
M A N N I N G

Yong Cui

63 techniques to improve your Python code

Why Python?

Cross-platform

Open source
community support

Resourceful
libraries

Quick
prototyping

Expressive and
readable syntax

Why do we learn Python?

Python How-To
63 TECHNIQUES TO IMPROVE YOUR PYTHON CODE

YONG CUI

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2023 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Marina Michaels
20 Baldwin Road Technical development editor: René van den Berg
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Keri Hales

Copy editor: Keir Simpson
Proofreader: Melody Dolab

Technical proofreaders: Ignacio Beltran Torres and
Walter Alexander Mata Lopez

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617299742
Printed in the United States of America

http://www.manning.com

 To my wife, Tingting Gu,
who sat next to me on numerous late nights

while I was writing this book.

iv

contents
preface xiv
acknowledgments xvi
about this book xvii
about the author xxi
about the cover illustration xxii

1 Developing a pragmatic learning strategy 1
1.1 Aiming at becoming a pragmatic programmer 2

Focusing on writing readable Python code 2 ■ Considering
maintainability even before you write any code 3

1.2 What Python can do well or as well as other languages 4

1.3 What Python can’t do or can’t do well 6

1.4 What you’ll learn in this book 6
Focusing on domain-independent knowledge 6 ■ Solving
problems through synthesis 8 ■ Learning skills in context 9

CONTENTS v

PART 1 USING BUILT-IN DATA MODELS.................................11

2 Processing and formatting strings 13
2.1 How do I use f-strings for string interpolation

and formatting? 14
Formatting strings before f-strings 14 ■ Using f-strings to
interpolate variables 15 ■ Using f-strings to interpolate
expressions 16 ■ Applying specifiers to format f-strings 18
Discussion 22 ■ Challenge 23

2.2 How do I convert strings to retrieve the represented data? 23
Checking whether strings represent alphanumeric values 24
Casting strings to numbers 25 ■ Evaluating strings to derive their
represented data 27 ■ Discussion 29 ■ Challenge 29

2.3 How do I join and split strings? 29
Joining strings with whitespaces 30 ■ Joining strings with any
delimiters 31 ■ Splitting strings to create a list of strings 32
Discussion 34 ■ Challenge 34

2.4 What are the essentials of regular expressions? 34
Using regular expressions in Python 35 ■ Creating the pattern
with a raw string 36 ■ Understanding the essentials of a search
pattern 38 ■ Dissecting the matches 41 ■ Knowing the common
methods 43 ■ Discussion 44 ■ Challenge 44

2.5 How do I use regular expressions to process texts? 44
Creating a working pattern to find the matches 45 ■ Extracting the
needed data from the matches 46 ■ Using named groups for text
processing 47 ■ Discussion 48 ■ Challenge 48

3 Using built-in data containers 50
3.1 How do I choose between lists and tuples? 51

Using tuples for immutability and using lists for mutability 51
Using tuples for heterogeneity and using lists for homogeneity 52
Discussion 53 ■ Challenge 54

3.2 How do I sort lists of complicated data using custom
functions? 54

Sorting lists using the default order 54 ■ Using a built-in
function as the sorting key 55 ■ Using custom functions for more
complicated sorting needs 56 ■ Discussion 57 ■ Challenge 57

3.3 How do I build a lightweight data model using
named tuples? 58

Understanding alternative data models 58 ■ Creating named
tuples to hold data 59 ■ Discussion 61 ■ Challenge 62

CONTENTSvi

3.4 How do I access dictionary keys, values, and items? 62
Using dynamic view objects (keys, values, and items) directly 63
Being cautious with the KeyError exception 64 ■ Avoiding
KeyError with a hygiene check first: The non-Pythonic way 65
Using the get method to access a dictionary item 65 ■ Watching
for the setdefault method’s side effect 66 ■ Discussion 67
Challenge 68

3.5 When do I use dictionaries and sets instead of lists
and tuples? 68

Taking advantage of the constant lookup efficiency 68
Understanding hashable and hashing 70 ■ Discussion 74
Challenge 74

3.6 How do I use set operations to check the relationships between
lists? 74

Checking whether a list contains all items of another list 74
Checking whether a list contains any element of another list 76
Dealing with multiple set objects 77 ■ Discussion 79
Challenge 80

4 Dealing with sequence data 82
4.1 How do I retrieve and manipulate subsequences

with slice objects? 83
Taking advantage of the full features of slicing 83 ■ Not confusing
slices with ranges 86 ■ Using named slice objects to process
sequence data 87 ■ Manipulating list items with slicing
operations 88 ■ Discussion 89 ■ Challenge 89

4.2 How do I use positive and negative indexing to
retrieve items? 90

Positive indexing starts from the beginning of the list 90
Negative indexing starts from the end of the list 90 ■ Combining
positive and negative indices as needed 91 ■ Discussion 92
Challenge 92

4.3 How do I find items in a sequence? 92
Checking an item’s presence 92 ■ Using the index method to locate the
item 93 ■ Finding substrings in a string 94 ■ Finding an instance
of custom classes in a list 95 ■ Discussion 96 ■ Challenge 96

4.4 How do I unpack a sequence? Beyond tuple unpacking 96
Unpacking short sequences with one-to-one correspondence 97
Retrieving consecutive items using the starred expression 98
Denoting unwanted items with underscores to remove
distraction 99 ■ Discussion 101 ■ Challenge 101

CONTENTS vii

4.5 When should I consider data models other than lists
and tuples? 101

Using sets where membership is concerned 101 ■ Using deques if
you care about first-in-first-out 102 ■ Processing multidimensional
data with NumPy and Pandas 104 ■ Discussion 104
Challenge 105

5 Iterables and iterations 107
5.1 How do I create common data containers using iterables? 108

Getting to know iterables and iterators 109 ■ Inspecting
iterability 110 ■ Using iterables to create built-in data
containers 112 ■ Discussion 114 ■ Challenge 115

5.2 What are list, dictionary, and set comprehensions? 115
Creating lists from iterables using list comprehension 115
Creating dictionaries from iterables using dictionary comprehension 117
Creating sets from iterables using set comprehension 117 ■ Applying a
filtering condition 118 ■ Using embedded for loops 119
Discussion 120 ■ Challenge 121

5.3 How do I improve for-loop iterations with built-in
functions? 121

Enumerating items with enumerate 122 ■ Reversing items with
reversed 123 ■ Aligning iterables with zip 124 ■ Chaining
multiple iterables with chain 125 ■ Filtering the iterable with
filter 127 ■ Discussion 127 ■ Challenge 128

5.4 Using optional statements within for and while loops 128
Exiting the loops with the break statement 130 ■ Skipping an
iteration with the continue statement 132 ■ Using else statements
in the for and while loops 134 ■ Discussion 137
Challenge 137

PART 2 DEFINING FUNCTIONS ..139

6 Defining user-friendly functions 141
6.1 How do I set default arguments to make function

calls easier? 142
Calling functions with default arguments 142 ■ Defining
functions with default arguments 143 ■ Avoiding the pitfall of
setting default arguments for mutable parameters 145
Discussion 148 ■ Challenge 148

CONTENTSviii

6.2 How do I set and use the return value in
function calls? 149

Returning a value implicitly or explicitly 149 ■ Defining functions
returning zero, one, or multiple values 150 ■ Using multiple
values returned from a function call 153 ■ Discussion 154
Challenge 154

6.3 How do I use type hints to write understandable
functions? 154

Providing type hinting to variables 155 ■ Using type hinting in
function definitions 156 ■ Applying advanced type-hinting skills to
function definitions 157 ■ Discussion 160 ■ Challenge 161

6.4 How do I increase function flexibility with *args
and **kwargs? 161

Knowing positional and keyword arguments 162 ■ Accepting a
variable number of positional arguments 163 ■ Accepting a
variable number of keyword arguments 165 ■ Discussion 166
Challenge 166

6.5 How do I write proper docstrings for a function? 166
Examining the basic structure of a function’s docstring 167
Specifying the function’s action as the summary 168 ■ Documenting
the parameters and the return value 169 ■ Specifying any exceptions
possibly raised 170 ■ Discussion 171 ■ Challenge 171

7 Using functions beyond the basics 173
7.1 How do I use lambda functions for small jobs? 174

Creating a lambda function 174 ■ Using lambdas to perform a
small one-time job 175 ■ Avoiding pitfalls when using lambda
functions 176 ■ Discussion 178 ■ Challenge 178

7.2 What are the implications of functions as objects? 179
Storing functions in a data container 179 ■ Sending functions as
arguments to higher-order functions 181 ■ Using functions as a
return value 182 ■ Discussion 183 ■ Challenge 183

7.3 How do I check functions’ performance
with decorators? 183

Decorating a function to show its performance 185 ■ Dissecting the
decorator function 186 ■ Wrapping to carry over the decorated
function’s metadata 190 ■ Discussion 192 ■ Challenge 192

CONTENTS ix

7.4 How can I use generator functions as a memory-efficient
data provider? 193

Creating a generator to yield perfect squares 193 ■ Using
generators for their memory efficiency 195 ■ Using generator
expressions where applicable 196 ■ Discussion 197
Challenge 197

7.5 How do I create partial functions to make routine function calls
easier? 197

“Localizing” shared functions to simplify function calls 198
Creating a partial function to localize a function 199
Discussion 200 ■ Challenge 200

PART 3 DEFINING CLASSES...201

8 Defining user-friendly classes 203
8.1 How do I define the initialization method for a class? 204

Demystifying self: The first parameter in __init__ 204 ■ Setting
proper arguments in __init__ 208 ■ Specifying all attributes in
__init__ 209 ■ Defining class attributes outside the __init__
method 212 ■ Discussion 212 ■ Challenge 213

8.2 When do I define instance, static, and class methods? 213
Defining instance methods for manipulating individual instances 213
Defining static methods for utility functionalities 214 ■ Defining class
methods for accessing class-level attributes 215 ■ Discussion 217
Challenge 217

8.3 How do I apply finer access control to a class? 217
Creating protected methods by using an underscore as the prefix 218
Creating private methods by using double underscores as the
prefix 220 ■ Creating read-only attributes with the property
decorator 221 ■ Verifying data integrity with a property
setter 223 ■ Discussion 224 ■ Challenge 225

8.4 How do I customize string representation for a class? 225
Overriding __str__ to show meaningful information for an
instance 225 ■ Overriding __repr__ to provide instantiation
information 226 ■ Understanding the differences between __str__
and __repr__ 227 ■ Discussion 229 ■ Challenge 229

CONTENTSx

8.5 Why and how do I create a superclass and subclasses? 229
Identifying the use scenario of subclasses 230 ■ Inheriting the superclass’s
attributes and methods automatically 231 ■ Overriding the superclass’s
methods to provide customized behaviors 232 ■ Creating non-public
methods of the superclass 235 ■ Discussion 236 ■ Challenge 236

9 Using classes beyond the basics 238
9.1 How do I create enumerations? 239

Avoiding a regular class for enumerations 239 ■ Creating an
enumeration class 241 ■ Using enumerations 242 ■ Defining
methods for the enumeration class 243 ■ Discussion 244
Challenge 244

9.2 How do I use data classes to eliminate
boilerplate code? 245

Creating a data class using the dataclass decorator 245 ■ Setting
default values for the fields 246 ■ Making data classes
immutable 248 ■ Creating a subclass of an existing data
class 249 ■ Discussion 250 ■ Challenge 250

9.3 How do I prepare and process JSON data? 251
Understanding JSON’s data structure 251 ■ Mapping data
types between JSON and Python 252 ■ Deserializing JSON
strings 253 ■ Serializing Python data to JSON format 255
Discussion 257 ■ Challenge 257

9.4 How do I create lazy attributes to improve performance? 257
Identifying the use scenario 258 ■ Overriding the __getattr_ special
method to implement lazy attributes 259 ■ Implementing a property
as a lazy attribute 261 ■ Discussion 262 ■ Challenge 262

