";
 string originCityCode = "ATH";
 string destinationCity = "Dubai";

Figure 12.7 Two new files
are created: FlightView in
FlyingDutchmanAirlines/Views,
and FlightViewTests in
FlyingDutchmanAirlines_Tests
/Views. Storing the classes in a
separate Views folder helps us
with organizing our codebase.

285Implementing the FlightService class
 string destinationCityCode = "DXB";
 FlightView view =

➥ new FlightView(null, (originCity, originCityCode),

➥ (destinationCity, destinationCityCode));
 Assert.IsNotNull(view);

 Assert.AreEqual(view.FlightNumber, "No flight number found");
 Assert.AreEqual(view.Origin.City, originCity);
 Assert.AreEqual(view.Destination.City, destinationCity);
 }

 [TestMethod]
 public void Constructor_AirportInfo_Success_City_EmptyString() {
 string destinationCity = string.Empty;
 string destinationCityCode = "SYD";

 AirportInfo airportInfo =

➥ new AirportInfo((destinationCity, destinationCityCode));
 Assert.IsNotNull(airportInfo);

 Assert.AreEqual(airportInfo.City, "No city found");
 Assert.AreEqual(airportInfo.Code, destinationCityCode);
 }

 [TestMethod]
 public void Constructor_AirportInfo_Success_Code_EmptyString() {
 string destinationCity = "Ushuaia";
 string destinationCityCode = string.Empty;

 AirportInfo airportInfo =

➥ new AirportInfo((destinationCity, destinationCityCode));
 Assert.IsNotNull(airportInfo);

 Assert.AreEqual(airportInfo.City, destinationCity);
 Assert.AreEqual(airportInfo.Code, "No code found");
 }
}

We can now rest easy knowing that whatever may happen to the code in the Flight-
View class and the AirportInfo struct, we have tests to catch any changes that break
existing functionality. We can now move on to populating the FlightView for every
flight we get back from the FlightRepository. Of the five pieces of data we need for
the FlightView (the flight number, the destination city, the destination code, the ori-
gin city, and the origin code), we know how to get the flight number. We just need to
call the FlightRepository.GetFlights method. Of course, we need a GetFlights
method in the FlightService first.

 The GetFlights method returns an instance of FlightView wrapped in an
IAsyncEnumerable. We discussed IEnumerable and how we can use the yield return
keywords with it earlier in this section. The IAsyncEnumerable return type allows us to
return an asynchronous collection implementing the IEnumerable interface. Because
it is already asynchronous, we do not need to wrap it in a Task.

286 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
 To start, let’s call the FlightRepository.GetFlights method and construct a
FlightView for every flight returned from the database, as shown in the next listing.
To do this, we also need to inject an instance of FlightRepository into the Flight-
Service class. I leave that to you. You know what to do there. If you get stuck, see the
provided source code. Note that the code in listing 12.3 does not compile, as explained
after the listing.

public async Task<IAsyncEnumerable<FlightView>> GetFlights() {
 Queue<Flight> flights = _flightRepository.GetFlights();
 foreach (Flight flight in flights) {
 FlightView view =

➥ new FlightView(flight.FlightNumber.ToString(), ,);
 }
}

Take a minute to read through listing 12.3 and see if you can spot why this code does
not compile (besides not returning the correct type). Did you see it? The compiler
throws an error because we did not provide enough arguments when instantiating the
FlightView object for every flight. We don’t even have the correct information to give
the view, though. The view wants us to pass in values for the flight number, origin city,
and destination city. We passed in the flight number but neither of the cities. The clos-
est thing we have to city names are the originAirportID and destinationAirportID
properties on the returned Flight objects. We know how to take those and get the air-
port city names and codes: we call the AirportRepository.GetAirportByID method
and take the Airport.City property (we also need an injected AirportRepository
instance), as shown here:

public async IAsyncEnumerable<FlightView> GetFlights() {
 Queue<Flight> flights = _flightRepository.GetFlights();
 foreach (Flight flight in flights) {
 Airport originAirport =

➥ await _airportRepository.GetAirportByID(flight.Origin);
 Airport destinationAirport =

➥ await _airportRepository.GetAirportByID(flight.Destination);

 FlightView view =

➥ new FlightView(flight.FlightNumber.ToString(),
 ➥ (originAirport.City, originAirport.Code),
 ➥ (destinationAirport.City, destinationAirport.Code));
 }
}

Now, here is where the real magic happens. Because we return a type of IAsync-
Enumerable<FlightView>, we can use the yield return keywords to automatically
add the created FlightView instances to a compiler-generated list as follows:

Listing 12.3 FlightService.GetFlights asks for all flights in the database

Asks for all flights
in the database

Loops over the
returned flights

Creates a FlightView
instance for every flight

287Implementing the FlightService class
public async IAsyncEnumerable<FlightView> GetFlights() {
 Queue<Flight> flights = _flightRepository.GetFlights();
 foreach (Flight flight in flights) {
 Airport originAirport =

➥ await _airportRepository.GetAirportByID(flight.Origin);
 Airport destinationAirport =

➥ await _airportRepository.GetAirportByID(flight.Destination);

 yield return new FlightView(flight.FlightNumber.ToString(),

➥ (originAirport.City, originAirport.Code),

➥ (destinationAirport.City, destinationAirport.Code));
 }
}

We should also add a unit test in FlightServiceTests to verify we did a good job.
Remember, we do not have to test the repository layers when testing service layer
methods. Instead, we can use instances of Mock<FlightRepository> and Mock<Airport-
Repository> as the injected dependencies to the FlightService class. To mock the
AirportRepository class, make the appropriate methods virtual and add a parame-
terless constructor, as shown in the next listing. We’ve done this a couple of times now,
so I leave that to you.

[TestMethod]
public async Task GetFlights_Success() {
 Flight flightInDatabase = new Flight {
 FlightNumber = 148,
 Origin = 31,
 Destination = 92
 };

 Queue<Flight> mockReturn = new Queue<Flight>(1);
 mockReturn.Enqueue(flightInDatabase);

 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlights()).Returns(mockReturn);

 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(31)).ReturnsAsync(new Airport
 {
 AirportId = 31,
 City = "Mexico City",
 Iata = "MEX"
 });

 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(92)).ReturnsAsync(new Airport
 {
 AirportId = 92,
 City = "Ulaanbaataar",
 Iata = "UBN"
 });

Listing 12.4 Unit testing a method returning IAsyncEnumerable<T>

Sets up the
FlightRepository
.GetAllFlights
mocked return

Sets up the
AirportRepository
.GetAirportByID
mocked returns

288 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
 FlightService service = new FlightService(_mockFlightRepository.Object,

➥ _mockAirportRepository.Object);

 await foreach (FlightView flightView in service.GetFlights()) {
 Assert.IsNotNull(flightView);
 Assert.AreEqual(flightView.FlightNumber, "148");
 Assert.AreEqual(flightView.Origin.City, "Mexico City");
 Assert.AreEqual(flightView.Origin.Code, "MEX");
 Assert.AreEqual(flightView.Destination.City, "Ulaanbaatar");
 Assert.AreEqual(flightView.Destination.Code, "UBN");
 }
}

In listing 12.4, we get our first peek at how to use the returned IAsyncEnumerable
type and can put together the puzzle of why it is such an outstanding feature. Instead
of calling the FlightService.GetFlights method once, waiting for all the data to
come back, and then operating on it, the IAsyncEnumerable type allows us to await
on a foreach loop and operate on the returned data as it comes in.

12.2.3 Using the yield return keywords with try-catch code blocks

In section 12.2.2, we implemented the FlightService.GetFlights method. We did
not, however, handle any exceptions coming out of the AirportRepository.Get-
AirportByID method. Unfortunately, we cannot simply add a try-catch code block
and wrap the entire method in it because we cannot use the yield return keywords in
such a code block. Not allowing yield statements in try-catch blocks has been a
point of discussion within the C# language community for a while. Because adding
yield statements to just try code blocks (without the catch) is allowed, and the only
blocker for adding yield statement support to try-catch code blocks is added com-
piler complexity due to garbage collection difficulties, we may see this feature added
in the future. The workaround is to add the calls to the AirportRepository.Get-
AirportByID method only in a try-catch block, so we can catch any outgoing excep-
tions, and then proceed as usual, as shown next:

public async IAsyncEnumerable<FlightView> GetFlights() {
 Queue<Flight> flights = _flightRepository.GetFlights();
 foreach (Flight flight in flights) {
 Airport originAirport;
 Airport destinationAirport;

 try {
 originAirport =

➥ await _airportRepository.GetAirportByID(flight.Origin);
 destinationAirport =

➥ await _airportRepository.GetAirportByID(flight.Destination);
 } catch (FlightNotFoundException) {

Injects the mocked dependencies, and
creates a new instance of FlightService

Receives flightViews as we construct them in
the GetFlights method (one in this case)

Makes sure
we received
the correct
flightView
back

289Implementing the FlightService class

4)
 throw new FlightNotFoundException();
 } catch (Exception) {
 throw new ArgumentException();
 }

 yield return new FlightView(flight.FlightNumber.ToString(),

➥ (originAirport.City, originAirport.Code),

➥ (destinationAirport.City, destinationAirport.Code));
 }
}

NOTE We have seen both IAsyncEnumerable and Task<IEnumerable> as
return types. IAsyncEnumerable does not need to be wrapped in a Task<T>
when returning from an asynchronous method, because IAsyncEnumerable is
already asynchronous. Using a type with the generic Task<T> allows us to
return a synchronous type from an asynchronous method.

This code allows us to catch any exception coming from the AirportRepository
.GetAirportByID method. If the service class finds the repository method threw an
exception of type FlightNotFoundException, it throws a new instance of FlightNot-
FoundException. If the code throws a different type of exception, the second catch
block is entered and the code throws an ArgumentException. The controller calling
the service layer handles this exception.

 The last piece of our service layer implementations is to write a unit test that veri-
fies our handling of the exception code we just wrote. Let’s look at that unit test
shown next. It should be pretty straightforward.

[TestMethod]
[ExpectedException(typeof(FlightNotFoundException))]
public async Task GetFlights_Failure_RepositoryException() {
 Flight flightInDatabase = new Flight {
 FlightNumber = 148,
 Origin = 31,
 Destination = 92
 };

 Queue<Flight> mockReturn = new Queue<Flight>(1);
 mockReturn.Enqueue(flightInDatabase);

 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlights()).Returns(mockReturn);

 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(31))

➥ .ThrowsAsync(new FlightNotFoundException());

 FlightService service = new FlightService(_mockFlightRepository.Object,

➥ _mockAirportRepository.Object);

Listing 12.5 Testing for exceptions in the FlightService

Expects the executed
logic in this test to
throw an exception

Starts at the FlightRepository
.GetAllFlights mocked return
(same as listing 12.4)

Sets up the
AirportRepository.GetAirportByID
mocked returns (same as listing 12.

Creates a new instance of
FlightService (same as listing 12.4)

290 CHAPTER 12 Using IAsyncEnumerable<T> and yield return

st

4)
 await foreach (FlightView _ in service.GetFlights()) {
 ;
 }
}

[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public async Task GetFlights_Failure_RegularException() {
 Flight flightInDatabase = new Flight {
 FlightNumber = 148,
 Origin = 31,
 Destination = 92
 };

 Queue<Flight> mockReturn = new Queue<Flight>(1);
 mockReturn.Enqueue(flightInDatabase);

 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlights()).Returns(mockReturn);

 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(31))

➥ .ThrowsAsync(new NullReferenceException());

 FlightService service = new FlightService(_mockFlightRepository.Object,

➥ _mockAirportRepository.Object);

 await foreach (FlightView _ in service.GetFlights()) {
 ;
 }
}

Overall, the code in listing 12.5 should pose no challenges. It is good to point out that
by using the discard operator in the foreach, we tell other developers that we do not
need to use the returned values. In the same vein, inside the foreach loop, we added
an empty statement (;). This does absolutely nothing but provide more readable
code. By adding the empty statement, we say that having no logic inside the foreach
loop was not a mistake.

 We can do some further cleaning up: I am sure you noticed we have identical setup
code for the Mock<Flight> and Mock<Airport> instances in both unit tests. Because
this violates the DRY principle, we should refactor both unit tests and do this initializa-
tion in the TestInitialize method. This shortens our test methods considerably, as
shown here:

[TestClass]
public class FlightServiceTests {
 private Mock<FlightRepository> _mockFlightRepository;
 private Mock<AirportRepository> _mockAirportRepository;

 [TestInitialize]
 public void Initialize() {

Calls the GetFlights
method, using the
discard operator for
the return assignment

Empty
atement

Expects the executed
logic in this test to
throw an exception

Starts at the FlightRepository
.GetAllFlights mocked return
(same as listing 12.4)

Sets up the
AirportRepository.GetAirportByID
mocked returns (same as listing 12.

Creates a new instance of
FlightService (same as listing 12.4)

Calls the GetFlights
method, using the
discard operator for
the return assignment

291Implementing the FlightService class
 _mockFlightRepository = new Mock<FlightRepository>();
 _mockAirportRepository = new Mock<AirportRepository>();

 Flight flightInDatabase = new Flight {
 FlightNumber = 148,
 Origin = 31,
 Destination = 92
 };

 Queue<Flight> mockReturn = new Queue<Flight>(1);
 mockReturn.Enqueue(flightInDatabase);

 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlights()).Returns(mockReturn);
 }

 [TestMethod]
 public async Task GetFlights_Success() {
 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(31)).ReturnsAsync(new Airport
 {
 AirportId = 31,
 City = "Mexico City",
 Iata = "MEX"
 });

 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(92)).ReturnsAsync(new Airport
 {
 AirportId = 92,
 City = "Ulaanbaatar",
 Iata = "UBN"
 });

 FlightService service =

➥ new FlightService(_mockFlightRepository.Object,

➥ _mockAirportRepository.Object);

 await foreach (FlightView flightView in service.GetFlights()) {
 Assert.IsNotNull(flightView);
 Assert.AreEqual(flightView.FlightNumber, "148");
 Assert.AreEqual(flightView.Origin.City, "Mexico City");
 Assert.AreEqual(flightView.Origin.Code, "MEX");
 Assert.AreEqual(flightView.Destination.City, "Ulaanbaatar");
 Assert.AreEqual(flightView.Destination.Code, "UBN");
 }
 }

 [TestMethod]
 [ExpectedException(typeof(FlightNotFoundException))]
 public async Task GetFlights_Failure_RepositoryException() {
 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(31)).ThrowsAsync(new Exception());

292 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
 FlightService service =

➥ new FlightService(_mockFlightRepository.Object,

➥ _mockAirportRepository.Object);
 await foreach (FlightView _ in service.GetFlights()) {
 ;
 }
 }
}

And that does it for the GetFlights method!

12.2.4 Implementing GetFlightByFlightNumber

All that is left is to add a similar method that retrieves only a single flight’s informa-
tion when given a flight number. The patterns should be very familiar to you by now,
as shown next:

public virtual async Task<FlightView>

➥ GetFlightByFlightNumber(int flightNumber) {
 try {
 Flight flight = await

➥ _flightRepository.GetFlightByFlightNumber(flightNumber);
 Airport originAirport = await

➥ _airportRepository.GetAirportByID(flight.Origin);
 Airport destinationAirport = await

➥ _airportRepository.GetAirportByID(flight.Destination);

 return new FlightView(flight.FlightNumber.ToString(),
 ➥ (originAirport.City, originAirport.Iata),
 ➥ (destinationAirport.City, destinationAirport.Iata));
 } catch (FlightNotFoundException) {
 throw new FlightNotFoundException();
 } catch (Exception) {
 throw new ArgumentException();
 }
}

We should also add some unit tests to verify we can get the correct flight from the
database and handle the FlightNotFoundException and Exception error paths. To
do this, we first have to add a new setup call to the TestInitalize method. Our mock
currently does not return any data when we call FlightRepository.GetFlightBy-
FlightNumber. Let’s fix that as follows:

[TestInitialize]
public void Initialize() {
 …

 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlights()).Returns(mockReturn);
 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlightByFlightNumber(148))

➥ .Returns(Task.FromResult(flightInDatabase));
}

293Implementing the FlightService class
When the mock’s GetFlightByFlightNumber returns data, we return the previously
created flight instance. With that, we can add the GetFlightByFlightNumber_Success
test case as follows:

[TestMethod]
public async Task GetFlightByFlightNumber_Success() {
 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(31)).ReturnsAsync(new Airport
 {
 AirportId = 31,
 City = "Mexico City",
 Iata = "MEX"
 });

 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(92)).ReturnsAsync(new Airport
 {
 AirportId = 92,
 City = "Ulaanbaatar",
 Iata = "UBN"
 });

 FlightService service = new FlightService(_mockFlightRepository.Object,

➥ _mockAirportRepository.Object);
 FlightView flightView = await service.GetFlightByFlightNumber(148);

 Assert.IsNotNull(flightView);
 Assert.AreEqual(flightView.FlightNumber, "148");
 Assert.AreEqual(flightView.Origin.City, "Mexico City");
 Assert.AreEqual(flightView.Origin.Code, "MEX");
 Assert.AreEqual(flightView.Destination.City, "Ulaanbaatar");
 Assert.AreEqual(flightView.Destination.Code, "UBN");
}

The unit test is pretty simple. We mimicked (read: copied and pasted) the airport
setup code, so we added a flight to use in the in-memory database. Then we called
FlightService.GetFlightByFlightNumber to check our service layer logic. Finally,
we verified the return data. Now, when you saw the airport setup from the Get-
Flights_Success unit test in the code that we copied and pasted, alarm bells should
have started to ring in your mind. Obviously, this repetition is a giant violation of the
DRY principle, and we should refactor the test class to do this database setup in the
TestInitialize method as follows:

[TestInitialize]
public void Initialize() {
 _mockFlightRepository = new Mock<FlightRepository>();
 _mockAirportRepository = new Mock<AirportRepository>();

 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(31)).ReturnsAsync(new Airport
 {
 AirportId = 31,

294 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
 City = "Mexico City",
 Iata = "MEX"
 });

 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(92)).ReturnsAsync(new Airport
 {
 AirportId = 92,
 City = "Ulaanbaatar",
 Iata = "UBN"
 });

 …
}

This shortens the GetFlights_Success and the GetFlightByFlightNumber_Success
unit tests by a fair amount, as shown here:

[TestMethod]
public async Task GetFlights_Success() {
 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(31)).ReturnsAsync(new Airport
 {
 AirportId = 31,
 City = "Mexico City",
 Iata = "MEX"
 });

 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(92)).ReturnsAsync(new Airport
 {
 AirportId = 92,
 City = "Ulaanbaatar",
 Iata = "UBN"
 });

 FlightService service = new FlightService(_mockFlightRepository.Object,

➥ _mockAirportRepository.Object);

 await foreach (FlightView flightView in service.GetFlights()) {
 Assert.IsNotNull(flightView);
 Assert.AreEqual(flightView.FlightNumber, "148");
 Assert.AreEqual(flightView.Origin.City, "Mexico City");
 Assert.AreEqual(flightView.Origin.Code, "MEX");
 Assert.AreEqual(flightView.Destination.City, "Ulaanbaatar");
 Assert.AreEqual(flightView.Destination.Code, "UBN");
 }
}

[TestMethod]
public async Task GetFlightByFlightNumber_Success() {
 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(31)).ReturnsAsync(new Airport
 {

295Implementing the FlightService class
 AirportId = 31,
 City = "Mexico City",
 Iata = "MEX"
 });

 _mockAirportRepository.Setup(repository =>

➥ repository.GetAirportByID(92)).ReturnsAsync(new Airport
 {
 AirportId = 92,
 City = "Ulaanbaatar",
 Iata = "UBN"
 });

 FlightService service = new FlightService(_mockFlightRepository.Object,

➥ _mockAirportRepository.Object);
 FlightView flightView = await service.GetFlightByFlightNumber(148);

 Assert.IsNotNull(flightView);
 Assert.AreEqual(flightView.FlightNumber, "148");
 Assert.AreEqual(flightView.Origin.City, "Mexico City");
 Assert.AreEqual(flightView.Origin.Code, "MEX");
 Assert.AreEqual(flightView.Destination.City, "Ulaanbaatar");
 Assert.AreEqual(flightView.Destination.Code, "UBN");
}

Of course, all unit tests still pass. This gives us the confidence to know we broke noth-
ing. Let’s add some failure case unit tests for the GetFlightByFlightNumber method
and then we can call it a day.

 Starting with the failure path where the service layer throws an exception of type
FlightNotFoundException, we expect the service layer to throw another such excep-
tion, as shown next:

[TestMethod]
[ExpectedException(typeof(FlightNotFoundException))]
public async Task

➥ GetFlightByFlightNumber_Failure_RepositoryException

➥ _FlightNotFoundException() {
 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlightByFlightNumber(-1))

➥ .Throws(new FlightNotFoundException());
 FlightService service = new FlightService(_mockFlightRepository.Object,

➥ _mockAirportRepository.Object);

 await service.GetFlightByFlightNumber(-1);
}

The GetFlightByFlightNumber_Failure_RepositoryException_Exception unit test
sees our old friend the ExpectedException method attribute again. We are well aware
of its usefulness by now and also use it in the unit test to check for the next (and last)
exception path: the repository layer throws an exception of any type besides Flight-
NotFoundException. The FlightService.GetFlightByFlightNumber method catches

296 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
the thrown exception and throws a new ArgumentException. Or so it says. Let’s see if
it actually does:

[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public async Task

➥ GetFlightByFlightNumber_Failure_RepositoryException_Exception() {
 _mockFlightRepository.Setup(repository =>

➥ repository.GetFlightByFlightNumber(-1))

➥ .Throws(new OverflowException());
 FlightService service = new FlightService(_mockFlightRepository.Object,

➥ _mockAirportRepository.Object);

 await service.GetFlightByFlightNumber(-1);
}

The GetFlightByFlightNumber_Failure_RepositoryException_Exception unit test
tells the Mock<FlightRepository> to throw an exception of type OverflowException
when we call the FlightRepository.GetFlightByFlightNumber and pass in an input
argument of -1. We could have used any exception class here because they are all
derived from the base Exception class, and that is what the catch block in the method
looks for. This is also the reason why the test is not more specific in its name regarding
the exception type. We are testing the logic that happens if any type of Exception is
thrown, not a specific one. Because Exception is the base class for all exceptions, we
can test it with just that.

Overflows and underflows (checked and unchecked)
What do you get when you add two integers together? Let’s say 2147483647 and 1?
You get a negative number. Similarly, what do you get when you subtract 1 from
–2147483647? A positive number. This is what we call over- and underflow. When
you go over the maximum value of a primitive type, or under the minimum value of a
primitive type, you are greeted by a “wrapped around” value. Why is this, and how
can we protect against this?

When there are not enough binary bits available in a type to represent your requested
value, the type wraps around and flips (if it is an unsigned integer). This, depending
on the context, is overflow and underflow. For example (albeit a simplistic one): an
integer is a four-byte data type. This means we have 32 bits to play with (one byte
contains eight bits, and 8 × 4 = 32). So, if we declare one variable that sets all 32
(31 if signed) bits to their “on” value, we have the maximum value we can represent
in a 32-bit (or four-byte) type (in C#, we can use decimal, hexadecimal, or binary rep-
resentations directly in our code; this is binary):

int maxVal = 0b11111111_11111111_11111111_1111111;
int oneVal = 0b00000000_00000000_00000000_0000001;

int overflow = maxVal + oneVal;

297Implementing the FlightService class
And that does it for the service layer classes. I hope you learned some valuable things,
and if not, the end of the book is in sight. In chapter 13, we’ll look at implementing
the controller layer and integration testing.

In C#, when using direct binary representation, you have to prefix your value with
either 0b or 0B (with hexadecimal, use 0x or 0X). You can opt, as in the code snippet,
to include underscores in the binary representation for readability. We prefix these
values so the compiler knows how to treat the value. In this code snippet, we do the
equivalent of adding 1 to the max 2147483647. So, what does the overflow variable
resolve to? It resolves to –2147483648. And if we were to subtract a value of 1 from
that, we would end up with a positive value: 2147483647. Often, when you know you
are dealing with values over a particular type’s capacity, you use a different one. For
example, you may use a long instead of an integer, or a BigInteger instead of a
long. But what if you are, for whatever reason, restricted to a specific type, yet can
see overflows and underflows as a realistic scenario?

