
M A N N I N G

Leo Porter ● Daniel Zingaro
Foreword by Beth Simon, Ph.D.

With GitHub Copilot and ChatGPT

The function design cycle with Copilot, augmented to include debugging

MANN I NG
Shelter ISland

Learn AI-Assisted
Python Programming

LEO PORTER
DANIEL ZINGARO

With GitHub Copilot and ChatGPT

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2024 by Manning Publications Co. All rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN: 9781633437784
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

 Development editor: Rebecca Johnson
 Technical editor: Peter Morgan
 Review editor: Dunja NikitoviÊ
 Production editor: Aleksandar DragosavljeviÊ
 Copy editor: Katie Petito
 Technical proofreader: Mark Thomas
 Typesetter: Tamara ŠveliÊ SabljiÊ
 Cover designer: Marija Tudor

Dan thanks his wife, Doyali, for trading some of their time,
again, to help this book exist.

Leo thanks his wife, Lori, and his children Sam and Avery
for their love and support.

iv

contents
foreword ix
acknowledgments xi
introduction xiii
about the authors xxii
about the cover illustration xxiv

 1 Introducing AI-assisted programming with Copilot 1
 1.1 How we talk to computers 2

Making it a little easier 2 ■ Making it a lot easier 3

 1.2 About the technology 3
Copilot, your AI Assistant 4 ■ How Copilot works behind the
scenes—in 30 seconds 5

 1.3 How Copilot changes how we learn to program 6

 1.4 What else can Copilot do for us? 7

 1.5 Risks and challenges when using Copilot 8

 1.6 The skills we need 10

 1.7 Societal concerns about AI code assistants like
Copilot 11

 Summary 12

 vcontents v

 2 Getting started with Copilot 13
 2.1 Time to set up your computer to start learning 14

Overview of the software in your programming environment 14

 2.2 Getting your system set up 15

 2.3 Working with Copilot in Visual Studio Code 16
Set up your working folder 17 ■ Check to see if your setup is
working properly 18

 2.4 Addressing common Copilot challenges 20

 2.5 Our first programming problem 22
Showcasing Copilot’s value in a data processing task 23

 Summary 32

 3 Designing functions 33
 3.1 Functions 34

The components of a function 35 ■ Using a function 37

 3.2 Benefits of functions 38

 3.3 Roles of functions 40

 3.4 What’s a reasonable task for a function? 43
Attributes of good functions 43 ■ Examples of good (and bad)
leaf functions 44

 3.5 The cycle of design of functions with Copilot 45

 3.6 Examples of creating good functions with Copilot 46
Dan’s stock pick 47 ■ Leo’s password 50 ■ Getting a strong
password 54 ■ Scrabble scoring 55 ■ The best word 57

 Summary 59

 4 Reading Python code: Part 1 60
 4.1 Why we need to read code 61

 4.2 Asking Copilot to explain code 63

 4.3 Top 10 programming features you need to know:
Part 1 66

#1. Functions 67 ■ #2. Variables 67 ■ #3. Conditionals 69
#4. Strings 72 ■ #5. Lists 74 ■ Conclusion 76

 Summary 77

vivi contents

 5 Reading Python code: Part 2 78
 5.1 Top 10 programming features you need to know:

Part 2 79
#6. Loops 79 ■ #7. Indentation 83 ■ #8. Dictionaries 90
#9. Files 91 ■ #10. Modules 94

 Summary 98

 6 Testing and prompt engineering 99
 6.1 Why it is crucial to test code 99

 6.2 Closed-box and open-box testing 100
Closed-box testing 101 ■ How do we know which test cases to
use? 103 ■ Open-box testing 103

 6.3 How to test your code 104
Testing using the Python prompt 105 ■ Testing in your Python
file (we won’t be doing it this way) 105 ■ doctest 105

 6.4 Revisiting the cycle of designing functions with
Copilot 108

 6.5 Full testing example 110
Finding the most students we can add to a row 110 ■ Improving
the prompt to find a better solution 113 ■ Testing the new
solution 114

 6.6 Another full testing example—Testing with files 116
What tests should we run? 117 ■ Creating the function 120
Testing the function 120 ■ Common challenges with
doctest 121

 Summary 123

 7 Problem decomposition 124
 7.1 Problem decomposition 125

 7.2 Small examples of top-down design 125

 7.3 Authorship identification 127

 7.4 Authorship identification using top-down design 129

 7.5 Breaking down the process subproblem 130
Figuring out the signature for the mystery book 130

 7.6 Summary of our top-down design 138

 viicontents vii

 7.7 Implementing our functions 138
clean_word 139 ■ average_word_length 140 ■ different_to_
total 142 ■ exactly_once_to_total 142 ■ split_string 144
get_sentences 146 ■ average_sentence_length 146
get_phrases 147 ■ average_sentence_complexity 147
make_signature 148 ■ get_all_signatures 149
get_score 152 ■ lowest_score 153 ■ process_data 154
make_guess 154

 7.8 Going further 156

 Summary 157

 8 Debugging and better understanding your code 158
 8.1 What causes errors (bugs)? 159

 8.2 How to find the bug 160
Using print statements to learn about the code behavior 160
Using VS Code’s debugger to learn about the code behavior 162

 8.3 How to fix a bug (once found) 169
Asking Copilot to fix your bug via chat 169 ■ Giving Copilot
a new prompt for the whole function 171 ■ Giving Copilot a
targeted prompt for part of a function 171 ■ Modifying the code
to fix the bug yourself 172

 8.4 Modifying our workflow in light of our new skills 173

 8.5 Applying our debugging skills to a new problem 174

 8.6 Using the debugger to better understand code 180

 8.7 A caution about debugging 180

 Summary 181

 9 Automating tedious tasks 182
 9.1 Why programmers make tools 183

 9.2 How to use Copilot to write tools 184

 9.3 Example 1: Cleaning up email text 184
Conversing with Copilot 185 ■ Writing the tool to clean up
email 189

 9.4 Example 2: Adding cover pages to PDF files 192
Conversing with Copilot 194 ■ Writing the tool 198

viii contentsviii

 9.5 Example 3: Merging phone picture libraries 206
Conversing with Copilot 208 ■ Top-down design 211
Writing the tool 212

 Summary 215

 10 Making some games 216
 10.1 Game programs 217

 10.2 Adding randomness 218

 10.3 Example 1: Bulls and Cows 220
How the game works 220 ■ Top-down design 222
Parameters and return types 224 ■ Implementing our
functions 226 ■ Adding a graphical interface for Bulls and
Cows 233

 10.4 Example 2: Bogart 234
How the game works 234 ■ Top-down design 236
Implementing our functions 240

 Summary 247

 11 Future directions 248
 11.1 Prompt patterns 248

Flipped interaction pattern 250 ■ Persona pattern 253

 11.2 Limitations and future directions 255
Where Copilot (currently) struggles 255 ■ Is Copilot a new
programming language? 256

Summary 260

references 261

index 264

ix

foreword
It’s an awesome time to learn programming. Why? Let me use an analogy to
explain.

I like to make my own bread. I make it more frequently, and more reliably,
when I use my stand mixer to knead the dough compared to kneading it by
hand. Maybe you’d say that’s lazy. I’d say it makes me more productive and
more likely to actually make the bread. Maybe you have something that makes
your life easier by taking over a tedious task, leaving you free to focus on more
important or interesting things. Do you have a car that supports you in parallel
parking? I recall when Gmail added spell and grammar checks in languages
other than English. My husband’s German relative were so excited that he was
writing them longer emails—because the effort of remembering little-used
German language specifics went away and allowed him to spend more time on
the content!

Sadly, until recently, when learning programming, you had no equivalent of
a stand mixer or grammar check to support you. And there are lots of tedious
things to learn and remember when you start programming.

Good news! As of spring 2023, radically new and (we think) effective sup-
port is finally here. You are about to learn programming with one of the most
exciting human task supporters so far this century: artificial intelligence. Spe-
cifically, this book seeks to support you in developing your ability to program
in Python to solve computational problems more easily and faster by teaching
you using a tool called GitHub Copilot. Copilot is a programming support tool
that uses something called a LLM (large language model) to draw “help” from

x forewordx

a huge number of previously written programs. Once you learn how to direct it
(sadly, it’s more complicated than effectively using a stand mixer), Copilot can
dramatically increase your productivity and success in writing programs to solve
your problem.

But should you use Copilot? Are you really learning to program if you use it?
Preliminary evidence looks positive—showing that students who learned with
Copilot, when assigned a programming task to be done without the help of
Copilot, did better than students who learned without Copilot (and also did
the task without Copilot) [1]. That said, compared to what we used to teach in
an introductory programming class, there are different skills you will need to
focus on when programming with Copilot, specifically problem decomposition
and debugging (it’s OK if you don’t know what those are). Just know, practicing
programmers need to know those skills as well, but we previously weren’t able
to teach them explicitly or effectively in introductory courses, because students
didn’t have the brain space left for learning these “high-level skills” while focus-
ing on nit-picky things like spelling and grammar (programming languages
have these, just like real world languages).

Leo and Dan are expert computing educators and researchers; the decisions
that they’ve made to guide your learning in this book are grounded in what we
know about teaching and learning programming. I’m excited that, with this
book, they’re taking steps toward what the next wave of teaching programming
will look like.

So, congratulations! Whether you have never done any programming or
whether you started to learn before and got frustrated… we think you will find
learning to program with Copilot transformative and will allow you to engage
your brain in more meaningful and “expert-like” programming experiences!

—Beth Simon, Ph.D.

xi

acknowledgments
Writing a book about technology in flux was new for us. Each day of writing
started with us reading the new articles, opinion pieces, and capabilities of
LLMs. Early plans had to be scrapped or revised. New ideas presented them-
selves for later chapters only after we’d written earlier chapters and had access
to the latest LLM features. We thank the entire Manning Publications team for
their agility and help throughout the process.

In particular, we thank our Development Editor Rebecca Johnson for her
expertise, wisdom, and support.

Rebecca provided insightful feedback, constructive criticism, and creative
suggestions that have greatly improved the quality and clarity of our work.
Rebecca was supportive and encouraging and helped us manage book timelines
and our busy schedules. Thank you, Rebecca—you went above and beyond for
us.

We also thank our Technical Editor Peter Morgan and our Technical Proof-
reader Mark Thomas. Both offered valuable contributions to the quality of the
book.

To all the reviewers: Aishvarya Verma, Andrew Freed, Andy Wiesendanger,
Beth Simon, Brent Honadel, Cairo Cananea, Frank Thomas-Hockey, Ganesh
Falak, Ganesh Swaminathan, Georgerobert Freeman, Hariskumar Panakmal,
Hendrica van Emde Boas, Ildar Akhmetov, Jean-Baptiste Bang Nteme, Kalai C.
E. Nathan, Max Fowler, Maya Lea-Langton, Mikael Dautrey, Monica Popa, Nata-
sha Chong, Ozren Harlovic, Pedro Antonio Ibarra Facio, Radhakrishna Anil,

xii acknowledgmentsxii

Snehal Bobade, Srihari Sridharan, Tan Wee, Tony Holdroyd, Wei Luo, Wondi
Wolde, your suggestions helped make this a better book.

We thank our colleagues for supporting our work and offering their ideas for
what such a book should attempt to do. Many of their ideas have informed our
thinking as we sought to redefine what an introductory programming course
looks like. We particularly thank Brett Becker, Michelle Craig, Paul Denny, Bill
Griswold, Philip Guo, and Gerald Soosai Raj.

xiii

introduction
Software is essential today. It’s hard to think of any industry where software
isn’t changing practically everything about how work is done. Manufacturing
needs software to monitor production and shipping, let alone the robots that
increasingly perform the actual task. Advertising, politics, and fitness, among
others, are awash in big data and they routinely use software to make sense of
it. Video games and movies are created using software. We could go on and on,
but you get the point.

The result has been that more people than ever want to learn how to pro-
gram. We’re not just talking about the computer science, computer engi-
neering, and data science majors at universities who have been in a perpetual
“enrollment crisis” for the past decade. We’re also talking about the scientist
who needs to write software to evaluate their data, the office worker who wants
to automate some of their tedious data processing tasks, and the hobbyist who
wants to create a fun video game for their friends.

Despite the desire to learn programming, there are decades of research in
our field (computing education) that have identified many reasons for why
learning to write software is hard. Even after you figure out how to solve the
problem, you have to tell a machine how to accomplish it in a programming
language whose rules are unforgiving. Granted, writing programs in a language
like Python is substantially easier than in machine code using punch cards, but
it’s still hard. We know it’s hard because we’ve seen the failure rates of intro-
ductory computer science courses. We’ve seen first-hand as we’ve watched

xiv introductionxiv

motivated and intelligent students fail our courses, sometimes multiple times,
before they succeed or, worse, give up.

But what if we could talk to computers in a better way? A way that doesn’t
require us to know all the detailed syntax rules that trip up most novices. That
era has just begun thanks to AI assistants like Copilot that offer intelligent
code suggestions in the same way ChatGPT can write reasonable text when
prompted. This book is for everyone who wants to learn how to write software in
the AI assistant era. We’re excited to be on your learning journey with you.

AI assistants change how programming is done
We’ll introduce you to your AI assistant, Copilot, in chapter 1, but we want to
give you a brief overview now. If you read the news headlines or even opinion
pieces by lauded software engineering professionals talking about Copilot or
ChatGPT, you’ve seen that opinions run the gamut. Some people say that AI
assistants mean the end of all programming jobs. Others say that AI assistants
are so hopelessly flawed you are better without them. These views of the world
are at such extremes that it’s easy to poke holes in either argument. AI assis-
tants learn from existing code, so if some new tool/technology is developed,
humans will need to write the bulk of the initial code. As a recent article well
expressed, there isn’t a lot (or any) code out there for quantum computers
since they are still in their infancy [1]. So human programmers aren’t going
away, at least not any time soon. At the same time, in our time working with
Copilot, we’ve seen how powerful it is. Both of us have written software for
decades and Copilot can often give us correct code much faster than we could
write it on our own. To ignore such a powerful tool seems analogous to a car-
penter refusing to use power tools.

As educators, the opportunity to help people learn to write software is
instantly apparent. Why should students spend so much time fighting with syn-
tax when writing code from scratch when the code suggested by an AI assistant
is almost always syntactically correct? Why should students have to reach out to
professors, instructional staff, friends, or internet forums for help explaining
what a section of code is doing when AI assistants are really good at explaining
code (particularly for questions asked by novices)? And if AI assistants often
write correct code when solving common programming problems (by learn-
ing from huge volumes of code written in the past), why shouldn’t students be
using it to help them program?

Be warned that this doesn’t mean that writing software is now just easy and
that we can entirely offload the skill of programming onto the AI. Instead, the
skills to write good software are evolving. Skills like problem decomposition,
code specification, code reading, and code testing have become even more

 xvintroduction xv

important than they were in the past; skills like knowing library semantics and
syntax become less important. We’ll say more about this in the next chapters,
but this book will teach you the skills that matter going forward. These skills will
be valuable whether you dabble in writing software from time to time or you are
starting a career in software engineering.

Audience
We have two primary audiences for the book. The first is everyone who has
thought about writing software (and even tried and failed before) to make
their lives better in some way. This includes the accountant who gets frustrated
that their software can’t do what they want so they are left solving problems by
hand. Or scientists who want to analyze their data quickly, but existing tools
aren’t capable of doing what they want. We also imagine the office manager
who feels limited by what their spreadsheet software can do and wants a better
way to gain insight from their data. Additionally, we imagine the exec at a small
company who wants to be notified when something is said publicly on social
media about their company but can’t afford to pay a software engineering
team to write the tool for them. And we imagine the hobbyist of any age who
just wants to write software for fun—whether it be for making their own small
video games, storytelling with pictures, or creating fun family photo collages.
These are just some of the people who want to write software to improve some
element of their professional or personal lives.

The second is the student who is considering a career in software engineer-
ing or programming and wants to learn how to write software. They want to
learn the basics and start creating interesting software, without the trappings of
a classic computer science class. Certainly, there will be more courses or books
that will follow this first book on the road to becoming a professional software
developer, but this will hopefully be a fun and rewarding first step.

What we expect from you
This book requires no background whatsoever in programming. If you learned
some programming and forgotten or it didn’t go well the first time, we think
this is a great place to resume your learning.

This book does require basic computer literacy. This means you should be
comfortable installing software, copying files between folders, and opening files
on your computer. If you don’t have those skills, you could still start this book,
but realize there may be moments when you need to look to outside resources
(e.g., YouTube videos on how to copy a file from one folder to another).

xvi introductionxvi

You’ll also need a computer where you have permission to install software so
you can follow along and apply the ideas we’re learning. Any Windows, Mac, or
Linux personal computer or laptop will work.

What you will be able to do after reading this book
In this book, we’re going to teach you how to use Copilot to write Python code.
We’ll teach you how to identify whether that code does what you want, and
what to do when it doesn’t. We’ll teach you enough about Python to be able
to read it for a general understanding of what it does and whether it is doing
something potentially meaningful.

We won’t, however, teach you how to program in Python entirely from
scratch. You’ll be in a good position to learn to do that with other resources fol-
lowing this book if you like—but for many tasks, as we will show you, it may not
be necessary.

We don’t know exactly what it will look like to be a professional programmer
or software engineer in light of AI coding assistants. That role is already chang-
ing and will change further as the AI technology improves. For now, we will say
that you need more than this book to be a professional programmer or software
engineer. You’ll need to know a great deal more about Python and other com-
puter science topics to get there.

The good news is that learning how to program using Copilot will make you
capable of writing basic software to address common needs. The software will
be more complex than what we typically teach in an introductory course, and
you’ll be able to write these useful programs without banging your head on syn-
tax or spending months learning just Python. If you wish to continue learning
about writing professional software, this will be your first step toward mastery.

By the end of this book, you will be able to write basic software capable of data
analysis, automating repetitive tasks, and creating simple games, among many
others.

The challenge in working with AI assistants
We expect you’re ready to jump into a technology that is maturing and chang-
ing quickly. What you see from Copilot may not match what you see in the book. Copilot
is advancing and changing daily, and we cannot possibly keep up to the minute
with such a moving target. More than that, Copilot is nondeterministic, which
means that if you ask it to solve the same task multiple times, it may not give
you the same code each time. And sometimes you’ll get correct code for a task,
but then if you ask again, you get code that is not correct. So even if you use
the exact same prompts we do, you will likely see different code responses than
we do. Much of this book is devoted to ensuring you learn how to determine

 xviiintroduction xvii

whether the answer from Copilot is right or not and, if it isn’t, how to fix it. In
short, we hope you’re ready for what it means to learn on the leading edge of
technology.

Why we wrote this book
Both of us have been professors for over a decade and programmers for a
decade longer than that. Our care for our students’ success led us to become
researchers studying how students learn computing and how to improve their
outcomes. Between the two of us, we’ve written nearly a hundred articles in our
field exploring pedagogies, student beliefs, and assessments—all with the goal
of improving the student experience.

We’ve also had students in our office hours who struggled to learn how to
program, even when we are employing best practices in teaching computing.
These are intelligent students who want to learn, but who are tripped up on
some part of the programming process. The programming process has many
steps, from understanding a problem, to coming up with a solution, to impart-
ing the process of solving the problem to a computer. So, when we began work-
ing with AI assistants, specifically Copilot, we instantly saw how it could be a
game changer for students, particularly in improving that last step “imparting
the process of solving the problem to a computer”. We want our students to suc-
ceed. We want you to succeed. And we believe AI assistants can help.

Warning: beware of elitism
One of the saddest things we see in our classes at our universities is students
intimidating other students. We’ve heard students in our introductory Python
programming courses try to show off how they already learned to program in
such-and-such programming language and the affect that has on the other stu-
dents in the course. Although we try to gently point these students to other,
more appropriate courses, we’ve also seen that the students bragging in this
way are often the students struggling to pass at the end of the term, hav-
ing vastly over-estimated their proficiency at the start. And it doesn’t take a
licensed psychologist to see that this kind of posturing comes from a place of
low self-esteem.

Beyond students in our introductory courses, we see how different kinds
of programmers treat each other and their respective fields. For example,
Human-Computer Interaction (HCI) professionals study how to improve the
design of software to make it better for its human users. Sounds important,
right? Unfortunately, that field was put down by computer scientists as merely
“applied psychology” for years, and then major companies showed that maybe,
just maybe, if you care about the users of your technology, those people might

xviii introductionxviii

just appreciate it more and be inclined to buy it. It’s not surprising that HCI
quickly became mainstream in computer science. This snobbery isn’t limited
to specific fields. We even see it occurring between programmers of different
languages. For example, we’ve seen C++ (one programming language) pro-
grammers say silly things like JavaScript (another programming language) pro-
gramming isn’t real programming. (It definitely is real programming, whatever
that might mean!)

All of this, in our opinion, is unproductive and unfortunate posturing that
pushes people away from the field. A comic we both enjoy called XKCD, cap-
tured the ludicrousness of this posturing well in “Real Programmers” [2]. In
the comic, programmers argue about what the best text editor app is for pro-
gramming. Programmers need to use a text editor to enter their code, which is
exactly what you’ll start doing in chapter 2. There’s been a long-standing, and
mostly unserious, debate over the best editors (“emacs” is one of many editors).
The comic is making light of the meaninglessness of the debate in a truly clever
way.

The reason we’re talking about this unfortunate aspect of our field is we
know what some people will say about learning to program with Copilot. They’ll
say that to learn to write software, you have to learn how to write code entirely
from scratch. And for future professional engineers, we actually agree that at
some point in your career, you should learn to write code from scratch. But, for
most people and even people starting their studies in software engineering, we
wholeheartedly disagree that writing code entirely from scratch makes sense
anymore as a starting place. So, if someone criticizes you for doing something
to make yourself or your life or the world better, we encourage you to look to
the immortal wisdom of Taylor Swift and just “Shake it off”.

How this book is organized: a roadmap
This book is divided into 11 chapters. We recommend that you read this book
from beginning to end, rather than skipping around. That’s because most
chapters introduce skills that will be assumed in later chapters:

¡	Chapter 1 describes what AI code assistants are, how they work, and why
they are irrevocably changing how programming is done. It also explores
the concerns we need to keep in mind when using AI coding assistants.

¡	Chapter 2 helps you set up your computer to be able to program with
GitHub Copilot (that’s your AI coding assistant) and Python (that’s the
programming language we’ll use). Once your computer is set up, we’ll
use Copilot in our first programming example: doing some analysis on
freely available sports data.

 xixintroduction xix

¡	Chapter 3 teaches you all about functions, which help you organize your
code and make it easier for Copilot to write code for you. It also uses many
examples to demonstrate the general workflow we’ll use in order to be
productive with Copilot.

¡	Chapter 4 is the first of two chapters that teaches you how to read Python
code. It’s true that Copilot will be writing code for you, but you need to be
able to read that code to help you determine whether that code is going
to do what you want. And don’t worry: Copilot can help you read code,
too!

¡	Chapter 5 is the second of two chapters that teaches you how to read
Python code.

¡	Chapter 6 is a primer on two critical skills that you need to hone when
working with AI coding assistants: testing and prompt engineering. Test-
ing involves checking that your code operates correctly; prompt engi-
neering involves changing the words you use in order to communicate
more effectively with your AI assistant.

¡	Chapter 7 is all about breaking large problems down into smaller prob-
lems that are easier for Copilot to handle. The technique is called top-
down design, and in this chapter, you’ll use it to design a complete
program to identify the author of mystery books.

¡	Chapter 8 is a deep dive into bugs (errors in your code!), how to find
them, and how to fix them. You’ll learn how to step line by line through
your code to pinpoint exactly what’s going wrong and even how to ask
Copilot to help you fix bugs.

¡	Chapter 9 puts Copilot to work to help you automate tedious tasks. You’ll
see three examples—cleaning up emails that have been forwarded many
times, adding cover pages to hundreds of PDF files, and removing dupli-
cate images—and you’ll be able to apply the principles to your own spe-
cific tasks as well.

¡	Chapter 10 shows you how to use Copilot to write computer games. You’ll
use the skills you developed throughout the book to write two games:
a logic game similar to Wordle, and a two-player, press-your-luck board
game.

¡	Chapter 11 delves into the fledgling field of prompt patterns, which are
tools to help you get even more out of your AI assistant. It also summarizes
the current limitations of AI coding assistants and looks at what may be on
the horizon.

xx introductionxx

Source code downloads
For many books about programming, the reader types the code exactly as
the author has written it in order to accomplish a task with code. Our book
is different because, as described earlier, the code we get back from Copi-
lot is nondeterministic; your code will not match our code. For that reason,
we are not providing all of the code for download that you see in this book.
We want you to focus on generating that code from Copilot, not typing it in
yourself! That said, we do have some important files to share, and they are
available from the publisher’s website at https://www.manning.com/books/
learn-ai-assisted-python-programming.

This book contains many examples of source code both in numbered list-
ings and in line with normal text. In both cases, source code is formatted in a
fixed-width font like this to separate it from ordinary text. Comments or code
we’ve written as prompts to be interpreted by Copilot or ChatGPT are in bold to
highlight what we wrote rather than what was given to us by the large language
model.

In many cases, the original source code has been reformatted; we’ve added
line breaks and reworked indentation to accommodate the available page
space in the book. In rare cases, even this was not enough, and listings include
line-continuation markers (➥). Additionally, comments in the source code
have often been removed from the listings when the code is described in the
text. Code annotations accompany many of the listings, highlighting important
concepts.

Software/hardware requirements
You’ll need access to any Windows, Mac, or Linux computer on which you have
permission to install software. As we discuss in further detail in chapter 2, you’ll
need to install the Python software, the Visual Studio Code (VS Code) software,
as well as various extensions. You’ll also need to sign up for a GitHub Copilot
account which, at the time of writing, has a free trial, is free for students and
educators, but otherwise has a monthly charge.

liveBook discussion forum
Purchase of Learn AI-Assisted Python Programming with GitHub Copilot and ChatGPT
includes free access to liveBook, Manning’s online reading platform. Using
liveBook’s exclusive discussion features, you can attach comments to the book
globally or to specific sections or paragraphs. It’s a snap to make notes for your-
self, ask and answer technical questions, and receive help from the author and
other users. To access the forum, go to https://livebook.manning.com/book/

https://www.manning.com/books/learn-ai-assisted-python-programming
https://www.manning.com/books/learn-ai-assisted-python-programming
https://livebook.manning.com/book/learn-ai-assisted-python-programming/discussion

 xxiintroduction xxi

learn-ai-assisted-python-programming/discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://livebook.manning
.com/discussion.

Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialogue between individual readers and between readers and the author
can take place. It is not a commitment to any specific amount of participation
on the part of the author, whose contribution to the forum remains voluntary
(and unpaid). We suggest you try asking the author some challenging questions
lest his interest stray! The forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

https://livebook.manning.com/book/learn-ai-assisted-python-programming/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion

xxii

about the authors
Dr. Leo Porter is a Teaching Professor in the Computer Science and Engi-
neering Department at UC San Diego. He is best known for his research on
the effect of peer instruction in computing courses, the use of clicker data
to predict student outcomes, and the development of the Basic Data Struc-
tures Concept Inventory. He co-teaches the popular Coursera Specialization
“Object-Oriented Java Programming: Data Structures and Beyond” with more
than 300,000 enrolled learners and the first course in the edX MicroMasters
in Data Science, “Python for Data Science”, with more than 200,000 enrolled
learners. He has received six Best Paper Awards, SIGCSE’s 50th Year Anniver-
sary Top Ten Symposium Papers of All Time Award, an Outstanding Teaching
Award from Warren College, and the Academic Senate Distinguished Teach-
ing Award at UC San Diego. He is a Distinguished Member of the ACM and
previously served on the ACM SIGCSE Board.
Dr. Daniel Zingaro is an Associate Teaching Professor at University of
Toronto. He has taught introductory Python programming to thousands of stu-
dents over the past 15 years and wrote the Python textbook that is currently
being used for the course. He has also written dozens of research articles about
how to teach and learn introductory CS. Dan has written two books with No
Starch Press—the aforementioned one on Python and one on algorithms—that
have been translated into multiple languages. Dan has received several presti-
gious teaching and research awards, including a 50-Year Test of Time award and
multiple Best Paper awards.

 xxiiiabout the authors xxiii

about the technical editor

Peter Morgan is the founder of the AI consulting company Deep Learning
Partnership based in London (www.deeplp.com). He has an advanced degree
in physics along with an MBA. He has been working in AI for the past ten years
and before that spent ten years as a Solutions Architect for companies such
as Cisco Systems and IBM. Peter has written several reports, papers and book
chapters on AI, physics, and quantum computing. He consults on LLMOps
and quantum computing for startups and enterprises globally. You can follow
Peter on Twitter (@PMZepto).

https://www.deeplp.com

xxiv

about the cover illustration
The figure on the cover of Learn AI-Assisted Python Programming with GitHub
Copilot and ChatGPT is “Prussien de Silésie,” or “Prussian from Silesia,” taken
from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each
illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade
or station in life was just by their dress. Manning celebrates the inventiveness
and initiative of the computer business with book covers based on the rich
diversity of regional culture centuries ago, brought back to life by pictures from
collections such as this one.

1

1Introducing AI-assisted
programming with Copilot

This chapter covers

¡	How AI assistants change how new
 programmers learn
¡	Why programming is never going to be the same
¡	How AI assistants like Copilot work
¡	How Copilot solves introductory programming
 problems
¡	Possible perils of AI-assisted programming

In this chapter, we’ll talk about how humans communicate with computers. We’ll
introduce you to your AI assistant, GitHub Copilot, an amazing tool that uses arti-
ficial intelligence (AI) to help people write software. More importantly, we’ll show
you how Copilot can help you learn how to program. We’re not expecting that
you’ve written any programs before. If you have, please don’t skip this chapter, even
if you already know a little bit about programming. Everyone needs to know why
writing programs is different now that we have AI assistants like ChatGPT and Copi-
lot, and that the skills we need to be effective programmers change. As we’ll see, we
also need to be vigilant, because sometimes tools like ChatGPT and Copilot lie.

2 chapter 1 Introducing AI-assisted programming with Copilot

1.1 How we talk to computers
Would you be happy if we started by asking you to read and understand the code
below?1

section .text
global _start
_start:
 mov ecx, 10
 mov eax, '0'
 l1:
 mov [num], eax
 mov eax, 4
 mov ebx, 1
 push ecx
 mov ecx, num
 mov edx, 1
 int 0x80
 mov eax, [num]
 inc eax
 pop ecx
 loop l1
 mov eax, 1
 int 0x80
section .bss
 num resb 1

That monstrosity prints out the numbers from 0 to 9. It’s written using code in assembly
language, a low-level programming language. Low-level programming languages, as
you can see, are not languages that humans can easily read and write. They’re designed
for computers, not humans.

No one wants to write programs like that, but especially in the past, it was sometimes
necessary. Programmers could use it to define exactly what they wanted the computer
to do, down to individual instructions. This level of control was needed to squeeze every
bit of performance out of underpowered computers. For example, the most speed-crit-
ical pieces of 1990s computer games, such as Doom and Quake, were written in assem-
bly language like the previous code example. It simply wouldn’t have been possible to
make those games otherwise.

1.1.1 Making it a little easier

Okay, no more of that. Let’s move on. Would you be happier reading this code below?

for num in range(0, 9):
 print(num)

This code is in the Python language, which is what many programmers use these days.
Unlike assembly language, which is a low-level language, Python is considered a high-
level language because it’s much closer to natural language. Even though you don’t
know about Python code yet, you might be able to guess what this program is trying to
do. The first line looks like it’s doing something with the range of numbers from 0 to

1 Based on code from https://draftsbook.com/part-7-conditions-and-loop-uses-in-assembly-language/.

https://draftsbook.com/part-7-conditions-and-loop-uses-in-assembly-language/

 3About the technology

9. The second line is printing something. It’s not too hard to believe that this program,
just like the assembly language monstrosity, is supposed to print the numbers from 0 to
9. Unfortunately, something is wrong with it, and it doesn’t actually print the numbers
from 0 to 9 (instead, it prints 0 to 8).

While this code is closer to English, it isn’t English. It’s a programming language
that, like assembly language, has specific rules. As in the previous code, misunderstand-
ing the details of those rules can result in a broken program.

The holy grail of communicating with a computer is to do so in a natural language
such as English. We’ve been talking to computers using various programming lan-
guages over the past 70 years, not because we want to but because we have to. Comput-
ers were simply not powerful enough for the vagaries and idiosyncrasies of a language
like English. Our programming languages improved—from symbol-soup assembly lan-
guage to Python, for example—but they are still computer languages, not natural lan-
guages. This is changing.

1.1.2 Making it a lot easier

Using an AI assistant, we can now ask for what we want in English and have the com-
puter code written for us in response. To get a correct Python program that does actu-
ally print the numbers from 0 to 9, we can ask our AI assistant (Copilot) in normal
English language like this:

Output the numbers from 0 to 9

Copilot might respond to this prompt by generating something like this:

for i in range(10):
 print(i)

Unlike the example we showed you before, this piece of Python code actually works!
AI coding assistants can be used to help people write code. In this book, we will learn

how to use Copilot to write code for us. We will ask for what we want in English, and we
will get the code back in Python.

More than that, we’ll be able to use Copilot as a seamless part of our workflow. With-
out tools like Copilot, programmers routinely have two windows open: the one to write
code and the other to ask Google how to write code. This second window has Google
search results, Python documentation, or forums of programmers talking about how
to write code to solve that particular problem. They’re often pasting code from these
results into their code, then tweaking it slightly for their context, trying alternatives,
and so on. This has become a way of life for programmers, but you can imagine the inef-
ficiency here. By some estimates, up to 35% of programmers’ time is spent searching
for code [1], and much of the code that is found is not readily usable. Copilot greatly
improves this experience by helping us write our code.

1.2 About the technology
We’ll use two main technologies in this book: Python and GitHub Copilot.

Python is a programming language. It’s a way to communicate with a computer. Peo-
ple use it to write all kinds of programs that do useful things, like games, interactive
websites, visualizations, apps for file organization, automating routine tasks, and so on.

4 chapter 1 Introducing AI-assisted programming with Copilot

There are other programming languages, like Java, C++, Rust, and many others.
Copilot works with those, too, but at the time of this writing, it works really well with
Python. Python code is a lot easier to write compared to many other languages (espe-
cially assembly code). Even more importantly, Python is easy to read. After all, we’re not
going to be the ones writing the Python code. Our AI assistant is!

Computers don’t actually know how to read and run Python code. The only thing
computers can understand is something called machine code, which looks even more
ridiculous than assembly code, because it is the binary representation of the assem-
bly code (yep, just a bunch of 0s and 1s!). Behind the scenes, your computer takes
any Python code that you provide and converts it into machine code before it runs, as
shown in figure 1.1.

Your Python program:
for i in range (10):

print(i)

The Python compiler
Converts your program into an intermediate form called bytecode

The Python Virtual Machine
Converts the bytecode into executable machine code

Your computer
Runs the machine code and displays the results of the program

0
1
2
3
4
5
6
7
8
9

Python bytecode

1110 1010 0010 ... 0101
1110 0100 0111 ... 1011
1110 1000 0000 ... 0000
...
1110 0101 1110 ... 0001

Figure 1.1
Your Python
program goes
through several
steps before you
see the output on
your screen.

1.2.1 Copilot, your AI Assistant

What is an AI assistant? An AI assistant is an artificial intelligence (AI) agent that helps
you get work done. Maybe you have an Amazon Alexa device at home, or an iPhone

 5About the technology

with Siri—these are AI assistants. They help you order groceries, learn the weather, or
determine that, yes, the woman who played Bellatrix in the Harry Potter movies really
was in Fight Club. An AI assistant is just a computer program that responds to normal
human inputs like speech and text with human-like answers.

Copilot is an AI assistant with a specific job: it converts English into computer pro-
grams. (It can also do a whole lot more, as we will soon see.) There are other AI assis-
tants like Copilot, including CodeWhisperer, Tabnine, and Ghostwriter. We chose
Copilot for this book by a combination of the quality of code that we have been able to
produce, stability (it has never crashed for us!), and our own personal preferences. We
encourage you to also check out other tools when you feel comfortable doing so.

1.2.2 How Copilot works behind the scenes—in 30 seconds

You can think of Copilot as a layer between you and the computer program you’re writ-
ing. Instead of writing the Python directly, you simply describe the program you want
in words—this is called a prompt—and Copilot generates the program for you.

The brains behind Copilot is a fancy computer program called a large language model,
or LLM. An LLM stores information about relationships between words, including
which words make sense in certain contexts, and uses this to predict the best sequence
of words to respond to a prompt.

Imagine that we asked you what the next word should be in this sentence: “The per-
son opened the ________.” There are many words that you could fill in here, like “door”
or “box” or “conversation,” but there are also many words that would not fit here, like
“the” or “it” or “open.” An LLM takes into account the current context of words to pro-
duce the next word, and it keeps doing this until it has completed the task.

Notice that we didn’t say anything about Copilot having an understanding of what
it is doing. It just uses the current context to keep writing code. Keep this in mind
throughout your journey: only we know whether the code that’s generated does what we
intended it to do. Very often it does, but you should always exercise healthy skepticism
regardless. Figure 1.2 gives you an idea of how Copilot goes from prompt to program.

You type a prompt like:

Output the numbers from 0 to 9

Copilot sends your prompt to the large language
model on the internet

OpenAI’s GPT large language model interprets
your prompt and generates some code

for i in range (10):
print(i)

Figure 1.2
Going from
prompt to
program with
Copilot

6 chapter 1 Introducing AI-assisted programming with Copilot

You might wonder why Copilot writes Python code for us and not machine code
directly. Isn’t Python an expendable intermediate step now? Well, no, and the reason is
that Copilot is going to make mistakes. And if it’s going to make mistakes that we need
to fix, it’s a lot easier to do that with Python than with machine code.

In fact, virtually no one checks if the machine code produced from Python is correct.
This is partially because of the determinism of the Python language specification. One
could imagine a future where Copilot conversations are so accurate that inspecting the
Python is unnecessary, but we’re a long way from that.

1.3 How Copilot changes how we learn to program
To illustrate how learning to program changes in the presence of an AI assistant, we
want to show you how powerful Copilot is at solving a programming task typically given
to students in the middle of a programming course or in a book on how to program.

When learning how to program in the past, learners often spent most of their time
working with the syntax and basic structure of programs. Writing a program from
scratch (line by line), like the one we’ll show you next, is seen as the culmination of all
of their learning. Before we dive into the problem, we need to be clear: many new pro-
grammers cannot write the code to solve this problem despite the fact most program-
ming instructors (and book authors) think that new programmers should be able to do
so. Here are the instructions for one version of this problem [6]:

“Write a program that will read the amount of rainfall for each day. A negative value
of rainfall should be rejected since this is invalid and inadmissible. The program should
print out the number of valid recorded days, the number of rainy days, the rainfall over
the period, and the maximum amount of rain that fell on any one day. Use a sentinel
value of 9999 to terminate the program.”

If you have tried to learn to program before, this kind of problem statement may be
familiar to you, and you may have struggled to solve such a problem. But now, if we give
this exact prompt to Copilot, we get the following Python code as a result. (Remember
from the introduction that Copilot is nondeterministic, so if we ask it again, we might
get different code!)

Listing 1.1 Copilot code that solves the classic rainfall problem

rainfall = 0
total_rainfall = 0
num_rainy_days = 0
num_valid_days = 0
max_rainfall = 0
rainfall = int(input(
 "Enter the amount of rainfall for the day: "))
while rainfall != 9999:
 if rainfall < 0:
 print("Invalid rainfall amount. Please try again.")
 rainfall = int(input(
 "Enter the amount of rainfall for the day: "))
 else:

 7What else can Copilot do for us?

 num_valid_days += 1
 total_rainfall += rainfall
 if rainfall > 0:
 num_rainy_days += 1
 if rainfall > max_rainfall:
 max_rainfall = rainfall
 rainfall = int(input(
 "Enter the amount of rainfall for the day: "))
print("Number of valid days:", num_valid_days)
print("Number of rainy days:", num_rainy_days)
print("Total rainfall over the period:", total_rainfall)
print("Maximum amount of rain that fell on any one day:", max_rainfall)

We’re not expecting you to have any intuition right now that this code is good. But it is.
As computer science professors, we’d grade this code highly.

People learning to program used to spend weeks or months to get to a point where
they could write programs like this. Now Copilot can offer code immediately. As we’ll
see in the rest of the book, we still need to verify that this code is correct, because Copi-
lot can make mistakes. However, we don’t need to write it from scratch anymore. We
believe this successful interaction with Copilot signals the end of the way that we have
historically taught and learned programming.

You, as someone interested in learning how to program, simply don’t need to strug-
gle with syntax, control flow, and the host of other Python concepts needed to write
code like this in the past. Sure, we are going to learn about those concepts in this book,
but not so that you can demonstrate your understanding by writing code from scratch
that Copilot can produce easily. No, we’ll learn those concepts only because they help
us solve meaningful problems and interact productively with Copilot. Instead, you get to
learn how to write larger, more meaningful software faster, because of how an AI assistant funda-
mentally changes the skills needed to learn programming.

1.4 What else can Copilot do for us?
As we’ve seen, we can use Copilot to write Python code for us starting from an English
description of what we want. Programmers use the word syntax to refer to the sym-
bols and words that are valid in a given language. So, we can say that Copilot takes a
description in English syntax and gives us back code in Python syntax. That’s a big win,
because learning programming syntax has historically been a major stumbling block
for new programmers. What kind of bracket— [, (, or { —am I supposed to use here?
Do I need indentation here? What’s the order in which we’re supposed to write these
things: x and then y, or y and then x?

Such questions abound, and let’s be honest: it’s uninteresting stuff. Who cares about
this when all we want to do is write a program to make something happen? Copilot can
help free us from the tedium of syntax. We see this as an important step to help more
people successfully write programs, and we look forward to the day when this artificial
barrier is completely removed. For now, we still need Python syntax, but at least Copilot
helps us with it.

But that’s not all Copilot can do. Here are some associated—and no less important—
tasks Copilot can help us with:

8 chapter 1 Introducing AI-assisted programming with Copilot

¡	Explaining code—When Copilot generates Python code for us, we’ll need to deter-
mine whether that code does what we want. Again, as we said previously, Copilot
is going to make mistakes. Although we’re not interested in teaching you every
nuance of how Python works (that’s the old model of programming), we are
going to teach you how to read Python code to gain an overall understanding of
what it does. We’re also going to use the feature of Copilot that explains code to
you in English. When you finish with this book and our explanations, you’ll still
have Copilot available to help you understand that next bit of gnarly code that it
gives you.

¡	Making code easier to understand—There are different ways to write code to accom-
plish the same task. Some may be easier to understand than others. Copilot has
a tool that can reorganize your code to make it easier to work with. For example,
code that’s easier to read is often easier to enhance or fix when needed.

¡	Fixing bugs—A bug is a mistake made when writing a program that can result in
the program doing the wrong thing. Sometimes, your Python code almost works,
or works almost always but not in one specific circumstance. If you’ve listened to
programmers talk, you may have heard the common story where a programmer
would spend hours only to finally remove one = symbol that was making their
program fail. Not a fun few hours! In these cases, you can try the Copilot feature
that helps to automatically find and fix the bug in the program.

1.5 Risks and challenges when using Copilot
Now that we’re all pumped up about getting Copilot to write code for us, we need to
talk about the dangers inherent in using AI assistants. See references [2] and [3] for
elaboration on some of these points.

¡	Copyright—Copilot learned how to program using human-written code. (You’ll
hear people use the word “train” when talking about AI tools like Copilot. In this
context, training is another word for learning.) More specifically, it was trained
using millions of GitHub repositories containing open-source code. One worry
is that Copilot will “steal” that code and give it to us. In our experience, Copilot
doesn’t often suggest a large chunk of someone else’s code, but that possibility
is there. Even if the code that Copilot gives us is a melding and transformation
of various bits of other people’s code, there may still be licensing problems. For
example, who owns the code produced by Copilot? There is currently no con-
sensus on the answer. The Copilot team is adding features to help; for example,
Copilot can tell you whether the code that it produced is similar to already-exist-
ing code and what the license is on that code [4]. Learning and experimenting
on your own is great, and we encourage that—but take the necessary care if you
do intend to use this code for purposes beyond your home. We’re a bit vague
here, and that’s intentional: it may take some time for laws to catch up to this new
technology. It’s best to play it safe while these debates are had within society.

 9Risks and challenges when using Copilot

¡	Education—As instructors of introductory programming courses ourselves, we
have seen first-hand how well Copilot does on the types of assignments we have
historically given our students. In one study [5], Copilot was asked to solve 166
common introductory programming tasks. And how well did it do? On its first
attempt, it solved almost 50% of these problems. Give Copilot a little more infor-
mation, and that number goes up to 80%. You have already seen for yourself how
Copilot solves a standard introductory programming problem. Education needs
to change in light of tools like Copilot, and instructors are currently discussing
how these changes may look. Will students be allowed to use Copilot and, if so,
in what ways? How can Copilot help students learn? And what will programming
assignments look like now?

¡	Code quality—We need to be careful not to trust Copilot, especially with sensitive
code or code that needs to be secure. Code written for medical devices, for exam-
ple, or code that handles sensitive user data must always be thoroughly under-
stood. It’s tempting to ask Copilot for code, marvel at the code that it produces,
and accept that code without scrutiny. But that code might be plain wrong. In
this book, we will work on code that will not be deployed at large, so while we will
focus on getting correct code, we will not worry about the implications of using
this code for broader purposes. We will start building the foundations you will
need to independently determine whether code is correct.

¡	Code security—As with code quality, code security is absolutely not assured when
we get code from Copilot. For example, if we are working with user data, getting
code from Copilot is not enough. We would need to perform security audits and
have expertise to determine that the code is secure. Again, though, we will not be
using code from Copilot in real-world scenarios. Therefore, we will not focus on
security concerns.

¡	Not an expert—One of the markers of being an expert is awareness of what one
knows and, equally important, what one doesn’t. Experts are also often able to
state how confident they are in their response; and, if they are not confident
enough, they will learn further until they know that they know. Copilot and,
more generally, LLMs do not do this. You ask them a question, and they answer,
plain as that. They will confabulate if necessary: they will mix bits of truth with
bits of garbage into a plausible-sounding but overall nonsensical response. For
example, we have seen LLMs fabricate obituaries for people who are alive, which
doesn’t make any sense, yet the “obituaries” do contain elements of truth about
people’s lives. When asked why an abacus can perform math faster than a com-
puter, we have seen LLMs come up with responses—including something about
abacuses being mechanical and therefore necessarily the fastest. There is ongo-
ing work in this area for LLMs to be able to say, “sorry, no, I don’t know this”, but
we are not there yet. They don’t know what they don’t know, and that means they
need supervision.

10 chapter 1 Introducing AI-assisted programming with Copilot

¡	Bias—LLMs will reproduce the same biases present in the data on which they
were trained. If you ask Copilot to generate a list of names, it will generate pri-
marily English names. If you ask for a graph, it may produce a graph that doesn’t
consider perceptual differences among humans. And if you ask for code, it may
produce code in a style reminiscent of how dominant groups write code. (After
all, the dominant groups wrote most of the code in the world, and Copilot is
trained on that code.) Computer science and software engineering have long
suffered from a lack of diversity. We cannot afford to stifle diversity further, and
indeed we need to reverse the trend. We need to let more people in and allow
them to express themselves in their own ways. How this will be handled with
tools like Copilot is currently being worked out and is of crucial importance for
the future of programming. However, we believe Copilot has the potential to
improve diversity by lowering barriers for entry into the field.

1.6 The skills we need
If Copilot can write our code, explain it, and fix bugs in it, are we just done? Do we just
tell Copilot what to do and celebrate our pure awesomeness?

No. It’s true that some of the skills that programmers rely upon (writing correct
syntax, for example) will decrease in importance. But other skills remain critical. For
example, you cannot throw a huge task at Copilot like, “Make a video game. Oh, and
make it fun.” Copilot will fail. Instead, we need to break down such a large problem into
smaller tasks that Copilot can help us with. And how do we break a problem down like
that? Not easily, it turns out. Humans need to develop this key skill when engaging in
conversations with tools like Copilot, and we teach this skill throughout the book.

Other skills, believe it or not, may take on even more importance with Copilot. Test-
ing code has always been a critical task in writing code that works. We know a lot about
testing code written by humans, because we know where to look for typical problems.
We know that humans often make programming errors at the boundaries of values. For
example, if we wrote a program to multiply two numbers, it’s likely that we’d get most
values right but maybe not when one value is 0. What about code written by AI, where
20 lines of flawless code could hide one line so absurd that we likely wouldn’t expect it
there? We don’t have experience with that. We need to test even more carefully than
before.

Finally, some required skills are entirely new. The main one here is called prompt
engineering, which involves how to tell Copilot what to do. When we’re asking Copilot
to write some code, we’re using a prompt to make the request. It’s true that we can use
English to write that prompt and ask for what we want, but that isn’t enough. We need
to be very precise if we want Copilot to have any chance of doing the right thing. And
even when we are precise, Copilot may still do the wrong thing. In that case, we need to
first identify that Copilot has indeed made a mistake and then tweak our description to
hopefully nudge it in the right direction. In our experience, seemingly minor changes
to the prompt can have outsized effects on what Copilot produces.

In this book, we will teach you all these skills.

 11Societal concerns about AI code assistants like Copilot

1.7 Societal concerns about AI code assistants like Copilot
There’s societal uncertainty right now about AI code assistants like Copilot. We thought
we’d end the chapter with a few questions and our current answers. Perhaps you’ve
been wondering about some of these questions yourself! Our answers may turn out to
be hilariously incorrect, but they do capture our current thoughts as two professors
and researchers who have dedicated their careers to teaching programming.

Q: Are there going to be fewer tech and programming jobs now that we have Copilot?
A: Probably not. What we do expect to change is the nature of these jobs. For exam-

ple, we see Copilot as being able to help with many tasks typically associated with entry-
level programming jobs. This doesn’t mean that entry-level programming jobs go away,
only that they change as programmers are able to get more done given increasingly
sophisticated tools.

Q: Will Copilot stifle human creativity? Will it just keep swirling around and recycling
the same code that humans have already written, limiting introduction of new ideas?

A: We suspect not. Copilot helps us work at a higher level, further removed from
the underlying machine code, assembly code, or Python code. Computer scientists
use the term abstraction to refer to the extent that we can disconnect ourselves from
low-level details of computers. Abstraction has been happening since the dawn of com-
puter science, and we don’t seem to have suffered for it. On the contrary, it enables us
to ignore problems that have already been solved and focus on solving broader and
broader problems. Indeed, it’s been the advent of better programming languages that
have facilitated better software—software that powers Google search, Amazon shop-
ping carts, and macOS weren’t written (and likely could not have been written) when
we only had assembly!

Q: I keep hearing about ChatGPT. What is it? Is it the same as Copilot?
A: It’s not the same as Copilot, but it’s built on the same technology. Rather than

focus on code, though, ChatGPT focuses on knowledge in general. And as a result,
it has insinuated itself into a wider variety of tasks than Copilot. For example, it can
answer questions, write essays, and even do well on a Wharton MBA exam [7]. Educa-
tion will need to change as a result: we cannot have people ChatGPT’ing their ways to
MBAs! The worthwhile ways in which we spend our time may change. Will humans keep
writing books and, if so, in what ways? Will people want to read books knowing they were
partially or fully written by AI? There will be effects across industries, including finance,
health care, and publishing [8]. At the same time, there is unfettered hype right now,
so it can be difficult to separate truth from fiction. This problem is compounded by the
simple truth that no one knows what’s going to happen here in the long term. In fact,
there’s an old adage coined by Roy Amara (known as Amara’s Law) that says, “We tend
to overestimate the effect of a technology in the short run and underestimate the effect
in the long run.” As such, we need to do our best to be tuned into the discussion so that
we can adapt accordingly.

In the next chapter, we’ll get you started using Copilot on your computer so you can
get up and running writing software.

12 chapter 1 Introducing AI-assisted programming with Copilot

Summary
¡	Copilot is an AI assistant, which is an artificial intelligence (AI) agent that helps

you get work done.

¡	Copilot changes how humans interact with computers, and the way that we write
programs.

¡	Copilot changes the focus of skills we need to hone (less focus on syntax, more
focus on prompt engineering and testing).

¡	Copilot is nondeterministic; sometimes it produces correct code, sometimes it
doesn’t. We need to be vigilant.

¡	Problems around copyright of code, education and job training, and bias in
Copilot results still need to be worked out.

13

2Getting started
with Copilot

This chapter covers

¡	Setting up Python, VS Code, and Copilot on your
 system
¡	Introducing the Copilot design process
¡	Copilot’s value for a basic data processing task

This chapter will help you start working with Copilot on your own machine and
familiarize you with how to interact with it. After you are set up with Copilot, we’ll
ask that you follow along with our examples when you can. There’s no substitute for
practice, and we believe you can learn right alongside us for the remainder of the
book.

Once you’ve set up Copilot, we’ll walk through a fun example that showcases the
power of Copilot in solving standard tasks, you’ll see how to interact with Copilot,
and you’ll learn how we can write software without writing any actual code ourselves.

14 chapter 2 Getting started with Copilot

2.1 Time to set up your computer to start learning
Learning how to write software requires that you perform the task of writing software,
not just reading about it. If this were a book on how to play guitar, would you keep
reading it without ever trying to play the guitar? We thought not. Reading this book
without following along and trying it out yourself would be like watching a marathon
runner finish the race and thinking you’re ready to go run one yourself. We’ll stop with
the analogies, but seriously, you need to get your software installed and running before
we go farther.

What scares us the most right now is that we just hit the most common point where
novices, even those eager to learn programming, tend to fail, and we really want to see
you succeed. Now, you might be thinking, “Wait, really? We’re just getting started.” Yes,
that’s exactly the point. In Leo’s popular Coursera course about learning Java program-
ming [1], can you guess the point when most new learners leave? Is it the challenging
assignment at the end of the course that involves plotting earthquake markers on the
globe in real time? No. It’s actually the warmup assignment where learners must set up
their programming environment. As such, we understand this could be a hurdle for
you. We hope that with this not-so-subtle nudge, we can help you achieve all the goals
you had in mind when you bought this book. It all starts with installing the software.

2.1.1 Overview of the software in your programming environment

To set up and use Copilot easily, we’ll install the software editing tools used by novices
and software engineers alike. The tools you will use are GitHub, Copilot, Python, and
Visual Studio Code. Of course, if you already have all these tools installed, jump to
section 2.5.

github account

GitHub is an industry-standard tool for developing, maintaining, and storing soft-
ware. We won’t use GitHub in this book, however. We’re signing up for GitHub simply
because you’ll need an account to access Copilot. Signing up for a GitHub account is
free but, at the time of writing, they charge for Copilot. If you are a student, they will
waive that fee. If you aren’t a student, as of writing, you can get a 30-day free trial.

You might ask why they charge for the service, and there’s a good answer. It’s expen-
sive to build the GPT3 models (imagine thousands of computers running for a year to
build the model), and GitHub incurs costs by providing predictions from the model
(many machines are receiving your input, running it through the model, and gener-
ating your output). If you are not ready to commit to using Copilot, you could make
a calendar note for roughly 25 days from the day you sign up, and if you aren’t using
Copilot at that time, just cancel. If, on the other hand, you have succeeded in learning
how to write software with Copilot and are using it to improve your productivity at work
or just as a hobby, keep it.

python

Really any programming language would have worked for this book, but we picked
Python because it is one of the most popular programming languages in the world and

 15Getting your system set up

is the language we teach in our introductory courses at our universities. As we said in
chapter 1, compared to other languages, Python is easier to read, easier to understand,
and easier to write. For this book, Copilot will primarily generate the code, not you.
However, you will want to read and understand the code generated by Copilot, and
Python is great for that.

Visual studio code (Vs code)
You can use any text editor to program. However, if you want a nice programming envi-
ronment where you can write code, easily get suggestions from Copilot, and run your
code, VS Code is our preferred tool. VS Code is used by novices learning software and
is well liked by students [2]. It’s also used globally by professional software engineers,
which means you can work and learn while using this environment after finishing the
book.

For VS Code to work for this book, you’ll need to install a few extensions that enable
working with Python and using Copilot, but one of the great things about VS Code is
that it’s easy to install those extensions.

2.2 Getting your system set up
This is a four-step process. To streamline this chapter, we’re just providing the main
steps for this process. However, there are more detailed instructions available in the
following locations:

¡	Visit GitHub’s documentation at https://docs.github.com/en/copilot/getting
-started-with-github-copilot.

¡	The website for this book(https://www.manning.com/books/learn-ai-assisted
-python-programming) provides detailed instructions for setting up both PC and
macOS systems. Because the websites for these tools might change after we write
this book, we encourage you to use a combination of the GitHub link and the
book website together.

¡	In the online book forum (https://livebook.manning.com/book/learn-ai
-assisted-python-programming/discussion), you can ask for help and see the
answers to a list of frequently asked questions.

The primary steps you’ll need to accomplish are as follows:

1 Set up your GitHub account and sign up for Copilot:

a Go to https://github.com/signup and sign up for a GitHub account.

b Go into your settings in GitHub and enable Copilot. This is the point where
you’ll either need to verify you are a student or sign up for the 30-day free trial
(available at the time of this writing).

2 Install Python:

a Go to www.python.org/downloads/.

b Download and install the latest version of Python (3.11.1 at the time of
writing).

https://docs.github.com/en/copilot/getting-started-with-github-copilot
https://docs.github.com/en/copilot/getting-started-with-github-copilot
https://www.manning.com/books/learn-ai-assisted-python-programming
https://www.manning.com/books/learn-ai-assisted-python-programming
https://livebook.manning.com/book/learn-ai-assisted-python-programming/discussion
https://livebook.manning.com/book/learn-ai-assisted-python-programming/discussion
https://github.com/signup
https://github.com/signup
https://www.python.org/downloads/

16 chapter 2 Getting started with Copilot

3 Install VS Code:

a Go to https://code.visualstudio.com/download, select the main download
for your operating system (e.g., Windows Download or Mac Download).

b Download and install the latest version of VS Code.

4 Install the following VS Code extensions (for details, see https://code.visualstudio
.com/docs/editor/extension-marketplace).

a Python (by Microsoft)—Follow the instructions at https://code.visualstudio.
com/docs/languages/python to set up the Python extension correctly (spe-
cifically, selecting the correct interpreter).

b GitHub Copilot (by GitHub)

c GitHub Copilot Labs (by GitHub)—Note that Copilot Labs is not needed for the
majority of the book, so if it has changed from the time of writing, please do
not be discouraged. The interactions that we will have with Copilot Labs could
also be done by interacting with ChatGPT or Github Copilot Chat.

d GitHub Copilot Chat (by GitHub)—At the time of writing, GitHub Copilot Chat is
not yet available to everyone. This feature will be used in later chapters but if it
is still unavailable, the same conversations we’ll have with Copilot Chat could
be had with ChatGPT. We’ll provide more details when we use this feature.

We know that the steps here are brief. If you encounter any problems, we encourage
you to consult the resources mentioned earlier for more detailed setup instructions.

2.3 Working with Copilot in Visual Studio Code
Now that you have your system set up, let’s get acquainted with the VS Code interface
shown in figure 2.1. (You may need to click the Explorer icon in the middle/top left to
have this same view.) The following regions are identified in figure 2.1:

¡	Activity Bar—On the far left is the Activity Bar where we can open file folders (also
known as directories) or install extensions (as you did to install the GitHub Copi-
lot extension in the previous section).

¡	Side Bar—The side bar shows what is presently open in the Activity Bar. In figure
2.1, the Activity Bar has the Explorer selected, so the Side Bar is showing the files
in the present folder.

¡	Editor Pane(s)—These are the primary areas we will use to create our software.
The editor in the Editor Pane is similar to any other text editor in that you can
write, edit, copy, and paste text using the clipboard. What is special about it, how-
ever, is that it is designed to work well with code. As we’ll see in the next example,
you will primarily work in this window by asking Copilot to generate code and
then testing that code.

https://code.visualstudio.com/Download
https://code.visualstudio.com/docs/editor/extension-marketplace
https://code.visualstudio.com/docs/editor/extension-marketplace
https://code.visualstudio.com/docs/languages/python
https://code.visualstudio.com/docs/languages/python

 17Working with Copilot in Visual Studio Code

¡	Output and Terminal Panel—This is the area of the interface for seeing the output
of your code or any errors that have occurred. It has the tabs Problems, Output,
Debug Console, and Terminal. We will primarily use the Problems tab, where
we can see potential errors in our code, and the Terminal tab, which allows us to
interact with Python and see the output of our code.

We highlighted the Copilot logo in the bottom right of figure 2.1 because you should
see this symbol (or similar) if you set up Copilot properly in the previous section.

Activity Bar
Side Bar Editor Panes

Run Code

Output and
Terminal Panel

Copilot Symbol

Figure 2.1 The VS Code interface [3]

2.3.1 Set up your working folder

In the top of the Activity Bar on the left in VS Code, you will find Explorer as the top
icon. After you click Explorer, it should say “No Folder Open”. Click the button to
open folder and select a folder on your computer (or make a new one—we like the
folder name fun_with_Copilot). Once you’ve opened this folder, your workspace will
be the folder you opened, which means you should have your code and any data files,
like the one we’ll use later this chapter, in that folder.

File not found or file missing errors
If you ever receive an error that says you are missing a file, take heart: these are the
kinds of errors that everyone makes. They can be really annoying when writing software.
It could be that you just didn’t put the file in your working folder—this happens. That’s an
easy fix by copying or moving the file into the correct folder. However, sometimes, you’ll
look in the folder and the file will be there, but when you run your code in VS Code, Python
can’t seem to find it. If this happens to you (it happened to us when writing the book!), be
sure to have the folder with the code and the desired file open using Explorer in VS Code
(as shown in the Side Bar in figure 2.1).

18 chapter 2 Getting started with Copilot

2.3.2 Check to see if your setup is working properly

Let’s check to see if we’ve set up everything properly and that Copilot is working. To do
this, start by creating a new file to hold our program. You do this by going to File > New
File (figure 2.2), then selecting Python File (figure 2.3).

Figure 2.2
How to create
a new file in VS
Code

Select Python File

Figure 2.3
Select to
create the
New File as a
Python File

After creating it, we like to make sure that we’ve saved the file. Go to File > Save As and
let’s name this file first_Copilot_program.py.

Next, in the text editor, type

output "Hello Copilot" to the screen

The prompts and code we write will be in bold font to help distinguish between what
we write, and the code and comments Copilot may give us. The # sign at the start is
important (and you should include it in what you typed). It means that what you wrote
is a comment (depending on your VS Code color palette, it’ll be a different color than
the code we’re about to produce). Comments are not code: the computer executes
code and does not execute comments. Comments are used by programmers to provide
a human-readable summary of what the code did to help other software engineers
read the code. Today, its purpose has expanded to also prompt Copilot. After writing a
comment (and sometimes even while writing comments), Copilot will attempt to give
us suggestions. You can think of this as a much more sophisticated autocomplete, like
when you type “New York T” in your search engine, and it autocompletes with “New
York Times.”

 19Working with Copilot in Visual Studio Code

To trigger Copilot to start giving us code (or more comments), press Enter at the end
of the line, and you’ll be at the start of a new line. Pause for a moment, and you should
see something appear. Until accepted, Copilot’s suggestions are in light gray italics. If
you do not get a suggestion yet, you may need to hit Enter a second time to trigger Copi-
lot to suggest the code. Here’s what happened for us:

output "Hello Copilot" to the screen
print("Hello Copilot")

If you still do not see a suggestion from Copilot, try pressing Ctrl–Enter (hold Ctrl
while pressing Enter). When you press Ctrl–Enter, a new window on the right-hand
side of the screen should appear. The window will be to the right of your editor window
with the program and will be called GitHub Copilot. If that window does not appear,
there may be something wrong with your setup, and we encourage you to go to the
book website to double-check that you followed all the steps correctly or to find (or ask
for) help.

If you saw the suggestion from Copilot, Tab to accept Copilot’s suggestion. Once you
do this, the suggestion that was previously in light gray italics should now be in a stan-
dard font:

output "Hello Copilot" to the screen
print("Hello Copilot")

If you are seeing different code than this, it’s because of something we mentioned
in the introduction: Copilot is nondeterministic so you may see different code than
us. We mention this because sometimes Copilot makes a minor mistake with the code
here and may give you code similar to this:

print "Hello Copilot"

You might think this slight difference (no parentheses around "Hello Copilot")
wouldn’t matter, but it does. Before Python 3, this was the correct syntax for a print
statement and when Python 3 was introduced, it switched to the code with parenthe-
ses. Since we’re running Python 3, you need to have the parentheses for the code to
work. You might ask why Copilot gets this wrong: the problem is Copilot was trained
on some old Python code as part of its training. If this seems annoying, we agree. But
it’s a hint of the frustration novice programmers went through before Copilot. Most of
what Copilot suggests is syntactically correct. But if you are a novice writing the code
from scratch, missing parentheses or a missing colon somewhere might cost you a lot
of time.

The prompt
we wrote

The code produced
by Copilot

20 chapter 2 Getting started with Copilot

Now that we have the correct code,

output "Hello Copilot" to the screen
print("Hello Copilot")

which, as you might guess, prints “Hello Copilot” to the screen, we should test it. First,
you’ll want to save your file by going to File > Save.

BE SURE TO SAVE YOUR FILE BEFORE YOU RUN IT We’re embarrassed to admit the
amount of time we’ve spent trying to fix code that was correct but hadn’t been
saved.

To run your program, go to the top right corner of the text editor and click the Run
Code icon as shown in figure 2.1. After pressing the icon, in the Terminal section at the
bottom, you should see something like this:

> & C:/Users/YOURNAME/AppData/Local/Programs/Python/Python311/Python.exe
c:/Users/YOURNAME/Copilot-book/first_Copilot_program.py

Hello Copilot

The top line starting with > is the command for the computer to run your code, and
all it says is to run your first_Copilot_program.py using Python. The second line is the
output from running the command, and it says, “Hello Copilot,” which is what we’d
hoped to see.

Congratulations! You’ve written your first program! We now know that your program-
ming environment is set up correctly and we can move onto our first programming task.
But before we do, we’d like to go over tips for how to deal with some common problems
we’ve encountered when working with Copilot, so you have these tips available to you
when working through the next example.