9.5 How do I define classes to have distinct concerns? 262
Analyzing a class 263 ■ Creating additional classes to isolate the
concerns 265 ■ Connecting related classes 266 ■ Discussion 269
Challenge 269

PART 4 MANIPULATING OBJECTS AND FILES271

10 Fundamentals of objects 273
10.1 How do I inspect an object’s type to improve

code flexibility? 274
Checking an object’s type using type 275 ■ Checking an object’s type
using isinstance 276 ■ Checking an object’s type generically 277
Discussion 279 ■ Challenge 279

CONTENTS xi

10.2 What’s the lifecycle of instance objects? 279
Instantiating an object 280 ■ Being active in applicable
namespaces 281 ■ Tracking reference counts 282 ■ Destructing
the object 284 ■ Discussion 285 ■ Challenge 286

10.3 How do I copy an object? 286
Creating a (shallow) copy 287 ■ Noting the potential problem of a
shallow copy 288 ■ Creating a deep copy 291 ■ Discussion 291
Challenge 292

10.4 How do I access and change a variable in
a different scope? 292

Accessing any variable: The LEGB rule for name lookup 293
Changing a global variable in a local scope 294 ■ Changing an
enclosing variable 296 ■ Discussion 297 ■ Challenge 297

10.5 What’s callability, and what does it imply? 297
Distinguishing classes from functions 298 ■ Revisiting the higher-
order function map 299 ■ Using callable as the key
argument 299 ■ Creating decorators as classes 300
Discussion 302 ■ Challenge 302

11 Dealing with files 304
11.1 How do I read and write files using context management? 305

Opening and closing files: Context manager 305 ■ Reading data
from a file in different ways 307 ■ Writing data to a file in
different ways 310 ■ Discussion 313 ■ Challenge 313

11.2 How do I deal with tabulated data files? 313
Reading a CSV file using csv reader 313 ■ Reading a CSV file
that has a header 314 ■ Writing data to a CSV file 316
Discussion 317 ■ Challenge 318

11.3 How do I preserve data as files using pickling? 318
Pickling objects for data preservation 318 ■ Restoring data by
unpickling 319 ■ Weighing the pros and cons of pickling 321
Discussion 324 ■ Challenge 324

11.4 How do I manage files on my computer? 324
Creating a directory and files 325 ■ Retrieving the list of files
of a specific kind 326 ■ Moving files to a different folder 326
Copying files to a different folder 328 ■ Deleting a specific kind
of files 329 ■ Discussion 329 ■ Challenge 329

11.5 How do I retrieve file metadata? 330
Retrieving the filename-related information 330 ■ Retrieving the file’s
size and time information 331 ■ Discussion 333 ■ Challenge 333

CONTENTSxii

PART 5 SAFEGUARDING THE CODEBASE335

12 Logging and exception handling 337
12.1 How do I monitor my program with logging? 338

Creating the Logger object to log application events 338
Using files to store application events 339 ■ Adding multiple
handlers to the logger 341 ■ Discussion 342 ■ Challenge 342

12.2 How do I save log records properly? 343
Categorizing application events with levels 343 ■ Setting a
handler’s level 345 ■ Setting formats to the handler 346
Discussion 347 ■ Challenge 348

12.3 How do I handle exceptions? 348
Handling exceptions with try.. .except... 349 ■ Specifying the
exception in the except clause 351 ■ Handling multiple
exceptions 352 ■ Showing more information about an
exception 354 ■ Discussion 355 ■ Challenge 355

12.4 How do I use else and finally clauses in exception
handling? 355

Using else to continue the logic of the code in the try clause 356
Cleaning up the exception handling with the finally clause 357
Discussion 359 ■ Challenge 359

12.5 How do I raise informative exceptions with custom
exception classes? 360

Raising exceptions with a custom message 360 ■ Preferring built-
in exception classes 362 ■ Defining custom exception classes 363
Discussion 365 ■ Challenge 366

13 Debugging and testing 367
13.1 How do I spot problems with tracebacks? 368

Understanding how a traceback is generated 369 ■ Analyzing a
traceback when running code in a console 370 ■ Analyzing a
traceback when running a script 371 ■ Focusing on the last call
in a traceback 372 ■ Discussion 373 ■ Challenge 373

13.2 How do I debug my program interactively? 373
Activating the debugger with a breakpoint 374 ■ Running code
line by line 375 ■ Stepping into another function 377
Inspecting pertinent variables 378 ■ Discussion 379
Challenge 379

CONTENTS xiii

13.3 How do I test my functions automatically? 380
Understanding the basis for testing functions 380 ■ Creating a
TestCase subclass for testing functions 381 ■ Setting up the
test 384 ■ Discussion 385 ■ Challenge 385

13.4 How do I test a class automatically? 385
Creating a TestCase subclass for testing a class 386 ■ Responding
to test failures 387 ■ Discussion 388 ■ Challenge 388

PART 6 BUILDING A WEB APP ...391

14 Completing a real project 393
14.1 How do I use a virtual environment for my project? 394

Understanding the rationale for virtual environments 394 ■ Creating
a virtual environment for each project 395 ■ Installing packages in
the virtual environment 396 ■ Using virtual environments in Visual
Studio Code 397 ■ Discussion 398 ■ Challenge 398

14.2 How do I build the data models for my project? 399
Identifying the business needs 399 ■ Creating helper classes
and functions 400 ■ Creating the Task class to address these
needs 401 ■ Discussion 407 ■ Challenge 407

14.3 How do I use SQLite as my application’s database? 408
Creating the database 408 ■ Retrieving records from
the database 409 ■ Saving records to the database 411
Updating a record in a database 412 ■ Deleting a record
from the database 413 ■ Discussion 413 ■ Challenge 413

14.4 How do I build a web app as the frontend? 414
Understanding the essential features of streamlit 414
Understanding the app’s interface 415 ■ Tracking user activities
using session state 417 ■ Setting up the sidebar 420 ■ Showing
the tasks 423 ■ Showing a task’s details 425 ■ Creating a new
task 426 ■ Organizing your project 427 ■ Running the
app 428 ■ Discussion 429 ■ Challenge 429

solutions to the challenges 431

index 465

Appendices A–E can be found in the digital and online versions
of this book.

xiv

preface
We’re probably the luckiest generation in human history. We’re no longer in the Neo-
lithic Age or the Industrial Age; we’ve entered the Information Age. Advanced infor-
mation technologies, particularly computers and networks, have transformed human
life. We can take a flight from our hometown to another place thousands of miles
away in less than half a day. We can make a doctor’s appointment using a smartphone
and attend the appointment through a video call, if we prefer. We can order almost
anything from online stores and get it delivered within days or even hours.

 These transformations have been accompanied by the accumulation of tremen-
dous amounts of data over the past couple of decades. The work of processing and
analyzing this data has contributed to the emergence of a new interdisciplinary sub-
ject: data science. As a behavioral scientist, I spend a significant amount of time deal-
ing with data, so you might say that I’m applying data science to behavioral research.
It takes more than paper and pencil to process data of this magnitude, however.
Instead, I’ve been writing code to clean data and run statistical models with a wonder-
ful programming language: Python.

 As a self-taught coder, I know it’s not easy to grasp Python or any other program-
ming language—not because it takes a long time to learn all the techniques (and
know which ones to use when), but because too many learning resources are available,
such as online courses, tutorial videos, blog articles, and certainly books. How do you
choose the ones that are most suitable for you?

 I had the same question when I started learning Python. Over the years, I’ve tried a
variety of resources, and I’ve found that the best learning resources are books,

PREFACE xv

because books have well-structured content that makes it possible to take a deep dive
into the language. During the learning process, you can set your own pace. Whenever
you need to, you can slow down to digest hard topics. In addition, you can refer to the
books on your bookshelf quickly should any questions arise.

 Most of the Python books on the market are written for beginners (providing
detailed coverage of the language’s basic features) or advanced users (covering spe-
cialized techniques that are less generalizable). Without doubt, a few of those books
are great. From the learning-curve perspective, however, I felt that a book was missing:
one for Python learners at the late-beginner and early-intermediate levels. These
stages are critical, as learners are forming the right coding habits and figuring out the
proper Pythonic techniques for a given context. From the content perspective, I
thought the missing book should address general programming problems that most
readers could relate to their work, no matter what they do with Python: web develop-
ment or data science. In other words, more readers could benefit from such a book
because it would provide general domain-independent knowledge.

 I wrote this book to fill the gap between beginner and advanced books. I hope
you’ll feel that you’ve learned a few things after reading it.

xvi

acknowledgments
I’d like to thank my mentors, Dr. Paul Cinciripini and Dr. Jason Robinson at the Uni-
versity of Texas MD Anderson Cancer Center, for supporting me as I pursued the use
of Python as the language for our analytic work. That effort eventually led to this book.

 I also want to thank the Manning team: Publisher Marjan Bace for leading the excel-
lent editorial and production teams; Associate Publisher Michael Stephens for inviting
me to write this book; Senior Development Editor Marina Michaels for coordinating
and editing; René van den Berg for technical editing; Walter Alexander and Ignacio
Torres for providing code review; Aleksandar Dragosavljević for organizing peer
reviews; as well as the production staff for their hard work in formatting this book.

 Finally, thank you to the reviewers, who provided valuable feedback: Alexei
Znamensky, Alexey Vyskubov, Ariel Andres, Brent Boylan, Chris Kolosiwsky, Christo-
pher Kardell, Christopher Villanueva, Claudiu Schiller, Clifford Thurber, Dirk
Gomez, Ganesh Swaminathan, Georgios Doumas, Gerald Mack, Gregory Grimes, Igor
Dudchenko, Iyabo Sindiku, James Matlock, Jeffrey M. Smith, Josh McAdams, Keerthi
Shetty, Larry Cai, Louis Aloia, Marcus Geselle, Mary Anne Thygesen, Mike Baran,
Ninoslav Cerkez, Oliver Korten, Piergiorgio Faraglia, Radhakrishna M.V., Rajinder
Yadav, Raymond Cheung, Robert Wenner, Shankar Swamy, Sriram Macharla, Giri S.
Swaminathan, Steven Herrera, and Vitosh K. Doynov. Their suggestions helped make
this a better book.

xvii

about this book
In this book, I focus on teaching the essential techniques of Python from a specialty-
independent perspective. Although a variety of Python packages are available for different
specialties, such as data science and web development, these packages are built on the
core features of Python. No matter what domain-specific Python packages you use for your
job, you must have a good understanding of essential techniques, such as choosing the
proper data models and writing well-structured functions and classes. These techniques
make it possible for you to use your domain-specific packages comfortably.

Who should read this book
If you’ve been self-teaching and using Python for some time, but feel that your Python
knowledge is unstructured, I consider you to be a late-beginner or early-intermediate
user. This book is right for you because you need to reinforce and synthesize your Python
knowledge in a structured way. In this book, I identify several topics in each chapter to
address common problems that you may encounter in your work. My coverage of these
topics teaches you more than how to address a specific problem; it also frames the con-
tent in a larger context, showing why and how the topic matters when you’re working
on a project. This way, you’re not learning individual techniques to complete separate
tasks; you’re completing a project and learning these techniques in the process.