BIGINTEGER is an immutable, nonprimitive “type” that grows with your
data and is effectively capped only by your memory. A BigInteger acts
as an integer but is actually a cleverly designed struct. Java developers
may be familiar with BigInteger.

C# provides us with a keyword and compilation mode that can somewhat prevent
unexpected overflows and underflows: checked. By default, C# compiles in
unchecked mode. This means that the CLR does not throw any exceptions on arith-
metic overflow and underflow. This is fine for most use cases, because we have
some additional overhead with checking for this possibility, and it is not a common
occurrence in a lot of programs. But, if we use checked mode, the CLR throws an
exception when it detects under- or overflow. To use checked mode, we can either
compile the entire codebase with these checks in place, by adding the -checked
compiler option to the build instructions, or we can use the checked keyword.

To have the CLR throw an exception when it sees under- or overflow in a specific code
block, we can wrap code in a checked block as follows:

checked {
 int maxVal = 0b_11111111_11111111_11111111_1111111;
 int oneVal = 0b_00000000_00000000_00000000_0000001;

 int overflow = maxVal + oneVal;
}

Now, when we add the maxVal and oneVal variables, the CLR throws an Overflow-
Exception! Consequently, if you compiled the entire codebase in checked mode,
you can use the unchecked code block to tell the CLR not to throw any Overflow-
Exceptions for that block’s scope.

298 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
Exercises
EXERCISE 12.1
True or false? For the endpoint GET /Band/Song, we need to implement the Band-
Service class.

EXERCISE 12.2
True or false? For the endpoint POST /Inventory/SKU, we need to implement the
SKUService class.

EXERCISE 12.3
What best describes the interactions with a Queue<T> data structure?

a First-in, last-out (FILO)
b First-in, first-out (FIFO)
c Last-in, first-out (LIFO)
d Last-in, last-out (LILO)

EXERCISE 12.4
If we use the yield return keywords inside a foreach loop embedded in a method
with a return type of IEnumerable<T>, what could we expect to get back as a value
from the method?

a A collection implementing the IEnumerable interface containing all the data
from the foreach loop.

b A collection implementing the IEnumerable interface containing only the first
piece of data to be processed in the foreach loop.

c A collection not implementing the IEnumerable interface returning a refer-
ence to the original collection.

EXERCISE 12.5
Imagine a class called Food with a Boolean property IsFruit. This property has a pub-
lic getter and a protected setter. Can the class Dragonfruit, which derives from the
Food class, set the IsFruit value?

EXERCISE 12.6
What does this evaluate to? string.IsNullOrEmpty(string.empty);

EXERCISE 12.7
What does this evaluate to? string.IsNullOrWhitespace(" ");

EXERCISE 12.8
True or false? If you add a constructor to a struct, you can set only one property. The
other properties must go unset.

299Summary
Summary
 To determine whether we need to implement a particular service, we can look

at the required API endpoints. If there is no need for a particular model’s con-
troller, we don’t need a service for that model, either. This saves us from imple-
menting unnecessary code.

 A Queue<T> is a “first-in, first-out” (FIFO) data structure. Queues are very help-
ful when we want to preserve order and deal with information as if we are deal-
ing with a queue of people. The first one there is the first one processed, or,
“the early bird gets the worm.”

 We can use the yield return keywords to asynchronously return an IEnumera-
ble<T> implementation if we iterate over some data. This can make our code
more readable and concise.

 A struct can be thought of as a “lightweight” class. We often use them to store
small amounts of information and typically do not do any processing of data in
a struct. Structs are a great way to signify to our fellow developers that this piece
of code acts as a data storage device.

 When adding a constructor to a struct, the compiler requires us to assign every
property in the struct to a value. This is to prevent structs that are only partly
initialized and stops us from accidentally forgetting to set values.

 We can have different access modifiers for getters and setters in an auto-property.
This allows us to make a property that can be publicly accessed but only set
inside its respective class (private). Any combination of access modifiers is
allowed. Because encapsulation is often our goal, by using these access modifi-
ers, we can better control the encapsulation story.

 We can only set readonly values at their declaration or in a constructor.
Because we can set a readonly value only once, and declaring a field means the
compiler automatically assigns a default value to its spot in memory, we need to
set it at the earliest possible moment. A readonly field can greatly reduce the
amount of data manipulation others can do on our code.

 By using an IAsyncEnumerable<T> along with the yield return keywords, we
can create code that asynchronously awaits on data and processes it as it
receives the data. This is very helpful when dealing with external interactions
such as database queries.

 Overflows and underflows happened when we try to represent a value that
needs more bits than a specific type has access to. When this happens, your vari-
able values suddenly become incorrect, which can have unexpected side effects.

 By default, C# code is compiled using unchecked mode. This means the CLR
does not throw an OverflowException if it encounters an overflow or under-
flow. Similarly, checked mode means the CLR does throw such an exception.

300 CHAPTER 12 Using IAsyncEnumerable<T> and yield return
 We can use checked and unchecked code blocks to change the compilation
mode on a per-code-block basis. This is helpful when wanting to control the
Exception story.

 In C#, we can represent integer values with decimal, hexadecimal, or binary
representation. When using hexadecimal, we need to prefix our values with
either 0x or 0X. With binary representation, use 0b or 0B. These different rep-
resentations allow us to pick and choose what makes the most sense for our
code’s readability.

Part 6

The controller layer

In part 5, we created the service layer classes. These classes are the glue
between the repository and controller architectural layers. We also looked at
runtime type checking and using IAsyncEnumerable<T>. In this part, we’ll finish
our rewrite of the Flying Dutchman Airlines service by implementing the con-
troller layer classes. Other topics considered include ASP.NET middleware, cus-
tom model binding, and JSON serialization/deserialization.

Middleware,
HTTP routing,

and HTTP responses
We are almost at the end of our journey. In chapters gone by, we implemented the
database access layer, the repository layer, and the service layer. Our service is
almost implemented but not yet usable by FlyTomorrow (our client). To interact
with our service, we need to provide controllers that accept HTTP requests and
kick off the necessary processing.

 In section 13.1, we’ll discuss the controller’s place within our repository/service
architecture. Following that, in section 13.2, we’ll determine which controllers we
need to implement. In the following sections, we’ll start to implement the Flight-
Controller (section 13.3) and explore how to route HTTP requests to our end-
points (section 13.4).

 Figure 13.1 shows where are in the scheme of the book.

This chapter covers
 Routing HTTP requests to controllers and

endpoints

 Declaring HTTP routes with HttpAttribute
method attributes

 Injecting dependencies with middleware

 Using the IActionResult interface to return HTTP
responses
303

304 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
After this chapter, we are only one more chapter away from having a fully imple-
mented service that adheres to the API specification given to us by FlyTomorrow. In
the next chapter, we’ll finish up by wrapping up our controllers and diving into accep-
tance testing with Swagger so we can prove we did our work correctly.

13.1 The controller class within the repository/service
pattern
In section 5.2.4, I introduced you to the repository/service pattern. We have used this
pattern throughout the book to implement the new FlyingDutchmanAirlines service
with much success. But now that we are at the controller layer, you may ask, how does
the controller fit into this pattern? After all, it is the repository/service pattern, not
the controller/service/repository pattern.

 Sometimes a name can be misleading. One of my biggest pet peeves is when some-
thing (a method name or an architecture) is named incorrectly or incompletely.
Unfortunately, I did not name this pattern, but if I had, it would be the “controller/
repository/service pattern.” Heck, perhaps even the controller/repository/service
/database layer pattern, but that is even more of a mouthful. So where does the con-
troller layer fit into the repository/service pattern?

 The quick answer is this: a controller is typically the public-facing, topmost layer in
the repository/service pattern. This is not surprising: the controller is normally the
topmost layer for a service because it is typically the only point exposed to clients, as

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

+ Introducing C# and .NET: 1

+ .NET and how it compiles: 2

Part 1: Using C# and .NET + How bad is this code?: 3

+ Manage your unmanaged

resources!: 4

Part 2: The existing codebase

+ Setting up a project and database

using Entity Framework Core: 5

Part 3: The database access layer

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Reflection and mocks: 10

Part 5: The service layer

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Runtime type checking revisited

and error handling: 11

Figure 13.1 In the previous chapters, we implemented the database access, repository, and service
layers. In this chapter, we’ll start to implement all controllers needed for our service.

305The controller class within the repository/service pattern
shown in figure 13.2. Examples of external systems include the FlyTomorrow website,
a microservice requesting information for further processing, or a desktop applica-
tion trying to load database information. Any consumer outside of your codebase is an
external system. There is a caveat here: this assumes we live in a world where our ser-
vice acts as a “server” for an external system calling our service. If you need to call any
external HTTP services as part of the work in this service, you may end up doing this
in the service or repository layer.

So far, we have implemented the inner circles of our service. Right now, however, if
FlyTomorrow were to send a request for information about all the flights in the data-
base, we would have no way to accept that request. Consequently, without fully
implemented controllers, nobody would use our service. You can have the cleanest,
most performant, secure service, but if nobody uses (or can use) your product, it
isn’t good enough.

HTTP

Database

Database

Repositories

Services

Controllers

Figure 13.2 A controller is the outermost layer of our architecture and
interacts with any potential external systems, if the service acts as a server.
With this model in mind, we can easily model our repositories, services, and
controllers.

306 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
 A controller exposes methods we call endpoint methods. These methods accept
HTTP requests and return HTTP responses. An HTTP response usually comprises the
following three key items, as shown in figure 13.3:

 An HTTP status code like 200 (OK), 404 (Not Found), or 500 (Internal Server Error)—
The controller determines this status code based on the state of the service after
processing the request.

 Headers—This is a collection of key-value pairs that often include the type of
returned data and whether there are any cross-origin resource sharing (CORS)
instructions. Unless you need to pass along an odd header, the ASP.NET can
often take care of this step for you automatically.

 A body—Where appropriate, you can return data to the consumer. Often this
data is returned as a JSON value and goes along with a 200 (OK) status code.
Some HTTP status codes don’t allow for returning data (e.g., the 201 status
code, which means “no content”). This data is returned in the “body” section.

For more information on HTTP and web service interaction, see Barry Pollard’s
HTTP/2 in Action (Manning, 2019). If you want to learn more about developing the
architecture that goes along with creating multiple services interacting with each
other as external services, see Chris Richardson’s Microservices Patterns (Manning,
2018), Sam Newman’s Building Microservices: Designing Fine-Grained Systems (O’Reilly
Media, 2015), or Christian Harsdal Gammelgaard’s Microservices in .NET Core (2nd edi-
tion; Manning, 2020).

13.2 Determining what controllers to implement
As we implemented the service layer classes, we talked about how to determine
whether a service layer class was necessary. We realized that we need to figure out
whether we need a controller that calls said service layer. So, we can repeat that exer-
cise once again and quickly figure out what controllers we need to implement.

 Once again, we look at the endpoints specified in the contract between FlyTomorrow
and Flying Dutchman Airlines (first introduced in section 3.1 and 3.2, and shown in
figure 13.4):

HTTP response
200 (OK)

“application/json”

{“data”: “Hello, World!”}

HTTP tatus odes c

Headers

Body

Figure 13.3 An HTTP response typically comprises an HTTP status
code, headers, and a body. We use these fields to return appropriate
information to the caller.

307Determining what controllers to implement
 GET /Flight
 GET /Flight/{FlightNumber}
 POST /Booking/{FlightNumber}

These endpoints form the basis of all we have done so far. In the database access,
repository, and service layers, we did not have to do much with the actual endpoints,
but that changes when we talk about controllers.

 To determine what controllers we need to implement, we ask ourselves, what
entities can we see in the required endpoints, as shown in figure 13.5? Remember,
when we talk about entities, we’re talking about database entities (reflected in the
codebase by model classes). Take a couple of seconds to look over the endpoints
and see what you come up with. We have done this exercise before, so it shouldn’t
be too challenging.

Figure 13.4 The endpoints required by the contract with FlyTomorrow. We need to implement our
controllers to reflect these endpoints.

GET /Flight

GET /Flight/{FlightNumber}

POST /Booking/{FlightNumber}

Figure 13.5 The required endpoints with the potential
controllers identified. We can determine what controllers
we need to implement by looking at what entities appear
in the required endpoints.

308 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
If we look at the first endpoint (GET /Flight), we see the Flight entity in the path.
This is a clear-cut sign that we should implement a FlightController class. Similarly,
when we look at the GET /Flight/{FlightNumber} endpoint, we realize we need a
FlightController class for that one as well. That leaves the POST /Booking/{Flight-
Number}, which shows the need for a BookingController. In the rest of this chapter,
we’ll implement the FlightController. In the next chapter, we’ll fully implement the
BookingController.

 But what about controllers for the Airport and Customer entities? Because no
endpoint paths need to go to a controller for the Airport and Customer entities, we
do not need them.

13.3 Implementing the FlightController
In section 13.1 we talked about the controller layer in our architecture. In section 13.2
we took that knowledge and discussed which controllers we need to implement. In
this section, we’ll go ahead and actually implement a controller. How does one imple-
ment a controller layer class? Well, you know the drill: we first create our two skeleton
classes. In this section, we’ll implement the FlightController class, so let’s create the
FlightController and FlightControllerTests classes, shown in figure 13.6.

With the skeleton classes in place, we have to do only one additional thing before we
can talk about how to create controller methods that are accessible from external

Figure 13.6 We add two skeleton
classes: FlightController and
FlightControllerTests. These form
the basis of our FlightController
implementation.

309Implementing the FlightController
systems: the FlightController needs to derive from the Controller class. This base
class, shown in the next code sample, provides us with standard methods that we can use
to return HTTP data to the consumer and allows us to set up routing to our endpoints:

public class FlightController : Controller

Now, we need to implement the following three pieces so we can hit our endpoint by
an external system at run time.

 The IActionResult interface (section 13.3.1)
 Dependency injection in middleware (section 13.3.2)
 Routing endpoints (section 13.4)

After this chapter, we will have implemented the FlightController, along with the
appropriate unit tests, and will be able to hit the endpoints through an external sys-
tem simulator such as Postman or cURL.

13.3.1 Returning HTTP responses with the IActionResult interface
(GetFlights)

In section 13.2, we discussed the composition of a typical HTTP response. Most of the
time, an HTTP response contains an HTTP status code, headers, and a body containing
some data. Think about how we would return something like that from a method. No
primitive data types hold this information. We could use the lowest common denomina-
tor of any type in C#—object—but that would be a lazy workaround and somewhat
tricky to deal with because it is still not in an acceptable form for the HTTP transport.

 The solution is ASP.NET’s IActionResult interface. The IActionResult interface
is implemented by classes such as ActionResult and ContentResult, but in practice,
we can leave the determination of which specific class to use to ASP.NET. This is
another example of polymorphism and something we call “coding to interfaces.”

Coding to interfaces
In section 8.4, we talked about using polymorphism and the Liskov substitution prin-
ciple. These allow us to write code that is generic instead of constrained to one par-
ticular implementation. To drive this point home, let me show you an example.

Let’s imagine you are writing a service for a book publisher in the mid-2000s. The era
of e-books is on the rise, but your code did not account for this possibility. As a result,
your code is tightly coupled to the Book class. In the following snippet, the author
finished writing the book, and we want to send it to the printer:a

public void BookToPrinter(Book book) {
 if (book.IsApproved()) {
 BookPrinter printer =

➥ ExternalCompanyManager.SelectPrintingCompany(book);
 printer.Print();
 }
}

310 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
Let’s get cracking with our first endpoint: /GET Flight. We know our return type
(IActionResult), but what should the access modifier, name, and arguments be?
Because ASP.NET uses reflection to use the method, the access modifier should be
public. As for the name, a good way to name endpoint methods is to take the HTTP
action (GET in this case) and append the entity (Flight for us), making the term plu-
ral where necessary: GetFlights. That leaves us with the input parameter. This is a
GET action, so we do not need an input parameter, as shown in the next code snippet.
GET actions are not allowed to pass in any data to specific methods per the HTTP spec-
ification, so that makes our lives a bit easier at this point.

public IActionResult GetFlights() { … }

(continued)

This code works fine when dealing only with regular, paper books. But what happens
if we want to “print” an e-book? Well, the method does not accept a type of EBook
as an input parameter. If we wrote the BookToPrinter method using an interface for
the parameter’s type instead of a concrete type, our work would have been easier,
as shown here:

public void BookToPrinter(IWork book) {
 if (book.IsApproved()) {
 BookPrinter printer =

➥ ExternalCompanyManager.SelectPrintingCompany(book);
 printer.Print();
 }
}

Now, printing an e-book does not make much sense. We may want to take things one
step further and generalize the actual “printing” of the book, regardless of its medium
type, as shown next:

public void ProduceWork(IWork work) {
 if (work.IsApproved()) {
 work.Produce();
 }
}

This way, we abstract away the implementation details to the derived classes of the
IWork interface. The ProduceWork method does not care whether the book’s
medium is paper or e-book. Implementing logic to change the state of an object inside
the actual object is an important tenet of object-oriented design and makes code
more readable and maintainable. For an excellent discussion on this and how it ties
into the Open/Closed Principle, see Robert C. Martin and Micah Martin’s Agile Prin-
ciples, Patterns, and Practices in C# (Prentice Hall, 2006).

a At the time of writing, this joyous occasion seems still very far out for this book.

311Implementing the FlightController

Mak
th

resp
n

What do we need to do to return some JSON data? As mentioned in section 13.1, in
most situations we do not need to explicitly specify any header information, so that
leaves the status code and any body data. The ASP.NET library gives us an easy-to-use
static class that we can return and use as an IActionResult: StatusCode. This class
lives in the Controller base class that FlightController derives from. At first glance
(and judging by its name), you would think the StatusCode allows us to return only a
status code and no body, but nothing is further from the truth! To illustrate, let’s
return an HTTP status code of 200 (OK) and a string “Hello, World!” from the Get-
Flights method as follows:

public IActionResult GetFlights() {
 return StatusCode(200, "Hello, World!");
}

That code compiles and returns exactly what we want. There is an additional tip here
that bears understanding: instead of using the magic (hardcoded) number of 200 for
the status code, we should use the HttpStatusCode enum and cast its value to an inte-
ger. It is a little bit more code, but it removes the magic number, as shown in the fol-
lowing example. For more information on magic numbers and why they are bad, see
section 9.6.1.

public IActionResult GetFlights() {
 return StatusCode((int) HttpStatusCode.OK, "Hello, World!");
}

Unfortunately, this code doesn’t satisfy our requirements. We need to return a collec-
tion of information on all the flights in the database from this endpoint method. We
already implemented the service layer method to support this effort and created the
FlightView class. In the FlightController.GetFlights method, we want to call that
service layer method and return the collection along with a status code of 200 (OK). If
something goes awry and the service layer throws an Exception, we want to return a
status code of 500 (Internal Server Error) with no further data.

 Before we move on, let’s add a unit test, shown in the next listing, that verifies our
expectations.

[TestMethod]
public void GetFlights_Success() {
 FlightController controller = new FlightController();
 ObjectResult response =

➥ controller.GetFlights() as ObjectResult;

 Assert.IsNotNull(response);
 Assert.AreEqual((int) HttpStatusCode.OK, response.StatusCode);

Listing 13.1 GetFlights_Success unit test, iteration 1

Instantiates an instance
of FlightController

Mimics an HTTP
GET call to
/Flight, and
casts a return to
ObjectResultes sure

e HTTP
onse is
ot null

Verifies the HTTP response
has a status code of 200

312 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
 Assert.AreEqual("Hello, World!", response.Value);
}

Because the FlightController.GetFlights method returns a type of IActionResult,
and we cannot access the status code and body values directly from the interface, we
cast the response to an ObjectResult type. The ObjectResult class implements the
IActionResult interface, so we can downcast the return to the derived class. When we
downcast something, we use the polymorphic relationship between two classes and use
the parent as the derived class. It is the inverse of the Liskov substitution principle.

 To adjust the logic in the GetFlights method so we can use the FlightService
class to get information on all the flights in the database, we need to have access to an
instance of FlightService. It should come as no surprise that we use dependency
injection once again!

13.3.2 Injecting dependencies into a controller using middleware

In the previous chapters, we used dependency injection to kick the can of instantiat-
ing new instances of said dependency down the road. For the repository layer, we used
dependency injection to not worry about instantiating an instance of type Flying-
DutchmanAirlinesContext. Similarly, in the service layer, we injected instances of
repository layer classes. Finally, in the controller we are implementing in this chapter,
we need to use an injected instance of FlightService. But where do these instances
come from?

 We are finally at the point where we have to actually set up these dependencies. We
do this by adding some logic to what we call middleware. Middleware is any code that
can help process an HTTP request. You can think of middleware as a collection of
individual middleware pieces, strung together in a chain, as shown in figure 13.7.

Before an HTTP request enters a controller (and proceeds down the architectural lay-
ers), the CLR executes any provided middleware, as shown in figure 13.8. Examples of
middleware components are routing (which we’ll see more of in section 13.4), authenti-
cation, and dependency injection.

 Typically, we find middleware code in the Startup class for ASP.NET services. In
section 5.2 (and as shown in listing 13.2), we added code to the Startup class that

Verifies the expected body
exists in the HTTP response

Middleware 1 Middleware 2 Middleware 3

Figure 13.7 An example of multiple middleware components and how they are executed.
Middleware components are executed linearly and are often chained together to create the
required processing story.

313Implementing the FlightController
allowed us to use controllers and routing with endpoints. These are examples of mid-
dleware code.

class Startup {
 public void Configure(IApplicationBuilder app,

➥ IWebHostEnvironment env) {
 app.UseRouting();
 app.UseEndpoints(endpoints => endpoints.MapControllers());
 }

 public void ConfigureServices(IServiceCollection services) {
 services.AddControllers();
 }
}

NOTE Injecting dependencies by writing middleware is not the only way to
achieve DI in C#. Plenty of third-party (open source) DI frameworks for C#
are out there, such as Autofac, Castle Windsor, and Ninject. For more infor-
mation on some of these external frameworks, see Mark Seemann’s Depen-
dency Injection in .NET (Manning, 2011).

We can add dependencies to be injected in the ConfigureServices method in the fol-
lowing three ways:

 Singleton—One instance across the entire lifetime of the service
 Scoped—One instance across the lifetime of a request
 Transient—A new instance every time a dependency is used

USING A SINGLETON DEPENDENCY TO GUARANTEE THE SAME INSTANCE EVERY TIME

Adding an injected dependency with the singleton option mimics a singleton design
pattern. In a singleton design pattern, you have only one instance per application.
The CLR reuses this instance repeatedly for as long as your application runs. The
instance may start as a null pointer, but at first use, the code instantiates it.

Listing 13.2 The Startup class

Routing Authentication
Dependency

injection

Controller

Response

Middleware

Request

User

Figure 13.8 Middleware takes place after receiving an HTTP request but before executing the controller (and
subsequent service and repository) code. Examples of middleware components are routing, authentication,
and dependency injection.

314 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
 When we use a singleton dependency with dependency injection, the injected
instance is always the same, no matter when or where it is injected. For example, if we
were to add an injected singleton of type BookingRepository, we would always use the
same instance for every request coming through our service.1

USING A SCOPED DEPENDENCY TO GUARANTEE THE SAME INSTANCE ON A PER-REQUEST BASIS

With a scoped dependency, every HTTP request instantiates its own version of the
dependency that needs injecting. ASP.NET uses this instance for the entire request
life cycle but instantiates a new instance for every new request that enters the hallowed
halls of the service.

 For example, if we were to instantiate a FlightRepository instance and we inject
the FlightRepository type in two service layer classes, both service layer classes
would receive (and operate on) the same instance of FlightRepository, as long as we
are dealing with the same HTTP request.

USING A TRANSIENT DEPENDENCY (DI) TO ALWAYS GET A NEW INSTANCE

Transient dependencies in DI are perhaps the most common way of dealing with
dependency injection. When we add a transient dependency, every time that depen-
dency needs to be injected, ASP.NET instantiates a new instance. This guarantees that
we work on a fresh copy of the injected class.