2.4 Addressing common Copilot challenges
It may seem early in your experience with Copilot to start talking about common chal-
lenges with Copilot, but you may have already run into challenges when writing your
first program. You’ll certainly encounter some of these working through our next
example and in the next chapters, so we wanted to give these to you now.

In our time working with Copilot, we’ve run into a few common challenges. These
challenges will likely decrease with time as Copilot improves, but they were still prob-
lems at the time of this writing. Although the challenges in table 2.1 are not exhaustive
of what you might encounter, we hope our tips on how to address these common chal-
lenges will help you get up and running quickly. We’ll keep a running list at our book’s
website, so please feel free to reach out to us on the forums if you feel we’ve missed
something!

 21Addressing common Copilot challenges

Table 2.1 Common challenges working with Copilot

Challenge Description Remedies

Comments only If you give Copilot a prompt using
the comment symbol (#), when
you start a newline, it wants to just
give you more comments rather
than code. For example:

output "Hello Copilot"
to the screen

print "Hello world" to
the screen

We’ve seen Copilot generate line
after line of comments, some-
times repeating itself! When
this happens, suggestion 3 (use
docstrings) is sometimes the most
effective.

1. Add a newline (Enter) between your com-
ment and Copilot’s suggestion to help it
switch from comments to code.

2. If a newline doesn’t work, you can type a
letter or two of code (no comment symbol). A
couple letters from a keyword in your prompt
usually works. For example:

output "Hello Copilot" to the
screen

pr

A couple letters from a keyword typically
causes Copilot to give a code suggestion.

3. Switch from using # comments to docstring
comments like this:

"""

output "Hello Copilot" to the
screen

"""

4. Use Ctrl–Enter to see if Copilot will give
you suggestions that are code rather than
comments

Wrong code Sometimes Copilot just gives you
obviously wrong code from the
start. (You’ll learn throughout this
book how to identify incorrect
code!)

In addition, sometimes Copilot
seems to get stuck down wrong
paths. For example, it might seem
to be trying to solve a different
problem than what you’ve asked it
to solve. (Suggestion 3, in particu-
lar, can help with getting Copilot to
go down a new path.)

Much of this book is about how to address
this problem, but here are some quick tips to
get Copilot to help:

1. Change your prompt to see if you can better
describe what you need.

2. Try using Ctrl–Enter to find a suggestion
from Copilot that is the correct code.

3. Close the VS Code program, wait a little bit,
and restart it. This can help clear the Copilot
cache to get new suggestions.

4. Try breaking down the problem into smaller
steps (see chapter 7 for more details).

5. Debug the code (see chapter 8).

6. Try asking ChatGPT for the code and feed
its suggestions into VS Code. A different large
language model (LLM) can sometimes give
suggestions that help the other LLM to get
unstuck.

22 chapter 2 Getting started with Copilot

Challenge Description Remedies

Copilot gives you

YOUR CODE
HERE

We’ve had Copilot seem to tell us
to write our own code by gener-
ating this (or similar text) after a
prompt:

YOUR CODE HERE

We believe this is happening when we ask
Copilot to solve a problem that has been given
by an instructor to students to solve in the
past. Why? Well, when we write our assign-
ments for our students, we (as instructors)
often write some code and then tell our stu-
dents to write the rest by writing

YOUR CODE HERE

where we want students to write their code.
Students tend to leave that comment in their
solution code, which means Copilot was
trained to think this comment is an important
part of the solution (it’s not). Often, we’re able
to solve this problem by finding reasonable
solutions in the Copilot suggestions with
Ctrl–Enter, but please see the solutions for
Wrong Code if that doesn’t work.

Missing modules Copilot gives you code, but it
won’t work because there are
modules missing. (Modules are
additional libraries that can be
added to Python to give prebuilt
functionality.)

See section 2.5, under “Modules” for how to
install new modules on your machine.

2.5 Our first programming problem
The goal of this next section is twofold: (1) for you to see the workflow of interacting
with Copilot and (2) for you to gain an appreciation of how powerful Copilot can be by
seeing it solve a complicated task fairly easily.

In our next chapter, we’ll talk through the workflow with Copilot in more detail, but
you’ll generally use the following steps when authoring code with Copilot:

1 Write a prompt to Copilot using comments (#) or docstrings (""").

2 Let Copilot generate code for you.

3 Check to see whether the code is correct by reading through it and by testing.

a If it works, move to step 1 for the next thing you’d like it to do.

b If it doesn’t work, delete the code from Copilot and go back to step 1 and mod-
ify the prompt (and see suggestions in table 2.1).

Because you’ve just started working with Copilot, we’re wary of showing you such a
large example, but we feel you’ll value seeing how powerful Copilot can be now that
you have it installed. As such, we want you to follow along as best as you can to get a
feel for working with Copilot on your own, but if you get stuck, just read along and save
working along with Copilot in VS Code for the next chapter. Later chapters will explain
the process of working with Copilot in more detail. Also, Copilot will generate a lot of

Table 2.1 Common challenges working with Copilot (continued)

 23Our first programming problem

code in this section, and we don’t expect you to understand the code until much later
in the book. We provide the code solely so you can see what Copilot gave us, but do not
feel as though you need to try to understand the code in this chapter.

To get started, let’s create a new file. If you aren’t already in VS Code, go ahead and
start it. Then create a new Python file and save it as nfl_stats.py.

2.5.1 Showcasing Copilot’s value in a data processing task

We want to start with some basic data processing as this is something that many of you
have likely done in your personal or professional lives. To find a dataset, we went to
a great website called Kaggle [4], which has tons of datasets freely available for use.
Many of them include important data like health statistics for different countries,
information to help track the spread of disease, and so on. We’re not going to use
those because we’d like to have something lighter for our first program. Since both of
us are American football fans, we felt we should play with the National Football League
(NFL) offensive stats database.

Let’s get started by downloading the dataset from www.kaggle.com/datasets/
dtrade84/nfl-offensive-stats-2019-2022.

To download the dataset, you will have to sign up for a Kaggle account. If you don’t
want to create the account, it’s okay to just read through this section without using VS
Code and Copilot to generate the code yourself. Once downloaded, you may need to
extract the zip file using the default zip extractor on your computer. Copy the dataset
file from that zip file into your current folder in VS Code where you have your code (the
folder you have open in Explorer). (If you are on a Mac and the file is saved as a .num-
bers file, you will need to use File > Export To and save the file as a CSV in your current
working directory.) That dataset has NFL information from 2019 to 2022 (figure 2.4).

Figure 2.4 The first few columns and rows of the nfl_offensive_stats.csv dataset

The nfl_offensive_stats.csv file is something known as a comma separated value text
file (see figure 2.4 for a portion of the file). This is a standard format for storing data.
It has a header row at the top that explains what’s in every column. The way that we (or
a computer) know the boundaries between columns is to use commas between cells.
Also notice that each row is placed on its own line. Good news: Python has a bunch of
tools for reading in CSV files.

https://www.kaggle.com/datasets/dtrade84/nfl-offensive-stats-2019-2022
https://www.kaggle.com/datasets/dtrade84/nfl-offensive-stats-2019-2022

24 chapter 2 Getting started with Copilot

step 1: how many passing yards did aaron rodgers throw in 2019–2022
Let’s start by exploring what is stored in this file. To preview what is in the file, you can
look at the Kaggle webpage for these stats under “Detail”, open it in VS Code, or open
it in spreadsheet software like Microsoft Excel. (If you open it with Excel, be sure not
to save the file. We need to leave the file in a .csv format.) Whichever way you choose to
open it, here’s the start of the header (top) row (also shown in figure 2.4):

game_id,player_id,position ,player,team,pass_cmp,pass_att,pass_yds,…

There are more columns, but these have all we need to perform our first task. We know
now that there’s a column for players and a column for passing yards. Aaron Rodgers is
a player who gets passing yards in each game that he plays. But how many passing yards
does he have in total, over all the games that he played from 2019 to 2022? This isn’t
so easy to answer by looking directly at the file. So, we want the computer to make this
easier for us!

We want it to sum up all the passing yards (pass_yds) for rows (games) where Aaron
Rodgers is the player. For now, we’re going to just ask for all the yards in the database
even though it covers multiple seasons. We can change this later if we’d like. This prob-
lem might be a good problem to give to programmers learning to program in their
fourth week of a standard college-level introductory programming course, but we have
Copilot! So instead of learning how to write this code from scratch, we’re just going to
ask Copilot to generate it for us. To make that happen, we need to be quite specific in
our request to make sure Copilot knows what we are asking for. We’re only going to ask
it to perform small amounts of work and then re-prompt it to perform the next step.
Later we’ll discuss how to write good prompts, but for now, just go ahead and use what
we’ve written by placing this text at the top of your new file:

"""
open the csv file called "nfl_offensive_stats.csv" and read in
the csv data from the file
"""

The """ at the top and the bottom are surrounding something called a docstring. Doc-
strings are an alternative way of commenting (similar to text starting with #). They are
commonly used for describing functions (see chapter 3 for details on functions), but
we use them in this example to avoid Copilot continually generating comments (see
the Comments Only problem in table 2.1). Given this prompt, Copilot should start
generating code. For us, it produced this block of code:

import csv
with open('nfl_offensive_stats.csv', 'r') as f:
 reader = csv.reader(f)
 nfl_data = list(reader)

First, for the purpose of reading this book, we want to remind you that the prompt is
displayed differently than what Copilot produces. This is intentional so you can tell
what we wrote (and you should write) and what Copilot wrote.

Notice the file name.

 25Our first programming problem

Second, the code produced by Copilot is quite reasonable. We don’t expect you to
understand the code at this point in the book, but you can likely see the name of the
file we wanted opened and some code about opening and reading in the file. Later in
the book, we’ll learn how to read through the code. For now, just keep following along.

Now that we have the data from the file, we’re going to give it a new prompt to ask
it to sum all the passing yards for Aaron Rodgers in this dataset. Because the computer
doesn’t know what football is or specifics like that Aaron Rodgers is a quarterback, our
prompt is going to be quite specific. We’ll teach you how to write prompts like this over
the course of the book. Here is the new prompt:

"""
In the data we just read in, the fourth column is the player
and the 8th column is the passing yards. Get the sum of
yards from column 8 where the 4th column value is
"Aaron Rodgers"
"""

Notice that we tell the computer which columns are for players and which are for pass-
ing yards. That’s to tell the computer how to interpret the data. Also, notice that we
say specifically that we only want to sum the yards in the case that the player’s name is
Aaron Rodgers. Again, we’ll teach you how to write prompts like this as we move for-
ward in the book. Given this prompt, Copilot then produced the following code:

passing_yards = 0
for row in nfl_data:
 if row[3] == 'Aaron Rodgers':
 passing_yards += int(row[7])
print(passing_yards)

Reminder: Copilot is nondeterministic
Remember from the Introduction that Copilot is nondeterministic, so what Copilot gives
you may not match what it gives us. This is going to be a challenge for the rest of the
book: What do you do if you get a wrong result when we get a right result? We’re fairly
confident that Copilot will give you a correct answer here, but if you get a wrong answer
from Copilot, go ahead and read the remainder of this section rather than working along
with Copilot in VS Code. We will absolutely give you all the tools you need to fix the code
when Copilot gives you a wrong answer, but that skill will be taught over the remainder of
the book, so we don’t want you to get stuck on this now.

When we run this code (recall how to Run Code from figure 2.1), we get the result
13852,which is the correct answer. (We double-checked the answer, but if you are
familiar with football, you can likely use estimates to see if the figure seems reason-
able. Quarterbacks throw for 3,000–5,500 yards per season, and this is three seasons
worth of data, so 13,852 yards over three seasons seems like the right ballpark for a
high-performing quarterback.) What’s particularly interesting is that we planned on
giving Copilot a third prompt to ask it to print the result, but Copilot guessed that’s
what we’d want to do and did it on its own.

26 chapter 2 Getting started with Copilot

What we want you to take from this example (and the rest of the chapter):

1 Copilot is a powerful tool. We didn’t write any code, but we were able to get Copilot
to generate the code needed to perform a basic analysis of the data. For readers
who have used spreadsheets, you can probably think of a way to do this using
spreadsheet applications like Excel, but it likely wouldn’t be as easy as writing
code like this. Even if you haven’t used spreadsheets before, you’ve got to admit
that it’s amazing that writing basic, human-readable prompts can produce cor-
rect code and output like this.

2 Breaking problems into small tasks is important. For this example, we tried writing
this code with just a single large prompt (not shown) or by breaking it into two
smaller tasks. The larger prompt was almost identical text to the two smaller tasks
we used, just as a single prompt. We found that Copilot would usually give us
the right answer with the larger prompt but would sometimes make mistakes.
This was especially true in the next example we’ll show you. However, breaking
the problem into smaller tasks significantly increased the likelihood of Copilot
generating the right code. We’ll see how to break down larger problems into
smaller tasks throughout the remainder of this book because this is one of the
most important skills you’ll need. In fact, the next chapter helps you start under-
standing what are reasonable tasks to give to Copilot.

3 We still need to understand code to some degree. This is true for several reasons. One
is that writing good prompts requires a basic understanding of what computers
know and what they don’t. We can’t just give a prompt to Copilot that says, “Give
me the number of passing yards for Aaron Rodgers.” Copilot likely wouldn’t be
able to figure out where the data is stored, the format of the data, which columns
correspond to players and passing yards, or that Aaron Rodgers is a player. We
had to spell that out to Copilot for it to be successful. Another reason has to do
with determining whether code from Copilot is reasonable. When the two of us
read the response from Copilot, we know how to read code so we can determine
whether the code produced by Copilot is reasonable. You’ll need to be able to do
this to some degree, which is why chapters 4 and 5 are dedicated to reading code.

4 Testing is important. When programmers talk about testing, they’re referring
to the practice of making sure that their code works correctly, even in possibly
unexpected circumstances. We didn’t spend much time on this piece, other than
checking whether Copilot’s answer is plausible using estimates on just one data
set, but in general, we’ll need to spend more time on testing because this is a
critical part of the code-writing process. It likely goes without saying, but errors
in code range from embarrassing (if you tell your hard-core NFL fan friend the
wrong number of passing yards for a player) to dangerous (if software in a car
behaves incorrectly) to costly (if businesses make decisions on wrong analyses).
Even after you’ve learned how to read code, we have first-hand experience that
even if the code looks correct, it might not be! To address this, we must test every

 27Our first programming problem

piece of code created by Copilot to ensure it does what it should. We’ll learn how
to rigorously test Copilot’s code in later chapters.

To showcase the power of Copilot, we’re going to continue this example. Please feel
free to follow along writing the prompts and running the code in Copilot or by just
reading along.

step 2: how well did all the quarterbacks do oVer that time period?
Knowing how well Aaron Rodgers did is interesting. But a more meaningful step would
be to compare his stats to other quarterbacks over that time period. We only want to
compare against other quarterbacks because they are the players whose job is to throw
the ball. Sure, a running back might throw the ball once a season, and it’s often fun
when they do, but it’s not really their job. To include only the quarterbacks, we need
to go back to the data for a moment. The third column is Position and QB stands for
quarterback. As such, let’s delete all the code Copilot gave us (everything after the end
of our initial comments) and start over. We won’t show each step like we did before.
Instead, the following listing is the result of the entire interaction with Copilot with our
prompts highlighted as separate from the code it gave us.

Listing 2.1 Copilot’s code to analyze the top quarterbacks

"""
open the csv file called "nfl_offensive_stats.csv" and
read in the csv data from the file
"""

import the csv module
import csv

open the csv file
with open('nfl_offensive_stats.csv', 'r') as f:
 # read the csv data
 data = list(csv.reader(f))

"""
the 3rd column in data is player position, the fourth column
is the player, and the 8th column is the passing yards.
For each player whose position in column 3 is "QB",
determine the sum of yards from column 8
"""

create a dictionary to hold the player name and passing yards
passing_yards = {}

loop through the data
for row in data:
 # check if the player is a quarterback
 if row[2] == 'QB':
 # check if the player is already in the dictionary
 if row[3] in passing_yards:
 # add the passing yards to the existing value
 passing_yards[row[3]] += int(row[7])

Our first prompt to
read in the data

Copilot’s responses sometimes include comments.
Comments that we get from Copilot will not be in
bold, unlike our prompts which appear in bold.

The second
prompt to
analyze the
data

28 chapter 2 Getting started with Copilot

 else:
 # add the player to the dictionary
 passing_yards[row[3]] = int(row[7])

"""
print the sum of the passing yards sorted by sum
of passing yards in descending order
"""
for player in sorted(passing_yards, key=passing_yards.get, reverse=True):
 print(player, passing_yards[player])

Notice that we gave Copilot three prompts. The first was to handle the input data, the
second was to process the data, and the third was to output the response. This cycle
of input data, process data, provide output is exceptionally common in programming
tasks.

Looking at the results from Copilot, we have to point out that we’ve taught program-
ming for years and this is pretty impressive. We might ask students to solve something
like this on a final exam in our college-level classes, and we suspect less than half the
class would do it correctly. Without diving into too many details, Copilot chose a good
way of storing the data by using a dictionary (not a normal dictionary like an English
dictionary but a way of storing data in Python), which is a good choice here, and used a
clever way of sorting the data to help in displaying the results.

Thinking of the results, the first five lines from the output if you run the code are

Patrick Mahomes 16132
Tom Brady 15876
Aaron Rodgers 13852
Josh Allen 13758
Derek Carr 13271

If you follow football, these results should not be a surprise to you. Just to see how
well Copilot can adapt to our wishes, let’s try to make a minor change. Suppose that
because Tom Brady is already recognized as one of the best QBs of all time, you would
rather omit him from this comparison.

To make this change, we’re just going to modify the prompt at the bottom. Go to the
point in the code where it says

"""
print the sum of the passing yards sorted by sum
of passing yards in descending order
"""
for player in sorted(passing_yards, key=passing_yards.get, reverse=True):
 print(player, passing_yards[player])

Delete the code, leaving just the comment, and add another line to the docstring:

"""
print the sum of the passing yards sorted by sum
of passing yards in descending order
Do not include Tom Brady because he wins too much
"""

Our third prompt to
print the results

 29Our first programming problem

Copilot then suggested to us:

for player in sorted(passing_yards, key=passing_yards.get, reverse=True):
 if player != "Tom Brady":
 print(player, passing_yards[player])

That’s exactly what we’d like to see changed in the code. (Thanks, Tom Brady, for
being a good sport in this example.) The code excluded all data for Tom Brady at the
point of printing the results. When we save the file and run it again, the first five lines
are now

Patrick Mahomes 16132
Aaron Rodgers 13852
Josh Allen 13758
Derek Carr 13271
Matt Ryan 13015

step 3: let’s plot these stats so we can compare them better

Let’s drive home our key point that Copilot is a powerful tool by asking it to go even
one step farther. The printout of all the quarterback stats is likely a useful analysis for
some purposes. But a visual plot might be a better way of presenting this information.
Can we ask Copilot to plot it? Suppose we only care about the top-performing quarter-
backs, so we decide to set an arbitrary limit of more than 4,000 yards as the minimum
number of yards a quarterback needs to throw during this time window to be included
in our plot. Granted, asking Copilot to plot the data is likely to introduce some new
challenges because it will involve going beyond straight text, but let’s give it a try.

At the end of the code we just wrote, add the following comment:

"""
plot the players by their number of passing yards only for
players with more than 4000 passing yards
"""

The following listing shows the code Copilot gave us in response to our prompt.

Listing 2.2 Code given by Copilot to plot our data about quarterbacks

import matplotlib.pyplot as plt
import numpy as np
create a list of players
players = []
create a list of passing yards
yards = []
for each player in the dictionary
for player in passing_yards:
 # if the player has more than 4000 passing yards
 if passing_yards[player] > 4000:
 # add the player to the list of players
 players.append(player)
 # add the passing yards to the list of passing yards
 yards.append(passing_yards[player])

Code that excludes Tom
Brady from the data

30 chapter 2 Getting started with Copilot

create a numpy array of the passing yards
yards = np.array(yards)
create a numpy array of the players
players = np.array(players)
sort the players by the passing yards
print(np.argsort(yards))
players = players[np.argsort(yards)]
sort the passing yards
yards = np.sort(yards)
create a figure
plt.figure()
create a bar chart of the players and their passing yards
plt.bar(players, yards)
rotate the x axis labels
plt.xticks(rotation=90)
show the plot
plt.show()

We gave Copilot this prompt a number of times and it consistently produced a reason-
able graph, but the code and graph varied each time. This is just one representative
result, and in this result, the code is notably more advanced than the code you saw
earlier this chapter. In fact, we need a more in-depth understanding of the code to
be able to walk through it in any real detail, so we’re just going to skip any attempt to
read through or interpret the code at this point in the book. We can tell you that, at a
high-level, it properly imported a Python module designed to make plots (called mat-
plotlib), did some fairly clever data manipulation in the middle using a Python module
called numpy, and even had the sense to rotate player names so that they could print
well as an x-axis label.

If you run this code, you might hit a snag, however. Because Copilot learned from
code in GitHub, it doesn’t know what Python modules are installed on your personal
machine. The programmers who wrote the code that Copilot learned from likely had
matplotlib installed, and matplotlib is the right module to use here, but matplotlib is
not a module installed by default in Python. If you don’t have it installed, you’ll get an
error about not finding the matplotlib module when you try to run the code.

Python modules
Python modules expand the capability of the programming language. There are many
modules in Python, and they can help you do anything from data analysis to creating web-
sites to writing video games. You can recognize when code wants to use a Python module
by the import statement in the code. Python doesn’t automatically install all the mod-
ules for you because you likely won’t use most of them. When you want to use a module
then, you’ll need to install the package containing the module yourself.

To fix this error, you’ll need to install matplotlib. The good news is that Python has
made it easy to install new packages. Go to the Terminal at the bottom right of VS Code
and type:

pip install matplotlib

 31Our first programming problem

NOTE For some operating systems, you may need to use pip3 rather than pip.
On Windows machines, we recommend using pip if you followed our installa-
tion instructions. On Mac or Linux machines, we recommend using pip3.

When you run this command, you’ll see that a bunch of modules are installed, includ-
ing numpy (the next module this code wants to use). (matplotlib requires Python mod-
ules of its own, so it installs all the modules you need to use matplotlib in addition to
matplotlib itself.) When you try to run the code again, you’ll get a plot like figure 2.5.

Figure 2.5 The plot produced by the code in listing 2.2

In this bar graph, we see the y-axis is the number of passing yards, and the x-axis is the
player’s name. The players are sorted from fewest yards (with a minimum of 4,000)
to most yards. Admittedly, it’s not perfect because it is missing a y-axis label and the
names on the x-axis are cut off at the bottom, but this is pretty impressive given all
we gave Copilot was a short prompt. We could keep adding prompts to see if we can
format the graph better, but we’ve already achieved the primary goals for this section,
which was to show you how powerful Copilot is at helping us write code and to get a
feel for how to interact with Copilot.

Indeed, in this chapter, we’ve accomplished a great deal! If you’ve finished setting up
your programming environment and followed along the example with us, you should
be proud. You’ve taken a huge step toward writing software! Beyond the details of set-
ting up your environment, we’ve written software to solve our first problem. Moreover,
you’ve observed the process of writing software with Copilot that starts with writing
good prompts to help Copilot give us the code we want. In the examples in this chapter,
Copilot gave us the code we wanted without us needing to change the prompt or debug
the code to figure out why it’s not working properly. That was a nice way to showcase the

32 chapter 2 Getting started with Copilot

power of using an AI assistant to program, but you will often find yourself having to test
the code, change the prompts, and sometimes try to understand why the code is wrong.
This is the AI assistant programming process that we’ll learn more about in upcoming
chapters.

Summary
¡	You installed Python and VS Code and set up Copilot so you can work along with

the book and start writing code yourself!

¡	The VS Code interface has areas for file management, code editing, and running
code that will be used throughout the book.

¡	Prompts are how we tell Copilot to generate code and, when written carefully,
can be a highly effective way of creating software.

¡	Data analysis is a common programming task, and CSV files are a common way
for storing data to be processed by computers.

¡	Copilot may generate code that requires you to install additional Python
modules.

¡	Copilot is a powerful tool that can produce code that is as sophisticated (or more)
as that produced by college students finishing their first programming course.

33

3Designing functions

This chapter covers

¡	Functions in Python and their role in designing
 software
¡	Reasonable tasks for Copilot to solve
¡	The standard workflow when interacting with
 Copilot
¡	Examples of writing good functions using
 Copilot

One of the hardest challenges for programming novices is to know what a reason-
able task is to give to Copilot so that it finds a good solution. If you give it too big a
task, it will often fail in spectacular ways that can be extremely difficult to fix. What,
then, is a reasonable task?

This question is important for our use of Copilot but goes far beyond it. Human
programmers struggle with complexity, too. If experienced software engineers try
to write code to solve a problem that’s too complex without breaking it down into
smaller, more solvable subparts, they often have trouble as well. The solution for
humans has been to use something called a function, whose job is to perform one
task. There are various rules of thumb for how to write a reasonable function in
terms of number of lines of code, but fundamentally these rules try to capture writ-
ing something that (1) performs a single task and (2) is not so complex that it’s hard
to get right.

34 chapter 3 Designing functions

For students who learned to program the old-fashioned way, without Copilot, they
may have struggled with syntax in code that’s 5–10 lines long for about a month before
we typically introduce them to functions. At that point, it’s a natural segue to tell them
not to write more code in a single function than they can handle testing and debugging.
As you are learning to work with Copilot rather than syntax directly, our job in this chap-
ter is to teach you about functions and what are reasonable and unreasonable tasks to
ask Copilot to solve in a single function.

To help you gain perspective on functions, we’ll provide you with a number of exam-
ples in this chapter. For those examples, we’ll employ the central workflow of inter-
acting with Copilot—specifically, the cycle of writing prompts, receiving code from
Copilot, and testing to see whether that code is correct. In the functions produced by
Copilot, you’ll begin to see the core programming tools, like loops, conditionals, and
lists, which we’ll expand on in the next two chapters.

3.1 Functions
Before we can learn about the details of writing a function, we need some insight into
their purpose in software. Functions are small tasks that help accomplish larger tasks,
which, in turn, help solve larger tasks, and so forth. You probably already have a lot
of intuition about breaking apart large tasks into smaller tasks that you can use in the
following example.

Suppose that you’ve found a word search puzzle in the newspaper that you’d like to
solve (see figure 3.1 for an example puzzle). In these kinds of puzzles, you’re looking
for each word in the word list. The words can be found going from left to right, right to
left, top to bottom, or bottom to top.

Figure 3.1
Example word
search puzzle

At a high level, your task is “find all of the words in the word search”. Unfortunately,
that description of the task isn’t helpful on its own. It doesn’t tell us what steps we need
to carry out to solve the problem.

Try working on the problem right now for a couple minutes. How did you start? How
did you break down the overall task to make it more achievable?

 35Functions

One thing you might do is say, “OK, finding every word is a big task, but a smaller task
is just finding the first word (CAT). Let me work on that first!” This is an example of tak-
ing a large task and breaking it into smaller tasks. To solve the entire puzzle, then, you
could repeat that smaller task for each word that you need to find.

Now, how would we find an individual word, such as CAT? Even this task can be bro-
ken down further to make it easier to accomplish. For example, we could break it into
four tasks: search for CAT from left to right, search for CAT from right to left, search
for CAT from top to bottom, and search for CAT from bottom to top. Not only are
we making simpler and simpler tasks, but we’re also organizing our work into logical
pieces. And, most importantly, as we’ll see throughout the chapter, it’s these simpler
tasks whose code we’re going to ask Copilot to write and ultimately assemble into our
complete programs.

Taking a large problem and dividing it into smaller tasks is called problem decomposi-
tion, which is one of the most important skills in software design. We’ve dedicated an
entire later chapter to it. For now, what is essential is knowing when a task is too big to
ask Copilot to complete. Asking it to make a new video game that’s a combination of
Wordscapes meets Wordle is not going to work at all. However, you can get Copilot to
write a function that’s important to solve a larger problem; for example, you might have
a function that checks whether the word provided by the player is present in a list of
valid words. Copilot can solve that problem well, and that function would help Copilot
get closer to solving the larger problem.

3.1.1 The components of a function

The origin of the name function goes back to math where functions define the output
of something based on an input. For example, if f(x) = x2, we can say that when x is 6,
f(x) is 36. As programming functions also have expected output for a particular input,
the name is quite apt for programming as well.

As software engineers, we also like to think of functions as promises or contracts. If
there is a function called “larger” and we’re told that it takes two numbers and gives us
the larger of the two, we have faith that when we give the function the numbers 2 and 5,
it will return the answer of 5. We don’t need to see how that function works to use it, any
more than we need to know how the mechanics of a car works to use the brake pedal.
Press the brake, and the car slows down. Give the function two numbers, and it gives us
back the larger of the two.

Every function in Python has a function header (also called a signature), which is the
first line of code of the function. Given their ubiquitous nature, we’ll want to read and
write function headers. The function header describes the name of the function and
its inputs. In some other languages, it sometimes includes information about what the
output looks like, but in Python, you have to find that elsewhere in the code.

In chapter 2, we wrote # comments to tell Copilot what to do. We can continue to use
that approach if we want Copilot to generate a function. For example, we can use com-
ments to ask Copilot to write a function that tells us which of two numbers is biggest:

36 chapter 3 Designing functions

write a function that returns the larger of two numbers
input is two numbers
output is the larger of the two numbers
def larger(num1, num2):
 if num1 > num2:
 return num1
 else:
 return num2

As with the code in the last chapter, we just wrote the comments to prompt Copilot
to give us the code. The function header has three main components: the keyword,
which tells Python that this is a function; the name of the function; and the inputs to
the function. There’s also a colon at the end of the line—be sure to include that or the
code will not be valid Python code. The word def denotes that it is creating (defining)
a function. After def is the name of the function; that name should describe the behav-
ior of the function as well as possible. The name of this function is larger. If it’s hard
to name a function because it does a bunch of different things, that’s usually a clue that
it’s too big of a task for a single function, but more on that later.

What appears in the parentheses of the function declaration is the parameters.
Parameters are how you provide information to a function that it needs to run. A func-
tion can have any number of parameters, and some functions have no parameters. This
function has two parameters named num1 and num2; there are two parameters because
it needs to know the two numbers it’s comparing.

There can be only one output of a function; the keyword to look for when deter-
mining what the function is outputting is return. Whatever follows return is the out-
put of the function. In this code, either num1 or num2 will be returned. Functions are
not required to return anything (e.g., a function that prints a list to the screen has no
reason to return anything), so if you don’t see a return statement, it isn’t necessarily
a problem because the function may be doing something else (interacting with the
user, for example) rather than returning something. Functions must also either return
something or not return something: they can’t return something in some cases and
nothing in other cases.

Although we had Copilot generate this function using # comments, this approach is
actually a lot of work for Copilot. It first must get the header right, including figuring
out how many parameters you need. Then it must get the actual code of the function
right.

There’s an alternate way to prompt Copilot to write the code for a function that may
help it generate code more accurately and may help us better understand exactly what
we want our function to do. It involves writing a docstring, and we’ll use docstrings to
write functions for the majority of the book.

Docstrings explain function behavior
Docstrings are how Python functions are described by programmers. They follow the
function header and begin and end with three quotation marks.

This line is the
function header.

 37Functions

By writing the header and docstring, you’ll make it easier for Copilot to generate the
right code. In the header, you will be the one deciding on the name of the function
and will provide the names of each parameter that you want the function to use. After
the function header, you’ll provide a docstring that tells Copilot what the function
does. Then, just as before, Copilot will generate the code for the function. Because we
gave Copilot the function header, it will be able to learn from the header and is less
likely to make mistakes.

Here’s what the alternate approach would look like when writing that same larger
function:

def larger(num1, num2):
 """
 num1 and num2 are two numbers.

 Return the larger of the two numbers.
 """
 if num1 > num2:
 return num1
 else:
 return num2

Notice that we wrote the function header as well as the docstring, and Copilot supplied
the body of the function.

3.1.2 Using a function

Once we have a function, how do we use it? Thinking back to our f(x) = x2 analogy, how
do we give the function a value of 6 for x so that it returns 36? Let’s see how to do this
with code by using that larger function we just wrote.

The way to use a function is to call it. Calling a function means to invoke the function
on specific values of parameters. These parameter values are called arguments. Each
value in Python has a type, and we need to take care to give values of the proper type. For
example, that larger function is expecting two numbers; it might not work as expected
if we supply inputs that aren’t numbers. When we call a function, it runs its code and
returns its result. We need to capture that result so that we can use it later; otherwise,
it will be lost. To capture a result, we use a variable, which is just a name that refers to a
value.

Here, we ask Copilot to call the function, store the result in a variable, and then print
the result:

call the larger function with the values 3 and 5
store the result in a variable called result
then print result
result = larger(3, 5)
print(result)

The code correctly calls larger. Notice that it puts the two values we want compared
after the opening parenthesis. When the function finishes, it returns a value that we

Docstring
description of
the function

Calls the larger function
with the values 3 and 5 as
inputs and store the result

38 chapter 3 Designing functions

assign to result. Then we print the result. If you run this program, you’ll see that the
output 5 gets produced, and that’s because 5 is the larger of the two values that we
asked about.

It’s okay if you aren’t comfortable with all the details here, but what we want you to
recognize is when a function is being called, as in

larger(3, 5)

The general format for a function call is

function_name(argument1, argument2, argument3,...)

So, when you see those parentheses right after a name, it means there’s a function call.
Calling functions as we did here will be important to our workflow with Copilot, par-
ticularly in how we test functions to see if they are working properly. We’ll also need to
call functions to get work done because functions don’t do anything until we call them.

3.2 Benefits of functions
We already mentioned that functions are critical in performing problem decomposi-
tion. Beyond problem decomposition, functions are valuable in software for a number
of other reasons, including

¡	Cognitive load—You may have heard of cognitive load [1] before. It’s the amount
of information your brain can handle at any given time and still be effective. If
you are given four random words and asked to repeat them back, you might be
able to do that. If you are given the same task with 20 words, most of us would
fail because it’s too much information to handle at once. Similarly, if you’ve ever
been on a road trip with your family and are trying to optimize the travel time,
combined with stops for the kids, lunch breaks, bathroom stops, gas station stops,
good locations for hotels, and so on, you might have felt your head swimming to
manage all those constraints at once. That point when you can’t handle it all at
once is when you’ve exceeded your own brain’s processing power. Programmers
have the same problem. If they are trying to do too much at once or solve too
complex a problem in one piece of code, they struggle to do it correctly. Func-
tions are designed to help programmers avoid doing too much work at once.

¡	Avoid repetition—Programmers (and, we’d argue, humans in general) aren’t very
excited about solving the same problem over and over. If I write a function that
can correctly compute the area of a circle once, I don’t need to write that code
ever again. That means if I have two sections of my code that need to compute
the area of a circle, I’d write one function that computes the area of the circle,
and then I’d have my code call that function in each of those two places.

¡	Improve testing—It’s a lot harder to test a section of code that does multiple things
compared to code that does one thing. Programmers use a variety of testing tech-
niques, but a key technique is known as unit testing. Every function takes some

 39Benefits of functions

input and produces some output. For a function that computes the area of a
circle, for example, the input would be the circle’s radius, and the output would
be its area. Unit tests give a function an input and then compare that input to
the desired result. For the area-of-a-circle function, we might test it by giving it
varying inputs (e.g., some small positive numbers, some large positive numbers,
and 0) and compare the result of the function against the values we know to be
correct. If the answers from the function match what we expect, we have a higher
degree of confidence that the code is correct. If the code produces a mistake,
we won’t have much code to check to find and fix the problem. But if a function
does more than one task, it vastly complicates the testing process because you
need to test each task and the interaction of those tasks.

¡	Improve reliability—When we write code as experienced software engineers, we
know we make mistakes. We also know Copilot makes mistakes. If you imagine
you are an amazing programmer and each line of code you write is 95% likely to
be correct, how many lines of code do you think you can write before at least one
of those lines is likely to be incorrect? The answer is only 14. We think 95% cor-
rectness per line is probably a high bar for even experienced programmers and is
likely a higher bar than what Copilot produces. By keeping the tasks small, tasks
solvable in 12–20 lines of code, we reduce the likelihood that there’s an error
in the code. If combined with good testing as noted previously, we can feel even
more confident that the code is correct. Last, nothing is worse than code that has
multiple mistakes that interact together, and the likelihood of multiple mistakes
grows the more code you write. Both of us have been on multi-hour debugging
expeditions because our code had more than one mistake and, for both of us, we
became a lot better at frequent testing of short pieces of code as a result!

¡	Improve code readability—In this book, we’re going to mostly use Copilot to write
code from scratch, but that’s not the only way to use Copilot. If you have a larger
piece of software that you or your coworkers are all editing and using, Copilot
can jump in to help write code for that, too. It’s in everyone’s interest to under-
stand the code, whether most of it is written by humans or by Copilot. That way,
we can find bugs more easily, determine what code to start modifying when we
want to add new features, and understand at a high level what would be easy or
difficult to achieve with our overall program design. Having tasks broken down
into functions helps us understand what each part of the code is doing so we can
gain better insight into how it all works together. It also helps divide up the work
and responsibility for ensuring the code is correct.

These benefits are huge for programmers. Programming languages haven’t always had
functions. But even before they did, programmers did their best to use other features
to mimic functions. They were ugly hacks (Google “goto statements” if you’re inter-
ested), and all programmers are happy that we have proper functions now.

40 chapter 3 Designing functions

You may be asking, “I see how these advantages matter to humans, but how do they
affect Copilot?” In general, we believe all the principles that apply to humans apply to
Copilot, albeit sometimes for different reasons. Copilot may not have cognitive load,
but it’s going to do better when we ask it to solve problems similar to what’s been done
by humans before. Since humans write functions to solve tasks, Copilot will mimic that
and write functions as well. Once we’ve written and tested a function, whether by hand
or by Copilot, we don’t want to write it again. Knowing how to test if your program is
working properly is just as essential for code produced by humans as it is by Copilot.
Copilot is as likely to make mistakes when it generates code, so we want to catch those
mistakes quickly, just as we do with human-written code. Even if you only work on your
own code and never have anyone else read it, as programmers who have had to go back
to edit code we wrote years ago, let us tell you that it is important for your code to be
readable, even if the only person reading it is you.

3.3 Roles of functions
Functions are used in many different roles in programming. At a high level, programs
are functions that (often) call other functions. Critically, all programs, including
Python programs, originate with a single function (named main in languages like Java,
C, and C++). Python’s main function is essentially the first line of code that isn’t in a
function. But if every program starts with a single function and we just told you that
trying to solve a large problem with a single function is a mistake, how does that work?
Well, main will call other functions, which, in turn, will call other functions, and so
forth. The code will still execute (mostly) sequentially in each function, so it may start
in main but then move to another function, and so forth.

As an example, let’s use the code in the following listing. We wrote this code, not
Copilot, because no one would ever want to write this code for anything useful outside
teaching. It’s just for demonstrating how function calls work.

Listing 3.1 Python code to demonstrate how Python handles function calls

def funct1():
 print("there")
 funct2()
 print("friend")
 funct3()
 print("")

def funct2():
 print("my")

def funct3():
 print(".")

def funct4():
 print("well")

print("Hi")
funct1()

This is the start of the
program. We’ll call this
“main” after the main
function in other languages.

 41Roles of functions

print("I'm")
funct4()
funct3()
print("")
print("Bye.")

If we ran this program, the output would be (we’ll explain why after):

Hi
there
my
friend
.

I'm
well
.

Bye.

In figure 3.2, we provide a diagram of how the code in listing 3.1 would be executed by
the computer. We’ve intentionally provided an example that has many function calls to
tie together what we just learned. Again, this is not practical code; it’s just for learning
purposes. Let’s trace through the code execution together. It may be easier to refer to
figure 3.2 than listing 3.1 as you follow along, but either will work.

The program will start execution with the first line in the Python code that isn’t a
function (print("Hi")). Although Python doesn’t have a main function per se, we’ll
refer to the block of code after the functions as main to help this explanation. Code
executes sequentially unless it encounters commands that tell it to execute code some-
where else. So, after executing print("Hi"), it will go to the next line, which is the call
to funct1: funct1(). The call to funct1 changes where the code is executing to the
start of that function, which is the statement: print("there"). The next line of funct1
calls funct2, so the program will execute the first line of funct2: print("my"). What
gets interesting is what happens when funct2 finishes. There are no more lines of code
to execute, so it automatically moves execution back to the first line following the call
to funct2 in funct1. (If the function call is in the middle of another statement, that
statement resumes execution, but for this example, the function calls are each on their
own line.) You may be curious why it goes to the next line after the call to funct2 rather
than back to the call of funct2. The problem is if it returned back to the call to funct2,
it would be trapped calling funct2 forever. As a result, functions always return back to
the next piece of code to execute (in this example, the next line) after they are called.

Continuing this example, the next line of the code executed will be the line that
prints friend. The next line calls funct3 which prints a period (.) and then returns
back to its caller.

So, we’re back in funct1, on the line print(""). Printing an empty piece of text
causes a new line. Now funct1 is finished, so it transfers execution back to the next line
in main after it was called. We suspect you are getting the idea by now, so let’s move a bit
more quickly:

42 chapter 3 Designing functions

¡	main next prints I'm and then calls funct4.

¡	funct4 prints well and then returns to main where the next line of code calls
funct3.

¡	funct3 prints a period (.) and then returns to main. Notice that funct3 was
called both by funct1 and by main, but that’s okay because functions remember
how to return to the function that called them. In fact, having multiple functions
calling the same function is a sign that the function being called multiple times is
a good function because of its reuse.

¡	After funct3 returns to main, it will print "" which causes a new line to be started,
and then it prints the word Bye.

(main):

print("Hi")

funct1()

print("I’m ")

funct4()

funct3()

print("")

print("Bye")

Program starts
executing here funct2():

print("my")

funct1():

print("there")

funct2()

print("friend")

funct3()

print("")

funct4():

print("well")

funct3():

print(".")

Figure 3.2 Flow of function execution in our example from listing 3.1

That was a long example, but we provided it to give you an idea of how functions exe-
cute and how programs consist of defining and calling functions. In any software you
use, think about the specific tasks that it performs: the programmers probably wrote
one or more functions for each one. The button in a text editor that changes the text to
bold probably calls a function to change the text to bold. That function might change
the editor’s internal idea of the text (the editor likely stores your text in a different
format than how you view it), and then it might call another function that updates the
user’s (your) view of the text.

We’d also like to use this example to discuss the different roles that functions play.
A helper function is a function whose job is to make another function’s job easier. In a
sense, every function that isn’t “main” is a helper function.

 43What’s a reasonable task for a function?

Some functions simply call a bunch of other functions without doing any of their
own work. There aren’t any of these in our example. However, if you removed the three
print statements from funct1, it becomes this type of coordinating function. Others
may call helper function(s) and then do some work on their own. funct1 is a great
example of a function that calls other functions but also does work on its own.

Another group of functions stand on their own without calling other functions
(except perhaps functions that already come with Python) for help—we’ll call these
functions leaf functions. Why leaf? If you imagine all the function calls as a big tree,
these functions are the leaves of the tree because they have nothing coming out of
them. funct2, funct3, and funct4 are all leaf functions in our example. We’re primar-
ily concerned with leaf functions in this chapter, but you’ll see examples of other kinds
of functions here and especially in later chapters.

3.4 What’s a reasonable task for a function?
There’s no clear rule for what makes a good function, but there are some intuitions
and recommendations we can share. Make no mistake, though: identifying good func-
tions is a skill that takes time and practice. To help you with this, in this section we’ll
outline our recommendations and provide you with some good and bad examples to
help build that intuition. Then, in section 3.6, we’ll show you examples of how to write
good functions.

3.4.1 Attributes of good functions

Here are some guidelines that we believe will help you see what makes a good function:

¡	One clear task to perform—A leaf functions, might be something like“compute
the volume of a sphere,” “find the largest number in a list,” or “check to see if a
list contains a specific value.” Nonleaf functions can achieve broader goals, like
“update the game graphics” or “collect and sanitize input from the user.” Nonleaf
functions should still have a particular goal in mind but are designed knowing
they will likely call other functions to achieve their goal.

¡	Clearly defined behavior—The task “find the largest number in a list” is clearly
defined. If I gave you a list of numbers and asked you for the largest number,
you know what you should do. In contrast, the task “find the best word in the
list” is poorly defined as stated. You need more information: What is the “best”
word? Is it the longest, the one that uses the fewest vowels, or the one that doesn’t
share any of the same letters as “Leo” or “Dan”? You get the point; subjective tasks
aren’t great for computers. Instead, we could write the function “find the word
in the list that has the most characters” because what is expected is well defined.
Often programmers can’t put all the particulars of a function just in the name, so
they fill in the details in the docstring to clarify its use. If you find yourself having
to write more than a few sentences to describe the function’s behavior, the task is
probably too much for a single function.

44 chapter 3 Designing functions

¡	Short in number of lines of code—We’ve heard different rules over the years for the
length of functions, informed by different company style guidelines. The lengths
we’ve heard vary from 12 to 20 lines of Python code as the maximum number
of lines. In these rules, the number of lines is being used as a proxy for code
complexity, and it’s not a bad general rule of thumb. As programmers ourselves,
we both apply similar rules to our code to ensure the complexity doesn’t get out
of hand. With Copilot, we can use this as a guide as well. If you ask Copilot for a
function and it gives you back 50 lines of code, this probably isn’t a good function
name or task, and as we discussed earlier, that many lines of code are likely to
have errors anyway.

¡	General value over specific use—A function that returns the number of values in a
list that are greater than 1 might be a specific need for a part of your program,
but there’s a way to make this better. The function should be rewritten to return
the number of values in the list that are greater than another parameter. The new
function would work for your use case (give the function 1 for the second param-
eter) and for any value other than 1. We strive to have functions be as simple but
as powerful as possible.

¡	Clear input and output—You generally don’t want a lot of parameters. That doesn’t
mean you can’t have a lot of input, though. A single parameter could be a list of
items (we’ll talk more about lists soon). It does mean that you want to find ways
to keep the number of inputs to a minimum. You can only return one thing, but
again, you can return a list so you aren’t as limited as it may appear. But if you find
yourself writing a function that sometimes returns a list, sometimes returns a sin-
gle value, and sometimes returns nothing, that’s probably not a good function.

3.4.2 Examples of good (and bad) leaf functions

Here are examples of good leaf functions:

¡	Compute the volume of a sphere—Given the sphere’s radius, return its volume.

¡	Find the largest number in a list—Given a list, return the largest value.

¡	Check whether a list contains a specific value—Given a list and a value, return True if
the list contains the value and False if it does not.

¡	Print the state of the checkers game—Given a 2D list representing the game board,
output the game board to the screen in text.

¡	Insert a value in a list—Given a list, a new value, and a location in the list, return a
new list that is the old list with the new value inserted at the desired location.

Here are examples of bad leaf functions and our reasons for why they are bad:

¡	Request a user’s tax information and return the amount they owe this year—Perhaps in
some countries this wouldn’t be too bad, but we can’t imagine this as a single

 45The cycle of design of functions with Copilot

function in either the United States or Canada given the complexity of the tax
rules!

¡	Identify the largest value in the list and remove that value from the list—This might not
seem so bad, but it’s really doing two things. The first is to find the largest value
in the list. The second is to remove a value from the list. We’d recommend two
leaf functions, one that finds the largest and one that removes the value from the
list. However, this might make a good nonleaf function if your program needs to
perform this task frequently.

¡	(Thinking of our dataset from chapter 2) Return the names of the quarterbacks with
more than 4,000 yards of passing in the dataset—This has too much specificity. With-
out a doubt, the number 4,000 should be a parameter. But it’d likely be better to
make a function that takes as input the position (quarterback, running back), the
statistic (passing yards, games played), and the cutoff that we care about (4,000,
8,000) as parameters. This new function provides far more capability than the
original, allowing a user to call the function to determine not only the names of
particular quarterbacks who threw for more than 4,000 yards but also, for exam-
ple, running backs who had more than 12 rushing touchdowns.

¡	Determine the best movie of all time—This function is too vague. Best movie by what
definition? What movies should be considered? A better version of this might be
a function that determines the highest-rated movie by users given at least a min-
imum number of ratings. This function would likely be part of a larger program
where the function would have data from a movie database (say, IMDB) and min-
imum number of user ratings as inputs. The output of the function would be the
highest-rated movie that has at least as many ratings as specified.

¡	Play Call of Duty—This might be the main function in the large code base for the
game Call of Duty, but it is definitely not a leaf function.

3.5 The cycle of design of functions with Copilot
Designing functions with Copilot involves the following cycle of steps (see figure 3.3):

1 Determine the desired behavior of the function.

2 Write a prompt that describes the function as clearly as possible.

3 Allow Copilot to generate the code.

4 Read through the code to see if it seems reasonable.

5 Test the code to see if it is correct:

a If the code is correct after multiple tests, move on.

b If the code is incorrect, move to step 2 and edit the prompt.

46 chapter 3 Designing functions

Figure 3.3 General editing cycle with Copilot. This assumes you define a reasonable function.

We won’t learn how to do step 4 until the next chapter, but we bet you can already
recognize when the code is blatantly wrong. For example, Copilot might give you only
comments to fill the body of the function. Comments don’t do anything—they are
not code!—so a bunch of comments with no other code is clearly not the right thing
to do. Or it might just write a single line return -1. Or, our personal favorite, Your
code here. Copilot learned that one from us professors when we provide students
partial code and ask them to write the rest with “Your code here.” Those are all obvi-
ously incorrect, but in the next chapter, we’ll go over how to read code so you can
more quickly spot when more complicated code is incorrect and, perhaps more impor-
tantly, see where and how to fix it. In later chapters, we’ll keep expanding on this cycle
to include effective debugging practices, and we’ll keep practicing how to improve
prompts.

3.6 Examples of creating good functions with Copilot
In this section, we’re going to write a bunch of functions with Copilot. We’ll code
them entirely in Copilot to help you see the cycle of function design we just described.
Although our goal in this chapter isn’t to help you read code just yet, we will see pro-
gramming features (sometimes called constructs) in the solutions that are very common
in code (e.g., if statements, loops), so we’ll point those out when we see them. Then,
in chapter 4, we’ll say more about how to read this code in more detail.

Many of the functions we’re about to work on are unrelated to each other. For exam-
ple, we’ll start with a function about stock share prices and move to functions about
strong passwords. You typically wouldn’t store unrelated stuff like this in the same
Python file. Because we’re just exploring different examples of good functions, feel free
to store all functions in the same Python file, perhaps named function_practice.py or
ch3.py.

 47Examples of creating good functions with Copilot

3.6.1 Dan’s stock pick

Dan is an investor in a stock called AAAPL. He purchased 10 shares for $15 each. Now,
each of those shares is worth $17. Dan would like to know how much money he has
made on the stock.

Remember that we want to make our function as general as possible. If the only thing
our function does is calculate this exact AAAPL situation, it wouldn’t be that useful in
general. Sure, it would help Dan right now, but what about when AAAPL’s share price
changes again or when he is interested in another stock entirely?

A useful general function here would take three parameters, all of which are num-
bers. The first parameter is the number of shares purchased, the second is the share
price when the shares were purchased, and the third is the current share price. Let’s
call this function money_made, since it’s going to determine how much money we’ve
made or lost on the stock. In general, you want to name your function as an action word
or words that describe what your function is doing. With that, we have enough to write
the function header:

def money_made(num_shares, purchase_share_price, current_share_price):

Now we need a docstring. In the docstring, we need to explain what each parameter is
for by using its name in a sentence. We also need to include what the function is sup-
posed to do.

Adding our docstring, here is the full prompt we provide to Copilot:

def money_made(num_shares, purchase_share_price, current_share_price):
 """
 num_shares is the number of shares of a stock that we purchased.
 purchase_share_price is the price of each of those shares.
 current_share_price is the current share price.

 Return the amount of money we have earned on the stock.
 """

After typing that prompt, go to the next line and press the Tab key. Copilot will fill in
the code for the function. Don’t worry that the code gets indented: the code of func-
tions is supposed to be indented, and, in fact, it’s an error if it isn’t!

Here’s what we got from Copilot:

 return num_shares * (current_share_price - purchase_share_price)

This code seems sensible. In the parentheses, it figures out the difference between
the current price and the purchase price (the - is used for subtraction), and then it
multiplies that by the number of shares that we have (the * is used for multiplication).
Inspecting code like this is a useful skill, and we’ll get serious about it in the next chap-
ter. Another useful skill is testing the function.

To test the function, we call it using various inputs and observe the output in each
case. We could do this by asking Copilot to call the function and then running our pro-
gram, much as we did with our “larger” function. We could then ask Copilot to change
the function call by asking it to call the function with a different input and run our

48 chapter 3 Designing functions

program again, repeating as many times as needed. However, we find it easier and more
convenient to call the function ourselves from an interactive window.

This way, we can call the function as many times as we like without going through
Copilot at all and without cluttering up our program with stuff we’re going to delete
anyway. To try this interactive approach, select/highlight all the code of the function
and then press Shift–Enter (you can access a similar interactive session by selecting the
text, right-clicking, and choosing Run Selection/Line in the Python window, but the
guidance here is if you use Shift–Enter). Figure 3.4 shows what this looks like if you
select the text of the function and press Shift–Enter.

Figure 3.4 Running Python in an interactive session in the Terminal of VS Code. Note the >>> at the
bottom of the terminal.

At the bottom of the resulting window, you will see three greater-than symbols >>>.
This is called a prompt, and you’re allowed to type Python code here. (This prompt has
nothing to do with the kind of prompt that we use when interacting with Copilot.) It
will show us right away the result of the code that we type, which is convenient and fast.

To call our money_made function, we need to provide three arguments, and they
will be assigned left to right to the parameters. Whatever we put first will be assigned to
num_shares, whatever we put second will be assigned to purchase_share_price, and
whatever we put third will be assigned to current_share_price.

Let’s try this! At the prompt, type the following and press Enter (or Shift–Enter).
Don’t type the >>> as that’s already there; we are including it throughout the book to
make it clear where we are typing. Please see figure 3.5 for an example of running the
function in the terminal at the Python prompt:

>>> money_made(10, 15, 17)

You’ll see the output:

20

 49Examples of creating good functions with Copilot

Is 20 correct? Well, we bought 10 shares, and each of them went up $2 (from $15 to
$17), so we did make $20. Looks good!

Figure 3.5 Calling the money_made function from Python prompt in the VS Code terminal

We’re not done testing, though. When testing a function, you want to test it in various
ways, not just once. All one test case tells you is that it happened to work with the par-
ticular input values that you provided. The more test cases we try, each testing the func-
tion in a different way, the more confident we are that our function is correct.

How do we test this function in a different way? We’re looking for inputs that are
somehow a different category of input. One not-so-good test right now would be to say,
“What if our stock went from $15 to $18, instead of $15 to $17?” This is pretty much the
same test as before, and chances are that it will work just fine.

A good idea is to test what happens when the stock actually loses money. We expect to
get a negative return value in this case. And it appears that our function works just fine
with this category of test. Here’s our function call and the output returned to us:

>>> money_made(10, 17, 15)
-20

What other tests can we do? Well, sometimes a stock price doesn’t change at all. We
expect 0 in this case. Let’s verify it:

>>> money_made(10, 15, 15)
0

Looks good!
Testing is a combination of science and art. How many categories of things are there

to test? Are these two calls really two different categories? Have we missed any catego-
ries? You will improve your testing ability through practice, and we’ll spend all of chap-
ter 6 talking about testing. For now, it looks like our money_made function is doing its
job.

It’s possible for a function to use variables (rather than just its parameters) in its
code, and we want to show you an example of that now so that you’re ready when you
see Copilot doing it.

Here’s an equivalent way to write the code for our money_made function:

50 chapter 3 Designing functions

 price_difference = current_share_price - purchase_share_price
 return num_shares * price_difference

This code may even be easier to read for you: it first figures out the difference in share
price, and then it multiplies that by the number of shares. We encourage you to test
this version to help convince yourself that it is still correct.

3.6.2 Leo’s password

Leo is signing up for a new social network website called ProgrammerBook. He wants
to make sure that his password is strong.

Leo starts with a modest definition of what it means for a password to be strong: it’s
strong if it’s not the word password and not the word qwerty. (Those are terrible pass-
words, for sure, but in reality, we have to do way better than this definition to ensure
that our password is strong!) A helpful function would be one that takes a proposed
password and tells us whether it is strong or not.

Unlike our previous functions in this chapter, we’re not dealing with numbers here.
The parameter, the password to check, is text. And the return value is supposed to indi-
cate some yes/no result. We need new types!

The Python type for text is called a string. There are zillions of possible strings
because we can use a string to store whatever text we want. And the Python type for a
yes/no result is called a Boolean or bool. A bool has only two values: True or False.

Alright! We’re ready to prompt Copilot. For functions that return bool (True/False)
values, we usually name the function as has_x, or is_x, or using some other verb that
implies a true/false result:

def is_strong_password(password):
 """
 A strong password is not the word 'password'
 and is not the word 'qwerty'.

 Return True if the password is a strong password, False if not.
 """

In response, here’s what Copilot wrote for us:

 return password != 'password' and password != 'qwerty'

Look over that code for a moment. That != operator is the “not equal” operator, and
each string that doesn’t count as a strong password is in single quotation marks. We’re
going to use quotation marks every time we work with a string value. Again, we’ll talk
more about how to read code in the next chapter, but for now, we hope that the code
makes a fuzzy sort of sense: it looks like it’s checking that the password isn’t password
or qwerty, which matches our definition of a strong password.

Now let’s make sure that this function does indeed work by making a few test calls.
We’ll start by testing the passwords that are not strong. We had better get back False for
each of these—and we do!

 51Examples of creating good functions with Copilot

>>> is_strong_password('password')
False

>>> is_strong_password('qwerty')
False

Good! Now, let’s try a strong password. We need to see True here:

>>> is_strong_password('N3w Y0rk J375')
True

Good stuff! We now see that the function sometimes returns False and other times
returns True, so at least it’s not always returning False.

Let’s try one more:

>>> is_strong_password('Leo')
True

Well, technically True is correct, but, wow, is Leo a bad password. We should really have
done better with our definition of a strong password. Let’s change our prompt to give a
more reasonable definition of what it means for a password to be strong.

Here’s our next prompt and what Copilot gave us:

def is_strong_password(password):
 """
 A strong password has at least one uppercase character,
 at least one number, and at least one special symbol.

 Return True if the password is a strong password, False if not.
 """
 return any(char.isupper() for char in password) and \
 any(char.isdigit() for char in password) and \
 any(not char.isalnum() for char in password)

That for char in password that shows up a few times here is a way for Python to
consider each character of the password. It enables something called a loop, which is a
key topic that we’ll study in chapter 5.

Of course, it’s possible that you didn’t get the same code from Copilot as we did. But
based on the code that we got, it looks like the first piece is looking for any uppercase
character, the second piece is looking for any digit, and the third is looking for some-
thing that’s not an isalnum.

Maybe isalnum means “is alphanumeric.” Does that include special symbols and, if
so, which ones? Let’s test this function to see how well we’re doing:

>>> is_strong_password('Leo')
False

>>> is_strong_password('N3w Y0rk J37$')
True

>>> is_strong_password('N3w Y0rk J375')
True

52 chapter 3 Designing functions

Uh oh! We got the wrong answer for that third password. It looks pretty strong, but
it’s not, because it lacks a special symbol. Our function returned True, but that’s the
wrong return value: it was supposed to return False.

The code that Copilot gave us is wrong. Maybe the code that you got worked fine, but
we didn’t get so lucky, and it’s important we know how to identify (like we just did) when
the code is wrong and then fix it. It’s not important to know why it’s wrong right now,
but if you are curious about why our prompt may have given us the wrong behavior, it’s
because we didn’t specify what we meant by a special character, and the code it gave us
counts spaces as special characters.

At this point, with our wrong code, we have two options. One option is to hit
Ctrl–Enter and look through the other suggestions that Copilot gives us. Maybe one of
those suggestions will have something to do with special symbols that looks different
from the one that didn’t work?

Indeed, on our computer here, we see such options, including this one:

 num_upper = 0
 num_num = 0
 num_special = 0
 for char in password:
 if char.isupper():
 num_upper += 1
 elif char.isnumeric():
 num_num += 1
 elif char in '!@#$%^&*':
 num_special += 1
 if num_upper >= 1 and num_num >= 1 and num_special >= 1:
 return True
 else:
 return False

Test this function with strings like Leo, N3w Y0rk J375, and N3w Y0rk J375$ and you
should see that the function works well.

Our second option is to do some prompt engineering, which means adjusting our
prompt to influence what Copilot gives us. In our original prompt, we talked about spe-
cial symbols. This, in retrospect, is vague. We probably meant something more specific,
like punctuation. If we specifically talk about punctuation in our prompt, we get this
interaction with Copilot:

def is_strong_password(password):
 """
 A strong password has at least one uppercase character,
 at least one number, and at least one punctuation.

 Return True if the password is a strong password, False if not.
 """
 return any(char.isupper() for char in password) and \
 any(char.isdigit() for char in password) and \
 any(char in string.punctuation for char in password)

Looks good! That last line is talking about punctuation, which is hopeful. Let’s test:

Specific choice
of special symbols

 53Examples of creating good functions with Copilot

>>> is_strong_password('Leo')
False

>>> is_strong_password('N3w Y0rk J375')
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "ch2.py", line 44, in is_strong_password
 any(char in string.punctuation for char in password)
 File "ch2.py", line 44, in <genexpr>
 any(char in string.punctuation for char in password)
 ^^^^^^
NameError: name 'string' is not defined

Look at the bottom of that error message, 'string' is not defined, eh? We’re running
into a problem that’s similar to what we saw in chapter 2 with modules. Copilot wants
to use a module, called string, but it is a module that needs to be imported before we
can use it. There are a lot of modules in Python, but the string module is well known.
As you work with Copilot more, you’ll learn which modules are commonly used so
you know to import them. You could also do a quick internet search to ask, “Is string a
Python module,” and the results would confirm that it is. What we need to do is import
the module.

Note that this is somewhat different from what we encountered in chapter 2. In chap-
ter 2, we saw what happens when the code from Copilot imports modules we didn’t
have installed, and we had to install the package containing those modules to fix the
problem. In this case, the code from Copilot is using a module that already happens to
be installed with Python, but it forgot to import it. So, we don’t need to install string; we
just have to import it.

Importing modules
There are a number of useful modules available in Python. We saw how powerful mat-
plotlib is in chapter 2. But for Python code to take advantage of a module, we have to
import that module. You might ask why we don’t have modules available to us without
importing them, but that would massively increase the complexity of the code and what
Python has to do to run code behind the scenes. Instead, the model is to include mod-
ules if you want to use them, and they aren’t included by default.

Let’s add import string at the top of our code:

import string

def is_strong_password(password):
 """
 A strong password has at least one uppercase character,
 at least one number, and at least one punctuation.

 Return True if the password is a strong password, False if not.
 """
 return any(char.isupper() for char in password) and \
 any(char.isdigit() for char in password) and \
 any(char in string.punctuation for char in password)

54 chapter 3 Designing functions

Now we’re in good shape:

>>> is_strong_password('Leo')
False

>>> is_strong_password('N3w Y0rk J375')
False

>>> is_strong_password('N3w Y0rk J375$')
True

That last one is True—it’s a strong password!—because it has the $ punctuation added
to it.

We hope that you’re now convinced of the value of testing! Sometimes our students
don’t test their code. They assume that the code they write is correct because it made
sense to them. An interesting difference between novice and experienced program-
mers is that novices often assume their code is right, whereas experience programmers
assume their code is wrong until thoroughly tested and proved otherwise. Beyond this,
we find that our students sometimes fail to test well because it’s disheartening to learn
that the code is wrong. But it’s better to know now rather than later when others are
using your code in a serious application. Finding errors through testing is actually a
good thing.

3.6.3 Getting a strong password

Now that we have a function that tells us whether a password is strong or not, let’s write
a function that obtains a strong password from the user. It will ask again and again for
a password until the user types a strong one. This is the kind of code that websites use
when they tell you, “Sorry, your password is too weak, try again.”

What should the header for such a function look like? Well, it’s going to ask the user
for a password, but we won’t have a password parameter. In fact, we won’t have any
parameters at all, because the function doesn’t need any information to do its job—it
just has to prompt the user and the user is going to type the password at the keyboard.
When the function has done its work, it will return the strong password, so it will con-
tinue to return a string as the output.

Let’s try this prompt:

def get_strong_password():
 """
 Keep asking the user for a password until it is a strong
 password, and return that strong password.
 """

We get the following code from Copilot as a result:

 password = input("Enter a strong password: ")
 while not is_strong_password(password):
 password = input("Enter a strong password: ")
 return password

It’s calling our earlier
is_strong_password
function!

 55Examples of creating good functions with Copilot

That while keyword creates another kind of loop, this one continuing as long as the
entered password is not strong. Copilot is also smart enough to call our earlier is_
strong_password function to determine what counts as a strong password. As we will
see in future chapters, using functions as building blocks in this way is precisely how
large programs are built. You will often notice Copilot calling your earlier functions to
solve later ones, much as we observed here.

Let’s test this! Highlight all our password function code and hit Shift–Enter. We’ll call
the function that we want to test. Then, try typing passwords, pressing Enter after each
one. You’ll notice that it keeps asking you until you finally provide a strong password:

>>> get_strong_password()
Enter a strong password: Leo
Enter a strong password: N3w Y0rk J375
Enter a strong password: N3w Y0rk J375$
'N3w Y0rk J375$'

Notice that it stops asking us for a password when we finally provide a strong password.
Then, we see the string in quotes that it returned, which is, indeed, our strong password.

3.6.4 Scrabble scoring

One of Dan’s favorite board games is Scrabble. Have you played it? If not, all you need
to know is that you have some tiles in your hand, each with a letter on it, and your
goal is to form a word using any combination of those letters. You don’t need to form
the word exclusively with your tiles—you can attach those letters to existing letters on
the board to create longer words—but we’re not going to worry about that here. The
important thing for us is that different letters are worth different numbers of points.
For example, an a is worth only one point, because a is such a common letter. But q and
z? Those doozies are each worth 10 points because they’re so tough to use—or should
we say puzzling to use. Yeah, that’s better.