How this book is organized: A road map
This book consists of six parts, as shown in the following figure. In the first part (chap-
ters 2–5), you study the built-in data models, such as strings, lists, and dictionaries.
These data models are the building blocks of any project. In the second part (chapters

ABOUT THIS BOOKxviii

6 and 7), you learn about best practices for defining functions. Functions are integral
to any project because they’re responsible for manipulating data to create the desired
output. In the third part (chapters 8 and 9), you learn techniques for defining custom
classes. Instead of using built-in classes, we define custom classes to better model the
data in our project. In the fourth part (chapters 10 and 11), you learn the fundamen-
tals of using objects and manipulating files on your computers. In the fifth part (chap-
ters 12 and 13), you learn a variety of techniques to safeguard your programs,
including logging, exception handling, and testing. In the sixth part (chapter 14), you

• Objects: mutability, hashability, callability,
 copying, instantiation and destruction
• Inspection: type, isinstance, generic types
• Namespace: scope, LEGB, global, nonlocal
• Using files: context manager, tabulated data,
 metadata, moving and copying
• Pickling: flexibility and integrity

Part 1. Built-in data models

• Strings: formatting and data extracting
• Lists: mutability, homogeneity, sorting
• Tuples: immutability, heterogeneity,
 named tuples
• Dictionaries: hashability, key-value
 pairs, view objects
• Sets: hashability, set operations
• Sequences: indexing, slicing,
 unpacking, searching
• Iterables: comprehensions, iterations

Part 2. Writing good functions

• Structure: input arguments, return value
• Default arguments: immutable and mutable
• Variable number of arguments: *args, **kwargs
• Annotations: type hints, generic types
• Docstrings: parameters, return value, exceptions
• Advanced concepts: lambda, decorator, closure,
 higher-order function, generator, partial function

Part 3. Defining good classes

• Initialization: specifying all attributes
• Methods: instance, static, and class methods
• Access control: protected, private, property
• String representations: __str__ and __repr__
• Hierarchy: superclass and subclass
• Enumerations: enum and iterations
• Data classes: removing boilerplate, fields
• Lazy evaluation: property and __getattr__ Part 4. Using objects and files

Part 6. Completing a project to build a web app

Working on the project as the shared context

Part 5. Safeguarding programs

• Logging: levels, handlers, proper log records
• Exceptions: try...except...else...finally, handle
 specific exceptions, custom
 exceptions
• Debugging: tracebacks, interactive
 debugging
• Testing: test cases, functions, classes

ABOUT THIS BOOK xix

synthesize all the knowledge you’ve gained to produce a web app—a project that
serves as the teaching frame in all the other chapters.

 To follow along with the teaching, I recommend that you use a computer while
you’re studying this book, which will allow you to get familiar with Python syntax and
techniques faster. I’ve uploaded all the code in GitHub, and you can find my public
repository at https://github.com/ycui1/python_how_to. In this book, however, when-
ever I show you some code, I provide the necessary explanations and output, so it’s
fine if you don’t have a computer around while you’re reading this book.

 If you do intend to use a computer, your computer’s operating system doesn’t mat-
ter. Windows, macOS, and Linux are all fine because Python is a cross-platform pro-
gramming language. (See appendix A online for Python installation instructions.)
Because I focus on the essential techniques, which have stabilized in recent Python
releases, it’s not too important whether your computer runs Python 3.8 or earlier, but
to get the most out of the book, I recommend that you install Python 3.10 or later.

About the appendices
The online version of this book has five appendices. Appendix A, Learning Python
with REPL in IDLE, shows how to write Python code interactively. Appendix B, Manag-
ing Python packages with pip, shows how to manage Python packages. Appendix C,
Using Jupyter Notebook: A web-based interactive Python editor, shows how to work
with Jupyter Notebook. Appendix D, Integrating version control into your project,
shows the importance of version control in your codebase. Appendix E, Preparing
your package for public distribution, shows how to publish your package.

About the code
This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes, code is also in bold to
highlight changes from previous steps in the chapter, such as when a new feature adds
to an existing line of code.

 In many cases, the original source code has been reformatted; I’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, listings include line-continuation markers (➥). Additionally, com-
ments in the source code have been removed from the listings when the code is
described in the text. Code annotations accompany many of the listings, highlighting
important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/python-how-to. The complete code for
the examples in the book is available for download from the Manning website at
https://www.manning.com/books/python-how-to and from GitHub at https://
github.com/ycui1/python_how_to.

https://github.com/ycui1/python_how_to
https://livebook.manning.com/book/python-how-to
https://www.manning.com/books/python-how-to
https://github.com/ycui1/python_how_to
https://github.com/ycui1/python_how_to

ABOUT THIS BOOKxx

liveBook discussion forum
Purchase of Python How-To includes free access to liveBook, Manning’s online reading
platform. Using liveBook’s exclusive discussion features, you can attach comments to
the book globally or to specific sections or paragraphs. It’s a snap to make notes for your-
self, ask and answer technical questions, and receive help from the author and other
users. To access the forum, go to https://livebook.manning.com/book/python-how-to/
discussion. You can learn more about Manning’s forums and the rules of conduct at
https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest that you try asking the author some challenging questions, lest their interest
stray! The forum and the archives of previous discussions will be accessible on the
publisher’s website as long as the book is in print.

Other online resources
You can find official documentation, including tutorials and references, at https://
docs.python.org/3. The author, Dr. Yong Cui, regularly writes blogs on Python and
related data science topics at Medium (https://medium.com/@yongcui01).

https://livebook.manning.com/book/python-how-to/discussion
https://livebook.manning.com/book/python-how-to/discussion
https://livebook.manning.com/discussion
https://docs.python.org/3
https://docs.python.org/3
https://medium.com/@yongcui01

xxi

about the author
DR. YONG CUI is a scientist who has been working in the biomedicine field for more
than 15 years. His research focuses on developing mobile health apps for behavioral
interventions using Swift and Kotlin. As his favorite language, Python is his go-to lan-
guage for data analysis, machine learning, and research-tool development. In his
spare time, he likes to write blog posts on a variety of technical topics, including
mobile development, Python programming, and artificial intelligence.

xxii

about the cover illustration
The figure on the cover of Python How-To is titled “Paysanne des environs de Soleure,”
or “Peasant woman around Solothurn,” taken from a collection by Jacques Grasset de
Saint-Sauveur, published in 1788. Each illustration is finely drawn and hand-colored.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was by their dress alone. Manning celebrates the inventiveness and initia-
tive of the computer business with book covers based on the rich diversity of regional
culture centuries ago, brought back to life by pictures from collections such as this
one.

1

Developing a pragmatic
 learning strategy

Python is an amazing programming language. Its open source, general-purpose,
platform-independent nature has given it an enormous developer community,
along with an incredible ecosystem that includes tens of thousands of freely avail-
able libraries for web development, machine learning (ML), data science, and
many other domains. I hope that we share this belief: knowing how to code in
Python is great, but knowing how to write truly efficient, secure, and maintainable
applications gives you a tremendous advantage. This book will help you go from a
Python beginner to confident programmer.

 In the Python ecosystem, we use domain-specific Python tools, such as web
frameworks and ML libraries, to complete various tasks in our jobs. The effective
employment of these tools is nontrivial, as it requires considerable familiarity with

This chapter covers
 What being pragmatic means

 What Python can do

 When you should consider alternative languages

 What you can expect to learn from this book

2 CHAPTER 1 Developing a pragmatic learning strategy

essential Python skills, such as processing texts, dealing with structured data, creating
control flows, and handling files. Python programmers can write different solutions
to address the same tasks. Among these solutions, one is generally better than
the others because it may be more concise, more readable, or more efficient, which
we collectively term as Pythonic: an idiomatic coding style that all Python programmers
strive to acquire. This book is about how to write Pythonic code to address pro-
gramming tasks.

 Python is so well developed and has so many features to learn that it would be
impossible or unwise to try to learn everything about it from this book. Instead, I’ll
take a pragmatic approach to defining what I’ll teach in this book: the essential skills
that you’ll most likely use in your projects. Equally important, I’ll frequently mention
how to use these skills with the consideration of readability and maintainability so that
you can form good coding habits, which I’ll bet that you and your teammates will
greatly appreciate.

NOTE You’ll see callouts like this one throughout the book. Many of them are
devoted to tips regarding readability and maintainability. Don’t miss them!

1.1 Aiming at becoming a pragmatic programmer
We code for purposes, such as building websites, training ML models, or analyzing
data. Whatever our purposes are, we want to be pragmatic; we write code to solve real
problems. Thus, before we learn to code from the beginning or advance our coding
skills in the middle of our career, we should be clear about our intentions. But even if
you’re unsure of what you desire to achieve with Python at this stage, the good news is
that core Python features are universal knowledge. After you grasp the core features,
you can apply them to any domain-specific Python tools.

 Aiming to become a pragmatic programmer means that you should focus on the
techniques that are most useful. Mastering these skills is just the first milestone in your
journey, however; the long-term game in coding is writing readable code that not only
works, but also fosters maintainability.

1.1.1 Focusing on writing readable Python code

As a developer, I’m obsessed with readability. Writing code is like speaking a real-world
language. When we speak a language, don’t we want others to understand us? If your
answer is yes, you probably agree with me that we want others to understand our code
too. Whether our code’s readers possess the necessary technical expertise to under-
stand our code is out of our control. What we can control is how we write the code—
how readable we make it. Consider some simple questions:

 Are your variables named properly to indicate what they are? No one can appreciate
your code if it’s full of variables named var0, temp_var, or x, for example.

 Do your functions have proper signatures to indicate what they do? People are lost if
they see functions named do_data(data) or run_step1().

31.1 Aiming at becoming a pragmatic programmer

 Do you organize your code consistently across files? People expect different files of the
same type to use similar layouts. Do you place import statements at the top of
your files, for example?

 Is your project folder structured with specific files stored in the desired folders? When your
project’s scope grows, you should create separate folders for related files.

These example questions pertain to readability. We don’t just ask them from time to
time; instead, we ask these kinds of readability questions throughout our projects. The
reason is simple: good practice makes perfect. Trained as a neuroscientist, I know
exactly how the brain works when it comes to behavioral learning. By practicing read-
ability through these self-checking questions, we’re training our brain’s neural cir-
cuits. In the long term, your brain will be trained to know what behaviors constitute
good practice in coding, and you’ll write readable and maintainable code without
even thinking about it.

1.1.2 Considering maintainability even before you write any code
In rare cases, we write code for one-time use. When we write a script, we almost always
succeed in convincing ourselves that we’ll never use the script again; thus, we don’t care
about creating good variable names, laying out the code properly, or refactoring func-
tions and data models, not to mention making sure that we leave no comments (or out-
dated ones). But how many times did it turn out that we had to use the same script the
next week or even the following day? This has probably happened to most of us.

 The previous paragraph describes a mini-scale maintainability problem. In this
case, it affects only your own productivity in a short span of time. If you work in a team
environment, however, problems introduced by individual contributors add up to
large-scale maintainability problems. The team members fail to follow the same nam-
ing rules for variables, functions, and files. Countless incidents of commented-out
code remain. Outdated comments are everywhere.

 To address maintainability problems in a later stage of your own projects, you should
build a good mindset when you’re learning to code. Following are some questions that
you might consider to help you develop a good “maintainability” mindset for the long
run:

 Is your code free of outdated comments and commented-out code? If the answer is no,
update or delete them! These situations are even worse than those without any
comments because they may provide conflicting information.

 Is there considerable duplication in the code? If the answer is yes, refactoring is prob-
ably warranted. A rule of thumb in coding is DRY (Don’t Repeat Yourself). By
removing duplicates, you’ll deal with a single shared portion, which is less
prone to bugs than changes in repeated parts.

 Do you use version-control tools such as Git? If the answer is no, look at the extensions
or plugins of your integrated development environment (IDE). For Python,
common IDEs include PyCharm and Visual Studio Code. Many IDEs have inte-
grated version-control tools that make it much easier to manage versions.

4 CHAPTER 1 Developing a pragmatic learning strategy

Being a pragmatic Python programmer requires this type of maintainability training.
After all, almost all Python tools are open source and evolving rapidly. Thus, maintain-
ability should be the cornerstone of any viable project. Throughout the book, where
applicable, we’ll touch base on how to implement maintainability practices in our
daily Python coding. Please remember that readability is the key to sustained main-
tainability. When you focus on writing readable code, your codebase’s maintainability
improves consequentially.