 Because transient dependencies are the most common, and easiest to use, types
of dependency injection, we shall fall in line. To add a transient dependency to the
ConfigureServices method in the Startup class, use the services.[dependency-
Type]([Requested Type], [Injected Type]) syntax.

 Let’s see how we do this for the FlightService dependency for the Flight-
Controller class:

public void ConfigureServices(IServiceCollection services) {
 services.AddControllers();
 services.AddTransient(typeof(FlightService), typeof(FlightService));
}

We add the type of FlightService as both parameters to the AddTransient call. This
tells us we want to have a type of FlightService added to the internal collection of
instances whenever we request a type of FlightService to be injected. It’s a bit round-
about, but it is what we have to do. This is all you need to do to make sure the CLR can
provide injected instances when you need them. Of course, we also want to add the
dependencies that the FlightService class itself expects—FlightRepository and
AirportRepository—as shown next:

1 For more information on the singleton pattern, see Robert C. Martin and Micah Martin’s Agile Principles, Pat-
terns, and Practices in C#, chapter 24, “Singleton and Monostate” (Prentice Hall, 2006); or for a resource that
also covers dependency injection in great detail, see Steven van Deursen and Mark Seemann’s Dependency Injec-
tion: Principles, Practices, and Patterns (Manning, 2019).

315Implementing the FlightController
public void ConfigureServices(IServiceCollection services) {
 services.AddControllers();

 services.AddTransient(typeof(FlightService), typeof(FlightService));
 services.AddTransient(typeof(FlightRepository),

➥ typeof(FlightRepository));
 services.AddTransient(typeof(AirportRepository),

➥ typeof(AirportRepository));
}

Following that, what dependencies do we need to provide for the FlightRepository
and AirportRepository classes? Both require the same dependency—an instance of
the FlyingDutchmanAirlinesContext class, shown here:

public void ConfigureServices(IServiceCollection services) {
 services.AddControllers();

 services.AddTransient(typeof(FlightService), typeof(FlightService));
 services.AddTransient(typeof(FlightRepository),

➥ typeof(FlightRepository));
 services.AddTransient(typeof(AirportRepository),

➥ typeof(AirportRepository));
 services.AddTransient(typeof(FlyingDutchmanAirlinesContext),

➥ typeof(FlyingDutchmanAirlinesContext));
}

We can now add the injected dependency to the FlightController and call the
FlightService as follows:

public class FlightController : Controller {
 private readonly FlightService _service;

 public FlightController(FlightService service) {
 _service = service;
 }

 …
}

What are we trying to accomplish with the GetFlights method? We want to return to
the caller a JSON response that contains information on all the flights, right? Let’s
double-check with the OpenAPI specification we got from FlyTomorrow, as shown in
figure 13.9. There, we see that we have the following three return paths for the GET
/Flight endpoint:

 The success case that returns an HTTP code of 200 along with information on
all the flights in the database

 A status code of 404 if no flights were found
 A status code of 500 for all other errors

316 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
Let’s work on the success case first, as shown in the following listing, and use the
injected FlightService to iterate over the returned data from the FlightService
.GetFlights method, wrapped in a try-catch block so we can catch any potential
thrown errors.

public async Task<IActionResult> GetFlights() {
 try {
 Queue<FlightView> flights = new Queue<FlightView>();
 await foreach (FlightView flight in _service.GetFlights()) {
 flights.Enqueue(flight);
 }

 …
 }
 catch(FlightNotFoundException exception) {
 …
 } catch (Exception exception) {
 …
 }
}

Listing 13.3 GetFlights calling the FlightService

Figure 13.9 The required response
from the GET /Flight endpoint.
This is a screenshot from a generated
OpenAPI specification.

Creates a
Queue<FlightView>

to hold returned
FlightView instances

Processes each
FlightView as they come
in from the service class

Adds flights
to the queue

317Implementing the FlightController

Because the FlightService.GetFlights method returns an IAsyncEnumerable
<FlightView> and uses the yield return keywords, we don’t have to wait for all the
processing to be done before being able to see the fruits of our labor. As the database
returns flights and the service layer populates FlightViews, the controller layer receives
the instances and adds them to a Queue data structure.

 How do we structure this queue of FlightView instances so we can return its con-
tents along with an HTTP code of 200 to the user? The magic of ASP.NET, C#, and
.NET makes this incredibly easy. Remember how we returned an HTTP code of 200
along with a body that read “Hello, World!” simply by adding those two as argument
values to the StatusCode constructor in section 13.3.1? We can repeat this exercise,
swapping out the “Hello, World!” string for our queue as follows:

public async Task<IActionResult> GetFlights() {
 try {
 Queue<FlightView> flights = new Queue<FlightView>();
 await foreach (FlightView flight in _service.GetFlights()) {
 flights.Enqueue(flight);
 }

 return StatusCode((int)HttpStatusCode.OK, flights);
 } catch(FlightNotFoundException) {
 …
 } catch (Exception) {
 …
 }
}

But are you going to take my word that this works? Of course not. We should update
our unit test to verify that assumption. To do this, we temporarily need to add some
returns so that the GetFlights method compiles. I’ll leave this to you because it is not
important what you return, as long as it meets the return type requirements based on
the method signature.

 To add a unit test that verifies the FlightController.GetFlights method, we
need to mock the FlightService class (and as a result, we also need to set up a
parameterless constructor for FlightService and make sure the FlightService
.GetFlights method returns a correct response). First off, we need to make the
FlightService.GetFlights virtual so the Moq framework can override it. But how do
we return an instance of type IAsyncEnumerable<FlightView>? We can’t simply
instantiate that type, because you cannot instantiate types based on an interface alone.
The trick here is to create a test helper method inside the test class that returns an
IAsyncEnumerable<FlightView> with some mock data, as shown next.

[TestClass]
public class FlightControllerTests {

Listing 13.4 Finished GetFlights_Success unit test

Creates a
Queue<FlightView>
to hold returned
FlightView instances

Processes each
FlightView as it comes

in from the service class

Adds flights
to the queue

318 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
 [TestMethod]
 public async Task GetFlights_Success() {
 Mock<FlightService> service = new Mock<FlightService>();

 List<FlightView> returnFlightViews = new List<FlightView>(2) {
 new FlightView("1932",

➥ ("Groningen", "GRQ"), ("Phoenix", "PHX")),
 new FlightView("841",

➥ ("New York City", "JFK"), ("London", "LHR"))
 };

 service.Setup(s =>

➥ s.GetFlights()).Returns(FlightViewAsyncGenerator(returnFlightViews));

 FlightController controller = new FlightController(service.Object);
 ObjectResult response =

➥ await controller.GetFlights() as ObjectResult;

 Assert.IsNotNull(response);
 Assert.AreEqual((int)HttpStatusCode.OK, response.StatusCode);

 Queue<FlightView> content = response.Value as Queue<FlightView>;
 Assert.IsNotNull(content);

 Assert.IsTrue(returnFlightViews.All(flight =>

➥ content.Contains(flight)));
 }

 private async IAsyncEnumerable<FlightView>

➥ FlightViewAsyncGenerator(IEnumerable<FlightView> views) {
 foreach (FlightView flightView in views) {
 yield return flightView;
 }
 }
}

Great, that test passes. All we have left to do before wrapping up this method is to han-
dle the exception cases. Earlier in this section, we identified (and added) two error
conditions: the service layer throws an exception of type FlightNotFoundException,
and the service layer throws an exception. Looking at the FlyTomorrow OpenAPI
specification (shown in figure 13.10), we see that we should return an HTTP status
code of 404 (Not Found) when the flights are not found and an HTTP status code of
500 (Internal Server Error) on all other errors.

 Let’s start with the 404, and add a unit test to check for this as follows:

[TestMethod]
public async Task GetFlights_Failure_FlightNotFoundException_404() {
 Mock<FlightService> service = new Mock<FlightService>();
 service.Setup(s => s.GetFlights())

➥ .Throws(new FlightNotFoundException());

Creates an instance of a mock of FlightService

Defines the
FlightViews
used in the
mock

Sets up the mock to return
the list of FlightViews

Safely casts the returned data to a Queue<FlightView>,
and checks for null if it was a bad cast

For all entries in the FlightView
list, checks if the returned data
contains the entry (LINQ)

Returns an
IAsyncEnumerable
<FlightView>
with the passed-in
FlightView objects

319Implementing the FlightController
 FlightController controller = new FlightController(service.Object);
 ObjectResult response = await controller.GetFlights() as ObjectResult;

 Assert.IsNotNull(response);
 Assert.AreEqual((int)HttpStatusCode.NotFound, response.StatusCode);
 Assert.AreEqual("No flights were found in the database",

➥ response.Value);
}

The GetFlights_Failure_FlightNotFoundException_404 unit test does not pass
right now. Remember, when using test-driven development, we often want to create a
unit test before implementing the actual method logic. This gives us a chance to think
about how we want our code to be called, further decoupling the new functionality
from other pieces of the codebase. In our case, we need to add some logic, shown in
the next code sample, that returns the correct StatusCode object when the controller
catches a FlightNotFoundException instance:

public async Task<IActionResult> GetFlights() {
 try {
 Queue<FlightView> flights = new Queue<FlightView>();
 await foreach (FlightView flight in _service.GetFlights()) {
 flights.Enqueue(flight);
 }

 return StatusCode((int)HttpStatusCode.OK, flights);
 } catch(FlightNotFoundException) {
 return StatusCode((int) HttpStatusCode.NotFound,

➥ "No flights were found in the database");
 } catch (Exception) {
 …
 }
}

Our GetFlights_Failure_FlightNotFoundException_404 unit test now passes. I’m
sure you can imagine what comes next: the 500 error case. We mimic the approach we
took for the 404 and add a unit test as follows:

[TestMethod]
public async Task GetFlights_Failure_ArgumentException_500() {
 Mock<FlightService> service = new Mock<FlightService>();
 service.Setup(s => s.GetFlights())

➥ .Throws(new ArgumentException());

 FlightController controller = new FlightController(service.Object);
 ObjectResult response = await controller.GetFlights() as ObjectResult;

 Assert.IsNotNull(response);
 Assert.AreEqual((int)HttpStatusCode.InternalServerError,

➥ response.StatusCode);
 Assert.AreEqual("An error occurred", response.Value);
}

320 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
And to make the GetFlights_Failure_ArgumentException_500 unit test pass, we add
the appropriate return in the GetFlights try-catch as follows:

public async Task<IActionResult> GetFlights() {
 try {
 Queue<FlightView> flights = new Queue<FlightView>();
 await foreach (FlightView flight in _service.GetFlights()) {
 flights.Enqueue(flight);
 }

 return StatusCode((int)HttpStatusCode.OK, flights);
 } catch(FlightNotFoundException) {
 return StatusCode((int) HttpStatusCode.NotFound,

➥ "No flights were found in the database");
 } catch (Exception) {
 return StatusCode((int) HttpStatusCode.InternalServerError,

➥ "An error occurred");
 }
}

And that makes the unit test pass, plus it wraps up implementing the logic for the GET
/Flight endpoint. Of course, we cannot call this endpoint yet from an external sys-
tem, but we’ll look at setting up this routing in section 13.3.5.

13.3.3 Implementing the GET /Flight/{FlightNumber} endpoint

So far in this chapter, you learned about using middleware to do dependency injec-
tion and how to call the service layer from the controller layer while handling errors
and providing unit tests. In section 13.3.2, we implemented the GET /Flight end-
point. Now we come to the GET /Flight/{FlightNumber} endpoint.

 This endpoint should return information on an individual flight when given a
flight number. To accomplish this, we need to do the following four things:

1 Get the provided flight number from the path parameter.
2 Call the service layer to request information on the flight.
3 Handle any potential exceptions thrown from the service layer.
4 Return the correct information to the caller.

To get the value of a path parameter, we need to do some routing magic and add the
FlightNumber URL path parameter as a method parameter. In section 13.4, we’ll look
at the routing part, but for now, it suffices for us to create a new method in the
FlightController called GetFlightByFlightNumber that requires a parameter repre-
senting a flight number, as follows:

public async Task<IActionResult> GetFlightByFlightNumber(int flightNumber){
 return StatusCode((int)HttpStatusCode.OK,"Hello from

➥ GetFlightByFlightNumber");
}

321Implementing the FlightController
This sets us up to call the FlightService’s GetFlightByFlightByNumber method and
pass along the flightNumber parameter. Before we move on, let’s backtrack a bit and
get back into the good graces of the test-driven development gods (more specifically,
Kent Beck) by adding a unit test that we can build on, as shown here:

[TestMethod]
public async Task GetFlightByFlightNumber_Success() {
 Mock<FlightService> service = new Mock<FlightService>();
 FlightController controller = new FlightController(service.Object);

 await controller.GetFlightByFlightNumber(0);
}

The GetFlightByFlightNumber_Success unit test passes just fine in its current state.
After all, the unit test only checks to see whether it can call a method called Get-
FlightByFlightNumber on the FlightController class with an input parameter of
type integer.

 To further implement our method, let’s add the following expected behavior to
the unit test:

public async Task GetFlightByFlightNumber_Success() {
 Mock<FlightService> service = new Mock<FlightService>();

 FlightView returnedFlightView = new FlightView("0", ("Lagos", "LOS"),

➥ ("Marrakesh", "RAK"));
 service.Setup(s =>

➥ s.GetFlightByFlightNumber(0))

➥ .Returns(Task.FromResult(returnedFlightView));

 FlightController controller = new FlightController(service.Object);

 ObjectResult response =

➥ await controller.GetFlightByFlightNumber(0) as ObjectResult;
 Assert.IsNotNull(response);
 Assert.AreEqual((int)HttpStatusCode.OK, response.StatusCode);

 FlightView content = response.Value as FlightView;
 Assert.IsNotNull(content);

 Assert.AreEqual(returnedFlightView, content);
}

As expected, the GetFlightByFlightNumber_Success unit test does not pass now. The
returned data from the FlightController.GetFlightByFlightNumber method call is
incorrect. But we can fix that. For the actual method implementation, we can use the
same try-catch pattern we used for the GetFlights method and swap out the asyn-
chronous foreach loop that calls the IAsyncEnumerable returned by FlightService
.GetFlights for a call to the service’s GetFlightByFlightNumber method (which
returns a FlightView instance), as shown in the next code sample:

322 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
public async Task<IActionResult> GetFlightByFlightNumber(int flightNumber){
 try {
 FlightView flight = await

➥ _service.GetFlightByFlightNumber(flightNumber);
 return StatusCode((int)HttpStatusCode.OK, flight);
 } catch (FlightNotFoundException) {
 return StatusCode((int)HttpStatusCode.NotFound,

➥ "The flight was not found in the database");
 } catch (Exception) {
 return StatusCode((int)HttpStatusCode.InternalServerError,

➥ "An error occurred");
 }
}

If we now run the GetFlightByFlightNumber_Success unit test again, we see it passes.
That was pretty quick! In about a page and a half, we created a brand-new endpoint
and have a success path unit test to back up the expected functionality. We are on a
roll, so let’s add the two failure cases as well. Once again, they should be very similar to
what we did with the GetFlights unit tests, as shown here:

[TestMethod]
public async Task

➥ GetFlightByFlightNumber_Failure_FlightNotFoundException_404() {
 Mock<FlightService> service = new Mock<FlightService>();
 service.Setup(s => s.GetFlightByFlightNumber(1))

➥ .Throws(new FlightNotFoundException());

 FlightController controller = new FlightController(service.Object);
 ObjectResult response =

➥ await controller.GetFlightByFlightNumber(1) as ObjectResult;

 Assert.IsNotNull(response);
 Assert.AreEqual((int)HttpStatusCode.NotFound, response.StatusCode);
 Assert.AreEqual("The flight was not found in the database",

➥ response.Value);
}

[TestMethod]
public async Task GetFlightByFlightNumber_Failure_ArgumentException_500() {
 Mock<FlightService> service = new Mock<FlightService>();
 service.Setup(s => s.GetFlightByFlightNumber(1))

➥ .Throws(new ArgumentException());

 FlightController controller = new FlightController(service.Object);
 ObjectResult response =

➥ await controller.GetFlightByFlightNumber(1) as ObjectResult;

 Assert.IsNotNull(response);
 Assert.AreEqual((int)HttpStatusCode.InternalServerError,

➥ response.StatusCode);
 Assert.AreEqual("An error occurred", response.Value);
}

323Implementing the FlightController
Go ahead and run all the tests; they should pass. So, what else do we need to do for
this endpoint? Let’s have a quick look at the OpenAPI specification, shown in figure 3.10,
and verify we have done all we need to do.

By looking at the OpenAPI specification, we see that we need to accept a parameter
called flightNumber: check! We also have three returns: a 200 with the FlightView we
constructed, a 404 when a flight cannot be found, and a 400 if an invalid flight num-
ber was supplied.

 Well, we have two out of three correct. We just need to change our 500 internal
error to a 400 status code (Bad Request) and verify that the passed-in flightNumber is
a valid number. A valid flightNumber is (for our purposes) any positive integer.

 Let’s first hop into our unit test and make these changes as follows:

[TestMethod]
[DataRow(-1)]

Figure 13.10 The OpenAPI specification for the GET /flight/{flightNumber} endpoint. This is a
screenshot from a generated OpenAPI specification.

324 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
[DataRow(1)]
public async Task

➥ GetFlightByFlightNumber_Failure_ArgumentException_400(int

➥ flightNumber){
 Mock<FlightService> service = new Mock<FlightService>();
 service.Setup(s => s.GetFlightByFlightNumber(1))

➥ .Throws(new ArgumentException());

 FlightController controller = new FlightController(service.Object);
 ObjectResult response =

➥ await controller.GetFlightByFlightNumber(flightNumber) as ObjectResult;

 Assert.IsNotNull(response);
 Assert.AreEqual((int)HttpStatusCode.BadRequest, response.StatusCode);
 Assert.AreEqual("Bad request", response.Value);
}

Of course, the unit test doesn’t pass anymore. We need to change the FlightController
.GetFlightByFlightNumber method as well, as follows:

public async Task<IActionResult> GetFlightByFlightNumber(int flightNumber){
 try {
 if (!flightNumber.IsPositiveInteger()) {
 throw new Exception();
 }

 FlightView flight = await

➥ _service.GetFlightByFlightNumber(flightNumber);
 return StatusCode((int)HttpStatusCode.OK, flight);
 } catch (FlightNotFoundException) {
 return StatusCode((int)HttpStatusCode.NotFound,

➥ "The flight was not found in the database");
 } catch (Exception) {
 return StatusCode((int)HttpStatusCode.BadRequest,

➥ "Bad request");
 }
}

And what have we learned? To always double-check our code and tests against the
specification we are given.

 So now that we have the GetFlights and GetFlightByFlightNumber methods in our
FlightController, it’s time to expose them to external systems. After all, the code is
currently not usable, so it’s somewhat worthless. To do this, we need to have a way for
our service to accept an incoming HTTP request and route that request to the appropri-
ate controller and method. In the next section, we’ll explore exactly how to do that.

13.4 Routing HTTP requests to controllers and methods
Now you have a bunch of repositories, services, and controllers. They are all filled to the
brim with amazing methods that can do anything you ever wanted. But how do you use
this stuff? Unlike a desktop application where you provide a GUI alongside the business

325Routing HTTP requests to controllers and methods
logic, we are dealing with a web service that lives somewhere in a deployed environ-
ment. How do we ask or tell the server to do anything? We use HTTP requests.

 How does our service accept such a request? Well, right now the FlyingDutchman-
Airlines service acts somewhat as a brick wall. If you were to send an HTTP request to
it, the service would not know what to do with it. But if we introduce the concept of
routing, shown in figure 13.11, the story changes.

Routing allows us to map URLs to specific controllers and endpoints. The mapping
between requests and controller endpoints makes the GET /Flight method in the
FlightController execute when you send an HTTP GET request to the [Service-
Address]/flight URL. What do we need to do to add routing support? In section 12.3.2,
we talked about middleware. Routing is just another piece of middleware we can add
to our service. In fact, most of what we need to do is already there.

 In section 5.2, we built the internal routing table containing a list of endpoints the
service can route to. All we need to do to start the routing is tell the CLR where to
route the requests. We do this by giving “routes” to endpoint methods and controllers
in a two-step process. First, we add a [Route] attribute to the FlightController class
as follows:

[Route("{controller}")]
public class FlightController : Controller { … }

The [Route] attribute accepts either a hardcoded route or a template. Here, I opted
for the "{controller}" template.

HTTP request
Service

HTTP request
Service

No outingr

Endpoints

GET /Flight

GET /Flight/{FlightNumber}

POST /Booking/{FlightNumber}

Routing

Figure 13.11 HTTP requests entering a service with and without routing. When we do not have any routing
set up, HTTP requests bounce from the service unresolved. If we route to endpoints, the service can execute
the appropriate logic.

326 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
CONTROLLER NAMES IN ROUTES When using the "{controller}" template in
the route attribute, the route is resolved to be the name of your controller
class, minus the actual word controller. So, in our case, our class is called
FlightController, so the route is /Flight.

The next step is to define method-specific routing. To do this, we use the following
collection of attributes that map to HTTP actions:

 [HttpGet]

 [HttpPost]

 [HttpPut]

 [HttpDelete]

 [HttpHead]

 [HttpPatch]

All these attributes produce routes that map to their corresponding HTTP actions. We
can use these attributes on methods in two ways: as they are, or by providing an addi-
tional route. To illustrate, let’s use the [HttpGet] attribute on the FlightController
.GetFlights method as follows:

[HttpGet]
public async Task<IActionResult> GetFlights() { … }

The method routes get added to the controller route. Using the [HttpGet] attribute
on the GetFlights method produces a route of GET /Flight for this method, which is
in line with what the FlyTomorrow OpenAPI specification would have us do. To test
our endpoint, we can use either the cURL command-line tool (included in Windows,
macOS, and Linux) or a dedicated HTTP tool such as Postman. I won’t take a stand
on which one is better: they each have their pros and cons. For most commands in the
book, I use cURL on Windows. The usage of cuRL should be the same (or very simi-
lar) across platforms.

 To reach our endpoint, we first need to launch it. Usually, we launch services
locally on port 8080 (and this is the case with the provided source code). This works
fine for most use cases, but sometimes you’ll have a conflict on that port and need to
use a different one. If you find that you cannot access the service, and you are serving
on port 8080, change the port to something else in Startup.cs. In this example, I
used port 8081. To launch our service, open a command-line window, point it to the
FlyingDutchmanAirlines folder, and enter the following:

>\ dotnet run

Once the service is up and running (the command line tells us if it is), we can use
cURL to “curl” our endpoint. To curl an endpoint, in a separate command-line win-
dow, use the [curl] -v [address] syntax (the -v flag tells cURL to give us some more
details or verbosity), as shown next:

\> curl -v http://localhost:8081/flight

327Routing HTTP requests to controllers and methods
If your service is running, you will receive a response containing all the flights in the
database, as shown in figure 13.12.

As you can see in figure 13.12, the cURL tool does not format the returned JSON
information. It displays the data unformatted, making it hard to read. In figure 13.13,
you can see part of the formatted response as shown in Postman, which formats the
returned JSON. The wonderful news is that our endpoint worked! We did a full round
trip from our HTTP request to the database and back to our command line. All the
hard work we did in the previous chapters is finally paying off.

 How do we reach our other endpoint: /GET /Flight/{FlightNumber}? After all,
we are using a path parameter containing the flight number. When using an Http-
Attribute method attribute (like [HttpGet]), we can provide additional routing instruc-
tions, as shown in the next code snippet. This is useful for when we want to provide

Figure 13.12 The response from our service to a GET HTTP /Flight request: a massive JSON array containing
all flights in the database. FlyTomorrow can use this data to represent all flights by Flying Dutchman Airlines to
customers.

328 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
some more route nesting (e.g., have an endpoint that goes to /Flight/Amazing-
Flights/) or for receiving a path parameter such as {flightNumber}).

[HttpGet("{flightNumber}")]
public async Task<IActionResult> GetFlightByFlightNumber(int flightNumber){
 …
}

With the GetFlightByFlightNumber method, the template specified as part of the
[HttpGet] points the path parameter of {flightNumber} to the method’s input
parameter of flightNumber. We can now use the path parameter and request informa-
tion on a specific flight. For example, we can easily retrieve information on flight 23
from Salzburg to Groningen by using cURL as follows:

\> curl -v http://localhost:8081/flight/23

The endpoint returns a serialized (a data structure converted to a binary or JSON
format) version of the FlightView class for flight 23. Figure 13.14 shows the
response data. We can also see in figure 13.15 what happens if we pass in an invalid
flight number, such as -1 (not a positive integer) or 93018 (flight does not exist in
the database).