To calculate the score for a word, we add up the scores for each of its letters. For
example, the score for zap would be 14. That’s because z is worth 10, a is worth 1, and p
is worth 3.

 Dan would like a function that, given a word, tells him how many points that word is
worth. OK, so we need a function that takes a word (which is just one parameter). Let’s
try this prompt, where we’ve included the number of points that each letter is worth per
official Scrabble rules:

def num_points(word):
 """
 Each letter is worth the following points:
 a, e, i, o, u, l, n, s, t, r: 1 point
 d, g: 2 points
 b, c, m, p: 3 points
 f, h, v, w, y: 4 points
 k: 5 points
 j, x: 8 points
 q, z: 10 points

 word is a word consisting of lowercase characters.
 Return the sum of points for each letter in word.
 """

56 chapter 3 Designing functions

For this function, Copilot isn’t filling in the whole body for us with one press of the Tab
key. Tab is also used to indent the code, which we also need to do here before Copilot
will present us with code. So, we’re having to press Tab (sometimes once for the inden-
tation and then again for Copilot), wait for the code to appear, then press Enter to
accept that code, then press Tab again for more code, and repeat the process.

Getting Copilot to suggest code may require pressing Tab or Enter
We find that Copilot will sometimes pause in giving suggestions until you press a key to
help prompt it. As mentioned in table 2.1, if you are giving it comments, it will sometimes
just want to give you more comments as suggestions. Pressing Enter another time can
often trigger it to start generating code instead. Other times, pressing Tab will cause it to
continue providing suggestions. Please refer to table 2.1 if Copilot is not generating code
for you.

Finally, after doing that a few times, the entire code unfurls, and we get the following:

 points = 0
 for char in word:
 if char in "aeioulnstr":
 points += 1
 elif char in "dg":
 points += 2
 elif char in "bcmp":
 points += 3
 elif char in "fhvwy":
 points += 4
 elif char == "k":
 points += 5
 elif char in "jx":
 points += 8
 elif char in "qz":
 points += 10
 return points

Notice that all of the letters of the alphabet are accounted for here, and the number
of points that each category is worth is on the following line. We’ll discuss this overall
kind of decision structure in the next chapter, but, at a high level, it is walking through
the word character by character and, for each character, figuring out which letter it is
and adding the appropriate number of points for that letter.

Let’s test this to make sure our code is performing the way we want. We know that the
word zap should be worth 14 points. And it is:

>>> num_points('zap')
14

Let’s try a couple more. In each case, calculate by hand what you expect the answer to
be—that way you’ll know if the code is doing the right thing:

 57Examples of creating good functions with Copilot

>>> num_points('pack')
12

>>> num_points('quack')
20

There are many ways to write correct code for a function. If you press Ctrl–Enter and
look at the Copilot suggestions, you may see different types of code. It doesn’t neces-
sarily mean that one of these types is right and the others are wrong.

For example, here’s another solution for num_points that we got from the other
Copilot suggestions:

 points = {'a': 1, 'e': 1, 'i': 1, 'o': 1, 'u': 1, 'l': 1,
 'n': 1, 's': 1, 't': 1, 'r': 1,
 'd': 2, 'g': 2,
 'b': 3, 'c': 3, 'm': 3, 'p': 3,
 'f': 4, 'h': 4, 'v': 4, 'w': 4, 'y': 4,
 'k': 5,
 'j': 8, 'x': 8,
 'q': 10, 'z': 10}
 return sum(points[char] for char in word)

Notice here that each letter is listed individually along with its number of points. This
structure with the letters and points is called a dictionary, and again, we’ll learn about
dictionaries properly in a later chapter. The point for now is just that there are often
multiple, equivalently good ways for Copilot to write the code for a function. Give this
one a try with some test cases before you continue!

3.6.5 The best word

Let’s continue with the Scrabble theme. Suppose that Dan has a bunch of words that
he can make right now, but he doesn’t know which one will give him the most points.
Should he make the word zap, pack, or quack? It would be nice if we had a function that
could take a bunch of words and tell us which is the best one.

How many parameters should we have in such a function? Your first instinct may be
3, one for each of the 3 words in our options. But that wouldn’t be very flexible. After
all, what if we want to know the best of five words? Ten words? Fifty? We would like our
function to work no matter how many words we are considering.

The trick is to use a function with one (yes, just one!) parameter, which is a list of
words. Just like numbers and strings and dictionaries, a list is a type supported by
Python. It’s incredibly useful because it allows us to collect as many values into one
place as we like.

We can prompt Copilot like this to get the function that we want:

def best_word(word_list):
 """
 word_list is a list of words.

 Return the word worth the most points.
 """

58 chapter 3 Designing functions

How will Copilot know how many points each word is worth? Well, it can call that num_
points function that we wrote in the previous section!

Here’s the code that Copilot gives us.

 best_word = ""
 best_points = 0
 for word in word_list:
 points = num_points(word)
 if points > best_points:
 best_word = word
 best_points = points
 return best_word

We need to be careful to call this function correctly when testing. This won’t work:

>>> best_word('zap', 'pack', 'quack')

Because that’s passing values for three parameters, not one. The right way to call it is
to put the words inside square brackets, like this (we’ll see more about lists in the next
chapter):

>>> best_word(['zap', 'pack', 'quack'])
'quack'

But, as usual, you shouldn’t be content with just one test case. This function should
work in other valid but perhaps strange cases, too, such as when we have only one word
in the list:

>>> best_word(['zap'])
'zap'

However, we wouldn’t test this function on a list that has no words in it. What would it
even make sense to do in that case? Regardless of what the function does, it’d be hard
to say one way or the other whether it was doing the correct thing in a situation where
there really is no correct behavior!

Overall, in this chapter we’ve learned about functions in Python and how we can use
Copilot to help us write them. We’ve also learned about the characteristics of good func-
tions and how important it is to make sure our functions are solving tasks that can be
managed well by Copilot. Our next steps in this book all revolve around understanding
whether the code produced by Copilot is correct and how to fix it when it isn’t. In the
next chapter, we’ll start by learning the basics of being able to read the code produced
by Copilot because this gives us the first sanity check for whether Copilot is doing what
we think it should be. Then, in later chapters, we’ll dig deeper into how to carefully test
the code and what to do when it is wrong.

 59Summary

Summary
¡	Problem decomposition involves breaking a large problem into smaller tasks.

¡	We use functions to perform problem decomposition in our programs.

¡	Each function must solve one small, well-defined task.

¡	Functions reduce duplication, make it easier to test our code, and reduce the
likelihood of bugs.

¡	Unit testing involves checking that the function does what we expect on a variety
of different inputs.

¡	A function header or signature is the first line of code of the function.

¡	Parameters are used to provide information to functions.

¡	The function header indicates the name of the function and names of its
parameters.

¡	We use return to output a value from a function.

¡	A docstring uses the names of each function parameter to describe the purpose
of the function.

¡	To ask Copilot to write a function, we provide it the function header and
docstring.

¡	We get a function to do its work by calling it with values (also called arguments)
for its parameters.

¡	A variable is a name that refers to a value.

¡	A helper function is a small function written to make it easier to write a bigger
function.

¡	A leaf function doesn’t call any other function to do its job.

¡	To test whether a function is correct, we call it with different types of inputs.

¡	Every Python value has a type, such as a number, text (string), true/false value
(bool), or collection of values (list or dictionary).

¡	Prompt engineering involves modifying our prompt for Copilot to influence the
code that we get back.

¡	We need to ensure that we import any module (such as string) our code is using.

60

4Reading Python
code: Part 1

This chapter covers

¡	Why knowing how to read code is important
¡	How to ask Copilot to explain code
¡	Using functions to break a problem into smaller
 subproblems
¡	Using variables to hang on to values
¡	Using if-statements to make decisions
¡	Using strings to store and manipulate text
¡	Using lists to collect and manipulate many
 values

In chapter 3, we used Copilot to write several functions for us. What are they good
for? Maybe our money_made function could be part of a stock trading system. Maybe
our is_strong_password function could be used as part of a social network web-
site. Maybe our best_word function could be used as part of some Scrabble AI.
Overall, we’ve written some useful functions that could be part of larger programs.
And we did this without writing much code ourselves or, indeed, understanding
what the code even does.

However, we believe that you need to understand at a high level what code does.
Because this will require some time to learn, we’ve split this discussion over two chap-
ters. In this chapter, we’ll explain why reading code is important and introduce you

 61Why we need to read code

to a Copilot labs feature that can help you understand the code. After that, we’ll dive
into the top 10 programming features you’ll need to recognize in order to read most
basic code produced by Copilot. We’ll do the first five in this chapter and the remaining
five in the next chapter. Don’t worry: you've actually been informally introduced to all
10 already—we’re just going to deepen your understanding of each one.

4.1 Why we need to read code
When we talk about reading code, what we mean is understanding what code does by
looking at it. There are two such levels of understanding.

The first level is being able to understand, line by line, what a program will do. This
often involves tracing the values of variables as the code runs to determine exactly what
the code is doing at each step.

The second level is determining the overall purpose of a program. As professors,
we often test students at this level with questions that ask them to “explain in plain
English.”

At the end of these two chapters, we want you to do both levels of interpreting code
produced by Copilot. We’ll start focusing on that line-by-line understanding, but toward
the end of the chapter, you’ll start being able to look at a small chunk of code and deter-
mine its purpose.

We can illustrate the difference between the two levels of reading code by referring
back to our best_word function from chapter 3, reprinted in the following listing.

Listing 4.1 best_word function for Scrabble

def best_word(word_list):
 """
 word_list is a list of words.

 Return the word worth the most points.
 """
 best_word = ""
 best_points = 0
 for word in word_list:
 points = num_points(word)
 if points > best_points:
 best_word = word
 best_points = points
 return best_word

A tracing description of what this program does would be a description of each line. For
example, we would say that we’re defining a function called best_word. We have a
variable called best_word that we start off as a string with no characters, otherwise
known as the empty string. (It’s unfortunate that the function and this variable are
both called best_word, because it makes it trickier to refer to one or the other, but
that’s what Copilot gave us.) We also have another variable, best_points, that we
start at 0. Then we have a for loop over each word in the word_list. Inside the for

62 chapter 4 Reading Python code: Part 1

loop, we call our num_points helper function. And so on. (We’ll explain how we know
what each line of code does over this chapter and the next!)

In contrast, a description of the overall purpose would be something like our docstring
description: “Return the word with the highest Scrabble point value from a list of
words.” Rather than refer to each line, this description refers to the code’s purpose as a
whole, explaining what it does at a high level.

You’ll come to an overall-purpose level of understanding through a combination of
practice with tracing and testing, and we hope you arrive there in full glory by the end of
the book. Working at a tracing level generally precedes the ability to work at an overall-
purpose level [1], so in this chapter and the next, we’re going to focus on the tracing
level by understanding what each line of code does.

There are three reasons why we want you to be able to read code:

1 To help determine whether code is correct—In chapter 3, we practiced how to test the
code that Copilot gives us. Testing is a powerful skill for determining whether
code does the right thing, and we will continue to use it throughout the book.
But many programmers, the two of us included, will only test something if it
seems plausibly correct. If we can determine by inspection that the code is wrong,
then we won’t bother to test it: we’ll try to fix the code first. Similarly, we want you
to identify when code is simply wrong without having to spend time testing it.
The more code that you can identify as wrong (through quick tracing or honing
your overall purpose skills), the more time you save testing broken code.

2 To inform testing—Understanding what the code is doing line by line is useful on
its own, but it also helps turbocharge your ability to test effectively. For example,
in the next chapter, you’ll learn about loops—that they can cause your code to
repeat zero times, one time, two times, or as many times as needed. You’ll be able
to combine that knowledge with what you already know about testing to help you
identify important categories of cases to test.

3 To help you write code—We know, you want Copilot to write all of your code! We
want that, too. But inevitably, there will be code that Copilot just doesn’t get right,
no matter how much prompt engineering you do. Or maybe enough prompt
engineering could finally cajole Copilot to write the correct code, but it would be
simpler and faster to just do it ourselves. In writing this book, the two of us strive
to have Copilot write as much code as possible. But, because of our knowledge
of Python programming, we are often able to see a mistake and just fix it with-
out going through any hoops to have Copilot fix it for us. Longer term, we want
you to be empowered to learn more programming on your own, and having an
understanding of Python is our way to provide a bridge for you from this book
to other resources later. There is research evidence that being able to trace and
explain code is prerequisite to being able to write code [1].

Before we get to it, we need to be clear about the level of depth that we’re striving
for. We’re not going to teach you every nuance of every line of code. Doing so would

 63Asking Copilot to explain code

revert us back to the traditional way programming was taught prior to tools like Copi-
lot. Rather, through a combination of Copilot tools and our own explanations, we’re
going to help you understand the gist or overall goal of each line of code. You will need
more than this if you endeavor to write large portions of programs in the future. We
are trying to target the sweet spot between “this code is magic” and “I know exactly how
every line of the code works.”

4.2 Asking Copilot to explain code
In chapter 2, when setting up your computer to use GitHub Copilot, you installed the
GitHub Copilot Labs extension to Visual Studio Code (VS Code). This experimental
extension is changing rapidly and is designed to offer new features that are not quite
ready for everyday use. We’re going to show you one of its best features right now:
explaining what Python code does!

We suspect that, soon, the Copilot Labs extension, or parts of it, will be folded into
the main Copilot extension. If that happens, the specific steps we give here may vary
somewhat, and in that case, we encourage you to consult more general GitHub Copilot
documentation.

For now, with the Copilot Labs extension installed, you can highlight some code that
you want Copilot to describe to you. Let’s try this with our best_word function (figure
4.1).

Figure 4.1 The Copilot Labs view in VS Code

64 chapter 4 Reading Python code: Part 1

First, click the Copilot Labs tab in your Activity Bar (on the left-hand side of VS Code),
and you should see a window similar to figure 4.1.

Next, highlight all of the code for our best_word function as is highlighted in figure
4.2. (You may need to have Copilot generate the code for you again if you didn’t save it
from chapter 3.)

Figure 4.2 The code from the best_word function highlighted in the editor

After highlighting the code, you should now see the code appear on the left in the
Explain feature, as shown in figure 4.3.

Figure 4.3 The code from the best_word function appearing in Copilot Labs

Figure 4.4 shows the different prompts provided by Copilot that you can use to ask
for code explanations. Each will generally yield different responses that vary in how
specific they are and whether they produce fewer or more examples. We’ll leave it at
the default prompt of Explain Code, but if you like, you can try other prompts from
the drop-down box (shown in figure 4.4). The current options are Explain Code, Code

 65Asking Copilot to explain code

Does Following, Code Does Following (English), and Show Example Code. There’s
also a Custom option that allows you to use whatever prompt you like.

Figure 4.4 The different options for explaining your code in Copilot Labs

The last step is to click Ask Copilot (as shown as the bottom button in figure 4.3). You’ll
get an explanation of the code. As usual, Copilot is nondeterministic, so your results
will likely differ from ours. In fact, if an explanation is confusing you, you might try
clicking Ask Copilot again or changing the prompt to get a different explanation. As
educators, this is the start of a dream come true, where students will be able to ask for
as many explanations as they need to fully understand how code works.

Copilot Labs explanations can be wrong
As with the code produced by Copilot, the explanations from Copilot Labs can be wrong,
too. You might be thinking, “Wait, what’s the value of a tool to understand code if it can
be wrong?!” First, let us say that we agree that this can be really frustrating. However, it
is right often enough in our experience that it can be really helpful, particularly for under-
standing code basics like the things we’re teaching in these two chapters. Moreover,
what students do now when they are confused about their code is to ask friends or web-
sites about the code and, candidly, those make mistakes too. A way to help mitigate the
potential for error is to ask Copilot for its explanation a couple times because you are less
likely to get grossly incorrect answers across multiple tries.

Here’s what Copilot gave us the first time we asked:

""" Here is the explanation for the code above:
1. We define a function called best_word that takes one argument, word_list.
2. We define the variables best_word and best_points and set them equal to
the empty string and 0, respectively.
3. We use a for loop to iterate over the elements in word_list.

66 chapter 4 Reading Python code: Part 1

4. We define a variable called points that is equal to the result of calling
num_points with word as an argument.
5. We use an if statement to check if points is greater than best_points.
6. If it is, we set best_word equal to word and best_points equal to points.
7. Finally, we return best_word. """

To us, this is an excellent description of what the code does line by line. Notice, how-
ever, to make full sense of it, you need to know important Python terminology and
features. The explanation from Copilot refers to functions, arguments, variables,
strings, for loops, if statements, and returning. This explanation is quite useful if you
understand the terminology, but much less useful if you do not. By the end of this and
the next chapter, you will know the main terminology and features of Python that you
need to interpret a typical explanation from Copilot.

4.3 Top 10 programming features you need to know: Part 1
We’re going to give you a whirlwind tour of the 10 Python features that you’ll need
for the rest of your programming journey, starting with the first five of those in this
chapter.

Python is an interactive language, which makes it easier than other languages for
us to play around with and see what stuff does. We’ll take advantage of that here as we
explore programming features. This is how the two of us learned Python and, indeed,
how many thousands of programmers have done so. Don’t hesitate to experiment! To
get started, press Ctrl–Shift–P and type REPL, and then select Python: Start REPL. This
should result in the situation shown in figure 4.5.

Figure 4.5 Starting REPL from VS Code

This will put you back at the same Python prompt as in chapter 3 (as shown in figure
4.6), except with none of your functions loaded.

Figure 4.6 REPL running in VS Code

Then we can start typing Python code. For example, type

>>> 5 * 4

 67Top 10 programming features you need to know: Part 1

and press Enter. You’ll see the response of 20. We won’t spend time on simple math
here, but the way you interact with Python to learn how it works is exactly the same: you
type some code and Python responds.

4.3.1 #1. Functions

You learned all about functions in chapter 3, so let’s just summarize what we learned.
You use functions to break a large problem into smaller pieces. In retrospect, that
best_word function we wrote in chapter 3 is a pretty big task: it has to figure out which
word in a list of words is worth the most points. How many points is a word worth?
Aha—that’s a subtask that we can carve out from this function. And, indeed, we did
that in our earlier num_points function.

We design a function to take parameters, one parameter for each piece or collection
of data that the function needs to do its job. After doing their work, most functions use
return to send the answer back to the line of code that called them. When we call a
function, we pass values, known as arguments, with one value for each parameter, and
we often store that return value using a variable.

For each program we write, we’ll likely need to design a few functions, but there are
also some functions that are built-in to Python that we get for free. We can call those like
we call our own functions. For example, there’s a built-in max function that takes one or
more arguments and tells us the largest:

>>> max(5, 2, 8, 1)
8

There’s also the input function, which we used in our get_strong_password func-
tion from chapter 3. It takes an argument that becomes the prompt, and it returns
whatever the user types at the keyboard:

>>> name = input("What is your name? ")
What is your name? Dan
>>> name
'Dan'

If input is the function to receive input from the keyboard, is there an output func-
tion to output a message to the screen? Well, yes, but it’s called print, not output:

>>> print('Hello', name)
Hello Dan

4.3.2 #2. Variables

A variable is a name that refers to a value. We used variables in chapter 3 to keep track
of return values from functions. We also just used a variable here to hold the user’s
name. Whenever we need to remember a value for later, we use a variable.

To assign a value to a variable, we use the = (equal sign) symbol, which is called the
assignment symbol. It figures out the value of whatever is on the right and then assigns
that to the variable:

68 chapter 4 Reading Python code: Part 1

>>> age = 20 + 4
>>> age
24

The = symbol is different in Python than in math
The = sign is used in Python and other programming languages to denote assignment.
The variable on the left side of the equal symbol is given the value of the calculation per-
formed on the right side of the equal symbol. This is not a permanent relationship as the
variable can have its value changed. People new to programming who are strong in math
can find this confusing, but just remember that the = sign in Python means assignment,
not equality.

We can use the variable in a larger context, called an expression. The value that the vari-
able refers to gets substituted for its name:

>>> age + 3
27
>>> age
24

Variables persist in the Python prompt
We assigned age in the earlier batch of code. Why can we keep referring to it? Any vari-
able declared during a session of programming with your Python prompt will stick around
until you quit. That’s just how variables work in programs, too. They’re available as soon
as you assign a value to them.

But notice that the variable age didn’t change when we said age + 3! To change it, we
need another = assignment statement:

>>> age = age + 5
>>> age
29

Let’s see a few more ways to change what a variable refers to. We’ll include some expla-
nations as annotations with the code:

>>> age += 5
>>> age
34
>>> age *= 2
>>> age
68

The right-hand side of the equal symbol
is evaluated, which means 20 + 4 is
evaluated to be 24. Then the variable age
is assigned the value of 24.

Age is still available in the Python
prompt and has the value 24.
24 + 3 is evaluated to be 27.

The expression of age + 3
does not change age because
we did not reassign age.

We have changed age by doing an
assignment (the equal symbol).

A shortcut way to add. age += 5 is
equivalent to age = age + 5.

A shortcut way to multiply
by 2. age *= 2 is equivalent
to age = age * 2.

 69Top 10 programming features you need to know: Part 1

4.3.3 #3. Conditionals

Whenever our program has to make a decision, we need a conditional statement. For
example, in chapter 2, we needed to make a decision about which quarterbacks to
include in our data. To do so, we used if statements.

Remember our larger function from chapter 3? We’ve reproduced it here in the
following listing.

Listing 4.2 Function to determine the larger of two values

def larger(num1, num2):
 if num1 > num2:
 return num1
 else:
 return num2

The if-else structure in listing 4.2 is known as a conditional statement, and it allows
our program to make decisions. Here, if num1 is greater than num2, then num1 is
returned; else, num2 is returned. That’s how it returns the larger one!

After if, we put a Boolean condition (num1 > num2). A Boolean condition is an
expression that tests a condition where the result would either be True or False. If it’s
True, then the code under the if runs; if it’s False, then the code under the else runs.
We create Boolean expressions using comparison symbols such as >= for greater than
or equal to, < for less than, and != for not equal to. Notice that we’re using indentation
not only for the code of the function but also for the code of the if and else parts of
the if-else statement. Indentation is necessary for the code to function properly, so it
is worth paying attention to (in the next chapter, we talk more about indentation). This
is how Python knows which lines of code belong to the function and which additionally
belong to the if or else.

We can play around with conditional statements at the Python prompt, too—we
don’t need to be writing code inside of a function. Here’s an example:

>>> age = 40
>>> if age < 40:
... print("Binging Friends")
... else:
... print("What's binging?")
...
What's binging?

num1 > num2 is an
expression that will be True
if num1 is greater than
num2 and False if num1 is
less than or equal to num2.

This line is
executed when
num1 is
greater than
num2.

else is a keyword that must be paired
with an if keyword. When the if
doesn’t execute (num1 > num2 is
False), the else executes instead.

This line is
executed
when num1 is
not greater
than num2.

We assign 40 to age.
Because age is 40, this code
is asking whether 40 < 40.
It’s not, so the if part of the
code is skipped.

The else portion
runs because the
if condition is
False.

70 chapter 4 Reading Python code: Part 1

You’ll notice that the prompt changes from >>> to ... when you’re typing inside the
if statement. The change of prompt lets you know that you’re in the middle of typing
code that you need to complete. You need an extra press of Enter when you’re done
with the else code to get out of the ... prompt and back to the >>> prompt.

We set the age variable to 40. As 40 < 40 is False, the else runs.
Let’s try again, this time making the if run:

>>> age = 25
>>> if age < 40:
... print("Binging Friends")
... else:
... print("What's binging?")
...
Binging Friends

You might see some if statements with no else part, and that’s okay: the else part
is optional. In that case, if the condition is False, then the if statement won’t do
anything:

>>> age = 25
>>> if age == 30:
... print("You are exactly 30!")
...

Notice that the way to test whether two values are equal is to use two equal signs, (==),
not one equal sign. (We already know that one equal sign is for the assignment state-
ment to assign a value to a variable!)

What do you do if you have more than two possible outcomes? For example, let’s say
that people’s age determines the show that they’ll likely binge, like in table 4.1.

Table 4.1 Possible favorite TV shows by age

Age Show

30–39 Friends

20–29 The Office

10–19 Pretty Little Liars

0–9 Chi’s Sweet Home

We can’t capture all these outcomes with just an if-else, so the elif (short for
else-if) allows us to capture the logic for more than two possible outcomes as shown
in the following code. We’re presenting this code without the python prompt (>>>)
and ... since this would be a lot to type:

We assign 25 to age.

Because age is 25, this is
asking whether 25 < 40. It is,
so the if part of the code runs.

The else portion
doesn’t run.

We assign 25 to age.

== tests to see if the two
values are equal

 71Top 10 programming features you need to know: Part 1

if age >= 30 and age <= 39:
 print("Binging Friends")
elif age >= 20 and age <= 29:
 print("Binging The Office")
elif age >= 10 and age <= 19:
 print("Binging Pretty Little Liars")
elif age >= 0 and age <= 9:
 print("Binging Chi's Sweet Home")
else:
 print("What's binging?")

We’re using and to capture a complex condition. For example, in the first line, we want
age to be greater than or equal to 30 and less than or equal to 39. Python works from
top to bottom, and when it finds a condition that’s true, it runs the corresponding
indented code. Then it stops checking any remaining elifs or else—so if two condi-
tions happened to be true, only the code for the first one would run.

Try experimenting with various values for the age variable to observe that the correct
code runs in each case. In fact, if we were serious about testing this code, we could use
the if statement structure for a good sense of the values we’d want to test. It’s all about
testing the boundaries of values. For example, we definitely want to test the ages 30 and
39 to make sure, for example, that we’re correctly capturing the full 30–39 range with
the first condition. Similarly, we’d want to test 20, 29, 10, 19, 0, 9, and then something
larger than 39 to test the else way at the bottom.

If you use additional ifs rather than elifs, then they become separate if state-
ments, rather than a single if statement. This matters, because Python always checks
each independent if statement on its own, regardless of what may have happened in
previous if statements.

For example, let’s change the elifs to ifs in our age code. That gives us the
following:

if age >= 30 and age <= 39:
 print("Binging Friends")
if age >= 20 and age <= 29:
 print("Binging The Office")
if age >= 10 and age <= 19:
 print("Binging Pretty Little Liars")
if age >= 0 and age <= 9:
 print("Binging Chi's Sweet Home")
else:
 print("What's binging?")

Suppose that you put age = 25 above this code and run it. What do you think will
happen?

Well, the second if condition age >= 20 and age <= 29 is True, so we’ll certainly
output Binging The Office. But that’s not all that happens! Remember, because we’re

This is True if both age >=
30 and age <= 39 are true;
for example, if age were 35.

This condition is checked if
the above condition is False.

This code runs if all
conditions above are False.

This condition is
always checked.

This condition is
always checked.

This condition is
always checked.

This else goes with
the most recent if
statement.

72 chapter 4 Reading Python code: Part 1

using ifs here, each of the remaining ones is going to be checked. (If they were elifs,
we’d be done.) age >= 10 and age <= 19 is False, so we’re not going to output Bing-
ing Pretty Little Liars.

The final if condition age >= 0 and age <= 9 is also False, so we’re not going to
output Binging Chi's Sweet Home. But this if has an else! So, we are going to output
What's binging? We didn’t intend this! We only wanted What's binging? for people
over 40. This is all to say that if and elif behave differently and that we need to be
using the one that matches the behavior that we want (if if we want multiple chunks of
code to potentially run, and elif if we want only one).

4.3.4 #4. Strings

As we learned in chapter 3, a string is the type we use whenever we want to store text.
Text is everywhere—stats like in chapter 2, passwords, books—so strings show up in
almost every Python program.

We use quotation marks to indicate the beginning and end of the string. You’ll see
Copilot use double quotes or single quotes. It doesn’t matter which you use; just be sure
to start and end the string with the same type of quote.

Strings come with a powerful set of methods. A method is a function that’s associated
with a particular type—in this case, strings. The way you call a method is a little differ-
ent than how you call a function: we need to put the value on which we’re calling the
method first, outside of the parentheses, followed by a dot.

In chapter 3, Copilot used some string methods to implement is_strong_
password. Let’s try using those methods here to gain a better understanding of how
they work:

>>> 'abc'.isupper()
False
>>> 'Abc'.isupper()
False
>>> 'ABC'.isupper()
True

>>> 'abc'.isdigit()
False
>>> '345bc'.isdigit()
False
>>> '345'.isdigit()
True

>>> 'abc6'.isalnum()
True
>>> 'abc def'.isalnum()
False
>>> 'abcdef#'.isalnum()
False

There are many other string methods as well. Some help you convert strings between
lowercase and uppercase, others help you search a string, and still others help you for-
mat a string (for example, centering or right-justifying it).

isupper needs all
characters to be
uppercase for it to
return True.

isdigit needs all
characters to be
numbers for it to
return True.

isalnum needs all characters
to be alphanumeric to return
True (a space is not
considered alphanumeric).

 73Top 10 programming features you need to know: Part 1

Copilot’s Explain feature can often be helpful if you’re not sure what a given string
method does. For example, what does this function do?

def clean_number(phone_number):
 phone_number = phone_number.replace('(', '')
 phone_number = phone_number.replace(')', '')
 phone_number = phone_number.replace('-', '')
 return phone_number

The first time we asked Copilot to explain, we got this:

""" Here is the explanation for the code above:
1. The replace() method returns a copy of the string in which the occurrences
of old have been replaced with new, optionally restricting the number of
replacements to max.
2. When we call the replace() method and pass in the value of the first
argument, the method will look for that value in the string and replace it
with the value of the second argument. If we call the method again and pass
in a different value, the method will look for that value and replace it with
the value of the second argument. We can call the method as many times as we
want to replace as many values as we want.
3. In the above code, we are calling the replace() method three times to
replace the '(', ')' and '-' characters in the phone number with empty
strings. """

This is all accurate information, but one thing it fails to answer is whether we are get-
ting rid of every (,), and - in the phone number or only the first of each? It turns out
that the replace method replaces them all! So, if a phone number had multiple paren-
theses or dashes, they would all be gone in the returned phone number. The reason
that they’re gone is because we’re replacing each with the empty string, and the empty
string has no characters. To learn about this nuance of the replace method, you could
conduct your own testing using replace at the Python prompt.

Other times, we received very general information about what a function does and
what returning a value does—not very helpful in this specific case.

Here’s another explanation that we got:

""" Here is the explanation for the code above:
1. First we convert the phone_number argument into a string
2. Then we replace the parentheses and dashes from the string with nothing.
This will remove the parentheses and dashes from the string.
3. Then we return the string with the parentheses and dashes removed. """

Points 2 and 3 are accurate, but point 1 is wrong. We aren’t converting anything to a
string! This is an example of why we need a baseline of Python knowledge: to help us
separate truth from bits of incorrect information.

You’ll also often see what look like mathematical operators being used on strings.
They are the same as math symbols, but they do different things on strings. The + oper-
ator is used to put two strings together, and the * operator is used to repeat a string a
specific number of times. For example,

Removes all (
characters from
phone number

Removes all)
characters
from phone
number

Removes all – characters
from phone number

74 chapter 4 Reading Python code: Part 1

>>> first = 'This is a '
>>> second = 'sentence.'
>>> sentence = first + second
>>> print(sentence)
This is a sentence.
>>> print('-=' * 5)
-=-=-=-=-=

4.3.5 #5. Lists

A string is great when we have a sequence of characters, like a password or a single
Scrabble word. But sometimes we need to store many words or many numbers. For
that, we need a list.

We used a list in chapter 3 for the best_word function, because that function needed
to work with a list of individual words.

Whereas we use quotation marks to start and end a string, we use opening and clos-
ing square brackets to start and end a list. And, as for strings, there are many methods
available on lists. To give you an idea of the kinds of list methods available and what they
do, let’s explore some of these:

>>> books = ['The Invasion', 'The Encounter', 'The Message']
>>> books
['The Invasion', 'The Encounter', 'The Message']
>>> books.append('The Predator')
>>> books
['The Invasion', 'The Encounter', 'The Message', 'The Predator']
>>> books.reverse()
>>> books
['The Predator', 'The Message', 'The Encounter', 'The Invasion']

Many Python types, including strings and lists, allow you to work with particular values
using an index. The index starts at 0 and goes up to, but not including, the number of
values. That is, the first value has index 0 (not index 1!), the second has index 1, and
so on. The last value in the list is at the index that’s the length of the list minus 1. The
length of the list can be determined by using the len function. For example, if we do
len(books), we’ll get a value of 4 (so the valid indices are from 0 up to and including
3). People also often use negative indices, which gives another way to index each value:
the rightmost value has index –1, the value to its left has index –2, and so on. Figure 4.7
depicts this example with both positive and negative indexing.

“The Encounter”
“The Invasion”

“The Message”
“The Predator”

Figure 4.7 List
elements can be
accessed through
either positive or
negative indexes.

Combines first and second strings
and assigns result to sentence

Repeats the -= string
five times

A list with three string values in it

Adds a new string value
to the end of the list

Reverses the list (now the values
are in the opposite order)

 75Top 10 programming features you need to know: Part 1

Let’s practice indexing on the current books list:

>>> books
['The Predator', 'The Message', 'The Encounter', 'The Invasion']
>>> books[0]
'The Predator'
>>> books[1]
'The Message'
>>> books[2]
'The Encounter'
>>> books[3]
'The Invasion'
>>> books[4]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range
>>> books[-1]
'The Invasion'
>>> books[-2]
'The Encounter'

There’s also a way to pull multiple values out of a string or list, rather than just one. It’s
called slicing. We specify the index of the first value, a colon, and the index to the right
of the value, like this:

>>> books[1:3]
['The Message', 'The Encounter']

We specified 1:3, so you might expect to get the values including index 3. But the value
at the second index (the one after the colon) is not included. It’s counterintuitive but
true!

If we leave out the starting or ending index, Python uses the start or end as
appropriate:

>>> books[:3]
['The Predator', 'The Message', 'The Encounter']
>>> books[1:]
['The Message', 'The Encounter', 'The Invasion']

We can also use indexing to change a specific value in a list. For example,

>>> books
['The Predator', 'The Message', 'The Encounter', 'The Invasion']
>>> books[0] = 'The Android'
>>> books[0]
'The Android'
>>> books[1] = books[1].upper()
>>> books[1]
'THE MESSAGE'
>>> books
['The Android', 'THE MESSAGE', 'The Encounter', 'The Invasion']

books[0] corresponds
to the first element.

Error because index
3 is the last book!

books[-1] refers to the
last element in the list.

Starts at index 1, end
at index 2 (not 3!)

Same as using books[0:3]

Same as using
books[1:4]

Changes books[0] to
refer to the string
value “The Android”

Changes books[1] to be
in all uppercase

76 chapter 4 Reading Python code: Part 1

If we try that on a string, though, we get an error:

>>> title = 'The Invasion'
>>> title[0]
'T'
>>> title[1]
'h'
>>> title[-1]
'n'
>>> title[0] = 't'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

A string is known as an immutable value, which means that you cannot change its charac-
ters. You can only create an entirely new string. By contrast, a list is known as a mutable
value, which means that you can change it.

4.3.6 Conclusion

In this chapter, we introduced you to five of the most common code features in Python.
We’ll continue with five more in the next chapter. We also showed you how you can
use the Copilot explanation tool to help you understand what the code is doing and
offered guidance for verifying the veracity of these explanations. Table 4.2 provides a
summary of the features we covered in this chapter.

Table 4.2 Summary of Python code features from this chapter

Code element Example Brief description

Functions def larger(num1, num2) Code feature that allows us to man-
age code complexity. Functions take
in inputs, process those inputs, and
possibly return an output.

Variables age = 25 A human readable name that refers
to a stored value. It can be assigned
using the = assignment statement.

Conditionals if age < 18:
 print("Can't vote")

else:

 print("Can vote")

Conditionals allow the code to make
decisions. In Python, we have three
key words associated with condition-
als: if, elif, and else.

Strings name = 'Dan' Strings store a sequence of charac-
ters (text). There are many powerful
methods available for modifying
strings.

Lists list = ['Leo', 'Dan'] A sequence of values of any type.
There are many powerful methods
available for modifying lists.

Looking up a char works fine.

But assigning doesn’t!

 77Summary

Summary
¡	We need to be able to read code to determine whether it is correct, test it effec-

tively, and write our own code when needed.

¡	The Copilot Labs Extension can provide line-by-line explanations of code to
explain to you what the code is doing.

¡	Python has built-in functions such as max, input, and print that we call just like
we call our own functions.

¡	A variable is a name that refers to a value.

¡	An assignment statement makes a variable refer to a specific value.

¡	An if statement is used to have our programs make decisions and proceed down
one of multiple paths.

¡	A string is used to store and manipulate text.

¡	A method is a function associated with a particular type.

¡	A list is used to store and manipulate a general sequence of values (like a sequence
of numbers or a sequence of strings).

¡	Each value in a string or list has an index; indexing starts at 0, not 1.

¡	Strings are immutable (not changeable); lists are mutable (changeable).

78

5Reading Python
code: Part 2

This chapter covers

¡	Repeating code the required number of times
 using loops
¡	Using indentation to tell Python which code
 goes together
¡	Building dictionaries to store pairs of
 associated values
¡	Setting up files to read and process data
¡	Adding modules to extend Python into new
 domains
¡	Asking Copilot to explain code

In chapter 4, we explored five Python features that you’re going to see all the time as
you continue in your programming journey: functions, variables, conditionals (if
statements), strings, and lists. You need to know those features to read code, and
we explained why being able to read code is important whether or not we’re using
Copilot.

We’re going to continue in this chapter with five more Python features, which
will round out our top 10. As in chapter 4, we’ll do this through a combination of
our own explanations, explanations from Copilot, and experimenting at the Python
prompt.

 79Top 10 programming features you need to know: Part 2

5.1 Top 10 programming features you need to know: Part 2
Let’s continue where we left off in the last chapter with feature number 6.

5.1.1 #6. Loops

A loop allows the computer to repeat the same block of code as many times as needed.
If a single one of our top 10 programming features exemplifies why computers are
so useful for helping us get work done, it’s this one. Without the ability to loop, our
programs would generally execute in order, line by line. Sure, they could still call func-
tions and use if statements to make decisions, but the amount of work a program does
would be proportional to the amount of code we write. Not so with loops: a single loop
can process thousands or millions of values with ease.

There are two types of loops: for loops and while loops. Generally speaking, we use
a for loop whenever we know how many times we need the loop to run, and we use a
while loop when we don’t. For example, in chapter 3, our best_word function (repro-
duced as listing 5.1) used a for loop because we know how many times we want the loop
to run. It’s once for each word in word_list! But in get_strong_password (which
we’ll see again in listing 5.4), we used a while loop, because we have no idea how many
bad passwords the user is going to type before they type a strong one. We’ll start with
for loops and then move onto while loops.

Listing 5.1 Best_word function from chapter 3

def best_word(word_list):
 """
 word_list is a list of words.

 Return the word worth the most points.
 """
 best_word = ""
 best_points = 0
 for word in word_list:
 points = num_points(word)
 if points > best_points:
 best_word = word
 best_points = points
 return best_word

A for loop allows us to access each value in a string or list. Let’s try it with a string first:

>>> s = 'vacation'
>>> for char in s:
... print('Next letter is', char)
...
Next letter is v
Next letter is a
Next letter is c
Next letter is a
Next letter is t
Next letter is i
Next letter is o
Next letter is n

This is an example
of a for loop.

This repeats the
indented code one
time for each
character of s.Because “vacation” has

eight letters, this code will
run eight times.

80 chapter 5 Reading Python code: Part 2

Notice that we don’t need an assignment statement for char. That’s because it’s a spe-
cial variable called a loop variable that’s automatically managed by the for loop. char
stands for character, and it’s an extremely popular name that people use for the loop
variable. The char variable automatically gets assigned to each character of the string.
When talking about a loop, we often use the word iteration to refer to the code that
executes each time through the loop. Here, for example, we would say that on the first
iteration, char refers to "v"; on the second iteration, it refers to "a"; and so on. Python
automatically assigns the variable to each character of the string. Notice also, just like
for functions and if statements, we have indentation for the code that makes up the
loop. We have only one line of code in the body of this loop, but for functions and if
statements, we could have more.

Let’s see an example of a for loop on a list this time. We’ll also throw two lines of
code into the loop to demonstrate how that works, too.

Listing 5.2 Loop example using a for loop

>>> lst = ['cat', 'dog', 'bird', 'fish']
>>> for animal in lst:
... print('Got', animal)
... print('Hello,', animal)
...
Got cat
Hello, cat
Got dog
Hello, dog
Got bird
Hello, bird
Got fish
Hello, fish

The code in listing 5.2 is just one way to loop through a list. The approach of for
animal in lst assigns the variable animal to the next value in the list each time
through the loop. Alternatively, you could use an index to access each element of the
list. To do that, we need to learn about the built-in range function.

The range function gives you numbers within a range. We can provide a starting
number and an ending number, and it will produce the range that goes from the start-
ing number up to, but not including, the ending number. If we want to see the numbers
that range produces, we need to put the list function around it. Here’s an example
of using range:

>>> list(range(3, 9))
[3, 4, 5, 6, 7, 8]

Notice that it starts with the value 3 and includes all values between 3 and 8. That is,
it includes all numbers from the starting value 3 up to, but not including, the ending
value 9.

1st is a list, so
this is a for loop
on a list.

This code runs on
each iteration.

Produces the range
from 3 to 8 (not 3 to 9!)

 81Top 10 programming features you need to know: Part 2

Now, how is range going to help us write a loop? Well, rather than hard-coding num-
bers like 3 and 9 in the range, we can include the length of a string or list, like this:

>>> lst
['cat', 'dog', 'bird', 'fish']
>>> list(range(0, len(lst)))
[0, 1, 2, 3]

Notice that the range here is 0, 1, 2, 3, which are exactly the valid indices of our lst
list! We can therefore use range to control a for loop, and that will give us access to
each valid index from the string or list.

We can use range to perform the same task in listing 5.2. See listing 5.3 for the new
code.

Listing 5.3 Loop example using for loop and range

>>> for index in range(0, len(lst)):
... print('Got', lst[index])
... print('Hello,', lst[index])
...
Got cat
Hello, cat
Got dog
Hello, dog
Got bird
Hello, bird
Got fish
Hello, fish

We’ve used a variable named index here, but you’ll also often see people use just i for
simplicity. That variable will be given the value 0 for the first iteration of the loop, 1 for
the second, 2 for the third, and 3 for the last iteration. It stops at 3 because the length
of the list is 4, and range stops one before that. Using indexing into the list, the code
grabs the first element, then the second, then the third, and then the fourth, using the
increasing indexes. We could have also written the for loop without the 0; range will
assume we want the values between 0 and the value provided, like this:

for index in range(len(lst)):
 print('Got', lst[index])
 print('Hello,', lst[index])

We’ll stop here with for loops. But we’re not done with loops yet because there’s
another type of loop that we need to talk about: the while loop.

We use a while loop when we don’t know how many times to loop. A nice example
of this situation is in our get_strong_password function from chapter 3. We’ve repro-
duced that code here as listing 5.4.

Start at 0 and go up to, but not
including the length of 1st.

for loop using
the range
function

Indexing into the list
using the index variable

With one argument,
range assumes that we
want to start at 0.

82 chapter 5 Reading Python code: Part 2

Listing 5.4 get strong_password function from chapter 3

def get_strong_password():
 """
 Keep asking the user for a password until it is a strong password,
 and return that strong password.
 """
 password = input("Enter a strong password: ")
 while not is_strong_password(password):
 password = input("Enter a strong password: ")
 return password

We have no idea how many passwords the user is going to type until they type a strong
one. Will it be on the first try? Second try? Fiftieth try? Who knows. That’s why we need
a while loop: it ensures that the user is asked again and again until they provide a
strong password.

To write a while loop, we follow while with a Boolean condition. If it’s True, Python
runs one iteration of the loop. If, after that iteration, that Boolean condition is still
True, then it runs another iteration. It keeps doing that until the condition is False, at
which point the loop terminates.

Now we have enough information to make sense of the code for our get_strong_
password function. By looking at the code, we can see that it begins by using the input
function to ask the user for a password. Then there’s a while loop. This loop continues
as long as the password is not a strong password. And, to avoid an infinite loop and to
ask the user to try again, we have another use of input inside of the loop. We need the
call of input above the loop to get the first try from the user. Without that, the pass-
word variable wouldn’t exist, and the while loop line would give an error because it
would not have a password value to pass to the is_strong_password function.

When we asked Copilot for an explanation of this code, here’s what we got:

""" Here is the explanation for the code above:
1. The function, get_strong_password() is defined.
2. The function returns the password only if it is strong, otherwise it keeps
asking for a strong password.
3. The while loop is used here because we don't know how many times the user
will enter a wrong password.
4. The is_strong_password() function is used to check if the password is
strong or not. """

This explanation is a very good description of the function and matches the descrip-
tion that we just gave! It contains useful general Python information as well, including
a reminder in step 3 of why exactly we are using a while loop.

Copilot explanations can be wrong
We chose the previous Copilot explanation because it was the best answer from Copilot
after we asked it to explain the code three times. One of the answers it gave us sounded
quite plausible, until it started talking about functions that didn’t exist. We believe the
explanations can be helpful as a learning aid if you run it multiple times and look for
common ideas, but a principal goal of this chapter is to give you the tools you need to
understand when it makes mistakes.

Keeps looping while
the password is not
strong

 83Top 10 programming features you need to know: Part 2

(continued)
We’ll let you use Copilot explanations going forward and, if you’re interested, we encour-
age you to ask Copilot to explain any code from prior chapters that you’re still curious
about. We do need to caution you again that these explanations can be wrong and that
you should ask Copilot for several explanations to limit your reliance on a single errone-
ous explanation.

As with anything related to AI coding assistants right now: they’re going to mess up.
But we’ve introduced Copilot explanations here because we see them as a potentially
powerful teaching resource now and that will become even more true as Copilot further
improves.

We’re supposed to use a while loop in these kinds of situations where we don’t know
how many iterations there will be. But we can use a while loop even when we know
how many iterations there are. For example, we can use a while loop to process the
characters in a string or the values in a list. We sometimes see Copilot do this, even
though a for loop would have been a better choice. For example, we can use a while
loop to process the animals in our earlier animals list, as in the following listing. It’s
more work, though!

Listing 5.5 Loop example using a while loop

>>> lst
['cat', 'dog', 'bird', 'fish']
>>> index = 0
>>> while index < len(lst):
... print('Got', lst[index])
... print('Hello,', lst[index])
... index += 1
...
Got cat
Hello, cat
Got dog
Hello, dog
Got bird
Hello, bird
Got fish
Hello, fish

Without the index += 1, we would never increase the index through the string, and
we’d print out the information for the first value over and over. That’s called an infinite
loop. If you think back to how we wrote for loops, you’ll find that we didn’t have to
manually increase any index variable. For such reasons, programmers prefer to use for
loops when they can. We don’t have to manually keep track of any index in a for loop, so
we automatically avoid certain kinds of indexing problems and infinite loops.

5.1.2 #7. Indentation

Indentation is critical in Python code because Python uses it to determine which lines
of code go together. That’s why, for example, we always indent all of the lines of code

len tells us the length of the
string and is the number of
iterations we want.

It’s a common human
error to leave this out!

84 chapter 5 Reading Python code: Part 2

inside of a function, the various portions of an if statement, and the code for a for or
while loop. It’s not just nice formatting: if we get the indentation wrong, then we get
the code wrong.

For example, let’s say that we want to ask the user for the current hour and then out-
put some text based on whether it is morning, afternoon, or evening:

¡	If it is morning, we want to output “Good morning!” and “Have a nice day.”

¡	If it is afternoon, we want to output “Good afternoon!”

¡	If it is evening, we want to output “Good evening!” and “Have a good night.”

We’ve written the following code; do you see a problem with the indentation?

hour = int(input('Please enter the current hour from 0 to 23: '))

if hour < 12:
 print('Good morning!')
 print('Have a nice day.')
elif hour < 18:
 print('Good afternoon!')
else:
 print('Good evening!')
print('Have a good night.')

The problem is the last line: it’s not indented, but it should be! Because it is not
indented, we will output Have a good night. regardless of which hour the user types
in. We need to indent it so that it is part of the else portion of the if statement, ensur-
ing that it only executes when it is evening.

Whenever we write code, we need to use multiple levels of indentation to express
which pieces of code are associated with functions, if statements, loops, and so on. For
example, when we write a function header, we need to indent all the code associated
with that function below the function header. Some languages use brackets (like {})
to show this, but Python just indents. If you are already in the body of a function (one
indent) and write a loop, then you’ll have to indent again (two indents) for the body of
the loop, and so forth.

Looking back at our functions from chapter 3, we can see this in action. For exam-
ple, in our larger function (reprinted as listing 5.6), the whole body of the function
is indented, but there’s further indentation on the if portion and the else portion of
the if statement.

Listing 5.6 Function to determine the larger of two values

def larger(num1, num2):
 if num1 > num2:
 return num1
 else:
 return num2

This is not indented.

This shows a single indent for body of the function.

This shows a double indent for body of
the function and body of if statement.

This shows a single
indent for body of
the function.

This shows a double indent for body of the
function and body of the else statement.

 85Top 10 programming features you need to know: Part 2

Or consider our get_strong_password function that we looked at in listing 5.4: as
usual, everything in the function is indented, but there’s further indentation for the
body of the while loop.

There are even more levels of indentation in the first version of our num_points
function (reproduced here from chapter 3 as listing 5.7). That’s because, inside of the
for loop through each character of the word, we have an if statement. Each piece of
the if statement, as we have learned, needs to be indented, leading to the extra level of
indentation.

Listing 5.7 num_points function

def num_points(word):
 """
 Each letter is worth the following points:
 a, e, i, o, u, l, n, s, t, r: 1 point
 d, g: 2 points
 b, c, m, p: 3 points
 f, h, v, w, y: 4 points
 k: 5 points
 j, x: 8 points
 q, z: 10 points

 word is a word consisting of lowercase characters.
 Return the sum of points for each letter in word.
 """
 points = 0
 for char in word:
 if char in "aeioulnstr":
 points += 1
 elif char in "dg":
 points += 2
 elif char in "bcmp":
 points += 3
 elif char in "fhvwy":
 points += 4
 elif char == "k":
 points += 5
 elif char in "jx":
 points += 8
 elif char in "qz":
 points += 10
 return points

There’s additional indentation in is_strong_password, too (reproduced from chap-
ter 3 as listing 5.8), but that’s only to spread out one super long line of code across
multiple lines. Notice that the lines end with \, which is the character that allows us to
continue a line of code on the next line.

This is indented to be
inside the function.

This is indented
again to be inside
the for loop.This is

indented yet
again to be
inside the if
statement.

86 chapter 5 Reading Python code: Part 2

Listing 5.8 is_strong_password function

def is_strong_password(password):
 """
 A strong password has at least one uppercase character,
 at least one number, and at least one punctuation.

 Return True if the password is a strong password,
 False if not.
 """
 return any(char.isupper() for char in password) and \
 any(char.isdigit() for char in password) and \
 any(char in string.punctuation for char in password)

Similarly, there’s some further indentation in our second version of num_points
(reproduced from chapter 3 as listing 5.9), but that’s just to spread the dictionary out
over multiple lines to make it more readable.

Listing 5.9 num_points alternative solution

 def num_points(word):
 """
 Each letter is worth the following points:
 a, e, i, o, u, l, n, s, t, r: 1 point
 d, g: 2 points
 b, c, m, p: 3 points
 f, h, v, w, y: 4 points
 k: 5 points
 j, x: 8 points
 q, z: 10 points

 word is a word consisting of lowercase characters.
 Return the sum of points for each letter in word.
 """
 points = {'a': 1, 'e': 1, 'i': 1, 'o': 1, 'u': 1, 'l': 1,
 'n': 1, 's': 1, 't': 1, 'r': 1,
 'd': 2, 'g': 2,
 'b': 3, 'c': 3, 'm': 3, 'p': 3,
 'f': 4, 'h': 4, 'v': 4, 'w': 4, 'y': 4,
 'k': 5,
 'j': 8, 'x': 8,
 'q': 10, 'z': 10}
 return sum(points[char] for char in word)

Indentation makes a huge difference on what our programs ultimately do. For exam-
ple, let’s compare putting two consecutive loops versus nesting one in the other using
indentation. Here are two loops in a row:

The line ends with a
backslash to continue

the statement.

The indent is not required but is useful for
visually laying out the single return statement.

We’re allowed
to write a

dictionary
value over

multiple lines.

The indent is not
required but is useful
for visually laying out
the dictionary.

 87Top 10 programming features you need to know: Part 2

>>> countries = ['Canada', 'USA', 'Japan']
>>> for country in countries:
... print(country)
...
Canada
USA
Japan
>>> for country in countries:
... print(country)
...
Canada
USA
Japan

That caused us to get the same output twice because we looped two separate times
through the countries list.

Now, if instead we nest the loops, this happens:

>>> for country1 in countries:
... for country2 in countries:
... print(country1, country2)
...
Canada Canada
Canada USA
Canada Japan
USA Canada
USA USA
USA Japan
Japan Canada
Japan USA
Japan Japan

We’ve used different variable names, country1 and country2, for each for loop, so
that we can refer to both.

On the first iteration of the country1 loop, country1 refers to Canada. On the first
iteration of the country2 loop, country2 refers to Canada as well. That’s why the first
line of output is Canada Canada. Did you expect the next line of output after that
to be USA USA? That isn’t what happens! Instead, the country2 loop moves on to its
next iteration, but the country1 loop doesn’t move yet. The country1 loop only moves
ahead when the country2 loop is complete. That’s why we get Canada USA and Canada
Japan before the country1 loop finally moves on to its second iteration. When one
loop is inside of another loop, this is called nested loops. In general, when there’s nesting,
the inner loop (for country2 in countries) will complete all of its steps before the
outer loop (for country1 in countries) moves on to its next step (which in turn will
restart the inner loop (for country2 in countries).

If you see a loop nested inside another loop, chances are good that the loops are
being used to process two-dimensional data. Two-dimensional data is data that is orga-
nized into rows and columns, of the kind you might see in a table (like table 5.1). This

This is the first loop.

This is the second
loop (happens after
the first loop).

This is the
first loop.

This is the nested
loop inside of the
first loop.

print is nested in the
second loop that is

nested in the first loop.

88 chapter 5 Reading Python code: Part 2

kind of data is really common in computing because it includes basic spreadsheet data
like CSV files, images like photos or a single frame of video, or the computer screen.

In Python, we can store two-dimensional data using a list where the values themselves
are other lists. Each sub-list in the overall list is one row of data, and each row has a value
for each column.

For example, say we had some data about the figure skating medals won at the 2018
Winter Olympics, as shown in table 5.1.

Table 5.1 Medals in the 2018 Winter Olympics

Nation Gold Silver Bronze

Canada 2 0 2

OAR 1 2 0

Japan 1 1 0

China 0 1 0

Germany 1 0 0

We could store this as a list, with one country per row:

>>> medals = [[2, 0, 2],
... [1, 2, 0],
... [1, 1, 0],
... [0, 1, 0],
... [1, 0, 0]]

Notice that our list of lists is just storing the numeric values, and we can find a value
in the list of lists by referring to its row and column (for example, Japan’s gold medal
corresponds to the row at index 2 and the column at index 0). We can use an index to
get a complete row of data:

>>> medals[0]
[2, 0, 2]
>>> medals[1]
[1, 2, 0]
>>> medals[-1]
[1, 0, 0]

If we do a for loop on this list, we get each complete row, one row at a time:

>>> for country_medals in medals:
... print(country_medals)
...
[2, 0, 2]
[1, 2, 0]
[1, 1, 0]
[0, 1, 0]
[1, 0, 0]

If we want just a specific value from the medals list (not a whole row), we have to index
twice:

This is row 0 (first row).

This is row 1 (second row).

This is the last row.

The for loop gives us
one value of the list
at a time (i.e., one
sub-list at a time).

 89Top 10 programming features you need to know: Part 2

>>> medals[0][0]
2
>>> medals[0][1]
0
>>> medals[1][0]

1

Suppose we want to loop through each value individually. To do that, we can use nested
for loops. To help us keep track of exactly where we are, we’ll use range for loops
so that we can print out the current row and column numbers in addition to the value
stored there.

The outer loop will go through the rows, so we need to control it using
range(len(medals)). The inner loop will go through the columns. How many col-
umns are there? Well, the number of columns is the number of values in one of the
rows, so we can use range(len(medals[0])) to control this loop.

Each line of output will provide three numbers: the row coordinate, the column
coordinate, and the value at that row and column. Here’s the code and output:

>>> for i in range(len(medals)):
... for j in range(len(medals[i])):
... print(i, j, medals[i][j])
...
0 0 2
0 1 0
0 2 2
1 0 1
1 1 2
1 2 0
2 0 1
2 1 1
2 2 0
3 0 0
3 1 1
3 2 0
4 0 1
4 1 0
4 2 0

Notice how the row stays constant for the first three lines of output, during which the
column varies from 0 to 2. That’s how we work our way through the first row. Only then
does the row increase to 1, at which point we complete the work for columns 0 to 2 on
this new row.

Nested loops give us a systematic way to loop through each value in a two-dimen-
sional list. You’ll see them frequently when dealing with two-dimensional data in gen-
eral, such as images, board games, and spreadsheets.

This is row 0, column 0.

This is row 0, column 1.

This is row 1, column 0.

This loops through the rows.

This loops through
the columns for the
current row.

90 chapter 5 Reading Python code: Part 2

5.1.3 #8. Dictionaries

Remember that each value in Python has a specific type. There are a lot of different
types because there are many kinds of values that we might want to use! We’ve talked
about using numbers to work with numeric values, Booleans to work with True/False
values, strings to work with text, and lists to work with a sequence of other values such
as numbers or strings.

There’s one more Python type that shows up often, and it’s called a dictionary. As we
mentioned in chapter 2 when we talk about a dictionary in Python, we don’t mean a
list of words and their definitions. In Python, a dictionary is a useful way of storing data
whenever you need to keep track of associations between data. For example, imagine
that you wanted to know which words are used most often in your favorite book. You
could use a dictionary to map each word to the number of times it is used.

That dictionary would probably be huge, but a small version of such a dictionary
might look like this:

>>> freq = {'DNA': 11, 'acquire': 11, 'Taxxon': 13, \
... 'Controller': 20, 'morph': 41}

Each entry in the dictionary maps a word to its frequency. The words here (DNA,
acquire, Taxxon, and so on) are referred to as keys, and the frequencies (11, 11, 13,
and so on) are referred to as values. So, a dictionary maps each key to its value. We’re
not allowed to have duplicate keys, but as shown here with the two 11 values, having
duplicate values is no problem.

We saw a dictionary in chapter 2 that stored each quarterback’s name and their asso-
ciated number of passing yards. In chapter 3, we saw a dictionary again in our second
solution for num_points (reproduced in listing 5.9). There, the dictionary mapped
each letter to the number of points awarded for using that letter.

Just like for strings and lists, dictionaries have methods that you can use to interact
with them. Here are some methods operating on our freq dictionary:

>>> freq.keys()
dict_keys(['DNA', 'acquire', 'Taxxon', 'Controller', 'morph'])
>>> freq.values()
dict_values([11, 11, 13, 20, 41])
>>> freq.pop('Controller')
20
>>> freq
{'DNA': 11, 'acquire': 11, 'Taxxon': 13, 'morph': 41}

You can also use the index notation to access the value for a given key:

>>> freq['dna'] # Oops, wrong key name because it is case sensitive
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'dna'
>>> freq['DNA']
11
>>> freq['morph']
41

Gets all the keys

Gets all the values
Gets rid of key and
associated value

Gets values
associated with the
key “DNA”

 91Top 10 programming features you need to know: Part 2

Are dictionaries immutable like strings or mutable like lists? Let’s try to use indexing
to change a value and see for ourselves! The value associated with “morph” is currently
41. Let’s try to change it to 6:

>>> freq['morph'] = 6
>>> freq
{'DNA': 11, 'acquire': 11, 'Taxxon': 13, 'morph': 6}

It worked! We have discovered that dictionaries are mutable. Our freq dictionary
allows us to start from whatever word we want and find its frequency. More generally, a
dictionary allows us to go from key to value. However, it doesn’t allow us to easily go in the
opposite direction, from value to key. If we wanted to do that, we’d need to produce
the opposite dictionary—for example, one whose keys are frequencies and whose val-
ues are lists of words with those frequencies. That would enable us to answer questions
such as the following: which words have a frequency of exactly 5? Which words have the
minimum or maximum frequency of all?

As with strings and lists, we can use a loop to process the information in a dictionary
as well. A for loop gives us the dictionary keys, and we can use indexing to get the asso-
ciated value for each key:

>>> for word in freq:
... print('Word', word, 'has frequency', freq[word])
...
Word DNA has frequency 11
Word acquire has frequency 11
Word Taxxon has frequency 13
Word morph has frequency 6

5.1.4 #9. Files

It’s often the case that we’ll want to work with datasets that exist in files. For example,
in chapter 2, we worked with a file of NFL stats to visualize the most effective quarter-
backs. Using files is common of other data science tasks as well. For example, if you’re
plotting information about earthquakes around the world or determining whether two
books are written by the same author, you’ll need to work with those datasets, and typi-
cally those datasets will be stored in files.

In chapter 2, we worked with a file called nfl_offensive_stats.csv. Make sure that
this file is in your current program directory because we’ll use that file now to further
understand some of the code we used in chapter 2.

The first step in working with data from a file is to use Python’s open function to
open the file:

>>> nfl_file = open('nfl_offensive_stats.csv')

You’ll sometimes see Copilot add an r as a second argument here:

>>> nfl_file = open('nfl_offensive_stats.csv', 'r')

Changes value associated with key “morph” to 6

Loops through each key in the freq dictionary

Uses the key (word) and
associated value (freq[word])

92 chapter 5 Reading Python code: Part 2

But we don’t need the r; the r just means that we want to read from the file, but that’s
the default anyway if we don’t specify it.

We’ve used an assignment statement to assign that open file to a variable named nfl_
file. Now, we can use nfl_file to access the contents of the file. An open file is a Python
type, just like numbers and strings and all of the other types you’ve seen to this point. As
such, there are methods that we can call to interact with the file. One method is read-
line, and it gives us the next line of the file as a string. We’re going to use it now to get
the first line of our open file, but don’t worry about the line itself because it’s super long
with tons of information about columns we won’t end up using!

>>> line = nfl_file.readline()
>>> line
'game_id,player_id,position,player,team,pass_cmp,pass_att,pass_yds,pass_
td,pass_int,pass_sacked,pass_sacked_yds,pass_long,pass_rating,rush_att,rush_
yds,rush_td,rush_long,targets,rec,rec_yds,rec_td,rec_long,fumbles_lost,rush_
scrambles,designed_rush_att,comb_pass_rush_play,comb_pass_play,comb_rush_
play,Team_abbrev,Opponent_abbrev,two_point_conv,total_ret_td,offensive_
fumble_recovery_td,pass_yds_bonus,rush_yds_bonus,rec_yds_bonus,Total_
DKP,Off_DKP,Total_FDP,Off_FDP,Total_SDP,Off_SDP,pass_target_yds,pass_poor_
throws,pass_blitzed,pass_hurried,rush_yds_before_contact,rush_yac,rush_
broken_tackles,rec_air_yds,rec_yac,rec_drops,offense,off_pct,vis_team,home_
team,vis_score,home_score,OT,Roof,Surface,Temperature,Humidity,Wind_
Speed,Vegas_Line,Vegas_Favorite,Over_Under,game_date\n'

One of the first things we tend to do with such a line is split it up into its individual
column data. We can do that using the string split method. That method takes a sep-
arator as an argument and splits the string into a list by using that separator:

>>> lst = line.split(',')
>>> len(lst)
69

Now we can look at individual column names:

>>> lst[0]
'game_id'
>>> lst[1]
'player_id'
>>> lst[2]
'position '
>>> lst[3]
'player'
>>> lst[7]
'pass_yds'

That first line of the file that we’re looking at isn’t a real data line—it’s just the header
that tells us the name of each column. The next time we do readline, we get the first
real line of data:

>>> line = nfl_file.readline()
>>> lst = line.split(',')
>>> lst[3]
'Aaron Rodgers'
>>> lst[7]
'203'

Reads the line from the file

Splits the string using a
comma (,) as a separator

The space at the end of the
word is in the original
dataset, but no other column
headers have a space.

 93Top 10 programming features you need to know: Part 2

Moving one line at a time like this is fine for exploring what’s in a file, but eventually
we’ll probably want to process the whole thing. To do so, we can use a for loop on the
file. It’ll give us back one line on each iteration, which we can process in any way we
like.

Once we’re finished with a file, we should call close on it:

>>> nfl_file.close()

Once we do that, we aren’t allowed to use the file anymore. Now that we’ve discussed
how to read, process, and close a file, let’s see a full example. In listing 5.10, we provide
a new version of our program from chapter 2 that finds the total passing yards of Aaron
Rodgers. We’re using the Python features that we taught earlier in the chapter.

Listing 5.10 Alternative NFL statistics code without using the csv module

nfl_file = open('nfl_offensive_stats.csv')
total_yards = 0
for line in nfl_file:
 lst = line.split(',')
 if lst[3] == 'Aaron Rodgers':
 total_yards += int(lst[7])

nfl_file.close()
print(total_yards)

This program would work just fine; if you run it, you should see the same output as you
did when running the code from chapter 2. Sometimes, though, it’s possible to write a
program more easily using modules (we cover modules in more depth in the next sec-
tion). Because CSV files are so common, Python comes with a module to make it easier
to process them. In chapter 2, the solution that we were given used the csv module.
So, let’s discuss the main differences between our code in listing 5.10 that doesn’t use
the module and our code from chapter 2, reprinted here in the following listing (our
prompts are not shown).