1.2 What Python can do well or as well as other languages
Python owes its growing popularity to the characteristics of the language itself.
Although none of these characteristics is unique to Python, when they were organi-
cally combined, Python was set to grow into a widely adopted language. The following
list summarizes Python’s key characteristics:

 Cross-platform—Python runs on common platforms, such as Windows, Linux,
and MacOS. Thus, Python code is transferrable. Any code that you write on
your own platform can run on other computers without any restrictions
imposed by the differences between platforms.

 Expressive and readable—Python’s syntax is simpler than that of many other lan-
guages. The expressive, readable coding style is widely adopted by Python pro-
grammers. You’ll find that well-written Python code is enjoyable to read, just
like well-written prose.

 Fast for prototyping—Given its simple syntax, Python code is generally more con-
cise than code written in other languages. Thus, it requires less work to produce
a functional prototype in Python than in other languages.

 Standalone—When you install Python on your computer, it becomes ready to
use right after “unboxing.” The basic Python installation package consists of all
essential libraries that you need to perform any routine coding work.

 Open source, free, and extensible—Although Python works standalone, you can
write and use your own packages. If others have published any packages you
need, you can install them with a one-line command without worrying about
license or subscription fees.

These key characteristics have attracted many programmers, forming a tremendous
developer community. The open source nature of Python allows interested users to con-
tribute to this language and its ecosystem in general. Table 1.1 summarizes some notable
domains and their respective Python tools. This table isn’t an exhaustive list, and you’re
encouraged to explore Python tools in the specialty domain of your own interest.

Table 1.1 Overview of domain-specific Python tools

Domain Tool Highlights

Web
development

Flask A micro web framework; good for building lightweight web apps; flexible
extensibility for third-party functionalities

51.2 What Python can do well or as well as other languages

Web
development

Django A complete web framework; good for building database-driven web
apps; highly scalable as an enterprise solution

FastAPI A web framework for building application programming interfaces
(APIs); data validation and data conversion; automatic generation of API
web interfaces

Streamlit A web framework for easy building of data-related apps; popular among
data scientists and ML engineers

Data science

NumPy Specialized for processing large, multidimensional arrays; high compu-
tational efficiency; integral to many other libraries

pandas A versatile package for processing spreadsheet-like two-dimensional
data; comprehensive data manipulations

statsmodels A popular package for statistics, such as linear regression, correlation,
Bayesian modeling, and survival analysis

Matplotlib An object-oriented paradigm for drawing histograms, scatter plots, pie
charts, and other common figures with a variety of customizable settings

Seaborn An easy-to-use visualization library for drawing attractive graphics; high-
level APIs based on Matplotlib

Machine
learning

Scikit-learn A wide range of preprocessing tools for building ML models; implemen-
tation of common ML algorithms

TensorFlow A framework with both high- and low-level APIs; Tensor board visualiza-
tion tool; good for building complex neural networks

Keras High-level APIs for building neural networks; easy to use; good for build-
ing low-performance models

PyTorch A framework for building neural networks; more intuitive code styles
than TensorFlow; good for building complex neural networks

FastAI High-level APIs for building neural networks on top of PyTorch; easy to
use

Table 1.1 Overview of domain-specific Python tools

Domain Tool Highlights

Frameworks, libraries, packages, and modules
When we discuss tools, we use several closely related terms, including frameworks,
libraries, packages, and modules. Different languages may use some of these terms
and have slightly different meanings. Here, I discuss the meanings of these terms
that most Python programmers accept.

Frameworks have the largest scope. Frameworks provide a complete set of
functionalities that are designed to perform a dedicated job at a high level, such as
web development.

6 CHAPTER 1 Developing a pragmatic learning strategy

1.3 What Python can’t do or can’t do well
Everything has limits, and so does Python. There are many things that Python can’t
do, or at least can’t do well compared with alternative tools. Although some people
are trying to push Python in such a way that we can use it for other purposes, at this
stage, we should know its limits in two important areas:

 Mobile applications—In this mobile age, we all have smartphones and use apps
in almost every aspect of life, such as banking, online shopping, health, commu-
nications, and certainly gaming. Unfortunately, there have been no great
Python frameworks for developing smartphone apps despite attempts such as
Kivy and BeeWare. If you work in mobile development, you should consider
mature alternatives such as Swift for iOS apps and Kotlin for Android apps. As a
pragmatic programmer, you choose a language that leads to a product with the
best user experience.

 Low-level development—When it comes to developing software that interacts
directly with hardware, Python isn’t the best choice. Due to the interpreted
nature of Python, the overall execution speed isn’t fast enough for developing
low-level software, such as device drivers, which require instant responsiveness.
If you’re interested in developing software at a low level, you should consider
alternative languages that are better at interfacing with the hardware. C and
C++ are good options for developing device drivers, for example.

1.4 What you’ll learn in this book
We’ve talked a little bit about what it means to be a pragmatic programmer. Now let’s
talk about how you’re going to get there. As you write programs, you’ll inevitably run
into new programming challenges. In this book, we’ve identified the programming
techniques you’ll need to take for the tasks you’re most likely to encounter.

1.4.1 Focusing on domain-independent knowledge

All things are connected in some way directly or indirectly, and so is Python knowl-
edge. To put this discussion in a context, consider figure 1.1. We can conceptualize
Python features and its applications as three related entities.

(continued)
Libraries are building blocks of frameworks, consisting of packages. Libraries provide
functionalities without users having to worry about the underlying packages.

Packages provide specific functionalities. More specifically, packages bundle mod-
ules, and each module consists of a set of closely related data structures and func-
tions in a single file, such as a .py file.

71.4 What you’ll learn in this book

The goal of learning Python for most of us is to apply Python to address problems in
the domain where we work, which requires domain-specific Python knowledge, such as
web development and data science. As a prerequisite for fulfilling your job, your
knowledge base should encompass essential Python features—more specifically,
domain-independent Python knowledge. Even when your job role switches or evolves, you
can apply the essential Python knowledge to your new position.

 In this book, you’ll focus on gaining domain-independent Python knowledge. To
facilitate the learning process, we can operationally define domain-independent
Python knowledge as two building components: the basic and the advanced.

 For the basics, we should know common data structures and their manipulations.
We also need to know how to evaluate conditions to construct the if...else... state-
ment. When we perform repeated work, we can take advantage of for and while
loops. To reuse blocks of code, we can refactor them into functions and classes. Mas-
tering these basics is sufficient for writing useful Python code to perform your job
tasks. If you know most of the basics, you’re ready to learn the advanced skills.

 The advanced skills enable you to write better code that’s more efficient and that
takes advantage of versatile Python features. Let’s see a simple example to feel the ver-
satility of Python. When we use a for loop to iterate a list object, we often need to
show the position of each item beside the item itself, such as

The present book’s focus:
Domain-independent Python knowledge

Basics AdvancedExtend

Reinforce

• Web development
• Web automation and scraping
• Data science
• Machine learning
• Robotics
• Cryptocurrency

Your specialty domain:
Domain-specific Python knowledge

Support Strengthen

Synthesis

• General syntax
• Basic data structures
 for loops
• Logical branching
• ...

• Named tuples
• Data classes
• Decorators
• Error handling
• ...

Figure 1.1 The relationship between domain-independent and domain-specific Python knowledge.
Domain-independent knowledge includes basic and advanced Python features, which are closely related.
Together, they form the basis for domain-specific knowledge in distinct content domains.

8 CHAPTER 1 Developing a pragmatic learning strategy

prime_numbers = [2, 3, 5]

desired output:
Prime Number #1: 2
Prime Number #2: 3
Prime Number #3: 5

If we use only the basic features, we may come up with the following solution. In the
solution, we create a range object that allows retrieval of the 0-based index to produce
the position information. For the output, we use string concatenation:

for num_i in range(len(prime_numbers)):
 num_pos = num_i + 1
 num = prime_numbers[num_i]
 print("Prime Number #" + str(num_pos) + ": " + str(num))

However, after you read this book, you’ll become a more experienced Python user
and should be able to produce the following solution that is cleaner and more
Pythonic:

for num_pos, num in enumerate(prime_numbers, start=1):
 print(f"Prime Number #{num_pos}: {num}")

The above solution involves three techniques: tuple unpacking to obtain num_pos
and num (section 4.4), creating the enumerate object (section 5.3), and formatting the
output using f-strings (section 2.1). I’m not going to expand the discussion of these
techniques here since they’ll be covered in their respective sections. Nevertheless, this
example is simply showing you what this book is all about—how to use a variety of tech-
niques to produce Pythonic solutions.

 Besides these techniques, you’ll learn and apply advanced function concepts, such
as decorators and closures, for example. When you define classes, you’ll know how to
make them work together to minimize the code and reduce the potential for bugs.
When your program is done, you’ll know how to log and test your code to make it
production-ready.

 This book is all about synthesizing domain-independent Python knowledge. You’ll
not only learn pragmatic advanced features, but also basic Python features and
fundamental computer programming concepts where applicable. The key term here is
synthesizing, as discussed in section 1.4.2.

1.4.2 Solving problems through synthesis

A common dilemma that beginners run into is that they seem to know a variety of tech-
niques, but don’t know how and when to use them to solve problems. For each tech-
nique we discuss in this book, we’ll show you how it works independently, and we’ll also
show you how it fits with other techniques. We hope that you’ll start to see how all the
different pieces can be composed into an infinite number of new programs.

9Summary

 As a fundamental note on learning and synthesizing various techniques, you
should expect that learning to code isn’t a linear path. After all, Python’s technical
features are closely interrelated. Although you’ll focus on learning intermediate and
advanced Python techniques, they can’t be isolated completely from basic topics.
Instead, you’ll notice that I’ll frequently make remarks on basic techniques or inten-
tionally reiterate techniques that I’ve already covered.

1.4.3 Learning skills in context

As we mentioned earlier, this book focuses on learning skills that are built on domain-
independent Python knowledge. Being domain-independent means that you can
apply the skills covered in this book to any domain where you’d like to use Python. It’s
almost impossible to learn anything without an example, however. We’ll show most
techniques in this book by using an ongoing project to provide a consistent context
within which to discuss specific skills. If you’re familiar with a particular skill, you can
skip to the section’s Discussion part, in which I’ll discuss some key aspects of the cov-
ered skills.

 As a heads-up, the generic project is a task-management web app. In the application,
you can manage tasks, including adding, editing, and removing tasks—everything that
will be implemented with pure Python, such as data models, functions, classes, and
anything else you can think of that an application may have. Moving forward, the
important thing to note is that the goal is not to get a perfect, shiny application from
this book. Instead, you want to learn all the essential Python techniques in the process
of creating this web app so you can apply your domain-independent knowledge to
projects in your own jobs.

Summary
 It’s critical for you to build a pragmatic learning strategy. By focusing on learn-

ing the domain-independent features of Python, you’ll get yourself ready for
any Python-related job role.

 Python is a general-purpose, open source programming language that fosters a
tremendous community of developers who make and share Python packages.

 Python is competitive in many domains, including web development, data sci-
ence, and ML. Each domain has specific Python frameworks and packages that
you can use.

 Python has its limitations. If you consider developing mobile apps or low-level
device drivers, you should use Swift, Kotlin, Java, C, C++, Rust, or any other
applicable language.

 I make a distinction between domain-independent Python knowledge and domain-
dependent Python knowledge. This book focuses on teaching domain-
independent Python knowledge.

10 CHAPTER 1 Developing a pragmatic learning strategy

 Learning to code is not a linear path. Although you’ll learn advanced features
in this book, I’ll frequently mention basic ones. Also, you’ll encounter some dif-
ficult topics, which will create an upward spiral learning path.

 The essential recipe for learning Python or any programming language is syn-
thesizing individual technical skills to form a comprehensive skill set. Through
the synthesis process, you’ll learn the language in a pragmatic way, knowing
what works for the problem that you’re addressing.