 So, to summarize: we now have a fully implemented FlightController along with
unit tests. We can hit the GET /Flight and GET /Flight/{FlightNumber} endpoints

Figure 13.13 Part of the same JSON
response data as shown in figure 13.12
but formatted. Formatted JSON is much
more readable, and we can easily spot
any issues.

329Routing HTTP requests to controllers and methods
and retrieve data from the database successfully. In the next chapter, we’ll finish our
refactoring journey and implement the last controller and endpoint: the Booking-
Controller and the POST /Booking endpoint.

Figure 13.14 The data returned by the service when calling the GET /Flight/23 endpoint. By passing in
an appropriate flight parameter value, we can query the service for flight 23 by using the GET
/Flight/{FlightNumber} endpoint.

HTTP 400 (Bad Request)

HTTP 404 (Not Found)

Figure 13.15 We receive HTTP 400 and HTTP 404 back in our error conditions for the /GET
/Flight/{FlightNumber} endpoint. These errors are useful to determine if the problem is on
the client or server side.

330 CHAPTER 13 Middleware, HTTP routing, and HTTP responses
Exercises
EXERCISE 13.1
True or false? A controller is the only layer that should accept an HTTP request from
an external system in a repository/service pattern architecture.

EXERCISE 13.2
A typical HTTP response comprises the following three attributes:

a Sender information, routing information, IP destination
b Name of sender, what programming language was used in the service, country

of origin
c Status code, headers, body

EXERCISE 13.3
Which controller should you implement for this route: GET /Books/Fantasy?

a BookController

b FantasyController

c BookShopController

EXERCISE 13.4
True or false? Middleware is executed before any endpoint method logic.

EXERCISE 13.5
What type of injected dependency allows us to have a new instance of a dependency
every time it is requested, regardless of whether we are still dealing with the same
HTTP request?

a Singleton
b Scoped
c Transient

EXERCISE 13.6
What type of injected dependency allows us to use the same instance of a dependency
only for the duration of an HTTP request’s life cycle in our service?

a Singleton
b Scoped
c Transient

Summary
 The controller layer is the outer layer in terms of architecture when consider-

ing a repository/service pattern. A controller can accept HTTP requests and
communicate with external systems. If we could not accept or talk with external
systems, nobody could use our service.

 An HTTP request always contains headers (CORS, authentication, etc.) and
sometimes a body (JSON or XML).

331Summary
 An HTTP response always contains headers, an HTTP status code (200 OK, 404
Not Found, etc.), and sometimes a body.

 ASP.NET’s IActionResult interface allows us to easily return HTTP responses
from methods. This allows us to write clear and concise code that everybody can
understand.

 Coding to interfaces is a clean code principle that promotes the use of generic
constructs over limiting concrete classes. This allows us to adhere to the Open/
Closed Principle and easily extend our code without changing the existing class.

 Middleware is any code that we execute before dealing with a provided HTTP
request in a controller’s endpoint method. We can use middleware to execute
things such as authentication checks, dependency injection, and routing.

 When injecting a dependency in middleware, you have the option of three types
of injected dependencies: singleton, scoped, and transient. A singleton depen-
dency mimics the singleton design pattern and guarantees all requests operate
on a single instance of an injected dependency. With scoped, the injected
dependency is shared across the same request but not across multiple requests.
With transient, a new instance of a dependency is instantiated every time it is
requested by a constructor.

 To route an HTTP request to an endpoint, we have to set up routing in middle-
ware and add routing attributes to both the controller class and the methods.
This allows granular control over what our routes should look like.

 There are HttpAttribute routing method attributes for most common HTTP
actions. You can either use them as is or provide an additional route and use
path parameters.

 JSON serialization/
deserialization and

custom model binding
This is it. The last refactoring chapter. Throughout this book, you refactored an
existing codebase from the ground up. We learned about test-driven development,
how to write clean code, and tips and tricks for C#. Figure 14.1 shows how far we’ve
come on our journey together.

 In this chapter, we’ll implement the last controller: BookingController (sec-
tion 14.1). After that, we’ll do some manual testing and acceptance testing against
the OpenAPI specification from FlyTomorrow. We’ll also set up Swagger middle-
ware to generate an OpenAPI specification on the fly (section 14.2). This is an
optional but a very useful technique to know because Swagger helps us with our
acceptance testing.

This chapter covers
 Serializing and deserializing JSON data

 Using the [FromBody] argument attribute to
magically deserialize JSON data

 Implementing a custom model binder using the
IModelBinder interface

 Generating an OpenAPI specification on the fly
at run time
332

333Implementing the BookingController class
14.1 Implementing the BookingController class
In chapter 13, we learned how to implement a controller (FlightController) and
added some HTTP GET methods (GET /Flight and GET Flight/{FlightNumber}).
In this section, we’ll build on that knowledge and implement the BookingController.
The BookingController is the entry point and gateway for FlyTomorrow to create a
booking with Flying Dutchman Airlines. With this controller, we’ll complete our
implementation of the FlyingDutchmanAirlinesNextGen service and start providing
some actual revenue value to the company. After all, if people cannot book seats on
our flights, we can’t make money from oversized bags, snacks, and lottery tickets
on board.

 Let’s take one more look at the contract between Flying Dutchman Airlines and
FlyTomorrow to see what endpoints the BookingController class should have, shown
in figure 14.2.

 As you can see, we have the following three endpoints to implement:

 GET /Flight
 GET /Flight/{FlightNumber}
 POST /Booking/{FlightNumber}

+ Middleware, HTTP routing, and HTTP

responses: 13

Part 6: The controller layer

+ JSON serialization/deserialization and

custom model binding: 14

+ Introducing C# and .NET: 1

+ .NET and how it compiles: 2

Part 1: Using C# and .NET + How bad is this code?: 3

+ Manage your unmanaged

resources!: 4

Part 2: The existing codebase

+ Setting up a project and database

using Entity Framework Core: 5

Part 3: The database access layer

+ Test-driven development and dependency

injection: 6

Part 4: The repository layer

+ Comparing objects: 7

+ Stubbing, generics, and coupling: 8

+ Extension methods, streams, and abstract

classes: 9

+ Reflection and mocks: 10

Part 5: The service layer

+ Using IAsyncEnumerable<T>
and : 12yield return

+ Runtime type checking revisited

and error handling: 11

Figure 14.1 In the previous chapters, we implemented the database access, repository, and service
layers, and FlightController class. In this chapter, we’ll finish the job and implement the
BookingController class.

334 CHAPTER 14 JSON serialization/deserialization and custom model binding
In chapter 13, we implemented endpoints numbers 1 and 2. That leaves only the third
endpoint for us now. The first two endpoints live inside a FlightController class, but
the third requires us to implement a BookingController class.

 The previous two endpoints also did not require us to process any provided JSON
body. Sure, we had a path parameter in the GET /Flight/{FlightNumber} endpoint,
but it constrained the flight number data to whatever a path parameter can accept.
With a POST, we need to accept the data that was posted to the endpoint. We’ll look at
how to do this in section 14.1.2.

 Before we do that, however, let’s create our (by now) standard skeleton class:
BookingController. We know from section 13.3 that for the CLR to pick up our con-
troller class as a viable routing end station, we need to have the BookingController
derive from the Controller class and add the [Route] class attribute as follows:

[Route("{controller}")]
public class BookingController : Controller { }

Figure 14.2 The, by now, well-known contract between FlyTomorrow and Flying Dutchman Airlines.
Endpoints 1 and 2 were implemented in chapter 13. In this chapter, we’ll implement endpoint 3.

335Implementing the BookingController class
14.1.1 Introduction to data deserialization

Let’s unravel the details around the POST /Booking/{flightNumber} endpoint and
look at the data we can expect to be passed into our service (figure 14.3).

The POST /Booking/{flightNumber} combines two ways of providing data to the con-
troller: a path parameter (flightNumber) and a JSON body containing two strings:
first and last names. We can model this data in JSON as follows:

{
 "firstName" : "Frank",
 "lastName" : "Turner”
}

Of course, nothing stops users from filling out the fields incorrectly and providing full
names in both fields as shown here:

Figure 14.3 The POST /Booking/{flightNumber} endpoint accepts an HTTP body containing
the first and last name of the customer that wants to book the given flight. It returns a 201 or 500.
This is a screenshot from a generated OpenAPI specification.

336 CHAPTER 14 JSON serialization/deserialization and custom model binding
{
 "firstName" : "Pete Seeger",
 "lastName" : "Jonathan Coulton”
}

We have no way of checking the correctness of the data before it is sent to us, so let’s
assume a (very, very naïve) validation rule: both firstName and lastName need to be
populated.

 Now, you may ask, “Jort, that is really great. But how can we access such data inside
our methods?” To that, I say, “Excellent question.” Unlike a path parameter, we can-
not simply add firstName and lastName parameters to a method’s parameter list. We
need to deserialize the incoming data to a data structure that we can understand.
Deserialization, shown in figure 14.4, is the process of converting a stream of data
(often in bytes or a JSON string) to a consumable data structure in memory or on
disk. The reverse (converting an object to bytes or a JSON string so we can send it over
HTTP or write it to a binary file) is called serialization.

Because the HTTP request’s body comes through the wire serialized (as a JSON string
in our case), and we need to access its body information, we have to deserialize the
body into some sort of defined structure.

 To deserialize data, we use the following two concepts:

 A data structure (usually a class) with an appropriate structure to deserialize
the data

 Model binding using the [FromBody] argument attribute (model binding is also
referred to as data binding)

Let’s start by providing ASP.NET with a data structure into which to deserialize the
provided body. The best way to do this (because it is the most organized) is to create a

Consumable dataDeserialization

XML

Binary file

JSON

Figure 14.4 Deserialization takes streams of data such as XML, JSON, and binary files and turns them
into consumable data, often stored in data structures. This allows us to work with serialized data.

337Implementing the BookingController class

Re

b

class or struct to hold our data. Even though we just want to store the data, we also
want to do some validation on the provided data, so, we use a class. We store this new
class in a new folder, ControllerLayer/JsonData, and name the file BookingData.cs, as
shown in figure 14.5 and the next code snippet.

public class BookingData {
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

When all is said and done, the BookingData class should be populated with the data
provided by the external system calling the endpoint. We also want to do some valida-
tion on the properties: if the provided string is null or empty, do not set the property
to the provided string but throw an InvalidOperationException (alternatively, an
ArgumentNullException would also be appropriate). We’ll also set a message on the
exception, telling people what we couldn’t do: set either FirstName or LastName.
Rather than duplicating that same validation twice (once for both properties’ setters),
we can create a private method to do the validation and just call that. To add a body to
the setter, we need to also provide one for the getter. This leads to the needed cre-
ation of a backing field as well, as shown in the next listing.

private string _firstName;
public string FirstName {
 get => _firstName;
 set => _firstName = ValidateName(value, nameof(FirstName));}
}

Listing 14.1 BookingData.cs

Figure 14.5 The BookingData
class is added to the new JsonData
folder in the ControllerLayer folder.
Keeping the JsonData classes
inside the ControllerLayer folder
aids us in making sure our
codebase is organized.

Backing field for the
FirstName property

turns
the

acking
field’s
value

Sets the
value to the
backing field

338 CHAPTER 14 JSON serialization/deserialization and custom model binding

V
th
private string _lastName;
public string LastName {
 get => _lastName;
 set => _lasttName = ValidateName(value, nameof(LastName));}}

private string ValidateName(string name, string propertyName) =>
 string.IsNullOrEmpty(name)
 ? throw new InvalidOperationException("could not set " + propertyName)
 : name;

In listing 14.1, we pass in the name of the properties to help us construct the error
message on the fly. To do this, we use the nameof expression, which gets us the name
of a variable, type, or member as a string that is resolved at compile time. The listing
should be easy to follow for you at this point, and you should be able to explain the
differences between auto-properties and full properties with backing fields. If you
have trouble with the differences, please revisit section 3.3.3.

CONDITIONAL CURLY BRACES The only odd part of listing 14.1 is the lack of
curly braces after the if(IsValidName(value)) conditionals. In C#, if you
omit the curly braces after a conditional, the CLR assumes the next statement
is the conditional’s body and executes it. Note that this is limited to one exe-
cuted statement. If you have two or more statements that make up a condi-
tional’s body, you need to use curly braces.

The last thing we have to do for the BookingData class is provide some unit tests that
validate our assumptions around the functionality we just implemented. These unit
tests are pretty straightforward, and you should be able to write them yourself. If you
get stuck, the following are implementations you can use (we add the test file to the
new FlyingDutchmanAirlines_Test/ControllerLayer/JsonData folder):

[TestClass]
public class BookingDataTests {
 [TestMethod]
 public void BookingData_ValidData() {
 BookingData bookingData = new BookingData {FirstName = "Marina",

➥ LastName = "Michaels"};
 Assert.AreEqual("Marina", bookingData.FirstName);
 Assert.AreEqual("Michaels", bookingData.LastName);
 }

 [TestMethod]
 [DataRow("Mike", null)]
 [DataRow(null, "Morand")]
 [ExpectedException(typeof(InvalidOperationException))]
 public void BookingData_InvalidData_NullPointers(string firstName,

➥ string lastName) {
 BookingData bookingData = new BookingData { FirstName = firstName,

➥ LastName = lastName };
 Assert.AreEqual(firstName, bookingData.FirstName);
 Assert.AreEqual(lastName, bookingData.LastName);
 }

alidates
e input

value

339Implementing the BookingController class
 [TestMethod]
 [DataRow("Eleonor", "")]
 [DataRow("", "Wilke")]
[ExpectedException(typeof(InvalidOperationException))]
 public void BookingData_InvalidData_EmptyStrings(string firstName,

➥ string lastName) {
 BookingData bookingData = new BookingData { FirstName = firstName,

➥ LastName = lastName };
 Assert.AreEqual(firstName, bookingData.FirstName ?? "");
 Assert.AreEqual(lastName, bookingData.LastName ?? "");
 }
}

How do we populate the BookingData class after we receive an HTTP POST request?
That is where the [FromBody] attribute comes in.

14.1.2 Using the [FromBody] attribute to deserialize
incoming HTTP data

In section 14.1.1, we created a data structure in which to store deserialized informa-
tion. Within the context of an HTTP POST request, we can usually expect valid infor-
mation to adhere to our provided OpenAPI specification. In this case, for the POST
request to be valid, the JSON data needs to be deserialized to the BookingData class’s
properties: firstName and lastName. If we end up with an incomplete request (the
BookingClass’s properties have null pointers), we return an HTTP status code of 500.
You could also return an HTTP status code of 400 (Bad Request) in this scenario, and
that may often be the correct code to return, but let’s stick with the provided
OpenAPI specification (shown in figure 14.3).

 But first things first: how do we get the data deserialized to the BookingData class?
We can’t just add a BookingData type to the parameter list and expect it to automati-
cally work. It may sound crazy, but that is actually pretty close to reality! ASP.NET’s
[FromBody] attribute can be applied to a parameter to tell ASP.NET we want to per-
form model binding to this type. When the CLR routes a payload to an endpoint with
such a parameter, it takes the payload’s Body element and attempts to deserialize it to
the given data type.

 To request this model binding, simply add “FromBody type argumentName” to the
parameter list of a method (in our case, let’s create a new method in the Booking-
Controller class called CreateBooking along with an HTTP attribute of [HttpPost])
as follows:

[HttpPost]
public async Task<IActionResult> CreateBooking([FromBody] BookingData body)

By adding the [FromBody] attribute to a type of BookingData accessible through the
body variable, we can now use the data from the HTTP request, as shown in figure 14.6.

 It is that simple. Now, some people are not a fan of “magic” in their codebases, and
that’s fine. Know that by default, ASP.NET is set up to serialize JSON data. If you want

340 CHAPTER 14 JSON serialization/deserialization and custom model binding
to use XML, you have to add the following lines to a global.asax.cs file (this file, when
present, contains global configuration details for your service):

XmlFormatter xmlFormatter =

➥ GlobalConfiguration.Configuration.Formatters.XmlFormatter;
xmlFormatter.UseXmlSerializer = true;

Let’s quickly look at an alternative way of parsing HTTP data to data structures before
we continue (and keep using [FromBody]).

14.1.3 Using a custom model binder and method attribute
for model binding

Instead of using the [FromBody] attribute to automatically bind HTTP data to a data
structure, we can also lift the veil of ASP.NET’s magic and implement our own model
binder. People often object to using the [FromBody] attribute because it seems to be
magically doing things under the hood with no explanation. This section aims to
explain that magic.

 As a custom model binder, our BookingModelBinder contains information on how
we want to bind the given data to our class. Using a custom model binder is somewhat
cumbersome but can provide greater control to your data-binding process. To start,
let’s add a new class to serve as our model binder, as shown in the next listing. This
class, BookingModelBinder, needs to implement the IModelBinder interface. The
IModelBinder interface is what lets us use the BookingModelBinder to bind the data
to the model, which we will do in a bit.

class BookingModelBinder : IModelBinder {
 public async Task BindModelAsync(ModelBindingContext bindingContext){
 throw new NotImplementedException();
 }
}

Listing 14.2 The beginnings of a custom model binder

Assign the new instance of type at to variable at .b c

Use variable at to accessc
deserialized body data.

Deserialize the data from
“Body” into type at .b

Figure 14.6 Using the [FromBody] attribute. When using the [FromBody] attribute, you can
deserialize HTTP JSON data to a specific data structure and access it.

To provide custom model binding, we need to
implement the IModelBinder interface.

The IModelBinder interface requires us
to implement BindModelAsync.

341Implementing the BookingController class
Our BookingModelBinder class’s implementation has the following four major parts,
as shown in figure 14.7:

1 Validate the bindingContext input argument.
2 Read the HTTP body into a parsable format.
3 Bind the HTTP body data to the BookingData class’s properties.
4 Return the bound model.

The first step is also the easiest: we just want to make sure that the bindingContext
argument isn’t tied to a null value as follows:

public async Task BindModelAsync(ModelBindingContext bindingContext) {
 if (bindingContext == null) {
 throw new ArgumentException();
 }
}

For step 2 (read the HTTP body into a parsable format), we need to access and then
handle the HTTP body information.

 Luckily, we can access everything we need about the incoming HTTP request
through the provided ModelBindingContext instance. The classes we are looking for
are HttpContext and HttpRequest. They contain properties tied to all expected

VALIDATE

BIND

PARSE

Serialized data

Deserialized data in model

Figure 14.7 When using a custom model binder to deserialize data, we
need to validate, parse, and bind our data before returning the data in a
bound model. This workflow gives us fine-grained control over the
deserializing process.

342 CHAPTER 14 JSON serialization/deserialization and custom model binding
elements (body, headers, and the like). The Request class provides us with an instance
of PipeReader, which has access to the serialized body element. The PipeReader class
is part of the System.IO.Pipelines namespace. System.IO.Pipelines contains
classes (most importantly, Pipe, PipeWriter, and PipeReader) that help with high-
performance input/output (IO) operations.

 To retrieve and use the PipeReader so we can get one step closer to the body data,
we use the Request.BodyReader property and call its ReadAsync method as follows:

ReadResult result = await

➥ bindingContext.HttpContext.Request.BodyReader.ReadAsync();

The ReadAsync method returns an instance of Task<ReadResult>. This object con-
tains three properties: IsCompleted, IsCanceled, and Buffer. The first two are used
for checking whether the reading of the provided data was completed or canceled.
The third is where our data lives. Because we are dealing with serialized data and an
asynchronous process, the data is stored in a buffer of type ReadOnlySequence<byte>.
It is this buffer that contains the actual bytes representing the body data. Typically, the
buffer contains only one “segment” of data, so we can retrieve the first Span (a Span
represents a contiguous chunk of data). Then, we need to deserialize that data back
into a readable JSON string. We do that by using the Encoding.UTF8 class as follows:

ReadOnlySequence<byte> buffer = result.Buffer;
string body = Encoding.UTF8.GetString(buffer.FirstSpan);

Now that we have the JSON string, we can deserialize the JSON string into our model
(step 3: bind the HTTP body data to the BookingData class’s properties). C# has some
solid JSON functionality through the System.Text.Json namespace, which was intro-
duced (and comes installed by default) in .NET 5. To deserialize a JSON string into a
BookingData struct, we just have to call JsonSerializer.Deserialize<T> and give it
the type we want to reserialize into as the generic type parameter (BookingData) and
the JSON string we want to deserialize (body), as shown here:

BookingData data = JsonSerializer.Deserialize<BookingData>(body);

This deserializes the values coming out of the body to the appropriate types for their
respective properties on the BookingData struct.

 The last step (step 4) is to return the bound model. You may have noticed that the
return type of the BindModelAsync method is Task. We cannot change the return type
to be Task<BookingData> because we are bound to implement the IModelBinder inter-
face. But, we have another way to get the new BookingModel instance to the endpoint
method: by using the ModelBindingContext class’s Result property, as shown here:

bindingContext.Result = ModelBindingResult.Success(data);

If we add that to the end of our method, we can rest assured that our instance of
BookingData is passed to the controller—another piece of magic. As you continue

343Implementing the BookingController class
your C# journey, you will encounter many such pieces of magic. But, if you drill down
far enough, you can usually figure out what is going on underneath the covers. In the
words of Harry Potter’s Vernon Dursley, “There’s no such thing as magic!”

 That wraps up the BookingModelBinder class, but what about the endpoint
method? Because we can’t use the [FromBody] attribute, what do we do instead? It is
actually fairly similar. We add a [ModelBinder(typeof([custom binder]))] attribute
to the parameter as follows:

[HttpPost]
public async Task<IActionResult>

➥ CreateBooking([ModelBinder(typeof(BookingModelBinder))]

➥ BookingData body, int flightNumber)

Although definitely more involved than simply slapping on the [FromBody] attribute,
we can understand this argument attribute through our knowledge of [FromBody].
See the next listing for the complete code.

class BookingModelBinder : IModelBinder {
 public async Task BindModelAsync(ModelBindingContext bindingContext) {
 if (bindingContext == null) {
 throw new ArgumentException();
 }

 ReadResult result = await

➥ bindingContext.HttpContext.Request.BodyReader.ReadAsync();
 ReadOnlySequence<byte> buffer = result.Buffer;

 string bodyJson = Encoding.UTF8.GetString(buffer.FirstSpan);
 JObject bodyJsonObject = JObject.Parse(bodyJson);

 BookingData boundData = new BookingData {
 FirstName = (string) bodyJsonObject["FirstName"],
 LastName = (string) bodyJsonObject["LastName"]
 };

 bindingContext.Result = ModelBindingResult.Success(boundData);
 }
}

The code you saw in this section is not required (and in fact not used) going forward.
It is merely an excellent tool for you to know but overkill for our use case.

14.1.4 Implementing the CreateBooking endpoint method logic

With the model binding out of the way (and we go back to using the [FromBody] attri-
bute), we can now focus on the meat of the CreateBooking method: the logic that
calls the necessary service methods to create a booking in the database. Let’s recap
what the general steps are to create a booking, as shown in figure 14.8:

Listing 14.3 Completed BookingModelBinder custom model binder class

344 CHAPTER 14 JSON serialization/deserialization and custom model binding
1 Validate our data binding.
2 Make sure we have the provided customer in the database. If we do not, add the

customer to the database.
3 Make sure the flight the customer wants to book exists.
4 Request a new entry in the Booking table containing the new booking.

Because we implemented the service and repository layer methods already, all these
items should be very easy to implement. Let’s start with the only somewhat tricky one:
validating our data binding. To make sure our instance of BookingData is in a valid
state, we need to define what that means. The instance is considered valid if both the
FirstName and the LastName properties are set to a valid, nonempty string. If this is not
the case, we don’t want to do any processing. We already have logic in the BookingData
class that makes sure we assign only valid names to the properties. If the passed-in name
is not valid, the property remains unset. We do not want to use the instance in this case.