Listing 5.11 NFL statistics code using the csv module

import csv
with open('nfl_offensive_stats.csv', 'r') as f:
 reader = csv.reader(f)
 nfl_data = list(reader)
passing_yards = 0
for row in nfl_data:
 if row[3] == 'Aaron Rodgers':
 passing_yards += int(row[7])
print(passing_yards)

Loops through
each line of the file

Focuses only on the
quarterback that we
care aboutHas to convert strings

like 203 to integer 203

Shows the alternate
syntax for opening a file

Uses a special
module that
knows how to
process CSV files

Reads all data
from the file

Loops through each line
of data

94 chapter 5 Reading Python code: Part 2

First, listing 5.11 uses the csv module to make dealing with CSV files easier. The csv
module knows how to manipulate CSV files, so, for example, we don’t have to worry
about breaking a line into its columns. Second, listing 5.11 uses the with keyword,
which results in the file automatically being closed when the program is done with it.
Third, listing 5.11 reads the entire file first before doing any processing. By contrast, in
listing 5.10, we read and process each line as soon as we read it.

More than one way to solve a programming problem
There are always many different programs that can be written to solve the same task.
Some may be easier to read than others. The most important criterion for code is that
it does the correct thing. After that, we care most about readability and efficiency. So, if
you find yourself struggling to understand how some code works, it may be worth some
time looking at other code from Copilot in case there’s a simpler or more understandable
solution available there.

Files are used commonly in computing tasks because they are a common source for
data to be processed. This includes CSV files like the one from this section, log files
that keep track of events on computers or websites, and files that store the graphic
specifications for graphics you might see in video games, among others. Because files
are so commonly used, it’s no surprise there are many modules that help us read vari-
ous file formats. That leads us to the larger topic of modules.

5.1.5 #10. Modules

People use Python to make all kinds of things—games, data analysis apps, websites,
apps to automate repetitive tasks, apps to control robots, you name it. How can Python
possibly have all of the tools for us to do all of this?

Answer: It can’t! It has only the most fundamental tools available by default. What
makes Python so powerful is that we can import modules that can help us do all of that
stuff.

Modules in Python
A module is a collection of code designed for a specific purpose. Recall that we don’t
need to know how a function works to use it. It’s the same with modules: we don’t need
to know how modules work to be able to use them, much as we don’t need to know how
a light switch works internally to use it. As users of modules, we just need to know what a
module will help us do and how to write the code to correctly call its functions. Of course,
Copilot can help us write that kind of code.

 95Top 10 programming features you need to know: Part 2

Some modules come with Python, but we still need to import them. Other modules
we first have to download. Trust us, if there’s a specific kind of task you want to do with
Python, someone’s probably already written a module to help you out. Table 5.2 has a
list of some of the commonly used Python modules and whether they are built-in and
can be used without installation (if they are not built-in, they require installation).

Table 5.2 Summary of commonly used Python modules

Module Built-In Description

csv Yes Aids in the reading, writing, and analysis
of CSV files.

zipfile Yes Aids in the creation and extraction of
compressed ZIP archive files.

matplotlib No Graphics library for plotting and is the
basis of other graphics libraries and can
offer high levels of customization.

plotly No A graphics library used for creating inter-
active plots for the web.

seaborn No A graphics library built on top of matplot-
lib that aids in creating high-quality plots
more easily than matplotlib.

pandas No A data processing library that specializes
in data frames, which are analogous to
spreadsheets.

scikit-learn No Contains basic tools for machine learn-
ing (i.e., helping to learn from data and
make predictions).

numpy No Offers highly efficient data processing.

pygame No A game programming library that helps
to build interactive, graphical games in
Python.

django No Web development library that aids
in designing websites and web
applications.

In chapter 2, our code used the csv module that comes with Python. Let’s continue
here by learning about a different module that comes with Python.

When people want to organize their files, perhaps prior to backing them up or
uploading them, they often archive them first into a ZIP file. Then they can pass around
that single ZIP file, rather than potentially hundreds or thousands of individual files.
Python comes with a module called zipfile that can help you create a ZIP file.

To try this, create a few files in your programming directory, and make them all end
with .csv. You could start with your nfl_offensive_stats.csv file and then add a few more.
For example, you could add one called actors.csv with the names of a few actors and
their ages, such as

96 chapter 5 Reading Python code: Part 2

Actor Name, Age
Anne Hathaway, 40
Daniel Radcliffe, 33

and you could add one called chores.csv with a list of chores and whether you’ve fin-
ished each one:

Chore, Finished?
Clean dishes, Yes
Read Chapter 6, No

The contents don’t matter as long as you have a few .csv files to test with.
Now we can use the zipfile module to add them all to a new .zip file!

>>> import zipfile
>>> zf = zipfile.ZipFile('my_stuff.zip', 'w', zipfile.ZIP_DEFLATED)
>>> zf.write('nfl_offensive_stats.csv')
>>> zf.write('actors.csv')
>>> zf.write('chores.csv')
>>> zf.close()

If you run that code, you’ll find a new file called my_stuff.zip that contains your three
.csv files. Working with .zip files directly used to be a very specialized, error-prone task.
Not so with Python. Python comes with modules that are helpful for data science,
making games, dealing with various file formats, and so on, but again, Python can’t
come with everything. And when we need more, we turn to downloadable packages of
modules.

Let’s talk about a package that doesn’t come with Python and that you have to down-
load. In chapter 2, you used the matplotlib module to visualize the NFL quarterback
information. Matplotlib is a powerful package of data visualization tools that profes-
sional programmers and data scientists use. All we need to do to start using it is to install
it, as you did in chapter 2.

There are de facto Python packages for many tasks, including matplotlib for data
visualization, pandas for data science, numpy for numerical analysis, pygame for game
development, django for web development, and so on. It’s helpful to have a sense of
the available packages for a problem domain prior to getting started. That way you can
install what’s needed, and direct Copilot to use that package (or redirect it through
your prompts if it starts using some other package that you’ve decided not to use).

You might be wondering how to determine which Python modules or packages you
should use. How do you know which ones exist? A simple Google search is often help-
ful. For example, if we search for “Python module to create a zip file,” the first result
tells us that it is part of the Python standard library, which means that it comes with
Python. If we search for “Python package for visualization” we learn about packages
named matplotlib, plotly, seaborn, and more. Searching for each of these should lead
you to galleries of visualizations showing you the capabilities of each and what each is

Creates the new .zip file

Adds the
first fileAdds the

second file
Adds the third file

 97Top 10 programming features you need to know: Part 2

typically used for. Most modules are free to download and use, although a simple Goo-
gle search can help answer that question as well.

In this chapter, we introduced you to our second half of our top 10 Python features.
We’ve summarized them in table 5.3. We’ve covered a lot about reading code in the pre-
vious chapter and this chapter. Although we haven’t covered everything you might see
Copilot produce, you are in a good position to spot-check Copilot code to determine
whether it’s given a good attempt at producing the code you requested. We also showed
more examples of using the Copilot explanation tool to help you understand new code.
In the next chapters, we’ll see how to test the code from Copilot to determine whether
it is correct, and what you can do when it is not.

Table 5.3 Summary of Python code features from this chapter

Code Element Example Brief Description

Loops for loop:

for country in countries:

 print(country)

while loop:

index = 0

while index < 4:

 print(index)

 index = index + 1

Loops allow us to run the same code as
many times as needed. We use a for
loop when we know how many iterations
there will be (e.g., number of characters
in a string) and a while loop when we
don’t (e.g., asking the user for a strong
password).

Indentation for country in countries:

 print(country)

Indentation tells Python when a piece of
code belongs as part of another body of
code (e.g., that the print statement is
within the for loop).

Dictionaries points = {'a': 1, 'b': 3} Dictionaries allow us to associate a key
with a value. For example, the key 'a'
is associated with the value 1.

Files file = open('chores.csv')

first_line = file.readline()

Files contain data and are stored on your
computer. Python can open the file and
read the data, allowing you to process
the data in the file.

Modules import matplotlib Modules are already existing libraries
that provide additional functionality.
Commonly used modules include
csv, numpy, matplotlib, pandas, and
scikit-learn.

98 chapter 5 Reading Python code: Part 2

Summary
¡	A loop is used to repeat code as many times as needed.

¡	We use a for loop when we know how many iterations the loop will do; we use a
while loop when we don’t know how many iterations a loop will do.

¡	Python uses indentation to determine which lines of code go together.

¡	A dictionary is a mapping from keys (such as words) to values (such as their
frequencies).

¡	We need to open a file before we can read from it.

¡	Once a file is open, we can use methods or a loop to read its lines.

¡	Some modules (such as csv and zipfile) come with Python and can be used by
importing them.

¡	Other modules, such as matplotlib, need to be installed first before they can be
imported and used.

99

6Testing and prompt
engineering

This chapter covers

¡	Understanding the importance of testing
 Copilot code
¡	Using closed-box versus open-box testing
¡	Addressing errors by Copilot by modifying
 prompts
¡	Viewing examples of testing code produced by
 Copilot

In chapter 3, we first started to see the importance of testing the code produced by
Copilot. Testing is an essential skill for anyone writing software because it gives you
confidence that the code is functioning properly. In this chapter, we’ll learn how
to test our code thoroughly and how to help Copilot fix code that doesn’t work by
modifying our prompts.

6.1 Why it is crucial to test code
Back in chapter 3, we mentioned that you should test code to make sure it is correct.
Unfortunately, we’ve seen student after student be reluctant to test. Why? We think
a couple of things are at play. The first is that there’s this well-documented problem
nicknamed the Superbug, which is that humans, when first learning to code, think

100 chapter 6 Testing and prompt engineering

the computer can understand the intent of the code and respond accordingly [1].
Since they wrote the code and the code made sense to them, of course it should work.
The second problem is compounded on the first: if you think your code is right, testing
can only bring you bad news. If you don’t test, you can’t find out if the code is wrong.
It’s like the old saying about putting your head in the sand.

Professional software engineers take a completely different approach than students.
They take testing extremely seriously because a mistake in the code can have significant
consequences for their company. No one wants to be the person whose code causes the
company to lose tons of revenue, lets hackers gain access to confidential user data, or
has the self-driving car cause an accident. Given the cost of a mistake, it makes more
sense to assume the code is wrong until proven otherwise. Only after testing it exten-
sively should we trust that it’s working correctly. And companies don’t just test the code
once, they keep the tests in their system so every time someone changes code, tests are
run not just on the changed code but any code that the changed code might affect (this
is called regression testing).

Companies take this so seriously that they often write their tests before writing their
code in a process called test-driven development (TDD). This ensures everyone agrees
on what the code should or should not do. We don’t think you (as readers) need to take
this approach for the programs you are writing with this book, but we mention it here
to convey how crucial it is to test. Thinking about testing before writing code can help
you understand what the code should do and that will help you write better prompts. In
fact, you can include test cases directly in your prompts!

Finally, let’s remember what we know about Copilot: it makes mistakes. We shouldn’t
assume anything about the correctness of any code given to us by Copilot. All this is to
say that any code you are given by Copilot should be tested before you trust it.

6.2 Closed-box and open-box testing
There are two ways that software engineers commonly test their code. The first is called
closed-box testing (also known as black-box testing), and this approach assumes you
know nothing about how the code works and are going to test it by changing inputs and
observing the outputs. Because it’s bound to changing inputs, we often see closed-box
testing applied to functions or entire programs. The advantage of closed-box testing
is that you don’t need to look at the code to perform the tests and can therefore focus
simply on the desired behavior. The second approach to testing is called open-box test-
ing (also known as white-box testing), and in this approach, we look at the code to see
where the errors might occur. The advantage of open-box testing is that by looking at
the particular structure of the code, we may see where the code is likely to fail and can
design additional tests specific to that code. We will use both closed-box and open-box
testing to come up with test cases that combine to strengthen our testing. A brief sum-
mary of closed-box and open-box testing appears in table 6.1. In this section, let’s look
at how we might test some functions using these approaches.

 101Closed-box and open-box testing

Table 6.1 Brief overview of closed-box and open-box testing

Closed-box testing Open-box testing

Requires understanding the func-
tion specification to test.

Requires both the function
specification and the code that
implements the function to test.

Tests do not require an under-
standing of what the code does.

Tests should be tailored based on
how the code was written.

Testers need not have technical
expertise about the code they’re
testing.

Testers need to be able to under-
stand the code sufficiently well
to determine which tests may be
more important.

Tests the function by varying inputs
and checking against expected
results.

Can test the function in the same
way as closed-box testing but can
also test within a function.

6.2.1 Closed-box testing

Let’s imagine we are trying to test a function that takes in a list of words (strings) and
returns the longest word. To be more precise, the function signature would be

def longest_word(words):

The expected input is a list of words. The expected output is the word in that list with
the most characters. In the event that multiple words are tied for the most characters, it
should return the first word of that length.

Shorthand for expressing test cases
When writing tests for a function, the standard format is to write the function name and
its input along with the desired outcome. For example, the call

>>> longest_word(['a', 'bb', 'ccc'])
'ccc'
means that if we call the function longest_word with the input list ['a', 'bb',
'ccc'], then the value returned from the function should be 'ccc'.

There are two categories for which we typically think about writing test cases:

1 Common use cases—These would include some standard inputs you could imagine
the function receiving and the corresponding result.

2 Edge cases—Edge cases are uncommon but possible, cases that might break the
code. These are inputs that might test some of the rules for the function in more
depth or contain unexpected inputs (e.g., a list with all empty strings).

Looking back at our longest_word function signature in the previous example, let’s
think about some test cases we might use to test it. Later in the chapter, we’ll see how to

102 chapter 6 Testing and prompt engineering

actually run these test cases to determine whether our code is working correctly. Let’s
start with common use cases. We would likely want to include a test with just a few words
where one word is longer than the others:

>>> longest_word(['cat', 'dog', 'bird'])
'bird'

Here’s another test with more words with the longest word appearing elsewhere in the
list:

>>> longest_word(['happy', 'birthday', 'my', 'cat'])
'birthday'

And last, let’s have a test with just one word:

>>> longest_word(['happy'])
'happy'

If the program is working for these common uses, our next step would be to think
about some edge cases. Let’s consider some edge cases.

Say we want to check whether the function conforms to our description by returning
the first word when there are multiple words of the same length. This test may be con-
sidered a common case or an edge case, depending on whom you ask:

>>> longest_word(['cat', 'dog', 'me'])
'cat'

What do we do if all of the words in the list have no characters? A string with no charac-
ters is called the empty string and is written as just an empty pair of quotes. If all we have
is a list of empty strings, then the longest word is just the empty string! So, a test with all
empty strings should just give us back an empty string:

>>> longest_word(['', ''])
''

The term edge case comes from the fact that errors often happen at the “edge” of exe-
cution, meaning either the first or last element. In many loops, mistakes can be made
when the loop is starting (e.g., forgetting or mishandling the first element in the list)
or at the end (e.g., forgetting the last element or going past the end of the list and try-
ing to access an element that doesn’t exist). Especially when the code is likely to have
loops processing many elements, you’ll want to watch the behavior at the start and end
of the loop.

Incorrect input testing
Another category of tests will test the function on how it responds when given incorrect
input. We won’t talk about this much in our book because we’re assuming you are calling
your own functions, but in production code, this can be common. A few examples of call-
ing this function with incorrect inputs might be to give the function a nonexisting list by
using the value None instead of an actual list (e.g., longest_word(None)), to give the
function an empty list (e.g., longest_word([])), to give the function a list with inte-
gers as input (e.g., longest_word([1,2])), or to provide a list of strings but have the

 103Closed-box and open-box testing

(continued)
strings contain spaces or more than single words (e.g., longest_word(['hi there',
' my ', 'friend'])). It’s hard to say what the function should do when given incor-
rect input and programmers need to decide whether they care about this in larger code
bases, but we’ll ignore this category of tests in this book because we’ll assume you will
call your own functions in ways that the functions are designed to handle.

6.2.2 How do we know which test cases to use?

In chapter 3, we discussed that good testing involves capturing different categories of
function calls. One way to find these categories is by using the types of parameters and
varying their values.

For example, if the function takes a string or list as a parameter, it may make sense
to test the case when that string or list is empty, has one element, and has multiple ele-
ments. If we’re trying to test multiple elements, we might use four elements, for exam-
ple. It likely also wouldn’t make sense to test with five or six elements or more because
if our code works with four elements, it’s unlikely that something could suddenly go
wrong when we increase to five. Sometimes, some of these test cases may not make
sense for a given function; for example, it wouldn’t make sense to ask for the longest
word in a list that didn’t have any words in it, so we wouldn’t test the empty list for our
longest_word function.

 As another example, if a function takes two numbers as parameters, it may make
sense to test when one number is zero, both numbers are zero, one number is negative,
both numbers are negative, and both numbers are positive.

Another way to find categories is to think about the specific task of the function. For
example, for our longest_word function, it’s supposed to be finding the longest word,
so we should test that it is actually doing that in a typical case. And if multiple words are
the longest, it’s supposed to return the first of those, so we should have a test case where
the list has multiple words that are the longest.

Finding the categories to test is a mix of science and art. We’ve given you some rules
of thumb here, but what counts as useful test cases often depends on the specific func-
tionality being tested. As is so often the case, practicing your testing skill is the best way
to improve your ability to write useful tests that ultimately help you make your code
better.

6.2.3 Open-box testing

The big difference between open-box testing and to closed-box testing is that open-
box testing examines the code to see if there are additional kinds of test cases to check.
In theory, closed-box testing may be sufficient to fully test the function, but open-box
testing tends to give you more ideas about where the code might be failing. Let’s say we
asked for Copilot to write our longest_word function and we got back the code shown
in the following listing.

104 chapter 6 Testing and prompt engineering

Listing 6.1 Function to find the longest word in a list (with an error)

def longest_word(words):
 '''
 words is a list of words

 return the word from the list with the most characters
 if multiple words are the longest, return the first
 such word
 '''
 longest = ""
 for i in range(0,len(words)):
 if len(words[i]) >= len(longest):
 longest = words[i]
 return longest

For this example, we intentionally introduced an error in the code to help explain the
role of open-box testing. Let’s say that when you were thinking through your test cases,
you forgot to test what happens when there are two words in the list of words that both
have the most characters. Well, reading through this code you might spot the following
if statement:

 if len(words[i]) >= len(longest):
 longest = words[i]

When reading the if statement, you might notice that it is going to update the longest
word in the list of words when the length of the most recent element is greater than or
equal to the longest word we’ve seen so far. This is a mistake; it should be >, not >=, but
suppose you aren’t sure. This would motivate you to write a test case like the one we
describe previously that has multiple words, all of which are the longest:

>>> longest_word(['cat', 'dog', 'me'])
'cat'

This test will fail with the code in listing 6.1 as it would return 'dog' rather than the
correct answer of 'cat'. The test failing is valuable information that the code in listing
6.1 is incorrect.

As we have said, open-box testing is useful as it leads to test cases that follow the struc-
ture of the code itself. For example, if our code is using a loop, we’ll find that loop when
doing open-box testing. The loop in listing 6.1 is correct, but by seeing the loop in our
code, we’ll be reminded to test the edge cases to make sure it is properly handling the
first element, the last element, and an empty list. In sum, knowing how the code is pro-
cessing the input often offers insight into when the program might be misfunctioning.

6.3 How to test your code
There are a number of good ways to test your code that vary from quick tests you might
perform just to check if your code is working for yourself to tests that are built into a
company’s regression test suite. For production code, tools like pytest are common,
but we feel this is beyond the scope of this book. Instead, we’ll focus on lightweight
testing to help you gain confidence that the code from Copilot works properly. We can
do that either by testing at the Python prompt or using a tool called doctest.

>= should be >

 105How to test your code

6.3.1 Testing using the Python prompt

The first way to test is in the Python prompt through the interactive window like we
have in the previous chapters. The advantage of this testing is that it can be quick to
run, and you can easily add more tests as a result of output from the previous test. The
tests we’ve run so far are examples of testing with the Python prompt. For example,

>>> longest_word(['cat', 'dog', 'me'])
'cat'

In running that test, if you expected the result to be 'cat', you’d be pleased to see that
result. However, if the test shows that your code was wrong, you now have the opportu-
nity to go back to fix it.

After you fix the code (we’ll talk more about this in a moment), you’ll want to test
the new code. Here is where you may go wrong with testing using the Python prompt
alone. When you come back to test the code you just changed, you might be tempted to
run just the test case that had failed previously. However, in fixing the code to correctly
address the test case that had failed, you could have introduced an error that would
cause the previous test cases that had already passed to now fail. What you really want
then is a way to run not just your current test but all previous tests as well.

6.3.2 Testing in your Python file (we won’t be doing it this way)

It’d be tempting to then put all your test cases in your Python program (outside a
function, so in the equivalent of a main function) so they can all run. This solution
addresses the problem with Python prompts that we just described, but it introduces
a new problem. What happens when you want your Python program to perform the
main task for which it was designed rather than just run tests? You could delete all the
tests, but the point was running them again if so desired. You could comment them out
so you can run them in the future, but that’s not a very clean solution either. What we
want then is a way to run all our tests on our functions when we want to but still have
the ability to run the program. The way to do this is using a module called doctest.

6.3.3 doctest

Doctest is a module that’s built into Python. The great thing about using doctest is
that we simply add our test cases to the docstring that describes the function. This
beefed-up docstring serves a dual purpose. First, we can use doctest to run all those test
cases whenever we’d like. Second, it can sometimes help Copilot generate better code
in the first place or if you are trying to fix code that you already have for the function.
Let’s write that longest_word function with all the test cases included and ready to be
executed with doctest. See listing 6.2.

106 chapter 6 Testing and prompt engineering

Listing 6.2 Using doctest to test longest_word function

def longest_word(words):
 '''
 words is a list of words

 return the word from the list with the most characters
 if multiple words are the longest, return the first
 such word

 >>> longest_word(['cat', 'dog', 'bird'])
 'bird'

 >>> longest_word(['happy', 'birthday', 'my', 'cat'])
 'birthday'

 >>> longest_word(['happy'])
 'happy'

 >>> longest_word(['cat', 'dog', 'me'])
 'cat'

 >>> longest_word(['', ''])
 ''
 '''
 longest = ''
 for i in range(0,len(words)):
 if len(words[i]) > len(longest):
 longest = words[i]
 return longest

import doctest
doctest.testmod(verbose=True)

In this code, we see the docstring with our test cases provided as the prompt. Copilot
generated the correct code to implement this function. We then manually wrote the
last two lines of the code to perform the testing. When run, we get this output in the
following listing.

Listing 6.3 Doctest output from running our program in listing 6.2

Trying:
 longest_word(['cat', 'dog', 'bird'])
Expecting:
 'bird'
ok
Trying:
 longest_word(['happy', 'birthday', 'my', 'cat'])
Expecting:
 'birthday'
ok
Trying:
 longest_word(['happy'])
Expecting:

Shows the test
cases for doctest

Shows the correct
code for the function

Code (in main) that calls
doctest to perform the test

First test in longest_word passed

Second test in longest_word passed

 107How to test your code

 'happy'
ok
Trying:
 longest_word(['cat', 'dog', 'me'])
Expecting:
 'cat'
ok
Trying:
 longest_word(['', ''])
Expecting:
 ''
ok
1 items had no tests:
 __main__
1 items passed all tests:
 5 tests in __main__.longest_word
5 tests in 2 items.
5 passed and 0 failed.
Test passed.

From this output, we can see that each test ran and each test passed. The reason these
tests ran is because of the last two lines that we added in listing 6.2:

import doctest
doctest.testmod(verbose=True)

In the first line, we import the doctest module. That’s the module that helps us test our
code by automatically running the test cases when we run our program. In the second
line, we’re calling the testmod function from the doctest module. That function call
tells doctest to perform all the tests; the argument verbose=True tells doctest to give
us the outcome for all tests, whether they pass or not. If we switch to verbose=False, it
will only give us output if test cases fail (verbose=False is actually the default, so you
can just call the function with no arguments, and it will default to not providing output
unless one or more tests fail). This can be a nice feature as we can keep the doctest
running and only see the output when tests fail.

In this case, our code passed the test cases. But let’s experience what happens when
our code doesn’t pass.

If we find a word that’s the same length as our current longest word, we should ignore
it because we always want to return the first longest word if there are multiple words tied
for the longest. That’s why the correct thing to do is to use > in the if statement (find-
ing a new longest word only if it’s truly longer than our current longest word) rather
than >=.

We can break the code in listing 6.2 then by changing the > to >=, which will cause it
to select the last word of the longest length rather than the first. Let’s change the follow-
ing line from

if len(words[i]) > len(longest):

to

if len(words[i]) >= len(longest):

Third test in longest_word passed

Fourth test in longest_word passed

Fifth test in
longest_word passed

There are no tests in main
(outside the function).

longest_word
passed all tests

0 failed is what you hope to see.

108 chapter 6 Testing and prompt engineering

Now, the tests shouldn’t all pass. In addition, let’s change the last line to

doctest.testmod()

By providing no arguments to the testmod function, verbose is now set to False.
When we run the code, this is the output:

**
File "c:\Users\leo\Copilot_book\Chapter6\test_longest_word.py", line 12, in

__main__.longest_word
Failed example:
 longest_word(['cat', 'dog', 'me'])
Expected:
 'cat'
Got:
 'dog'
**
1 items had failures:
 1 of 5 in __main__.longest_word
Test Failed 1 failures.

Doctest conveniently tells us which test was run, what the expected output was, and
what it received instead. This would catch the bug and allow us to go back to fix the
error.

Test cases are not automatically run by Copilot
A common question we hear is, Why doesn’t Copilot directly incorporate the test cases
when generating code. For example, if we add test cases, it would be nice if Copilot could
try to generate functions and only provide us with the code that would pass those test
cases. Unfortunately, there are some technical challenges in doing this, and as of the
time of writing this book, this feature is not yet included. So, if you add test cases, it just
improves the prompt to Copilot but does not guarantee that the Copilot code suggestion
passes those tests.

At this point, we’ve seen how to run our tests with both the Python prompt and doctest.
Now that we know how to test our code, let’s think about how this modifies our code
design cycle.

6.4 Revisiting the cycle of designing functions with Copilot
In chapter 3, we gave you an early version of how to design functions in figure 3.3. At
that point, we didn’t know as much about examining our code (which we learned in
chapters 4 and 5) or as much about how to test our code as we do now. As such, let’s
create a new version of this cycle (figure 6.1) to reflect our new understanding.

 109Revisiting the cycle of designing functions with Copilot

Figure 6.1 The function design cycle with Copilot, augmented to include more about testing

The figure is a bit more complex than before, but if we examine it closely, we can see
much of the original process is retained. The things that have been added or changed
include the following:

¡	When we write the prompt, we may include doctests as part of that initial prompt
to help Copilot in generating the code.

¡	Having made our way through chapters 4 and 5, we’re in good shape to read the
code to see whether it behaves properly, so we now have an additional step to
address what happens when the initial code from Copilot looks wrong. If that
occurs, we’ll use Ctrl–Enter to explore the Copilot suggestions hopefully finding a
solution. If we can find such a solution, we’ll select it and move forward. If we can’t,
we’ll need to revise our prompt to help Copilot generate us improved suggestions.

¡	After finding code that looks like it could be correct, we’ll run doctest to see
whether the code passes the doctests we included in the prompt (if we didn’t
include any, it will pass automatically). If doctest passes, then we can continue
adding tests and checking them until we’re happy that the code is functioning
properly. If doctest fails, we will need to figure out how to modify the prompt to
address the failed tests. Once the prompt is modified, it will hopefully help Copi-
lot generate new code that may be capable of passing the tests that we’ve provided.

With this new workflow, we’re in a much better position not only to determine whether
our code is working properly but also to fix the code if it isn’t already working. In the

110 chapter 6 Testing and prompt engineering

next chapters, we’ll give ourselves even more tools to help when the code isn’t working
properly, but for now, let’s put this all together by solving a new problem and testing
the Copilot solutions using the workflow we described here.

6.5 Full testing example
Let’s try a problem that we might need to solve to help students decide where to sit in
in-person classes. Suppose we have the classroom layout as a two-dimensional list with
rows of seats. Each seat either contains a space (' ') or a student ('S') to represent
an empty or occupied seat, respectively. We’re going to ask Copilot to create a function
to determine which row we could add the most students to, and along the way, we will
design the tests needed to check whether the code is working properly.

6.5.1 Finding the most students we can add to a row

We want to figure out the largest number of new students we could add in a single row
in the classroom. (Equivalently, we’re looking for the largest number of empty seats
in any row.) For this, let’s start with a somewhat ambiguous prompt and see how well
Copilot does.

Listing 6.4 Determining the largest number of students that can be added to a row

def most_students(classroom):
 '''
 classroom is a list of lists
 Each ' ' is an empty seat
 Each 'S' is a student

 How many new students can sit in a row?
 '''
 max_students = 0
 for row in classroom:
 students = 0
 for seat in row:
 if seat == 'S':
 students += 1
 else:
 students = 0
 if students > max_students:
 max_students = students
 return max_students

For the sake of this example, our prompt wasn’t very good. “How many new students
can sit in a row?” is a pretty reasonable description to give to a human, but it’s not that
specific, and it’s easy to imagine Copilot struggling to interpret what we mean. Copi-
lot might get confused about whether we are counting the number of students or the
number of empty seats in a row, or it might return the total number of available seats in
the classroom rather than in a row. It turns out that our prompt confused Copilot and
the code isn’t correct, but before we dive into the code, let’s think about what tests we
should run. We’ve come up with the following set of test cases:

This is a somewhat
ambiguous part of
the prompt.

 111Full testing example

¡	A classroom with some number of consecutive empty seats and some number of
nonconsecutive empty seats to make sure it isn’t just counting consecutive empty
seats.

¡	A classroom with no empty seats to make sure it returns 0 in that case.

¡	A classroom with a row full of empty seats to make sure all are counted, including
the first and last seats (edge case).

¡	A classroom with multiple rows with the same number of empty seats to make
sure it returns just one of those values (and not, perhaps, the sum of the number
of empty seats across all of these rows).

Let’s start by adding the first test case and adding the doctest code to run the test, as
shown in the following listing.

Listing 6.5 Determining the largest number of students that can be added to a row

def most_students(classroom):
 '''
 classroom is a list of lists
 Each ' ' is an empty seat
 Each 'S' is a student

 How many new students can sit in a row?

 >>> most_students([['S', ' ', 'S', 'S', 'S', 'S'], \
 ['S', 'S', 'S', 'S', 'S', 'S'], \
 [' ', 'S', ' ', 'S', ' ', ' ']])
 4
 '''
 max_students = 0
 for row in classroom:
 students = 0
 for seat in row:
 if seat == 'S':
 students += 1
 else:
 students = 0
 if students > max_students:
 max_students = students
 return max_students

import doctest
doctest.testmod(verbose=False)

When we run this code, we get this output (we cleaned up the formatting of the class-
room list manually to help with the readability of the answer):

**
Failed example:
 most_students([['S', ' ', 'S', 'S', 'S', 'S'],
 ['S', 'S', 'S', 'S', 'S', 'S'],
 [' ', 'S', ' ', 'S', ' ', ' ']])
Expected:
 4

Doctest for a
common case. The
\ is necessary in
docstring test
cases if you need
to do a newline.

112 chapter 6 Testing and prompt engineering

Got:
 6
**
1 items had failures:
 1 of 1 in __main__.most_students
Test Failed 1 failures.

Although we’d prefer the code to work, we appreciate that the first test case found an
error. The row with the most empty seats is the third row with four seats available. But
the code from Copilot is incorrectly telling us the answer is six. That’s pretty odd. Even
without reading the code, you might hypothesize that it’s counting either the number
of seats per row or the maximum number of students seated per row. Our test case had
a full row of students in row 2, so it’s hard to tell. What we can do is change the class-
room to be

 >>> most_students([['S', ' ', 'S', 'S', 'S', 'S'], \
 [' ', 'S', 'S', 'S', 'S', 'S'], \
 [' ', 'S', ' ', 'S', ' ', ' ']])
 4

So, the second row now has five students. When we run the code again, the test again
fails with the code giving us an answer of five. It seems that the code isn’t just telling us
the number of seats per row. It must be doing something related to where students are
sitting. Our next step would be to improve the prompt and determine whether we can
get better code from Copilot, but for completeness, let’s first explain what the code was
really doing in the following listing.

Listing 6.6 Walkthrough of the incorrect code from Copilot

 max_students = 0
 for row in classroom:
 students = 0
 for seat in row:
 if seat == 'S':
 students += 1
 else:
 students = 0
 if students > max_students:
 max_students = students
 return max_students

You can see from the code description what is happening per line, but at a high level,
this code is counting the number of consecutive students in each row. It does this by
initializing a counter to 0 for each row and then incrementing that counter as long as
it keeps seeing a student in a seat. It also resets the counter as soon as it sees an empty
seat. The if statement at the end of the inner loop is a pretty standard way of keeping
track of the largest of something seen before, and in this case, it is keeping track of the

We removed the
first student
from the row.

Start with the max_students initialized to 0 For each
row in the
classroom

Initializes the
student counter to
0 for this row.

For each seat
in the rowIf there is a student in the

seat, increment the counter.

If there is an
empty seat,
reset the
counter.

Checks to see if the student
counter is bigger than seen
before and, if so, makes that
the new maximum seen before.

 113Full testing example

largest number of consecutive students seen. That’s not at all what we wanted, and our
poor prompt is partially to blame. The key piece, though, is that our test lets us know
the code is incorrect! (If you spotted the error yourself in reading the code, that’s
great, too!)

6.5.2 Improving the prompt to find a better solution

Let’s rewrite the prompt, keep the test case, and see whether we can do better in the
following listing.

Listing 6.7 Second attempt to determine the largest number of students

def most_students(classroom):
 '''
 classroom is a list of lists
 Each ' ' is an empty seat
 Each 'S' is a student

 Return the maximum total number of ' ' characters in a
 given row.

 >>> most_students([['S', ' ', 'S', 'S', 'S', 'S'], \
 [' ', 'S', 'S', 'S', 'S', 'S'], \
 [' ', 'S', ' ', 'S', ' ', ' ']])
 4
 '''
 max_seats = 0
 for row in classroom:
 seats = row.count(' ')
 if seats > max_seats:
 max_seats = seats
 return max_seats

import doctest
doctest.testmod(verbose=False)

To get this solution, we had to look through the possible Copilot solutions using Ctrl–
Enter. Some of the solutions now counted the consecutive occurrences of ' ', whereas
others, like the one in the previous listing, passed the doctest. Oddly, the first time
we tried the improved prompt, the suggested solution was correct. This is another
reminder of why nondeterminism in the Copilot output makes testing so important.

Let’s take a minute and look at what made this second prompt better than the first.
Both prompts had

def most_students(classroom):
 '''
 classroom is a list of lists
 Each ' ' is an empty seat
 Each 'S' is a student

The improved
prompt says we
specifically want
the maximum
number of ' '
characters in any
given row.

count is a list function that
returns the number of the
argument in the list.

Code to keep track
of maximum seats

114 chapter 6 Testing and prompt engineering

The part of the prompt that led to us receiving the wrong answer was

How many new students can sit in a row?

The part of the prompt that yielded a correct answer was

Return the maximum total number of ' ' characters in a given row.

You can never really know why an LLM like Copilot produces the answer it does,
but let’s remember that it’s trained to just make predictions of next words based on
the words it’s been given and words that were in its training data (i.e., lots of code in
GitHub). The first prompt asks Copilot to make some inferences, some of which it
does well, and some not so well. The prompt, in a sense, is asking Copilot to know what
a row is in a list of lists. Thankfully, that’s really common in programming, so it had no
problem there.

Then the prompt asks Copilot to make the basic logical step of inferring that an
empty seat is where a new student could sit. Here is where it struggled. We suspect that
because we’re asking about students sitting in a row, it wasn’t able to make the jump to
realize that “new” students would require figuring out how many students you can add
or, in other words, how many empty seats there are. Instead, Copilot focused on the
“students … in a row” part of the prompt and started counting students in each row. It
could have also used the function name (which, admittedly, could be better; i.e., max_
empty_seats_per_row) to think it needs to count the maximum number of students.
That’s not what we want, but we can understand how it makes this mistake.

Now let’s talk about why Copilot decided to count consecutive students in a given row.
Maybe that’s a more common problem given to Copilot. Maybe it’s because “sit in a row”
could be interpreted as “sit consecutively.” Or maybe it’s because when we were coding
this example, we’d been working on another version of the problem that asked for con-
secutive empty seats, and Copilot remembered that conversation. We don’t know why
Copilot gave us this answer, but we know that our prompt was too vague.

In contrast, our second prompt was more specific in a few ways. First, it clearly asks
for the maximum (although the function name does that as well). Second, it asks for
the number of spaces, or empty seats, in a row. That takes away the need for Copilot to
infer that an empty seat means a spot for a new student. We also used “total” and “given
row” to try to get Copilot out of its current approach to counting consecutive values, but
that didn’t quite do the trick. Consequently, we ended up having to sift through Copilot
answers (using Ctrl–Enter) that were sometimes looking for consecutive empty seats
and sometimes finding the count of empty seats.

6.5.3 Testing the new solution

Returning to our example, because the new code passes the current test, let’s give it
more tests to ensure it is behaving correctly. In the next test, we’ll check that the code
properly returns 0 when there are no empty seats in any rows:

 >>> most_students([['S', 'S', 'S'], \
 ['S', 'S', 'S'], \
 ['S', 'S', 'S']])
 0

 115Full testing example

The next test will ensure that the code properly counts all three open seats in a single
row (here, row 2) so there isn’t an edge case problem (e.g., it fails to count the first or
last element). Admittedly, looking at the code we can see the count function is being
used, and since that function is built into Python, we should be fairly confident this test
will pass. However, it’s still safer to test it to make sure:

 >>> most_students([['S', 'S', 'S'], \
 [' ', ' ', ' '], \
 ['S', 'S', 'S']])
 3

The last test checks to see that Copilot properly handles the case that two rows have the
same number of open seats:

 >>> most_students([[' ', ' ', 'S'], \
 ['S', ' ', ' '], \
 ['S', 'S', 'S']])
 2

After adding these test cases, we again ran the full program, shown in the following
listing, and all test cases passed.

Listing 6.8 Full code with doctests for determining the largest number of students

def most_students(classroom):
 '''
 classroom is a list of lists
 Each ' ' is an empty seat
 Each 'S' is a student

 Return the maximum total number of ' ' characters in a
 given row.

 >>> most_students([['S', ' ', 'S’, 'S', 'S', 'S'], \
 [' ', 'S', 'S', 'S', 'S', 'S'], \
 [' ', 'S', ' ', 'S', ' ', ' ']])
 4
 >>> most_students([['S', 'S', 'S'], \
 ['S', 'S', 'S'], \
 ['S', 'S', 'S']])
 0
 >>> most_students([['S', 'S', 'S'], \
 [' ', ' ', ' '], \
 ['S', 'S', 'S']])
 3
 >>> most_students([[' ', ' ', 'S'], \
 ['S', ' ', ' '], \
 ['S', 'S', 'S']])
 2
 '''
 max_seats = 0
 for row in classroom:
 seats = row.count(' ')
 if seats > max_seats:

116 chapter 6 Testing and prompt engineering

 max_seats = seats
 return max_seats

import doctest
doctest.testmod(verbose=False)

In this example, we saw how to write a function to solve a problem from start to finish.
Copilot gave us the wrong answer, partially because of a difficult-to-interpret prompt.
We figured out that it gave us the wrong answer because the code failed on our first
test. We then improved the prompt and used the code reading skills we learned in the
previous two chapters to pick out a solution that looked correct for our needs. The new
code passed our initial basic test, so we added more test cases to see whether the code
worked in more situations. After seeing it pass those additional tests, we have more
evidence that the code is correct. At this point, we’ve tested the common cases and
edge cases, so we are highly confident that the code is correct at this point. Regarding
testing, this example showed us how tests can help us find mistakes and give us more
confidence that the code will function properly.

6.6 Another full testing example—Testing with files
In most cases, you’ll be able to test your code by adding examples to the docstring
like we did in the last example. However, there are times when testing can be a bit
more challenging. This is true when you need to test your code against some kind of
external input. An example is when one needs to test code that interacts with external
websites, but this is more common in advanced code than the kind of code you’ll be
creating within the scope of this book. An example that is within the scope of this book
is working with files. How do you write test cases when your input is a file? Python does
support doing this in a way internal to the docstring here, but for continuity with what
we’ve already done, we’re not going to do it that way. Instead, we’ll use external files to
test our code. Let’s see how to do that by revising our NFL quarterback (QB) example
from chapter 2.

We could walk through an example with the entire file, but since our queries about
quarterbacks were only for the first nine columns of the file, we’re going to strip off the
remaining columns of the file to make things more readable. After stripping off the
remaining columns, table 6.2 shows the first four rows of the file.

Table 6.2 The first three lines of an abridged version of the NFL dataset

game_id player_id position player team pass_cmp pass_att pass_yds pass_td

201909050chi RodgAa00 QB Aaron Rodgers GNB 18 30 203 1

201909050chi JoneAa00 RB Aaron Jones GNB 0 0 0 0

201909050chi ValdMa00 WR Marquez
Valdes-Scantling

GNB 0 0 0 0

 117Another full testing example—Testing with files

We’ll assume that each row in the dataset has just these nine columns for the remain-
der of the example, but we hope it’s not a big stretch to imagine how to do this for the
full dataset (you’d just need to add all the additional columns in each case).

Suppose we want to make a function that takes in the filename of the dataset and
the name of a player as input and then outputs the total number of passing yards that
player achieved in the dataset. We’ll assume that the user will be providing the data as
formatted in the NFL offensive stats file in chapter 2 and in table 6.2. Before we write
the prompt or function, how should we test this? Well, we have some options:

1 Find tests in the larger dataset—A solution is to give the full dataset to the function
and multiple player names as inputs. The challenge is figuring out whether we are
correct or not. We could open the file in spreadsheet software like Google Sheets
or Microsoft Excel and, using the tool, figure out the answer for each player. For
example, we could open the sheet in Excel, sort by player, find a player, and use
the sum function in Excel to add up all the passing yards for that player. This isn’t
a bad solution at all, but it’s also a fair bit of work, and if you put enough time
into finding the answer for testing, you might have already fulfilled your needs
and no longer require the Python code! In other words, figuring out the answer
for the test cases might just give you the answer you wanted in the first place,
making the code less valuable. Another problem is in finding all the edge cases
you might want to test: Will your dataset have all the edge cases you’d want to test
to write a program that will work on other datasets later? Yet another drawback of
this approach is determining what you do when the function is doing something
considerably more complicated than just summing a value in a bunch of rows?
There, figuring out the answers for some real test values might be a great deal of
work.

2 Create artificial dataset(s) for testing—Another solution would be to create artificial
datasets where you know the answer to a number of possible queries. Because the
dataset is artificial, you can add edge cases to see how the code performs in those
edge cases without having to find examples in the real dataset that test those edge
cases. (Indeed, sometimes the real dataset won’t include those edge cases, but
you still want to test them, so the code behaves properly if you get an updated or
new dataset.)

Given the advantages to creating test cases in an artificial dataset, we’re going to pro-
ceed with that approach here.

6.6.1 What tests should we run?

Let’s think through the common cases and edge cases that we would want to test. For
common cases, we’d want to have a few tests:

1 A player appears multiple times in different rows of the dataset (nonconsecu-
tively), including the last row. This test makes sure the code iterates over all the

118 chapter 6 Testing and prompt engineering

players before returning a result (i.e., doesn’t make the false assumption that the
data is sorted by player name).

2 A player appears in consecutive rows of the dataset. This test makes sure there
isn’t some kind of error where consecutive values are somehow skipped.

3 A player appears just once in the dataset. This test makes sure that the sum
behaves properly even when it is just summing one value.

4 A non-quarterback should appear in the dataset, so we ensure the code is includ-
ing all players, not just quarterbacks.

5 A player who has 0 total passing yards in a game. This checks to make sure that
the code behaves properly when players don’t have any passing yards. This is a
common case to test because players can get hurt and miss a game due to the
injury.

For edge cases, we’d want to test a couple more things:

1 The player isn’t in the dataset: This is actually pretty interesting: What do we want
the code to do in this case? A reasonable answer is to return that they passed
for 0 yards. If we asked the dataset how many yards Lebron James (a basketball
player, not a football player) passed for in the NFL from 2019–2022, 0 is the right
answer. However, this may not be the most elegant solution for production code.
For example, if we ask for the passing yards for Aron Rodgers (misspelling Aaron
Rodgers), we’d rather have the code tell us he’s not in the dataset than that he
passed for 0 yards, which could really confuse us when he won the league MVP
twice during this time frame. To signal that the name was missing, we might
return a large negative value (e.g., –9999), or we might use something called
exceptions, but they are beyond the scope of this book.

2 A player has a negative total number of yards across all games or a player has a single game
with negative yards to ensure the code is properly handling negative values: If you don’t
follow American football, this can happen if a player catches a ball and is tackled
behind the starting point (line of scrimmage). It’s unlikely a quarterback would
have negative passing yards for an entire game, but it could happen if they throw
one pass for a loss (negative yards) and get hurt at the same time, causing them
to not play for the rest of the game.

Now that we have an idea of what we want to test, let’s build an artificial file that cap-
tures these test cases. We could have split these tests across multiple files, and that’d be
a reasonable choice to make as well, but an advantage of putting them all in one file is
that we can keep all of our test cases together. Table 6.3 is what we built and saved as
test_file.csv.

 119Another full testing example—Testing with files

Table 6.3 Our file to test the NFL passing yards function

game_id player_id position player team pass_cmp pass_att pass_yds pass_td

201909050chi RodgAa00 QB Aaron Rodgers GNB 20 30 200 1

201909080crd JohnKe06 RB Kerryon
Johnson

DET 1 1 5 0

201909080crd PortLe00 QB Leo Porter UCSD 0 1 0 0

201909080car GoffJa00 QB Jared Goff LAR 20 25 200 1

201909050chi RodgAa00 QB Aaron Rodgers GNB 10 15 150 1

201909050chi RodgAa00 QB Aaron Rodgers GNB 25 35 300 1

201909080car GoffJa00 QB Jared Goff LAR 1 1 –10 0

201909080crd ZingDa00 QB Dan Zingaro UT 1 1 –10 0

201909050chi RodgAa00 QB Aaron Rodgers GNB 15 25 150 0

Notice that the data here is entirely artificial. (These are not the real statistics for any
player, as you can tell by the fact Dan and Leo are now magically NFL quarterbacks.)
We did keep the names of some real players as well as real game_ids and player_ids
from the original dataset. It’s generally a good idea to make your artificial data be as
close to real data as possible so that the tests are genuine and more apt to be represen-
tative of what will happen with real data.

Let’s look at how we incorporated all the test cases in this test file. Aaron Rodgers
occurs multiple times in the file, both consecutively and nonconsecutively, and as the
last entry. Jared Goff appears multiple times, and we gave him an artificial –10 yards in a
game (as Jared Goff’s an elite NFL QB, I hope he’s okay with us giving him an artificially
bad single game). We kept Kerryon Johnson as a running back (RB) from the real data-
set and gave him 5 passing yards to make sure the solution doesn’t filter for only QBs.
Kerryon Johnson also only has one entry in the data. We added Leo Porter to the data-
set and gave him 0 passing yards (he’s pretty sure he’d do anything to not get tackled
by an NFL player). We also added Dan Zingaro and gave him a completed pass, but for
–10 yards, covering the case that a single player’s total is negative. Table 6.4 shows what
it should return per player when we run the query for each player.

Table 6.4 Passing yards per player in the test case

Player Passing yards in the test case

Aaron Rodgers 800

Kerryon Johnson 5

Leo Porter 0

Jared Goff 190

Dan Zingaro –10

120 chapter 6 Testing and prompt engineering

6.6.2 Creating the function

Let’s start with the function name and describe the problem in the docstring. This
problem may be complicated enough that we’ll need to offer prompts within the func-
tion to help it know to open the file, process the data, and close the file, but let’s try to
just describe the function first and see how Copilot does.

Listing 6.9 Function to find total passing yards per player

def tot_pass_yds_player(input_file, player):
 """
 input_file is a string that is the name of a file
 player is the name of a player

 The file is a csv file with a header row
 Column 4 is the player's name and column
 8 is the number of passing yards for that player

 return the total number of passing yards for the player
 """
 import csv
 with open(input_file, 'r') as csvfile:
 reader = csv.reader(csvfile)
 next(reader)
 total = 0
 for row in reader:
 if row[3] == player:
 total += int(row[7])
 return total

Before looking at the code produced, we want to point out that we didn’t include the
test cases for this example because they likely wouldn’t help Copilot. We recommend
having Copilot generate code prior to you adding test cases if your test cases will sim-
ply open and use artificial files. Each test case will just be a filename, a player, and the
expected output. Copilot likely can’t read the file that corresponds to that filename
and figure out that we’re summing the eighth column to get the desired result. This
means that giving Copilot the test cases isn’t going to add to the quality of the prompt.
In fact, the artificial nature of our data might even confuse it (e.g., in what scenario
does a real NFL player have a negative total for passing yards?)

Now looking at the code that Copilot gave us, we can see that it is quite reasonable
and almost identical to the code we saw in chapter 2. Given that it seems reasonable
when we read it, let’s see how to test it.

6.6.3 Testing the function

To test the function, we’ll augment the docstring to include our test cases for the full
piece of code, as shown in the following listing.

We abbreviated the
function name.

 121Another full testing example—Testing with files

Listing 6.10 Testing the function to find total passing yards per player

def tot_pass_yds_player(input_file, player):
 """
 input_file is a string that is the name of a file
 player is the name of a player

 The file is a csv file with a header row
 Column 4 is the player's name and column
 8 is the number of passing yards for that player

 return the total number of passing yards for the player

 >>> tot_pass_yds_player('test_file.csv’, 'Aaron Rodgers')
 800
 >>> tot_pass_yds_player('test_file.csv', 'Kerryon Johnson')
 5
 >>> tot_pass_yds_player('test_file.csv', 'Leo Porter')
 0
 >>> tot_pass_yds_player('test_file.csv', 'Dan Zingaro')
 -10
 >>> tot_pass_yds_player('test_file.csv', 'Jared Goff')
 190
 >>> tot_pass_yds_player('test_file.csv', 'Tom Brady')
 0
 """
 import csv
 with open(input_file, 'r') as csvfile:
 reader = csv.reader(csvfile)
 next(reader)
 total = 0
 for row in reader:
 if row[3] == player:
 total += int(row[7])
 return total

import doctest
doctest.testmod(verbose=False)

We ran this code, and all the test cases passed. We have additional evidence that the
code is functioning properly!

6.6.4 Common challenges with doctest

Let’s rewrite the previous prompt and add a really subtle error to the first test, as shown
in the following listing.

Listing 6.11 Mistake in doctest

def tot_pass_yds_player(input_file, player):
 """
 input_file is a string that is the name of a file
 player is the name of a player

 The file is a csv file with a header row

The additional test
case for a player not
in the dataset

122 chapter 6 Testing and prompt engineering

 The 4th Column is the player's name and the 8th column
 is the number of passing yards for that player

 return the total number of passing yards for the player

 >>> tot_pass_yds_player('test_file.csv', 'Aaron Rodgers')
 800
 >>> tot_pass_yds_player('test_file.csv', 'Kerryon Johnson')
 5
 >>> tot_pass_yds_player('test_file.csv', 'Leo Porter')
 0
 >>> tot_pass_yds_player('test_file.csv', 'Dan Zingaro')
 -10
 >>> tot_pass_yds_player('test_file.csv', 'Jared Goff')
 190
 >>> tot_pass_yds_player('test_file.csv', 'Tom Brady')
 0
 """
 import csv
 with open(input_file, 'r') as csvfile:
 reader = csv.reader(csvfile)
 next(reader)
 total = 0
 for row in reader:
 if row[3] == player:
 total += int(row[7])
 return total

import doctest
doctest.testmod(verbose=False)

When we ran this code, we received this error:

Failed example:
 tot_pass_yds_player('test_file.csv', 'Aaron Rodgers')
Expected:
 800
Got:
 800

On first glance, this seems really odd. The test case expects 800 and it got 800, but it’s
telling us it failed. Well, it turns out that we made a mistake in writing the test case and
wrote “800 ” (with a space at the end) rather than “800”. This mistake causes Python
to think the space is important and causes the test to fail. The bad news is that this is
a really common problem working with doctest! We’ve made this mistake more often
than we’d like to admit. The good news is it’s really easy to fix by just finding and delet-
ing the space. If a test is failing but the output from doctest suggests that it should be
passing, always check ends of lines for spaces or extra or missing spaces in your output
compared to exactly what doctest is expecting.

Given that all our test cases passed, we can feel confident returning to the larger
dataset and using the function we just created. The key thing from this example is that
we can, and should, create artificial files to test functions that work with files. Again,

There is an
extra space
after the 800
that isn’t
visible.

 123Summary

testing is all about gaining confidence that the code is working properly, and you want
to be sure you test any code you write or is given to you by Copilot.

In this chapter as a whole, we learned about the importance of testing code, how to
test code, and how to do it in two detailed examples. In our examples, we wrote and
tested functions. But how do we decide which functions should be written to solve even
larger problems? Well, we figure that out through a process known as problem decom-
position that we’ll cover in detail in our next chapter.

Summary
¡	Testing is a critical skill when writing software using Copilot.

¡	Closed-box and open-box testing are different approaches to ensuring the code
is correct. In closed-box testing, we come up with test cases based on what we
know about the problem; in open-box testing, we additionally examine the code
itself.

¡	Doctest is a convenient way to test your code by adding test cases to the docstring
description of a function.

¡	Creating artificial files is an effective way to test code that uses files.

124

7Problem decomposition

This chapter covers

¡	Understanding problem decomposition and why
 we need to do it
¡	Using top-down design to carry out problem
 decomposition and write programs
¡	Writing an authorship identification program
 using top-down design

In chapter 3, we talked about why we shouldn’t ask Copilot to solve big problems.
Imagine what could happen if we asked Copilot, “Write a program to determine the
author of a book.”

In the best case, we’d get a canned program with all of the decisions made for us.
That program may not match what we wanted. Part of the power of being a program-
mer is customizing what we’re creating. To do this, we need to feed small subprob-
lems to Copilot and assemble those solutions into a program of our own. Even if we
didn’t want to customize anything, what would we do if the program from Copilot
had flaws? It would be difficult for us to fix a large program that we don’t understand.

In the worst case, Copilot wouldn’t do anything useful. We observe this sometimes
when Copilot gives us comments again and again but never provides us with real
code.

In this chapter, we will learn how to break large problems into smaller ones. We
can then use Copilot to solve each of the small subproblems, thereby solving the
large problem that we ultimately care about solving.

 125Small examples of top-down design

7.1 Problem decomposition
Problem decomposition involves starting with a large problem that may not be fully
specified and breaking it down into subproblems, each of which is well-defined and
useful for solving our overall problem. Our goal is to write a function to solve each of
those subproblems. We may be able to do this for some subproblems without any fur-
ther work. But other subproblems may still be too big for us to capture in a function of
reasonable size. (In chapter 3, we mentioned that we want to keep functions short—
something like 12–20 lines—to give us the best chance of getting good code from Copi-
lot, testing that code, and fixing bugs in that code if necessary.) If a subproblem is still
too large to be implemented in a single function, then we further divide that subprob-
lem into sub-subproblems of their own. Hopefully, each of those sub-subproblems will
be small enough now, but if not, we will continue dividing those, too! The key reason
we do this is to manage complexity. Each function should be simple enough that we
can understand its purpose and that Copilot can solve it well. When we ask ourselves or
Copilot to write code that is extremely complex, we, and Copilot, often make mistakes.

The process of starting with a large problem and breaking it down is called top-down
design. Once we have completed the top-down design, we can implement these func-
tions in code. We’ll have one function for our overall problem, which will call the func-
tions for each of our subproblems. Each of those subproblem functions will further call
their own functions, as needed, to solve any of their sub-subproblems, and so on.

As we discussed in chapter 3, we’re looking to end up with functions that each have
a small role to play in our overall program and whose behavior is clearly defined. We’re
also looking for opportunities to design small functions that are called by multiple
other functions to reduce complexity of those larger functions and prevent code repe-
tition. Finally, we seek to design functions that have a small number of parameters and
return a meaningful and useful result to the function that calls them.

7.2 Small examples of top-down design
We’ll soon jump into an authentic example of how top-down design works, but we’d
first like to set the stage using a couple of our earlier examples. Let’s think about the
design of a function we previously wrote in chapter 3: get_strong_password. It
repeatedly prompts the user for a password until they enter a strong password. Don’t
go back and look at that code—we want to start fresh here.

Suppose that we want to use a top-down design to write this function. If it’s one small,
well-defined task, we may be able to implement it directly as a single function. However,
for this function, we do see a subtask; namely, what’s a strong password? What are the
rules around that? To us, this sounds like a subtask that we can try to carve out of this
function to make it simpler. Indeed, in chapter 3, when we wrote this function, we did
call our earlier is_strong_password function, which makes the True/False decision
about what it means for a password to be strong.

126 chapter 7 Problem decomposition

We can depict this top-down design as shown in figure 7.1. For ease of displaying
what will ultimately be large figures later in the chapter, we’re going to consistently
show the design from left to right rather than top to bottom, but the same fundamental
principles still apply.

get_strong_password is_strong_password

Figure 7.1 Functions diagram for the get_strong_password function. get_strong_password
calls is_strong_password.

This figure indicates that it is our goal to have get_strong_password call is_strong_
password to do some of its work.

Also, in chapter 3, we wrote a best_word function that takes a list of words as its
parameter and returns the one worth the most points. Again, don’t go back and look at
that code—we want to figure it out again here. Let’s think about what the code might
look like. It will probably use a loop to consider each word, and in that loop, it will need
to keep track of the best word we’ve seen so far. For each word, we need to figure out
how many points it’s worth by adding up the number of points for each of its letters.
Remember that A is worth 1 point, B is worth 3 points, C is worth 3 points, D is worth 2
points, E is worth 1 point, and so on.

Whoa there! We’re really going in-depth on this “How many points each letter is
worth?” thing. This sounds like a subtask to us. If we had a function that we could call to
tell us the number of points each word is worth, we wouldn’t need to worry about this
points business in our best_word function. In chapter 3, we wrote a function called
num_points that carries out exactly this task: take a word as a parameter and return its
total point value. We can call num_points from best_word, as depicted in figure 7.2.
Again, this makes the task of best_word easier for us.

best_word num_points

Figure 7.2 Functions diagram for best_word

In chapter 3, we happened to write these functions from subtask to task, from the leaf
function to the parent function. We will continue to do that in this chapter, but we will
do the top-down design first to figure out which functions we’ll need.

The two examples we just talked about are small, and you may indeed be able to get
their code written by powering ahead with a single function. But with a large exam-
ple, as we will see next, top-down design is the only way to keep the complexity under
control.

We’ve chosen our upcoming large example for a couple of reasons. First, the process
of top-down design is quite abstract, and we feel that this authentic example will make it
much more concrete. Second, we want to solve a problem with you that we hope is moti-
vating and feels like a real problem that you could imagine yourself wanting to solve.

 127Authorship identification

We’re going to write a program that tries to identify the author of a mystery book whose
author we don’t know. It’ll be an example of a program that uses artificial intelligence
(AI) to make a prediction. (We couldn’t resist the opportunity to include an AI exam-
ple in a book about programming with AI!)

The key skill that we want you to take from this chapter is how to break a large prob-
lem down into smaller subproblems. We are going to code up the whole solution using
Copilot, but don’t take this to mean that we want you to fully grasp how all of the code
fits together. Rather, we’re coding it up to show you that once we do top-down design,
we can implement each function on its own and get a fully working program.

7.3 Authorship identification
This problem is based on an assignment created by our colleague Michelle Craig [1].
Let’s start by taking a look at these two book excerpts:

¡	Excerpt 1
I have not yet described to you the most singular part. About six years ago—to be
exact, upon the 4th of May 1882—an advertisement appeared in the Times asking
for the address of Miss Mary Morstan and stating that it would be to her advan-
tage to come forward. There was no name or address appended. I had at that
time just entered the family of Mrs. Cecil Forrester in the capacity of governess.
By her advice I published my address in the advertisement column. The same day
there arrived through the post a small card-board box addressed to me, which I
found to contain a very large and lustrous pearl. No word of writing was enclosed.
Since then, every year upon the same date there has always appeared a similar
box, containing a similar pearl, without any clue as to the sender. They have been
pronounced by an expert to be of a rare variety and of considerable value. You
can see for yourselves that they are very handsome.

¡	Excerpt 2
It was the Dover Road that lay on a Friday night late in November, before the first
of the persons with whom this history has business. The Dover Road lay, as to him,
beyond the Dover mail, as it lumbered up Shooter’s Hill. He walked up hill in the
mire by the side of the mail, as the rest of the passengers did; not because they
had the least relish for walking exercise, under the circumstances, but because
the hill, and the harness, and the mud, and the mail, were all so heavy, that the
horses had three times already come to a stop, besides once drawing the coach
across the road, with the mutinous intent of taking it back to Blackheath. Reins
and whip and coachman and guard, however, in combination, had read that arti-
cle of war which forbade a purpose otherwise strongly in favour of the argument,
that some brute animals are endued with Reason; and the team had capitulated
and returned to their duty.

128 chapter 7 Problem decomposition

Suppose we asked you whether these two excerpts were likely written by the same
author. One assumption you might make is that different authors write differently, and
that these differences would show up in metrics that we could calculate about their
texts.

For example, whoever wrote the first excerpt seems to use quite a few short sentences
in terms of number of words compared to the second excerpt. We find short sentences
like “There was no name or address appended” and “No word of writing was enclosed”
in the first excerpt; those kinds of sentences are absent from the second. Similarly, the
sentences from the first excerpt seem to be less complex than those in the second; look
at all of those commas and semicolons in the second excerpt.

This analysis may lead you to believe that these texts are written by different authors,
and, indeed, they are. The first is written by Sir Arthur Conan Doyle, and the second, by
Charles Dickens.

To be fair, we’ve absolutely cherry-picked these two excerpts. Doyle does use some
long, complex sentences. Dickens does use some short ones. But, on average, at least
for the two books that we took these excerpts from, Doyle does write shorter sentences
than Dickens. More generally, if we look at two books written by different authors, we
might expect to find some quantifiable differences on average.

Suppose that we have a bunch of books whose authors we know. We have one written
by Doyle, one written by Dickens, and so on. Then, along comes a mystery book. Oh no!
We don’t know who wrote it! Is it a lost Sherlock Holmes story from Doyle? A lost Oliver
Twist sequel from Dickens? We want to find out who that unknown author is.

Our strategy will be to come up with a signature for each author, using one of the
books we know they wrote. We’ll refer to these signatures as known signatures. Each of
these signatures will capture metrics about the book text, such as the average number
of words per sentence and the average sentence complexity. Then, we’ll come up with
a signature for the mystery book with an unknown author. We’ll call this the unknown
signature. We’ll look through all the known signatures, comparing each one to our
unknown signature. We’ll use whichever is the closest as our guess for the unknown
author.

Of course, we have no idea if the unknown author is really one of the authors whose
signatures we have. It could be a completely new author, for example. Even if the
unknown author is one of the authors whose signature we have, we still might end up
guessing wrong. After all, maybe the same author writes books in different styles (giving
their books very different signatures), or we simply fail to capture what is most salient
about how each of our authors writes. Indeed, we’re not after an industry-strength
author identification program in this chapter. Still, considering the difficulty of this
task, we think it’s impressive how well the approach that we’ll show you here works.

 129Authorship identification using top-down design

Machine Learning
Authorship identification, as we’re doing here, is a machine learning (ML) task. ML is a
branch of AI designed to help computers “learn” from data in order to make predictions.
There are various forms of ML; the one we’re doing here is called supervised learning. In
supervised learning, we have access to training data, which consists of objects and their
known categories (or labels). In our case, our objects are book texts, and the category for
each book is the author who wrote it. We can train (i.e., learn) on the training set by cal-
culating features—average number of words per sentence, average sentence complexity,
and so on—for each book. Later, when we’re provided a book whose author we don’t
know, we can use what we learned in the training to make our guess.

7.4 Authorship identification using top-down design
Alright, we want to “write a program to determine the author of a book.” This seems
like a daunting task, and it indeed would be if we were trying to do this in one shot,
using a single function. But we’re not going to do that. We’re going to systematically
break this problem down into subproblems that we can solve.

In chapter 2, we learned that many programs follow a model of reading input, pro-
cessing that input, and producing an output result. We can think about our authorship
identification program as following that model as well:

¡	For the input step, we need to ask the user for the filename of the mystery book.

¡	For the process step, we need to figure out the signature for the mystery book
(that’s the unknown signature), as well as the signature for each of the books
whose author we know (those are the known signatures). We also need to com-
pare the unknown signature to each known signature to figure out which known
signature is closest.

¡	For the output step, we need to report to the user the unknown signature that’s
closest to the known signature.

That is, to solve our overall authorship identification problem, we need to solve these
three subproblems. We’re starting our top-down design!

We’ll name our top-level function make_guess. In it, we will solve each of the three
subproblems we identified.

For the input step, we’re simply asking the user for a filename. That sounds like
something we can do in a small number of lines of code, so we probably don’t need
a separate function for that. The output step seems similar: assuming that we already
know which known signature is closest, we can just report that to the user. By contrast,
the process step looks like a lot of work, and we’ll certainly want to break that subprob-
lem down further. That’s what we’ll do next!

130 chapter 7 Problem decomposition

7.5 Breaking down the process subproblem
We’ll name our overall process function process_data. It will take the mystery book
filename and the name of a directory of known-author books as parameters and return
the name of the closest known signature.

Looking at our description for the process step, it seems that we have three subprob-
lems to solve here:

¡	Figure out the signature for the mystery book. That’s our unknown signature.
We’ll name this function make_signature.

¡	Figure out the signature for each of the books whose author we know. These are
our known signatures. We’ll name this function get_all_signatures.

¡	Compare the unknown signature to each known signature to figure out which
known signature is closest. Since close signatures will have small differences,
we’ll name this function lowest_score.