Part 1

Using built-in data models

We build applications to address problems in our daily lives. People build
online shopping websites so we can order clothes and books online. They
build human resources software so companies can manage employees. And they
build text-processing software so we can edit documents. From the application-
development perspective, no matter what problems our application addresses, we
must extract and process information about the problems. In programming, to
model various kinds of information in our applications, such as product
descriptions and employees, we must use proper data structures. These data
structures provide a standardized way to represent real-life entities in our
applications, making it possible to enable specific rules, organizations, and
implementations to address our business needs. In this part, we focus mainly on
using built-in data models, including strings, lists, tuples, dictionaries, and sets.
Moreover, you learn techniques that are shared by various types of data structures,
such as sequence-like data and iterables.

13

Processing and
 formatting strings

Textual information is the most important form of data in almost every application.
Textual data as well as numeric data can be saved as text files, and reading them
requires us to process strings. On a shopping website, for example, we use text to
provide production descriptions. Machine learning is trending, and you may have
heard about one machine learning specialty: natural language processing, which
extracts information from texts. Because of the universal use of strings, text pro-
cessing is an inevitable step in preparing data in these scenarios. Using our task
management app as the context, we need to convert a task’s attributes to textual
data so that we can present them at the frontend of our web app. When we obtain

This chapter covers
 Using f-strings to interpolate expressions and

apply formatting

 Converting strings to other applicable data types

 Joining and splitting strings

 Using regular expressions for advanced string
processing

14 CHAPTER 2 Processing and formatting strings

data entry at the frontend of our app, we must convert these strings to a proper type,
such as an integer, for further processing. In numerous real-life cases like these, we
need to process and format strings properly. In this chapter, we tackle some common
text processing problems.

2.1 How do I use f-strings for string interpolation and formatting?
In Python, you can format text strings in a variety of ways. One emerging approach is
to use an f-string, which allows you to embed expressions inside a string literal.
Although you can use other string formatting approaches, an f-string offers a more
readable solution; thus, you should use f-strings as the preferred approach when you
prepare strings as output.

TRIVIA F-strings were introduced in Python 3.6. Both f and F (which mean
formatted) can be the prefix for the f-string. A string literal is a series of charac-
ters enclosed within single or double quotation marks.

When you use strings as an output, you often need to deal with nonstring data, such as
integers and floats. Suppose that our task management application has the require-
ment of creating a string output from existing variables:

existing variables
name = "Homework"
urgency = 5

desired output:
Name: Homework; Urgency Level: 5

In this section, you’ll learn how to use f-strings to interpolate nonstring data and pres-
ent strings in the desired format. As you’ll discover, f-strings are a more readable solu-
tion for formatting strings from existing strings and other types of variables.

2.1.1 Formatting strings before f-strings

The str class handles textual data through its instances, which we refer to as string
variables. Besides string variables, textual information often involves data types such as
integers and floats. Theoretically, we can convert nonstring data to strings and concat-
enate them to create the desired textual output, as shown in the next listing.

task = "Name: " + name + "; Urgency Level: " + str(urgency)

print(task)
output: Name: Homework; Urgency Level: 5

There are two potential problems with the code creating the task variable. First, it
looks cumbersome and doesn’t read smoothly, as we’re dealing with multiple strings,

Listing 2.1 Creating string output using string concatenation

152.1 How do I use f-strings for string interpolation and formatting?

each of which is enclosed in quotation marks. Second, we must convert urgency from
int to str before it can be joined with other strings, further complicating the string
concatenation operation.

CONCEPT In general, methods are functions that are defined within a class.
Here, format is a function defined in the str class, and we call these methods
on str instance objects.

2.1.2 Using f-strings to interpolate variables

Formatting strings often involves combining string literals and variables of different
types, such as integers and strings. When we integrate variables into an f-string, we can
interpolate these variables to convert them to the desired strings automatically. In this
section, you’ll see a variety of interpolations involving common data types using
f-strings. Let’s see first how we use f-strings to create the output shown in listing 2.1:

task_f = f"Name: {name}; Urgency Level: {urgency}"

assert task == task_f == "Name: Homework; Urgency Level: 5"

In this example, we create the task_f variable by using the f-string approach. The most
significant thing is that we use curly braces to enclose variables for interpolation. As
f-strings integrate string interpolation, they’re also referred to as interpolated string literals.

CONCEPT The term string interpolation isn’t Python-specific, as most common
modern languages (such as JavaScript, Swift, and C#) have this feature. In
general, it’s a more concise and readable syntax for creating formatted strings
than string concatenations and alternative string formatting approaches.

Old string formatting techniques
Before the f-string was introduced, two other solutions were available. The first solu-
tion is the classic C-style involving the % sign, and the other uses the format method.
You’ll find these solutions in the following code snippet:

task1 = "Name: %s; Urgency Level: %d" % (name, urgency)

task2 = "Name: {}; Urgency Level: {}".format(name, urgency)

The C-style approach uses % within the string literal to denote that one variable will
be formatted, following which are the % sign and the tuple of the corresponding vari-
ables. The format method approach has a similar usage. Instead of using % signs in
the literal, it uses curly braces as the marker for string interpolation, and the corre-
sponding variables are listed in the format method.

Notably, both approaches are still supported in Python, but they have become obso-
lete, and you rarely need to use them. Thus, I don’t expand on them here. It’s import-
ant to know that what they do can be done with f-strings—a more readable string
interpolation and formatting approach, as we’ll explore in section 2.1.2.

The % sign
separates the
string literal and
the tuple object.

16 CHAPTER 2 Processing and formatting strings

We’ve seen that an f-string interpolates string and integer variables. How about other
types, such as list and tuple? These types are supported by f-string, as shown in this
code snippet:

tasks = ["homework", "laundry"]
assert f"Tasks: {tasks}" == "Tasks: ['homework', 'laundry']"

task_hwk = ("Homework", "Complete physics work")
assert f"Task: {task_hwk}" == "Task: ('Homework', 'Complete physics work')"

task = {"name": "Laundry", "urgency": 3}
assert f"Task: {task}" == "Task: {'name': 'Laundry', 'urgency': 3}"

PEEK F-strings also support custom class instances. When we’re learning
about creating our own custom classes in chapter 8, we’ll revisit how string
interpolation works with the custom instances (section 8.4).

2.1.3 Using f-strings to interpolate expressions

We’ve seen how f-string interpolates variables. As a more general usage, f-strings can
also interpolate expressions, which eliminates the need to create intermediate vari-
ables. You may access an item in a dict object to create string output, for example, or
use the result of calling a function. In these common scenarios, you can plug these
expressions into f-strings, as shown in the following code snippet:

tasks = ["homework", "laundry", "grocery shopping"]
assert f"First Task: {tasks[0]}" == 'First Task: homework'

task_name = "grocery shopping"
assert f"Task Name: {task_name.title()}" == 'Task Name: Grocery Shopping'

number = 5
assert f"Square: {number*number}" == 'Square: 25'

The assertion statement
assert is a Python keyword used to create an assertion statement, which evaluates
the supplied condition. When the condition is True, the program continues its execu-
tion. When the condition is False, execution stops, and the program raises an
AssertionError.

As a convention in this book, I use the assertion statement to show the equivalence
of the involved variables in a comparison. As a special case, when the evaluated vari-
able is Boolean, it’s technically preferred to use assert true_var and assert not
false_var. To explicitly show the variable’s Boolean value, however, I opt to use
assert true_var == True and assert false_var == False.

Interpolates
a list object

Interpolates a tuple object

Interpolates
a dict object

Accesses an
item in the list

Calls a function

Direct calculation

172.1 How do I use f-strings for string interpolation and formatting?

These expressions are enclosed within curly braces, allowing f-strings to evaluate them
directly to produce the desired string output: {tasks[0]} -> “homework”; {task_name
.title()} -> “Grocery Shopping”; {number*number} -> 25.

 As a key programming concept, we often encounter the term expression. Some begin-
ners may confuse this term with a related concept statement. An expression usually is one
line of code (it can expand to multiple lines, such as a triple-quoted string) that evalu-
ates to a value or an object, such as a string or a custom class instance. Applying this defi-
nition, we can easily figure out that variables are a kind of expression.

 By contrast, statements don’t create any value or object, and a statement’s purpose
is to complete an action. We use assert, for example, to create an assertion state-
ment, which ensures that something is valid before proceeding. We aren’t trying to
produce a True or False Boolean value; we’re checking or asserting a condition. Fig-
ure 2.1 illustrates the differences between expressions and statements.

Although f-strings interpolate expressions natively, we should use this skill with cau-
tion because any complicated expressions in an f-string compromise the readability of
your code. The following example represents a misuse of an f-string that uses a com-
plex expression:

summary_text = f"Your Average Score: {sum([95, 98, 97, 96, 97, 93]) /

➥ len([95, 98, 97, 96, 97, 93])}."

A rule of thumb for checking your code’s readability is to determine how much time a
reader needs to digest your code. In the preceding code, it may take tens of seconds
for a reader to know what you want to achieve. As a direct contrast, consider the fol-
lowing refactored version:

Represents something
Purpose

Does something

Produces a value Produces nothing
Output

Can be assigned to a
variable

Can’t be assigned to a
variable

Quick check

'Hello, World!'
3 / 6 + 5

lambda x: x * x
a > 5

x if something else y

import os
assert 7 > 5
if ... else ...

with open('filename.txt')

Examples

Expression Statement

Figure 2.1 Differences between expressions and statements. Expressions represent
something and are evaluated to a value or an object, whereas statements execute
specific actions and can’t be evaluated to a value.

18 CHAPTER 2 Processing and formatting strings

scores = [95, 98, 97, 96, 97, 93]

total_score = sum(scores)
subject_count = len(scores)
average_score = total_score / subject_count

summary_text = f"Your Average Score: {average_score}."

This version has several things to note. First, we use a list object to store the scores to
remove the duplication of the data. Second, we use separate steps, with each step rep-
resenting a simpler calculation. Third, the key thing for improved readability is that
each step uses a sensible name to indicate the calculation result. Without any com-
ment, your code is comfortable to read; everything is clear by itself.

READABILITY Create necessary intermediate variables with sensible names to
clearly indicate each step of your operations. For these simple operations, you
don’t even need to write any comment because the sensible names indicate
the purpose of each operation.

2.1.4 Applying specifiers to format f-strings

The proper formatting of textual data, such as alignment,
is key to conveying the desired information. As they are
designed to handle string formatting, f-strings allow us to
set a format specifier (beginning with a colon) to apply addi-
tional formatting configurations to the expression in the
curly braces (figure 2.2). In this section, you’ll learn how
to apply the specifiers to format f-strings.

 As an optional component, the format specifier
defines how the interpolated string of the expression
should be formatted. An f-string can accept different
kinds of format specifiers. Let’s explore some of the most
useful ones next, starting with text alignment.

ALIGNING STRINGS TO CREATE A VISUAL STRUCTURE

One way to improve communication efficiency is to use a structured organization,
which is also true for presenting textual data. As shown in figure 2.3, scenario B pro-
vides clearer information than scenario A due to its more organized structure, with
the columns aligned.

task_id task_name task_urgency

1 Homework 5

2 Laundry 3

task_id

1

2

task_name

Homework

Laundry

task_urgency

5

3

Scenario A Scenario B

Figure 2.3 Improved clarity when the texts are presented in an organized
structure (scenario B) compared with the default left alignment (scenario A)

f '' Hello, { : }''

Format specifier

Expression

Prefix

Figure 2.2 Components of an
f-string. The expression is the
first part and is required. The
expression is evaluated first,
and a corresponding string is
created. The second part,
which is the format specifier,
is optional.

192.1 How do I use f-strings for string interpolation and formatting?

Text alignment in f-strings involves three characters: <, >, and ^, which align the text
left, right, and center, respectively. If you’re confused about which is which, remember
to focus on the arrow’s tip; if it’s on the left side, for example, the text is left-aligned.