 ASP.NET gives us access to the IValidatableObject interface. This interface
allows us to define validation rules for the CLR to run through at the creation of the
instance. If the validation rules are found to be broken, ASP.NET sets to false a Bool-
ean property on the ControllerBase class: ModelState.IsValid. We can check that
property in our controller to make sure the object we are using is valid. To implement
the IValidatableObject interface, we need to do the following:

 Add the IValidatableObject interface to the BookingData class.
 Implement the required Validate method to validate the property values and

handle any errors.

That doesn’t sound too bad. Adding the interface to the class is easy, as shown next:

public class BookingData : IValidatableObject

Validate binding

Retrieve customer

Add customer to database

Add booking to database

Retrieve flight

Figure 14.8 Creating a new booking in the database involves validating our model binding,
retrieving (and adding if appropriate) a customer, retrieving the flight, and then creating the
booking in the database. With this workflow, we always have all the information we need in
the database.

345Implementing the BookingController class

Crea
emp
of

ds
If th

no
null v

pe
only

th
Because the BookingData class now says it implements the IValidatableObject inter-
face, we should actually do so. The interface tells us we need to implement a method
called Validate, so let’s hop right on that as follows:

public IEnumerable<ValidationResult> Validate(ValidationContext
validationContext) {}

Remember that when we implement an interface, we have to implement any methods
on that interface in our implementation class. We cannot change the method’s signa-
ture because that would break our promise to the compiler and the interface to imple-
ment all methods on the interface. So, what do we do with the Validate method? The
CLR calls the Validate method when the object is instantiated, and determines
(based on the provided validation rules) how to set the ModelState.IsValid property.
The return type (IEnumerable<ValidationResult>) allows us to return a data struc-
ture (implementing the IEnumerable interface, containing instances of Validation-
Result) with no, one, or multiple errors. We can access these errors in the controller
and return them to the customer.

 What does this look like? Well, we need to instantiate a new type of IEnumerable
<ValidationResult>, verify that our properties are set to an appropriate value (we
already check whether the names they are set to are valid through the property’s set-
ters at model-binding time, but they can still be null values), add errors to the return
data structure if a problem arises, and return the list of errors, as shown in the next
listing.

public IEnumerable<ValidationResult> Validate(ValidationContext

➥ validationContext) {
 List<ValidationResult> results = new List<ValidationResult>();
 if (FirstName == null && LastName == null) {
 results.Add(

➥ new ValidationResult("All given data points are null"));
 } else if (FirstName == null || LastName == null) {
 results.Add(

➥ new ValidationResult("One of the given data points is null"));
 }

 return results;
}

How do we actually use these errors? Back in the controller method, we should add a
check to see if the ModelState.IsValid property is set to true. If it is, we can con-
tinue with our work. But if it is not, we should return an HTTP status code of 500,
along with the found error, as follows:

[HttpPost]
public async Task<IActionResult>

➥ CreateBooking([FromBody] BookingData body) {

Listing 14.4 BookingData’s Validate method

tes an
ty list
errors

Checks if both
FirstName and
LastName are
null values

If both properties
are null values, ad
an error to the listey are

t both
alues,
rhaps
one of
em is.

If only one of the
properties is a null value,

adds an error to the list
Returns the
list containing
errors (if any)

346 CHAPTER 14 JSON serialization/deserialization and custom model binding
 if (ModelState.IsValid) {
 …
 }

 return StatusCode((int) HttpStatusCode.InternalServerError,

➥ ModelState.Root.Errors.First().ErrorMessage);
}

If we were to query the CreateBooking endpoint with an invalid JSON payload, we
would get an HTTP code of 500 along with the found validation error. We now have
code that binds the provided JSON data to a model and that validates the resulting
model. All we have to do now is to ask the BookingService to create a booking for us
and pass on the appropriate information. To do this, we first need to add a backing
field and an injected instance of type BookingService and set up the middleware to
provide us with this instance at runtime.

 First up, let’s add the backing field and injected instance (through a constructor)
in BookingController as follows:

[Route("{controller}")]
public class BookingController : Controller {
 private BookingService _bookingService;

 public BookingController(BookingService bookingService) {
 _bookingService = bookingService;
 }

 …
}

Now let’s add the dependency injection middleware in Startup. The BookingService
class requires injected dependencies of type BookingRepository, FlightRepository,
and CustomerRepository. Luckily, we already have an injected (transient) depen-
dency of type FlightRepository, so we just have to add (besides the BookingService)
the BookingRepository and CustomerRepository transient instances to the Startup
.ConfigureServices method, as shown here:

public void ConfigureServices(IServiceCollection services) {
 services.AddControllers();

 services.AddTransient(typeof(FlightService), typeof(FlightService));
 services.AddTransient(typeof(BookingService), typeof(BookingService));
 services.AddTransient(typeof(FlightRepository),

➥ typeof(FlightRepository));
 services.AddTransient(typeof(AirportRepository),

➥ typeof(AirportRepository));
 services.AddTransient(typeof(BookingRepository),

➥ typeof(BookingRepository));
 services.AddTransient(typeof(CustomerRepository),

➥ typeof(CustomerRepository));

347Implementing the BookingController class
 services.AddDbContext<FlyingDutchmanAirlinesContext>

➥ (ServiceLifetime.Transient);
 services.AddTransient(typeof(FlyingDutchmanAirlinesContext),

➥ typeof(FlyingDutchmanAirlinesContext));
}

The last thing we need before we can request the creating of a new booking is the end-
point’s path parameter, shown in the next code sample. This parameter maps to the
{flightNumber} section of the POST /Booking/{flightNumber} endpoint.

[HttpPost("{flightNumber}")]
public async Task<IActionResult> CreateBooking([FromBody] BookingData body,

➥ int flightNumber) {
 if (ModelState.IsValid) {
 …
 }

 return StatusCode((int) HttpStatusCode.InternalServerError,

➥ ModelState.Root.Errors.First().ErrorMessage);
}

Let’s also do some quick input validation on the flightNumber argument. We can use
the IsPositiveInteger extension method to make sure the flight number is not a
negative integer as follows:

[HttpPost("{flightNumber}")]
public async Task<IActionResult> CreateBooking([FromBody] BookingData body,

➥ int flightNumber) {
 if (ModelState.IsValid && flightNumber.IsPositiveInteger()) {
 …
 }

 return StatusCode((int) HttpStatusCode.InternalServerError,

➥ ModelState.Root.Errors.First().ErrorMessage);
}

With that, we can almost call the BookingService.CreateBooking method and create
a booking in the database. We just have to concatenate the FirstName and LastName
strings (with a space in between), because BookingService.CreateBooking just takes
a single parameter of type string representing the customer’s name. We should be
able to use string interpolation for this. Following the concatenation, we can finally
call the service’s CreateBooking method as follows:

[HttpPost("{flightNumber}")]
public async Task<IActionResult> CreateBooking([FromBody] BookingData body,

➥ int flightNumber) {
 if (ModelState.IsValid && flightNumber.IsPositiveInteger()) {
 string name = $"{body.FirstName} {body.LastName}";
 (bool result, Exception exception) =

➥ await _bookingService.CreateBooking(name, flightNumber);
 }

348 CHAPTER 14 JSON serialization/deserialization and custom model binding
 return StatusCode((int) HttpStatusCode.InternalServerError,

➥ ModelState.Root.Errors.First().ErrorMessage);
}

The BookingService.CreateBooking method returns a tuple containing a Boolean
value representing whether the creation of the booking was successful and an excep-
tion value set to any exception that was thrown. Based on these return values, we can
determine what we want to return to the user as follows:

 If the Boolean is set to true, and the exception is null, return an HTTP status
code of 201 (Created).

 If the Boolean is set to false, and the exception is not null, return an HTTP
status code of 500 or 404, depending on the exception type.

 If the Boolean is set to false, and the exception is null, return an HTTP status
code of 500.

We can easily add these as a couple of conditionals as follows:

[HttpPost("{flightNumber}")]
public async Task<IActionResult> CreateBooking([FromBody] BookingData body,

➥ int flightNumber) {
 if (ModelState.IsValid && flightNumber.IsPositiveInteger()) {
 string name = $"{body.FirstName} {body.LastName}";
 (bool result, Exception exception) =

➥ await _bookingService.CreateBooking(name, flightNumber);

 if (result && exception == null) {
 return StatusCode((int)HttpStatusCode.Created);
 }

 return exception is CouldNotAddBookingToDatabaseException
 ? StatusCode((int)HttpStatusCode.NotFound)
 ? StatusCode((int)HttpStatusCode.InternalServerError,

➥ exception.Message);
 }

 return StatusCode((int) HttpStatusCode.InternalServerError,
ModelState.Root.Errors.First().ErrorMessage);

}

Because the BookingService returns an exception of type CouldNotAddBookingTo-
DatabaseException when the flight cannot be found, we can use that to pivot our
return status code to a 404.

 And at this point, I have some really exciting news: we are all done with imple-
menting our rewrite of the Flying Dutchman Airlines service! Pat yourself on the back
and reflect on the (hopefully) many things you learned along the way. Although not a
true production-ready reflection of the actual world, this process highlighted a lot of

349Acceptance testing and Swagger middleware
real-world scenarios and decisions. In the next section, we’ll verify our work by doing
some acceptance testing.

14.2 Acceptance testing and Swagger middleware
There are many ways to verify that your code works as you expect. Throughout the
book, we used unit tests as a way to measure functionality expectations. But what do you
do when you are at the end of the line? You implemented all your code using TDD-light
(we cheated somewhat in the book), and now you want to verify the entire system. You
could do something like automated integration tests (tests that run entire workflows in a
production codebase; they are often part of a CI/CD system and run nightly). You may
also be in the very lucky position to have a QA engineer available to you. But I want to
show you a simple way of verifying your code works: acceptance testing.

 When we talk about acceptance testing, all we are really saying is, “Match the
requirements to our functionality.” The requirements we got from the user came in
the form of an OpenAPI specification, but they can come in a lot of forms (user sto-
ries are another notable requirement format). So, in this section, we’ll do acceptance
testing in the following two ways:

 We’ll take the OpenAPI specification provided by FlyTomorrow and manually
test our endpoints (section 14.2.1).

 We’ll add an optional Swagger middleware to our service to generate an
OpenAPI specification on the fly. We’ll compare this generated specification to
the provided one. They should match (section 14.2.2).

Acceptance testing before you hand off your product to a client is incredibly import-
ant and useful. Wouldn’t you want to catch any bugs or incorrect functionality before
the client does? Because we are testing against the production (deployed) database,1

we can test only happy path and nondatabase exception scenarios. We don’t want to
force failures in a production environment. This is where us having unit-tested the
failure paths comes in handy because we can still be safe in knowing they work.

14.2.1 Manual acceptance testing with an OpenAPI specification

Before we start testing, let’s come up with a methodology and some testing steps that
we can follow for all endpoints. We expect all functionality to work fine, especially
because we did test the code after implementing it, but we can never be too sure! For
our manual testing, I propose we use the following steps:

1 Identify the input requirements.
2 Determine the happy path and nondatabase exception cases.
3 Test!

1 You typically do not want to test against a production database. The reason we do so in this book is because it
allows me to provide a publicly deployed database for you to use.

350 CHAPTER 14 JSON serialization/deserialization and custom model binding
The endpoints we need to test follow:

 GET /flight
 GET /flight/{flightNumber}
 POST /booking/{flightNumber}

So, without further ado, let’s begin with the GET /flight endpoint, shown in figure 14.9.
If we look at the OpenAPI specification, we see that this endpoint can return HTTP
statuses of 200 (along with the flightView data), 404, and 500.

Because this is just a GET call, and there are no path parameters or other inputs that
need validating, the only happy path (or non-database-related exception) case is the
success case. If we query the GET /flight endpoint, we should get details on every
flight in the database, as shown in figure 14.10.

Figure 14.9 OpenAPI specification of the
GET /flight endpoint. This endpoint is
used to get information on all flights in the
database. This is a screenshot from a
generated OpenAPI specification.

351Acceptance testing and Swagger middleware
As you can see, the endpoint returned a lengthy list of information on flights in the
database. That does it for the GET /flight endpoint. Let’s move on to the next
(more interesting) endpoint: GET /flight/{flightNumber}, whose spec is shown in
figure 14.11.

 We can see that the GET /flight/{flightNumber} uses a path parameter and can
return a 200 (along with some data), a 400, or a 404. We can test all these scenarios by
requesting a valid flight, a flight with an invalid flight number, and a flight with a flight
number that is valid but not in the database, as shown in table 14.1.

Figure 14.10 The return data from a query to the GET /flight endpoint. All flights in the database are returned
in JSON form. This allows users to quickly process the data.

352 CHAPTER 14 JSON serialization/deserialization and custom model binding
In table 14.1, all returned data from the endpoint is presented. It looks like we have
another passing endpoint on our hands. Now, for the final endpoint: POST /book-
ing/{flightNumber}, whose spec is shown in figure 14.12.

Table 14.1 Return data for our manual tests of the GET /flight/{flightNumber}

Flight numbers Returned status Returned data

19 201 {
 "flightNumber":"19",
 "origin":{"city":"Lyon","code":"LYS"},
 "destination":{"city":"Groningen",
 "code":"GRQ"}
}

–1 400 (Bad Request) N/A

500 404 (Flight Not Found) N/A

Figure 14.11 OpenAPI specification of
the GET /flight/{flightNumber}
endpoint. This endpoint allows the user to
get information on a specific flight when
given a flight number. This is a screenshot
from a generated OpenAPI specification.

353Acceptance testing and Swagger middleware
The POST /booking/{flightNumber} only has two potential return states (a 201 and a
500), but that is somewhat deceptive. We can force an error from this endpoint in the
following ways:

 Pass in a JSON body with empty strings for names.
 Pass in a JSON body missing one or both of the required properties (firstName

and lastName).
 Use an invalid flight number.
 Use a flight number for a flight that does not exist.

Table 14.2 shows the inputs and outputs the GET /flight/{flightNumber} gives us.
With the data in table 14.2, we can say that all our manual testing passes. We did not
see any unexpected output and can safely move on to the last test: generating an
OpenAPI file based on the service on the fly and comparing it against FlyTomorrow’s
version.

Figure 14.12 The OpenAPI specification for the POST /booking/{flightNumber} endpoint. This
endpoint allows users to book a flight, given a customer name and flight number. This is a screenshot
from a generated OpenAPI specification.

354 CHAPTER 14 JSON serialization/deserialization and custom model binding
14.2.2 Generating an OpenAPI specification at runtime

In section 13.3, we discussed middleware and how to use it. We looked at routing and
dependency injection. But what if I told you we can generate an OpenAPI specifica-
tion through a Swagger middleware option (Swagger is the precursor to OpenAPI)?
The CLR through ASP.NET creates this OpenAPI specification at runtime, so it always
reflects the latest and greatest state of your endpoints. The goal of this section is to
generate such a dynamic OpenAPI specification and compare it with the OpenAPI
specification we got from FlyTomorrow.

NOTE This section is optional and requires the installation of a third-party C#
library. Generating an OpenAPI specification is not a functional requirement
for most applications. If you skip this section, you can pick up reading again
at the summary.

Because .NET 5 does not come with the functionality to add Swagger middleware, we
have to install a third-party library called Swashbuckle. Go ahead and install the Swash-
buckle.AspNetCore package through the NuGet package manager (see section 5.2.1).
Once we have installed the Swashbuckle.AspNetCore package, we can add the mid-
dleware configuration.

Table 14.2 All success and failure responses from the POST /booking/{flightNumber}

Endpoint flight
number

Body
Returned

status
Returned data

1 firstName : "Alan"
lastName: "Turing"

201 (Created) N/A

-1 firstName : "Alan"
lastName: "Turing"

400 (Bad Request) N/A

999 firstName : "Alan"
lastName: "Turing"

404 (Not Found) N/A

1 firstName : "Alan"
lastName: ""

500 (Internal Server Error) “One of the
given data points is null”

1 firstName : ""
lastName: "Turing"

500 (Internal Server Error) “One of the
given data points is null”

1 firstName : "Alan" 500 (Internal Server Error) “One of the
given data points is null”

1 lastName: "Turing" 500 (Internal Server Error) “One of the
given data points is null”

1 firstName : ""
lastName: ""

500 “All given data points are null”

1 N/A 500 “All given data points are null”

355Acceptance testing and Swagger middleware
 We add middleware to the Startup.cs file by changing both the Configure method
and the ConfigureServices method. The setup is simple and works out of the box, as
shown in the next listing.

class Startup {
 public void Configure(IApplicationBuilder app, IWebHostEnvironment env) {
 app.UseRouting();
 app.UseEndpoints(endpoints => { endpoints.MapControllers(); });

 app.UseSwagger();
 app.UseSwaggerUI(swagger =>

➥ swagger.SwaggerEndpoint("/swagger/v1/swagger.json",

➥ "Flying Dutchman Airlines"));
 }

 public void ConfigureServices(IServiceCollection services) {
 services.AddControllers();

 services.AddTransient(typeof(FlightService),

➥ typeof(FlightService));
 services.AddTransient(typeof(BookingService),

➥ typeof(BookingService));
 services.AddTransient(typeof(FlightRepository),

➥ typeof(FlightRepository));
 services.AddTransient(typeof(AirportRepository),

➥ typeof(AirportRepository));
 services.AddTransient(typeof(BookingRepository),

➥ typeof(BookingRepository));
 services.AddTransient(typeof(CustomerRepository),

➥ typeof(CustomerRepository));

 services.AddDbContext<FlyingDutchmanAirlinesContext>

➥ (ServiceLifeTime.Transient);

 services.AddTransient(typeof(FlyingDutchmanAirlinesContext),

➥ typeof(FlyingDutchmanAirlinesContext));

 services.AddSwaggerGen();
 }
}

By adding the Swagger setup to both the ConfigureServices and Configure meth-
ods, the CLR knows to scan the service at launch and request a Swagger file to be gen-
erated based on that information. To test this out, all we have to do is launch the
service and navigate to the SwaggerUI endpoint: [service]/swagger.

 In figure 14.13, you see the resulting Swagger UI generated by the Swagger
middleware.

Listing 14.5 Startup with Swashbuckle middleware

Generates a Swagger file
at the default location

Exposes an interactive GUI, pointing
to the generated Swagger file

Adds Swagger
to middleware

356 CHAPTER 14 JSON serialization/deserialization and custom model binding
On the surface, this looks pretty good, albeit a bit sparse. Let’s investigate further and
see if we are missing any information. By expanding the GET /{controller]/[flight-
Number} section, we can see in figure 14.14 that it generated only the return informa-
tion for a status code 200.

 The thing is that we know for a fact that we added logic to the appropriate end-
point method to return more than just a 200. What happened here? You often encoun-
ter this situation: for whatever reason, the CLR could not automatically determine all
the return status codes. But, luckily, we can add a method attribute to the appropriate
method that tells the CLR what return codes the method returns as follows:

[HttpGet("{flightNumber}")]
[ProducesResponseType(StatusCodes.Status200OK)]
[ProducesResponseType(StatusCodes.Status404NotFound)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public async Task<IActionResult> GetFlightByFlightNumber(int flightNumber) { … }

Figure 14.13 The autogenerated OpenAPI specification of the Flying Dutchman Airlines service. We can use this
to double-check our work against FlyTomorrow’s OpenAPI specification.

357Acceptance testing and Swagger middleware
If we now compile and launch the service again, we see the Swagger UI has changed
(as shown in figure 14.15).

 That looks good. To make sure the other two endpoints (GET /Flight and POST
/Booking/{flightNumber}) have the correct information, go ahead and add the
appropriate method attributes to their respective endpoint methods. After that, we
can compare our generated OpenAPI to the one provided by FlyTomorrow.

COMPARING OPENAPI SPECIFICATIONS: GET /FLIGHT

Perhaps the easiest endpoint to compare in terms of OpenAPI specifications is the GET
/flight endpoint, shown in figure 14.16. It does not take in a body (GET requests can-
not contain a body), and it returns a 200 along with any data it finds, a 404 if no data
was found, or a 500 in case of trouble.

 Figure 14.16 shows us clearly that all return codes are accounted for in the auto-
generated OpenAPI specification for the GET /flight endpoint.

COMPARING OPENAPI SPECIFICATIONS: GET /FLIGHT/{FLIGHTNUMBER}
The second endpoint we look at is the GET /Flight/{flightNumber} endpoint. This
endpoint is very similar to the GET /flight endpoint but introduces the concept of a

Figure 14.14 The expanded GET /Flight/{FlightNumber} OpenAPI information generated at the launch
of the service. This seems to be missing some return information that we added to the controller.

358 CHAPTER 14 JSON serialization/deserialization and custom model binding
Figure 14.15 The expanded GET /Flight/{FlightNumber} OpenAPI information was generated
at the launch of the service with the correct return statuses. It is important to reflect your API
truthfully in an OpenAPI specification so you do not lead people down the wrong road.

FlyTomorrow

Autogenerated

Figure 14.16 Comparing the FlyTomorrow and the autogenerated OpenAPI specification for GET
/Flight. This is one way to verify our work against a customer specification.

359Acceptance testing and Swagger middleware
path parameter. Let’s see in figure 14.17 how our generated OpenAPI specification
stacks up against the FlyTomorrow specification.

Once again, the returned statuses look to be the same in both the FlyTomorrow and
the autogenerated OpenAPI specification. Great, let’s move on to the final endpoint.

COMPARING OPENAPI SPECIFICATIONS: POST /BOOKING/{FLIGHTNUMBER}
The final endpoint we implemented was the POST /Booking/{flightNumber}. This
endpoint combined a POST request plus a body with a path parameter. The endpoint
method had to do JSON deserialization and serialization of data coming in and out of
the service. Let’s have a look at how we did (figure 14.18).

 The image in figure 14.18 is encouraging but not quite what we want to see at this
stage. We can see that the 201 and 500 status codes map correctly, but it turns out we
implemented a 404 return status. This return was not necessary per the FlyTomorrow
OpenAPI specification. Now, there is something to be said for keeping this return sta-
tus because there is a possibility that the developers at FlyTomorrow would like to have
it. On the other hand, it is often best to stick to the customer requirements fairly
tightly. In that vein, the last task in this book for you is to change the BookingControl-
ler to not return the 404 (if you get stuck, see the source code). As a bonus challenge:
Swagger has the functionality to specify descriptions along with return codes. Research
and implement this.

FlyTomorrow

Autogenerated

Figure 14.17 Comparing the FlyTomorrow and the autogenerated OpenAPI specification for GET
/Flight/{flightNumber}. By comparing the two specifications, we can be sure we did a good job.

360 CHAPTER 14 JSON serialization/deserialization and custom model binding
14.3 The end of the road
Congratulations! You did it. You reached the end of the book. I hope you thoroughly
enjoyed the material and learned a new thing or two. If you want to continue your C#
journey, I suggest you look at Jon Skeet’s C# in Depth (4th edition; Manning, 2019),
Dustin Metzgar’s .NET Core in Action (Manning, 2018), Andrew Lock’s ASP.NET Core in
Action (2nd edition; Manning, 2021), and Jeffrey Richter’s CLR via C# (4th edition;
Microsoft Press, 2012). Appendix E contains a list of various resources (books, web-
sites, articles) recommended in this book.

 Lastly, I want to leave you with a quote from the eminent Donald Knuth:2

If you find that you’re spending almost all your time on theory, start turning some
attention to practical things; it will improve your theories. If you find that you're
spending almost all your time on practice, start turning some attention to theoretical
things; it will improve your practice.

2 Donald Knuth is an American computer scientist, famous for his books in The Art of Computer Programming
series. He is the recipient of the 1974 ACM Turing Award (the computer world’s equivalent of the Academy
Awards/Pulitzer Prize/Nobel Prize), was instrumental in the popularization of asymptotic notation, and is pro-
fessor emeritus at Stanford University. His (excellent) personal website is https://www-cs-faculty.stanford.edu/
~knuth/.

FlyTomorrow

Autogenerated

Figure 14.18 Comparing the FlyTomorrow and the autogenerated OpenAPI specification for POST
/Booking/{flightNumber}. If we did not compare the two specifications, we may have missed
the need for the 404 Not Found return and shipped incorrect code to the customer.

https://www-cs-faculty.stanford.edu/~knuth/
https://www-cs-faculty.stanford.edu/~knuth/
https://www-cs-faculty.stanford.edu/~knuth/

361Summary
Summary
 JSON data coming in from an HTTP request is serialized. This means that the

data is not in a format that we can directly use. We need to deserialize this data
before we can operate on it.