We’ll work on our top-down design for each of these subproblems in turn. Figure 7.3
shows a diagram of what we have so far.

make_guess get_all_signatures

lowest_score

make_signature

process_data

Figure 7.3 Functions diagram with three subtasks of process_data

7.5.1 Figuring out the signature for the mystery book

The function for this task, make_signature, will take the text for our book as a param-
eter and return the book’s signature. At this point, we need to decide on the features
that we’ll use to determine the signature for each book. Let’s break this down by think-
ing back to the previous example passages. We noticed there are differences in the
authors passages based on the complexity and length of sentences. You may have also
suspected that the authors may differ in the length of words used and ways they use
words (e.g., some authors may be more repetitive than others). As such, we’ll want
some features to be based on the structure of the author’s sentences and others based
on the words that the author uses. We’ll look at each of these in detail.

features related to the structure of the author’s sentences

In our earlier Doyle versus Dickens example, we talked about using the average num-
ber of words per sentence as one feature. We can calculate this by dividing the total
number of words by the total number of sentences. For example, consider the text:

 131Breaking down the process subproblem

The same day there arrived through the post a small card-board box addressed to me, which
I found to contain a very large and lustrous pearl. No word of writing was enclosed.

If you count the words and sentences, you should find that there are 32 words (card-
board counts as one word) and two sentences, so we’ll calculate the average words per
sentence as 32/2 = 16. This will be the average number of words per sentence feature.

We also noticed that the complexity of sentences may vary between authors (i.e.,
some authors have sentences with many more commas and semicolons compared to
other authors), so it makes sense to use that as another feature. More complex sen-
tences have more phrases, which are coherent pieces of sentences. Breaking a sentence
into its component phrases is a tough challenge in its own right, and although we could
try to do it more accurately, we’ll settle here for a simpler rule of thumb. Namely, we’ll
say that a phrase is separated from other phrases in the sentence by a comma, semico-
lon, or colon. Looking at the previous text again, we find that there are three phrases.
The first sentence has two phrases: “The same day there arrived through the post a
small card-board box addressed to me” and “which I found to contain a very large and
lustrous pearl.” The second sentence has no commas, semicolons, or colons, so it has
only one phrase. As there are three phrases and two sentences, we’d say that the sen-
tence complexity for this text is 3/2 = 1.5. This will be the average sentence complexity
feature.

We hope that these sentence-level features intuitively make sense as things we could
use to differentiate how authors write. Next, let’s start looking at the ways that authors
may differ in their use of words.

features related to the author’s word selection

You can probably think of your own metrics for word-level features, but we’ll use three
here that in our experience work well.

First, it’s likely that some authors use shorter words on average than other authors.
To that end, we’ll use the average word length, which is just the average number of let-
ters per word. Let’s consider this sample text that we created:

A pearl! Pearl! Lustrous pearl! Rare. What a nice find.

If you count the letters and words, you should find that there are 41 letters and 10
words. (Don’t count punctuation as letters here.) So, we’ll calculate the average word
length as 41/10 = 4.1. This will be the average word length feature.

 Second, it may be that some authors use words more repetitively than others. To cap-
ture this, we’ll take the number of different words that the author uses and divide it by
the total number of words. For our previous sample text, there are only seven different
words used: a, pearl, lustrous, rare, what, nice, and find. There are 10 words in all, so our
calculation for this metric would be 7/10 = 0.7. This will be the different words divided by
total words feature.

Third, it may be that some authors tend to use many words a single time, whereas
other authors tend to use words multiple times. To calculate this one, we’ll take the
number of words used exactly once and divide it by the total number of words. For our
sample text, there are five words that are used exactly once: lustrous, rare, what, nice, and

132 chapter 7 Problem decomposition

find. There are 10 words in all, so our calculation for this metric would be 5/10 = 0.5.
This will be the number of words used exactly once divided by total words feature.

In all, we have five features that will make up each signature. We’ll need to store
those numbers together in a single value, so we’ll end up using a list of five numbers for
each signature.

Let’s dig into how we’ll implement each of these features, starting with the word-
level ones and proceeding to the sentence-level ones. We’ll go in this order:

¡	Average word length

¡	Different words divided by total words

¡	Words used exactly once divided by total words

¡	Average number of words per sentence

¡	Average sentence complexity

For each one, we’ll ultimately end up writing a function. We have an updated dia-
gram with function names for each of these five new functions that will help make_
signature in figure 7.4. Do we need to further break down these problems, or are
they OK as is? Let’s see!

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

Figure 7.4 Functions diagram with additional five subtasks of make_signature

aVerage word length

The function for this task, average_word_length, will take the text of the book as a
parameter and return the average word length.

We might start solving this task by using the split method in the text. As a reminder,
the split method is used to split a string into a list of its pieces. By default, split will
split around spaces. The book text is a string, and if we split around spaces, we’ll get its
words! That’s exactly what we need here. We can then loop through that list of words,
counting up the number of letters and number of words.

That’s a good start, but we need to be a little more careful here because we don’t
want to end up counting nonletters as letters. For example, “pearl” has five letters. But
so does “pearl.” or “pearl!!” or “(pearl)”. Aha! This sounds like a subtask to us! Namely,
we can divide out the subtask of cleaning up a word into its own function to be used by
average_word_length. We’ll call that cleanup function clean_word.

 133Breaking down the process subproblem

There’s another benefit to having our clean_word function, and that’s to help us
identify when a “word” is actually not a word. For example, suppose one of our “words”
in the text is “...”. When we pass this to clean_word, we’ll get an empty string back. That
signifies that this in fact is not a word at all, so we won’t count it as such.

different words diVided by total words

The function for this task, different_to_total, will take the text of the book as a
parameter and will return the number of different words used divided by the total
number of words.

As with average_word_length, we need to be careful to count only letters, not
punctuation. But wait—we just talked about a clean_word function that we needed for
average_word_length. We can use that function here as well! In fact, we’ll use clean_
word in most of our five feature tasks. This is the sign of a useful general-purpose func-
tion! Our top-down design is going well. We can see how the clean_word function will
be called by both functions in our updated function diagram in figure 7.5.

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

clean_word

Figure 7.5 Functions diagram with two functions, both using our clean_word function to help

There’s one extra complication here, though, and it involves words like pearl, Pearl,
and PEARL. We want to consider those to be the same words, but if we simply use string
comparisons, they will be treated as different words. One solution here is to split this
off into another subproblem to convert a string to all lowercase. We could also think of
this as another part of cleaning up a word, right along with removing the punctuation.
We’ll go with this second option. What we’ll do, then, is make our clean_word func-
tion not only remove punctuation but also convert the word to lowercase.

You might wonder whether we need to split off another subtask here, one that deter-
mines the number of different words. You could indeed do that, and it would not be
a mistake to do so. However, if we persevere without doing that, we will see that the
function remains quite manageable without this additional subtask. Practice and expe-
rience over time will help you anticipate when a task needs to be further broken down.

words used exactly once diVided by total words
The function for this task, exactly_once_to_total, will take the text of the book as a
parameter and will return the number of words used exactly once divided by the total
number of words.

134 chapter 7 Problem decomposition

We’re going to need our clean_word function here as well for reasons similar to why
we needed it in the prior two tasks: to make sure we’re working only with letters, not
punctuation.

And again, while we could split out a subtask to determine the number of words that
are used exactly once, we’ll find that it doesn’t take much Python code to do this, so
we’ll just leave this task alone without splitting it further.

aVerage number of words per sentence

The function for this task, average_sentence_length, will take the text of the book
as a parameter and will return the average number of words per sentence.

To split our text into words for the previous three tasks, we can use the string split
method. How do we split our text into sentences? Is there a string method for that?

Unfortunately, not. For that reason, it will be helpful to split out a task to break our
text string into sentences. We’ll call the function for that subtask get_sentences. get_
sentences will take the text of the book as a parameter and will return a list of sen-
tences from the text.

What’s a sentence? We’ll define a sentence as text that is separated by a period (.),
question mark (?), or exclamation point (!). This rule, while convenient and simple, is
going to make mistakes. For example, how many sentences are in this text?

I had at that time just entered the family of Mrs. Cecil Forrester in the capacity of governess.

The answer is one. Our program, though, is going to pull out two sentences, not one.
It’ll get tricked by the word Mrs., which has a period at the end. If you continue with
authorship identification past this chapter, you could work on making your rules more
robust or, indeed, use sophisticated natural language processing (NLP) software to do
even better, but for our purposes, we’ll be content with this rule that sometimes gets
sentences wrong because most of the time we will get them right. If we're only wrong
once in a while, the errors won't have an appreciable effect on our metric.

aVerage sentence complexity

We’ll name the function for this task average_sentence_complexity. It will take the
text of a sentence as a parameter and return a measure of the sentence complexity.

As we discussed previously, we’re interested in quantifying sentence complexity
using the number of phrases in a sentence. Much as we used punctuation to separate
sentences from each other, we’ll use different punctuation to separate phrases from
each other. Namely, we’ll say that a phrase is separated by a comma (,), semicolon (;),
or colon (:).

It would be nice to have a subtask to break a sentence into its phrases, just like we had
a subtask to break text into its sentences. Let’s make that happen! We’ll call the func-
tion for that subtask get_phrases. get_phrases will take a sentence of the book as a
parameter and return a list of phrases from the sentence.

Let’s pause for a moment and think about what we’re doing with our get_sentences
and get_phrases functions. They’re both quite similar, come to think of it. All that dis-
tinguishes them is the characters that they use to make the splits. get_sentences cares

 135Breaking down the process subproblem

about periods, question marks, and exclamation points, whereas get_phrases cares
about commas, semicolons, and colons. We see an opportunity for a parent task that
would simplify both of these tasks!

Namely, imagine that we had a split_string function that took two parameters, the
text and a string of separator characters, and it returned a list of pieces of text separated
by any of the separators. We could then call it with '.?!' to split into sentences and
',;:' to split into phrases. That would make both get_sentences and get_phrases
easier to implement and reduce code duplication. This is a win!

At this point, we’ve fully fleshed out the functions necessary to solve the higher-level
function make_signature, as reflected in figure 7.6. We’ll next turn to the get_all_
signatures function.

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

get_sentences

get_phrases

clean_word

split_string

Figure 7.6 Functions diagram with all the supporting functions for the make_signature function complete

figuring out each known signature

We just worked hard to break down our make_signature function into five main tasks,
one for each feature of our signatures. We designed that function to determine the
unknown signature—the signature for the mystery text whose author we’re trying to
identify.

Our next task is to figure out the signature for each of the books for which we know
the author. In the resources for this book, under ch7, you’ll find a directory called
known_authors. In there, you’ll find several files, each named as an author. Each file
contains a book written by that author. For example, if you open Arthur_Conan_Doyle.
txt, you’ll find the text of the book A Study in Scarlet by Arthur Conan Doyle. We need to
determine the signature for each of these files.

Amazingly, we have far less work to do to solve this problem than it may seem. That’s
because we can use that same make_signature function, the one we designed to deter-
mine the signature of the mystery book, to also determine the signature for any known
book!

We’ll name the function for this task get_all_signatures. It wouldn’t make sense
for this function to take the text of one book as a parameter since it’s supposed to be
able to get the signature for all of our known books. Rather, it will take a directory of
known books as a parameter. Its behavior will be to loop through the files in that direc-
tory, calculating the signature for each one.

136 chapter 7 Problem decomposition

We need the function to tell us which signature goes with which book. In other
words, we need it to associate each book with its corresponding signature. This kind of
association is precisely why Python has dictionaries! We’ll therefore have this function
return a dictionary, where the keys are names of files and the values are the correspond-
ing signature.

Our function diagram didn’t need any new functions to solve the get_all_
signatures function, so our updated diagram in figure 7.7 just shows how get_all_
signatures calls make_signature.

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

get_sentences

get_phrases

clean_word

split_string

Figure 7.7 Functions diagram updated for get_all_signatures to call make_signature

finding closest known signature

Let’s recap what we’ve designed so far:

¡	We’ve designed our make_signature function to get us the unknown signature
for the mystery book.

¡	We’ve designed our get_all_signatures function to get us all of our known
signatures.

Now, we need to design a function that tells us which of those known signatures is best;
that is, which known signature is closest to our unknown signature.

Each of our signatures will be a list of five numbers giving the quantity for each of our
five features. The order we’ll use is average word length, different words divided by total
words, words used exactly once divided by total words, average number of words per
sentence, and average sentence complexity.

Suppose that we have two signatures. The first one is [4.6, 0.1, 0.05, 10, 2].
That means that the average word length for that book is 4.6, the different words divided
by total words is 0.1, and so on. The second signature is [4.3, 0.1, 0.04, 16, 4].

There are many ways to get an overall score giving the difference between signatures.
The one we’ll use will give us a difference score for each feature, and then we’ll add up
those scores to get our overall score.

Let’s look at the values of each signature for the first feature: 4.6 and 4.3. If we sub-
tract those, we get a difference of 4.6 – 4.3 = 0.3. We could use 0.3 as our answer for
this feature, but it turns out to work better if we weight each difference using a differ-
ent weight. Each weight gives the importance of that feature. We will use some weights

 137Breaking down the process subproblem

([11, 33, 50, 0.4, 4]) that in our experience have proven to work well. You might
wonder where the heck these weights come from. But note that there’s no magic about
them: in working with our students over the years, we’ve just found that these weights
seem to work out. This would be only a starting point for a stronger authorship identifi-
cation program. When doing this type of research, people routinely tune their training,
which means to adjust weights to obtain stronger results.

When we say that we’re using weights of [11, 33, 50, 0.4, 4], it means that we’ll
multiply the difference on the first feature by 11, the difference on the second feature
by 33, and so on. So, rather than getting a difference of 0.3 for the first feature, we’ll get
0.3 * 11 = 3.3.

We need to be careful with features like the fourth one, where the difference is nega-
tive. We don’t want to start with 10 – 16 = –6 because that’s a negative number, and that
would undo some of the positive difference from other features. Instead, we need to first
make this number positive and then multiply it by its weight. Removing the negative
sign from a number is known as taking the absolute value, and the absolute value is
denoted as abs. The full calculation for this fourth feature, then, is abs(10 – 16) * 0.4 =
2.4.

Table 7.1 gives the calculation for each feature. If we add up all five scores, we get an
overall score of 14.2.

Table 7.1 Calculates the difference between two signatures

Feature
number

Value of feature in
signature 1

Value of feature in
signature 2

Weight of
feature

Weight of feature

1 4.6 4.3 11 abs(4.6 – 4.3) * 11 = 3.3

2 0.1 0.1 33 abs(0.1 – 0.1) * 33 = 0

3 0.05 0.04 50 abs(0.05 – 0.04) * 50 = .5

4 10 16 0.4 abs(10 – 16) * 0.4 = 2.4

5 2 4 4 abs(2 – 4) * 4 = 8

Sum 14.2

Remember where we are in the top-down design: we need a function that tells us which
known signature is best. Well, now we know how to compare two signatures and get the
score for that comparison. We’ll want to make that comparison between the unknown
signature and each known signature to determine which known signature is best. The
lower the score, the closer the signatures; the higher the score, the more different the
signatures. As such, we’ll want to ultimately choose the signature with the lowest com-
parison score.

We’ll name the function for this task lowest_score. It will take three parameters:
a dictionary mapping author names to their known signatures, an unknown signature,
and a list of weights. It will return the signature that has the lowest comparison score
with our unknown signature.

138 chapter 7 Problem decomposition

Think about the work that this function will need to do. It needs to loop through the
known signatures. We can do that with a for loop—no need for a subtask there. It will
need to compare the unknown signature to the current known signature. Oh! That’s
a subtask right there, embodying the scoring mechanism that we outlined in table 7.1.
We’ll name the function for that subtask get_score.

Our get_score function will take two signatures to compare and the list of weights
and return the score for the comparison between these two signatures.

7.6 Summary of our top-down design
We did it! We’ve broken down our original big problem into several smaller problems
that are amenable to being implemented as a function.

Figure 7.8 depicts all the work that we have done during the process of decomposing
the problem. Remember we started with a make_guess function, which will solve the
overall problem. To help us with make_guess, we created a process_data function
that will do some of the work for make_guess. To help process_data, we created three
more functions, make_signature, get_all_signatures, and lowest_score, that
each have their own helper functions, and so forth. Having sketched out the functions
we’ll need to solve our problem, our next step will be to implement them.

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

get_sentences

get_phrases

clean_word

split_string

get_score

Figure 7.8 Full functions diagram for make_guess

7.7 Implementing our functions
Now we’re ready to ask Copilot to implement each function that we need. We designed
our functions by starting from the top—the biggest problem—and working down to
smaller problems. By contrast, we’re going to implement the functions in the opposite
order, from bottom to top (or right to left in figure 7.8). The reason we do it this way is
so that Copilot will have our subtask functions available to influence how it writes the
parent task function. We won’t write the code for a task until we’ve implemented all of
its subtask functions.

You learned all about testing in chapter 6. While we will include some tests in our
docstrings here, we will not be pursuing full testing in this example—we want to stay
squarely focused on implementing a top-down design. We encourage you to let doctest
run the tests that we do provide as well as add your own tests for further confidence in

 139Implementing our functions

the code. We have also not dwelled much on our prompt engineering either, instead
focusing on the prompts that yielded good results. In the next chapter, we will focus on
debugging, and that’s where we will return to prompt engineering.

In chapters 4 and 5, we learned how to read Python code. That isn’t our focus here.
So, while we have included some annotations to explain what the code is doing and how
it works, we aren’t going to go in depth on the code. Again, the main goal of the chapter
is to get this large top-down design example under our belt, and we don’t want to lose
the forest for the trees.

7.7.1 clean_word

We’ll start with our clean_word function. In this and all of our code in this chapter, we
provide the def line and docstring, and we let Copilot fill in the code. We also provide
some annotations to briefly illustrate how the code works.

Remember that we want our clean_word function to remove punctuation that
might show up around the word and to convert the word to lowercase. But we don’t
want to mess with punctuation in the middle of the word, such as the “-” in card-board.
We’ve written the docstring to make clear what we want.

Listing 7.1 Function to clean words for analysis

def clean_word(word):
 '''
 word is a string.

 Return a version of word in which all letters have been
 converted to lowercase, and punctuation characters have been
 stripped from both ends. Inner punctuation is left untouched.

 >>> clean_word('Pearl!')
 'pearl'
 >>> clean_word('card-board')
 'card-board'
 '''
 word = word.lower()
 word = word.strip(string.punctuation)
 return word

When working on our password functions in chapter 3, we saw Copilot using the string
module, and we see Copilot doing that again here. We know from our work in chapter
3 that this will not work unless we import string first, so please add

import string

above this function as we’ve done in the following listing.

Converts the word
to lowercase

Uses the string
module

140 chapter 7 Problem decomposition

Listing 7.2 Complete function to clean words for analysis

import string
def clean_word(word):
 '''
 word is a string.

 Return a version of word in which all letters have been
 converted to lowercase, and punctuation characters have
 been stripped from both ends. Inner punctuation is left
 untouched.

 >>> clean_word('Pearl!')
 'pearl'
 >>> clean_word('card-board')
 'card-board'
 '''
 word = word.lower()
 word = word.strip(string.punctuation)
 return word

This completes the clean_word function, so we can mark this as complete in our func-
tions diagram in figure 7.9.

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

get_sentences

get_phrases

clean_word

split_string

get_score

3

Figure 7.9 Full functions diagram with clean_word now finished

7.7.2 average_word_length

Now let’s tackle the first of our five signature feature functions: average_word_
length. It needs to determine the average number of letters per word. But we don’t
want to count surrounding punctuation as letters, and we don’t want to include words
that don’t have any letters. We want to use our clean_word function here! As always,
we have written the docstring in a way that we hope directs Copilot to make these deci-
sions. See the following listing.

 141Implementing our functions

Listing 7.3 Function to determine average word length

def average_word_length(text):
 '''
 text is a string of text.

 Return the average word length of the words in text.
 Do not count empty words as words.
 Do not include surrounding punctuation.

 >>> average_word_length('A pearl! Pearl! Lustrous pearl! \
Rare. What a nice find.')
 4.1
 '''
 words = text.split()
 total = 0
 count = 0
 for word in words:
 word = clean_word(word)
 if word != '':
 total += len(word)
 count += 1
 return total / count

You’ll notice in the doctest here that we’ve split our string over two lines, ending the
first line with a \ character. The reason we did this is that the string wouldn’t otherwise
fit on one line in the book. We also needed to keep the second line without any inden-
tation; otherwise, doctest would use that indentation as spaces in the string. On your
computer, you can type the string on a single line and not worry about the \ or lack of
indentation.

We can now mark average_word_length as done in our updated figure (figure
7.10). Albeit satisfying, marking these off in the figure one by one might be a bit too
much noise, so we will revisit the figure only periodically going forward.

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

get_sentences

get_phrases

clean_word

split_string

get_score

3

3

Figure 7.10 Full functions diagram with average_word_length now finished

Splits string
into its words

total will count
the total number
of letters across
all words.

count will
count the
number of
words.

Loops through each word
Copilot calls clean_word for us!

Considers
this word
only if it isn’t
empty

Adds number
of letters in
word

Adds 1 to count
this word

Returns number of letters
divided by number of words

142 chapter 7 Problem decomposition

7.7.3 different_to_total

This is the second of our signature features. We need this one to calculate the number
of different words used divided by the total number of words. Again, we don’t want sur-
rounding punctuation, and we don’t want empty words.

Listing 7.4 Function to determine different words divided by total number of words

def different_to_total(text):
 '''
 text is a string of text.

 Return the number of unique words in text
 divided by the total number of words in text.
 Do not count empty words as words.
 Do not include surrounding punctuation.

 >>> different_to_total('A pearl! Pearl! Lustrous pearl! \
Rare. What a nice find.')
 0.7
 '''
 words = text.split()
 total = 0
 unique = set()
 for word in words:
 word = clean_word(word)
 if word != '':
 total += 1
 unique.add(word)
 return len(unique) / total

This code uses a Python set, rather than a Python list, to store the unique words that
it finds. A set is similar to a list except that it doesn’t accept duplicates, so if you try to
add the same word multiple times, it retains only one copy of the word. That’s why we
can use len(unique) in the return statement to get the total number of unique words.

 We don’t need to know any more about Python sets to continue here. But if you are
interested in learning more, you can ask Copilot for a code explanation and/or Google
for information on Python sets.

7.7.4 exactly_once_to_total

We’re ready to implement our third signature feature. This one calculates the number
of words used exactly once divided by the total number of words, as shown in the fol-
lowing listing. We provided the prompt to Copilot and received the following function.

Splits string
into its words

total will count
the total number
of nonempty
words.

A set of the unique words found

Copilot again calls clean_word for us!

A set is like a list but does
not accept duplicates.

Returns the number of different words
divided by total number of words

 143Implementing our functions

Listing 7.5 Function to calculate the fraction of words used just once – Try 1

def exactly_once_to_total(text):
 '''
 text is a string of text.

 Return the number of words that show up exactly once in text
 divided by the total number of words in text.
 Do not count empty words as words.
 Do not include surrounding punctuation.

 >>> exactly_once_to_total('A pearl! Pearl! Lustrous pearl! \
Rare. What a nice find.')
 0.5
 '''
 words = text.split()
 unique = set()
 total = 0
 for word in words:
 word = clean_word(word)
 if word != '':
 if word not in unique:
 unique.add(word)
 else:
 unique.remove(word)
 total += 1
 return len(unique) / total

When we skim that code, it looks like unique is a set that keeps track of the unique
words. At the end, we divide that number of unique words by the total number of
words.

However, run our test case using doctest, and you will see that our code fails the test.
We need the result to be 0.5, but our code is unfortunately giving us 0.6. Our code is
wrong. We need to stay vigilant!

Let’s review the code to see why it was wrong. Imagine that a word is used three times
in a text. The first time our code finds it, the code will add it to unique. The second
time, it will remove it from unique. That’s fine so far because the word isn’t being used
exactly once anymore, so it shouldn’t be in there. But then the third time, it will add
that word back to unique! So, our code is going to count some words as being used
exactly once when in fact they were used more than once.

We looked through the Ctrl–Enter list and found this alternate version, which is cor-
rect, as shown in the following listing.

Listing 7.6 Function to calculate the fraction of words used just once – Try 2

def exactly_once_to_total(text):
 '''
 text is a string of text.

 Return the number of words that show up exactly once in text
 divided by the total number of words in text.

Removing a word
from the unique set???

144 chapter 7 Problem decomposition

 Do not count empty words as words.
 Do not include surrounding punctuation.

 >>> exactly_once_to_total('A pearl! Pearl! Lustrous pearl! \
Rare. What a nice find.')
 0.5
 '''
 words = text.split()
 total = 0
 unique = set()
 once = set()
 for word in words:
 word = clean_word(word)
 if word != '':
 total += 1
 if word in unique:
 once.discard(word)
 else:
 unique.add(word)
 once.add(word)
 return len(once) / total

This code is tricky! To understand it, start by focusing on the else code. That’s the
code that runs the first time we see each word. That word gets added to both the
unique and once sets. It’s the once set that’s going to keep track for us of the words
used exactly once.

Now imagine that we see a word for a second time. The if code is going to run when
this happens because the word is already in unique (we added it there the first time we
saw this word). Now, since we’ve seen the word more than once, we need it gone from
the once set. And that’s exactly what the if code does: it uses once.discard(word) to
remove the word from once.

To summarize, the first time we see a word, it gets added to once. When we see it
again, it gets removed from once with no way to ever have that word added back to
once. The once set is correctly tracking the words used exactly once.

7.7.5 split_string

We’ve finished our three word-level signature feature functions. Before we can move
on to our two sentence-level signature feature functions, we need to write get_
sentences. But to write get_sentences, we first need split_string, which is what
we’ll work on now.

Our split_string function is supposed to be able to split a string around any
number of separators. It inherently has nothing to do with sentences or phrases. We’ve
included one docstring test to highlight this fact: even though we’re going to use it to
split sentences and phrases, it’s more general than that. Look at the following listing.

Keeps track of all
words we have seen

Keeps track of words used exactly
once; what we ultimately care about

We’re seeing the
word again.

So the word has to be removed from once.

We have
now seen
this word.

So far, the word
is used exactly
once.Returns number of words used exactly

once divided by total number of words

 145Implementing our functions

Listing 7.7 Function to split a string around separators

def split_string(text, separators):
 '''
 text is a string of text.
 separators is a string of separator characters.

 Split the text into a list using any of the one-character
 separators and return the result.
 Remove spaces from beginning and end
 of a string before adding it to the list.
 Do not include empty strings in the list.

 >>> split_string('one*two[three', '*[')
 ['one', 'two', 'three']
 >>> split_string('A pearl! Pearl! Lustrous pearl! Rare. \
What a nice find.', '.?!')
 ['A pearl', 'Pearl', 'Lustrous pearl', 'Rare', \
'What a nice find']
 '''
 words = []
 word = ''
 for char in text:
 if char in separators:
 word = word.strip()
 if word != '':
 words.append(word)
 word = ''
 else:
 word += char
 word = word.strip()
 if word != '':
 words.append(word)
 return words

You might be curious about the code after the for loop and before the return state-
ment. It seems to be duplicating some of the code from within the for loop, so what’s
it doing there? It’s there because the loop only adds a split string to our list of strings
when it finds one of the separator characters. If the text doesn’t end with a separator
character, the loop won’t add the final split string. The code below the loop ensures
that this final split string isn’t lost.

It’s been a little while since we updated our diagram with functions we’ve completed.
Time for an update! This also serves as a reminder that we’re finishing functions from
the bottom up (right-to-left in the diagram). As such, figure 7.11 has our functions com-
pleted so far.

A better variable name
would be all_strings.

A better variable name
would be current_string.

Current string
ends here.

Removes any space
from beginning and
end of current string

If current
string is not
empty. . .

. . .saves this
as one of the
split strings

Clears the current string to
get ready for the next one

Adds to the
current
string (don’t
split yet)

Handles the final split string
by adding if not empty

146 chapter 7 Problem decomposition

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

get_sentences

get_phrases

clean_word

split_string

get_score

3

3

3

3

3

Figure 7.11 Full functions diagram updated with different_to_total, exactly_once_to_total, and
 split_string now finished

7.7.6 get_sentences

In our top-down design, we kicked most of the work for get_sentences off to the
split_string function. Therefore, what we’re hoping for is that Copilot implements
get_sentences by making a suitable call to split_string.

We don’t want our sentences to have any space at the beginning or end, and we don’t
want any empty sentences. We initially had these requirements in the docstring, but
even without them Copilot correctly calls split_string, and that function handles
these edge cases anyway.

Listing 7.8 Function that returns a list of sentences in text

def get_sentences(text):
 '''
 text is a string of text.

 Return a list of the sentences from text.
 Sentences are separated by a '.', '?' or '!'.

 >>> get_sentences('A pearl! Pearl! Lustrous pearl! Rare. \
What a nice find.')
 ['A pearl', 'Pearl', 'Lustrous pearl', 'Rare', \
'What a nice find']
 '''
 return split_string(text, '.?!')

7.7.7 average_sentence_length

Now that we have get_sentences, we can proceed with average_sentence_length,
our fourth signature feature. This one calculates the average number of words per sen-
tence. We provided the prompt to Copilot and received the following function.

Calls split_string with the
sentence separator characters

 147Implementing our functions

Listing 7.9 Function that determines the average number of words per sentence

def average_sentence_length(text):
 '''
 text is a string of text.

 Return the average number of words per sentence in text.
 Do not count empty words as words.

 >>> average_sentence_length('A pearl! Pearl! Lustrous pearl! \
Rare. What a nice find.')
 2.0
 '''
 sentences = get_sentences(text)
 total = 0
 for sentence in sentences:
 words = sentence.split()
 for word in words:
 if word != '':
 total += 1
 return total / len(sentences)

7.7.8 get_phrases

Much as we needed get_sentences before we could implement average_sentence
_length, we need get_phrases before we can implement average_sentence
_complexity.

As with get_sentences, we expect Copilot to call split_string to get the phrases.
That is what it has done for us here, as shown in the following listing.

Listing 7.10 Function that returns phrases from a sentence

def get_phrases(sentence):
 '''
 sentence is a sentence string.

 Return a list of the phrases from sentence.
 Phrases are separated by a ',', ';' or ':'.

 >>> get_phrases('Lustrous pearl, Rare, What a nice find')
 ['Lustrous pearl', 'Rare', 'What a nice find']
 '''
 return split_string(sentence, ',;:')

7.7.9 average_sentence_complexity

With get_phrases completed, we can now prompt for an implementation of
average_sentence_complexity as shown in the following listing.

Gets a list of
sentences Loops through

the sentences

Breaks current sentence
into its wordsLoops through

sentence’s words

Returns number of words
divided by number of sentences

Calls split_string with the
phrase separator characters

148 chapter 7 Problem decomposition

Listing 7.11 Function to determine the average number of phrases per sentence

def average_sentence_complexity(text):
 '''
 text is a string of text.

 Return the average number of phrases per sentence in text.

 >>> average_sentence_complexity('A pearl! Pearl! Lustrous \
pearl! Rare. What a nice find.')
 1.0
 >>> average_sentence_complexity('A pearl! Pearl! Lustrous \
pearl! Rare, what a nice find.')
 1.25
 '''
 sentences = get_sentences(text)
 total = 0
 for sentence in sentences:
 phrases = get_phrases(sentence)
 total += len(phrases)
 return total / len(sentences)

We’re really coming along now! We’ve finished all the functions needed to create
make_signature as shown in figure 7.12.

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

get_sentences

get_phrases

clean_word

split_string

get_score

3

3

3

3

3

3

3

3

3

Figure 7.12 Full functions diagram updated to show that we’re now ready to write make_signature

7.7.10 make_signature

We’ve written nine functions to this point, and while they’re all important, we may feel
a little unsatisfied right now because we’re not even dealing with text signatures yet.
We’ve got some functions that clean words, split strings in various ways, and calculate
individual features of signatures, but no function to make a full signature.

That changes now because we’re finally ready to implement make_signature to
give us the signature for a text.

We changed the last period to a
comma to make this 5/4 = 1.25. Gets a list of

sentences

Loops through the sentences

Gets a list of
phrases in
the current
sentence

Adds the number
of phrases in
current sentence

Returns number of phrases divided
by the number of sentences

 149Implementing our functions

This function will take the text of a book and will return a list of five numbers, each of
which is the result of calling one of our five feature functions.

Listing 7.12 Function that determines a numeric signature for the text

def make_signature(text):
 '''
 The signature for text is a list of five elements:
 average word length, different words divided by total words, words used

exactly once divided by total words,
 average sentence length, and average sentence complexity.

 Return the signature for text.

 >>> make_signature('A pearl! Pearl! Lustrous pearl! \
Rare, what a nice find.')
 [4.1, 0.7, 0.5, 2.5, 1.25]
 '''
 return [average_word_length(text), different_to_total(text),
 exactly_once_to_total(text),
 average_sentence_length(text),
 average_sentence_complexity(text)]

Notice that this function can be implemented as nothing more than a call to each of
our five feature functions.

It’s important to pause now to think about just how messy this function would have
been without having done a solid top-down design first. The code for all five of the
functions that we’re calling here would have had to be in a single function, with all of
their own variables and calculations mingled together into a real mess. Lucky for us, we
are using top-down design! Our function is therefore easier for us to read and easier to
convince ourselves that it is doing the right thing.

7.7.11 get_all_signatures

Our process_data function has three subtasks for us to implement, and we just fin-
ished with the first one (make_signature).

Now, on to its second subtask, which is our get_all_signatures function.
From now on, we’ll assume that your working directory has your code and that it also

has the subdirectory of books that we’ve provided. We need this function to return the
signature for each file in our directory of known authors. We’re hoping for Copilot to
call make_signature here to make this function far simpler than it otherwise would be.

Copilot did do that for us, but the code we got still had two problems. Here was our
initial code.

Each of our
five feature
functions is
called.

150 chapter 7 Problem decomposition

Listing 7.13 Function to get all the signatures from known authors – Try 1

def get_all_signatures(known_dir):
 '''
 known_dir is the name of a directory of books.
 For each file in directory known_dir, determine its signature.

 Return a dictionary where each key is
 the name of a file, and the value is its signature.
 '''
 signatures = {}
 for filename in os.listdir(known_dir):
 with open(os.path.join(known_dir, filename)) as f:
 text = f.read()
 signatures[filename] = make_signature(text)
 return signatures

Try running this function from the Python prompt, as follows:

>>> get_all_signatures('known_authors')

You’ll get an error:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "C:\repos\book_code\ch7\authorship.py", line 207, in get_all_

signatures
 for filename in os.listdir(known_dir):
 ^^
NameError: name 'os' is not defined

The error is telling us that the function is trying to use a module named os, but we
don’t have this module available. This module is built-in to Python, and we know what
to do in this case: import it! That is, we need to add

import os

above this function. After that, we still get an error:

>>> get_all_signatures('known_authors')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "C:\repos\book_code\ch7\authorship.py", line 209, in get_all_

signatures
 text = f.read()
 ^^^^^^^^
 File "C:\Users\danie\AppData\Local\Programs\Python\Python311\Lib\encodings\

cp1252.py", line 23, in decode
 return codecs.charmap_decode(input,self.errors,decoding_table)[0]
 ^^^
UnicodeDecodeError: 'charmap' codec can't decode byte 0x9d in position 2913:
character maps to <undefined>

Our dictionary is
mapping
filenames to
signatures.

It loops through each file in
the known authors directory.

Opens the current file

Reads all text from file

Makes the signature for text and store in dictionary

 151Implementing our functions

A UnicodeDecodeError—what’s that? You could learn about it using Google or
ChatGPT if you’re interested in a technical explanation. What we need to know is that
each file that we open is encoded in a specific way, and Python has chosen the wrong
encoding to try to read this file.

We can, however, direct Copilot to fix it by adding a comment near the top of our
function. (When you encounter errors like these, you can try placing a comment
directly above the erroneous code that was generated. Then once you delete the incor-
rect code, Copilot can often generate new code that is correct.) Once we do that, all is
well, as shown in the following listing.

Listing 7.14 Function to get all the signatures from known authors – Try 2

import os

def get_all_signatures(known_dir):
 '''
 known_dir is the name of a directory of books.
 For each file in directory known_dir, determine its signature.

 Return a dictionary where each key is
 the name of a file, and the value is its signature.
 '''
 signatures = {}
 # Fix UnicodeDecodeError
 for filename in os.listdir(known_dir):
 with open(os.path.join(known_dir, filename),
 encoding='utf-8') as f:
 text = f.read()
 signatures[filename] = make_signature(text)
 return signatures

Now, if you run this function, you should see a dictionary of authors and their signa-
tures, like this:

>>> get_all_signatures('known_authors')
{'Arthur_Conan_Doyle.txt': [4.3745884086670195, 0.1547122890234636,
0.09005503235165442, 15.48943661971831, 2.082394366197183],
'Charles_Dickens.txt': [4.229579999566339, 0.0796743207788547,
0.041821158307855766, 17.286386709736963, 2.698477157360406],
'Frances_Hodgson_Burnett.txt': [4.230464334694739, 0.08356818832607418,
0.04201769324672584, 13.881251286272896, 1.9267338958633464],
'Jane_Austen.txt': [4.492473405509028, 0.06848572461149259,
0.03249477538065084, 17.507478923035084, 2.607560511286375],
'Mark_Twain.txt': [4.372851190055795, 0.1350377851543188,
0.07780210466840878, 14.395167731629392, 2.16194089456869]}

For simplicity, we haven’t added a test in the docstring for this function. But we could,
and the way to do it would be to create a fake, small book, along the lines of what we
did in our second example in chapter 6. We’d like to proceed here with our overall
purpose of function decomposition, though, so we’ll leave that exercise to you if you’d
like to pursue that. As shown in figure 7.13, we’ve gotten two process_data tasks out
of the way. Let’s keep going!

This prompt tells
Copilot to fix the error
we saw previously.

152 chapter 7 Problem decomposition

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

get_sentences

get_phrases

clean_word

split_string

get_score

3

3

3

3

3

3

3

3

3

3

3

Figure 7.13 Full functions diagram updated to show that make_signature and get_all_signatures are
 finished

7.7.12 get_score

Let’s implement get_score, where we need to encode the way that we compare signa-
tures. Remember the whole thing where we find the difference on each weight, multi-
ply it by a weight, and then add everything together into an overall score? That’s what
we want get_score to do.

It would be a challenge to explain this formula in the docstring. And we’re not even
sure that it should go there: a docstring is supposed to explain how someone can use
your function, not how it works internally, and arguably, users of our function won’t
care about this specific formula anyway.

What we can do is use a general docstring, without our specific formula, and see what
Copilot does with it. Here we go.

Listing 7.15 Function to compare two signatures

def get_score(signature1, signature2, weights):
 '''
 signature1 and signature2 are signatures.
 weights is a list of five weights.

 Return the score for signature1 and signature2.

 >>> get_score([4.6, 0.1, 0.05, 10, 2],\
 [4.3, 0.1, 0.04, 16, 4],\
 [11, 33, 50, 0.4, 4])
 14.2
 '''
 score = 0
 for i in range(len(signature1)):
 score += abs(signature1[i] - signature2[i]) * weights[i]
 return score

These weights, [11,
33, 50, 0.4, 4],
worked well for us.

Loops through each
signature index

Adds the weighted
difference to score

 153Implementing our functions

Copilot has implemented exactly the formula that we wanted.
Now, before we start thinking that Copilot mind-melded us or anything like that,

remember that the formula we’ve used here is a very common metric for comparing
signatures. Many students and other programmers over the years have implemented
authorship identification using this very formula. Copilot is just giving that back to us
because it occurs so often in its training data.

If Copilot happened to give us a different formula, we could have tried to describe what
we want in a comment or, failing that, changed the code ourselves to get what we want.

7.7.13 lowest_score

Our lowest_score function will finally wrap up everything we need to implement
process_data.

The get_score function that we just implemented gives us the score between any
two signatures. Our lowest_score function is going to call get_score once for each
known signature to compare the unknown signature to each known signature. It will
then return the known signature that has the lowest score with the unknown signature,
as shown in the following listing.

Listing 7.16 Function to give us the closest known signature

def lowest_score(signatures_dict, unknown_signature, weights):
 '''
 signatures_dict is a dictionary mapping keys to signatures.
 unknown_signature is a signature.
 weights is a list of five weights.
 Return the key whose signature value has the lowest
 score with unknown_signature.

 >>> d = {'Dan': [1, 1, 1, 1, 1], 'Leo': [3, 3, 3, 3, 3]}
 >>> unknown = [1, 0.8, 0.9, 1.3, 1.4]
 >>> weights = [11, 33, 50, 0.4, 4]
 >>> lowest_score(d, unknown, weights)
 'Dan'
 '''
 lowest = None
 for key in signatures_dict:
 score = get_score(signatures_dict[key], unknown_signature,
 weights)
 if lowest is None or score < lowest[1]:
 lowest = (key, score)
 return lowest[0]

The first parameter, signatures_dict, is a dictionary that maps names of authors
to their known signatures. That will ultimately come from the get_all_signatures
function. The second parameter, unknown_signature, will ultimately come from
calling make_signature on the mystery book. The third parameter, weights, will be
hard-coded by us when we call this function.

Using
variables
in the
doctest to
make the
test itself
easier to
read

They’re easier to read because
we’re using our variables.

Loops through each
author name

Gets a
score for
comparing
this known
signature
to the
unknown
signature

If this is first
comparison
or lower
score than
best
comparison.

Storing both
best key and
score for
that keylowest[0] is the best key.

154 chapter 7 Problem decomposition

7.7.14 process_data

Only two functions to go! One of them is process_data—it feels like it took us for-
ever, but we’re finally ready for it.

Our process_data function is going to take two parameters in the following listing:
the filename of a mystery book and the directory of known-author books. It will return
the author that we think wrote the mystery book.

Listing 7.17 Function to find the signature closes to the mystery author

def process_data(mystery_filename, known_dir):
 '''
 mystery_filename is the filename of a mystery book whose
 author we want to know.
 known_dir is the name of a directory of books.

 Return the name of the signature closest to
 the signature of the text of mystery_filename.
 '''
 signatures = get_all_signatures(known_dir)
 with open(mystery_filename, encoding='utf-8') as f:
 text = f.read()
 unknown_signature = make_signature(text)
 return lowest_score(signatures, unknown_signature,
 [11, 33, 50, 0.4, 4])

Again, notice how much we’re relying on our earlier functions. This massively useful
process_data function is now really nothing more than a carefully sequenced list of
function calls.

In the book resources for this chapter, we’ve included a few unknown author files—for
example, unknown1.txt and unknown2.txt. Those should be in your current working
directory along with your code (and the subdirectory of known author files).

Let’s call process_data to guess who wrote 'unknown1.txt':

>>> process_data('unknown1.txt', 'known_authors')
'Arthur_Conan_Doyle.txt'

Our program guesses that Arthur Conan Doyle wrote unknown1.txt. And if you peek
at the text of unknown1.txt by opening the file, you’ll see that our guess is right. The
book is called The Sign of the Four, which is a famous Arthur Conan Doyle book.

7.7.15 make_guess

To guess the author of a book, we currently need to type the Python code to run
process_data. That’s not very friendly to users; it would be nice if we could run the
program and have it ask us which mystery book file we want to work with.

Gets all of
the known
signatures

Copilot uses
our prior work
to get the
encoding right
this time.

Reads text of
mystery
book

Gets the unknown signature

Returns the signature
with the lowest
comparison score

 155Implementing our functions

We’ll put that finishing touch on our program by implementing make_guess, our
top-most function!

This function will ask the user for a filename of a mystery book, get the best guess
using process_data, and tell the user about that guess.

Listing 7.18 Function that interacts with the user and guesses the text’s author

def make_guess(known_dir):
 '''
 Ask user for a filename.
 Get all known signatures from known_dir,
 and print the name of the one that has the lowest score
 with the user's filename.
 '''
 filename = input('Enter filename: ')
 print(process_data(filename, known_dir))

Now all we need to do is call this function on our known_authors directory, and we’re
done.

This completes all of the functions from our diagram! Figure 7.14 shows that we’ve
checked off every function from the bottom to the very top of our diagram.

make_guess get_all_signatures

lowest_score

make_signature

process_data

different_to_total

average_word_length

exactly_once_to_total

average_sentence_length

average_sentence_complexity

get_sentences

get_phrases

clean_word

split_string

get_score

3

3

3

3

3

3

3

3

3

3

3

3 3

33

Figure 7.14 All of the required functions for make_guess are now complete!

If you have all of our code in your Python file, you’ll be able to run it to guess the
author of a mystery book after you add the following line of code at the bottom of that
file:

make_guess('known_authors')

Try running it for each of the unknown book files that we’ve provided. How many
author files does it guess correctly? Which ones does it get wrong?

Congratulations! You’ve completed your first real-world top-down design. And look
at what we’ve managed to accomplish—an authorship identification program that any
beginning programmer should be proud of. Your program uses AI to learn how indi-
vidual authors write (do they use shorter or longer words on average, shorter or longer

Asks user for the filename
of the mystery book

Calls process_data to do all
the work and report our guess

156 chapter 7 Problem decomposition

sentences on average, and so on?) by using the text of books in its training data. It then
applies that learning to make a prediction on a mystery book by determining which
author the mystery book most closely emulates. Very cool!

We managed to solve a very difficult problem, and we did it by breaking down the
problem and letting Copilot write the code for each of the subproblems.

7.8 Going further
After people do a top-down design, they often see opportunities to refactor their code,
which means making the code cleaner or better organized without changing its behav-
ior. It’s indeed possible to refactor our program in several ways. For example, you
might notice that many of our signature feature functions split the string into words
and then ignore empty words. This task (returning a list of nonempty words from a
string) could be split off into its own subtask function, and that would further simplify
any function that calls it.

We might also decide that weights should be passed to process_data, rather than
hard-coding the weights in that function. The weights would then be hard-coded in
make_guess, moving the decision higher in the function hierarchy and therefore eas-
ier to find and change if needed.

It’s also possible to improve the program in terms of its features or efficiency.
In terms of features, right now, our program simply prints its best guess for the mys-

tery book author. But we don’t know anything about that guess. Was there a second
author that was very close to the one that was guessed? If so, we might want to know
that. More generally, we might want to know the top few guesses rather than just the top
guess. That way, we have useful information about who the author might be even if the
top guess happens to be wrong. These are additional features that we could add to our
program.

In terms of efficiency, let’s think about that get_all_signatures function again.
That function does a lot of work! If we have five books in our known directory, then it
will read each of the five files and calculate each signature. Big deal, right? It’s only five
files, and computers are really fast. But imagine if we had 100 files or 10,000 files. It may
be acceptable to do all of that work as a one-time only thing, but that’s not what our pro-
gram does. In fact, every time we run the program to get a guess for the author of a mys-
tery book, it runs that get_all_signatures function, which means recreating those
signatures every single time. That’s a huge amount of wasted effort; it would be nice if
we could just store those signatures somewhere, never having to calculate them again.
Indeed, if we were to redesign the code for efficiency, a first step would be to ensure the
signature for a known text is only computed once and reused thereafter.

Indeed, that’s what tools like Copilot do! OpenAI trained GitHub Copilot just once
on a huge corpus of code. That took thousands or millions of computer hours. But now
that the training is done, it can keep writing code for us without having to train from
scratch every time. The idea of doing the training once and then using that training for
many subsequent predictions is a common paradigm throughout all of ML.

 157Summary

Many computer scientists view problem decomposition as the most critical skill needed to write
good software. We saw the value of problem decomposition in this chapter: problem
decomposition made a large problem solvable by breaking it into smaller steps until
each step was easy to solve. This skill remains critical when working with tools like Copi-
lot and ChatGPT because they perform better when solving small, well-defined prob-
lems compared to large problems. All that said, problem decomposition is more of an
art than a science, and it takes practice to get it right. We’ll do more problem decompo-
sition in our upcoming chapters to help give you more intuition into how to approach
it yourself.

Summary
¡	We need to divide a big programming problem into smaller subproblems before

we can effectively implement it.

¡	Top-down design is a systematic technique for breaking a problem down into
small subtask functions.

¡	In top-down design, we seek small functions that solve well-defined tasks and that
can be used by one or more other functions.

¡	Author identification is the process of guessing the author of a mystery book.

¡	We can use features about words (e.g., average word length) and sentences (e.g.,
average number of words per sentence) to characterize how each known author
writes.

¡	Machine learning is an important area of computer science that investigates how
machines can learn from data and make predictions.

¡	In supervised learning, we have some training data in the form of objects (e.g.,
books) and their categories (who wrote each book). We can learn from that data
to make predictions about new objects.

¡	A signature consists of a list of features, one signature per object.

¡	When we’re ready to implement our functions that arose from top-down design,
we implement them from the bottom up; that is, we implement the leaf func-
tions first, then functions that depend on those leaf functions, and so on until we
implement the topmost function.

¡	Refactoring code means to improve the design of the code (e.g., by reducing
code repetition).

158

8Debugging and better
understanding your code

This chapter covers

¡	Determining the source of a bug
¡	Fixing errors with Copilot techniques
¡	Debugging code with Copilot
¡	Using VS Code debugger to see how code is
 functioning

There will be a point in every programmer’s career when their code isn’t doing what
they want it to do. This has likely happened to you already, and, rest assured, it is a
normal part of learning to program. How do we fix the code? Sometimes, changing
the prompt or better decomposing the problem like you learned in earlier chapters
is sufficient to fix the problem. But what do you do when you just can’t get Copilot
to give you different or better code and you can’t seem to figure out why the code
you’ve been given doesn’t work properly?

This chapter serves two purposes. The primary goal is to learn how to find errors
(called bugs) in the code and fix them. To find those bugs, you’ll need to fulfill the
second goal, which is gaining a deeper understanding of how your code works while
you are running it.

The good news is that having an error in your code is such a common occurrence
for programmers that programming environments, like Visual Studio Code (VS
Code), have tools to help us uncover what is going wrong. We’ll learn how to use that
tool, called a debugger, in this chapter as well.

 159What causes errors (bugs)?

Like the last few chapters where we started small, we’ll learn the concepts behind
finding and fixing errors with some small examples, and then we’ll more authentically
showcase the process by diving into a larger example that’s similar to the kind of code
you’re likely to write in the future.

8.1 What causes errors (bugs)?
First, a quick terminology lesson. Programmers call the mistakes in their code bugs
because when computers used vacuum tubes many decades ago, a bug (insect) in a
vacuum tube could cause the computer to make mistakes. Today, bugs are caused by
mistakes by programmers. (There can be bugs in the implementation of Python itself
or even in computer hardware, but they are so rare it’s safe to assume an error in your
code is because of the code.)

No one intentionally causes bugs in their code if they are genuinely trying to solve
the problem. So why do bugs happen? Because software engineers, and Copilot, make
mistakes. What kind of mistakes you might ask? Well, there are two primary categories
of bugs:

¡	Syntax errors: These errors occur when the code doesn’t follow the Python syntax
requirements. For example, forgetting to write a : at the end of the first line of a
for loop is a syntax error. When you run Python, because it’s trying to generate
machine code based on your program description, it will run into a mistake, not
know what to do, and give you an error. Sometimes these error messages are
more readable than others. When people learn to program in the traditional way,
without Copilot, these errors are really, really common. It takes a while to learn
all the rules of Python and to make those rules a habit. Even the two of us still
sometimes write code with syntax errors, despite decades of writing code. The
good news is that writing code with Copilot almost entirely eliminates this prob-
lem! The bad news is that of the two types of bugs, syntax errors are the easier to
find and fix.

¡	Logical errors: These errors occur when there is something logically wrong with
the program. For example, maybe the intent of the code is to count how many
times the exact word “Dan” appears in a list of words, but the code actually counts
how many words in the list contain “dan” (ignoring case) anywhere in the word.
This code would be doing the wrong thing on two counts: it would count words
like dan and DAN as matches even though we don’t want those to be matches, and
it would find dan as any part of a word rather than the full word. That is, it would
count words like Daniel, danger, and dan, even though we don’t want to count any
of these! Somewhere, the code isn’t doing what it should, and we have to figure
out where and why. Often, finding the logical error is the hardest part! Once we
know where the mistake is, we have to fix it, and fixing these bugs can range from
changing a single character to completely rewriting the code. Logical errors can
happen when a prompt isn’t well described or when Copilot, for various reasons,
generates the wrong code.

160 chapter 8 Debugging and better understanding your code

8.2 How to find the bug
Finding bugs can be challenging. Fundamentally, whether you or Copilot wrote the
code, you or Copilot thought the code was correct when it was written. This is why
it’s often easier for a colleague to find a bug in the code rather than the author. The
author can’t see the bug because they created it!

Bugs aren’t new to us in this book as we’ve seen mistakes in code already, and we’ve
found those errors by reading the code and/or testing. In previous chapters, we figured
out the source of the bug by reading through the code. In this chapter, we’ll address the
bugs that you identify when testing but can’t seem to figure out why the code is wrong.
Often, you can bypass the process of figuring out why the code is wrong by trying other
Copilot suggestions, using new prompts to fix the error, or asking Copilot to fix the bug
for you, but in our experience, these techniques don’t always work.

What we need then are more tools to help us figure out where the error is in the
code.

8.2.1 Using print statements to learn about the code behavior

Fundamentally, a logical error means that there is a mismatch between what the author
thought the code would do and what the code actually does. A common way to identify
that mismatch is by using print statements to get insight into the behavior of the pro-
gram because they tell you what the computer is actually doing. A useful practice is to
print variables at various points in time to see what the values of those variables are at
those points. Let’s try this for that example we just gave of looking for the word Dan in
a list of words. Here’s the wrong code.

Listing 8.1 Incorrect function for counting the number of words Dan in a list

def count_words(words):
 count = 0
 for word in words:
 if "dan" in word.lower():
 count += 1
 return count

You may already see what’s wrong with the code, but let’s assume we don’t know what’s
going on, and we’re trying to figure out where the code went wrong. Suppose we found
out that our code is wrong by running the test case:

>>> words = ["Dan", "danger", "Leo"]
>>> count_words(words)
2

We expected the answer of 1, but we got 2. Notably, including danger in this test case
helped us catch the error in the code. Where in the code did things go wrong? To fig-
ure that out, we could add print statements. When you want to do this, you’ll need to
read the code to figure out where to put them. Looking at this code, printing the list at
the start of the function might not be a bad idea depending on the bug we’re seeing,
but the bug here seems to have to do with the count and not specifically with the list of
words. Printing each word in the list as the first line in the for loop may be helpful so

The method lower makes the
word all lowercase letters.

 161How to find the bug

we can check that the code is processing each word. We might print count right before
it is returned, but we already have a good idea of the value returned. These are all rea-
sonable ideas that will help you get closer to the bug, but it’s not where we’d start. To
be clear, if we started with one of these other ideas, we wouldn’t be wrong; it might just
take a few more steps before finding the bug.

Because the bug is counting too many words as Dan words, we’d put the print state-
ment within the if statement right where count is incremented, like the following
listing.

Listing 8.2 Example of a print statement to find the bug in the code

def count_words(words):
 count = 0
 for word in words:
 if "dan" in word.lower():
 print(word,"is being counted")
 count += 1
 return count

Rerunning our code with the same test case, this is what is printed now:

>>> words = ["Dan", "danger", "Leo"]
>>> count_words(words)
Dan is being counted
danger is being counted
2

Aha! This would tell us that our program is counting the word danger when it should
not be. We could then give Copilot a new prompt incorporating what we just learned
to hopefully have Copilot fix the problem. Here’s the prompt we added, and Copilot
fixed the code in the following listing.

Listing 8.3 Using a prompt to fix a known bug

def count_words(words):
 count = 0
 for word in words:
 # only count words that are exactly "Dan"
 if word == "Dan":
 count += 1
 return count

Once we knew the bug, it was easier to tell Copilot how to fix it. Granted, this is a basic
example, but the idea applies to far more complex code. The process is often iterative.
You ask the code to print something, and what it prints aligns with what you think it
should be doing. You then ask the code to print something else and check it against
what you expect. You keep doing this until there’s a point where what the code prints
doesn’t align with what you wanted it to do. That’s when you’ve found the bug and can
give Copilot a prompt to help it give you better code, or if the fix is simple, you can
change the code directly.

Depending on the complexity of the code, using print statements is often an effec-
tive way of debugging, and we often use it as our first step in debugging.

A print statement to show
which words are being counted

Prompt that causes
Copilot to generate
correct code

162 chapter 8 Debugging and better understanding your code

Debugging is really an art more than a science
The iterative process when debugging is necessary because we’re genuinely confused
about what the code is doing and why it isn’t matching our expectations. It’s okay to add
a bunch of print statements that just tell you what you thought was happening in the first
place because each of these print statements tells you where not to look for the bug and
is an effective process of elimination. Figuring out where to look for bugs takes time and
practice, so don’t worry if you find yourself spending a fair bit of time on it when you first
start.

8.2.2 Using VS Code’s debugger to learn about the code behavior

VS Code is used by novices and professionals alike, so it has tools to help with the pro-
cess of debugging. Because it is used by professionals, debugging tools have a large
number of features. For the purpose of this book, we’ll focus on a few of the most com-
monly used features, but feel free to look into more resources on using the VS Code
debugger if you are curious (https://code.visualstudio.com/docs/editor/debugging).

To showcase these tools, we’ll work through debugging the same function from the
last example (listing 8.1) in a few ways. Listing 8.4 provides the code we’ll be working
with throughout this section. Note that we’ve added the test of the count_words func-
tion to the program.

Listing 8.4 Incorrect count_words function for debugging

def count_words(words):
 count = 0
 for word in words:
 if "dan" in word.lower():
 count += 1
 return count

words = ["Dan", "danger", "Leo"]
print(count_words(words))

getting started with the debugger and setting breakpoints

To start using the debugger, we need to set a breakpoint and start the debugger. Setting
a breakpoint tells the debugger when you would like to start debugging the program as
it executes. Once you hit the breakpoint, you’ll be able to inspect variable values and
step through the program line by line. Breakpoints are extremely useful. For a large
program like our author signature program in chapter 7, you wouldn’t want to step
line by line through the entire program because that could take a great deal of time.
Instead, using a breakpoint, you can step through just the lines of code that are most
relevant to you.

To set a breakpoint, hover your mouse cursor to the left of the code, and you’ll see a
dot appear. Click that dot, as shown in figure 8.1, and you’ll have a breakpoint set.

Code to call the count_words
function directly

https://code.visualstudio.com/docs/editor/debugging

 163How to find the bug

Figure 8.1
Creating a
breakpoint in VS
Code by clicking to
the left of the line
of code

You can check that the breakpoint is properly set by it having a red dot to the left of it
after you move your mouse away, as shown in figure 8.2.

Figure 8.2
A breakpoint has
been set on line 2 of
our count_words.py
file in VS Code

You can have more than one breakpoint, but for this example, let’s just stick with the
one breakpoint on line 2. (Note that you can remove a breakpoint by clicking on that
red dot again.) Next, we’ll start the debugger and see how it works with the breakpoint.

how to step through the code line by line

To start the debugger, go to Run, then Start Debugging as shown in figure 8.3.

Figure 8.3
Starting the
debugger in
VS Code

164 chapter 8 Debugging and better understanding your code

Once the debugger is started, you should see a screen similar to the screen in figure
8.4. (If this is the first time using the debugger, it may ask you to select a debug config-
uration in which case you’ll want to choose Python.)

Debug Side Bar Debug Toolbar

Variables
Section

Watch
Section

Call Stack
Section

Figure 8.4 The Debugging view in VS Code

The VS Code debugger has a number of components [1]. On the left-hand side, we
have the Debug Side Bar, which contains the Variables Section, Watch Section, and
Call Stack Section. Let’s briefly examine each of these sections:

¡	The Variables Section contains the variables that are declared within the current
scope (e.g., within count_words) and their current values. For example, the
words parameter is defined to be a list containing ['Dan', 'danger', 'Leo'].
You can click on the arrow (>) to the left of words to see more details about that
variable. This section is incredibly useful as you can examine the value of each
variable!

¡	The Watch Section contains any expressions you want to watch specifically. For
example, you might add the expression: "dan" in word.lower() to the watched
expressions, and you’d be able to see if it is True or False for each different value
of word. To add an expression, hover over the Watch section and press the + sign.

¡	The Call Stack Section contains the functions that have been called that have led to
this line of code executing. Here we have that the main function (called <mod-
ule> by VS Code) called the function count_words on line 9. Within the func-
tion count_words, we’re presently on line 2. You can double-check that this is
true by looking at the line of code presently highlighted.

 165How to find the bug

Speaking of which, on the right-hand side, where we have our code editor, we can see
the line count = 0 highlighted. This is the current line of code that has not yet been
executed. The reason the line hasn’t been executed yet is because we set our break-
point, shown by the arrow with a dot in it, at this line of code. When we started the
debugger, it ran the code until just before executing count = 0.

The Debug Toolbar is critical as it drives the process once you start debugging. With
it, you can advance an instruction, restart debugging, or stop debugging. The buttons,
going left to right, are

¡	Continue (F5)—This button will advance until the next time a breakpoint is exe-
cuted. In our example, line 2 of count_words never executes again, so clicking
Continue will cause the program and debugging session to run to the end.

¡	Step Over (F10)—This button advances to the next line of code in the current
function. Step Over means that if a line of code in this function calls another
function (e.g., when word.lower() is called on line 4), the debugger will stay
in the count_words function and will just run the called function (e.g., word.
lower()) to its completion.

¡	Step Into (F11)—This button advances to the next line of code, including going
into any functions that are called. Unlike Step Over, when you use Step Into, the
debugger will go into any function called by the current function. For example, if
you used Step Into on a line of code that calls another function, it would go into
that function and continue debugging (line by line) from inside that method. By
default, it does not step into library function calls (e.g., word.lower() is part of
the Python standard library) but will step into functions you have written.

¡	Step Out (Shift + F11)—This button will execute the code until the present func-
tion ends and then continue debugging from after this function’s exit.

¡	Restart—This button restarts the debugging process. It will restart the program,
and the program will execute until its first breakpoint.

¡	Stop—This button stops the debugging process.

stepping through the code line by line

Now that we have a handle on the debugger, let’s continue our example by using the
Step Over button. Let’s click Step Over once and see how our view changes (figure
8.5).

Step Over advanced to the next line of code, line 3. This means it executed the line
of code

count = 0

and is just about ready to execute

for word in words:

166 chapter 8 Debugging and better understanding your code

Step Over

Next Line to
Execute

Count is set
to 0

Figure 8.5 Our debugger after pressing Step Over once. The next line (line 3) is now highlighted.

We can see from various clues in the interface that the line count = 0 was executed.
First, in the editor on the right, we can see the for loop is highlighted and the arrow
on the left points to this line of code. On the left, in the Call Stack Section, we can see
that it is now on line 3 of count_words. Perhaps most importantly, on the left in the
Variables Section we can now see the variable count has been added to the local vari-
ables, and it has a value of 0. This last piece is pretty amazing because if you were trying
to read through the code and trace what is happening line by line, the line count = 0
on line 2 would mean that a variable count is created and assigned a value of 0. This is
just what the VS Code debugger has told us as well. We hope you are starting to see how
powerful this tool can be.

Let’s click Step Over one more time. Now we’re stopping just before the line

if "dan" in word.lower():

We can see that there is now a new variable, word, which has been assigned the value
'Dan', and that’s just what we’d expect: word was given the value of the first element in
the list words. This is a good spot to point out that in addition to being able to read the
variables values in the Variables Section, you can also just hover your mouse over any
variable that’s been declared already, and it will tell you it’s value as well. Pretty neat,
huh?

Let’s click Step Over one more time and see that the condition in the if statement,
"dan" in word.lower(), evaluated to True, so we’re going to execute the line

count += 1

 167How to find the bug

Now that we’re getting the hang of this, let’s keep clicking Step Over a few more times.
The first time you click it, it will go back to the for loop, and you can see count has
incremented to 1. The second time you click Step Over, it will stop at the if state-
ment, and you can see that word is now 'danger'. We could stop here and add a watch
expression to see what this if statement will do. To add a watch expression, hover your
mouse over the Watch section and click on the plus arrow to the right of the word
Watch. This will let you type anything you want. We typed "dan" in word.lower()
and press Enter to add this watch expression as shown in the debug sidebar of figure
8.6.

Watched
Expression

Value of the
Expression

Figure 8.6 View of the debugger after adding the Watch expression

If we hadn’t already found the bug earlier in this chapter, this is where we’d find it. The
expression "dan" in word.lower() evaluates to True, which means count will be
incremented again. But we only wanted exact matches to the word "Dan" and didn’t
want "danger" to count!

This is a completely reasonable way to debug a function. You can create a breakpoint
at the start of the function’s execution and then step through it one step at a time. The
only times you might struggle to use this approach is if the for loop ran through thou-
sands of values before making a mistake. To address challenges like this, we might put a
breakpoint in a specific spot to avoid spending a lot of time in the debugger. Let’s stop
the debugger (click Stop in the Debug Toolbar), remove the breakpoint from line 2
(click on the red dot to the left of the line), and try a different breakpoint.

using a breakpoint to selectiVely debug

This time, let’s put the breakpoint at a point in the code we want to monitor more
closely. Based on our test case showing that two words of the list “counted” when we
expected just one to, we should try putting our breakpoint at the line where count is
incremented, as we have in figure 8.7.

168 chapter 8 Debugging and better understanding your code

Figure 8.7 View of the code after placing our new breakpoint on line 5

Once we start the debugger, the code will run until the first time the if statement is
evaluated to True and the line count += 1 is ready to execute. Figure 8.8 offers the
view of the debugger once we start it.

Figure 8.8 View of the debugger when it encounters the breakpoint (line 5) for the first time

We put the breakpoint at the incrementing of count because we wanted to see what
item in the list is causing count to increment. Examining our local variables, we can
see that word is 'Dan', and that is when we want the count variable to be incremented.
Given this is what we wanted to happen, we haven’t found our bug yet.

Now is when we can really take advantage of our breakpoint placement. We want the
code to execute until it comes across the breakpoint again. The way to do this is to click
Continue in the Debug Toolbar. After clicking Continue, the debugger should appear
as in figure 8.9.

 169How to fix a bug (once found)

Highlighted
Variables
Changed
During

Continue

Figure 8.9 View of the debugger when it encounters the breakpoint (line 5) for the second time

In the Variables Section, notice that the value of count and the value of word are
highlighted. This is to tell you that since you clicked Continue, those two values have
changed. The value in count increased to 1, as expected, after having found the word
'Dan'. The value in word updated to 'danger'. Although 'danger' is the next value
in the list of words, we shouldn’t expect to find the code incrementing count for the
word 'danger'. At this point, we’d have found our bug. Notice how much quicker it
can be to find a bug with a good placement of a breakpoint. But we caution that know-
ing the best place to put a breakpoint is a lot like knowing the best variables to print
when debugging. It takes time and practice to learn how to do it well.