 To specify text alignment as the format specifier, we use the syntax f”{expr:x<n}”,
in which expr means the interpolated expression, x means the padding character
(when omitted, it defaults to spaces) for alignment, < means left alignment, and n is
an integer that the string expands in width. Applying this syntax, the code in the next
listing shows how to create two properly aligned records with improved clarity.

task_ids = [1, 2, 3]
task_names = ['Do homework', 'Laundry', 'Pay bills']
task_urgencies = [5, 3, 4]

for i in range(3):
 print(f'{task_ids[i]:^12}{task_names[i]:^12}{task_urgencies[i]:^12}')

Output the following lines:
 1 Do homework 5
 2 Laundry 3
 3 Pay bills 4

One thing that should catch your attention is that you apply the same format specifier
for all the expressions, which represents repetition. When you see repetitions in your
code, you’re likely violating the DRY (Don’t Repeat Yourself) principle, which is a sig-
nal for refactoring.

In listing 2.2, if we have a new text alignment requirement, we must update the code
in three locations, which is inconvenient and error-prone. Thus, the objective of refac-
toring is to have a mechanism to use a variable for the format specifier. Listing 2.3
shows a possible solution that extracts the repetitive part: the format specifier. Taking

Listing 2.2 Applying format specifiers in f-strings

Applies format specifiers
to the expressions

The DRY principle and refactoring
We can apply many principles to our coding. One famous one is the DRY principle.
When your program includes repeated code, it’s likely that you can refactor it to
remove such repetitions. Some IDEs, such as PyCharm, include features that auto-
matically detect duplications, and you should take advantage of those features to
better your program.

When I say refactor, I mean taking steps to update existing code to improve its
design, structure, and thus maintainability. Refactoring isn’t intended to add features
to your program; instead, it’s meant to restructure existing code without inducing any
changes in its external behavior. Whenever applicable, you’ll see examples of refac-
toring throughout the book.

20 CHAPTER 2 Processing and formatting strings

the refactoring a step further, we define a function to accept the format specifier as a
parameter, allowing us to try different format specifiers. To improve readability, we
create separate variables for the task’s information.

def create_formatted_records(fmt):
 for i in range(3):
 task_id = task_ids[i]
 name = task_names[i]
 urgency = task_urgencies[i]
 print(f'{task_id:{fmt}}{name:{fmt}}{urgency:{fmt}}')

One important thing to note in listing 2.3 is that the format specifier fmt is enclosed
within curly braces, embedded within the outside curly braces. Python knows how to
replace {fmt} with the proper format specifier. Let’s try this function with different
format specifiers:

>>> create_formatted_records('^15')
 1 Do homework 5
 2 Laundry 3
 3 Pay bills 4
>>> create_formatted_records('^18')
 1 Do homework 5
 2 Laundry 3
 3 Pay bills 4

As you can see, the refactored code allows us to set any format specifier, and this flexi-
bility highlights the benefit of refactoring. When we use format specifiers for text
alignment, text forms distinct columns, creating visual boundaries to separate differ-
ent pieces of information.

MAINTAINABILITY We constantly spot opportunities to refactor our code, usu-
ally at a “local” level. The local optimization may seem to be insignificant, but
these small improvements add up and determine the entire project’s overall
maintainability.

We have been using spaces as padding for the alignment; we can use other characters
as padding too. Our choice of characters depends on whether they make the
information stand out. Table 2.1 shows some examples of using different paddings and
alignments.

Listing 2.3 Refactored function to take any format specifier

Table 2.1 F-string format specifiers for text alignment

F-string Output Description

f"{task:*>10}"a "**homework" Right alignment, * as padding

f"{task:*<10}" "homework**" Left alignment, * as padding

212.1 How do I use f-strings for string interpolation and formatting?

FORMATTING NUMBERS

Numbers are integral sources of information that we often include in textual material.
There are multiple forms of numeric values, such as large integers, floating-point
numbers, and percentages. In this section, you’ll learn how f-strings can represent
numeric values with proper formatting specifiers to improve their readability.

 There is an infinite number of prime numbers. By doing a quick Google search,
we can find that the smallest prime number greater than 1 billion is 1000000007. To
show this large integer, it’s a good idea to use separators between digits, and a com-
mon approach is to use commas every three digits. To apply separators to integers in
an f-string, the format specifier is xd, where x is the separator and d is the specific for-
mat specifier for integers:

large_prime_number = 1000000007

print(f"Use commas: {large_prime_number:,d}")
output: Use commas: 1,000,000,007

Floating-point numbers, or decimal numbers in general, can be found in almost any sci-
entific or engineering report. As you probably expect, f-strings have format specifiers
that allow us to format decimals in a readable manner. Consider the following examples:

decimal_number = 1.23456

print(f"Two digits: {decimal_number:.2f}")
output: Two digits: 1.23

print(f"Four digits: {decimal_number:.4f}")
output: Four digits: 1.2346

As with d for integers, we use f as a format specifier for decimal values. Although the f
format specifier can be used alone, it’s more often used to specify how many digits we
want to keep after the decimal symbol: .2 to keep two digits, .4 to keep four digits,
and so on.

 In a similar fashion to using f for decimals, we can use e as the format specifier for
scientific notations. Consider the following examples of this feature:

sci_number = 0.00000000412733

print(f"Sci notation: {sci_number:e}")

f"{task:*^10}" "*homework*" Center alignment, * as padding

f"{task:^10}" " homework " Center alignment, space as padding

aWe define the task as a string variable: task = "homework".

Table 2.1 F-string format specifiers for text alignment

F-string Output Description

22 CHAPTER 2 Processing and formatting strings

output: Sci notation: 4.1227330e-09

print(f"Sci notation: {sci_number:.2e}")
output: Sci notation: 4.13e-09

Another common form of numeric values is percentages, and the format specifier for
percentages is the percent sign (%). As we do with the e and f specifiers, we can use
the % specifier alone or in conjunction with the precision specification, such as .2 for
two-digit precision:

pct_number = 0.179323

print(f"Percentage: {pct_number:%}")
output: Percentage: 17.932300%

print(f"Percentage two digits: {pct_number:.2%}")
output: Percentage two digits: 17.93%

In addition to these format specifiers, f-strings support other specifiers. Table 2.2
shows common specifiers that you can apply to f-strings when you deal with numbers.

2.1.5 Discussion

Although directly interpolating expressions by f-strings makes code cleaner, avoid using
complicated expressions in f-strings, which may confuse your readers. Instead, create
intermediate variables with sensible names when the expressions are complicated.

Table 2.2 Common format specifiers for formatting numbers with f-strings

Numeric type F-string Output Description

int f"{number:b}" "1111" Binary format, using base 2

f"{number:c}" "\x0f" Unicode representation of the integer

f"{number:d}" "15" Decimal format, using base 10

f"{number:o}" "17" Octal format, using base 8

f"{number:x}" "f" Hexadecimal format, using base 16

float f"{point:.2e}" "1.23e+00" Scientific notation

f"{point:.2f}" "1.23" Fixed-point notation with two-digit precision

f"{point:.2g}" "1.23" General format, automatically applying e or f

f"{point:.2%}" "123.45%" Percentage with two-digit precisiona

aWe define the number as an integer variable (number = 15) and the point as a float variable (point
= 1.2345). Please note that the .2 portion in the format specifiers for floats is optional. When you
use .3, you’ll have three-digit precision.

232.2 How do I convert strings to retrieve the represented data?

 Python still supports the conventional C-style and format-based approaches, but
there is no real need for you to learn them (you may see them in legacy code,
though). Whenever you need to create string output, use f-strings. Don’t forget about
aligning your text and formatting numeric values to improve the text output’s clarity.

2.1.6 Challenge

James works in a wholesale company’s IT department and is preparing a template
of price tags. Suppose that the product’s data is saved as a dict object: {"name":
"Vacuum", "price": 130.675}. How can James write an f-string if the desired output is
Vacuum: {130.68}? Note that the price requires two-digit precision and that the out-
put includes curly braces, which are coincidentally the characters for string interpola-
tion in f-strings.

HINT Curly braces are special characters in f-strings. When a string literal
includes special characters, you need to escape them in such a way that
they’re no longer evaluated as special characters. To escape curly braces, you
use an extra curly brace: {{ means {, and }} means }.

2.2 How do I convert strings to retrieve the represented data?
Although strings are textual data on their surface, the actual data represented by
strings can be integers, dictionaries, and other data types. The built-in input function,
for example, is the most basic way to collect users’ input in a Python console:

>>> age = input("Please enter your age: ")
Please enter your age: 35
>>> type(age)
<class 'str'>

As shown in the preceding code snippet, the user’s input is taken as a string. Suppose
that we wanted to check whether the user’s age is over 18. We think we can run the fol-
lowing code:

>>> age > 18
ERROR: TypeError: '>' not supported between instances of 'str' and 'int'

Unfortunately, the comparison didn’t work because age is a string, and you can’t com-
pare a string with an integer. This example highlights the necessity of converting a
string to an integer. More broadly, many other scenarios require that we convert
strings to lists, dictionaries, and other applicable data types. Such conversion is essen-
tial for subsequent data processing. In this section, you’ll learn how to check the data
types represented by the strings and the proper ways to convert strings to the desired
data types.

Checks the variable’s type

24 CHAPTER 2 Processing and formatting strings

2.2.1 Checking whether strings represent alphanumeric values

In Python, strings can be anything you can type with your keyboard. One common
need is to check whether strings include only alphanumeric characters. In this sec-
tion, you’ll learn a variety of ways to check the nature of a string’s characters.

 Suppose that the task management app requires users to set a username, which
must be alphanumeric. We can implement this functionality by using the isalnum
method, which examines whether a string contains only a-z, A-Z, and 0-9. Some exam-
ples follow:

bad_username0 = "123!@#"
assert bad_username0.isalnum() == False

bad_username1 = "abc..."
assert bad_username1.isalnum() == False

good_username = "1a2b3c"
assert good_username.isalnum() == True

Suppose that when a user creates a task, we require the name to contain letters only.
For this feature, we can use the isalpha method, which returns True or False. As
you’ve probably noticed, all these is- methods return Boolean values:

assert "Homework".isalpha() == True

assert "Homework123".isalpha() == False

In a similar fashion, you can use the isnumeric method to check whether all charac-
ters in the string are numeric characters:

assert "123".isnumeric() == True

assert "a123".isnumeric() == False

Here, I want to discuss a couple of gotchas about checking whether a string represents
a numeric value when we use the isnumeric method:

 Strings that represent floats won’t pass the isnumeric check. It would be reasonable
to expect that strings with valid numeric values would return True on this
method call. Unfortunately, that’s not the case:

assert "3.5".isnumeric() == False

 Strings that represent negative integers won’t pass the isnumeric check. It probably
goes against many people’s intuition, too, as in this example:

assert "-2".isnumeric() == False

 Empty strings are evaluated as False with isnumeric. Evaluating empty strings as
non-numeric is probably a desired behavior. We should understand this behav-
ior when we deal with conversions from strings to numbers.

252.2 How do I convert strings to retrieve the represented data?

To avoid these gotchas, remember that a string produces a True value by means of the
isnumeric method only if all the characters in a nonempty string are numeric charac-
ters. Please note that numeric characters don’t include the decimal symbol or the neg-
ative sign. For this reason, the isnumeric method evaluates floats and negative
numbers as False.

Besides the discussed is- methods for checking the numeric nature of strings, as a
refresher, Python strings have other is- methods that perform other checking tasks,
such as islower and isupper. Although I don’t cover these other is- methods in this
book, you should be familiar with them.

TRIVIA Among these is- methods, isidentifier is interesting because it
tests whether a string is a valid identifier to name a variable, a function, or an
object in general.

2.2.2 Casting strings to numbers

In the preceding section, you learned to examine whether a string represents a posi-
tive integer. But there seems to be no easy way to tell whether a string represents a
numeric value, particularly when it’s a floating-point or negative number. Converting
strings to numbers is important because we can’t do any numeric calculations with
strings, such as comparing age with 18. Thus, in many cases, we must derive the repre-
sented numeric values of strings for subsequent processing. In this section, you’ll
learn to convert strings to numbers—a process termed casting.