 To deserialize JSON data, we can use either the [FromBody] argument attribute
or implement a custom model binder. Deserializing data is what allows us to put
incoming JSON or XML data in a usable data structure.

 You can use the IModelBinder interface to implement a custom model binder.
This is useful when you want to have more control over how data is serialized
into your models.

 By using the ModelState.IsValid check, we can verify that no errors were
found during model binding. This is most useful when combined with a custom
model binder, because you can precisely define when a model is not valid in
that situation.

 You can generate an OpenAPI specification of your service at launch by adding
Swagger middleware to your configuration. This is helpful with acceptance test-
ing and to make sure you are implementing the correct endpoints.

appendix A
Exercise answers

This appendix provides answers to the exercises as found in the book as well as
explanations of the answers.

Chapter 2: .NET and how it compiles

Exercise number Answer Explanations

2.1 d AmigaOS is an operating system originally developed for the
Amiga PC. Its last major release was in 2016. It is not sup-
ported by .NET 5.

2.2 c

2.3 d

2.4 a

2.5 b, a

2.6 e

2.7 c

2.8 a
363

364 APPENDIX A Exercise answers
Chapter 4: Manage your unmanaged resources!

Chapter 5: Setting up a project and database
with Entity Framework Core

Answer to exercise 5.5: There are a variety of ways to solve this exercise as a one-liner.
You can pick from a variety of access modifiers, method names, and variable names.
Two constants remain, however: the return type needs to be of type integer, and we
need to return the product of the two integer input arguments as follows:

public int Product(int a, int b) => a * b;

Exercise number Answer Explanations

4.1 False Attributes can be applied to methods, classes, types, proper-
ties, and fields.

4.2 True

4.3 False Enumerations are created with the enum keyword.

4.4 a, d Only a Hufflepuff would write connection strings on a sticky
note.

4.5 b

4.6 a

4.7 c

4.8 True

4.9 False

Exercise number Answer Explanations

5.1 b

5.2 a

5.3 a, d Tomcat is an open source implementation of Java
Servlet (similar to WebHost); JVM is the Java Vir-
tual Machine (similar to the CLR).

5.4 True

5.5 See below the table for
answer

5.6 One per database entity

365Chapter 6: Test-driven development and dependency injection
Chapter 6: Test-driven development and dependency
injection

Solution to the exercise found in section 6.2.8:

[TestMethod]
public async Task CreateCustomer_Success()
{
 CustomerRepository repository = new CustomerRepository();
 Assert.IsNotNull(repository);

 bool result = await repository.CreateCustomer("Donald Knuth");
 Assert.IsTrue(result);
}

[TestMethod]
public async Task CreateCustomer_Failure_NameIsNull()
{
 CustomerRepository repository = new CustomerRepository();
 Assert.IsNotNull(repository);

 bool result = await repository.CreateCustomer(null);
 Assert.IsFalse(result);
}

[TestMethod]
public async Task CreateCustomer_Failure_NameIsEmptyString()
{
 CustomerRepository repository = new CustomerRepository();
 Assert.IsNotNull(repository);

Exercise number Answer Explanations

6.1 c Answer B (“Don’t perform the same logic in two separate places”)
describes the Don’t Repeat Yourself (DRY) principle.

6.2 True In the book, however, we use TDD-lite where we sometimes break
this rule.

6.3 False Test classes must have an access modifier of public to be
used by a test runner.

6.4 c

6.5 False LINQ allows us to perform queries on collections by using SQL-
like statements and methods.

6.6 a

6.7 b

6.8 True

6.9 a

6.10 True

366 APPENDIX A Exercise answers
 bool result = await repository.CreateCustomer(string.Empty);
 Assert.IsFalse(result);
}

[TestMethod]
[DataRow('#')]
[DataRow('$')]
[DataRow('%')]
[DataRow('&')]
[DataRow('*')]
public async Task CreateCustomer_Failure_NameContainsInvalidCharacters(char

➥ invalidCharacter)
{
 CustomerRepository repository = new CustomerRepository();
 Assert.IsNotNull(repository);

 bool result = await repository.CreateCustomer("Donald Knuth" +
invalidCharacter);

 Assert.IsFalse(result);
}

Chapter 7: Comparing objects

Exercise number Answer Explanations

7.1 Write a unit test that
uses the exception
found method attribute.

7.2 b

7.3 Exception You can also derive a custom exception from a differ-
ent Exception (custom or not) that inherits from the
Exception class.

7.4 c A and B can be default values for the underlying type
of the collection, so they are correct in some cases.

7.5 c When comparing value types, the equality operator
compares their values against each other.

7.6 a When comparing reference types, the equality operator
compares their memory address against each other.

7.7 True

7.8 a When overloading an operator, you also need to over-
load its counter operator.

7.9 False Perfect randomness does not exist in computing.

7.10 False Perfect randomness does not exist in computing.

7.11 True

367Chapter 9: Extension methods, streams, and abstract classes
Chapter 8: Stubbing, generics, and coupling

Chapter 9: Extension methods, streams,
and abstract classes

Exercise number Answer Explanations

8.1 c

8.2 False Two classes that are heavily dependent on each other signifies
tight coupling.

8.3 a

8.4 c

8.5 False Strings are immutable. Every change that is made to a string
results in a new memory allocation, with the resulting string
stored into that spot in memory.

8.6 False You have to override the base class’s methods.

8.7 a The DRY principle stands for the Don’t Repeat Yourself principle.
The Phragmén–Lindelöf principle deals with boundedness of a
holomorphic function on an unbounded domain.

8.8 b

8.9 c

8.10 False Generics can be used with classes, methods, and collections.

8.11 False

8.12 False

8.13 True

8.14 b

8.15 False If you do not declare a default case in a switch statement,
and no other cases are matched, no execution will take place
within the switch statement.

Exercise number Answer Explanations

9.1 b

9.2 a

9.3 False You can use the [DataRow] method attribute with as many data
points as you want.

9.4 b

9.5 False

368 APPENDIX A Exercise answers
Chapter 10: Reflection and mocks

9.6 False An abstract class can contain both abstract and regular methods.

9.7 False

9.8 True

Exercise number Answer Explanations

10.1 b

10.2 False The repository layer typically interacts with a database through a data-
base access layer when using an ORM.

10.3 True

10.4 True

10.5 a

10.6 c We never want to delete code without worrying about the side effects.
When encountering commented-out code, do your due diligence to fig-
ure out why it is there. There better be a really good excuse or else
delete it. Ninety-nine percent of the time, you can delete the code
without issue.

10.7 d

10.8 a

10.9 True

10.10 c

10.11 True While there is still some coupling between the controller and the
repository, this is looser coupling when compared to the controller
directly calling the repository.

10.12 False This is the functionality of a stub.

10.13 False The InternalsVisibleTo allows you to expose an assembly’s
internals to a different assembly.

10.14 c

10.15 True

10.16 b

10.17 a [MethodImpl(MethodImplOptions.NoInlining)] can be
applied only to methods.

Exercise number Answer Explanations

369Chapter 12: Using IAsyncEnumerable<T> and yield return
Chapter 11: Runtime type checking revisited
and error handling

Chapter 12: Using IAsyncEnumerable<T>
and yield return

Exercise number Answer Explanations

11.1 False

11.2 c

11.3 a Only a service is allowed to call a repository. A repository should not
call another repository.

11.4 True

11.5 b

11.6 False The discard operator can still result in memory allocation.

11.7 a The first catch block is entered because an ItemSoldOut-
Exception can be used as an Exception type.

11.8 a

Exercise number Answer Explanations

12.1 True

12.2 False We would likely need to implement the InventoryService,
though.

12.3 b

12.4 a

12.5 Yes The Dragonfruit class can set the IsFruit property because
the IsFruit property has an access modifier of protected. With
a protected access modifier, the owning class and its children
(derived classes) can access the property. The Dragonfruit class
derives from the Fruit class.

12.6 True

12.7 True

12.8 False When you add a constructor to a struct, you need to set all proper-
ties present on the struct or the compiler will not compile your code.

370 APPENDIX A Exercise answers
Chapter 13: Middleware, HTTP routing,
and HTTP responses

Exercise number Answer Explanations

13.1 True

13.2 c

13.3 a

13.4 True

13.5 c

13.6 b

appendix B
Clean code checklist

You can use this short checklist when encountering code that you are unfamiliar
with or while writing new code. This checklist is not meant to be exhaustive and is
merely a starting point for your own research.

GENERAL

 My code reads like a narrative. I write code for humans, not machines.
 I document my code only when necessary. My code should speak for itself.
 I provide clear instructions on how to build and release my codebase. Where

appropriate, I provide working build scripts/makefiles or CI/CD setup
instructions.

 I use native functionalities instead of implementing my own libraries, unless
for a very good reason.

 My code is consistent in its design patterns, documentation, and naming
conventions. I do not change things mid-development and go against estab-
lished patterns.

 I have added logging to my application, so I or other developers can debug
when things go awry.

CLASSES

 My class has the strictest access modifier possible.
 My class is named accurately.
 My class performs operations on only one specific object and, therefore,

adheres to the single-responsibility principle.
 My class lives in the right folder within my project.
 If I struggle with implementing my class, I take a step back and come up with a

brief description of the class and its intended functionality. This refocus can
help write cleaner code. If my class should do multiple things, I split it up.
371

372 APPENDIX B Clean code checklist
METHODS

 My method has the strictest access modifier possible.
 My method is named accurately and correctly describes the logic within (leav-

ing nothing out).
 My method performs only one general operation or collects information from

other methods related to its operations. It adheres to the single-responsibility
principle.

 If my method has a public access modifier, I do not perform any operations
within the method. The public method calls other, smaller, methods and orga-
nizes the outputs.

 I have unit tests backing my method. The unit tests should cover the major suc-
cess and failure logic branches.

VARIABLES, FIELDS, AND PROPERTIES (VFP)

 My VFP types are of the most abstract type possible. If I can use an interface
instead of a concrete type, I use the interface. This promotes polymorphism
and the use of the Liskov substitution principle.

 I do not have any “magic numbers” assigned to a variable.
 Whenever possible, I restrict my VFPs to the tightest access modifier possible. If

a VFP can be made read only, I make it read only. If a VFP can be made a con-
stant, I make it a constant.

 I always validate my input arguments. This protects me against unwanted null
pointer exceptions and operating on data in an invalid state.

 I use enums and constants instead of string literals where appropriate.

TESTING

 I always provide appropriate unit tests to my code.
 I follow test-driven development where possible.
 I am not focused on code coverage. My goal in testing is to protect against

unexpected side effects and to validate my assumptions about the requirements
and existing code.

 If one of my changes breaks a test, I fix the test.
 I always write the least amount of code necessary to satisfy all tests. Any extrane-

ous lines increase the amount of code to maintain.

appendix C
Installation guides

This appendix contains quick installation guides for the following:

 .NET Framework 4.x
 .NET 5
 Visual Studio
 Visual Studio for Mac
 Visual Studio Code

.NET FRAMEWORK 4.X (WINDOWS ONLY)
The .NET Framework is supported only on Windows. To install the latest version of
.NET Framework 4, go to https://dotnet.microsoft.com/download/dotnet-frame-
work, and select the top option from the list of releases. Please note that the mini-
mum .NET Framework version you need to run to support the supplied source
code for this book is .NET Framework 4.8. When you click on a release, you are
brought to the download link page for that release. Click Download .NET Frame-
work 4.[version] Developer Pack. This will download an installer that you can run
to install .NET Framework on your machine.

.NET 5 (WINDOWS, LINUX, AND MACOS)

.NET 5 is supported on Windows, Linux, and macOS (64-bit only). To install the
latest version of .NET 5, navigate to https://dotnet.microsoft.com/download/dot-
net/5.0, and select the latest SDK release. At the time of writing, the latest release is
SDK 5.0.203. When you click on the appropriate release, you are directed to the
download page of the respective release. There is also an option to download the
binaries for all platforms if you wish to do so. Running the downloaded installer
installs .NET 5 on your platform.
373

https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet/5.0
https://dotnet.microsoft.com/download/dotnet/5.0

374 APPENDIX C Installation guides
VISUAL STUDIO (WINDOWS)
Visual Studio is the premier IDE for developing C# on Windows. Visual Studio comes
in the following three flavors:

 Community
 Professional
 Enterprise

The Community Edition is free and allows you to develop (commercial) software
unless you are part of an organization (and doing work for that organization) with
more than 250 PCs or over 1 million US dollars in annual revenue. There are some
feature differences between the three editions, but everything we do in this book can
be done using Visual Studio Community.

 To download Visual Studio Community, visit https://visualstudio.microsoft.com/vs/,
and select Visual Studio Community from the Download Visual Studio dropdown list.
Please make sure that the version is at least Visual Studio 2019 v16.7 because .NET 5
will not function correctly on older versions of Visual Studio (including previous
years’ releases, such as Visual Studio 2017). When you launch the installer, you are
greeted with a host of Visual Studio installation options. These options are called
“workloads,” and for this book, you want to install the following ones:

 ASP.NET and web development
 .NET Core cross-platform development

By selecting the workloads, a download button is enabled in the bottom right-hand
corner. Click this, and Visual Studio will be installed with the selected workloads. Please
note that Visual Studio routinely takes over 8 GB to install.

VISUAL STUDIO FOR MAC

Visual Studio for Mac is a separate product from Visual Studio. It is Microsoft’s
attempt to bring the Visual Studio experience to macOS. To install Visual Studio for
Mac, visit https://visualstudio.microsoft.com/vs/mac/. Click the Download Visual
Studio for Mac button, and run the downloaded installer. You are now ready to use
Visual Studio for Mac. Other IDEs on macOS to consider are VS Code and JetBrains’
Rider. Please make sure you are always using the most up-to-date version of Visual Stu-
dio for Mac.

VISUAL STUDIO CODE (WINDOWS, LINUX, MACOS)
You do not have to use Visual Studio with this book or in your daily work. In theory,
you can use any editor with C# and compile through the command line. In practice,
this is a bit painful. Microsoft has developed a light-weight alternative to Visual Studio
in Visual Studio Code. It is free and functions more like a text editor than a fully
fledged IDE. To download Visual Studio Code, visit https://code.visualstudio.com/,

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/mac/
https://code.visualstudio.com/

375APPENDIX C Installation guides
and click the Download for [platform] button. Run the installer, and then, Visual Stu-
dio Code is ready for use. When you write C# code (or open a C# solution) for the
first time in Visual Studio Code, it will prompt you to download a C# package. Accept
this prompt, and you will be able to use Visual Studio Code (or VS Code) with C#.

RUNNING THE FLYING DUTCHMAN AIRLINES DATABASE ON YOUR LOCAL MACHINE

If you do not want to (or cannot) use the deployed database for the Flying Dutchman
Airlines project in the book, you can run the SQL database in a local instance of SQL
Server.

 To do this, you need the following installed:

 SQL Server Developer Edition
 Microsoft SQL Server Management Studio

To download SQL Server, please visit https://www.microsoft.com/en-us/sql-server/
sql-server-downloads, and download the Developer version of SQL Server. After install-
ing SQL Server, you can move on to installing SQL Server Management Studio (SSMS)
from https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-
studio-ssms?view=sql-server-ver15. Both SQL Server Developer and SSMS are free.

 After SSMS is installed, if you have not done so already, please create a new local
SQL Server instance through SQL Server. To install a new local SQL Server instance,
open the SQL Server Installation Center that was installed alongside your SQL Server
Developer Edition application. In the installation center, click Installation > New SQL
Server Stand-alone Installation or Add Features to an Existing Installation.

 Follow the installation wizard, noting the login credentials you give your SQL
Server instance. You need this information to connect to the SQL Server instance.

 Now launch SSMS. You are greeted by a connection dialog where you can browse
for your SQL instance and fill in your connection information. After connecting, you
are greeted by the SSMS primary screen. Here, in the Object Explorer, right-click
Databases, and select Import Data-Tier Application.

 Clicking the Import Data-Tier Application context menu option brings up a wiz-
ard that lets you import the provided Flying Dutchman Airlines database. In the
Import Settings window, select Import from Local Disk and browse to the database file
(FlyingDutchmanAirlinesDatabase.bacpac). In the following window, you can rename
the database if you wish. After going through the wizard, the database should be
imported and ready to use with the code in this book.

 There is a chance that your database import will fail. This usually is because of a
mismatch between the contained database settings in Microsoft Azure and SSMS. If
the import fails, please run the following command on the main database in your SQL
instance (automatically generated for you):

sp_configure 'contained database authentication', 1; GO RECONFIGURE; GO;

https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15

376 APPENDIX C Installation guides
Some people have reported that syntax issues around the GO keyword sometimes
arise. If you run into issues with the previous command, this next command should
work for you instead:

EXEC sp_configure 'contained database authentication', 1; RECONFIGURE;

One last note: whenever you encounter a connection string in the book, make sure
you replace it with the correct connection string for your local SQL instance copy of
the database.

appendix D
OpenAPI FlyTomorrow

The OpenAPI specification in this appendix reflects the OpenAPI specification we
received from FlyTomorrow. This OpenAPI specification guides the refactor and
rewrite of the Flying Dutchman Airlines service throughout the book.

OpenAPI FlyTomorrow.com
openapi: 3.0.1
info:
 title: FlyTomorrow required endpoints
 description: This OpenAPI file specifies the required endpoints as per

the contract
 between FlyTomorrow.com and Flying Dutchman Airlines
 version: 1.0.0
servers:
- url: https://zork.flyingdutchmanairlines.com/v1
tags:
- name: flight
 description: Access to available flights
- name: booking
 description: Request bookings for available flights
paths:
 /flight:
 get:
 tags:
 - flight
 summary: Get all available flights
 description: Returns all available flights
 operationId: getFlights
 responses:
 200:
 description: ""
 content:
 application/json:
 schema:
 type: array
377

378 APPENDIX D OpenAPI FlyTomorrow
 items:
 $ref: '#/components/schemas/Flight'
 404:
 description: No flights found
 content: {}
 500:
 description: Internal error
 content: {}
 /flight/{flightNumber}:
 get:
 tags:
 - flight
 summary: Find flight by flight number
 description: Returns a single flight
 operationId: getFlightByFlightNumber
 parameters:
 - name: flightNumber
 in: path
 description: Number of flight to return
 required: true
 schema:
 type: integer
 format: int32
 responses:
 200:
 description: ""
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Flight'
 400:
 description: Invalid flight number supplied
 content: {}
 404:
 description: Flight not found
 content: {}
 /booking/{flightNumber}:
 post:
 tags:
 - booking
 summary: requests a booking for a flight
 description: Request for a flight to be booked
 operationId: bookFlight
 parameters:
 - name: flightNumber
 in: path
 description: Number of flight to book
 required: true
 schema:
 type: integer
 format: int64
 requestBody:
 content:
 application/json:
 schema:

379OpenAPI FlyTomorrow
 $ref: '#/components/schemas/Customer'
 required: true
 responses:
 201:
 description: successful operation
 500:
 description: Internal error
 content: {}
components:
 schemas:
 Airport:
 type: object
 properties:
 city:
 type: string
 code:
 type: string
 Customer:
 type: object
 properties:
 firstName:
 type: string
 lastName:
 type: string
 Flight:
 type: object
 properties:
 flightNumber:
 type: integer
 format: int32
 origin:
 $ref: '#/components/schemas/Airport'
 destination:
 $ref: '#/components/schemas/Airport'

appendix E
Reading list

.NET CORE

 Metzgar, Dustin, .NET Core in Action (Manning, 2018).

.NET STANDARD

 .NET Standard specification. The latest version of this document can be
found at github.com/dotnet/standard/tree/master/docs/versions.

ASP.NET

 Lock, Andrew, ASP.NET in Action (2nd edition; Manning, 2020).

C#

 Standard ECMA-334 C# Language Specification. The ECMA standard speci-
fication is always a couple of versions behind the latest released language
version. It can be found at ecma-international.org/publications/standards/
Ecma-334.htm.

 Wagner, Bill, Effective C# (2nd edition; Microsoft Press, 2016).
 Skeet, Jon, C# In-Depth (4th edition; Manning, 2019).

COM/INTEROP

 Clark, Jason, Calling Win32 DLLs in C# with P/Invoke (MSDN Magazine; July
2003). https://docs.microsoft.com/en-us/archive/msdn-magazine/2003/july/
net-column-calling-win32-dlls-in-csharp-with-p-invoke.

 Clark, Jason, P/Invoke Revisited (MSDN Magazine; October 2004). https://
docs.microsoft.com/en-us/archive/msdn-magazine/2004/october/net-col-
umn-p-invoke-revisited.

COMMON LANGUAGE RUNTIME (CLR)

 Richter, Jeffrey, CLR Via C# (4th edition; Microsoft Press, 2012).
380

http://github.com/dotnet/standard/tree/master/docs/versions
https://docs.microsoft.com/en-us/archive/msdn-magazine/2003/july/net-column-calling-win32-dlls-in-csharp-with-p-invoke
https://docs.microsoft.com/en-us/archive/msdn-magazine/2003/july/net-column-calling-win32-dlls-in-csharp-with-p-invoke
https://docs.microsoft.com/en-us/archive/msdn-magazine/2004/october/net-column-p-invoke-revisited
https://docs.microsoft.com/en-us/archive/msdn-magazine/2004/october/net-column-p-invoke-revisited
https://docs.microsoft.com/en-us/archive/msdn-magazine/2004/october/net-column-p-invoke-revisited
http://ecma-international.org/publications/standards/Ecma-334.htm
http://ecma-international.org/publications/standards/Ecma-334.htm

381Reading list
COMPILERS

 Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd edition; Pearson Education, 2007).

CONCURRENT PROGRAMMING

 Duffy, Joe, Concurrent Programming on Windows (Addison-Wesley, 2008).

DATABASES AND SQL

 Cornell University, Relational Databases Virtual Workshop at https://cvw.cac.cor-
nell.edu/databases/.

 Takahashi, Mana, Shoko Azumas, and Trend-Pro Co., Ltd., The Manga Guide to
Databases (No Starch Press, 2009).

 Hunt, Andrew, and Dave Thomas, The Pragmatic Programmer (Addison Wesley,
1999).

DEPENDENCY INJECTION

 Fowler, Martin, Inversion of Control Containers and the Dependency Injection Pattern
(https://www.martinfowler.com/articles/injection.html).

 Martin, Robert C., OO Design Quality Metrics, An Analysis of Dependencies (https://
groups.google.com/forum/#!msg/comp.lang.c++/KU-LQ3hINks/ouRSX-
PUpybkJ).

 Van Deursen, Steven, and Mark Seemann, Dependency Injection Principles, Prac-
tices, and Patterns (2nd edition; Manning, 2019).

DESIGN PATTERNS

 Gamma, Eric, Richard Helm, Ralph Johnson, and John Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994).

 Martin, Robert C., and Micah Martin, Agile Principles, Patterns, and Practices in C#
(Prentice Hall, 2006).

 Freeman, Eric, Elisabeth Robson, Kathy Sierra, and Bert Bates, Head First: Design
Patterns (O’Reilly, 2004).

ENIAC

 Dyson, George, Turing’s Cathedral: The Origins of the Digital Universe (Vintage,
2012).

GENERICS

 Skeet, Jon, C# In-Depth (4th edition; Manning, 2019).

GRAPH THEORY

 Trudeau, Richard J., Introduction to Graph Theory (2nd edition; Dover Publica-
tions, 1994).

https://groups.google.com/forum/#!msg/comp.lang.c++/KU-LQ3hINks/ouRSXPUpybkJ
https://groups.google.com/forum/#!msg/comp.lang.c++/KU-LQ3hINks/ouRSXPUpybkJ
https://groups.google.com/forum/#!msg/comp.lang.c++/KU-LQ3hINks/ouRSXPUpybkJ
https://cvw.cac.cornell.edu/databases/
https://cvw.cac.cornell.edu/databases/
https://www.martinfowler.com/articles/injection.html

382 APPENDIX E Reading list
HASHING

 Wong, David, Real-World Cryptography (Manning, 2021).
 Knuth, Donald, The Art of Computer Programming Volume 3: Sorting and Searching

(2nd edition; Addison-Wesley, 1998).