In this section, we’ve seen how powerful the debugger can be in VS Code. It’s pretty
easy to set a breakpoint and start a debugging session. As the debugger monitors
the variables in the function, you can inspect those in the debug sidebar as the code
executes.

8.3 How to fix a bug (once found)
In the old way of learning to program, this would be a short section that would tell you
to fix the bug yourself. Although that’s still an option, we have a lot of choices now with
Copilot. These choices include asking Copilot to fix it, giving it a new prompt for the
entire function that better describes the problem in a way to fix the bug, giving Copilot
a targeted prompt to fix the spot in the code you found was wrong, and, if it’s a small
fix, making it yourself. Let’s see how we could do each of these.

8.3.1 Asking Copilot to fix your bug via chat

Copilot chat feature
In the following example, we’ll interact with the Copilot chat feature. The Copilot chat fea-
ture lets you interact with Copilot as you might with ChatGPT but is limited to questions
pertaining to programming.

At the time of writing, this feature is only available via a waitlist, but we imagine this
feature will become more commonly available soon. If it is not available when you are

170 chapter 8 Debugging and better understanding your code

(continued)
reading this, you can interact with ChatGPT instead (available via https://openai.com
with free tiers at the time of writing) in the exact same way as we show in this section.
We’re preferential to Copilot chat just because its interface is built into the latest version
of VS Code and the Copilot extension.

Using the GitHub Copilot chat feature, let’s see if Copilot can help us out here. To
help you follow, we’ll use “Human” for the prompts that we type, and “GitHub Copilot”
for Copilot’s responses.

Human I have a function, below, that is supposed to count the number of times the
word “Dan” appears in the parameter list “words”. Instead, it seems to be counting the
number of times the characters “dan” appear anywhere in the list. Can you help fix this
for me?

def count_words(words):
 count = 0
 for word in words:
 if "dan" in word.lower():
 count += 1
 return count

GitHub Copilot Certainly! To count the number of times the word “Dan” appears in the
list, you can modify the if statement to check if the whole word is equal to “Dan” (case
-insensitive). Here’s the modified code:

def count_words(words):
 count = 0
 for word in words:
 if word.lower() == "dan":
 count += 1
 return count

This code will count the number of times the word “Dan” (case-insensitive) appears in
the list.

The answer back from Copilot Chat changed the line

if "dan" in word.lower():

to

if word.lower() == "dan":

Although the change may look small, it has a big effect. The original line of code
searched for the string "dan" anywhere in word (after the word has been made all low-
ercase letters by the .lower() method). The new line of code checks to see whether
word (again, made all lowercase letters by the .lower() method) is an exact match for
the string "dan".

This answer from Copilot is a step closer to a correct solution as it will only match
the whole word rather than looking for an occurrence of dan anywhere in the word.

https://openai.com/
https://openai.com

 171How to fix a bug (once found)

However, the call to .lower() makes it case-insensitive so it would also match dan
rather than how our solution earlier (listing 8.3) was case-sensitive (it had to be exactly
Dan). We’d like to be case-sensitive, so we could continue with Copilot Chat to have
Copilot fix this for us.

Human Can you give me the same code but count only the word “Dan” (case-sensitive)?

GitHub Copilot Sure! Here’s the modified code that counts only the word “Dan”
(case-sensitive):

def count_words(words):
 count = 0
 for word in words:
 if word == "Dan":
 count += 1
 return count

This code will count the number of times the word “Dan” (case-sensitive) appears in the
list.

In this case, Copilot chat was able to solve the problem for us when we knew how the
code was misfunctioning. We didn’t explicitly say what line of code was broken, but if
you knew this, you could convey that to chat as well. One advantage of knowing which
line was broken, like we did here, is that we could look to make sure the fix from Copi-
lot changes the broken line. Let’s move on and examine other options for fixing the
bug.

8.3.2 Giving Copilot a new prompt for the whole function

You’ve seen us rewrite the prompt for a function a fair number of times already in this
book. It simply involves rewriting the function prompt and seeing if Copilot can do
better, sometimes using Ctrl–Enter to explore Copilot’s solutions. We won’t repeat this
here because you’ve already seen it many times before (e.g., in section 6.5.2).

8.3.3 Giving Copilot a targeted prompt for part of a function

We used this technique earlier in the chapter in listing 8.3. We’ve reproduced this as
listing 8.5.

Listing 8.5 Using a prompt to fix a known bug (Relisted)

def count_words(words):
 count = 0
 for word in words:
 # only count words that are exactly "Dan"
 if word == "Dan":
 count += 1
 return count

Prompt that causes
Copilot to generate
correct code

172 chapter 8 Debugging and better understanding your code

Here, we’d figured out that the previous line

if "dan" in word.lower():

was not doing what we wanted. So, we removed the incorrect code, specifically added
a prompt to say exactly what we wanted Copilot to do, and it was able to produce the
correct code.

8.3.4 Modifying the code to fix the bug yourself

This approach to fixing broken code is new to this chapter. You’ve seen enough code at
this point in the book that you can likely fix some code by yourself by directly modify-
ing it. For example, suppose we wrote the following code in listing 8.6.

Listing 8.6 Function to count numbers in a list between two values

def count_between(numbers, x, y):
 count = 0
 for number in numbers:
 if number >= x and number <= y:
 count += 1
 return count

We’ve seen functions like this earlier in the book. It iterates through all the numbers
in the list of numbers and checks if each number is bigger than or equal to x and is less
than or equal to y. If a number is between x and y, it increases the count. At the end
of the function, it returns the count. The code isn’t wrong here if the goal is to count
numbers in the list that are between x and y (including x and y).

However, the term between can be a bit ambiguous. Do you want to include x and y or
just the values between them (not including them)? Suppose that when you imagined
this function you wanted to not include x and y. For example, if the list were 2, 4, 8,
and you provided x and y values of 3 and 8, you would want the count to be 1 (including
4, but not 8). You might already see how the function is wrong for this goal and how to
fix it, but let’s pretend you don’t realize yet that the code doesn’t match what you want.

As with any function that is created either by Copilot or us, we should test the func-
tion. Fortunately, when writing the first test case, we included a value in the test case
(numbers) that is equal to x (the lower bound) and equal to y (the upper bound).

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> print(count_between(numbers, 3, 7))
5

Testing the code at the prompt, we found that our function returns 5, but we thought
the answer should be 3. By our definition of between, we felt that only the numbers 4,
5, and 6 are between 3 and 7, so the answer should be 3. Instead, the code gave us the
answer of 5. So, we know it isn’t working correctly thanks to our test cases.

 173Modifying our workflow in light of our new skills

Whether we go on to find the bug by inspecting the code or by using the debugging
techniques from this chapter, we realize the statement

if number >= x and number <= y:

is the culprit. Here, the complete fix requires us to change the if statement from

if number >= x and number <= y:

to

if number > x and number < y:

This is a change we could just make directly, without asking for Copilot’s help (although
Copilot would likely be able to help us here as well). Listing 8.7 has the fixed function
after the change.

Listing 8.7 Function to count numbers in a list between two values (corrected)

def count_between(numbers, x, y):
 count = 0
 for number in numbers:
 if number > x and number < y:
 count += 1
 return count

8.4 Modifying our workflow in light of our new skills
Now that we know how to find and fix bugs in a more deliberate manner, let’s revisit
the workflow we last visited in chapter 6. Note that this workflow is about how to design
a single function, so it presumes you’ve already done the function decomposition
described in chapter 7 to determine the appropriate functions. The new workflow
appears in figure 8.10.

Although the figure is starting to get a bit complicated, most of this is what you saw
previously in chapter 6. The only changes here are to include debugging. Specifically,
if you’ve found yourself in the situation where you’ve already tried to revise the prompt
and you still can’t get code that works, then it’s time to try debugging explicitly. With
the tools you’ve gained in this chapter, you’ll likely be successful at finding some bugs
but likely not all possible bugs. If you find the bug and feel you’ve successfully fixed it,
the flowchart sends you back to testing to make sure your fix worked (and didn’t break
any other test cases). On the off chance you can’t get the code to work through new
prompts and you just can’t seem to debug it, we’ve found that problem decomposition
is often your best next step. In other words, if you can’t get a function to work no matter
how hard you try, the function should probably be broken into multiple functions, and
you’re more likely to be successful coding those smaller functions.

Changed the >=
to > and <= to
< manually

174 chapter 8 Debugging and better understanding your code

Figure 8.10 The function design cycle with Copilot, augmented to include debugging

8.5 Applying our debugging skills to a new problem
With our new skills in place and a new workflow, let’s try tackling a more challenging
debugging problem. Remember in chapter 6 when we tried to determine the largest
number of empty seats in a given row in a classroom? We’re going to solve a similar
problem here.

Instead of looking for empty seats, let’s say that we want to count the most students
seated consecutively in a row because you are trying to space them out better before an
exam. We wrote the prompt and a basic doctest and Copilot generated a solution. The
code appears in listing 8.8.

 175Applying our debugging skills to a new problem

Listing 8.8 First attempt to count consecutive students in a row

def most_students(classroom):
 '''
 classroom is a list of lists
 Each ' ' is an empty seat
 Each 'S' is a student

 Find the most students seated consecutively in a row

 >>> most_students([['S', ' ', 'S', ' ', 'S', 'S'],\
 ['S', ' ', 'S', 'S', 'S', ' '],\
 [' ', 'S', ' ', 'S', ' ', ' ']])
 3
 '''
 max_count = 0
 for row in classroom:
 count = 0
 for seat in row:
 if seat == 'S':
 count += 1
 else:
 if count > max_count:
 max_count = count
 count = 0
 return max_count

import doctest
doctest.testmod(verbose=True)

Given this chapter is about debugging, you can probably guess the code isn’t working
correctly. We caught this bug when we read the code Copilot gave us, but it’s a subtle
bug that we suspect could be missed fairly easily. If you see it already, great job, but pre-
tend you didn’t for the rest of the chapter. If you haven’t seen it, the rest of the chapter
is going to be more valuable to you.

Let’s imagine then that we just wrote this prompt and test. We read through the
code, and it looks like it’s probably keeping track of the most consecutive students. As
long as it sees a student in a seat, it increments the count. When there isn’t a student in
the seat, it checks to see whether the count is bigger than any previously seen and resets
the count. It seems like it’s at least on the right track. We included a test case, so we ran
the code and the test case passed. We’re feeling pretty good about the code but know we
need to do more test cases, particularly ones to catch edge cases (remember that edge
cases are uncommon cases that could break the code).

We know when we work with lists, it’s good to check that the code does the right
thing at the start and end of the list. To test the end of the list, let’s add a test case where
the largest group of consecutive students includes the last seat and rerun the code.
Here’s the new test case we’re adding to the docstring:

Our prompt
to Copilot

The first test
case

The code from
Copilot

The code to run doctest
that we added

176 chapter 8 Debugging and better understanding your code

>>> most_students([['S', ' ', 'S', 'S', 'S', 'S'],\
 ['S', ' ', 'S', 'S', 'S', ' '],\
 [' ', 'S', ' ', 'S', ' ', ' ']])
4

We run the code again and are surprised when the test cases fail. Here’s what it told us
(we reformatted the output for readability):

Trying:
 most_students([['S', ' ', 'S', 'S', 'S', 'S'],
 ['S', ' ', 'S', 'S', 'S', ' '],
 [' ', 'S’, ' ', 'S’, ' ', ' ']])
Expecting:
 4
**
File "c:\Copilot\max_consecutive.py",
line 12, in __main__.most_students

Failed example:
 most_students([['S', ' ', 'S', 'S', 'S', 'S'],
 ['S', ' ', 'S', 'S', 'S', ' '],
 [' ', 'S', ' ', 'S', ' ', ' ']])
Expected:
 4
Got:
 3

That’s odd—the code seemed to be working properly. Something about this edge case
has uncovered the error. At this point, we’d want to generate some hypotheses about
why the code isn’t working properly to help guide our debugging efforts. (If you’re
truly stumped, you could take the approach of just setting a breakpoint at the first line
of code in the function and stepping through it rather than trying to create a hypothe-
sis). Here are two hypotheses that come to mind:

1 The updating of count is skipping the last element in the list.

2 The updating of max is missing the last element in the list.

To simplify the debugging process, we removed the test that is passing (just set it aside
to restore later) and are only going to run the test that is failing. The following listing
shows our full code before we start the debugging process.

Listing 8.9 Setting up to debug the function to count consecutive students in a row

def most_students(classroom):
 '''
 classroom is a list of lists
 Each ' ' is an empty seat
 Each 'S' is a student

 Find the most students seated consecutively in a row

The longest group
of consecutive
students is 4.

Shows the
failed test case

 177Applying our debugging skills to a new problem

 >>> most_students([['S', ' ', 'S', 'S', 'S', 'S'],\
 ['S', ' ', 'S', 'S', 'S', ' '],\
 [' ', 'S', ' ', 'S', ' ', ' ']])
 4
 '''
 max_count = 0
 for row in classroom:
 count = 0
 for seat in row:
 if seat == 'S':
 count += 1
 else:
 if count > max_count:
 max_count = count
 count = 0
 return max_count

import doctest
doctest.testmod(verbose=True)

We’ll start with the first hypothesis, that count isn’t updating properly at the end of the
list and set a breakpoint at the updating of count. Figure 8.11 shows the first time the
debugger pauses after it’s started.

Figure 8.11 Debugger stopping before the first update of count

From the debugger, we can see that count is still 0, so it hasn’t been updated yet. We’re
in the first row of that first test case because row is ['S', ' ', 'S', 'S', 'S',
'S']. The seat we’re looking at is an 'S', which is why the count is increasing. Let’s
click Continue in the Debug Toolbar to see the next update of count. The state of the
debugger after clicking Continue appears in figure 8.12.

See the first
test case

178 chapter 8 Debugging and better understanding your code

Figure 8.12 Debugger stopping before the second update of count

A fair bit has happened, it seems, since the last update of count since max_count is
now 1. This must have happened when the empty space was processed because max_
count was set to 1 and count was reset back to 0. At this point, we’re at the third seat
in the row with a student there, and count is ready to update. We’ll want to check
that count keeps updating with each new student. We clicked Continue, and count
increased to 1. We clicked Continue again, and the count increased to 2. We click Con-
tinue, and the count increased to 3. At this point, we’re at the last student in the row,
and we want to check that count increases to 4. To check this, we clicked Step Over
once, and count indeed updates to 4. You can see the state of the debugger at this
point in figure 8.13.

Figure 8.13 Debugger stopping right after the fourth consecutive update of count

Well, we have good news and bad news at this point. The good news is that count is
properly updating. The bad news is that our first hypothesis was wrong, and we hav-
en’t found our bug yet. We could move our breakpoint to the line where max_count

 179Applying our debugging skills to a new problem

is updated and then click Restart and start over the debugging process for our second
hypothesis, but given the fact count is 4 right now in our debugger, let’s just continue
to trace through the code and make sure max_count gets updated. Or rather, we know
it won’t be, so we want to see why.

Before clicking Step Over, we’ve got a clue already present in the debugger. This clue
comes from the fact that the next line of code to execute is for seat in row. But the
student we just saw was the last student in row. This means this for loop is just about to
finish (meaning we’ll not execute the body of the loop again, which means max_count
can’t get updated). Let’s see whether that’s what happens by clicking Step Over. The
state of the debugger appears in figure 8.14.

Figure 8.14 Debugger stopping after finishing the first row

We just finished processing the first row, but we never updated the max_count. The
next line of code will pick the next row, and the line after that will set count to 0 again.
We finished the loop over the row without ever updating max_count even though we
found a count that’s bigger than the current max_count. If you don’t see the bug yet,
we encourage you to step through until the next time max_count is updated, and it
may be more obvious at that point.

The error in the code is that it only updates max_count when it encounters an empty
seat. This means that if a row ends with a student, the code to check whether max_count
should be updated will never run for that row. Examining the code more closely, the
test to see whether max_count should be updated and the update of max_count should
both occur either outside the if-else statement or right after count is updated.

This is a fix we can probably just make manually since all we need to do is move two
lines of code to a better location. The code in listing 8.10 is the corrected function
(without the tests or prompts).

180 chapter 8 Debugging and better understanding your code

Listing 8.10 Corrected function to find the maximum consecutive students in a row

def most_students(classroom):
 max_count = 0
 for row in classroom:
 count = 0
 for seat in row:
 if seat == 'S':
 count += 1
 if count > max_count:
 max_count = count
 else:
 count = 0
 return max_count

This new code does pass the test that failed with the old code and the original test.
After adding another test that makes sure the code works when the longest group of
consecutive students appears at the start of the row, we’re more confident the code is
now working properly.

8.6 Using the debugger to better understand code
We suspect you’re already pretty impressed by the debugger. We are too. When stu-
dents were taught programming in the traditional manner, a lot of time was spent mak-
ing sure students could essentially trace through code like a debugger would, drawing
out the state of all the variables and updating them with each new line of execution.
Indeed, there’s even a free tool on the web called PythonTutor [2] that creates dia-
grams of the state of memory that can be easier to read than a debugger, just to help
new programmers learn how the code executes.

Whether you like using the debugger or want to use a tool like PythonTutor, we
encourage you to play with some of the code you’ve written from earlier sections of the
book. In our personal experience working with people learning how to program, walk-
ing through a program line by line and watching how the state of variables changes can
be a truly enlightening experience, and we hope you’ll appreciate it too.

8.7 A caution about debugging
From working with students, we’ve also seen that debugging can be a really frustrating
experience for new learners [3]. When learning how to program, everyone wants their
code to work, and finding and fixing bugs is time spent when things aren’t working.
There are a couple of ways to help overcome this frustration. First, problem decompo-
sition can go a really long way to helping you get code from Copilot that is right with-
out the need for extensive debugging. Second, remember that everyone’s code doesn’t
work sometimes, including ours. It’s just a natural part of the programming process
and a part that can take some practice. Last, always, and we mean always, test every
function you write. More often than not, when our students are really stuck debug-
ging, it’s because there are bugs in multiple functions interacting as a result of not
testing each function. When that happens, it’s exceptionally hard to find and remedy

Moved the testing of
count against
max_count to
immediately after the
updating of count

 181Summary

the bugs. Debugging interacting bugs is so frustrating that avoiding that experience is
a big reason why both of us religiously test every function we write.

The good news is that if you test every function you write and you diligently break
down problems into small, manageable steps, you shouldn’t find yourself debugging
that often. And if you do, you’ll be debugging the error in one function, which is what
essentially every programmer on the planet does. With some practice, you’ll get the
hang of it.

Summary
¡	Debugging is an important skill that includes finding errors in code and then

correcting them.

¡	Print statements can be an effective way of learning about what is happening in
your code.

¡	The VS Code debugger is another way of learning what is happening in your
code that provides powerful features for monitoring how variables change as the
code executes.

¡	Once an error is uncovered, there are multiple ways to help Copilot fix the error
for you, but if that fails, you can often fix the code directly.

¡	Our workflow of designing functions now includes debugging, and with the skill
of debugging, you are more apt to write the software you want.

¡	Outside of debugging, the VS Code debugger can be a powerful tool in learning
more about how the code works.

https://code.visualstudio.com/docs/editor/debugging

182

9Automating tedious tasks

This chapter covers

¡	Understanding why programmers write tools
¡	Determining which modules we need to write a
 given tool
¡	Automating cleaning up emails that have > > >
 symbols
¡	Automating manipulating PDF files
¡	Organizing your and your partner’s phone
 pictures in the same place

Suppose that you’re responsible for creating 100 reports, one for each of 100 peo-
ple. Perhaps you’re a teacher and need to send a report to each of your students.
Perhaps you work for HR and need to send an annual assessment report to each
employee. Regardless of your role, you have the problem of having to create these
reports, and you decided to prepare your reports as .pdf files. You need a custom-
ized cover page for each report, too, and those cover pages are designed by one of
your colleagues (a graphic design artist).

You and your colleague work independently, and finally, the job is done. Or wait,
not so fast. Because now you have to put each cover page at the beginning of each of
your reports.

At this point, a nonprogrammer might grit their teeth and start on the job,
manually merging the cover page with the first report, the second cover page with

 183Why programmers make tools

the second report, and so on. That could take hours. Not knowing that there may be
another way, a nonprogrammer may just power ahead until the job is done.

But you’re a programmer now. And most programmers, the two of us included,
would never power ahead with manual work like this.

In this chapter, we’re going to show you how to write programs to automate tedious
tasks. The second example in the chapter will automate the “merging cover pages with
reports” situation. But we’ll do others as well. Received an email that’s been forwarded
so many times

> > > > > > that it looks
like
> > > > > > this?

Or does your family have several phones, each with hundreds of images, and you just
want to get them all in the same place so that you can archive them without losing any-
thing? In this chapter, we’ll show you how to automate tasks like that.

9.1 Why programmers make tools
There’s a common sentiment that programmers often express: we’re lazy. This doesn’t
mean that we don’t want to do our work. It means that we don’t want to do repetitive,
boring, tedious work because that’s what computers are good at. Programmers develop a
sort of spidey-sense for this kind of drudgery. Suppose Leo has a few hundred photos,
and he wants to delete any photos that are duplicates. There’s no way he’d do this by
hand. Or suppose that Dan has to send out a customized email to each of his students.
If it’s more than a few students, there’s no way he’s doing this by hand. As soon as pro-
grammers start noticing that they’re repeating the same keys on the keyboard or work-
ing through the same steps over and over, they’ll stop and make a tool to automate it.

When programmers talk about tools, they’re talking about programs that do some-
thing that saves them time. A tool isn’t often the end goal and writing one can itself
feel tedious and not glamorous. But once we have a tool, we can use it to save us time.
Sometimes, we’ll use a tool once, for one specific job, and then never again. Commonly,
though, a tool ends up being useful over and over, whether we use the tool exactly as
we wrote it or by making some small changes. For example, after Dan finishes teaching
each course, he uses a program he wrote to collate all student grades and submit them
to the university. He makes small changes to the tool each time—changing the weights
of each assignment, for example—but then Dan can use that slightly modified tool to
do the work.

The great thing about using Copilot is that it makes it easier to crank out these tools.
Here’s how one software engineer explains it: “We all know that tools are important,
that effective tools are challenging to create, and that management doesn’t care or
understand the need for tools. . . . I can’t express how fundamentally different pro-
gramming feels now that I can build two quality tools per day, for every single itch I want
to scratch” [1].

184 chapter 9 Automating tedious tasks

9.2 How to use Copilot to write tools
As we learned in chapter 5 when talking about modules, sometimes we need to use a
module to help us write the program we want. Some modules are built into Python.
For example, in chapter 5, we used the built-in zipfile module to help us create a .zip
file. Other modules are not built in, and we need to install them first before we can use
them. That was the case in chapter 2 when we used the matplotlib module to visualize
our quarterback data.

When writing a tool, it’s often the case that we’ll be working with some specialized
data format (ZIP files, PDF files, Excel spreadsheets, images) or performing some spe-
cialized task (sending email, interacting with a website, moving files around). For most
of this, we’re going to need to use a module. Which module, though? And is it built in,
or do we need to install it? These are the first questions we need to get answers to.

Fortunately, we can use Copilot’s chat feature (or ChatGPT) to help us get started.
We already saw the Copilot chat feature in chapter 8. As a reminder, we’re using the
Copilot chat feature because it is built into our VS Code IDE and because Copilot chat
has access to the very code we’re currently writing so it can incorporate what we’re
doing into its answers.

The plan is to have a conversation with Copilot to determine which module we need
to use. Once we know that and install the module, if necessary, then we can get down
to the business of writing the code for our tool. And we’ll do that the way we’ve always
done it: by writing the function header and a docstring and having Copilot fill in the
code for us. Once Copilot starts writing code, we need to follow the same steps as in
previous chapters, including checking code correctness, fixing bugs, and maybe even
doing some problem decomposition. To focus our attention on writing tools to auto-
mate tasks, we’ll minimize the time we spend on them here.

It may be possible to ask Copilot or ChatGPT to write the entire tool for us, without
even having to put it inside of a function. We won’t do that here, though, because we
still think that the benefits of functions are worthwhile. A function will help us docu-
ment our code so that we know what it does and it enables flexibility if we later decide,
for example, to add additional parameters to our function to change the behavior of
the tool.

9.3 Example 1: Cleaning up email text
Sometimes, an email gets replied to and forwarded so many times that it becomes a
mess, with many greater than (>) signs and spaces on some of the lines. Here’s a sam-
ple email of what we mean:

> > > Hi Leo,
> > > > > Dan -- any luck with your natural language research?

 185Example 1: Cleaning up email text

> > > Yes! That website you showed me
https://www.kaggle.com/
> > > is very useful. I found a dataset on there that collects
a lot
> > > of questions and answers that might be useful to my research.
> > > Thank you,
> > > Dan

Suppose that you wanted to save this email information for future use. You might like
to clean up the > and space symbols at the start of lines. You could start manually delet-
ing them—this email isn’t that long, after all—but don’t do that. Because here you
have an opportunity to design a general-purpose tool that you can use whenever you
need to perform this task. Whether your email has five lines or a hundred lines or a
million lines, it won’t matter: just use the tool and be done.

9.3.1 Conversing with Copilot

We need to make the messy email available to our tool so that the tool can clean it up.
One way we can do this is to first copy the text of an email to the clipboard (using your
Copy to Clipboard command on your operating system, such as Ctrl–C.) We could
then run the tool, and the tool could clean up the email and replace the clipboard
contents with the cleaned-up version. For the tool to do something reasonable, we
assume that your clipboard has email text on it. The tool will remove the > and space
characters at the start of each line so that you can paste (using your operating system
Paste command, such as Ctrl–V) the newly cleaned-up email wherever you want. In
terms of Python, it will need to pull the clipboard contents into a string (i.e., copy the
contents of the clipboard), clean it up, and then put that new cleaned-up text back on
the clipboard (i.e., paste to the clipboard), replacing the junky version of the email
that was there before.

So, how do we access the clipboard in our Python program? That’s what we need to
figure out, so that will frame the conversation that we have with Copilot. Similar with
chapter 8, we’re going to use “Human” for the prompts that we type and “GitHub Copi-
lot” for Copilot’s responses. Recall that if the Copilot chat feature isn’t available at the
point you are reading this, you can use ChatGPT to have a similar conversation. We are
typing our prompts into the Copilot chat window.

In our chats with Copilot, we’re going to explore widely before settling on a solu-
tion. We’ll explain why we’re doing this once we’ve gotten the hang of things through
one example, but we note this here so that you’ll be ready for this seemingly less direct
approach. Copilot provides quite a bit of sample code in its responses. As we’re explor-
ing, feel free to skim that code, but don’t get bogged down in it. We’ll look at more par-
ticulars of the code once we finish exploring and settle on a plan. Let’s start learning!

186 chapter 9 Automating tedious tasks

Human I would like to write a Python program that accesses the clipboard and lets me
copy and paste using the clipboard. How can I do this?

GitHub Copilot You can use the ̀ pyperclip` module to access the clipboard in Python.
Here’s an example program that lets you copy and paste using the clipboard:

```python
import pyperclip
 
# Copy to clipboard
pyperclip.copy('Hello, world!')
 
# Paste from clipboard
text = pyperclip.paste()
 
print(text)
```
This program first imports the pyperclip module. It then copies the string 'Hello, world!’
to the clipboard using the copy() function. Finally, it pastes the contents of the clipboard
into the text variable using the paste() function and prints the result.

You can install the ̀ pyperclip` module using pip by running ̀ pip install pyperclip` in your
terminal.

Copilot’s response teaches us that we can use the pyperclip module to interact with
the clipboard in our Python program. The sample code that it provided even showed
us how to copy stuff from our program to the clipboard and paste stuff from the clip-
board into a variable. We are making great progress!

The final paragraph of the response tells us how to install pyperclip. Aha! So pyper-
clip doesn’t come with Python by default. While we do know how to install modules
(we did that starting in chapter 2 with matplotlib), it might be nice to not have to worry
about that. So, let’s continue the conversation, asking Copilot if we can do better.

Human Is there a way I can do it without having to install a Python module?

GitHub Copilot Yes, you can use the `tkinter` module that comes with Python to
access the clipboard. Here’s an example program that lets you copy and paste using the
clipboard without installing any additional modules:

```python
import tkinter as tk
 
# Create a Tkinter window
root = tk.Tk()
 
# Hide the window
root.withdraw()
 
# Copy to clipboard



 187Example 1: Cleaning up email text

root.clipboard_clear()
root.clipboard_append('Hello, world!')
 
# Paste from clipboard
text = root.clipboard_get()
 
print(text)
```
This program first creates a hidden Tkinter window using the `Tk()` function and hides
it using the `withdraw()` method. It then clears the clipboard using the `clipboard_
clear()` method and appends the string ̀ ’Hello, world!’` to the clipboard using the ̀ clip-
board_append()` method. Finally, it retrieves the contents of the clipboard using the
`clipboard_get()` method and prints the result.

Note that this method only works if you have a graphical environment available, such
as a desktop environment on Linux or macOS, or the Windows desktop on Windows.
If you’re running Python in a terminal-only environment, you’ll need to use a different
method to access the clipboard.

It seems that we’ve won something and lost something else. The win is that this tkinter
module is built into Python. The loss is that “the method only works if you have a
graphical environment available.” Do we have a graphical environment available in
our Python setup? While we could certainly try the code to find out, this requirement
gives us pause. After all, the pyperclip solution didn’t have that requirement, so we
might not need it (whatever it happens to mean). Let’s try again.

Human Is there another way I can do it without having to install a Python module?

GitHub Copilot Yes, you can access the clipboard using the `win32clipboard` mod-
ule, which is included in the standard library on Windows. Here’s an example program
that allows you to copy and paste using the clipboard without installing any additional
modules:

```python
import win32clipboard
 
# Copy to clipboard
text = "Hello, world!"
win32clipboard.OpenClipboard()
win32clipboard.EmptyClipboard()
win32clipboard.SetClipboardText(text)
win32clipboard.CloseClipboard()
 
# Paste from clipboard
win32clipboard.OpenClipboard()
pasted_text = win32clipboard.GetClipboardData()
win32clipboard.CloseClipboard()
print(pasted_text)
```


188 chapter 9 Automating tedious tasks

This program first imports the `win32clipboard` module. To copy text to the clipboard,
you can call the `OpenClipboard()` function to open the clipboard, then call `EmptyClip-
board()` to clear any existing data, and finally call `SetClipboardText()` to set the text
on the clipboard. After setting the text, you should call `CloseClipboard()` to close the
clipboard.

To paste from the clipboard, you can call `OpenClipboard()` to open the clipboard,
then call `GetClipboardData()` to get the text from the clipboard. After getting the
text, you should call `CloseClipboard()` to close the clipboard. In this example, the
program copies the text “Hello, world!” to the clipboard, then pastes it and prints it to the
console.

“Standard library on Windows,” eh? That’s concerning because it means that our tool
might not work on other operating systems. Let’s see about that.

Human Does that work on Linux or Mac OS too?

GitHub Copilot No, the `win32clipboard` module is specific to Windows and won’t
work on Linux or Mac OS. On Linux, you can use the `xclip` command-line utility to
access the clipboard. Here’s an example program that allows you to copy and paste
using the clipboard on Linux:

```python
import subprocess
 
# Copy to clipboard
text = "Hello, world!"
subprocess.run(['xclip', '-selection', 'clipboard'], input=text.
encode('utf-8'))
 
# Paste from clipboard
p = subprocess.Popen(['xclip', '-selection', 'clipboard', '-o'], 
stdout=subprocess.PIPE)
pasted_text = p.stdout.read().decode('utf-8')
print(pasted_text)
```
This program uses the `subprocess` module to run the `xclip` command-line utility. To
copy text to the clipboard, you can call `subprocess.run()` and pass in the `xclip` com-
mand with the `-selection clipboard` option to specify the clipboard selection, and the
`input` parameter to pass in the text you want to copy. To paste from the clipboard, you
can call `subprocess.Popen()` and pass in the `xclip` command with the `-selection
clipboard -o` options to read the text from the clipboard, and then read the output of
the command using the `stdout` attribute of the `Popen` object. In this example, the
program copies the text “Hello, world!” to the clipboard, then pastes it and prints it to the
console.

On Mac OS, you can use the `pbcopy` and `pbpaste` command-line utilities to
access the clipboard. The usage is similar to ̀ xclip`.

 189Example 1: Cleaning up email text

We’ve gotten some solutions that are specific to different operating systems. We don’t
like this! We want our tool to work no matter which operating system we are using.
(Even if we are using only Windows ourselves, maybe one day we’ll share this tool with
others who use different operating systems.)

We could continue our conversation, but in retrospect, having to install that single
pyperclip module doesn’t seem so bad. Let’s go ahead with it. In general, it can be valu-
able to explore your options when deciding how to start writing a tool, and conversing
with Copilot is helpful for carrying out this exploration.

Why we should explore and understand our options
There are several reasons why you shouldn’t just use the first module that Copilot chat
tells you to use:

1 It may not work on all operating systems. In general, we want to find modules that
work across multiple operating systems so that the tool can be used by you (if you
later switch operating systems) or others with whom you’ve shared the tool.

2 It may turn out not to work for our use case after all, or we may struggle to get the
code to work. If we have other options, we can start trying those before sinking too
much time into a strategy that may or may not ultimately work out.

3 Modules are updated frequently. Usually this is to add new features and fix bugs,
but sometimes, functions are removed or changed in this process as well. When
the author of a module removes a function, it’s known as deprecating that func-
tion. Once a function is deprecated, it may no longer work, and we need to find a
replacement. Copilot is trained only every once in a while, not continuously, so if
a new version of a module comes out after Copilot was trained on it, Copilot won’t
know about the updates. This can lead to Copilot suggesting code that depends
on an older version of the module than the one you have. There are ways to ad-
dress this, as we will see later in the chapter. But if you run into trouble, having
other options to explore is useful.

9.3.2 Writing the tool to clean up email

The first thing we need to do is to install the pyperclip module. To do that, you’ll need
to type pip install pyperclip into the Terminal at the bottom right of VS Code.
(It’s been a while, but we did install a module in chapter 2, matplotlib, using this same
approach.)

Once that’s installed, we can import the module and then write the header and doc-
string for our function that will remove the > and space characters from the start of
lines. The reason we’re importing the module here is to influence Copilot to use that
module when writing the code for the function. Here’s the prompt we used and the
code that Copilot gave us.

190 chapter 9 Automating tedious tasks

Listing 9.1 First try: Code to clean up email text in the clipboard

import pyperclip

def clean_email():
 '''
 The clipboard contains lines of text.
 Clean up the text by removing any > or space
 characters from the beginning of each line.
 Replace the clipboard with the cleaned text.
 '''
 text = pyperclip.paste()
 lines = text.splitlines()
 for i in range(len(lines)):
 lines[i] = lines[i].lstrip(' >')
 text = '

'.join(lines)

 pyperclip.copy(text)

if __name__ == '__main__':
 clean_email()

We can see that the program is carrying out the correct sequence of steps: it’s obtain-
ing the clipboard contents, cleaning up that text, and then copying the cleaned-up
text back to the clipboard. As we learned from our earlier chat with Copilot, we want
Copilot to write code that uses the paste and copy functions of pyperclip, and that’s
exactly what it’s doing. The second-to-last line of the program is something we haven’t
seen before in this book:

if __name__ == '__main__':

You can actually remove this line if you like (and if you do, also unindent the line
below it). It ensures that the clean_email function is only called when you run your
program, not when you import it as a module. After all, if you did want to import this
as a module (to be used as part of a larger program), you would call clean_email
whenever you needed that functionality, not necessarily as soon as the module was
imported. (And, in general, whenever you’re interested in understanding a line of
code more fully, you can ask Copilot about it!) Unfortunately, this code doesn’t work.
If you run it, you will receive this error:

File "C:\repos\book_code\ch9\email_cleanup.py", line 14
 text = '
 ^
SyntaxError: unterminated string literal (detected at line 14)

Puts the current
contents of the clipboard
into the text string

Splits the
string into a

list of its
lines

Loops
through

each line

Removes spaces and > symbols
from the start of the line

This looks odd . . .

Copies the
cleaned-up text
to the clipboard

Notes a common
Python

convention (see
the following)

discussion

Calls our function to
automatically clean up

the clipboard!

 191Example 1: Cleaning up email text

The syntax error means that we have a program that is not written in valid Python
code. We’re going to fix this now! We have a couple of options for how to do so. One
is to highlight your code and click the Copilot Labs button Fix Bug. For us, this did fix
the problem. If that option isn’t available, try asking Copilot chat or ChatGPT in con-
versation: “Propose a fix for the bugs in my code <insert your code>“. This is a useful
tip to keep in mind whenever the code that you get back from Copilot doesn’t work as
expected.

Copilot fixed the code for us by fixing the line with the syntax error. The new code is
shown in the following listing.

Listing 9.2 Second try: Code to clean up email text in the clipboard

import pyperclip

def clean_email():
 '''
 The clipboard contains lines of text.
 Clean up the text by removing any > or space
 characters from the beginning of each line.
 Replace the clipboard with the cleaned text.
 '''
 text = pyperclip.paste()
 lines = text.splitlines()
 for i in range(len(lines)):
 lines[i] = lines[i].lstrip(' >')
 text = '\n'.join(lines)

 pyperclip.copy(text)

if __name__ == '__main__':
 clean_email()

The new line of code, changed from the odd line of code that we had previously, is:

text = '\n'.join(lines)

The goal of this line is to join all the lines of text together into a single string that the
program will later copy to the clipboard. What does that \n mean? We can understand
that by experimenting a little with join. Here’s an example of using join with an
empty string rather than the '\n' string:

>>> lines = ['first line', 'second', 'the last line']
>>> print(''.join(lines))
first linesecondthe last line

Notice that some of the words are squished together. That’s not exactly what we want—
we need something between them. How about a space? Let’s try using join again, this
time with a space in the string rather than the empty string:

>>> print(' '.join(lines))
first line second the last line

Joins the individual
lines back into one
string

Shows the list
of three lines

Calls “join” on the
empty string

192 chapter 9 Automating tedious tasks

Or we could use '*':

>>> print('*'.join(lines))
first line*second*the last line

That fixes our squished words. And the *s tells us where each line ends, but it would be
nicer to actually maintain the fact that the email is three lines.

We need a way in Python to use a line break or newline character, rather than a space
or *. We can’t just press Enter because that would split the string over two lines and that
isn’t valid Python syntax. The way to do it is by using '\n':

>>> print('\n'.join(lines))
first line
second
the last line

Now our tool is ready to be used. If you copy some messy email text to your clipboard,
run our program, and paste the clipboard, you’ll see that the email has been cleaned
up. For example, if we run it on our previous sample email, we get the following
cleaned-up version:

Hi Leo,
Dan -- any luck with your natural language research?
Yes! That website you showed me
https://www.kaggle.com/
is very useful. I found a dataset on there that collects
a lot
of questions and answers that might be useful to my research.
Thank you,
Dan

Of course, we could still do more. The line breaks in that email aren’t great (the line “a
lot” is extremely and needlessly short), and you might want to clean that up as well. You
could begin to make these kinds of improvements by adding new requirements to your
prompts to Copilot. We’ll stop here because we have accomplished our initial goal of
email cleanup, but we encourage you to continue exploring more robust solutions on
your own.

9.4 Example 2: Adding cover pages to PDF files
Let’s return to the scenario from the start of the chapter. We have written 100 reports
that are in .pdf format. Our colleague has designed 100 covers for those reports
that are also in .pdf format. And we need to merge the covers with the reports so that
each finalized .pdf file starts with the cover and continues with the report. Figure 9.1
provides an illustration of the desired process.

 193Example 2: Adding cover pages to PDF files

Cover1.pdf

Cover3.pdf

Cover98.pdf

...

Cover2.pdf

Cover4.pdf

Cover99.pdf

...

Covers

1.pdf

...

3.pdf

98.pdf

2.pdf

4.pdf

99.pdf

...

Reports

1.pdf

Cover1.pdf

Combined pdf

Figure 9.1 Illustration of the desired process of creating combined .pdfs by merging the report cover in
the cover directory with the report in the report’s directory. Note that the reports may be more than one
page.

.pdf files (and Word files, Excel files) are not text files
You might wonder why we can’t simply use Python methods like read and write to
manipulate .pdf files. After all, that’s just what we did when working with .csv files in
chapter 2.

The big difference is that .csv files are text files, which are files readable by humans with
no formatting or special commands. Many other file formats are not text files, however. A
.pdf file, for example, is not human-readable and needs to be processed by code that is
aware of the .pdf format. This is true of Microsoft Word files and Microsoft Excel files as
well: they’re not text files, so we need specialized tools to work with them.

In the resources for this book, in the ch9 folder, you will find two subfolders. One
is called reports, and it contains 100 reports as .pdf files. The other is called
covers, and it contains 100 covers as .pdf files, one for each report. The reports are
named 1.pdf, 2.pdf, 3.pdf, and so on; the covers are named cover1.pdf, cover2.pdf,
cover3.pdf, and so on. The cover for the 1.pdf report is cover1.pdf, the cover for 2.pdf is
cover2.pdf, and so on. It’s these reports and covers that we will merge together in this
section.

Open some of the cover .pdf files and some of the report .pdf files. You can do that
using a program like Adobe Acrobat or however you typically open .pdf files on your

194 chapter 9 Automating tedious tasks

computer. You’ll notice that the covers are always exactly one page, but the reports can
be more than one page. When we get to the code, we should take care to tell Copilot
that reports can be more than one page; otherwise, Copilot might write code assuming
that the reports, like the covers, are only one page.

You might be wondering how we created these 100 covers and reports. You’d be dis-
appointed if we made them manually, one at a time, right? Don’t worry. We automated
that creation process in much the same way we will automate the merging process next.

9.4.1 Conversing with Copilot

We need our tool to find all reports and covers, add the cover to the front of each
report, and produce a finalized .pdf for each report that contains both the cover page
and report pages.

How do we merge .pdf files using Python? Let’s find out.

Human I need to write a Python program that merges .pdf files. How do I do this?

GitHub Copilot You can use the PyPDF2 library to merge PDF files in Python. Here is
an example code snippet that shows how to merge two PDF files:

```python
import PyPDF2
 
# Open the PDF files to be merged
pdf1 = open('file1.pdf', 'rb')
pdf2 = open('file2.pdf', 'rb')
 
# Create a PDF reader object for each file
reader1 = PyPDF2.PdfFileReader(pdf1)
reader2 = PyPDF2.PdfFileReader(pdf2)
 
# Create a PDF writer object
writer = PyPDF2.PdfFileWriter()
 
# Loop through the pages of each PDF and add them to the writer object
for i in range(reader1.getNumPages()):
    page = reader1.getPage(i)
    writer.addPage(page)
 
for i in range(reader2.getNumPages()):
    page = reader2.getPage(i)
    writer.addPage(page)
 
# Write the merged PDF to a file
output = open('merged.pdf', 'wb')
writer.write(output)
 
# Close the input and output files
pdf1.close()
pdf2.close()
output.close()
```


 195Example 2: Adding cover pages to PDF files

In this example, we first open the two PDF files to be merged using the `open()` func-
tion. We then create a PDF reader object for each file using the `PdfFileReader()`
function from PyPDF2.

Next, we create a PDF writer object using the `PdfFileWriter()` function. We then
loop through the pages of each PDF file using the `getNumPages()` and `get-
Page()` methods of the reader objects and add each page to the writer object using
the ̀ addPage()` method.

Finally, we write the merged PDF to a file using the `write()` method of the writer
object and close all the input and output files using the ̀ close()` method.

We have a lead! This PyPDF2 module seems to do what we need. It looks like it gives
us PdfFileReader to read an existing .pdf file and PdfFileWriter to create a new
.pdf file. We see the code using getPage to get a page from an existing .pdf file and
addPage to write it to the new .pdf file. Very promising.

Is there something built-in to Python that we could use, so that we don’t have to
worry about installing PyPDF2?

Human Is there a way I can do it without having to install a Python module?

GitHub Copilot Yes, you can use the `subprocess` module to call a command-line
tool like `pdftk` to merge PDF files. Here is an example code snippet that shows how to
merge two PDF files using ̀ pdftk`:

```python
import subprocess
 
# Call pdftk to merge the PDF files
subprocess.call(['pdftk', 'file1.pdf', 'file2.pdf', 'cat', 'output', 
'merged.pdf'])
```
In this example, we use the `subprocess.call()` function to call `pdftk` with
the appropriate arguments to merge the two PDF files `file1.pdf` and `file2.pdf`. The
`cat` argument tells `pdftk` to concatenate the input files, and the `output` argu-
ment specifies the output file name as ̀ merged.pdf`.

Note that you will need to have ̀ pdftk` installed on your system for this code to work. If
you don’t have ̀ pdftk` installed, you can download it from the official website: https://
www.pdflabs.com/tools/pdftk-the-pdf-toolkit/.

This approach may ultimately end up being valuable, but it’s not exactly a built-in solu-
tion. After all, the final paragraph talks about us having to install some new software
called pdftk!

At this point, we’d probably go with the first option of using PyPDF2. But let’s press
forward once more with Copilot to make sure we don’t miss any good options.

https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/

196 chapter 9 Automating tedious tasks

Human Are there other Python .pdf libraries that I should consider?

GitHub Copilot Yes, there are several other Python libraries that you can use to work
with PDF files. Here are some popular ones:

1 ReportLab - a library for creating PDF documents from scratch, with support for
text, graphics, and images.

2 FPDF - a library for creating PDF documents from scratch, with support for text,
graphics, and images.

3 PDFMiner - a library for extracting text and metadata from PDF files.

4 PyMuPDF - a library for working with PDF files, with support for text, graphics, and
images.

5 pdfrw - a library for reading and writing PDF files, with support for text, graphics,
and images.

Each library has its own strengths and weaknesses, so you should choose the one that
best fits your needs. If you only need to merge PDF files, then PyPDF2 or pdftk may be
sufficient. However, if you need to create or manipulate PDF files in more complex ways,
then one of the other libraries may be a better choice.

The last paragraph tells us that we’re probably in good shape using PyPDF2 if all we
need to do is merge .pdf files. But let’s finish our conversation here by understanding
the pros and cons of all these tools. That way, if we get stuck with PyPDF2, we know
where to turn to next.

Human Can you summarize the strengths and weaknesses of these libraries?

GitHub Copilot Certainly! Here is a summary of the strengths and weaknesses of the
libraries I mentioned:

1 PyPDF2 - a library for working with PDF files, with support for text, graphics, and
images.

Strengths:
– Easy to use for simple tasks like merging PDF files.
– Good documentation and examples available.
– Supports a wide range of PDF features.

Weaknesses:
– Limited support for advanced PDF features like forms and annotations.
– Can be slow for large PDF files.

 197Example 2: Adding cover pages to PDF files

2 ReportLab - a library for creating PDF documents from scratch, with support for
text, graphics, and images.

Strengths:
– Very powerful and flexible for creating complex PDF documents.
– Supports a wide range of PDF features.
– Good documentation and examples available.

Weaknesses:
– Steep learning curve for beginners.
– Can be slow for large PDF files.

3 FPDF - a library for creating PDF documents from scratch, with support for text,
graphics, and images.

Strengths:
– Lightweight and easy to use.
– Good documentation and examples available.
– Supports a wide range of PDF features.

Weaknesses:
– Limited support for advanced PDF features like forms and annotations.
– Can be slow for large PDF files.

4 PDFMiner - a library for extracting text and metadata from PDF files.

Strengths:
– Very powerful and flexible for extracting text and metadata from PDF files.
– Supports a wide range of PDF features.
– Good documentation and examples available.

Weaknesses:
– Steep learning curve for beginners.
– Limited support for creating or manipulating PDF files.

5 PyMuPDF - a library for working with PDF files, with support for text, graphics, and
images.

Strengths:
– Very fast and efficient for working with PDF files.
– Supports a wide range of PDF features.
– Good documentation and examples available.

Weaknesses:
– Steep learning curve for beginners.
– Limited support for creating or manipulating PDF files.

198 chapter 9 Automating tedious tasks

6 pdfrw - a library for reading and writing PDF files, with support for text, graphics,
and images.

Strengths:
– Very powerful and flexible for reading and writing PDF files.
– Supports a wide range of PDF features.
– Good documentation and examples available.

Weaknesses:
– Steep learning curve for beginners.
– Can be slow for large PDF files.

Don’t be too intimidated by the “Steep learning curve for beginners” cautions in there.
If Copilot has been trained on the library, then you may still be successful.

Based on what we’ve learned here, we might eliminate PDFMiner because it appar-
ently has “limited support for creating or manipulating PDF files,” but we’d keep all
others in contention just in case we need them. For now, we’re going to proceed with
PyPDF2 and see how it goes.

9.4.2 Writing the tool

Go ahead and install the PyPDF2 module. Be careful with the capitalization: the mod-
ule is called exactly PyPDF2, not pypdf2 or pyPDF2 or any other capitalization.

In our previous example, we wrote a function to clean up an email that was on the
clipboard. We didn’t need to pass any information to that function, so the function had
no parameters. Here, we think it would be useful for our function to have three param-
eters: the name of the directory with the reports, the name of the directory with the
covers, and the name of the directory where we want to write our finalized (merged)
.pdf files.

In our docstring, we need to explain what each of these directories is for and also the
pattern of the filenames in the directories. After all, Copilot will need to know how the
reports match up with the cover pages.

trying pypdf2
We’re going to use the PyPDF2 Python library to try to get the job done. Look back to
what Copilot chat told us about the PyPDF2 library. The sample code it gave us used
PdfFileReader to read existing .pdf files and PdfFileWriter to create a new .pdf file.
It also used getPage and addPage to manipulate pages. Look out for these in the code
that Copilot produces—they’re telltale signs that Copilot is generating code that’s on
the right track. Here’s the prompt that we used and the code that Copilot gave us.

 199Example 2: Adding cover pages to PDF files

Listing 9.3 Function to add covers to .pdf documents

import PyPDF2

def add_covers(report_dir, cover_dir, final_dir):
 '''
 report_dir is a directory of reports named 1.pdf, 2.pdf, and so on.
 These files may be one page or more than one page.

 cover_dir is a directory of covers, with one cover per report.
 The filenames in this directory are cover1.pdf, cover2.pdf, and so on.
 Each of these files is one page.

 Add the cover to the beginning of each report,
 and store all resulting pdfs in final_dir.
 '''
 report_files = os.listdir(report_dir)
 for report_file in report_files:
 report = open(os.path.join(report_dir, report_file), 'rb')
 report_reader = PyPDF2.PdfFileReader(report)
 report_writer = PyPDF2.PdfFileWriter()
 for page_num in range(report_reader.numPages):
 report_writer.addPage(report_reader.getPage(page_num))
 cover = open(os.path.join(cover_dir,
 'cover' + report_file), 'rb')
 cover_reader = PyPDF2.PdfFileReader(cover)
 report_writer.insertPage(cover_reader.getPage(0), 0)
 result = open(os.path.join(final_dir, report_file), 'wb')
 report_writer.write(result)
 report.close()
 cover.close()
 result.close()

if __name__ == '__main__':
 add_covers('reports', 'covers', 'final')

Be careful with automation programs
Programs like the one we’ve written to merge .pdf files can rip through hundreds or thou-
sands of files very quickly. If they aren’t operating correctly, they can easily result in you
damaging or losing files. Any time we use open with 'w' or 'wb' as the second parame-
ter, it means that we are overwriting a file.

Gets list of the
.pdf reports

Loops
through the
.pdf reports

We can use report_reader to read the pages of the report.

We can use report_writer to write pages into a new .pdf file.

Loops through each page of the report

Adds the page to our new .pdf file

Opens the cover associated with this report

We can use
cover_reader

to read the
cover

Adds the cover to the
start of our new .pdf fileSaves our new .pdf file

Calls our function to
do all of the merging!

200 chapter 9 Automating tedious tasks

(continued)

Let’s focus on this line from our program in listing 9.3:

result = open(os.path.join(final_dir, report_file), 'wb')

It’s using the open function to open a file. Specifically, it’s opening the current report_
file file in the final_dir directory. The second argument to open here, 'wb', means
that we want to open the file so we can write to it (that’s the 'w') and that the file we’re
writing is a binary file (that’s the 'b'), not a text file. If the file doesn’t already exist, then
the 'w' we’ve included will result in the file being created. That’s not the dangerous part.
The dangerous part is what happens when the file already exists. In that case, 'w' wipes
out its contents and gives us an empty file that we can start writing to. Now, if our pro-
gram is working correctly and only doing this in our final_dir, then we’re OK. But this
is what we need to carefully verify before letting our program loose.

We highly recommend that you first test on a small directory of files that you don’t care
about. Further, we recommend changing lines of code that open files using 'w' or 'wb'
to print a harmless output message instead, so that you can see exactly which files are
going to be overwritten or created. For example, in our program here, we need to com-
ment out these two lines:

result = open(os.path.join(final_dir, report_file), 'wb')
report_writer.write(result)

Instead, we’ll use print to print out the file that we would have created or overwritten:

print('Will write', os.path.join(final_dir, report_file))

Then when you run your program, you’ll see the names of files that the program intended
to write. If the output looks good—that is, the program is operating exactly on the files
that you wanted it to operate on—then you can uncomment the code that actually does
the work.

Exercise caution and always keep backups of your important files!

The last line of the program in listing 9.3 makes the assumption that the directory of
reports is called reports, the directory of cover pages is called covers, and the direc-
tory where the final .pdf files should go is called final.

Please create the final directory now. It should be there along with your reports
and covers directories.

The overall structure of the code looks promising to us: it’s getting a list of the .pdf
reports, and then for each one, it’s merging those pages with the cover page. It’s using
a for loop to loop through the pages of the report, which is good because it can grab
all the pages that way. By contrast, it’s not using a for loop on the cover .pdf file, which
again is good because we know that the cover has only one page anyway.

However, the first line of code it gave us looks like it’s using a function called list-
dir in a module called os. There are other lines that use this module as well. Do we
need to be importing that os module? Indeed, we do! And we can prove it by running
the code. If you run the code, you’ll get an error:

 201Example 2: Adding cover pages to PDF files

Traceback (most recent call last):
 File "merge_pdfs.py", …
 add_covers('reports', 'covers', 'final')
 File " merge_pdfs.py", …
 report_files = os.listdir(report_dir)
 ^^
NameError: name 'os' is not defined

We need to add import os at the start of our program to fix this. Here’s the updated
code in the following listing.

Listing 9.4 Improved function to add covers to .pdf documents

import os
import PyPDF2

def add_covers(report_dir, cover_dir, final_dir):
 '''
 report_dir is a directory of reports named 1.pdf, 2.pdf, and so on.
 These files may be one page or more than one page.

 cover_dir is a directory of covers, with one cover per report.
 The filenames in this directory are cover1.pdf, cover2.pdf, and so on.
 Each of these files is one page.

 Add the cover to the beginning of each report,
 and store all resulting pdfs in final_dir.
 '''
 report_files = os.listdir(report_dir)
 for report_file in report_files:
 report = open(os.path.join(report_dir, report_file), 'rb')
 report_reader = PyPDF2.PdfFileReader(report)
 report_writer = PyPDF2.PdfFileWriter()
 for page_num in range(report_reader.numPages):
 report_writer.addPage(report_reader.getPage(page_num))
 cover = open(os.path.join(cover_dir, 'cover' + report_file), 'rb')
 cover_reader = PyPDF2.PdfFileReader(cover)
 report_writer.insertPage(cover_reader.getPage(0), 0)
 result = open(os.path.join(final_dir, report_file), 'wb')
 report_writer.write(result)
 report.close()
 cover.close()
 result.close()

if __name__ == '__main__':
 add_covers('reports', 'covers', 'final')

We’re not out of the woods yet, though. Our updated program still doesn’t work.
Here’s the error we get when we run our program:

Traceback (most recent call last):
 File "merge_pdfs.py", line 34, in <module>
 add_covers('reports', 'covers', 'final')
 File "merge_pdfs.py", line 20, in add_covers
 report_reader = PyPDF2.PdfFileReader(report)
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^

We were missing this
import before.

The line in
our code
that’s
causing an
error

202 chapter 9 Automating tedious tasks

 File "...\PyPDF2_reader.py", line 1974, in __init__
 deprecation_with_replacement("PdfFileReader", "PdfReader", "3.0.0")
 File "...\PyPDF2_utils.py", line 369, in deprecation_with_replacement
 deprecation(DEPR_MSG_HAPPENED.format(old_name, removed_in, new_name))
 File "...\PyPDF2_utils.py", line 351, in deprecation
 raise DeprecationError(msg)
PyPDF2.errors.DeprecationError: PdfFileReader is deprecated and
was removed in PyPDF2 3.0.0. Use PdfReader instead.

We’ve run into the problem where Copilot thinks, “Hey, let’s use PdfFileReader, since
I’ve been trained that this is part of PyPDF2”, but between Copilot being trained and
the time of our writing, the PyPDF2 maintainers have removed PdfFileReader and
replaced it with something else (PdfReader, according to the final line of the error
message). This discrepancy may very well be fixed for you by the time you read this
book, but we want to pretend it’s still messed up so that we can teach you what to do if
this does happen to you in future. At this point, we have three options:

1 Install an earlier version of PyPDF2. The last two lines of the error message tell us
that PdfFileReader, the function we need from PyPDF2, was removed in PyPDF2
3.0.0. As a result, if we install a version of PyPDF2 earlier than 3.0.0, we should
have our function back. In general, installing earlier versions of libraries is not
advisable because security concerns may be present in those versions that have
since been fixed in more recent versions. In addition, there may be bugs present
in the older versions that have since been fixed. It’s worth Googling what has
been changed in the library recently to determine whether using an older ver-
sion is safe. In this case, we have done that homework and see no obvious risk in
using an older version of PyPDF2.

2 Fix the code ourselves using the suggestion in the error message. That is, we
would replace PdfFileReader with PdfReader and run the program again. In this
case, we would be told about other deprecations, and we’d need to fix those fol-
lowing the same process. It’s very nice of the authors of PyPDF2 to tell us what to
do inside the error messages. For practice, you might like to work through this,
making each update suggested by the error message. We wish all error messages
were so useful, but this won’t always be the case. Sometimes, a function will be
removed without giving us any recourse. In that case, it may be easier to consider
our next option.

3 Use a different library. Earlier, we asked Copilot for other possible .pdf Python
libraries we could use, and we received many suggestions. If the first two of our
options here are not satisfactory, we could jump to trying one of those.

We’re going to illustrate how to solve the problem and get our code running with
option 1 (using an earlier version of PyPDF2) and option 3 (using a different library
entirely).

We can’t use PdfFileReader
anymore—it’s gone!

 203Example 2: Adding cover pages to PDF files

using an earlier Version of pypdf2
When using pip install to install a Python library, by default, we get the most cur-
rent version of the library. That’s usually what we want—the latest and greatest—but
it’s also possible to explicitly request an older version of the library.

Here, we need a version of PyPDF2 prior to version 3.0.0. Rather than the standard
usage of pip,

pip install PyPDF2

we can instead use

pip install "PyPDF2 < 3.0.0"

The < 3.0.0 is what we use to ask for the most recent version of the library that’s less
than version 3.0.0. The command should result in output like the following:

Collecting PyPDF2<3.0.0
 Installing collected packages: PyPDF2
 Attempting uninstall: PyPDF2
 Found existing installation: PyPDF2 3.0.1
 Uninstalling PyPDF2-3.0.1:
 Successfully uninstalled PyPDF2-3.0.1
Successfully installed PyPDF2-2.12.1

Now we have an older version of PyPDF2 installed. At this point, you should be able to
run our program. It’ll take a few seconds, and then the job will be done. You can check
your final directory for the newly created .pdf files. Open a few of them to make sure
that our program has done the right thing: each .pdf file should start with a cover page
and contain all the pages of the report (not just the first page if the report has multiple
pages).

Think of how tedious this would have been by hand, and we’ve gotten the computer
to do it for us. Moreover, the next time we have to do the same thing at work (more
reports for more people), we’ve got a tool all set to help us get it done quickly.

using a different .pdf library
Now let’s try solving our problem with PyPDF2 by using another library—one of the
ones that Copilot told us about in our initial conversation about .pdf libraries.

We won’t go through all the gory details with you on how we decided which library
to try next, but we will walk through the highlights of our journey. We started by asking
Copilot chat how we can use the ReportLab Python module to merge .pdf files, but that
redirected us back to using PyPDF2. We received the same response for FPDF: we were
told that FPDF cannot merge .pdf files but that PyPDF2 can. We then moved on to ask-
ing about PyMuPDF, and this part of the conversation was productive.

We had an existing version
that is >= 3.0.0

That version is
being removed . . .

. . . and version 2.12.1 is being installed.

204 chapter 9 Automating tedious tasks

Human How can I use the Python PyMuPDF library to merge .pdf files?

GitHub Copilot You can use the `fitz` module from the `PyMuPDF` library to merge
PDF files. Here’s an example code snippet that shows how to merge two PDF files using
`PyMuPDF`:

```python
import fitz
 
# Merge the two PDF files
pdf_files = ['file1.pdf', 'file2.pdf']
pdf_writer = fitz.Document()
for pdf_file in pdf_files:
    pdf_reader = fitz.open(pdf_file)
    for page in pdf_reader:
        pdf_writer.insert_pdf(page)
pdf_writer.save('merged.pdf')
pdf_writer.close()
```
This code first creates a list of PDF files to merge (`file1.pdf` and ̀ file2.pdf`). It then cre-
ates a new `Document` object using `fitz`, which represents the merged PDF. It loops
through each PDF file in the list, opens it using `fitz`, and inserts each page of the PDF
file into the `pdf_writer` object using the `insert_pdf()` method. Finally, it saves the
merged PDF to a new file called ̀ merged.pdf` using the ̀ save()` method.

You can modify this code to add any additional content to the merged PDF using
`PyMuPDF`. Just create a new `Page` object, add the content to the page, and insert
the page into the ̀ pdf_writer` object using the ̀ insert_page()` method.

The sample code here is using insert_pdf to add each .pdf file to the merged .pdf
file. We should be on the lookout for our code using insert_pdf as well.

The library is called PyMuPDF, so we need to install it with

pip install PyMuPDF

But then we have to use import fitz? Why import fitz and not import PyMuPDF?
Apparently, the designers of this library liked fitz more than PyMuPDF, so we’ll need
to go with it. It’s rare indeed, but occasionally we use one name to install the library
and another to import it! If Python gives you a NameError referring to the library that
you’re trying to import, it’s a good bet that you haven’t successfully imported that
library. It could be that the library isn’t in fact installed, or that you need to use a dif-
ferent name to import it. Use Copilot chat to have a conversation if you ever find that
you’ve installed a library but cannot seem to import it.

Now we’re ready to generate some code. The following listing shows the prompt that
we used and the code that Copilot gave us.

 205Example 2: Adding cover pages to PDF files

Listing 9.5 Improved function to add covers to .pdf documents

import os
import fitz

def add_covers(report_dir, cover_dir, final_dir):
 '''
 report_dir is a directory of reports named 1.pdf, 2.pdf, and so on.
 These files may be one page or more than one page.

 cover_dir is a directory of covers, with one cover per report.
 The filenames in this directory are cover1.pdf, cover2.pdf, and so on.
 Each of these files is one page.

 Add the cover to the beginning of each report,
 and store all resulting pdfs in final_dir.
 '''
 if not os.path.exists(final_dir):
 os.mkdir(final_dir)
 for report in os.listdir(report_dir):
 report_path = os.path.join(report_dir, report)
 cover_path = os.path.join(cover_dir, f'cover{report}')
 final_path = os.path.join(final_dir, report)
 cover_doc = fitz.open(cover_path)
 report_doc = fitz.open(report_path)
 final_doc = fitz.open()
 final_doc.insert_pdf(cover_doc)
 final_doc.insert_pdf(report_doc)
 final_doc.save(final_path)

if __name__ == '__main__':
 add_covers('reports', 'covers', 'final')

This program happens to start with some convenience code: if our directory of output
files doesn’t exist, the code creates it for us. After that, the steps are similar to those in
our earlier program that used PyPDF2, although the functions called by each program
are different. (That makes sense because PyPDF2 and PyMuPDF are different libraries,
with different features and functions.) In both cases, we’re using listdir to get a list
of the report .pdf filenames. In the for loop, we go through each of those reports; the
code in the loop is responsible for creating a new .pdf file that contains the cover fol-
lowed by the report. In our PyPDF2 code, there was an inner for loop that we needed
to loop through all the pages of the report. In our current program, we don’t need that
because Copilot used the insert_pdf function, which inserts a .pdf file into another
.pdf file in one shot (not page by page).

Whether you took the approach of installing the older library or you chose to use a
different library, we’ve solved our problem and automated what would have been an
unpleasantly tedious task.

If the final_dir
directory

doesn’t exist, . . .

 . . . create
the final_dir

directory.

Loops through
the .pdf reports

Used to read the cover

Used to read the report

Used as our
new output file

Adds the cover to our
new .pdf file

Adds the report to our new .pdf file

Saves our new .pdf file

206 chapter 9 Automating tedious tasks

Notice that we’ve slightly altered the workflow that we described in the last chapter
to take into account handling the different Python modules that could aid you with
your task. A modified workflow is provided in figure 9.2.

Figure 9.2 Additions to our workflow to account for working with different Python modules

9.5 Example 3: Merging phone picture libraries
Suppose that you take a lot of pictures on your phone. Your partner (or sibling, or
parent, or child) also takes a lot of pictures on their phone. You each have hundreds
or thousands of pictures! Sometimes you send pictures to your partner, and they send
pictures to you, so that you and your partner have some but not all of each other’s
pictures.

You live life like this for a while, but honestly, it’s becoming a mess. Half the time you
want a picture, you can’t find it because it’s a picture that your partner took on their
phone that they didn’t send you. And you’re starting to have many duplicate pictures all
over the place.

You then have an idea. “What if we take all of the pictures from my phone,” you
exude, “and all of the pictures from your phone, and we create a combined library of all
of the pictures! Then we’ll have all of the pictures in one place!”

Remember that both of your phones may have hundreds of pictures, so doing this
manually is out of the question. We’re going to automate this!