CONCEPT In programming, the process of converting a data type to another
data type, such as converting a string to an integer, is known as casting.

The two common data types for numeric values are float and int. The syntax for cre-
ating these instances from strings is float("string") and int("string"). Python
evaluates the string objects to cast them to a proper float or int object—if possible.

Differences between isnumeric, isdigit, and isdecimal
Related to the isnumeric method, the methods isdigit and isdecimal are often
used to check whether strings contain only digits or decimal characters. These
names seem to mean the same thing, and they produce the same Boolean values in
most cases, such as "123". But some nuances make them produce different values
for some strings, especially when numeric strings are not Arabic numerals.

By definition, these three methods have the following relationships in terms of their
strictness of checking numerics: isdecimal < isdigit < isnumeric. When you’re
confused about these methods, your best bet is to use isnumeric, which is the most
inclusive.

26 CHAPTER 2 Processing and formatting strings

 If you expect a float with a string, you can send it to the built-in float constructor.
In the following examples, all the casted numbers are of the float type, even if the
string represents an integer:

>>> float("3.25")
3.25
>>> float("-2")
-2.0

CONCEPT A constructor refers to a special kind of function that creates an
instance object of a class. For more on this topic, see chapter 8. Here, we use
float and int constructors to create objects of the float and int types,
respectively.

If you expect an integer with a string, you can use the built-in int constructor:

>>> int("-5")
-5
>>> int("123")
123

Note that when these strings have desired numeric values, these casting operations
succeed. When they don’t, however, these castings result in errors, which cause your
entire program to halt, as shown in the following code snippet:

>>> float("3.5a")
ERROR: ValueError: could not convert string to float: '3.5a'

>>> int("one")
ERROR: ValueError: invalid literal for int() with base 10: 'one'

To prevent your program from being terminated due to this error, it is important to
use the try…except… statement to handle the exception. Although I’m not expanding
the discussion here, the next listing shows such usage. I’ll discuss this feature in chap-
ter 12 (section 12.3).

def cast_number(number_str):
 try:
 casted_number = float(number_str)
 except ValueError:
 print(f"Couldn't cast {repr(number_str)} to a number")
 else:
 print(f"Casting {repr(number_str)} to {casted_number}")

Use the above function in a console
>>> cast_number("1.5")
Casting '1.5' to 1.5
>>> cast_number("2.3a")
Couldn't cast '2.3a' to a number

Listing 2.4 Casting numbers from strings

A float is created even though the
string appears to be an integer.

Uses the repr
function to have
the string in a
quoted format

272.2 How do I convert strings to retrieve the represented data?

2.2.3 Evaluating strings to derive their represented data

Besides numeric values, our application often has textual data that represents other data
types, such as lists and tuples. For example, in a web application, data are commonly
entered as text, such as “[1, 2, 3]” which resumes a list object. Because of the data type
as str, you can’t apply any list methods to this textual data—that is, you can only call
list methods on list objects. In this case, data conversion is required. In this section,
you explore how to derive the underlying data, other than numbers, from strings.

 In the previous section, you learned to use float and int constructors to cast
strings to derive numeric values. The approach of using the constructor with a string
object won’t always work, however. Consider the three common data types—list,
tuple, and dict—which are represented by strings in the following code snippet:

numbers_list_str = "[1, 2]"
numbers_tuple_str = "(1, 2)"
numbers_dict_str = "{1:'one', 2: 'two'}"

When we attempt to send the strings directly to their respective constructors, unex-
pected outcomes happen:

>>> list(numbers_list_str)
['[', '1', ',', ' ', '2', ']']

>>> tuple(numbers_tuple_str)
('(', '1', ',', ' ', '2', ')')

>>> dict(numbers_dict_str)
ERROR: ValueError: dictionary update sequence element #0 has length 1; 2 is

➥ required

Although the list and tuple constructors do create a list and a tuple object by
treating strings as iterables, the created objects wouldn’t be the data that you would
expect to extract from these strings. Specifically, strings are iterables that consist of
characters. When you include a string in a list constructor, its characters become
items of the created list object. The same operation happens to a tuple constructor.

CONCEPT Iterables are objects that can render items one by one. Strings, lists,
and tuples are common examples of iterables. For further discussion of itera-
bles, see chapter 5.

To solve this unpredicted behavior, use the built-in eval function, which takes a string
as though you typed it in the console and returns the evaluated result:

assert eval(numbers_list_str) == [1, 2]

assert eval(numbers_tuple_str) == (1, 2)

assert eval(numbers_dict_str) == {1: 'one', 2: 'two'}

Lists and tuples can
instantiate from strings.

28 CHAPTER 2 Processing and formatting strings

By evaluating these strings, we can retrieve the data that these strings represent. This
transformation is useful because we often use texts as the data interchange format.
The benefit of using eval is that the evaluation result of the supplied text is guaran-
teed to be what you expect from running the same text as code in a console.

If your application is concerned with the validity of the data source, I recommend that
you parse the strings yourself. If you need to get a list object of integers from a string,
for example, you can remove the square brackets and split the strings to recreate the
applicable list object. A trivial example follows for your reference. Please note that
the code snippet involves a few techniques, such as string splitting and list comprehen-
sion, that I cover later (sections 2.3 and 5.2):

list_str = "[1, 2, 3, 4]"
stripped_str = list_str.strip("[]")
number_list = [int(x) for x in stripped_str.split(",")]

print(number_list)
output: [1, 2, 3, 4]

MAINTAINABILITY Using eval without verifying the integrity of the string
object can cause bugs or even catastrophic outcomes. Be cautious whenever
you need to use this method.

Using eval and exec with caution
You may want to restrict the use of eval to trusted data sources because eval will
evaluate the string as though the code is part of the program. The following snippet
shows such a problem. The evaluation of the improper code results in a Syntax-
Error, which could crash your program:

>>> eval("[1, 2")
...(omitted lines)
SyntaxError: unexpected EOF while parsing

Another built-in exec function is similar to eval. The exec function can run a string
as though that string is part of the program. The most notable difference between
exec and eval is that eval evaluates and returns an expression, whereas exec can
accept expressions and statements such as if...else... but doesn’t return any-
thing. Although both functions can provide dynamicity to your application, when used
improperly, they can jeopardize your application or even your computer. You could
send the string "os.system('rm -rf *')", for example, to the exec function, which
would remove all folders and files from your computer.

Thus, you should be cautious when your application needs to process strings as code
dynamically by using eval and exec. As an alternative to eval, you can look into the
ast module in the standard library, which has the literal_eval function to evaluate
the strings safely.

292.3 How do I join and split strings?

2.2.4 Discussion

When we use the float or int constructor to derive the actual numeric values that
strings represent, consider using try...except... because successful casting is never
guaranteed, and when casting fails, it crashes the program if the exception isn’t han-
dled. When you use eval to obtain the underlying data, you should be cautious, as it
can introduce danger to a program if you use untrusted sources. Thus, when data
security is a concern, you should consider parsing the data yourself or using a more
secure tool, such as the ast module. If you work on your own data, such as a script for
processing data, you can just use eval to obtain the underlying data.

2.2.5 Challenge

At the beginning of this section, you learned that you can use the input function to
collect a user’s input. Mary is an elementary school teacher who wants to write a sim-
ple toy program for her students. Suppose that she wants to ask the students about
today’s temperature in Celsius degrees, using a Python console. How can she write the
program so that it meets the following requirements? x represents the value that the
user enters:

 When the temperature is < 10 degrees, output You entered x degrees. It's
cold!

 When the temperature is between 10 and 25 degrees, output You entered x
degrees. It's cool!

 When the temperature is > 25 degrees, output You entered x degrees. It's
hot!

 The x value should have one decimal precision. If the user enters 15.75, for
example, it should be displayed as 15.8.

HINT The entered string input needs to be casted to a float number before it
can be compared with other numbers. To create a string output, use f-strings.
Don’t forget about format specifiers!

2.3 How do I join and split strings?
Strings are not always in the format that you want them to be. In some cases, individ-
ual strings represent discrete pieces of related information, and we need to join them
to form a single string. Suppose that a user enters multiple strings, with each repre-
senting a fruit that they like. We may join the strings to create a single string to display
the user’s likes, as shown here:

initial input
fruit0 = "apple"
fruit1 = "banana"
fruit2 = "orange"

desired output
liked_fruits = "apple, banana, orange"

30 CHAPTER 2 Processing and formatting strings

At other times, we need to split strings to create multiple strings. Suppose that a user
enters all the countries that they’ve been to as a single string. We want to have a list of
these countries, as shown here:

initial input
visited_countries = "United States, China, France, Canada"

desired output
countries = ["United States", "China", "France", "Canada"]

These two scenarios are plausible examples of basic string processing jobs that you
might encounter in a real-life project. In this section, we explore key functionalities
for joining and splitting strings, using realistic examples.

2.3.1 Joining strings with whitespaces

When you join multiple strings, you can use the explicit concatenation operator: the +
symbol, which you saw in listing 2.1. When you have multiple string literals, you can
join them if they’re separated by whitespaces, such as spaces, tabs, and newline charac-
ters. In this section, you’ll see how strings separated by whitespaces can be joined.

 Suppose that we have multiple configurations to set a display style for our applica-
tion. We separate each configuration as a string literal, and these individual configura-
tion settings are joined automatically:

style_settings = "font-size=large, " "font=Arial, " "color=black, "

➥ "align=center"

print(style_settings)
output: font-size=large, font=Arial, color=black, align=center

Automatic concatenation can only occur among string literals, however, and you can’t
use this technique with string variables or a mixture of string literals and variables.
F-strings also support automatic concatenation. This feature is useful when you con-
struct a long f-string by breaking distinct string literals into separate lines of code for
clarity:

settings = {"font_size": "large", "font": "Arial", "color":

➥ "black", "align": "center"}

styles = f"font-size={settings['font_size']}, " \
 f"font={settings['font']}, " \
 f"color={settings['color']}, " \
 f"align={settings['align']}"

READABILITY When a string is long, consider breaking it into multiple lines,
with each line representing a meaningful substring. These substrings can be
joined automatically when they’re separated by whitespaces.

Uses the backslash as the
line continuation character

312.3 How do I join and split strings?

2.3.2 Joining strings with any delimiters

Joining strings separated by spaces can be a little confusing because the boundaries
(spaces) between string literals don’t make it easy for us to eyeball the individual
strings. Moreover, it can occur only between string literals, which is an additional
restriction. As a general scenario, joining strings with any delimiters is ideal. In this
section, you’ll learn to join strings with any applicable delimiter.

 Still, consider the style setting example. We can use the join method to concate-
nate these separate strings:

style_settings = ["font-size=large", "font=Arial", "color=black",

➥ "align=center"]
merged_style = ", ".join(style_settings)

print(merged_style)
output: font-size=large, font=Arial, color=black, align=center

The join method takes a list of strings as its argument. The items of the list are
joined sequentially with the delimiter string that we use to call the method. Although
we use a list object here, more broadly speaking, it can be any iterable, such as tuple
or set.

Compared with the direct concatenation, join is more readable, as contributing
strings are separate items; thus, it’s easy for us to know what is to be joined. More

str.join or list.join
Frankly, the method call "separator".join(the_list) puzzled me a bit when I
started to use Python, because in daily life, I was used to saying that I wanted to join
these items with a specific separator. With that logic, you might expect the list object
to appear before the specifier. In fact, in another common language, JavaScript, the
Array (like list in Python) has the join method, which creates a delimited string
from its items. Applying this logic, you would expect Python list objects to have the
join method.

Unfortunately, that is not the case. Instead, Python’s strings have the join method.
Thus, there appears to be a mismatch between the expectation and the actual imple-
mentation. Later, I found out that the best way to remember the correct method call
signature is to think of this feature this way: I want to use the specific separator to
join each of the items in the list object.