HTTP

 Pollard, Barry, HTTP/2 in Action (Manning, 2019).
 Berners-Lee, Tim, Information Management: A Proposal (French Conseil Européen

pour la Recherche Nucléaire; CERN, 1990).
 Berners-Lee, Tim, Roy Fielding, and Henrik Frystyk, Hypertext Transfer Protocol—

HTTP/1.0 (Internet Engineering Task Force; IETF, 1996).

KUBERNETES AND DOCKER

 Lukša, Marko, Kubernetes in Action (2nd edition; Manning, 2021).
 Stoneman, Elton, Learn Docker in a Month of Lunches (Manning, 2020).
 Davis, Ashley, Bootstrapping Microservices with Docker, Kubernetes, and Terraform

(Manning, 2020).

MATHEMATICS

 Knuth, Donald, The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms (Addison Wesley Longman, 1977).

 Hofstadter, Douglas R., Gödel, Escher, Bach: An Eternal Golden Braid (Basic Books,
1977).

 Alama, Jesse, and Johannes Korbmacher, The Stanford Encyclopedia of Philosophy,
The Lambda Calculus (https://plato.stanford.edu/entries/lambda-calculus/).

 Conery, Rob, The Imposter’s Handbook: A CS Primer for Self-Taught Programmers
(Rob Conery, 2017).

MATLAB

 Hamming, Richard, Numerical Methods for Scientists and Engineers (Dover Publica-
tions, 1987).

 Gilat, Amos, MATLAB: An Introduction with Applications (6th edition; Wiley,
2016).

MICROSERVICES

 Gammelgaard, Christian Horsdal, Microservices in .NET Core (Manning, 2020).
 Newman, Sam, Building Microservices: Designing Fine-Grained Systems (O’Reilly

Media, 2015).
 Richardson, Chris, Microservices Patterns (Manning, 2018).
 Siriwardena, Prabath, and Nuwan Dias, Microservices Security in Action (Manning,

2019).

https://plato.stanford.edu/entries/lambda-calculus/

383Reading list
OPCODES AND ASSEMBLY

 BBC Bitesize: Computer Science—Binary and Data Representation (instruc-
tions) at https://www.bbc.co.uk/bitesize/guides/z2342hv/revision/1.

RED-BLACK TREES

 Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
Introduction to Algorithms, chapter 13, “Red-Black Trees” (3rd edition; Massachu-
setts Institute of Technology, 2009).

 Galles, David, red/black tree visualizations; https://www.cs.usfca.edu/~galles/
visualization/RedBlack.html (University of San Francisco).

 Wilt, Nicholas, Classic Algorithms in C++: With New Approaches to Sorting, Searching,
and Selecting (Wiley, 1995).

REFACTORING

 Fowler, Martin, Refactoring: Improving the Design of Existing Code (Addison-Wesley,
1999).

SEPARATION OF CONCERNS

 Dijkstra, Edsger, The Role of Scientific Thought in Selected Writings on Computing: A
Personal Perspective (Springer-Verlag, 1982).

 Martin, Robert C., Clean Code: A Handbook of Agile Software Craftsmanship (Pren-
tice-Hall, 2008).

 Constantine, Larry, and Edward Yourdon, Structured Design: Fundamentals of a
Discipline of Computer Program and System Design (Prentice-Hall, 1979).

THE SINGLE-RESPONSIBILITY PRINCIPLE

 Martin, Robert C., The Single-Responsibility Principle (https://blog.clean-
coder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html).

THE LISKOV PRINCIPLE

 Liskov, Barbara H., and Jeannette M. Wing, A Behavioral Notion of Subtyping
(ACM Transactions on Programming Languages and Systems [TOPLAS],
1994).

UNIT TESTING

 Khorikov, Vladimir, Unit Testing Principles, Practices, and Patterns (Manning,
2020).1

 Osherove, Roy, The Art of Unit Testing (2nd edition; Manning, 2013).
 Kaner, Cem, James Bach, and Bret Pettichord, Lessons Learned in Software Testing:

A Context-Driven Approach (Wiley, 2008).

1 The author was one of the technical reviewers for Vladimir Khorikov’s Unit Testing Principles, Practices, and
Patterns.

https://www.bbc.co.uk/bitesize/guides/z2342hv/revision/1
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html

384 APPENDIX E Reading list
VISUAL STUDIO

 Johnson, Bruce, Professional Visual Studio 2017 (Wrox, 2017).
 ——— Essential Visual Studio 2019: Boosting Development Productivity with Contain-

ers, Git, and Azure Tools (Apress, 2020).2

2 The author was the technical reviewer for Bruce Johnson’s Essential Visual Studio 2019: Boosting Development
Productivity with Containers, Git, and Azure Tools (Apress, 2020).

index
Symbols

!= operator 155
?? operator 148
? operator 158
({controller}) template 326
({controller}/{action}/{id}) routing pattern 47
#error preprocessor directive 239
#nullable disable 144
#nullable enable 144
#warning preprocessor directive 239, 246–247

A

abstract classes 188–217
getting Airport out of database by its ID

190–192
implementing Airport repository 189–190
implementing Flight repository 206–216

getting flight out of database 214–216
IsPositive extension method and 208–214

output streams and abstract classes 194–198
querying database for Airport object 199–206

AddRange and SortedList<T> 203–205
testing for database exception with Stub

205–206
validating AirportID input parameter 192–194

abstract keyword 217
acceptance testing 349–359

generating OpenAPI specification at
runtime 354–359

GET /flight 357
GET /Flight/{flightnumber} 357–359
POST /Booking/{flightnumber} 359

with OpenAPI specification 349–353
ActionResult class 309

Action type 94, 120
AddAsync class 179–180
AddControllers 95
AddCustomerToDatabase method 268
Added 184
Add method 126
add operation 28
AddRange function 188, 203–205, 217
AddTransient call 314
Agile Principles, Patterns, and Practices in C#

(Martin) 11, 310
AirportID

getting Airport out of database by its 190–192
validating input parameter 192–194

Airport repository 189–190
AirportService class 274–275
Any method 120–121
Application_End method 49
Application_Start method 49
architectural layers, unit testing across 234–235
args string array 88
ArgumentException exception 145, 166–168, 193,

196–198, 251, 256–257, 289, 296, 318
ArgumentNullException 144, 337
ArrayList<T> collection 203
array of functions 181
Art of Unit Testing, The (Osherove) 123
as operator

runtime type checks with 253
type checking with 255

ASP.NET 49–50, 380
AspNetCore.Hosting namespace 90
ASP.NET Core in Action (Lock) 12, 360
assembly names 239–243
Assert.AreEqual method 155
Assert.IsInstanceOfType 251–253, 272
385

INDEX386
Assert.IsInstanceType 252
Assert.IsTrue 252
asynchronous programming, converting synchro-

nous to 125–127, 129–130
async keyword 127, 130, 139, 170, 191
Attribute type 177
autogenerated code 123–125
auto-properties 51–53
await keyword 127, 130, 136, 139, 141, 146, 170,

200, 288
AwsClient class 133
AwsConnector 133

B

base.SaveChangesAsync 183
BigInteger 297
bindingContext argument 341
BindModelAsync method 342
BitArray collection 203
BookingController class 333–349

data deserialization 335–339
implementing CreateBooking endpoint method

logic 343–349
using custom model binder and method

attribute 340–343
using [FromBody] attribute 339–340

Booking model 50, 161, 230
comparing with table 53
overview 50–51

Booking Repository 161–163
BookingService 229–246

calling repository from service 243–245
difference between stub and mock 235–236
mocking class with Moq library 236–243

InternalsVisibleTo method attribute 238–239
matching executing and calling assembly

names 239–243
preprocessor directives (#warning and

#error) 239
unit testing across architectural layers 234–235

bool type 118, 130
Bootstrapping Microservices with Docker, Kubernetes,

and Terraform (Davis) 13
br.s operator 28
Buffer property 342
Building Microservices (Newman) 306

C

C# In-Depth (Skeet) 12, 360
C# programming language 3–14

compiling 20–23
disadvantages of 7–9

numerical computing 9

operating system (OS) development 8
real-time operating system (RTOS) embedded

development 8–9
reasons for using 5–7

developer-friendly and easy to use 7
economical 6
maintainable 6

switching to 9–12
characters, invalid 120–122
char type array 121
checked mode 299
CIL (Common Intermediate Language) 9, 19,

23–28
Clean Architecture (Martin) 11
Clean Code (Martin) 165
CLI-compliant languages 19–31

C# code (high-level) 20–23
Common Intermediate Language (assembly

level) 23–28
native code (processor level) 29–30

CLR (Common Language Runtime) 15, 23, 380
CLR Via C# (Richter) 12–13, 360
cmd.Dispose function 67
cmd.ExecuteReader() method 67
codebase, existing 35–57

Flying Dutchman Airlines 36–37
improving 43–57

assessing database schema and tables 43–44
models and views 50–57
web service configuration files 44–50

requirements 38–42
GET /flight/flightNumber 40–41
GET /flight endpoint 39–40
object-relational mapping (ORM) 38–39
POST /booking/flightNumber endpoint

41–42
collections 63–64
COM/Interop 380
Common Intermediate Language (CIL) 9, 19,

23–28
Common Language Runtime (CLR) 15, 23, 380
Comparer class 159
compilers 381
CompletedTask property 130
concurrent programming 381
Concurrent Programming on Windows (Duffy) 13
conditionals 179–186
configuration files 44–50

charting ASP.NET and configuration files 49–50
RouteConfig file 45–47
WebApiConfig file 47–49

configuration methods 102–103
Configuration release flag 22
Configure method 93, 355
ConfigureServices method 95, 313–314, 355

INDEX 387
congruence 149–157
creating 150–152
Equals method 153–154
overloading equality operator 154–157

connection strings 64–65
connectionString variable 64
Console class 194–196
Console output stream 196
console template 85–86, 88, 107
Console.WriteLine method 166, 195
constructors 125–127
containsInvalidCharacters 121
Contains method 121
ContentResult class 309
context.SaveChangesAsync method 236
ContinentalSwitch class 254
ControllerBase class 344
Controller class 309, 311, 334
controllers

determining 306–308
routing HTTP requests to 324–329

CouldNotAddEntityToDatabaseException 170
coupling 160–187

conditionals 179–186
default arguments by using optional

parameters 177–179
Func type 179–186
implementing Booking Repository 161–163
input validation and separation of

concerns 164–169
programming with generics 176–177
switches and switch expressions 179–186
unit testing with stubs 172–175
using object initializers 169–172

C Programming Language, The (Kernighan and
Ritchie) 8

CreateBooking 343–349
CreateCustomer method 117

constructors, reflection, and asynchronous
programming 125–127

dependency injection (DI) 132–138
in-lining test data with [DataRow] attribute 123
locks 127–129
mutexes 128–129
object initializers and autogenerated code

123–125
semaphores 129
synchronous to asynchronous execution

129–130
testing EF Core 130–132
unit tests using 119–120
validating against invalid characters 120–122
validating input arguments 118–119

CreateDefaultBuilder method 89
CreateResponse method 69–70

cross-process thread control 128–129
CRUD (create, read, update, and delete) 114, 190
customer model 53–54
CustomerService 225–229

creating skeleton classes 225–226
deleting own code 227–228

custom model binder 340–343

D

DatabaseContext 99
databases

implementing access layer 98–106
DbSet and EF Core workflow 100–102
environment variables 102–106
reverse-engineering and EF Core 98–100

querying for Airport object 199–206
AddRange and SortedList 203–205
testing for database exception with Stub

205–206
querying with SqlCommand 67–70

[DataRow] attribute 123, 168, 193, 205, 216, 250,
367

DbContextBuilder 132
DbContext class 99–100, 102, 126–127
DbContextOptions 100
dbContextOptions 242
DbContextOptionsBuilder type 102
DbSet<T> collection 278
DbSet types 100–102
default arguments 177–179
default case 182–183, 186, 367
Default pattern 47
Defaults object 48
del /f [file] command 228
DELETE method 77–78
deleting code 227–228
dependency injection. See DI
deserialization of JSON data 332–361

acceptance testing and Swagger
middleware 349–359

generating OpenAPI specification at
runtime 354–359

manual acceptance testing with an OpenAPI
specification 349–353

implementing BookingController class 333–349
data deserialization 335–339
implementing CreateBooking endpoint

method logic 343–349
using custom model binder and method

attribute 340–343
using [FromBody] attribute to deserialize

incoming HTTP data 339–340
Design namespace 98
design patterns 381

INDEX388
DI (dependency injection) 138
middleware 312–320

scoped dependency 314
singleton dependency 313–314
transient dependency 314–320

unit testing with try-catches 136–138
Dictionary collection 279
discard operator 290
Dispose method 66–67, 79
Docker 382
dotnet-ef command 98
dotnet new console command 85
dotnet new sln command 85
dotnet sln [SOLUTION] add [PROJECT]

command 107
DRY (Don’t Repeat Yourself) principle 73, 80,

365

E

echo command 104
EF (Entity Framework) Core 83–108

creating .NET 5 solution and project 84–88
exercises 107
implementing database access layer 98–106

DbSet and EF Core workflow 100–102
environment variables 102–106
reverse-engineering and EF Core 98–100

querying for pending changes in 183–185
testing 130–132
web service, setting up and configuring

88–97
configuring .NET 5 web service 89–90
creating and using HostBuilder 91–93
implementing Startup class 93–96
using repository/service pattern 96–97

Effective C# (Wagner) 12
embedded development, RTOS 8–9
Embedded Software Primer, An (Simon) 9
Encoding.UTF8 class 342
endpoint methods 306
EnsureDeleted method 185, 187
[Entity].Add 126
Entity Framework Core in Action (Smith) 12
Entity object 184
EntityState 184
enum keyword 364
Environment.GetEnvironmentVariable

method 104
ENVIRONMENT VARIABLE KEY 103
environment variables 102–106

configuration methods and 102–103
on macOS 104
on Windows 103–104
retrieving at runtime in code 104–106

equality
overloading equality operator 154–157
overriding Equals method 153–154

EqualityComparer<T> class 150–152
Equal method 155
Equals method 151–152
error handling 248–272

cleaning up BookingServiceTests class
256–257

foreign key constraints in service classes
258–270

validating input parameters of service layer
method 249–255

runtime type checks with is and as
operators 253

type checking with as operator 255
type checking with is operator 253–254

EWD447: On the Role of Scientific Thought
(Dijkstra) 164

Exception class 158, 170, 172, 192, 196, 199, 230,
236, 240, 244, 251, 253, 257, 262–265, 267–
269, 271–272, 292, 296, 300, 311, 366

ExceptionDispatchInfo.Capture method 199
ExceptionDispatchInfo class 198–199
exceptions

custom 144–149
testing for with stubbing 205–206

exception variable 244
executing assembly names 239–243
exercise answers 363–370
[ExpectedException] attribute 168, 182, 206
ExpectedException attribute 146, 197, 295
extension methods 144–149, 188–217

exercises 216–217
getting Airport out of database by its ID

190–192
implementing Airport repository 189–190
implementing Flight repository 206–216

getting flight out of database 214–216
IsPositive extension method and 208–214

output streams and abstract classes 194–198
querying database for Airport object 199–206

AddRange and SortedList 203–205
testing for database exception with Stub

205–206
validating AirportID input parameter 192–194

ExtensionMethods class 208–209
ExternalPacket class 253

F

FCL (Framework Class Library) 15
FIFO (first-in, first-out) 277, 298–299
FILO (first-in, last-out) 298
First method 155, 180

INDEX 389
FirstOrDefaultAsync method 148, 200
FirstOrDefault method 148, 157
Flight class 54–55
FlightController 308–324

implementing GET /Flight/{FlightNumber}
endpoint 320–324

injecting dependencies using middleware
312–320

scoped dependency 314
singleton dependency 313–314
transient dependency 314–320

returning HTTP responses with IActionResult
interface (GetFlights) 309–312

Flight Repository 206–216
calling from service class 259–270
getting flight out of database 214–216
IsPositive extension method and 208–214
specific flight information from 276–280

FlightReturnView view 56–57
FlightService class 274, 276, 285–287

combining two data streams into view
280–288

implementing GetFlightByFlightNumber
292–297

specific flight information from
FlightRepository 276–280

using yield return keywords with try-catch code
blocks 288–292

flights variable 64, 68
float type 186
Flying Dutchman Airlines codebase 35–57

improving 43–57
assessing database schema and tables

43–44
models and views 50–57
web service configuration files 44–50

requirements 38–42
GET /flight/{flightNumber} 40–41
GET /flight endpoint 39–40
object-relational mapping (ORM) 38–39
POST /booking/{flightNumber} 41–42

running on local machine 375–376
unmanaged resources 58–80

DELETE /flight/{flightNumber} 77–78
GET /flight/{flightNumber} 70–73
GET /flight endpoint 60–70
POST /flight 73–77

forbiddenCharacters array 121–122
ForEachAsync method 278
foreign key constraints 258–270
Framework Class Library (FCL) 15
[FromBody] attribute 57, 76, 80, 336, 339–340,

343, 361
FromBody attribute 75
Func type 179–186

G

garbage collector 66
generics

programming with 176–177
GET /flight/ 40–41
GET /flight/{flightNumber} 40–41, 70–73

implementing endpoint 320–324
OpenAPI specification 357–359

GET /flight endpoint 39–40, 60–70
collections 63–64
connection strings 64–65
method signature 61–63
OpenAPI specification 357
overview 60
querying database with SqlCommand 67–70
using IDisposable 65–67

GetCustomerByName method 141–149
custom exceptions, LINQ, and extension

methods 144–149
question marks 143–144

getCustomerByName method 146
GetEnvironmentVariable 103, 105
GetFlightByFlightNumber 292–297
GetFlights 309–312
GetHashCode method 151–152
GetInt32 method 68
GET method 61, 63, 333
GetName method 52
getters 51–53
GetTokenInformation method 177
GetType method 62, 79, 253
Global.asax 49–50
GlobalConfiguration.Configuration.Formatters

.JsonFormatter.MediaTypeMappings 49
GlobalSwitch class 254–255
graph theory 381

H

hashing 382
HashSet collection 176
HashSet instance 125
Hashtable 151
Heapsort method 176
HelloPythagoras 21
HTTP/2 in Action (Pollard) 306
HttpAttribute attribute 303, 327, 331
HttpConfiguration instance 48
HttpConfiguration parameter 48
HttpContext class 341
[HttpDelete] attribute 326
[HttpGet] attribute 326–328
HTTP GET endpoint 37
[HttpHead] attribute 326

INDEX390
[HttpPatch] attribute 326
[HttpPost] attribute 326, 339
HTTP POST endpoint 37
[HttpPut] attribute 326
HttpRequest class 341
HttpResponseMessage class 69–70, 75
HTTP responses 303–331

controller class within repository/service
pattern 304–306

determining what controllers to
implement 306–308

exercises 330
implementing FlightController 308–324

implementing GET /Flight/{flightNumber}
endpoint 320–324

injecting dependencies using
middleware 312–320

returning HTTP responses with IActionResult
interface (GetFlights) 309–312

routing HTTP requests to controllers and
methods 324–329

HttpStatusCode enum field 70
HttpStatusCode.OK method 70

I

IActionResult interface 303, 309–312, 331
IAsyncEnumerable<T> 273, 279, 285, 288–300, 321

AirportService class 274–275
exercises 298
implementing FlightService class 276–297

combining two data streams into view
280–288

implementing
GetFlightByFlightNumber 292–297

specific flight information from
FlightRepository 276–280

using yield return keywords with try-catch
code blocks 288–292

IAwsClient 133
IComparer<T> 176
IDisposable interface 65–67, 78–79, 127, 195
Id variable 48, 72
IEnumerable collection 184
IEnumerable interface 62, 78–79, 279, 285, 298, 345
IEnumerable<T> interface 279, 298–299
IEnumerable<ValidationResult> 345
ILDASM (Intermediate Language Disassembler) 24
IModelBinder interface 340, 342, 361
ImportantMethod 129
InitializeHost method 93
init-only setters 51–53
InnerException property 199
input arguments 118–119
input parameters

service layer method, validating 249–255
runtime type checks with is and as

operators 253
type checking with as operator 255
type checking with is operator 253–254

validating AirportID 192–194
input validation 164–169
INSERT/ADD operation 102
installation guides 373–376

.NET 5 (Windows, Linux, and macOS) 373

.NET Framework 4.X (Windows only) 373
running Flying Dutchman Airlines database on

local machine 375–376
Visual Studio (Windows) 374
Visual Studio Code (Windows, Linux,

macOS) 374–375
Visual Studio for Mac 374

integer type 72, 164, 191, 193, 207–209, 321
internal modifier 48, 117, 208–209
InternalsVisibleTo method attribute 238–239, 368
InternetSwitch class 254
int GetHashCode(T obj) method 151
InvalidCastException class 144–145
invalid characters 120–122
InvalidOperationException 92, 144, 337
IsCanceled property 342
IsCompleted bool 230
IsCompleted property 342
IServiceCollection interface 95
IsInvalidName method 145
IsNullOrEmpty method 118, 121–122, 166
is operator

runtime type checks with 253
type checking with 253–254

IsPositive extension method 208–214
IsPositiveInteger method 250, 347
IsToggleLight method 228
IValidatableObject interface 344–345
IWork interface 310

J

JSON serialization/deserialization 332–361
acceptance testing and Swagger

middleware 349–359
generating OpenAPI specification at

runtime 354–359
with OpenAPI specification 349–353

implementing BookingController class 333–349
data deserialization 335–339
implementing CreateBooking endpoint

method logic 343–349
using custom model binder and method

attribute 340–343
using [FromBody] attribute 339–340

INDEX 391
K

Kubernetes 382
Kubernetes in Action (Lukša) 13

L

Language-Integrated Query (LINQ) 6, 121, 139,
144–149

last-in, first-out (LIFO) 298
Last-in, last-out (LILO) 298
ldarg.0 operations 27
Learn Docker in a Month of Lunches (Stoneman) 13
LinkedList<T> collection 203
LINQ (Language-Integrated Query) 6, 121, 139,

144–149
Linux

.NET 5 373
Visual Studio Code 374–375

Liskov principle 383
List<bool> 186
List collection 176, 279
List<Int16> type 177
List<ISnack> 187
List<T> collection 203
List type 63
LocalPacket class 253
LocalPacket packet 254–255
locals keyword 26
locks 127–129

M

macOS
environment variables on 104
.NET 5 373
Visual Studio 374
Visual Studio Code 374–375

Main method 88, 91–93
Making Embedded Systems (White) 9
MapControllers 95
MapRoute method 46–47
MATLAB 382
MATLAB (Gilat) 9
MediaTypeMappings 49
method attribute 340–343
[MethodImpl(MethodImplOptions.NoInlining)]

attribute 246–247, 368
methods

Clean code checklist 372
routing HTTP requests to 324–329

method signatures 61–63
Microservices 382
Microservices in .NET Core (Gammelgaard) 13, 306
Microservices Patterns (Richardson) 306

Microservices Security in Action (Siriwardena and
Dias) 13

Microsoft.AspNetCore package 90
Microsoft.EntityFrameworkCore 131
Microsoft.EntityFramework.Core.InMemory

package 131
Microsoft.Extensions.DependencyInjection

namespace 95
Microsoft.Extensions.Hosting namespace 89
middleware 312–320

scoped dependency 314
singleton dependency 313–314
transient dependency 314–320

mocks 221–247
implementing BookingService 229–246

calling repository from service 243–245
difference between stub and mock 235–236
exercises 245–246
mocking class with Moq library 236–243
unit testing across architectural layers

234–235
implementing CustomerService 225–229

creating skeleton classes 225–226
deleting own code 227–228
exercises 228–229

repository/service pattern 222–225
exercises 224–225
service classes 223–224

Mock<T> 236, 241
model binder, custom 340–343
[ModelBinder(typeof([custom binder]))]

attribute 343
ModelBindingContext class 341–342
models 50–57

Booking model 50–51
comparing Booking model and table 53
customer model 53–54
Flight class 54–55
FlightReturnView view 56–57
getters and setters 51–53

ModelState.IsValid class 344, 361
ModelState.IsValid property 76, 345
ModelState static class 73
Modern C (Gustedt) 8
Moq library 236–243