To specify our task more precisely, we will say that we have two directories of pictures
(think of each directory as the contents of a phone) that we want to combine into a new
directory. A common file format for pictures is a .png file, so we’ll work with those files
here. Your actual phone might use .jpg files rather than .png files, but don’t worry. You
can adapt what we do here to that picture file format (or any other picture file format)
if you like.

In the resources for this book, in the ch9 directory, you will find two subdirectories of
picture files. These subdirectories are named pictures1 and pictures2. You can imagine
that pictures1 has the pictures from your phone (98 pictures) and pictures2 has the

 207Example 3: Merging phone picture libraries

pictures from your partner’s phone (112 pictures). We are going to combine these two
phone directories into a new directory.

Open some of the .png files in the same way that you open pictures or photos on your
computer. The pictures we’ve generated are just some random shapes, but the program
we write here will work no matter what’s inside the pictures.

At the outset, we said that the same picture might be on both phones, so we’ve gen-
erated some duplicate files in our pictures. (We have a total of 210 picture files, but
10 of them are duplicates, so there are only 200 unique pictures.) For example, in the
pictures1 directory, there’s a file called 1566.png; in the pictures2 directory, there’s a
file called 2471.png. These two files are identical, and when we generate our directory
of files from both phones, we’ll only want to keep one of these. What’s tricky here is that
these pictures are the same even though their filenames are not.

What if two filenames are the same? Does that mean that the pictures are the same?
For example, notice that each directory, pictures1 and pictures2, has a file called 9595.
png. You might think that filenames being the same means that the pictures inside will
be the same, too. But no, if you open these pictures, you’ll see that they’re different!
This could happen in real life, too: you and your partner could both take different
pictures, and, however remote, it’s possible that the filenames your phones choose for
those pictures just happen to be the same.

If we’re not careful, we’ll end up copying 9595.png from pictures1 into our new
directory and then overwriting it later by copying 9595.png from pictures2 into our new
directory. We need to be sure that when we copy a file, we’re not overwriting a different
picture that may already be there with the same filename. We provide an example of
this process in figure 9.3.

1.png

7.png

9.png

11.png

5.png

9_.png

9.png in Pictures
1 is different than
9.png in Pictures
2, so we rename
the second to
9_.png

1.png

7.png

9.png

11.png

3.png

5.png

7.png

9.png

denibmoc ̶ serutciP

Pictures 1

Pictures 2 du
pl

ic
at

e

du
pl

ic
at

e

Figure 9.3 Example of merging the photos in folders pictures1 and pictures2 into pictures–combined
and managing the removal of duplicates.

208 chapter 9 Automating tedious tasks

We’re working with directories, not actual phones
We’re assuming here that you have two directories of pictures already on your computer.
These directories could have come from anywhere, and nothing we do here has anything
specific to do with cell phones.

But if you wanted to do this task for real, with pictures on your phones, you’d need to get
those pictures onto your computer first. You could use ChatGPT to have that discussion!
As the details are specific to different phones and go beyond what we want to use Copilot
to automate, we won’t go further into this here.

9.5.1 Conversing with Copilot

Our tool is going to create a combined directory of pictures from pictures1 and
pictures2, but without duplicate pictures. If our combined original picture directories
had the same picture multiple times, we want only one of those copies of the picture to
survive in our new directory.

At this point, there are at least two things we might like to know: How do we copy a
file using Python, and how do we know whether two files are the same picture? Let’s
start by asking Copilot chat how we can copy a file.

Human I need to write a Python program that copies files. How do I do this?

GitHub Copilot You can use the `shutil` module in Python to copy files. Here’s an
example:

```python
import shutil

# Replace the source and destination paths with your own
source = '/path/to/source/file'
destination = '/path/to/destination/file'

# Copy the file
shutil.copy(source, destination)
```
This will copy the file from the source path to the destination path. If the destination file
already exists, it will be overwritten.

Excellent. We can use that shutil module to copy a file; we’ll need to remember to
import that module. The final sentence that Copilot gave us is an important warning.
We should be careful to avoid copying a file over the top of another file that already
exists.

Next, let’s determine whether this shutil module is built into Python.

 209Example 3: Merging phone picture libraries

Human Is this shutil module built into Python?

GitHub Copilot Yes, the `shutil` module is a built-in module in Python, so you don’t
need to install anything extra to use it.

You might wonder why we’re focusing on making copies of files and putting them into
our new directory, rather than moving them from our original directories into the new
directory. The reason is that we want to leave our original directories alone just in case
we have a bug and fail to get all of the files into our new directory. If anything goes
wrong in our new directory, it won’t matter because our original directories will still be
intact.

That wraps up what we need to know about copying files. Now let’s move on to learn
how we can determine whether two files are the same picture.

As we’ve already said, it’s not sufficient to use filenames to determine whether pic-
tures are the same. How can we do it, then?

Human Using Python, how can I determine whether .png files are the same?

GitHub Copilot You can use the `filecmp` module in Python to compare two files and
check if they are the same. Here’s an example code snippet that compares two .png
files:

```python
import filecmp

# Replace these file paths with the actual file paths of the .png files 
# you want to compare
file1 = '/path/to/file1.png'
file2 = '/path/to/file2.png'

if filecmp.cmp(file1, file2):
    print('The files are the same.')
else:
    print('The files are different.')
```
This code will compare the contents of the two files and return `True` if they are the
same, and ̀ False` if they are different.

As a quick aside, the last sentence from Copilot is wrong. That code isn’t returning
True or False anywhere. Just like Copilot can generate faulty code for us in our Python
file, Copilot chat can produce faulty explanations.

Our prompt wasn’t precise about the number of files that we need to compare. Do
we want to compare two files? Hundreds? Our prompt doesn’t say. Copilot has told us
what to do if we want to compare two files, which is a reasonable thing to tell us. But
that’s not quite what we need. We need to be able to determine, among hundreds of

210 chapter 9 Automating tedious tasks

files, which files are duplicates of other files. That way, we can detect a duplicate file and
not copy it into our new directory. Let’s try again.

Human What if I have hundreds of .png files and I want to find duplicates—is that
approach you gave me still good?

GitHub Copilot If you have hundreds of `.png` files and you want to find duplicates,
you can use the `os` module to iterate over all the files in a directory and compare each
file to every other file in the directory. Here’s an example code snippet that does that:

```python
import os
import filecmp
 
# Replace this with the actual directory path where your .png 
# files are located
directory = '/path/to/directory'
 
# Iterate over all the files in the directory
for filename1 in os.listdir(directory):
    if filename1.endswith('.png'):
        for filename2 in os.listdir(directory):
            if filename2.endswith('.png') and filename1 != filename2:
                file1 = os.path.join(directory, filename1)
                file2 = os.path.join(directory, filename2)
                if filecmp.cmp(file1, file2):
                    print(f'{filename1} and {filename2} are duplicates.')
```
This code will iterate over all the files in the directory and compare each `.png` file to
every other `.png` file in the directory. If two files are the same, it will print a message
indicating that they are duplicates. Note that this approach can be slow for large directo-
ries with many files.

The outer for loop goes through each file in the directory. How do we know whether
the current file has a duplicate? Well, we can go through each other file in the direc-
tory and compare it to the current file. That’s the role of the inner for loop: it uses
filecmp.cmp to compare the current file (file1) to each other file (file2).

We didn’t mention in our prompt that we care about finding duplicates across mul-
tiple directories, so Copilot has focused on a single directory here. If that difference
turns out to be a roadblock, we could make our prompt more precise.

Copilot is using two other modules here, os and filecmp. We could ask Copilot if
these are built-in Python modules or not, but we’ll save a little time and just tell you here
that they are built-in.

We now want you to focus on the final sentence from Copilot: “Note that this
approach can be slow for large directories with many files.” How slow is “slow”? How
many is “many”? We don’t know.

 211Example 3: Merging phone picture libraries

You might be tempted to ask Copilot for a better solution, one that isn’t “slow for
large directories with many files.” But many programmers wouldn’t do that. It’s often
a mistake to optimize our solution before we have even tried out our (unoptimized,
apparently slow) approach for two reasons. First, maybe our “slow” program turns out
to be fast enough! We may as well try it. Second, more optimized programs are often
more sophisticated programs, and they may be more difficult for us to get right. That
isn’t always the case, but it can be. And again, if our unoptimized program gets the job
done, we don’t even have to worry about a more optimized version at all.

Now, if it turns out that our program really is too slow or you find yourself using the
program repeatedly, then it may be worth extra investment in continuing to work with
Copilot on a faster solution. For now, though, we’re good.

9.5.2 Top-down design

There’s a little more going on in this task than in our prior two tasks. For one, we need
to be careful not to overwrite a file that already exists in our new directory. For another,
we need to determine which files to copy in the first place (remember that we only
want to copy files that don’t already match a file in our new directory). Compare this to
the .pdf merging task we just accomplished, where we didn’t have these extra concerns.

To that end, we’re going to do some top-down design here. Don’t worry, it won’t be
a full-on top-down design marathon like we did in chapter 7. Our task here is much
smaller than our authorship identification task from that chapter. We’ll just do a little
top-down design and that will help Copilot get us what we want.

Our top-level function will be responsible for solving our overall task: taking the pic-
tures1 and pictures2 directories and putting all unique pictures into a target directory.

Back in chapter 3, we learned that we should make functions as general as we can,
to make them more useful or generalizable to other tasks. Here, we’ve been thinking
about combining two picture directories together. But why not three? Five? Fifty? Who
cares how many directories we have; we should be able to just combine as many directo-
ries as we want.

We’ll design our top-level function, then, to take, not two strings (directory names)
as parameters, but a list of strings. That way, we can use it on as many picture directories
as we want. And we can still readily use it on two picture directories—we’ll just pass a list
containing the names of the two directories.

We’ll name our top-level function make_copies. We’ll need two parameters: the list
of directory names that we just discussed, and the name of our target directory where
we want all the files to go.

What’s this function going to do? It’s going to loop through each directory in the
list of directories, and then, for each directory, it’s going to loop through each file. For
each file, we need to determine whether to copy it or not and, if we need to copy it, to
do the actual copying.

212 chapter 9 Automating tedious tasks

Determining whether to copy the file, and then possibly copying it, is a subtask that
we can split out of make_copies. We’ll name our function for this subtask make_copy.

Our make_copy function will take two parameters: the name of a file and the target
directory. If the file is not identical to any file in the target directory, then the function
will copy the file into the target directory.

Say we want to copy a file called 9595.png from one of our picture directories into
our target directory but that file already exists in the target directory. We don’t want to
overwrite the file that’s already there, so we’ll need to come up with a new filename. We
might try adding an _ (underscore) character prior to the .png part of the filename.
That would give us 9595_.png. That one probably wouldn’t exist in the target directory,
but if it did, we could then try 9595__.png, 9595___.png, and so on, until we find a file-
name that doesn’t already exist in there.

Generating a unique filename is a task that we can split out of our make_copy func-
tion. We’ll call it get_good_filename. It will take a filename as a parameter and return a
version of that filename that doesn’t already exist.

And with that, our top-down design is done. Figure 9.4 depicts our work as a tree
(well, at least the trunk of a tree), showing which function is called by which other
function.

Figure 9.4 Figure of top-down design. Top-most (left-most) function is make_copies, the child of that
is make_copy, and the child of that is get_good_filename.

9.5.3 Writing the tool

We don’t have any modules to install this time around. We do know, from our Copilot
conversation that we’ll use the built-in shutil module to copy files. We’ll also use the
built-in filecmp module to compare files and the built-in os module to get a list of the
files in a directory. We’ll therefore import these three modules at the top of our Python
program.

As in chapter 7, we’re going to solve our problem by starting at the bottom of our func-
tion tree and working toward the top. We do that so Copilot can call our already-written
functions when writing code for a parent function. For each function, we provide the
def line and docstring, and Copilot writes the code. We’ve also provided some annota-
tions to explain how the code works.

Looking again at figure 9.1, we see that the first function we need to implement is
get_good_filename. Let’s get that one done now in the following listing.

 213Example 3: Merging phone picture libraries

Listing 9.6 get_good_filename function for our picture merge task

import shutil
import filecmp
import os

def get_good_filename(fname):
 '''
 fname is the name of a png file.

 While the file fname exists, add an _ character
 right before the .png part of the filename;
 e.g. 9595.png becomes 9595_.png.

 Return the resulting filename.
 '''
 while os.path.exists(fname):
 fname = fname.replace('.png', '_.png')
 return fname

The next function we need to write is make_copy. This is the function that copies a file
into a target directory but only if the file isn’t identical to a file that we’ve already cop-
ied. We’re looking for Copilot to do several things in its code here:

¡	Use os.listdir to get a list of files in the target directory.

¡	Use filecmp.cmp to determine whether two files are identical.

¡	Use shutil.copy to copy the file if there was no identical file.

¡	Call the function get_good_filename that we just wrote.

The following listing shows our prompt and the code that Copilot provided. Notice
that the code is doing everything that we wanted it to do.

Listing 9.7 make_copy function for our pictures merge task

def make_copy(fname, target_dir):
 '''
 fname is a filename like pictures1/1262.png.
 target_dir is the name of a directory.

 Compare the file fname to all files in target_dir.
 If fname is not identical to any file in target_dir, copy it to target_dir
 '''
 for target_fname in os.listdir(target_dir):
 if filecmp.cmp(fname, os.path.join(target_dir, target_fname)):
 return
 shutil.copy(fname, get_good_filename(
 os.path.join(target_dir, os.path.basename(fname))))

While the filename exists, . . .

 . . . insert an _ prior
to .png by replacing
.png with _.png.Returns the filename that we

know now does not exist

Loops through the files in
the target directory

If the file is the same as one of the
files in the target directory, . . .

. . . returns
from the
function
without
having
copied the
file

Otherwise copies the file; uses a good
filename that doesn’t already exist.

214 chapter 9 Automating tedious tasks

There’s only one function to go, and it’s our top-level make_copies function. For each
file in each of our picture directories, we’re expecting the code to call make_copy to
copy the file if needed, as shown in the following listing.

Listing 9.8 make_copies function for our picture merge task

def make_copies(dirs, target_dir):
 '''
 dirs is a list of directory names.
 target_dir is the name of a directory.

 Check each file in the directories and compare it to all files in target_

dir.
 If a file is not identical to any file in target_dir, copy it to target_dir
 '''
 for dir in dirs:
 for fname in os.listdir(dir):
 make_copy(os.path.join(dir, fname), target_dir)

make_copies(['pictures1', 'pictures2'], 'pictures_combined')

The final line of code from Copilot, beneath the make_copies function, makes the
assumption that our target directory will be named pictures_combined. Please create
that directory now so that it sits alongside your pictures1 and pictures2 directories of
pictures.

As we discussed when working with .pdf files earlier in the chapter, it’s important that
you first test the program on sample directories that you don’t care about. Your sample
directories should have only a few files in them, so that you can manually determine
whether the program is working as expected. You should also include important edge
cases, such as having the same filename in each directory.

Once you have your sample directories, you should create a “harmless” version of the
program that simply outputs messages rather than actually copying files. For our pro-
gram here, you would change the line in make_copy to use print rather than shutil.
copy.

If the output looks good after you check the results carefully, only then should you
run the real program on your real directories. Remember that our program is copying
(rather than moving) files, so even in our real directories, if something goes wrong,
there’s a good chance that the problem will be in our new directory and not the original
directories that we actually care about.

We’ll assume that you’re now ready to run the program on the pictures1 and pic-
tures2 directories. Once you run it, you can check your pictures_combined directory

Loops through our picture directories

Loops through the files in the current picture directory

Copies the current file into the target directory, if needed

Runs our program on our two picture directories and the given target directory

 215Summary

for the results. You should see that the directory has 200 files, which is exactly the num-
ber of unique pictures that we had across our two picture directories. Did we correctly
handle the situation where the same filename existed in both picture directories but
were different pictures? Yes, you can see that we have files named 9595.png and 9595_
.png and that we therefore haven’t overwritten one with the other.

Oh, and how long did the program take to run on your computer? At most a few sec-
onds, right? It turns out that “ this approach can be slow for large directories with many
files” didn’t matter for us.

Now, we all know that people tend to have thousands of pictures on their phones,
not hundreds. If you ran this program on two real phone picture libraries, you would
again need to determine whether it completes in an acceptable amount of time. You
could run the program and let it run for a minute or two or however long you’re willing
to wait. For fun, we also tested our program on a total of 10,000 files (a more realistic
scenario than the 210 pictures across our pictures1 and pictures2 directories that we
used in this chapter), and we found that it only took one minute to complete. At some
point, our program will become too slow to be practical, and that’s when you’d need to
do further research with Copilot chat to arrive at a more efficient program.

In this chapter, we succeeded in automating three tedious tasks: cleaning up an
email, adding covers to hundreds of .pdf files, and wrangling multiple picture libraries
into one. The approach in each case was the same: use Copilot chat to determine which
module to use, then follow the approach that we’ve honed throughout the book to have
Copilot write the required code.

Whenever you find yourself repeating the same task, it’s worth trying to automate it using Copi-
lot and Python. There are many helpful Python modules for doing so, beyond what we
showed in this chapter. For example, there are modules to manipulate images, work
with Microsoft Excel or Microsoft Word files, send email, scrape data from websites, and
more. If it’s a tedious task, chances are that someone has made a Python module to help
with it and that Copilot will be able to help you use that module effectively.

Summary
¡	Programmers often make tools to automate tedious tasks.

¡	It’s often necessary to use a Python module to help us write our tool.

¡	We can use Copilot chat to determine which Python modules we should be using.

¡	It’s helpful to converse with Copilot to understand the pros and cons of various
Python modules that may be available to us.

¡	There are Python modules for working with the clipboard, working with .pdf files
and other file formats, copying files, and more.

https://dev.to/wesen/llms-will-fundamentally-change-software-engineering-3oj8

216

10Making some games

This chapter covers

¡	Adding randomness to our programs
¡	Designing and programming a code-breaking
 logic game
¡	Designing and programming a press-your-luck
 dice game

There are many reasons why people learn to program. Some people want to auto-
mate tedious tasks as we did in the previous chapter. Some people want to work with
artificial intelligence as we did in chapter 7. Other people want to make interactive
websites, Android or iOS apps, or Alexa skills. There’s an endless amount of stuff
that programmers can make.

Another popular reason to learn programming is to create games. For that rea-
son, we thought we’d end our Copilot programming journey with you by designing
two small computer games. The first is a code-breaking game where you use clues to
identify the computer’s secret number. The second is a two-player dice game where
each player needs to balance risk and luck to reach the required number of points
before the other player does. Instead of using graphics and animation, these games
use text. We’ve made this decision to help us stay focused on the game logic, rather
than the way that the game is represented or the way that the player interacts with the
games. Along the way, we offer some next steps if you are interested in taking your
game-making abilities further. And don’t worry, your current skills are a great start
to that!

 217Game programs

10.1 Game programs
If you think about playing a board game with your family or friends, you can break
down what happens in two major phases. The first phase is game setup. This will
include setting up the game board, giving each player starting funds or cards, and so
on. The second phase is the playing of the game. In a board game, the game typically
includes a person taking a turn and, assuming no one has won yet, another person
taking a turn. With each turn, the game state (board, players funds, and so on) all
change. We need to take care to implement each of these phases when programming a
computer game as well.

In many programming environments catered to video game design, the two phases
are often separate standard functions. There’s a setup function for what is done to set
up the game and an update function to change the state of the game either because a
player has taken an action or because time has passed. Figure 10.1 shows the basic flow
for video games.

Game Setup

Initialize the players
Initialize the state of the game

Gameplay

While no one has won and the player has not quit:
Player takes action(s)

Update game state

Figure 10.1 Basic flow of most video games

Let’s focus on the update part of the game for a moment. Suppose a player may press
a button on their keyboard to move forward in a 2D game. The update function will
cause the player’s character to move forward and also check to see if the player’s move-
ment caused the player to interact with something in the game world. Some games also
change state based on time, regardless of a player’s actions. In those games, the update
function would also update the state of the game itself (e.g., move the ghosts in a game
of PacMan). At the end of every time step or user action, the game will check for end
conditions. End conditions typically include

¡	A player won the game by achieving an objective

¡	A player lost the game by falling off a cliff, running into a monster, etc.

¡	A player chose to quit the game

218 chapter 10 Making some games

There are many programming environments that cater to game design, and we recom-
mend pygame [1] as a Python module as a good starting place. If you want to explore
game programming in more depth after you have a fair bit more programming expe-
rience, we recommend Unity [2] for 3D game design. In this chapter though, we’ll
be working with just standard Python to show you how to design a basic game without
having to dive into these new environments.

10.2 Adding randomness
Many games, including the two that we’ll build in this chapter, rely on randomness
to make them fun. In our first game, we’ll need the computer to generate the ran-
dom digits of the number that we’ll be deducing. In the second game, we’ll need to
roll dice, which just amounts to generating random numbers between 1 and 6. Enemy
behavior, initial orientation of a puzzle, amount of damage caused by attacks---random-
ness is typically involved in all of these and many other aspects of game design.

We’ll therefore need to be able to generate random numbers in our Python pro-
grams. To learn how to do that, let’s use Copilot chat, much as we did in the previous
chapter.

Human I need to generate random numbers in my Python program. How can I do this?

GitHub Copilot You can use the `random` module in Python to generate random
numbers. Here’s an example:

```python
import random

# Generate a random integer between 1 and 10 (inclusive)
random_number = random.randint(1, 10)
print(random_number)
 
# Generate a random float between 0 and 1
random_float = random.random()
print(random_float)
```
This code imports the `random` module and then uses the `randint` function to gene-
ra te a random integer between 1 and 10 (inclusive), and the `random` function to
generate a random float between 0 and 1.

Copilot suggests using functions inside of a module called random to generate the ran-
dom numbers. Let’s check whether the random module is built into Python.

Human Is this random module built into Python?

GitHub Copilot Yes, the `random` module is a built-in module in Python, so you don’t
need to install any additional packages to use it. You can simply import it in your Python
code and start using its functions.

 219Adding randomness

We’ll follow Copilot’s suggestion and import this module to test the two functions that
we just learned. We’ll do this at the Python >>> prompt, which we have used in previ-
ous chapters to explore how Python features work. To get to the Python prompt, press
Ctrl–Shift–P and type REPL, then select Python: Start REPL.

Based on Copilot’s response to our first question, we know that we can use the
randint function to generate a random integer in a range from the lowest allowed
number to the highest allowed number.

We might use this function to generate individual digits that could be assembled into
a larger number. Each digit is between 0 and 9, so we’ll ask randint for some random
numbers between 0 and 9:

>>> import random
>>> random.randint(0, 9)
5
>>> random.randint(0, 9)
1
>>> random.randint(0, 9)
9
>>> random.randint(0, 9)
9
>>> random.randint(0, 9)
5
>>> random.randint(0, 9)
0
>>> random.randint(0, 9)
4

Or we might want to generate rolls of a die. Each roll is between 1 and 6, so we can ask
randint for some random numbers between 1 and 6:

>>> random.randint(1, 6)
2
>>> random.randint(1, 6)
2
>>> random.randint(1, 6)
4
>>> random.randint(1, 6)
1
>>> random.randint(1, 6)
5

The other function that Copilot told us about is called random. (Yes, both the module
and function are called random! So, we’ll need to use random.random() to call this
function.) This one doesn’t generate a random integer; rather, it generates a random
fractional number between 0 and 1 (not including 1). For example, rather than a ran-
dom number like 5, you’ll get a random number like 0.1926502. These kinds of num-
bers, with decimals, are referred to as floats (or floating-point numbers). Here are a
few calls of this function:

>>> random.random()
0.03853937835258148
>>> random.random()

We happened to get
the maximum value.

We happened to get
the minimum value.

220 chapter 10 Making some games

0.44152027974631813
>>> random.random()
0.774000627219771
>>> random.random()
0.4388949032154501

We can imagine this function being useful for games as well. For example, you can
think of these float values as probabilities that an event occurs, with higher numbers
corresponding to higher probabilities. You could then use these floats to determine
whether an event should happen or not. For the games in this chapter, though, we
won’t need this function.

10.3 Example 1: Bulls and Cows
Our first game will be based on an old code-breaking game called Bulls and Cows. It
might remind you of the game Wordle (but don’t worry if you haven’t played Wordle
before). We’ll be able to play this game against the computer. Randomness plays a crit-
ical role in this game, as we will see.

10.3.1 How the game works

In this game, Player 1 thinks up a secret code, which is a sequence of four digits. Player
2 has to figure out what that secret code is. In our version of the game, the computer
will be Player 1 and the human player will be Player 2.

Here’s how it works. The computer will randomly choose four distinct digits (dupli-
cate digits are not allowed). That’s the secret code. For example, it might choose the
digits 1862. Then, you will guess what you think the computer’s four digits are. For
example, you might guess 3821.

For each guess, you are told two things. First, you’re told how many digits in your
guess match the corresponding position in the secret code exactly. We’ll refer to digits
that are in the correct place in the secret code as “correct.” Say that the secret code is
1862, and you guess 3821. The second digit in both your guess and the secret code is 8,
so that’s a match. There are no other matches, so you would be told for this guess that
the number of correct digits is 1.

Second, you’re told how many digits in your guess exist at some other position in the
secret code. We’ll refer to digits that are in the secret code but in a different location as
“misplaced.” Let’s again use 1862 for the secret code and 3821 for your guess. The third
digit in your guess is 2. It doesn’t match the third digit of the secret code (that’s a 6), but
there is a 2 somewhere else in the secret code. Similarly, the fourth digit in your guess is
a 1. It doesn’t match the fourth digit of the secret code, but there is a 1 somewhere else
in the secret code. All told, two of your digits (1 and 2) exist in the secret code, although
they do not match their expected position. You would be told from this guess that the
number of misplaced digits is 2. You can use these clues to narrow down what the secret
code could be.

 221Example 1: Bulls and Cows

Wordle
If you’ve played Wordle before, you might notice some similarities between Wordle and
our game here. Wordle uses letters, and ours uses digits, but the type of feedback you
receive for your guesses is similar. In both cases, you’re told about letters or digits that
are in the right or wrong place. In Wordle, you’re given a clue about each of your letters on
its own. For example, if the first letter of your guess is “h,” you might be told that the “h” is
in the word but in the wrong place. By contrast, in our game, you aren’t given hints about
each digit individually but instead are given hints about your guess in aggregate. Still, we
hope you’re struck by these similarities and by the fact that you’re building something
that resembles a recent, world-wide phenomenon of a game!

We found a free version of the Bulls and Cows game that you can play at https://
www.mathsisfun.com/games/bulls-and-cows.html. We recommend that you play a few
rounds of the game before continuing, just so the way the game works is crystal clear in
your head. (Note that they use the terminology bulls instead of correct and cows instead
of misplaced.)

In table 10.1 we’ve provided an example interaction with the game. We have included
a Comments column to convey our thinking and what we learned from each guess.

Table 10.1 Example of playing the game

Guess Misplaced Correct Comments

0123 1 0 One of 0, 1, 2, 3 is in the answer; none are in the correct location.

4567 3 0 Three of 4, 5, 6, 7 are in the answer; none are in the correct location.

9045 0 1 Because one number from 0123 and three numbers from 4567 are in the
answer, we know 8 and 9 are not in the answer. We know at least one of the
numbers 4 or 5 must be in the answer from prior guesses and that 0 could
be in the answer. 1 correct means that either 4 or 5 is in the correct location,
either 4 or 5 is not present in the solution, and 0 is not in the solution.

9048 0 0 We know 8, 9, and 0 are not in the answer from prior guesses. 0 correct and
0 misplaced tells us 4 is also not in the answer, and from the previous guess;
we now know that 5 is the last digit.

1290 1 0 Going back to the original guess, we want to know which digit of 1, 2, and 3 is
in the answer. We know 9 and 0 are not in the answer, so 1 misplaced means
either 1 or 2 is in the answer and 3 is not in the answer. Also, whichever of the
numbers 1 and 2 are in the answer; it is currently in the wrong spot.

6715 2 1 Because 4 is not in the solution, we know from the second guess that 5, 6,
and 7 are. Our guess here tells us that 1 is not in the answer and that 6 and 7
are in the wrong place. Since 1 is not in the answer, 2 must be (from the previ-
ous guess). Because 5 is at the end and we’ve tried 2 in the second and third
position previously with zero correct, 2 must be in the first position. Because
we’ve tried 6 in the first and third position and neither were correct, 6 must be
in the second position. That leaves 7 for the third position. We’ve got it.

2675 0 4 Yes, this is correct.

https://www.mathsisfun.com/games/bulls-and-cows.html
https://www.mathsisfun.com/games/bulls-and-cows.html

222 chapter 10 Making some games

The challenge of the game is that you have a limited number of guesses in which you
must successfully guess the computer’s secret code. In our example from table 10.1, we
took seven guesses to guess the code 2675. For each guess, we were given the number
of digits misplaced and correct to guide our thinking.

In the free version of the game that we just mentioned, you’re not allowed to include
the same digit multiple times in your guess. For example, the guess 1231 wouldn’t be
allowed because of the two 1s. We’ll maintain this restriction in our version of the game
as well.

10.3.2 Top-down design

Our overall task is to write a program to play the Bulls and Cows game against the
computer. Let’s do top-down design on this large task, just as we did in chapters 7 and
9. What has to happen during this game? Answering that question will help us break
down the game into smaller tasks. To help us with this, we took the rules of the game
and our example and thought through what happens at each step of the game. Each
of those high-level steps appears in figure 10.2, so let’s break them down one by one.

Game Setup:

Randomly generate secret code

Gameplay:

while the player has not won and the player has
 guesses left:
 tell player to input their guess
 read in valid player guess
 compare guess against secret code
 if guess == secret code:
 player wins, notify player
 else
 give feedback to player about guess
 update number of guesses

The player is out of guesses so tell the player the answer and end the game

Figure 10.2 Steps in the Bulls and Cows game

We’ll start with the setup. For us to be able to play the game, the computer has to ran-
domly generate a secret code. We need to prevent the code from having duplicate dig-
its. To us, this sounds like something that’s sufficiently complicated and self-contained
that it should be its own subtask function.

After the computer generates its secret code, we can move to the game play itself.
Here’s where the player starts making their guesses. We might think that we could
just use input to ask the player for their guesses and thereby avoid having a separate

 223Example 1: Bulls and Cows

function for this. But we do need to ensure that the player enters the correct number
of digits and that they don’t include duplicate digits in their guess. This is more than we
can do with a single call of input, so we’ll make this its own function as well.

Once the player makes their valid guess, we need to figure out two things: how many
digits are correct and how many digits are misplaced. Should we have one function to
carry out both of these tasks? Or maybe we should have two functions, one for the cor-
rect information and one for the misplaced information? We see good arguments on
each side. If we put the tasks together into the same function, we keep the player feed-
back centralized in one place, and that may make it easier for us to confirm it is written
correctly. On the other hand, having two separate functions would make it easier to test
each type of feedback (correct or misplaced) at the expense of spreading out the logic
for the feedback across two functions. We somewhat arbitrarily chose to use a single
function here, but if you were hoping to have two separate functions, we encourage you
to try that on your own after you finish working through this section.

Let’s take stock. We have a function to generate the computer’s secret code. We have
a function to get the player’s next guess. We have a function to get the correct/mis-
placed clues for the player’s guess. Those are three major subtasks that we’re happy to
split out of our top-level function.

Is there any other subtask to split out? There’s certainly a little more work to do in
our top-level function. For example, we need to detect if the player’s guess matches the
secret code and end the game in that case. We feel that we don’t need a separate func-
tion for that, though. To determine whether the user’s guess equals the secret code, we
can use Python’s == operator, which tells us directly whether two values are equal. And
to end the game, we can use a return statement to end the top-level game function and
thereby stop the program. Similarly, if the player uses all of their guesses without getting
the secret code, then we need to tell them that they lost the game, but again, we should
be able to do this with a small amount of Python code. As such, we’ll stop here with our
main top-level function calling three subtask functions.

When we worked through our authorship identification problem in chapter 7, the
problem was so complex that we needed to break subtasks into sub-subtasks. Sometimes
it felt like we’d never get to the bottom of the splitting! But here, each of our three sub-
tasks will be manageable as a single function.

For example, let’s think again about our first subtask: generating the computer’s
secret code, with no duplicate digits allowed. Could we split any sub-subtasks out of
here? Maybe we could have a function to check whether there are any duplicate digits
in a proposed secret code. Then we could keep generating secret codes, calling our
sub-subtask function until it tells us that there are no duplicates. That would work, but
we could also just generate the secret code digit by digit and not allow a duplicate to be
added to the code in the first place. This latter plan seems to not need any sub-subtask
to be split.

Now let’s think about our second subtask: getting the player’s next guess. We could
split out a sub-subtask to tell us whether a guess is valid (i.e., it has the correct length
and has no duplicates). And while we could surely do that, it’s not much of a stretch

224 chapter 10 Making some games

to do this with a couple of checks in the subtask function itself. (Did your mind just go
back to our example in chapter 7 about valid passwords and detecting valid passwords,
where we split the check for validity into its own function? If so, the difference is that
checking whether a password is valid is likely a more substantial task than the validity
checks we need here.) It would certainly be okay to break this into another subtask, but
we’ll move forward without doing so.

We’ve already argued that our third subtask is fine as is, so we’ll stop our top-down
design here.

We’ll name our top-level function play. In it, we will call three functions correspond-
ing to the three subtasks that we just identified. We’ll call the function for our first sub-
task random_string, the function for our second subtask get_guess, and the function
for our third subtask guess_result. See figure 10.3 for this top-down design depicted
as a tree.

get_guess

guess_result

random_string

play

Figure 10.3 Top-down design for Bulls and Cows game. Top-most (left-most) function is play, which calls
random_string, get_guess, and guess_result.

10.3.3 Parameters and return types

Normally, we define the types of parameters and return value for each function during
the top-down design itself, but we wanted to split that out here because there are some
subtle aspects this time. For example, you may already be imagining that we’ll use inte-
gers to represent the secret code and guesses, but it turns out that this is not the best
choice. We will make some decisions about how we’ll represent the data for all of the
functions before we write each one.

The play function is our top-level function and the starting point for our game. It
would be possible to have this function take no parameters. Somewhere in the code of
the function, we’d have to hard-code the fact that the secret code has four digits and
that the player gets, say, 10 guesses. But that wouldn’t be very flexible. What if we wanted
to play a version of the game where the secret code is seven digits, and that the player
gets 100 guesses? We’d have to go into the code and make all the necessary changes. So,
to make the game easily configurable, we can provide some parameters to this function.
For example, rather than always having the secret code be four digits, we could use a
parameter to allow the length of the secret code to be set to whatever we want. Similarly,
rather than putting the maximum number of player guesses directly into the function,

 225Example 1: Bulls and Cows

we could make that a parameter, too, so that we can easily change it. Then all we need to
do to alter the gameplay is to change these parameters, without having to mess around
with the code of the function itself.

Using parameters and variables to avoid magic numbers
The number of allowed guesses and the number of digits in the secret code and, equiva-
lently, the number of digits in each guess are good examples that we can use to explain
an important principle in code design. This principle is that when we write code, if a
number can be a parameter or variable, it should be. This principle ensures the code
is as versatile as possible. When programmers see a number being used, rather than a
friendly name, they call this a “magic number” and that’s what we want to avoid. In our
discussion about the number of guesses the player gets or the number of digits for the
secret code, those should be parameters if we abide by this principle. At some point,
these parameters need to be given concrete numbers for the code to work, but we should
assign them values at the highest level of the code as possible (e.g., the player might set
these parameters when the game starts).

To help adhere to the general principle, whenever you see a raw number (e.g., 4) in the
code, ask yourself if that could be a parameter or variable. More often than not, it should
be.

Adding these parameters is another example, as per our discussion in chapter 3, of
making functions general purpose rather than unnecessarily restrictive.

Our random_string function is the function that generates the computer’s secret
code. Why did we put string in this function name? Shouldn’t we be returning a ran-
dom integer, like 1862? What does a string have to do with this?

Well, the problem with returning an integer is that the secret code might start with 0.
A secret code like 0825 is a perfectly valid four-digit secret code. But 0825 as an integer
is 825, which doesn’t have enough digits. The string '0825' is just four characters that
happen to each be digits, so there’s no problem with starting a string like this with a '0'.

Beyond that, let’s think ahead about what we’ll eventually need to be doing with the
computer’s secret code. We’ll need to compare it digit by digit with the player’s guess to
determine which digits match. Using indexing on strings will give us easy access to each
character of the string, which is exactly what we need. It’s more challenging to access
each individual digit of an integer!

So, our random_string function will take the required number of digits of the
secret code as a parameter and will return a random string of that length, where each
character in the string is a digit character. When we talk about digits in a string, all we’re
referring to are the characters of the string. They happen to be digit characters, but
they’re still characters, just like 'a' or '*'. Don’t be confused by the fact that the string
might look like a number! Here’s an example showing that these strings work the same
way every other string works:

226 chapter 10 Making some games

>>> s = '1862'
>>> s[0]
'1'
>>> s[1]
'8'
>>> s[2]
'6'
>>> s[3]
'2'
>>> s + 1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str
>>> s + '1'
'18621'

What about get_guess, the function to get the next guess from the player? As with
random_string, this function will need to know the number of digits of a valid guess,
so we’ll make that a parameter. It will return a string giving the player’s guess.

And finally, let’s talk about guess_result, the function that tells us how many digits
are correct and how many are misplaced. This function will need both the player’s guess
string and the computer’s secret code string in order to make comparisons between
them, so we’ll need this function to take those two parameters. We need to return two
pieces of information—the number of digits that are correct and the number of digits
that are misplaced— the so we’ll return a list of two integers.

10.3.4 Implementing our functions

Having completed our top-down design, we can now work with Copilot to write the
code for each of our functions. As always, we’re going to write the functions in order
from bottom to top. This means that we’ll first implement our three subtask functions
and then ultimately implement our top-level play function.

random_string

When asking Copilot to generate code, we provide the def line and docstring and then
ask Copilot to write the code. In each code listing, we’ll also provide some guidance
about how the code works.

We want our random_string function to take the number of digits in a secret code
as a parameter and return a random secret code without duplicates. In the code for this
function, we might expect Copilot to use random.randint in a loop that continues
running as long as we don’t have enough digits. To avoid adding duplicate digits, the
code would add a random digit to the secret code only if that digit isn’t already in there.
We found such a solution in our Copilot results, and that’s the one we’ve chosen to pres-
ent. Here’s that code in listing 10.1.

We access characters of the
string as we always do.

We can’t add a string
and an integer.

This is string concatenation,
not numeric addition.

 227Example 1: Bulls and Cows

Listing 10.1 Function random_string for generating a secret code

import random

def random_string(length):
 '''
 length is an integer.

 Return a string of the given length, where each character
 is a digit from 0 to 9, and with no repeated digits.
 '''
 s = ''
 while len(s) < length:
 r = random.randint(0, 9)
 if str(r) not in s:
 s += str(r)
 return s

We’re not focusing on testing in this chapter, but even if we were, we wouldn’t include
exact tests in our docstring for this function. That’s because this function has a random
result. Randomness can make testing functions difficult because it is hard to control
the random values you get. What we could do is add a test to our docstring that at least
checks that the generated secret code contains the correct number of characters and
that each character is a valid digit. You can also test such functions by running them
and observing that their result is always within the bounds of your random range and
that the results appear random.

If you did carry through with testing, you’d find that we have a perfectly fine imple-
mentation of this function and that there’s no need to do more. If you just want the
game to work, you can skip to where we start writing the get_guess function. If you’d
like to learn more about Python and function design, we’d like to take this opportunity
to spend a bit more time looking at different solutions to this function.

We encourage you to check out the Copilot suggestions in the Ctrl–Enter window
to see some of the other possibilities. For example, we can start with a list of all of the
integers from 0 to 9 and then use a function called random.shuffle to shuffle that list
into random order. Then all we do is take the first length integers from that shuffled
list (where length is the length of the secret code), and that’s the secret code! We’re
guaranteed not to get any duplicate digits since the original list that we shuffle doesn’t
have any duplicate digits. That version of the function might look like the code in list-
ing 10.2.

Don’t forget to import
the random module.

Starts with
the empty
string (no

digits so far)
as the secret

code

Loops while
we still need
digits

Generates a
random
integer from
0 to 9

If this digit
isn’t already
in the secret
code, . . .

. . . add this digit
to the secret code

Returns the
secret code

228 chapter 10 Making some games

 Listing 10.2 Alternative solution for the function random_string

import random
def random_string(length):
 '''
 length is an integer.

 Return a string of the given length, where each character
 is a digit from 0 to 9, and with no repeated digits.
 '''
 digits = list(range(10))
 random.shuffle(digits)
 return ''.join(str(d) for d in digits[:length])

If you want to learn more about what this code is doing, you have the tools to do that!
Don’t assume that the code is out of your grasp. You can ask Copilot to explain the
code. You might get an explanation the following.

Human What does my random_string function do?

GitHub Copilot The code is a Python function called `random_string` that takes an
integer `length` as input and returns a string of the given length, where each character
is a digit from 0 to 9, and with no repeated digits.

The function first creates a list of digits from 0 to 9 using the `range` function and the
`list` constructor. It then shuffles the list using the ̀ shuffle` function from the ̀ random`
module. This ensures that the digits are in a random order.

Finally, the function uses a list comprehension to convert the first `length` digits of the
shuffled list to strings and join them together into a single string using the ̀ join` method.

Overall, the `random_string` function generates a random string of digits with no
repeated digits, which can be useful for generating unique identifiers or passwords.

What’s a list comprehension? You don’t need to figure this out on your own; you can ask
Copilot to explain it.

Human How does that list comprehension work?

GitHub Copilot The list comprehension in the `random_string` function is used to
convert the first ̀ length` digits of the shuffled list to strings and join them together into a
single string using the ̀ join` method.

Here’s a breakdown of how the list comprehension works:

Creates
the list [0,

1, 2, 3, 4, 5,
6, 7, 8, 9]

Shuffles the
list in a

random order
Returns the first “length”

digits from the shuffled list

 229Example 1: Bulls and Cows

– `str(d) for d in digits[:length]` is the expression that generates the list of
strings. It takes each digit in the first `length` elements of the `digits` list,
converts it to a string using the ̀ str` function, and returns the resulting string.

– `digits[:length]` is the iterable that the list comprehension operates on. It
takes the first `length` elements of the `digits` list, which have been shuffled
randomly.

– The entire list comprehension is enclosed in square brackets, which creates a
new list from the elements generated by the expression.

Finally, the `join` method is called on the resulting list of strings to join them together
into a single string with no separator between them.

Some of this text from Copilot may not be completely understandable, but you could
keep asking it to explain what you are unsure about until you’re satisfied you under-
stand how this is working.

We didn’t need to show this second working solution for this function, but we want
to take this opportunity at the end of the book to remind you of how far you’ve come.
As you’ve progressed through the book, you’ve been developing tools and techniques
to understand and create software as well as the confidence to learn and keep learning
more!

Getting back to the problem at hand, let’s code our next function.

get_guess

Our get_guess function takes the number of required digits as a parameter and
returns a valid guess from the player. Remember that for a guess to be valid, it must
contain the right number of digits, and it must not have any duplicate digits. Here’s
what we got from Copilot in the following listing.

Listing 10.3 Function get_guess for user input

def get_guess(length):
 '''
 length is an integer.

 Keep asking the player to enter a string where each character
 is a digit from 0 to 9, until they enter a valid guess.
 A valid guess has the given length and has no repeated digits.
 '''
 guess = input('Enter a guess: ')
 while len(guess) != length or not guess.isdigit()\
 or len(set(guess)) != length:
 guess = input('Enter a guess: ')
 return guess

First tries to get a valid
guess from the player

While length is
wrong, or guess isn’t
all digits or guess
has duplicates, . . .

 . . . subsequently tries to get a
valid guess from the playerReturns the valid guess

230 chapter 10 Making some games

guess_result

Our guess_result function takes two strings as parameters: the player’s most recent
guess and the secret code. It returns a list of two integers: the number of correct digits
and the number of misplaced digits.

This is a tricky function to get right, so even though we haven’t been showing the
tests we’d want to run in prior examples, we’re going to provide some explicit tests in
this docstring for this function. We’re adding these docstring tests because the logic for
this function is going to be complex enough that it will be hard to determine whether
the code is correct by solely reading the code. For our docstring tests, we’ll need some
good example cases of different secret codes and user guesses to ensure the number of
correct and misplaced digits returned by the function are as expected. Of course, as per
chapter 6, you’d likely want to add even more test cases if you were interested in doing
serious testing.

Our first test case is

>>> guess_result('3821', '1862')

The correct return value here is [1, 2] because there’s one digit that’s correct (the 8),
and two misplaced digits (the 2 and the 1). Our second test case is

>>> guess_result('1234', '4321')

The correct return value this time is [0, 4] because there are zero correct digits, but
all four digits of the guess are misplaced.

Here’s our complete docstring, including test cases, and the code from Copilot in
listing 10.4.

Listing 10.4 Function guess_result for obtaining the result of a guess

def guess_result(guess, secret_code):
 '''
 guess and secret_code are strings of the same length.

 Return a list of two values:
 the first value is the number of indices in guess where
 the character at that index matches the character at the
 same index in secret_code; the second value is the
 number of indices in guess where the character at that
 index exists at a different index in secret_code.

 >>> guess_result('3821', '1862')
 [1, 2]
 >>> guess_result('1234', '4321')
 [0, 4]
 '''
 correct = 0
 misplaced = 0
 for i in range(len(guess)):
 if guess[i] == secret_code[i]:

This variable is for
the correct digits

This variable
is for the

misplaced
digits

Goes through
each index of

the digits
This digit is correct

 231Example 1: Bulls and Cows

 correct += 1
 elif guess[i] in secret_code:
 misplaced += 1
 return [correct, misplaced]

The use of elif is subtle here. If it were written as if rather than elif, then the code
would be wrong! Do you see why? If not, try conversing with Copilot before continuing
to read our explanation here.

Suppose that the if condition guess[i] == secret_code[i] is True. In that case,
we increase correct by 1, and we skip the elif statements. (Remember, the elif state-
ments run only if the preceding if and any preceding elif conditions are False.)

Now, imagine we changed the elif to an if. If the if condition guess[i] ==
secret_code[i] is True, we’d still increase correct by 1. But then, we’d check the
guess[i] in secret_code condition. And this one would be True as well. After all,
we just said that guess[i] == secret_code[i], which proves that guess[i] is indeed
somewhere in secret_code. So, we’d erroneously do the misplaced += 1, which we
certainly don’t want to do (it’s a matched digit, not a misplace one, too)!

play

We’re done with our subtask functions! Now all we need to do is write the play top-
level function.

Our play function takes two integers as parameters: the number of digits in the
secret code and guesses and the number of guesses that the player has to guess the
secret code. It doesn’t return anything—it just plays the game! Our final prompt and
code for this function is in the following listing.

Listing 10.5 Function play for playing the game

def play(num_digits, num_guesses):
 '''
 Generate a random string with num_digits digits.
 The player has num_guesses guesses to guess the random
 string. After each guess, the player is told how many
 digits in the guess are in the correct place, and how
 many digits exist but are in the wrong place.
 '''
 answer = random_string(num_digits)
 print('I generated a random {}-digit number.'.format(num_digits))
 print('You have {} guesses to guess the number.'.format(num_guesses))
 for i in range(num_guesses):
 guess = get_guess(num_digits)

Increases correct
count by 1 This is not a match

but is misplaced

Increases
misplaced
count by 1

Returns both results in a list

Gets the
computer’s
secret code

Loops once for
each possible
player guessGets the next valid

guess from the player

232 chapter 10 Making some games

 result = guess_result(guess, answer)
 print('Correct: {}, Misplaced: {}'.format(result[0], result[1]))
 if guess == answer:
 print('You win!')
 return
 print('You lose! The correct answer was {}.'.format(answer))

If we ran our program now, nothing would happen. That’s because we haven’t called
the play function yet! To call it, we can add this line below the play function:

play(4, 10)

The 4 means that we’re playing with four-digit codes and guesses, and the 10 means
that we have 10 guesses to correctly guess the secret code. You can change these argu-
ments to tune the game how you like!

Let’s give our game a whirl before we continue. We’ll show our first few guesses and
then our final guess:

I generated a random 4-digit number.
You have 10 guesses to guess the number.
Enter a guess: 0123
Correct: 1, Misplaced: 0
Enter a guess: 4567
Correct: 1, Misplaced: 0
Enter a guess: 8901
Correct: 2, Misplaced: 0
Enter a guess: 8902
Correct: 2, Misplaced: 1
...
Enter a guess: 2897
Correct: 1, Misplaced: 3
You lose! The correct answer was 8927.

We’ve succeeded in designing a computer game, which is a very different kind of pro-
gram than the other programs we’ve written in this book. Our computer game inter-
acts with the user, has randomness, involves two players, and has winning and losing
conditions. That’s a lot of new stuff! However, we also hope that you see how much
we have learned and brought forward from prior chapters. We’re still doing top-down
design, still designing functions, still testing code, still reading code, and still convers-
ing with Copilot. You hadn’t written a game prior to this chapter, but essentially, you
already had the skills to do that. Don’t let a seemingly new type of program or app stop
you from trying to do it.

Gets the “correct” and “misplaced” feedback for this guess

Tells the player the hints

Player correctly guesses the secret code!

Leaves the function; this ends the game.

If we get here, then the player ran out of guesses.

 233Example 1: Bulls and Cows

10.3.5 Adding a graphical interface for Bulls and Cows

You might be disappointed that our game doesn’t look much like a game you’ve
recently played because there are no graphics, just text. For example, there’s no nice
area to type in and no buttons to click and no graphical interface at all. We’ve already
argued why we focus on text games in this chapter, but it doesn’t mean that turning
this game into a graphical interface version is entirely out of your grasp because you
could interact with Copilot to see if it can help you get started.

The challenge is that programmers create graphical user interfaces using a style of
programming called event-driven programming, which we haven’t taught you yet and is
too large to teach in this chapter. You can likely read through event-driven program-
ming code and make some sense of it, and that’s what you’d need to do if you ask Copi-
lot to write code to produce a graphical interface. That said, if Copilot doesn’t give you
what you want, it may be difficult to fix without first becoming familiar with event-driven
programming. There’s a nice book on game programming that includes graphical user
interfaces and event-driven programming in Python called Invent Your Own Computer
Games with Python [3] if you’d like to learn more.

Event-driven programming
Event-driven programming is commonly used for programs that interact with users. At
a high level, the program sets up a way for the user to interact with the program (e.g., by
pressing buttons or entering text) and then just sits and waits for the user to do some-
thing, sometimes updating the state of the game while waiting for the user input. Once
the human interacts with the game, the code recognizes this interaction as an event and
each event has code associated with it that should execute when the event occurs. For
example, when a user presses the Quit Game button, it would trigger the code that needs
to be executed when the user wants to quit (e.g., saving the state of the game and exiting
the program).

We were quite impressed by what Copilot gave us when we asked it to create the graph-
ical interface for Bulls and Cows, so we’d like to show you how well it did. And the code
is somewhat readable even without knowing event-driven programming. For example,
you can probably find the title of the game and change it. To do this, we asked this
question to Copilot Chat:

Human Can you convert this program to use a graphical interface instead of a text
interface?

Copilot responded to us by laying out, step by step, the changes that we’d need to make
to do so. It then rewrote the code so that the game now used a graphical interface with
buttons and edit boxes, rather than a text interface. See figure 10.4 for the new inter-
face. The code to generate this interface is on the website for the book in case you’re
interested in running it yourself or learning about the code.

234 chapter 10 Making some games

Figure 10.4 The graphical interface for the game as provided by Copilot. Note that it provides the secret
code, presumably to help with testing.

10.4 Example 2: Bogart
Our second game will be a two-player dice game. In Bulls and Cows, one of our play-
ers was human and the other was the computer. This time, we’ll write a game for two
human players. Randomness again will play a key role. Once we’re done, you can play
against a friend or family member!

10.4.1 How the game works

The game that we’ll be writing here is called Bogart (Bogart game designed by James
Ernest, © 1999 James Ernest and Cheapass Games, used by permission. https://
crabfragmentlabs.com/). It was designed by Crab Fragment Labs. You can download
the instructions for the original game for free as part of a .pdf file of games: https://
crabfragmentlabs.com/shop/p/chief-herman-1. If you enjoy the game and can’t stop
playing our recreation, we encourage you to support the work that Crab Fragment
Labs are doing. We thank them for letting us use their game here!

This is a dice game for two players. The game also uses a pot of chips or coins. We
obviously won’t need actual dice or chips, though, as we’re implementing this as a com-
puter game!

When the game starts, the pot of chips is empty (has no chips in it). One of the two
players is randomly chosen to start the game. From there, each player takes turns until
the game is over. We’ll first explain what it means for a player to take a turn and then
give the rules for when the game ends. Figure 10.5 provides an overview of the flow of
the game as well.

At the beginning of a player’s turn, one chip gets added to the pot, and that player
rolls one die. If that die is a 1, then the player’s turn is over, and they don’t collect any
chips. If that die is not a 1, then the player gets to decide whether to continue their turn
or not. If they decide not to continue their turn, they collect all of the chips from the
pot (making the pot empty).

https://crabfragmentlabs.com/
https://crabfragmentlabs.com/
https://crabfragmentlabs.com/shop/p/chief-herman-1
https://crabfragmentlabs.com/shop/p/chief-herman-1

 235Example 2: Bogart

start turn
n=1

end turn
switch player

game over
current player wins

collect chips
from pot

increment
n by 1

if o
ne or m

ore dice
 is

1

if
n=

5
an

d
no

 d
ice

 a
re

 1

if player chooses to

end turn

if current player
has >= 30 chips

if current player has < 30 chips

player chooses to continue turn

add n chip(s) to pot
roll n dice

Figure 10.5 Player turn in Bogart

If they do decide to continue their turn, then two chips get added to the pot, and
they roll two dice. If one or both of those dice is a 1, then the player’s turn is over. Other-
wise, the player again gets to decide whether to continue their turn or not.

If they continue their turn, then they roll three dice, then four dice, and then five
dice. (Players cannot choose to skip a number of dice; they must work through the
number of dice sequentially starting from one die.) If they ever roll a 1, then their turn
ends, and they don’t collect any chips. If they decide not to continue their turn, then
they collect all of the chips from the pot.

Rolling a 1 in this game is bad news. When rolling one die, the probability of rolling
a 1 is low. When rolling two dice, the probability of rolling at least one 1 is higher. It’s
higher still when rolling three dice, or four dice, or five dice. So, the longer you extend
your turn, the higher the probability that you’ll eventually roll a 1 and get nothing for
your turn. Worse, you’ll likely leave the pot quite full for the other player to collect if
they play more conservatively than you. At the same time, the longer you extend your
turn, the faster the chips in the pot accumulate and the more chips you can collect
assuming that you do successfully end your turn eventually. The whole trick is to decide
when to press your luck for more chips and when to take what you’ve got.

236 chapter 10 Making some games

This is how a player’s turn works. Player’s alternate turns, rolling dice and collecting
chips, until the game ends. How does the game end?

There are two ways that the game can end:

1 If a player collects a total of 30 or more chips, then that player wins.

2 Say a player on their turn rolls one die, then two dice, then three, then four, and
then five, never once rolling a 1. Then, that player instantly wins. It doesn’t mat-
ter how many chips they’ve collected: if they get to five dice none of which are a
1, they win.

example game of bogart

Let’s play out a few turns of the game to make sure we’re clear on how it all works.
The pot starts out empty. Let’s say that Player 1 is the player randomly chosen to go

first. We add one chip to the pot, and Player 1 rolls one die. Let’s say that they roll a 5.
Now Player 1 has to decide whether to end their turn and take the one chip from the
pot or continue their turn.

Let’s say that they continue their turn. We add two chips to the pot; now the pot has
three chips. Player 1 rolls two dice. Let’s say they roll a 4 and a 2.

Should they end their turn and take the three chips? Nah, nah. They want more.
They continue their turn. We add three chips to the pot; now the pot has six chips.
Player 1 rolls three dice. This time, they roll a 6, a 5, and—oh no!—a 1. Player 1’s turn is
over. They got no chips, and they left a juicy six chips in the pot for Player 2.

Now it’s Player 2’s turn. We add one chip to the pot—that’s seven chips now!—and
Player 2 rolls one die. Let’s say that they roll a 2. If Player 2 ends their turn now, they’ll
collect the seven chips from the pot. That feels like a lot, so let’s say that Player 2 does
this.

Now the pot is empty, and it’s back to being Player 1’s turn. Player 1 has some catch-
ing up to do: they have zero chips and Player 2 has seven chips. We’ll stop here, but the
game will continue until one of the players racks up 30 or more chips or they get to roll
five dice and manage not to roll a single 1.

10.4.2 Top-down design

As was the case when we implemented our Bulls and Cows game, implementing Bog-
art is a large problem for which we need top-down design. We’ll do that design now,
but here we encourage you to try it on your own before continuing. We recommend
this because we found an effective top-down design to be subtle for this game due to
the number of interacting elements. For example, a player’s turn can end in one of
three ways: collect the chips, don’t collect the chips, and instantly win. We need to
be able to determine which of these situations happened. As another example, after
each player’s turn, we need to switch to the other player—except, unfortunately, not
always: if a player wins the game, we want to stop the game right there and declare

 237Example 2: Bogart

them the winner, not switch to the other player! We’ll primarily focus on our successful
top-down design here, but we’ll occasionally justify why we made our decisions and
what went wrong with other decisions.

We’ll name our top-level function play. Here are the main subtasks that we’ll need
to solve for our game:

1 Initialize the pot and start Player 1 and Player 2 with zero chips. This is part of the
game setup phase.

2 Randomly choose Player 1 or Player 2 to start the game. This too is part of the
game setup.

3 Now we enter the game play phase. While the game isn’t over,

a Print number of chips in pot, number of chips Player 1 has, and number of
chips Player 2 has.

b Take a full turn for the current player.

c If the current player won chips, give the chips to the current player, and reset
the pot to have zero chips.

d Switch to the other player’s turn.

4 Print the name of the player (Player 1 or Player 2) who won the game.

At this point in the book, we suspect you’ve become familiar enough with the code
from Copilot to have some nice intuition about which of these tasks will require sep-
arate functions. Task 1 is just a few variable assignments, so we don’t need a separate
function for that. Other tasks for which we don’t need a separate function are task 2
(just a call to random.randint), 3.a (just a few print calls), and 4 (a print call). We’ll
capture each of the remaining subtasks in a function.

task 3. while the game isn’t oVer

We’ll have a while loop that continues while the game isn’t over, so we’ll need a func-
tion to tell us whether the game is over! How can the function know whether the game
is over? It’ll need to know the current number of chips that Player 1 has and the cur-
rent number of chips that Player 2 has. That way, it can check whether one of these is at
least 30. But remember that there’s another way for the game to end, and that’s when
a player rolls five dice, none of which is a 1. Therefore, this function will also need to
know the most recent dice rolls for the current player.

We’ll name this function game_over. It will take three parameters: Player 1 chips,
Player 2 chips, and list of rolls. It will return True if the game is over and False other-
wise. The code for this function will need to check a few conditions, but we should be
able to do that without splitting it out into further subtasks.

task 3.b. take a full turn for the current player

We’ll name this function take_full_turn. The function needs to know how many
chips are in the pot right now, so that it can update that as needed. It’ll also need to
return the updated number of chips in the pot. Beyond that, there’s a lot that we need

238 chapter 10 Making some games

to manage to carry out a full turn, so we’re going to need to keep the complexity of this
function under control. Here’s what comes to mind for what this function may need
to do:

1 Allow the player to roll one die, then two dice, then three dice, and so on until
the player’s turn is over.

2 Update the current player’s number of chips based on what happened on this
turn. We could add an additional return value to communicate this updated
information to whoever called this function.

3 Determine whether the game is over. We could add an additional return value
where True means that the game is over and False means that it isn’t.

We initially tried to have the function do all three of these things but were unable to
receive satisfactory code from Copilot. This isn’t too surprising because we’re asking
the function to do too much. This led us to focus on the core of this function, which is
point 1.

But OK, if we focus only on point 1, then how are we going to update the current
player’s number of chips (point 2) and how will we know whether the game is over
(point 3)? For point 2, the solution we thought of is to not update the current player’s
chip count at all in this function, instead returning the total number of chips in the pot
after this turn.

For example, if there were 10 chips in the pot and this player’s turn generated 6
chips, then we’d return 16. The player may or may not get to collect these 16 chips—it
depends on how their turn ended—but we won’t deal with that here (this is for the call-
ing function to manage now).

For point 3 (knowing whether the game is over), our solution is to have the function
return the most recent list of rolls as part of its return value. (This list of rolls will also
be needed by the calling function for point 2.) The function that calls this one can then
use those rolls to determine whether the game is over.

In summary, our function will take the number of chips in the pot as a parameter and
will return a list of two values: the new number of chips in the pot after the player’s turn
and the most recent list of rolls.

To take a full turn, we’ll need to be able to roll dice: first one die, then two dice, then
three dice, and so on. We’ll split this out into a function named roll_dice. It will take
the number of dice to roll as a parameter and will return a list of rolls. For example, if
we ask the function to roll three dice, we might get back [6, 1, 4].

We’ll also need to be able to determine whether the turn is over based on the most
recent list of rolls. If the player rolled any 1s or rolled five dice none of which is a 1, then
the turn is over. We’ll split that out, too, into a function named turn_over. It will take
the list of rolls as a parameter and will return True if the turn is over and False if not.

If the turn isn’t over, then we’ll need to ask the player whether they wish to continue
their turn. We’ll ask for a yes (y) or no (n) response. We can do that using a call to the

 239Example 2: Bogart

input function. If the player wants to keep going, we can again call roll_dice. We
don’t need a separate function for asking for user input, so we won’t break this part
down any further. If we wanted to validate the user’s input (rejecting any response that’s
not y or n), that would increase the complexity enough so that we’d probably split it out.

In summary, we’ve split out two subtasks for our take_full_turn function: roll_
dice and turn_over. These functions don’t need to be broken down any further.
For roll_dice, we can use random.randint in a loop to generate the rolls that we
need. And turn_over will amount to a couple of checks on the dice rolls to determine
whether they ended the turn for which we won’t need any further breaking down.

task 3.c. if the current player won chips

When a player’s turn ends, we’re furnished with the new number of chips in the pot
and the final list of rolls that ended the turn. We need to determine whether the player
gets those chips or not. (If the final list of rolls doesn’t contain a 1, then the player col-
lects the chips; otherwise, they don’t, and the chips stay in the pot.)

We’ll split out a function to tell us whether the player collects the chips or not. We’ll
name it wins_chips. It will take the most recent list of rolls as a parameter and will
return True if the player wins the chips and False otherwise.

task 3.d. switch to the other player’s turn

We’ll name this function switch_player. Suppose that the current player has just fin-
ished their turn. We need to switch to the other player’s turn, but only if the game isn’t
over yet. Our function will encapsulate this logic. It will need to call game_over to
determine whether the game is over, so we need at least three parameters for switch_
player: player 1’s chips, player 2’s chips, and the most recent list of dice rolls. We’ll
also need a parameter to indicate the current player (1 or 2), so that we can return the
number of the other player. So, the function will take those four parameters, and it will
return a 1 or a 2 indicating the player that we are switching to next.

If the game is over, this function won’t do anything. And if the game isn’t over, then
we’ll need to change a 1 to a 2 or a 2 to a 1. We already have the game_over function,
and that’s sufficient for breaking down this function.

We’re finished our top-down design! Check out figure 10.6 for our tree of functions.

turn_over

roll_dice

game_over

take_full_turn

switch_player

win_chips

play

Figure 10.6 Top-down design for the Bogart game

240 chapter 10 Making some games

10.4.3 Implementing our functions

Now it’s time to work with Copilot to write the code for each of our functions. As
always, we go bottom to top, implementing our top-level play function only when all
other functions have been implemented.

game_oVer

This function takes three parameters: the number of chips that Player 1 has, the num-
ber of chips that Player 2 has, and the most recent list of rolls. It returns True if the
game is over, and False, if not. See the following listing.

Listing 10.7 game_over function in Bogart

def game_over(player1, player2, rolls):
 '''
 player1 is the number of chips that player 1 has.
 player2 is the number of chips that player 2 has.
 rolls is the last list of dice rolls.

 Return True if the game is over, False otherwise.

 The game is over if player1 has at least 30 points,
 or player 2 has at least 30 points,
 or there are 5 rolls none of which is a 1.
 '''
 return player1 >= 30 or player2 >= 30 or (len(rolls) == 5
 and not 1 in rolls)

Remember that there are three ways for the game to be over: Player 1 has at least 30
chips, Player 2 has at least 30 chips, or a player managed to roll five dice on their last
turn without rolling a 1.

You may have expected to see the code this way, with the use of if-else and actual
return True and return False lines:

if player1 >= 30 or player2 >= 30 or (len(rolls) == 5
 and not 1 in rolls):
 return True
else:
 return False

This would work, but it’s more common to see programmers use a return statement
directly with the True/False expression. It works because if the expression is true,
True gets returned and if the expression is false, False gets returned. That’s exactly
the same thing that the if-else version does!

roll_dice

This is the function that rolls our dice and adds randomness to our game. It takes the
number of dice to roll as a parameter, and it returns the list of dice rolls. We’ll expect
Copilot to make use of random.randint here.

The three ways that
the game is over

 241Example 2: Bogart

In addition to returning the list of rolls, it’s also helpful if this function prints each
dice roll. That way, the player can see exactly what they rolled. In the docstring, we ask
Copilot to print the rolls (in addition to returning the list of rolls).

Listing 10.8 roll_dice function in Bogart

import random
def roll_dice(n):
 '''
 Create a list of n random integers between 1 and 6.
 Print each of these integers, and return the list.
 '''
 rolls = []
 for i in range(n):
 roll = random.randint(1, 6)
 print(roll)
 rolls.append(roll)
 return rolls

turn_oVer

This function takes the most recent list of rolls and uses that to determine whether the
current player’s turn is over or not. It returns True if the turn is over, and False, if not.
See the following listing.

Listing 10.9 turn_over function in Bogart

def turn_over(rolls):
 '''
 Return True if the turn is over, False otherwise.

 The turn is over if any of the rolls is a 1,
 or if there are exactly five rolls.
 '''
 return 1 in rolls or len(rolls) == 5

There are two ways for the player’s turn to be over. The first is when there’s a 1 in the
list of rolls. The second is when the player has rolled five dice.