InternalsVisibleTo method attribute 238–239
matching executing and calling assembly

names 239–243
preprocessor directives (#warning and

#error) 239
mul operations 28
mutexes 128–129
mvc template 85, 107
MyGenericMethod method 177
[MyMethodAttribute] 48

INDEX392
N

nameof expression 338
native code 29–30
.NET 15–32

C# and 3–14
compiling CLI-compliant languages

19–31
C# code (high-level) 20–23
Common Intermediate Language

(assembly level) 23–28
exercises 31
native code (processor level) 29–30

.NET Framework 16–17
.NET 5 17–18

configuring web service 89–90
creating solution and project 84–88
exercises 18
installation guides 373

.NET Core 380

.NET Core in Action (Metzgar) 12, 360

.NET Framework 16–17

.NET Framework 4.X 373
netWorth variable 128
new keyword 101, 108
-n flag 86
ngen tool 30
nop operation 27–28
ntity object 184
<Nullable>enable</Nullable> flag 144
Nullable<T> type 144
NullReferenceException exception 183
null values 143–144
null variable 72, 105
numerical computing 9
Numerical Methods for Scientists and Engineers

(Hamming) 9

O

object base type 79
Object class 62, 151
object.Equals 150
object initializers 123–125, 169–172
Object object 241
Object property 241
object-relational mapping (ORM) 38–39
ObjectResult type 312
objects 140–159

congruence 149–157
creating 150–152
Equals method 153–154
overloading equality operator

154–157
exercises 157–158

GetCustomerByName method 141–149
custom exceptions, LINQ, and extension

methods 144–149
question marks 143–144

querying database for Airport 199–206
AddRange and SortedList<T> 203–205
testing for database exception with Stub

205–206
OfType<T> method 184
OnConfigure method 104
OnConfiguring method 102
OnModelCreating method 102, 105–106
OnModelCreatingPartial method 106
opcodes and assembly 383
OpenAPI FlyTomorrow 377–379
OpenAPI specification

acceptance testing with 349–353
generating at runtime 354–359

GET /flight 357
GET /Flight/{flightnumber} 357–359
POST /Booking/{flightnumber} 359

[opt] keyword 179
optional parameters 177–179
ORM (object-relational mapping) 38–39
outputStream.Dispose 198
output streams 194–198
outputStream variable 197–198
OverflowException 296, 299
overloading equality operator 154–157

P

packages.config 49–50
Packet class 253
PacketTransfer class 253
partial feature 125
partial keyword 99–100, 108, 124
PCL (Portable Class Libraries) 18
Pipe class 342
PipeReader class 342
PipeReader instance 342
PipeWriter class 342
PLC (programmable logic controller) 8
Portable Class Libraries (PCL) 18
POST /Booking/{flightNumber} endpoint 41–42,

359
POST /booking/ endpoint 41–42
POST /flight 73–77
POST endpoint 73, 229, 334
Post method 117
Pragmatic Programmer, The (Hunt and Thomas) 76
preprocessor directives 239
private method 121–122, 132
private readonly 133
ProcessGrades method 64

INDEX 393
ProduceWork method 310
Program class 92
programmable logic controller (PLC) 8
[PROJECT PATH] 87
protected access modifier 369
Protected keyword 107
public access modifier 114, 154
public class 48, 100–101
public method 122, 230
Pythagoras method 25

Q

question marks 143–144
Queue collection 279
Queue data structure 317
Queue<T> 298–299

R

Random class 152, 158
RandomNumberGenerator class 152, 158
ReadAsync method 342
reader object 67–68
reading list 380–384

ASP.NET 380
COM/Interop 380
Common Language Runtime (CLR) 380
Compilers 381
Concurrent Programming 381
Databases and SQL 381
dependency injection 381
Design Patterns 381
ENIAC 381
generics 381
graph theory 381
hashing 382
HTTP 382
Kubernetes and Docker 382
Liskov principle 383
mathematics 382
MATLAB 382
Microservices 382
.NET Core 380
.NET Standard 380
opcodes and assembly 383
red-black trees 383
refactoring 383
separation of concerns 383
single-responsibility principle 383
Unit Testing 383
Visual Studio 384

readonly field 51, 299
readonly modifier 51
readonly property 62, 282, 299

ReadOnlySequence<byte> buffer 342
real-time operating system (RTOS) 8–9
Real-World Cryptography (Wong) 152
red-black trees 383
refactoring 383
reflection 125–127, 221–247

implementing BookingService 229–246
calling repository from service 243–245
difference between stub and mock 235–236
exercises 245–246
mocking class with Moq library 236–243
unit testing across architectural layers

234–235
implementing CustomerService 225–229

creating skeleton classes 225–226
deleting own code 227–228
exercises 228–229

repository/service pattern 222–225
exercises 224–225
service classes 223–224

Register method 48
RegisterRoutes method 45–47, 49
ReleaseMutex method 128
repository/service pattern 96–97, 222–225

controller class within 304–306
service classes 223–224

repository methods 243–245
Request.BodyReader property 342
Request class 342
Request.CreateResponse 69
ResponseType attribute 61–63, 75
restore command 87
restore operation 107
Result property 342
ret operator 28
Returns(Task.CompletedTask) 237
returnView 69
returnView.Origin field 69
reverse-engineering 98–100
Rivest–Shamir–Adleman (RSA) encryption 177
RNGCryptoServiceProvider class 152
Role of Scientific Thought, The (Dijkstra) 112
[Route] attribute 325, 334
RouteConfig file 45–47
RSA (Rivest–Shamir–Adleman) encryption 177
RSA type 177
RTOS (real-time operating system) 8–9
Run method 92
runtime type checking 248–272

cleaning up BookingServiceTests class
256–257

foreign key constraints in service classes
258–270

validating input parameters of service layer
method 249–255

INDEX394
runtime type checking (continued)
runtime type checks with is and as

operators 253
type checking with as operator 255
type checking with is operator 253–254

S

SaveChangesAsync method 127, 135, 146, 170,
175, 177, 179–180, 182–183, 185, 201–202,
205–206, 236

scaffold 99
scoped dependency 314
Sealed keyword 101, 107, 125
Select statement 184
semaphores 129
separation of concerns 164–169, 383
serialization of JSON data 332, 361

acceptance testing and Swagger
middleware 349–359

generating OpenAPI specification at
runtime 354–359

manual acceptance testing with an OpenAPI
specification 349–353

implementing BookingController class
333–349

data deserialization 335–339
implementing CreateBooking endpoint

method logic 343–349
using custom model binder and method

attribute 340–343
using [FromBody] attribute to deserialize

incoming HTTP data 339–340
service classes 223–224, 258–270
ServiceCollection 95
service layer method 249–255

runtime type checks with is and as
operators 253

type checking with as operator 255
type checking with is operator 253–254

service variable 233
SetError method 194
SetIn method 194
SetName 52
SetOut method 194
setters 51–53
single-responsibility principle (SRP) 111–112,

383
singleton dependency 313–314
skeleton classes 225–226
SKUService class 298
sln template 85
SOLID principles 11
solution add command 88
[SOLUTION PATH] 87

SortedList<T> collection 188, 203–205, 217
Sort method 176, 203
Span 342
SQL 381
SqlCommand 67–70
SqlConnection type 65
SqlServer namespace 98
squaredLength variable 26–28
SRP (single-responsibility principle) 111–112,

383
Startup class 92–96, 107, 312, 314, 346
Startup.ConfigureServices method 346
Startup.cs 326
static constructor 80
static method 88
StatusCode class 311
StatusCode constructor 317
StatusCode object 319
stloc.0 command 28
stloc.0 operation 28
stloc.1 operation 28
Stream class 195, 217
streams 188–217

combining into views 280–288
getting Airport out of database by its ID

190–192
implementing Airport repository 189–190
implementing Flight repository 206–216

getting flight out of database 214–216
IsPositive extension method and 208–214

output streams and abstract classes 194–198
querying database for Airport object 199–206

AddRange and SortedList<T> 203–205
testing for database exception with Stub

205–206
validating AirportID input parameter

192–194
string.+ construct 154
String class 166
string class 118
string.Empty 120
string.IsNullOrEmpty(string.empty) 298
String.IsNullOrEmpty method 118, 250, 282
String.IsNullOrWhitespace 282
string parameter 67
string type 117, 166, 205, 280, 347
StringWriter method 195–196, 198, 217
Structure and Interpretation of Computer Programs

(Abelson and Sussman) 13
Structured Design (Yourdon) 165
stubbing

difference between mocking and 235–236
testing for database exception with 205–206
unit testing with 172–175

success variable 244

INDEX 395
super keyword 174
Swagger middleware 349–359

generating OpenAPI specification at
runtime 354–359

GET /flight 357
GET /Flight/{flightnumber} 357–359
POST /Booking/{flightnumber} 359

manual acceptance testing with an OpenAPI
specification 349–353

Swashbuckle.AspNetCore package 354–355
switches and switch expressions 179–186
switch expression 182, 206, 211
switch statement 181–183, 186, 367
SynchronizedReadOnlyCollection<T>

collection 203
synchronous programming, to asynchronous

programming 125–127, 129–130
System.Collections.Generics namespace 203
System.Collections namespace 203
SystemException 144–145
System.IO namespace 103
System.IO.Pipelines namespace 342
System.IO.TextReader 194
System.IO.TextWriter 194
System.Linq 121, 148
System namespace 152
Systems.Collections.Generic.ArraySortHelper

class 176
System.Security.Cryptography namespace 152
System.Text.Json namespace 342

T

tables
assessing 43–44
comparing Booking model and 53

Task<(bool, Exception)> 230
Task class 129–130, 136, 139
Task<int> 183
Task method 170, 181, 285, 342
Task<[original return type]> 139
Task<ReadResult> instance 342
Task<T> 191
Task type 127, 191, 244
Task<[type]> type 129
Task value 191
TDD (test-driven development) 111–139

CreateCustomer method 117–139
constructors, reflection, and asynchronous

programming 125–127
dependency injection (DI) 132–138
in-lining test data with [DataRow]

attribute 123
locks 127–129
mutexes 128–129

object initializers and autogenerated
code 123–125

semaphores 129
synchronous to asynchronous execution

129–130
testing EF Core 130–132
unit tests using 119–120
validating against invalid characters

120–122
validating input arguments 118–119

overview 113–117
ternary conditional operator 180–181
[TestClass] attribute 190
[TestCleanup] attribute 131
[TestInitialize] attribute 131
TestInitialize method 131–132, 137, 146, 168, 183,

185, 190, 196, 200, 202–203, 214, 225, 227,
242, 255–256, 278, 290, 292–293

TextReader method 194, 217
TextWriters 194
this keyword 134, 209
threads

mutexes for cross-process thread control
128–129

semaphores allowing access by multiple
concurrent threads 129

throw keyword 145, 198
Throw method 199
throw new pattern 166
ToggleLight method 228
TokenInformationClass instance 177
transient dependency 314–320
try-catch code blocks 288–292
[type] 129, 176
type checking

with as operator 255
with is operator 253–254

typeof keyword 61, 145
typeof operator 61–63, 251–253

U

unchecked code block 300
unchecked mode 299
unit testing

across architectural layers 234–235
method attributes for 131–132
using 119–120
with stubs 172–175
with try-catches 136–138

Unit Testing Principles, Practices, and Patterns
(Khorikov) 123

unmanaged resources 58–80
DELETE /flight/{flightnumber} 77–78
GET /flight/{flightnumber} 70–73

INDEX396
unmanaged resources(continued)
GET /flight endpoint 60–70

collections 63–64
connection strings 64–65
method signature 61–63
overview 60
querying database with SqlCommand 67–70
using IDisposable 65–67

POST /flight 73–77
UseEndpoints 93
UseRouting 93
UseSqlServer method 105
UseStartup class 89
UseUrls 91
using statement 65–67, 79, 135, 196–197

V

V_1 variable 26
Validate method 344–345
ValidationResult 345
Value property 205
var keyword 63–64, 70, 72, 156
VeryImportantMethod method 129
-v flag 326
VFP (variables, fields, and properties) 372
View class 258, 276
views 50–57

Booking model 50–51
combining two data streams into 280–288
comparing Booking model and table 53
customer model 53–54
Flight class 54–55
FlightReturnView view 56–57
getters and setters 51–53

virtual keyword 107, 125, 242
virtual method 101
Visual Studio

for macOS 374
for Windows 374

Visual Studio Code 374–375

W

WaitOne method 128
WebApiConfig.Defaults 48
WebApiConfig file 47–49
webapi template 85
webapp template 85
Web.config 49–50
WebHostDefaults 89
web service

configuration files 44–50
charting ASP.NET and 49–50
RouteConfig file 45–47
WebApiConfig file 47–49

setting up and configuring 88–97
configuring .NET 5 web service 89–90
creating and using HostBuilder 91–93
implementing Startup class 93–96
using repository/service pattern 96–97

web template 85
Windows

environment variables on 103–104
.NET 5 373
.NET Framework 4.X 373
Visual Studio 374
Visual Studio Code 374–375

WindowsIdentity class 177

Y

yield return 273–300
AirportService class 274–275
implementing FlightService class 276–297

combining two data streams into view
280–288

implementing
GetFlightByFlightNumber 292–297

specific flight information from
FlightRepository 276–280

using yield return keywords with try-catch
code blocks 288–292

Clean Code Checklist (Continued from inside front cover)

VARIABLES, FIELDS, AND PROPERTIES (VFP)

✓ My VFP types are of the most abstract type possible. If you can use an interface
instead of a concrete type, use the interface. This promotes polymorphism and the
use of the Liskov substitution principle.

✓ I do not have any “magic numbers” assigned to a variable.
✓ Whenever possible, I restrict my VFPs to the tightest access modifier possible. If a

VFP can be made read only, I make it read only. If a VFP can be made a constant, I
make it a constant.

✓ I always validate my input arguments. This protects me against unwanted null pointer
exceptions and operating on data in an invalid state.

✓ Use enums and constants instead of string literals where appropriate.

TESTING

✓ I always provide appropriate unit tests to my code.
✓ I follow test-driven development where possible.
✓ I am not focused on code coverage. My goal in testing is to protect against unex-

pected side effects and to validate my assumptions about the requirements and
existing code.

✓ If one of my changes breaks a test, I fix the test.
✓ I always write the least amount of code necessary to satisfy all tests. Any extrane-

ous lines increase the amount of code to maintain.

Jort Rodenburg

ISBN: 978-1-61729-802-8

Y
ou know the basics, now get ready for the next step! Pro-
quality C# code is effi cient, clean, and fast. Whether
you’re building user-facing business applications or

writing data-intensive backend services, the experience-based,
practical techniques in this book will take your C# skills to
a new level.

Code Like a Pro in C# teaches you to how write clean C# code
that’s suitable for enterprise applications. In this book, you’ll
refactor a legacy codebase by applying modern C# techniques.
You’ll explore tools like Entity Framework Core, design tech-
niques like dependency injection, and key practices like testing
and clean coding. It’s a perfect path to upgrade your existing
C# skills or shift from another OO language into C# and the
.NET ecosystem.

What’s Inside
● Unit testing and test-driven development
● Refactor a legacy .NET codebase
● Principles of clean code
● Query and manipulate databases with LINQ and Entity
 Framework Core

For developers experienced with object-oriented program-
ming. No C# experience required.

Jort Rodenburg is a software engineer who has taught numer-
ous courses on getting up to speed with C# and .NET.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Code Like a Pro in C#

.NET/C#

M A N N I N G

“Worth reading
 multiple times.”
—Prabhuti Prakash

Synechron Technologies

“Packed with guidance
and insights to get you

there quickly.
 Highly recommended!”

—Edin Kapic, isolutions

“Th is book really helped me
to move to the next level.”

—Daniel Vásquez Estupiñan
Tokiota

“Th is is the book you are
looking for when you want

to know how to code in
the most idiomatic way
 possible with C#.”—Gustavo Filipe Ramos Gomes

Troido

“Teaches excellent techniques
and best practices for modern

C# development.”—Foster Haines, J2 Interactive

See first page

	Code Like a Pro in C#
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1—Using C# and .NET
	1 Introducing C# and .NET
	1.1 Why work in C#?
	1.1.1 Reason 1: C# is economical
	1.1.2 Reason 2: C# is maintainable
	1.1.3 Reason 3: C# is developer friendly and easy to use

	1.2 Why not work in C#?
	1.2.1 Operating system development
	1.2.2 Real-time operating system embedded development in C#
	1.2.3 Numerical computing and C#

	1.3 Switching to C#
	1.4 What you will learn in this book
	1.5 What you will not learn in this book
	Summary

	2 .NET and how it compiles
	2.1 What is the .NET Framework?
	2.2 What is .NET 5?
	2.3 How CLI-compliant languages are compiled
	2.3.1 Step 1: C# code (high-level)
	2.3.2 Step 2: Common Intermediate Language (assembly level)
	2.3.3 Step 3: Native code (processor level)

	Exercises
	Summary

	Part 2—The existing codebase
	3 How bad is this code?
	3.1 Introducing Flying Dutchman Airlines
	3.2 Pieces of the puzzle: Taking a look at our requirements
	3.2.1 Object-relational mapping
	3.2.2 The GET /flight endpoint: Retrieving information on all flights
	3.2.3 The GET /flight/{flightNumber} endpoint: Getting specific flight information
	3.2.4 The POST /booking/{flightNumber} endpoint: Booking a flight

	3.3 Coming to terms with the existing codebase
	3.3.1 Assessing the existing database schema and its tables
	3.3.2 The existing codebase: Web service configuration files
	3.3.3 Considering models and views in the existing codebase

	Summary

	4 Manage your unmanaged resources!
	4.1 The FlightController: Assessing the GET /flight endpoint
	4.1.1 The GET /flight endpoint and what it does
	4.1.2 Method signature: The meaning of ResponseType and typeof
	4.1.3 Collecting flight information with collections
	4.1.4 Connection strings, or how to give a security engineer a heart attack
	4.1.5 Using IDisposable to release unmanaged resources
	4.1.6 Querying a database with SqlCommand

	4.2 The FlightController: Assessing GET /flight/{flightNumber}
	4.3 The FlightController: POST /flight
	4.4 The FlightController: DELETE /flight/{flightNumber}
	Exercises
	Summary

	Part 3—The database access layer
	5 Setting up a project and database with Entity Framework Core
	5.1 Creating a .NET 5 solution and project
	5.2 Setting up and configuring a web service
	5.2.1 Configuring a .NET 5 web service
	5.2.2 Creating and using HostBuilder
	5.2.3 Implementing the Startup class
	5.2.4 Using the repository/service pattern for our web service architecture

	5.3 Implementing the database access layer
	5.3.1 Entity Framework Core and reverse-engineering
	5.3.2 DbSet and the Entity Framework Core workflow
	5.3.3 Configuration methods and environment variables
	5.3.4 Setting an environment variable on Windows
	5.3.5 Setting an environment variable on macOS
	5.3.6 Retrieving environment variables at run time in your code

	Exercises
	Summary

	Part 4—The repository layer
	6 Test-driven development and dependency injection
	6.1 Test-driven development
	6.2 The CreateCustomer method
	6.2.1 Why you should always validate input arguments
	6.2.2 Using “arrange, act, assert” to write unit tests
	6.2.3 Validating against invalid characters
	6.2.4 In-lining test data with the [DataRow] attribute
	6.2.5 Object initializers and autogenerated code
	6.2.6 Constructors, reflection, and asynchronous programming
	6.2.7 Locks, mutexes, and semaphores
	6.2.8 Synchronous to asynchronous execution . . . continued
	6.2.9 Testing Entity Framework Core
	6.2.10 Controlling dependencies with dependency injection

	Summary

	7 Comparing objects
	7.1 The GetCustomerByName method
	7.1.1 Question marks: Nullable types and their applications
	7.1.2 Custom exceptions, LINQ, and extension methods

	7.2 Congruence: From the Middle Ages to C#
	7.2.1 Creating a “comparer” class using EqualityComparer<T>
	7.2.2 Testing equality by overriding the Equals method
	7.2.3 Overloading the equality operator

	Exercises
	Summary

	8 Stubbing, generics, and coupling
	8.1 Implementing the Booking repository
	8.2 Input validation, separation of concerns, and coupling
	8.3 Using object initializers
	8.4 Unit testing with stubs
	8.5 Programming with generics
	8.6 Providing default arguments by using optional parameters
	8.7 Conditionals, Func, switches, and switch expressions
	8.7.1 The ternary conditional operator
	8.7.2 Branching using an array of functions
	8.7.3 Switch statements and expressions
	8.7.4 Querying for pending changes in Entity Framework Core

	Exercises
	Summary

	9 Extension methods, streams, and abstract classes
	9.1 Implementing the Airport repository
	9.2 Getting an Airport out of the database by its ID
	9.3 Validating the AirportID input parameter
	9.4 Output streams and being specifically abstract
	9.5 Querying the database for an Airport object
	9.6 Implementing the Flight repository
	9.6.1 The IsPositive extension method and “magic numbers”
	9.6.2 Getting a flight out of the database

	Exercises
	Summary

	Part 5—The service layer
	10 Reflection and mocks
	10.1 The repository/service pattern revisited
	10.1.1 What is the use of a service class?

	10.2 Implementing the CustomerService
	10.2.1 Setting up for success: Creating skeleton classes
	10.2.2 How to delete your own code

	10.3 Implementing the BookingService
	10.3.1 Unit testing across architectural layers
	10.3.2 The difference between a stub and a mock
	10.3.3 Mocking a class with the Moq library
	10.3.4 Calling a repository from a service

	Exercises
	Summary

	11 Runtime type checking revisited and error handling
	11.1 Validating input parameters of a service layer method
	11.1.1 Runtime type checks with the is and as operators
	11.1.2 Type checking with the is operator
	11.1.3 Type checking with the as operator
	11.1.4 What did we do in section 11.1?

	11.2 Cleaning up the BookingServiceTests class
	11.3 Foreign key constraints in service classes
	11.3.1 Calling the Flight repository from a service class

	Exercises
	Summary

	12 Using IAsyncEnumerable<T> and yield return
	12.1 Do we need an AirportService class?
	12.2 Implementing the FlightService class
	12.2.1 Getting information on a specific flight from the FlightRepository
	12.2.2 Combining two data streams into a view
	12.2.3 Using the yield return keywords with try-catch code blocks
	12.2.4 Implementing GetFlightByFlightNumber

	Exercises
	Summary

	Part 6—The controller layer
	13 Middleware, HTTP routing, and HTTP responses
	13.1 The controller class within the repository/service pattern
	13.2 Determining what controllers to implement
	13.3 Implementing the FlightController
	13.3.1 Returning HTTP responses with the IActionResult interface (GetFlights)
	13.3.2 Injecting dependencies into a controller using middleware
	13.3.3 Implementing the GET /Flight/{FlightNumber} endpoint

	13.4 Routing HTTP requests to controllers and methods
	Exercises
	Summary

	14 JSON serialization/ deserialization and custom model binding
	14.1 Implementing the BookingController class
	14.1.1 Introduction to data deserialization
	14.1.2 Using the [FromBody] attribute to deserialize incoming HTTP data
	14.1.3 Using a custom model binder and method attribute for model binding
	14.1.4 Implementing the CreateBooking endpoint method logic

	14.2 Acceptance testing and Swagger middleware
	14.2.1 Manual acceptance testing with an OpenAPI specification
	14.2.2 Generating an OpenAPI specification at runtime

	14.3 The end of the road
	Summary

	Appendix A—Exercise answers
	Chapter 2: .NET and how it compiles
	Chapter 4: Manage your unmanaged resources!
	Chapter 5: Setting up a project and database with Entity Framework Core
	Chapter 6: Test-driven development and dependency injection
	Chapter 7: Comparing objects
	Chapter 8: Stubbing, generics, and coupling
	Chapter 9: Extension methods, streams, and abstract classes
	Chapter 10: Reflection and mocks
	Chapter 11: Runtime type checking revisited and error handling
	Chapter 12: Using IAsyncEnumerable<T> and yield return
	Chapter 13: Middleware, HTTP routing, and HTTP responses

	Appendix B—Clean code checklist
	Appendix C—Installation guides
	Appendix D—OpenAPI FlyTomorrow
	Appendix E—Reading list
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