Is len(rolls) == 5 really enough for the turn to be over? Don’t we have to check
whether there were any 1s rolled? No, if the player rolls five dice, then their turn is over
no matter what, regardless of what the dice rolls were. If they rolled any 1s, then the
turn is over because they rolled a 1 (and they won’t collect any chips). If they didn’t roll
any 1s, then the turn is still over (and they’ll win the game automatically in this case).

take_full_turn

We’re ready for take_full_turn now, as shown in the following listing. This function
takes the number of chips currently in the pot as a parameter. It will process all the
rolls from a full turn for the current player, and then returns a list of two values: the
new number of chips in the pot and the final list of rolls.

List of dice rolls (integers
between 1 and 6)

Loops n
times, once

per roll

Uses “randint”
to generate a

random integer
between 1 and 6

Prints
roll for
players

to see

Adds roll to
list of rollsReturns list of rolls

The two ways for the
turn to be over

242 chapter 10 Making some games

Listing 10.10 take_full_turn function in Bogart

def take_full_turn(pot_chips):
 '''
 The pot has pot_chips chips.

 Take a full turn for the current player and, once done,
 return a list of two values:
 the number of chips in the pot, and the final list of dice rolls.

 Begin by rolling 1 die, and put 1 chip into the pot.
 Then, if the turn isn't over, ask the player whether
 they'd like to continue their turn.
 If they respond 'n', then the turn is over.
 If they respond 'y', then roll one more die than last time,
 and add 1 chip to the pot for each die that is rolled.
 (for example, if 3 dice were rolled last time, then
 roll 4 dice and add 4 chips to the pot.)
 If the turn is not over, repeat by asking the player again
 whether they'd like to continue their turn.
 '''
 rolls = roll_dice(1)
 pot_chips += 1
 while not turn_over(rolls):
 keep_going = input('Continue? (y/n) ')
 if keep_going == 'y':
 rolls = roll_dice(len(rolls) + 1)
 pot_chips += len(rolls)
 else:
 break
 return pot_chips, rolls

wins_chips

This function takes a list of rolls as a parameter. If the rolls are good (i.e., contain no
1s), then the player will collect the chips. If the rolls contain any 1s, then the player
won’t collect the chips. This function returns True if the player gets to collect the
chips, and False otherwise, as shown in the following listing.

Rolls one dice

Adds one
chip to
the pot

While the
current
player’s turn
isn’t over, . . .

. . . asks
player if they
want to
continue
their turn.

If they do want to
continue their turn,

rolls one more dice
than last time.

Adds new chips
to the pot

Gets out of the while loop

Returns both number of
chips in pot and list of rolls

 243Example 2: Bogart

Listing 10.11 wins_chips function in Bogart

def wins_chips(rolls):
 '''
 Return True if the player wins chips, False otherwise.

 The player wins the chips if none of the rolls is a 1.
 '''
 return not 1 in rolls

switch_player
This function takes four parameters: the number of chips that Player 1 has, the num-
ber of chips that Player 2 has, the most recent list of rolls (rolled by the current player),
and the number of the current player. If the game is not over, this function returns the
number of the other player. If the game is over, then the function returns the current
player (because there’s no turn for the other player!). See the following listing.

Listing 10.12 game_over function in Bogart

def switch_player(player1, player2, rolls, current_player):
 '''
 player1 is the number of chips that player 1 has.
 player2 is the number of chips that player 2 has.
 rolls is the last list of dice rolls.
 current_player is the current player (1 or 2).

 If the game is not over, switch current_player to the other player.
 Return the new current_player.
 '''
 if not game_over(player1, player2, rolls):
 if current_player == 1:
 current_player = 2
 else:
 current_player = 1
 return current_player

play

We’ve made it all the way up to our play function! This function doesn’t take any
parameters and doesn’t return anything. Instead, it plays the game, as shown in the
following listing.

Listing 10.13 play function in Bogart

def play():
 '''
 Play the game until the game is over.

 The pot starts with 0 chips, and each player starts with 0 chips.

 Randomly decide whether player 1 or player 2 goes first.

Returns True exactly
when there are no 1s

If game isn’t over, . . .

. . . switches from 1
to 2 or from 2 to 1.

Returns new
current player

244 chapter 10 Making some games

 Before each turn, print three lines of information:
 1. The number of chips in the pot
 2. The number of chips that each player has
 3. Whether it is player 1's turn or player 2's turn

 Take a full turn for the current player.
 If they won the chips, add the chips in the pot to the
 total for that player and reset the pot to have 0 chips.

 Then, switch to the other player's turn.

 Once the game is over, print the current player
 (that's the player who won).
 '''
 pot_chips = 0
 player1 = 0
 player2 = 0
 current_player = random.randint(1, 2)
 rolls = []
 while not game_over(player1, player2, rolls):
 print('Pot chips:', pot_chips)
 print('Player 1 chips:', player1)
 print('Player 2 chips:', player2)
 print('Player', current_player, 'turn')
 pot_chips, rolls = take_full_turn(pot_chips)
 if wins_chips(rolls):
 if current_player == 1:
 player1 += pot_chips
 else:
 player2 += pot_chips
 pot_chips = 0
 current_player = switch_player(player1, player2,
 rolls, current_player)
 print('Player', current_player, 'wins!')

We now have all of the code that we need for the game. Just add a line of code below all
of your existing code to call our play function:

play()

Then, you’ll be able to play!

Start pot and
players with 0 chips

Randomly makes
Player 1 or Player 2

start the game
While the game

isn’t over, . . .

 . . . prints current
state of the game.

Lets
current

player have
their turn

If current
player

wins
chips,

. . . and it’s
Player 1, . . .

. . . gives Player 1 the
chips from the pot; . . .

. . .
otherwise,
gives Player
2 the chips
from the pot.

Resets pot to
now have 0
chips

Switches to
other
player’s turn

Prints out who wins

 245Example 2: Bogart

customizing the game

We’re happy with what Copilot has given us, and the game is certainly playable. But,
admittedly, the interaction with the players could be a little more user-friendly. For
example, here’s how the game might start when we run it and press y a few times:

Pot chips: 0
Player 1 chips: 0
Player 2 chips: 0
Player 2 turn
4
Continue? (y/n) y
5
2
Continue? (y/n) y
3
1
4
Pot chips: 6
Player 1 chips: 0
Player 2 chips: 0
Player 1 turn
2
Continue? (y/n)

There’s no welcome message. Numbers like 4, 5, 2, and so on are just there, with no
context of what they mean. The game asks us whether we want to “Continue? (y/n).”
Continue what, though? It isn’t clear.

We can make the interaction with the players more pleasant by spicing up the print
calls in our functions. We can just put what we want in each print statement ourselves.
Why not just use Copilot? It’s likely easier to just do it rather than trying to cajole Copi-
lot to print exactly what we want.

For example, the following listing shows a new version of play where we’ve added
more print calls to explain what’s going on and better format the game output.

Listing 10.14 play function in Bogart with better formatting

def play():
 '''
 Play the game until the game is over.

 The pot starts with 0 chips, and each player starts with 0 chips.

 Randomly decide whether player 1 or player 2 goes first.

 Before each turn, print three lines of information:
 1. The number of chips in the pot
 2. The number of chips that each player has
 3. Whether it is player 1's turn or player 2's turn

246 chapter 10 Making some games

 Take a full turn for the current player.
 If they won the chips, add the chips in the pot to the
 total for that player
 and reset the pot to have 0 chips.

 Then, switch to the other player's turn.

 Once the game is over, print the current player
 (that's the player who won).
 '''
 pot_chips = 0
 player1 = 0
 player2 = 0
 current_player = random.randint(1, 2)
 rolls = []

 print('Welcome to Bogart!')
 print()

 while not game_over(player1, player2, rolls):
 print('Pot chips:', pot_chips)
 print('Player 1 chips:', player1)
 print('Player 2 chips:', player2)
 print('Player', current_player, 'turn')
 pot_chips, rolls = take_full_turn(pot_chips)
 if wins_chips(rolls):
 print('Player', current_player, 'gets', pot_chips, 'chips!')
 if current_player == 1:
 player1 += pot_chips
 else:
 player2 += pot_chips
 pot_chips = 0
 current_player = switch_player(player1, player2, rolls, current_player)

 print()
 print()
 print('-=' * 20)
 print()

 print('Player', current_player, 'wins!')

We encourage you to add print calls elsewhere as well to make the game interaction
even better! For example, in roll_dice, you could add a print call to tell the players
that dice are about to be rolled. In take_full_turn, you could add a print call to
print the number of chips in the pot prior to asking the player whether they’d like to
continue their turn. Here’s what an interaction with our game looks like after we made
those changes:

Welcome to Bogart!
Pot chips: 0
Player 1 chips: 0
Player 2 chips: 0
Player 2 turn

Prints welcome
message

Prints a
blank line

Prints message saying that
the current player got chips

Separates each turn
from the next

 247Summary

ROLLS
2
The pot currently has 1 chips.
Continue turn? (y/n) y
ROLLS
6
3
The pot currently has 3 chips.
Continue turn? (y/n) y
ROLLS
1
1
6
-=
Pot chips: 6
Player 1 chips: 0
Player 2 chips: 0
Player 1 turn
ROLLS
5
The pot currently has 7 chips.
Continue turn? (y/n)
Try making such changes to your code as well. Make the game yours! In this chap-

ter, we used Copilot to help us write two computer games: a logic game similar to
Wordle, and a two-player dice game. We were able to do this using the skills we’ve honed
throughout the book, including problem decomposition, writing clear docstrings, and
interacting with Copilot Chat.

Summary
¡	Games have a common program flow that includes game setup and gameplay.

¡	Randomness is an important ingredient of many games.

¡	We can add randomness to our Python games by using functions in the random
module.

¡	We can implement games with Copilot using the same workflow that we’ve used
throughout the book, with problem decomposition playing a key role.

248

11Future directions

This chapter covers

¡	Using prompt patterns to write and explain code
¡	Current limitations and future directions of
 generative AI tools

In this final chapter, we want to give you a glimpse of the creative ways people are
currently using generative AI tools like GitHub Copilot and ChatGPT. For example,
it’s possible to make Copilot Chat ask you the questions, rather than the other way
around. And it’s possible to make Copilot take on a different persona to be even
more helpful to your current programming task. We’re going to keep this brief, and
it’s not clear how much of this will become standard practice, but we want to take
this opportunity to demonstrate the power of being creative with these new tools.
We’ll also talk about some of the current limitations of generative AI tools (you’ve
seen some of them already in this book!) and offer our thoughts on what may be
next.

11.1 Prompt patterns
Throughout the book, we’ve conveyed why programming directly in Python is a very
different experience compared to programming using Copilot. Rather than writing
code, our focus shifts to writing prompts and then interacting with the generated
code to determine whether or not it is correct and fixing it if needed. But along with

 249Prompt patterns

those differences, there are surprising similarities between coding without Copilot and
coding with Copilot.

When programmers write code, they don’t start from scratch each time they write a
new program. Researchers and programmers have created catalogs of design patterns,
general-purpose ways of organizing programs to make them easier to write, debug,
and extend. The most famous such catalog is a book called Design Patterns: Elements of
Reusable Object-Oriented Software [1], also known as the “Gang of Four book” because it
was written by four authors. It requires familiarity with object-oriented programming,
which we have not taught in this book, so we don’t recommend picking up that book
quite yet. Suffice it to say that thousands of programmers have saved thousands of hours
using the patterns in this book and not reinventing the wheel.

As just one example of a design pattern, suppose that you’re writing a computer
game where a human player plays against the computer. You want to implement sev-
eral AI opponents of varying difficulties (e.g., beginner, intermediate, advanced, and
expert) to provide different skill levels of opponents for the human. Each AI opponent
will have its own code for determining its behavior. It would be possible to use if condi-
tions to determine what the AI opponent should do:

if ai_opponent == 'beginner':
 # make decision consistent with beginner AI opponent
elif ai_opponent == 'intermediate':
 # make decision consistent with intermediate AI opponent
…

The downside to doing it that way, though, is organizational. We’d have all of the AI
code for the various AI opponents in the same place. We know from what we’ve learned
in this book that huge functions like that are not easy to design and test.

The clean way to organize this kind of program is using a pattern called the strategy
pattern. We’re not going to go into details of that pattern here, but the important thing
is that people have documented this pattern [1] for others to use. The pattern docu-
mentation tells you its intent (purpose), motivation for why we would use it, the struc-
ture of the code needed to implement it, and example code.

Researchers are beginning to catalog patterns that can be used with generative AI
tools like GitHub Copilot and ChatGPT [2]. They’re called prompt patterns, and sim-
ilar to design patterns, they tell you how to construct a prompt to achieve a desired
goal. The documentation for each of these patterns is similar to the documentation for
design patterns, but rather than example code, we get example prompts that we can
use.

In this book, we’ve spent most of our time on two types of responses from the AI: gen-
erating code (by pressing Tab in VS Code) and explaining code (by using Copilot Labs
or a chat interface). The new prompt patterns that are emerging can help generative AI
tools go beyond these to help with other code-related tasks.

To give you a flavor of the state of the art in prompt patterns, we’ll sample a couple of
them here. For many more, we encourage you to check the catalog of prompt patterns

250 chapter 11 Future directions

that we have used [2]. Be warned, though: we’re referring you to an academic paper,
rather than a beginner’s guide because we’re not aware of any beginner’s guide at this
time (this is brand new stuff).

Copilot chat may not engage in these prompt patterns
At the time of writing, Copilot Chat refuses to engage in some of the cataloged prompt
patterns, claiming that they are unrelated to programming assistance. While some may
be less specifically related to programming, they are all designed to help programmers.
Unlike ChatGPT, Copilot has been designed to try to always stay squarely on the topic of
programming. If you decide to explore the variety of patterns further, you may wish to do
so using ChatGPT when your interaction with Copilot is not productive.

11.1.1 Flipped interaction pattern

To this point, we’ve been the one requesting code and asking questions, and Copilot
has been the one answering. But it’s possible to flip the script so that Copilot does the
asking and we do the answering. This is called the flipped interaction pattern.

The intent of this pattern is to help us interact with an AI when we don’t know what
information it needs to perform a task. The motivation is that the AI may know what to
ask us to get to its goal faster than if we provided incomplete or unhelpful information.

The structure of our prompt will look like:
“I would like you to ask me questions to achieve X. You should ask questions until we

achieve this goal, where X is the goal we’d like to achieve.”
This structure is not meant to precisely dictate the prompt that we should use. Rather,

it cues us to the key ideas that we need to convey in the prompt. Here, for example, the
key ideas are that we want Copilot to ask the questions and that we don’t want it to stop
until our goal has been achieved.

In chapter 3, we wrote a function to keep asking the user for a password until they
typed a strong password. Suppose we weren’t sure how to design this function. We could
ask Copilot to design it for us by providing a code prompt, but then it might make deci-
sions that we don’t agree with. Instead, we can have Copilot ask us the questions. Let’s
use Copilot Chat to do this.

Human I would like a Python function that keeps asking the user for a password until
they provide a strong password. Ask me questions one at a time until you can write that
Python function.

GitHub Copilot Sure, I’d be happy to help you write a Python function that keeps ask-
ing the user for a strong password! Here are some questions to get started:

1 What do you consider to be a strong password?
2 Should the function have any input parameters?
3 What should the function return?

 251Prompt patterns

4 Should the function have any side effects, such as printing messages to the
console?

5 Should the function have any error handling, such as handling invalid input from
the user?

Copilot failed to follow our instruction to “Ask me questions one at a time.” Let’s
remind it.

Human Ask me the questions one at a time.

GitHub Copilot Sure, let’s start with the first question:

1 What do you consider to be a strong password?

Now we can start answering the questions, the answers to which Copilot will use to
write the code for us.

Human The password must have at least one uppercase character, at least one num-
ber, and at least one punctuation.

GitHub Copilot Great, thanks for letting me know! Here’s the next question:

2 Should the function have any input parameters?

Human I don’t know. What would they be used for?

GitHub Copilot Input parameters are used to pass data into a function so that the
function can perform some operation on that data. For example, if we want to write a
function that adds two numbers together, we would need to pass those two numbers into
the function as input parameters.

In the case of our password function, we might want to pass in some parameters that
define the requirements for a strong password. For example, we might want to pass in
the minimum length of the password, the required number of uppercase characters, the
required number of numbers, and the required number of punctuation characters.

Alternatively, we could hard-code these requirements into the function itself, but using
input parameters would make the function more flexible and reusable.

Human Please hard code them.

GitHub Copilot Sure, we can hard-code the password requirements into the function
itself. Here’s the next question:

3 What should the function return?

252 chapter 11 Future directions

Human It should return the user’s strong password.

GitHub Copilot Great, thanks for letting me know! Here’s the next question:

4 Should the function have any side effects, such as printing messages to the
console?

We’ll stop here as we don’t think it’s interesting to read our full interaction. We con-
tinued our conversation with Copilot and answered questions 4 and 5, and Copilot
had the information it needed to write the code we wanted. The code we ultimately
received, after answering all five questions, is shown in the following listing.

Listing 11.1 Function designed with Copilot using the flipped interaction pattern

import string

def get_strong_password():
 '''
 Keep asking the user to enter a password until they provide
 a strong password.
 A strong password has at least one uppercase character, one
 number, and one punctuation character.
 '''
 # Print the password requirements
 print("Your password must contain at least:")
 print("- One uppercase letter")
 print("- One number")
 print("- One punctuation character")

 # Keep asking for a password until a strong one is provided
 while True:
 password = input("Enter a password: ")

 # Check if the password meets the requirements
 if not any(c.isupper() for c in password):
 print("Password does not contain an uppercase letter.")
 elif not any(c.isdigit() for c in password):
 print("Password does not contain a number.")
 elif not any(c in string.punctuation for c in password):
 print("Password does not contain a punctuation character.")
 else:
 print("Password is strong!")
 return password

In our while loops to this point, we’ve always used a loop condition that we hope even-
tually becomes False (otherwise we’d have an infinite loop). For example, we could

There’s no way to make
this True condition False!

If there’s
no

uppercase
character

in the
password

If there’s no digit
character in the password

If there’s no punctuation
character in the password

This is how we get out of
the “while True” loop

 253Prompt patterns

imagine having a loop that says, in effect, “while the password is not valid.” But here,
the code is using while True, and True is a condition that can never become False.
There must be some other way out of the loop—and there is! We get out of the loop
through a return statement when the password is valid. That is, instead of “while the
password is not valid,” the logic here is “loop forever; if the password is valid, stop loop-
ing.” The while True form of while loops is a common alternative structure to the
style that we’ve seen throughout the book.

This code does a good job at implementing our task. It starts with some print calls
to tell the user the rules for strong passwords. It also tells the user what’s wrong with
their password if, in fact, it isn’t strong. It keeps looping until the user enters a strong
password. And, when we eventually have a strong password from the user, we return it.

Now, we already knew how to write this function because of our work in chapter 3.
And your Python knowledge by this point is sufficiently strong that you can cut to the
chase and write the function signature for Copilot to write the code as we have been
doing throughout the book. But for tasks with which you’re less familiar and may not
know where to start, this flipped interaction pattern may help.

11.1.2 Persona pattern

The intent of this pattern is to have the AI take on a particular persona or point of
view. Why would we ever be motivated to do this? Well, here’s an example: say you’re a
student in an introductory Python programming course. Your instructor is using Copi-
lot as part of the course, but they are disallowing some Python features that they feel
detract from learning introductory Python. You could ask Copilot to take on the per-
sona of that instructor and then help you check your code to find and, if necessary,
remove any disallowed Python features.

The structure of our prompt will look like this:
“From now on, act as persona X. Provide outputs that persona X would create.” We’ll

fill in X with a particular persona.
Let’s try this with our introductory programming instructor persona. We’ll ask Copi-

lot to play the part, disallowing a list of more advanced Python concepts (don’t worry if
you’ve never heard of these!)

Human From now on, act as an introductory Python programming instructor. In the
course that you’re teaching, the following Python features are not allowed: list compre-
hensions, generators, “lambda”, and the “any” function. I will provide code, and you will
review the code for any Python features that are not allowed and suggest how to rewrite
the code to not use those features.

GitHub Copilot Sure, I can do that! Please provide the code you would like me to
review.

Let’s feed it the get_strong_password function from the previous section. It uses the
any function, and by our persona rules, that function is not allowed. Here’s our origi-
nal code and what Copilot does in response.

254 chapter 11 Future directions

Human

def get_strong_password():
 '''
 Keep asking the user to enter a password until they provide
 a strong password.
 A strong password has at least one uppercase character, one
 number, and one punctuation character.
 '''
 # Print the password requirements
 print("Your password must contain at least:")
 print("- One uppercase letter")
 print("- One number")
 print("- One punctuation character")

 # Keep asking for a password until a strong one is provided
 while True:
 password = input("Enter a password: ")

 # Check if the password meets the requirements
 if not any(c.isupper() for c in password):
 print("Password does not contain an uppercase letter.")
 elif not any(c.isdigit() for c in password):
 print("Password does not contain a number.")
 elif not any(c in string.punctuation for c in password):
 print("Password does not contain a punctuation character.")
 else:
 print("Password is strong!")
 return password

GitHub Copilot The `get_strong_password` function uses the `any` function, which
is not allowed in your course. Here’s a modified version of the function that does not use
the ̀ any` function:

import string

def get_strong_password():
 '''
 Keep asking the user to enter a password until they provide
 a strong password.
 A strong password has at least one uppercase character, one
 number, and one punctuation character.
 '''
 # Print the password requirements
 print("Your password must contain at least:")
 print("- One uppercase letter")
 print("- One number")
 print("- One punctuation character")

 # Keep asking for a password until a strong one is provided
 while True:
 password = input("Enter a password: ")

 # Check if the password meets the requirements
 has_uppercase = False

 255Limitations and future directions

 has_number = False
 has_punctuation = False
 for c in password:
 if c.isupper():
 has_uppercase = True
 elif c.isdigit():
 has_number = True
 elif c in string.punctuation:
 has_punctuation = True
 if not has_uppercase:
 print("Password does not contain an uppercase letter.")
 elif not has_number:
 print("Password does not contain a number.")
 elif not has_punctuation:
 print("Password does not contain a punctuation character.")
 else:
 print("Password is strong!")
 return password

This version of the function uses a `for` loop to iterate over each character in the pass-
word and check if it meets the requirements. This approach is more verbose than using
the ̀ any` function, but it does not use any disallowed Python features.

As Copilot Chat indicated, this program doesn’t use the any function. Copilot has
rewritten the program to avoid that function, thereby following the rules set by our
Python programming persona.

The any function returns True if one or more values in its argument are true, and
False if all values in its argument are false. Behind the scenes, any must be looking at
each value to check whether it’s true or false. Sounds like a loop, right? Indeed, a loop is
exactly what Copilot has used here to replace the any function calls.

11.2 Limitations and future directions
In our experience working with Copilot (and students) and reading the research liter-
ature published while we were writing this book, we’ve observed some limitations and
future possibilities of generative AI models that we wanted to share.

11.2.1 Where Copilot (currently) struggles

We found that Copilot struggles in three different types of scenarios: contrived prob-
lems, ill-defined problems, and large tasks.

contriVed problems

Shortly after ChatGPT and GitHub Copilot took the world by storm, programming
instructors feverishly worked to find types of tasks that these tools could not do well.
One early proposal was to use contrived tasks: tasks made obscure and convoluted in
an attempt to misdirect tools like Copilot to have them generate incorrect code. To
us, such tasks seem wholly uninteresting and unfair to students, and their use seems
to be a last-ditch attempt to retain the previous style of programming courses without

The loop that
replaces "any"

256 chapter 11 Future directions

acknowledging the disruption wrought by tools like Copilot. Our sense is that these
contrived tasks will eventually be solved by Copilot as the models continue to improve,
but even if they aren’t, these types of problems aren’t generally important to solve
anyway.

ill-defined problems

An ill-defined problem is a problem that hasn’t been precisely specified (which means
we don’t exactly know or haven’t decided what we should do in all cases). For exam-
ple, asking Copilot for a function to determine whether a password is strong is ill-de-
fined until we define what we mean by “strong password.” Your first thought may be
that Copilot can’t possibly get better at solving these kinds of problems. After all, if
we struggle to precisely specify the behavior we want, how are we going to communi-
cate the required behavior to Copilot? Ill-defined problems are certainly challenging
for Copilot, but they are not impossible. Remember the flipped interaction prompt
pattern that we discussed earlier in the chapter? Perhaps, one day soon, Copilot will
automatically switch into that mode when it doesn’t have enough precision from you
to solve the problem.

large tasks

We’ve spent a lot of time throughout the book teaching you how to design small func-
tions, and how to organize those functions using top-down design to solve large prob-
lems. We did this because Copilot struggles when given a monolithic task to solve. Is
this an inherent limitation of tools like Copilot, or can AI get past it? We don’t know.
Right now, Copilot struggles with problem decomposition, and even if it could get that
right, probabilities aren’t in its favor. Specifically, it has a higher probability of getting
something wrong the more code it writes. For example, if it needs to write 20 functions
to solve a task and each function averages 10 lines, it’s almost certainly going to make
a mistake somewhere. But it’s also foolish to bet against these systems. With advance-
ments in how Copilot learns, perhaps this isn’t that far off after all.

11.2.2 Is Copilot a new programming language?

When we write computer code in a language like Python, there’s a compiler behind the
scenes converting the Python to an assembly code or machine code that the computer
can understand. There was a time when programmers wrote code in an old computer
language like Fortran or C, ran the compiler to produce code in assembly language,
and then checked the assembly code to make sure it was correct. We weren’t around
then, and it probably didn’t happen that much, but we can understand why program-
mers didn’t trust compilers back then. Compilers were a new technology, and it took
time to work out the bugs. Also, the code output from compilers was probably fairly
inefficient compared to hand-written assembly. But after decades of improvements
both to correctness and efficiency (compiler optimizations are a really exciting and
interesting topic for anyone curious!), very few programmers ever look at the output

 257Limitations and future directions

of compilers. Could there be a point when humans simply use large language models
(LLMs) as the primary interface to computers and don’t spend much time examining
the code they produce? Let’s think about both possible answers to this question.

why llms may not replace programming languages

There are reasons to think LLMs won’t become the primary interface for humans to
program computers. The principle one is that LLMs aren’t a stringent programming
language. We trust compilers because there’s a programming language specification
for each programming language and there’s an exact behavior expected from each
line of code. LLMs don’t have this. It’s just someone writing English or another natural
language to an LLM. The LLM isn’t bound to interpret the natural language in a par-
ticular way. It doesn’t have to output the answer based on any rigorous specification.
And randomness and nondeterminism make it so the answer it gives us could vary or
be wrong! Compilers are deterministic and by now are a mature, trusted technology.
They don’t face these problems.

why llms may replace programming languages

But there are also reasons to believe that, like compilers, LLMs will get better and
become our primary interface. In fact, for data science, this is already starting to
happen.

As we’ve noticed throughout the book, a key challenge working with Copilot is deter-
mining whether the generated code is correct. In a sense, it isn’t fair to nonprogram-
mers: we give Copilot natural language (our preference), and it gives us back code
that’s not in a natural language (the computer’s preference). It would be nice if we
could “skip the code” and use natural language not only to communicate with Copilot
but to receive our answer.

Indeed, researchers are beginning to explore this possibility in restricted domains
of interest to millions of computer users. As one example, let’s think about data sci-
ence. Data scientists make sense of data by exploring the data, visualizing the data, and
using data to make predictions. Much of what they do involves manipulating data in
constrained, well-understood ways, such as merging spreadsheets, cleaning particular
columns of data, or conducting analyses such as clustering the data into meaningful cat-
egories or simplifying data to focus only on its core underlying structure. Data scientists
who use Python use many libraries to work with their data, but one extremely popular
library is called pandas.

Researchers have successfully “skipped the code” in this context of doing data sci-
ence with pandas [3]. Here’s how it works:

1 The user expresses their intent in a natural language like English.

2 The AI generates Python code and runs it to get the result (such as a table of
results for an analysis or a new spreadsheet) for the user. Importantly, the user
does not see this Python code.

258 chapter 11 Future directions

3 The AI converts the code back to natural language and presents that (not the
Python code!) back to the user. The natural language that the user gets back is
in a consistent format that can be reliably interpreted by the AI. The research-
ers describe the purpose of the response from the AI like this: “This is how you
should ask the system to do what the system thinks you just asked it to do.” The
response helps the user understand the capabilities of the AI and the types of
queries that are effective.

4 The user can edit the natural language from step 3 if it is not correct. If the user
makes an edit, they can submit the new prompt, which repeats the cycle.

An example provided by the researchers clarifies this process [3]. Suppose we have
a spreadsheet with one astronaut per row. Each row has three relevant columns: the
astronaut’s name, their total time in space, and a comma-separated list of missions
that they participated in. We want to calculate the average mission length for each
astronaut.

In step 1, the user writes a prompt like “calculate average mission length.”
In step 2, the AI generates code corresponding to that prompt. It runs the code and

adds a new column to the user’s spreadsheet containing the average mission length.
In step 3, the AI converts the code to a list of tasks in natural language, such as

1 Create column “Mission Length.”

2 Column “Space Flight(hr)” divided by (count “,” from column “Missions” + 1).

In step 4, the user can edit the natural language from step 3 and resubmit the updated
tasks to the AI.

Might we be able to “skip the code” in the far broader area of “Python programming”
rather than the more restricted setting of “data science with pandas”? It’s too early to
tell. Data manipulation has the benefit of working in a visual medium, with spread-
sheets and graphs that can be directly presented to the user, who may be able to discern
whether the analysis looks correct or if further prompt engineering is needed. Such
visual representations are not readily apparent for general-purpose programming.

Still, we can imagine a new era where humans continue to perform important tasks
like problem decomposition, specifying program behavior, writing tests, designing
algorithms, and so on but where the programming of functions is entirely done using
LLMs. The human tells the AI tool what the program is required to do and provides the
test cases, and the AI generates the code. The human can then check that the program
works properly without ever needing to see the code.

For another take on whether LLMs will replace programming languages, we rec-
ommend the blog post written by Chris Lattner [4], a programming and compiler
expert. Lattner argues that, at least in the short term and possibly longer, program-
ming languages won’t go away, because the code from LLMs can be subtly wrong. So,

 259Limitations and future directions

if programming languages are sticking around for a while, the question is: which pro-
gramming languages should we be using? Lattner says, “The best language for an LLM
is one that is highly usable and easy to read for humans, but whose implementation can
scale to many different use cases and applications” [4]. Do existing languages meet this
goal? Can we do better by designing a programming language that’s easier to read than,
say, Python? Stay tuned!

OK, so maybe programming languages go away, or maybe they don’t; maybe they
change. Regardless, do we need to worry about programmer jobs? We think not. Any-
one who has worked at a software company will tell you that writing code is not the only
or even main thing that programmers do with their time. Programmers also meet with
clients to determine what they need. They specify what programs do and how they fit
together. They check systems for performance and security concerns. They work with
other teams to coordinate the design of huge pieces of software. If the writing code step
gets easier, maybe we just get more useful software. That’s what happened when we got
high-level languages. No one is going to code the next killer app in assembly! Compil-
ers improve how we make software. Used thoughtfully, we think LLMs can do this, too.

an exciting future

Although we’re partially unsure of what’s to come, it’s clear LLMs are going to dramati-
cally change the future of programming. Perhaps for now they are just aids to help soft-
ware engineers write better code. Perhaps five years from now the majority of software
will be written by LLMs and only a small subset of software engineers will be writing
code from scratch. Whichever the outcome, changes are coming fast, and they’ll likely
lead to more people being able to write software to meet their needs.

More than anything else, we hope that you are now able to make your own, informed
decision on how you will use LLMs to program and what LLMs may mean for the future
of programming. At times like these, with some fervently proclaiming, “Programming is
over!” and others equally fervently proclaiming, “Programming won’t change much at
all!” [5], it’s important for us to be able to weigh the arguments ourselves and the ways
that this change may affect us and the people we care about. Can these tools help us?
We think so. We should therefore use them but use them responsibly. Are there con-
cerns? Again, we think so, as we have discussed throughout the book. We should take
steps, such as testing and debugging, to mitigate those concerns.

The approach to teaching programming that we’ve taken in this book is new. Teach-
ers and professors are still determining exactly how programming courses will look now.
But we want to stress to you that you’ve learned absolutely essential skills that everyone
needs to create good software, whether you are writing code occasionally at work to
automate tedious tasks or if you plan to become a professional software engineer. You
have a strong foundation going forward, wherever your path may take you.

260 chapter 11 Future directions

Summary
¡	A prompt pattern is a template to help us construct a prompt to meet a given

goal.

¡	The flipped interaction pattern flips the script: rather than asking questions to
the LLM, the LLM asks questions to us.

¡	The flipped interaction pattern is useful when we don’t know how to effectively
prompt the LLM.

¡	The persona pattern is used to have the AI take on a particular persona, such as
“introductory programming instructor,” or point of view.

¡	The persona pattern is useful when we want the LLM to respond from a given
perspective.

¡	Copilot currently struggles with tasks that are contrived, not well defined, or
large.

¡	Some believe that LLMs will replace programming languages; others believe that
programming languages are here to stay.

¡	LLMs are helping people do data science without those people ever seeing the
Python code.

¡	It may be that programming languages themselves are not replaced, but that the
leading languages will be developed to be more readable than today’s languages.

261

references
foreword

[1] M. Kazemitabaar, J. Chow, C.K.T.M., B. Ericson, D. Weintrop, and T. Grossman. “Studying the
Effect of AI Code Generators on Supporting Novice Learners in Introductory Programming.”
ACM CHI Conference on Human Factors in Computing Systems, April 2023.

introduction

[1] D. M. Yellin. “The Premature Obituary of Programming.” Commun. ACM, 66, 2 (Feb. 2023),
41–44.

[2] XKCD. “Real Programmers.” https://xkcd.com/378/. Accessed Feb. 1, 2023.

chapter 1
[1] G. Heyman, R. Huysegems, P. Justen, and T. Van Cutsem. “Natural Language-Guided Program-

ming,” In 2021 Proc. ACM SIGPLAN Int. Symp. on New Ideas, New Paradigms, and Reflections on
Programming and Software (Oct. 2021), 39–55.

[2] N. A. Ernst and G. Bavota. “AI-Driven Development Is Here: Should You Worry?” IEEExplore.
https://ieeexplore.ieee.org/document/9713901/figures#figures. Accessed Feb. 7, 2023.

[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H.P.D.O. Pinto, J. Kaplan, et al. “Evaluating large language
models trained on code,” 2021. arXiv preprint. https://arxiv.org/abs/2107.03374. Accessed
February 7, 2023.

[4] R. D. Caballar. “Ownership of AI-Generated Code Hotly Disputed > A Copyright Storm May Be Brew-
ing for GitHub Copilot.” Spectrum.IEEE.org. https://spectrum.ieee.org/ai-code-generation
-ownership. Accessed Feb. 7, 2023.

[5] P. Denny, V. Kumar, and N. Giacaman. “Conversing with Copilot: Exploring Prompt Engineer-
ing for Solving CS1 Problems Using Natural Language,” 2022. arXiv preprint. https://arxiv
.org/abs/2210.15157. Accessed February 7, 2023.

[6] A. Ebrahimi. “Novice Programmer Errors: Language Constructs and Plan Composition,” Int.
J. Hum.-Comput. Stud. 41, 4 (Oct. 1994), 457–480.

[7] A. Zilber. “AI Bot ChatGPT Outperforms Students on Wharton MBA Exam: Professor.” New York
Post, Jan. 1, 2023. https://nypost.com/2023/01/23/chatgpt-outperforms-humans-on-wharton
-mba-exam-professor/. Accessed February 7, 2023.

[8] A. Mitchell. “ChatGPT Could Make These Jobs Obsolete: ‘The Wolf Is at the Door.’” New
York Post, Jan. 25, 2023. https://nypost.com/2023/01/25/chat-gpt-could-make-these-jobs
-obsolete/ Accessed Feb. 7, 2023.

https://xkcd.com/378/
https://ieeexplore.ieee.org/document/9713901/figures#figures.
https://arxiv.org/abs/2107.03374
https://spectrum.ieee.org/ai-code-generation-ownership
https://spectrum.ieee.org/ai-code-generation-ownership
https://spectrum.ieee.org/ai-code-generation-ownership
https://arxiv.org/abs/2210.15157
https://arxiv.org/abs/2210.15157
https://nypost.com/2023/01/23/chatgpt-outperforms-humans-on-wharton-mba-exam-professor/
https://nypost.com/2023/01/23/chatgpt-outperforms-humans-on-wharton-mba-exam-professor/
https://nypost.com/2023/01/25/chat-gpt-could-make-these-jobs-obsolete/

262 references262

chapter 2
[1] C. Alvarado, M. Minnes, and L. Porter. “Object Oriented Java Programming: Data Structures and

Beyond Specialization.” https://www.coursera.org/specializations/java-object-oriented. Accessed
Apr. 9, 2023.

[2] S. Valstar, W. G. Griswold, and L. Porter. “Using DevContainers to Standardize Student Develop-
ment Environments: An Experience Report.” In Proceedings of 2020 ACM Conference on Innova-
tion and Technology in Computer Science Education, July 2020, pp. 377–383.

[3] Visual Studio Code. “User Interface.”
https://code.visualstudio.com/docs/getstarted/userinterface Accessed Apr. 9, 2023.

[4] Kaggle. Kaggle Inc. https://www.kaggle.com/ Accessed Apr. 9, 2023.

chapter 3
[1] J. Sweller. “Cognitive Load Theory.” Psychology of Learning and Motivation (Vol. 55, pp. 37–76).

Academic Press, 2011.

chapter 4
[1] R. Lister, C. Fidge, and D. Teague. “Further Evidence of a Relationship between Explaining,

Tracing and Writing Skills in Introductory Programming.” In ACM SIGCSE Bulletin, 41, 3
(Sept. 2009), 161–165.

chapter 5
[1] R. Lister, C. Fidge, and D. Teague. “Further Evidence of a Relationship between Explaining,

Tracing and Writing Skills in Introductory Programming.” ACM SIGCSE Bulletin, 41, 3 (Sept.
2009), 161–165.

chapter 6
[1] R. D. Pea, “Language-Independent Conceptual ‘bugs’ in Novice Programming.” Journal of Edu-

cational Computing Research, 2, no. 1, pp. 25–36. 1986.

chapter 7
[1] M. Craig, “Nifty Assignment: Authorship Detection.” http://nifty.stanford.edu/2013/craig

-authorship-detection/. Accessed Apr. 9, 2023.

chapter 8
[1] “Debugging.” https://code.visualstudio.com/docs/editor/debugging. Accessed June 7, 2023.
[2] “Python Tutor” https://pythontutor.com/. Accessed June 7, 2023.
[3] J. Gorson, K. Cunningham, M. Worsley, and E. O’Rourke. “Using Electrodermal Activity Mea-

surements to Understand Student Emotions While Programming.” In Proceedings of the 2022
ACM Conf. on Intl. Comp. Education Research, 1 (Aug. 2022), 105–119.

chapter 9
[1] M. Odendahl. “LLMs Will Fundamentally Change Software Engineering.” https://dev.to/

wesen/llms-will-fundamentally-change-software-engineering-3oj8. Accessed June 2, 2023.

chapter 10
[1] Pygame. https://www.pygame.org/. Accessed July 20, 2023.
[2] Unity Real-Time Development Platform. https://unity.com/. Accessed July 20, 2023.
[3] A. Sweigart. Invent Your Own Computer Games with Python, 4th Edition. No Starch Press, 2016.

https://www.coursera.org/specializations/java-object-oriented
https://www.coursera.org/specializations/java-object-oriented
https://code.visualstudio.com/docs/getstarted/userinterface
https://code.visualstudio.com/docs/getstarted/userinterface
https://www.kaggle.com/
http://nifty.stanford.edu/2013/craig-authorship-detection/
https://code.visualstudio.com/docs/editor/debugging
https://pythontutor.com/
https://dev.to/wesen/llms-will-fundamentally-change-software-engineering-3oj8
https://dev.to/wesen/llms-will-fundamentally-change-software-engineering-3oj8
https://www.pygame.org/
https://unity.com/
https://unity.com/
https://unity.com/

 263references 263

chapter 11
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Ori-

ented Software. Addison-Wesley Professional, 1994.
[2] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, et al. “A Prompt Pattern Catalog to

Enhance Prompt Engineering with ChatGPT.” https://arxiv.org/abs/2302.11382. Feb. 2023.
[3] M. X. Liu, A. Sarkar, C. Negreanu, B. Zorn, J. Williams, N. Toronto, et al. “‘What It Wants Me

To Say’: Bridging the Abstraction Gap Between End-User Programmers and Code-Generating
Large Language Models.” In Proc. of the 2023 CHI Conf. on Hum. Fact. in Comp. Syst., 598 (Apr.
2023).

[4] C. Lattner. “Do LLMs Eliminate the Need for Programming Languages?” https://www.modular
.com/blog/do-llms-eliminate-the-need-for-programming-languages. Accessed July 4, 2023.

[5] A. J. Ko. “Large Language Models Will Change Programming . . . A Little.” https://medium.com/
bits-and-behavior/large-language-models-will-change-programming-a-little-81445778d957.
Accessed July 4, 2023.

https://arxiv.org/abs/2302.11382
https://www.modular.com/blog/do-llms-eliminate-the-need-for-programming-languages
https://www.modular.com/blog/do-llms-eliminate-the-need-for-programming-languages
https://medium.com/bits-and-behavior/large-language-models-will-change-programming-a-little-81445778d957
https://medium.com/bits-and-behavior/large-language-models-will-change-programming-a-little-81445778d957

264

index
Symbols
== symbol 68, 70, 223
!= operator 50
>>> prompt 48
sign 18

A
abstraction 11
Activity Bar, VS Code 16, 64
AI (artificial intelligence) 127

and many reasons for learning programming 216
AI (artificial intelligence) tools

current limitations and future directions of 248, 255
AI assistants 1

and learning how to program 6
code writing 3
described 4

AI-assisted programming, introduction 1
Amara’s Law 11
Amazon Alexa, AI assistant 4
arguments 59
assembly code vs. Python code 4
assignment symbol 67
authorship identification 157

machine learning 129
top-down design

breaking down process subproblem 130
using 129

authorship identification program, example of 129—156
average_sentence_complexity function 134, 147
average_sentence_length function 134, 146
average_word_length function 132, 140
clean_word function 139
different_to_total function 133, 142
exactly_once_to_total function 133, 142
figuring out book’s signature 130
get_all_signatures function 135, 149
get_phrases function 147
get_score function 138, 152
get_sentences function 146

implementing functions 138
input step 129
known signatures 128
lowest_score function 137, 153
make_guess function 154
make_signature function 130, 135, 148
output step 129
overview 127—129
process_data function 130, 154
process step 129, 130
specific features 130
split_string function 144
unknown signatures 128

automation programs, exercising caution 199

B
bias, risks, and challenges when using Copilot and 10
black-box testing 100
Bogart game 234, 236
Boolean (bool) values 50
Boolean condition 69
breakpoints, debugging and 162
Bulls and Cows game 220

C
Call Stack Section, VS Code debugger 164
catalogs of designed patterns 249
char variable 80
ChatGPT 11

AI assistant 1
exploring variety of patterns 250

clipboard
accessing in Python program 185
accessing without installing Python module 186
copying and pasting without installing additional

modules 187
pasting from, different operating systems 188
tkinter module 186
win32clipboard module 187

closed-box testing 101—103

 265index

compared to open-box testing 103
code

asking Copilot to explain 63
cleaning up email text in clipboard 189, 191
confusing explanation 65
debugging and better understanding 158—181
determining whether it is correct 62
difference between two levels of reading 61
errors in 26

as common occurence for programmers 158
explaining code, as type of response from AI 249
fixing 158
functions and improving code readability 39
generating code, as type of response from AI 249
importance of being able to read code 62
informing testing 62
line-by-line understanding of 61
loops and repeating same blocks of 79
pandas and skipping code 257
prerequisite of being able to write code 62
prompt patterns and writing and explaining code 248
readability and efficiency 94
refactoring 156
testing 26
testing example and walkthrough of incorrect code 112
two levels of understanding what it does 61
understanding 26
understanding overall purpose of program 61
using debugger to better understand code 180
why is testing crucial 99

code-breaking game 216, 220—234
adding graphical interface for 233, 234
braking down into smaller tasks 222
example of playing 221
gameplay 222
game setup 222
get_guess, subtask function 229
guess_result, subtask function 230
how it works 220
implementing functions 226
parameters 224
play function 231
randomness and 220
random_string, subtask function 226
return types 224
steps in 222
top-down design 222

Code does following (English) option 65
Code does following option 64
code quality, risks and challenges when using Copilot and 9
code security, risks and challenges when using Copilot and 9
CodeWhisperer, AI assistant 5
cognitive load 38
column coordinate 89

comments
addressing common challenges in Copilot 21, 24
Copilot and purpose of 18
designing functions 46
docstrings as alternative to 24
suggested by Copilot 18

compilers 256
as trusted technology 257

computer games and assembly languages 2
computer languages vs. natural languages 3
conditionals 69—72, 76

described 69
conditional statement 69
constructs 46
Continue, Debug toolbar button 165, 168
contrived problems 255
Copilot 1

adding cover pages to PDF files, suggestions for writing a
tools 194

addressing common challenges 20
and implementing functions for code-breaking game 226
as powerful tool 32
asking Copilot to explain code 63
as part of workflow 3
benefits of using in writing software faster 7
changing nature of programming jobs 11
chat feature 169, 184

faulty explanations 209
how to copy files 208
what to do if it is not available 185

cleaning up email text, suggestions for writing tools 185
code testing 10. See also testing
comments suggested by 18, 56
cycle of steps for function design 45
data plotting 29
designing functions 33
example of data analysis 27
examples of creating good functions with 46
explaining code 8
finding bugs 160
fixing bugs 8
flipped interaction pattern 250
function design cycle 109
functions, benefits of 38, 40
going from prompt to program, example of 5
impact on human creativity 11
implementing functions for two-player dice game 240
implementing games 216
insert_pdf function 205
learning Python concepts 7
making code-breaking game 220
making code easier to understand 8
making mistakes 8
making two-player dice game 234

266 index

merging phone picture libraries, suggestions for writing
tools 208

necessary skills 10
nondeterministic nature of 6, 12, 19, 25
possibility of getting wrong explanations 82
problem decomposition 256
programming environment and 14
programming languages and 4
random function 219
reading Python code 60
risks and challenges when using 8
similar AI assistants 5
similarities between coding with and without 249
societal concerns and 11
solving big problems 124
specific job of 5
storing data 28
successful interaction with 7
types of scenarios Copilot struggles with 255
workflow of interacting with 22
writing good prompts 26, 31
writing tools 184

Copilot Labs 63
Ask Copilot command 65
different options for explaining code in 64
possibility of getting wrong explanations 65

Copy to Clipboard command 185
cover pages, adding to PDF files, example of automating

tasks 192
conversing with Copilot 194

Crab Fragment Labs 234
.csv files 32

described 23
csv module 95
Custom option 65

D
data

supervised learning and training data 129
two-dimensional 87

data analysis 32
example of 23
Kaggle website 23

data processing
example of basic 23
showcasing Copilot’s value 23

data science 257, 260
Debug Console tab 17
debugging 181

and finding what causes errors (bugs) 159
caution about 180
how to find bugs 160
modifying workflow, example 173
more challenging problems, example 174

using debugger to better understand code 180
using print statements

as first step in debugging 161
VS Code and tools for 162

Debug sidebar, VS Code debugger 164
description of overall purpose 62
Design Patterns, Elements of Reusable Object-Oriented Software 249
dictionaries 57, 59, 90—91, 97

described 90
entries and mapping words to their frequency 90
methods for interacting with 90
mutable 91

docstrings 21
described 24
example of creating good functions with Copilot 47
function behavior 36

Doom, 1990s computer game 2

E
Editor Panes 16
education, risks, and challenges when using Copilot 9
elif keyword 231
email text, cleaning up, example of automating task 184

conversing with Copilot 185
errors (bugs)

finding 160
fixing 169—173, 176

asking Copilot to fix bug via chat 169
giving Copilot new prompt 171
giving Copilot targeting prompt 171
modifying code 172

primary categories of 159
terminology 159
using print statement to identify 160
using prompt to fix known 161

event-driven programming 233
experiments, importance of 66
Explain code option 64
explanations

Ask Copilot explanation tool 65
changing prompts to Ask Copilot to get different 65
getting wrong 65, 82

expression 68

F
features, machine learning 129
filecmp module, comparing files 209
file missing errors 17
files 91—94, 97

common use of 94
readline method 92
saving before running 20
split method 92

 267index

fitz module, merging PDF files 204
floating-point numbers 219
for loops, use of 79
FPDF, Python .pdf library 197
functions 76

and breaking large problem into smaller pieces 67
and dividing problem into subproblems 125
and example of useful general function 47
attributes of good 43
benefits of 38
built-in 67
calls

described 37
example of Python handling 40, 41
interactive approach of function calling 48

components of 35
Copilot and designing 45
Copilot and examples of creating good 46
creating artificial files for testing 117
deprecating 189
described 33
designing 33, 108

cycle of steps for 45
example of creating 120
example of flow of function execution 42
example of testing 120
for code-breaking game example 224
function header (signature) 35, 59

main components 36
keeping short 125
leaf functions 43
parameters 36, 67
reasonable 33
reasonable tasks for 43
roles of 40
use of 37

G
game programs

gameplay 217
game setup 217
update function 217

games
and many reasons for learning programming 216
common program flow 217
randomness 218
video game design 217

Gang of Four book 249
Ghostwriter, AI assistant 5
GitHub

account 14, 15
described 14

H
helper functions 42, 59
humans, AI assistants, and changes in human interaction with

computers 1

I
if-else structure 69
ill-defined problems 256
import statement, Python module 30
indentation 69, 83—89, 97

multiple levels of 84
index 74

leaving out starting or ending 75
negative 74

index variable 81
infinite loop 83
input function 67
iteration 80

K
Kaggle website 23
keys, Python dictionary 90

L
large language model (LLM)

and replacing programming languages 257
bias and 10
described 5
randomness and non-determinism 257

large tasks 256
leaf functions 43, 59

examples of bad 44
examples of good 44

line break (new line) character 192
lists 74—76

as mutable values 76
for loop and accessing each value in 79
positive and negative indexes in 74
square brackets for starting and ending 74

logical errors 159
loops 79— 83, 97

dictionaries 91
example of using for loop 80
example of using for loop and range 81
example of using while loop 83
loop variable 80
nested 87, 89
range built-in function and 80

M
machine code 4
machine learning (ML) 129

268 index

magic number 225
main, function 40
matplotlib 30, 31, 96
matplotlib module 184
max function 67
merging phone picture libraries, example of automating

tasks 206
method 72
modules 94—97

commonly used in Python 95
Copilot and determining which module to use 184
defined 94
downloadable packages of 96
frequently updated 189
importing 53
Python built-in 184
writing programs 184

N
NameError 204
Natural Language Processing (NLP) software 134
nfl_stats 23
numpy module 31

O
open-box testing 103—104

compared to closed-box testing 103
open function 91
os module, comparing hundreds of files 210
Output and Terminal Panel 17
Output tab 17

P
pandas, Python library 257
parameters 59

and avoiding magic number 225
arguments as specific values of 37
code-breaking game example 224

parentheses 19, 37
calling functions 38

pbcopy, command-line utility, Mac OS 188
pbpaste, command-line utility, Mac OS 188
.pdf files 193
PdfFileReader 198
PdfFileWriter 198
pdfrw, Python .pdf library 196, 198
print function 67
print statement 181

and getting insight into code behavior 160
as iterative process 161
example of 161

problem
breaking down into subproblems 125

Copilot and solving big problems 124
problem decomposition 35, 59, 124—157

described 125
in code-breaking game example 222
in two-player dice game example 236
top-down design 125
value of 157

Problems tab 17
programmers

catalogs of designed patterns 249
learning how to program in the past 6
learning programming syntax 7

programming
many reasons for learning 216
use of functions in 40

programming environment
setting up 15
software overview 14
VS Code as preferred tool 15

prompt 5, 10, 32
correct code and human-readable 26
improving to find better solution 113

prompt engineering 10, 99—123
prompt patterns

catalogued, and Copilot chat refusing to engage in some
of 250

flipped interaction pattern 250
overview 248
persona pattern 253

pygame Python module 218
PyPDF2, Python .pdf library 194

function to add covers to .pdf documents 199
using earlier version of 203

improved function to add covers to .pdf documents 201
pyperclip module 186

cleaning up email 189
Python

and adding randomness 218
and number of lines of code 44
as high-level programming language 2
as interactive language 66
compared to other languages 14
.csv files 23
described 3
dictionary 90
docstrings and explaining function behavior 36
installing 15
modules 30, 53, 94
programming using Copilot vs. using Python 248
random built-in module 218
regression testing 100
strengths and weaknesses of Python .pdf libraries 196
string (text) 50
testing code 105

 269index

true/false values 50
two-dimensional data 88
writing a tool for cleaning up email, example of 189
writing a tool that merges .pdf files, example of 194

Python modules
built-in 184
commonly used 95
for working with PDF files 195
working with clipboard 185

Python prompt, variables in 68
Python terminology, importance of knowing 66
PythonTutor 180

Q
Quake, 1990s computer game 2

R
random module 218
randomness, adding 218
range function 80
reliability, functions and improving 39
repetition, functions and avoiding 38
Restart, Debug Toolbar button 165
return keyword 36, 59
row coordinate 89
Run Code icon 20

S
sentence, defined 134
Show example code option 65
shutil module 208
sidebar 16
Siri, AI assistant 5
slicing 75
software, learning how to write 14
special symbols 51, 52
Step Into, Debug Toolbar button 165
Step Out, Debug Toolbar button 165
Step Over, Debug Toolbar button 165, 166
Stop, Debug Toolbar button 165
strategy pattern 249. See also prompt patterns
strings 52, 72—74, 75, 76

as immutable values 76
described 72
for loop and accessing each value in 79
quotation marks in 72

subprocess module, merging PDF files in Python 195
Superbug 99
supervised learning 129, 157
syntax errors 159, 191

T
tasks

automating tedious 182
adding cover pages to PDF files 192
cleaning up email text 184
examples 184—215
making tools for 183
merging phone picture libraries 206, 208
reasons for learning programming 216
using Copilot to write tools 184

clear input and output 44
clearly defined behavior of 43
contrived 255
data processing and breaking problem into small 26
functions and larger 34
functions and reasonable 43
general value over specific use in 44
large 256
number of lines of code 44
performing clear 43
problem decomposition and 35, 59
reasonable 33
two-player dice game example 237

Test Driven Development (TDD) 100
Terminal tab 17
test cases

adding to docstring 105
and files as inputs 116
common use cases 101, 102
determining which test to use 103
edge cases 101, 102, 175
not automatically run by Copilot 108

testing 26
as combination of science and art 49, 103
checking extra or missing spaces 122
closed-box testing 100
common challenges with doctest 121
common ways to test code 100
creating artificial datasets for 117
doctest 105
expressing test cases 101
full testing example 110—116
functions and improving 38
incorrect input 102
in Python file 105
modifying prompts to find better solutions 113
multiple elements 103
new solutions 114
open-box testing 100
why it is crucial to test code 99
with files 116— 123
with Python prompt 105

Test Driven Development (TDD) 100

270 index

tests
larger datasets 117
understanding code and testing effectively 62

tkinter module 186
tools

for adding cover pages to PDF files, example of writing
using PyMuPDF library 203

for cleaning up email, example of writing 189
for merging phone picture libraries

example of writing tools 212
programmers and reasons for making 183
using Copilot to write 184

exploring and understanding options 189
working with specialized data format 184

top-down design
authorship identification and 129
described 125
example of code-breaking game 222
examples of 126
merging phone picture libraries, example of automating

task 211
summary of 138
two-player dice game example 236

tracing description 61
two-player dice game 216, 234—247

customizing 245
game_over function 240
how it works 234
implementing functions 240
play function 237, 243
roll-dice function 240
switch-player function 243
take_full_turn function 241
top-down design 236
turn_over function 241
while loop 237
wins-chips function 242

U
UnicodeDecodeError 151
unit testing 38, 59

V
values, Python dictionary 90
variable 37
variables 37, 67—68, 76

avoiding magic number 225
defined 67

Variables section, VS Code debugger 164
Visual Studio Code (VS Code) 15

Copilot Labs view in 63
creating new file in 18
different areas of interface 16, 17, 32
Explorer and file missing errors 17
installing 16
working with Copilot in 16

VS Code debugger 181
breakpoints

setting 162
using to selectively debug 167

components of
Debug sidebar 164
Debug toolbar 165

example of debugging 162
getting started 162
learning about code behavior 162
overview 162
selecting debug configuration 164
Watch expression 167

W
Watch section, VS Code debugger 164
while loops 82

use of 79
win32clipboard module 187
Wordle 221
working folder, setting up 17

X
xclip command-line utility, Linux 188

Z
zipfile module 95, 184

Challenge Description Remedies

Comments only If you give Copilot a prompt using the
comment symbol (#), when you start
a new line, it wants to just give you
more comments rather than code.
For example:

output "Hello Copilot"
to the screen

print "Hello world" to
the screen

We’ve seen Copilot generate line
after line of comments, sometimes
repeating itself! When this happens,
suggestion #3 (use docstrings) is
sometimes the most effective.

1. Add a newline (Enter) between your comment and Copilot’s
suggestion to help it switch from comments to code.

2. If a newline doesn’t work, you can type a letter or two of code (no
comment symbol). A couple letters from a keyword in your prompt
usually works. For example:

output "Hello Copilot" to the screen

pr

A couple letters from a keyword typically causes Copilot to give a code
suggestion.

3. Switch from using # comments to docstring comments like this:

"""

output "Hello Copilot" to the screen

"""

4. Use Ctrl–Enter to see if Copilot will give you suggestions that are
code rather than comments

Wrong code Sometimes Copilot just gives you
obviously wrong code from the start.
(You’ll learn throughout this book
how to identify incorrect code!)

In addition, sometimes Copilot
seems to get stuck down wrong
paths. For example, it might seem to
be trying to solve a different problem
than what you’ve asked it to solve.
(Suggestion 3, in particular, can help
with getting Copilot to go down a new
path.)

Much of this book is about how to address this problem, but here are
some quick tips to get Copilot to help:

1. Change your prompt to see if you can better describe what you
need.

2. Try using Ctrl–Enter to find a suggestion from Copilot that is the
correct code.

3. Close the VSCode program, wait a little bit, and restart it. This can
help clear the Copilot cache to get new suggestions.

4. Try breaking down the problem into smaller steps (see chapter 7
for more details).

5. Debug the code (see chapter 8).

6. Try asking ChatGPT for the code and feed its suggestions into
VSCode. A different LLM can sometimes give suggestions that help
the other LLM to get unstuck.

Copilot gives you:

YOUR CODE
HERE

We’ve had Copilot seem to tell us to
write our own code by generating this
(or similar text) after a prompt:

YOUR CODE HERE

We believe this is happening when we ask Copilot to solve a problem
that has been given by an instructor to students to solve in the past.
Why? Well, when we write our assignments for our students, we (as
instructors) often write some code and then tell our students to write
the rest by writing:

YOUR CODE HERE

Where we want students to write their code. Students tend to leave
that comment in their solution code which means Copilot was trained
to think this comment is an important part of the solution (it’s not).
Often, we’re able to solve this problem by finding reasonable solu-
tions in the Copilot suggestions with
Ctrl–Enter, but please see the solutions for Wrong Code if that doesn’t
work.

Missing modules Copilot gives you code, but it won’t
work because there are modules
missing. (Modules are additional
libraries that can be added to Python
to give pre-built functionality.)

See section 2.5, under “Modules” for how to install new modules on
your machine.

Common challenges working with Copilot

Madhusudhan Konda ● Foreword by Shay BanonMadhusudhan Konda ● Foreword by Shay Banon

ISBN-13: 978-1-63343-778-4

T
he way people write computer programs has changed
forever. Using GitHub Copilot, you describe in plain
English what you want your program to do, and the AI

generates it instantly.

Th is book shows you how to create and improve Python
programs using AI—even if you’ve never written a line
of computer code before. Spend less time on the slow,
low-level programming details and instead learn how
an AI assistant can bring your ideas to life immediately.
As you go, you’ll even learn enough of the Python language
to understand and improve what your AI assistant creates.

What’s Inside
● Prompts for working code
● Tweak code manually and with AI help
● AI-test your programs
● Let AI handle tedious details

If you can move fi les around on your
computer and install new programs,
you can learn to write useful software!

Dr. Leo Porter is a Teaching Professor at
UC San Diego. Dr. Daniel Zingaro is an
Associate Teaching Professor at the
University of Toronto.

Th e technical editor on this book was
Peter Morgan.

PROGRAMMING

M A N N I N G

“...masterfully blends the
basics of programming with
the eff ective use of AI tools

to produce code.”—Mehran Sahami
Stanford University

“Th is is such a well thought
out book from the point of

view of someone just starting
to code post generative

 AI tools.”—Ana Bell, MIT

“You are about to learn
programming with one of the

most exciting human task-
supporters of this century...”—From the foreword by

Beth Simon, UC San Diego

“Th is book accelerates your
Copilot programming

learning journey beyond what
I ever thought possible.”—Austin Z. Henley, Microsoft

See first pageLeo Porter ● Daniel Zingaro ● Foreword by Beth Simon, Ph.D.

L E A R N AI-Assisted Python Programming

For print book owners,
all ebook formats are free:

https://www.manning.com/freebook

	Learn AI-Assisted Python Programming
	dedication
	contents
	foreword
	acknowledgments
	introduction
	AI assistants change how programming is done
	Audience
	What we expect from you
	What you will be able to do after reading this book
	The challenge in working with AI assistants
	Why we wrote this book
	Warning: beware of elitism
	How this book is organized: a roadmap
	Source code downloads
	Software/hardware requirements
	liveBook discussion forum

	about the authors
	about the cover illustration
	1 Introducing AI-assisted programming with Copilot
	How we talk to computers
	Making it a little easier
	Making it a lot easier

	About the technology
	Copilot, your AI Assistant
	How Copilot works behind the scenes—in 30 seconds

	How Copilot changes how we learn to program
	What else can Copilot do for us?
	Risks and challenges when using Copilot
	The skills we need
	Societal concerns about AI code assistants like Copilot
	Summary

	2 Getting started with Copilot
	Time to set up your computer to start learning
	Overview of the software in your programming environment

	Getting your system set up
	Working with Copilot in Visual Studio Code
	Set up your working folder
	Check to see if your setup is working properly

	Addressing common Copilot challenges
	Our first programming problem
	Showcasing Copilot’s value in a data processing task

	Summary

	3 Designing functions
	Functions
	The components of a function
	Using a function

	Benefits of functions
	Roles of functions
	What’s a reasonable task for a function?
	Attributes of good functions
	Examples of good (and bad) leaf functions

	The cycle of design of functions with Copilot
	Examples of creating good functions with Copilot
	Dan’s stock pick
	Leo’s password
	Getting a strong password
	Scrabble scoring
	The best word

	Summary

	4 Reading Python code: Part 1
	Why we need to read code
	Asking Copilot to explain code
	Top 10 programming features you need to know: Part 1
	#1. Functions
	#2. Variables
	#3. Conditionals
	#4. Strings
	#5. Lists
	Conclusion

	Summary

	5 Reading Python code: Part 2
	Top 10 programming features you need to know: Part 2
	#6. Loops
	#7. Indentation
	#8. Dictionaries
	#9. Files
	#10. Modules

	Summary

	6 Testing and prompt engineering
	Why it is crucial to test code
	Closed-box and open-box testing
	Closed-box testing
	How do we know which test cases to use?
	Open-box testing

	How to test your code
	Testing using the Python prompt
	Testing in your Python file (we won’t be doing it this way)
	doctest

	Revisiting the cycle of designing functions with Copilot
	Full testing example
	Finding the most students we can add to a row
	Improving the prompt to find a better solution
	Testing the new solution

	Another full testing example—Testing with files
	What tests should we run?
	Creating the function
	Testing the function
	Common challenges with doctest

	Summary

	7 Problem decomposition
	Problem decomposition
	Small examples of top-down design
	Authorship identification
	Authorship identification using top-down design
	Breaking down the process subproblem
	Figuring out the signature for the mystery book

	Summary of our top-down design
	Implementing our functions
	clean_word
	average_word_length
	different_to_total
	exactly_once_to_total
	split_string
	get_sentences
	average_sentence_length
	get_phrases
	average_sentence_complexity
	make_signature
	get_all_signatures
	get_score
	lowest_score
	process_data
	make_guess

	Going further
	Summary

	8 Debugging and better understanding your code
	What causes errors (bugs)?
	How to find the bug
	Using print statements to learn about the code behavior
	Using VS Code’s debugger to learn about the code behavior

	How to fix a bug (once found)
	Asking Copilot to fix your bug via chat
	Giving Copilot a new prompt for the whole function
	Giving Copilot a targeted prompt for part of a function
	Modifying the code to fix the bug yourself

	Modifying our workflow in light of our new skills
	Applying our debugging skills to a new problem
	Using the debugger to better understand code
	A caution about debugging
	Summary

	9 Automating tedious tasks
	Why programmers make tools
	How to use Copilot to write tools
	Example 1: Cleaning up email text
	Conversing with Copilot
	Writing the tool to clean up email

	Example 2: Adding cover pages to PDF files
	Conversing with Copilot
	Writing the tool

	Example 3: Merging phone picture libraries
	Conversing with Copilot
	Top-down design
	Writing the tool

	Summary

	10 Making some games
	Game programs
	Adding randomness
	Example 1: Bulls and Cows
	How the game works
	Top-down design
	Parameters and return types
	Implementing our functions
	Adding a graphical interface for Bulls and Cows

	Example 2: Bogart
	How the game works
	Top-down design
	Implementing our functions

	Summary

	11 Future directions
	Prompt patterns
	Flipped interaction pattern
	Persona pattern

	Limitations and future directions
	Where Copilot (currently) struggles
	Is Copilot a new programming language?

	Summary

	references
	index