When you learn more about Python, you’ll find out that Python’s design of having join
as a string method is brilliant. Not only items in a list can be joined by a separator;
we can also use join with tuples, sets, dictionaries, map objects, and any other iter-
ables. If Python were to have join as a list method, to have the same feature for
other iterables, Python would have to implement join for each type of the iterables,
which violates DRY!

32 CHAPTER 2 Processing and formatting strings

importantly, join has an extra advantage: we can manipulate the items dynamically in
the list object.

 Suppose that we want to have a string to list the tasks that we want to complete for
the week in our task management application. To begin, we have the following tasks.
We can join these strings to generate a string as a note to display on our desktop:

tasks = ["Homework", "Grocery", "Laundry", "Museum Trip", "Buy Furniture"]
note = ", ".join(tasks)

print("Remaining Tasks:", note)
output: Remaining Tasks: Homework, Grocery, Laundry, Museum Trip, Buy

➥ Furniture

After some hard work, a few tasks are done, so we’re removing these tasks:

tasks.remove("Buy Furniture")
tasks.remove("Homework")

After removing these tasks, we can still use the join method to create the needed
string:

print("Remaining Tasks: ", ", ".join(tasks))
output: Remaining Tasks: Grocery, Laundry, Museum Trip

This example shows a use case with a list of strings that is subject to dynamic changes.
When we have additional tasks, we can add the tasks to the list object and regenerate
the desired string with the join method to create an updated string.

2.3.3 Splitting strings to create a list of strings

We often use text files to save and transfer data. We can save tabulated data to a text file,
for example, with each line representing a record. When we read the text file, each row
is a single string containing multiple substrings, and each substring represents a value
for the record. To process the data, we need to extract these values with split strings to
obtain separate substrings. This section covers topics related to string splitting.

 Suppose that we have a text file named "task_data.txt" that stores some tasks.
Each row represents a task’s information, including task ID number, name, and
urgency level, as shown in the following code snippet. Because you’re going to learn
how to read data from a file in chapter 11, assume that you’ve read the text data and
saved it as a multiline string, using triple quotes:

task_data = """1001,Homework,5
1002,Laundry,3
1003,Grocery,4"""

TRIVIA You can use single or double quotes to create a triple-quoted string
that expands multiple lines. F-strings also support triple quotes for a multiline
f-string.

332.3 How do I join and split strings?

To process this string, we can use the split method, which can locate the specified delim-
iters and separate the string accordingly. The next listing shows a possible solution.

processed_tasks = []
for data_line in task_data.split("\n"):
 processed_task = data_line.split(",")
 processed_tasks.append(processed_task)

print(processed_tasks)
output the following line:
[['1001', 'Homework', '5'], ['1002', 'Laundry', '3'], ['1003', 'Grocery', '4']]

One limitation of the split method is that it allows us to specify only one separator,
which can be a problem when strings are separated with different separators. Suppose
that we have a text file that mixes the use of commas and underscores as separators. For
simplicity, only one separator exists between words. For demonstration purposes, con-
sider a single line of data: messy_data = "process,messy_data_mixed,separators".

 The problem is likely to occur in real life when we deal with uncleaned raw data.
When we encounter this problem, we must think about a programmatic way to solve
the problem because chances are that the text file has tons of records. Apparently,
using the split method on these records won’t work, as we can set only one kind of
separator. Thus, we must consider alternative solutions:

1 Use separators sequentially:
a We split the strings by using commas to create a list.
b We examine whether the item in the list contains any underscores. If no, the

item is ready. If yes, we perform a second split using underscores:

separated_words0 = []
for word in messy_data.split(","):
 if word.find("_") < 0:
 separated_words0.append(word)
 else:
 separated_words0.extend(word.split("_"))

2 Consolidate the separators.
Because we know that there are only two possible separators, we can convert
one separator to the other, which allows us to call the split method just
once to complete the needed operation:

consolidated = messy_data.replace(",", "_")
separated_words1 = consolidated.split("_")

These two solutions are straightforward. If you know the basic operations with strings
and lists, they are perfect solutions if performance isn’t a concern, because they
require multiple passes to examine the separators, particularly when you must deal

Listing 2.5 Processing text data by splitting strings

Splits each line’s text

When no match is found,
the result will be –1.

The extend method
appends all items of
the split strings.

Uses the replace method
to replace a substring

34 CHAPTER 2 Processing and formatting strings

with multiple separators. In that case, the operations are more expensive in terms of
computation.

 Is there any more performant solution? The answer is yes. Regular expressions are
designed to handle this more complicated pattern matching and searching, as I dis-
cuss in sections 2.4 and 2.5.

CONCEPT Regular expressions, often shortened to regex or regexp, are sequences
of characters that define specific search patterns.

2.3.4 Discussion

Choosing string concatenation, f-string, or join should be evaluated on a case-by-case
basis. The key is making your code readable. When you have a small number of strings
to join, you can use concatenation operators to join them. When you have more
strings, you should consider using f-strings first to bring related strings together. The
join method is particularly useful for joining individual strings when these strings are
saved in an iterable.

 Besides split, strings have another method: rsplit, which has a similar function-
ality to split. The only difference is that you set a maximal number of items to the
maxsplit parameter to be created from the split. Section 2.3.5 explores split and
rsplit further.

2.3.5 Challenge
The split and rsplit methods have the following calling signature. Both methods
take an argument to specify the separator and another to specify the maximal number
of created items. Can you write a few strings to split to make them behave the same
way and differently?

str.split(separator, maxsplit)
str.rsplit(separator, maxsplit)

HINT Both methods typically behave the same way. When the number of max-
imal splits is smaller than the number of split items, you’ll see a difference.

2.4 What are the essentials of regular expressions?
Python’s str class has useful methods, such as find and rfind, for searching substrings.
Many scenarios go beyond what these basic methods can address, however, particularly
when it comes to complex pattern matching. In these cases, we should consider using
regular expressions. In the previous section, I mentioned that you can use regular
expressions to split a string containing multiple kinds of separators—a use case that
isn’t easy to address with pure str-based methods. Here’s a peek at the solution using
regular expressions:

import re

regex = re.compile(r"[,_]")
separated_words2 = regex.split(messy_data)

Compiles the desired
regular expression

352.4 What are the essentials of regular expressions?

From the performance perspective, we traverse the string only one time to complete the
split. When there are more separators, regular expressions perform much better than
the other two solutions (section 2.3.3), which require multiple traverses of the string.
Because of its flexibility and performance, the regular-expressions approach is the irre-
placeable technique for conducting advanced string processing. In this section, I use
string searching as the teaching topic to explain the mechanisms of regular expressions.

TRIVIA Regular expressions are considered to be independent entities, and
all common programming languages support regular expressions despite
some variations in terms of the syntax. Regular expressions are similar, how-
ever, and you can think of different programming languages as having their
own dialects for them.

2.4.1 Using regular expressions in Python
To learn regular expressions, you’ll start with getting the big picture: the pertinent
module and its core syntax. This section provides a 10,000-foot overview of regular
expressions in Python.

 Python’s standard library includes the re module, which provides features related
to regular expressions. There are two ways to use this module. The first approach per-
tains to the object-oriented programming (OOP) aspect of Python. Applying the OOP
paradigm to regular expressions (figure 2.4), we carry out our operations with a focus
on Pattern objects. In this approach, we first create a Pattern object by compiling
the desired string pattern. Next, we use this Pattern object to search the occurrences
that match the pattern.

CONCEPT OOP stands for object-oriented programming, which is a programming
design model with a central focus on data and objects rather than functions
and procedures.

1. Identify the proper class for
 the job. In this case, it’s the
 Pattern class in the re module.

The job

Search a string to locate
substrings that match a
specific pattern.

2. Create a Pattern object using
 the re.compilefunction:

 pattern = re.compile(r"(12)(text)")

Pattern object

Attributes, such as
pattern, groups

Methods, such as
match(), findall()

3. Use the Pattern object.

Use attributes
>>> pattern.groups
2
>>> pattern.pattern
'(12)(text)'
>>> pattern.flags
32

Use methods
>>> pattern.search(''12text'')
<re.Match object; span=(0, 6),
match='12text'>
>>> pattern.findall(''23text'')
[]

Figure 2.4 Applying the general OOP in pattern matching. In a general OOP approach, we first
determine the proper class for the task. In this case, we use the Pattern class in the re module. The
second step is creating the instance object. In the OOP paradigm, an object consists of attributes, which
are accessible via dot notations, and methods, which are callable via parentheses. The third step is using
the created Pattern object, such as by accessing its attributes or calling the methods.

36 CHAPTER 2 Processing and formatting strings

The following code snippet shows how to apply the OOP paradigm to use regular
expressions for pattern searching:

import re

regex = re.compile("do")
regex.pattern
regex.search("do homework")
regex.findall("don't do that")

The other style adopts a functional approach. Instead of creating a Pattern object, we
call the functions directly in the module. In the function call, we specify the pattern as
well as the string against which the pattern is tested:

import re

re.search("pattern", "the string to be searched")
re.findall("pattern", "the string to be searched")

Behind the scenes, when we call re.search, Python creates the Pattern object for us
and calls the search method on the pattern. Thus, using the module to call these
functions is a convenient way to use regular expressions. You should be aware of a dif-
ference, however: when you use the compile function to create a Pattern object, the
compiled pattern is cached in such a way that it’s more efficient to use the pattern
multiple times because there is no need to compile the pattern the second time.

CONCEPT Cache or caching is a mechanism used in programming (and com-
puting in general) to store pertinent data so that the data can serve any future
requests faster.

By contrast, the functional approach creates the pattern on the fly, so it doesn’t have
the benefit of improved efficiency of the cached pattern. Thus, if you use the pattern
once, you don’t need to worry about the difference between these two approaches.

2.4.2 Creating the pattern with a raw string

The key manifestation of the power of regular expressions is the conciseness of a pat-
tern to match a wide range of possibilities. To create a pattern, we often need to use
raw strings, such as a string literal with the prefix r, as in r"pattern". In this section,
you’ll see why it’s necessary to use raw strings to build a regular-expression pattern.

 In regular expressions, we use \d to match any digit and \w to denote a Unicode
word character. These are examples of special characters in regular expressions, and
we use backslashes as the prefixes to indicate that these characters have special mean-
ings beyond what they appear to be. Notably, Python strings also use backslashes to
denote special characters, such as \t for tab, \n for newline, and \\ for backslash.

 When these coincidences are combined, we end up using weird-looking patterns.
Suppose that we want to search for \task in strings. Notably, \t is a literal here; it

Creates a patternAccesses
attributes

Uses methods

372.4 What are the essentials of regular expressions?

really means a backslash and a letter t, but not the tab character. We must use \\task
so Python can search for \task. Making things even more complicated, when we cre-
ate such a pattern, both backslashes must be escaped, which leads to four backslashes
(\\\\task) to search \task in strings. Sounds confusing? Examine the following
code:

task_pattern = re.compile("\\\\task")
texts = ["\task", "\\task", "\\\task", "\\\\task"]
for text in texts:
 print(f"Match {text!r}: {task_pattern.match(text)}")

output the following lines:
Match '\task': None
Match '\\task': <re.Match object; span=(0, 5), match='\\task'>
Match '\\\task': None
Match '\\\\task': None

As match searches a string at the beginning, our pattern can match only "\\task".
This behavior is expected; the two consecutive backslashes are interpreted as a literal
backslash, which makes the string effectively "\task", matching the pattern that we
want to search.

 Apparently, using so many backslashes is confusing. To address this problem, we
should use raw-string notation in such a way that Python doesn’t process any backs-
lashes. As in f-string notation, we use r instead of f as the prefix to convert a regular
string literal to a raw string. Applying raw strings to the pattern, we get the following
solution:

task_pattern_r = re.compile(r"\\task")
texts = ["\task", "\\task", "\\\task", "\\\\task"]
for text in texts:
 print(f"Match {text!r}: {task_pattern_r.match(text)}")

output the following lines:
Match '\task': None
Match '\\task': <re.Match object; span=(0, 5), match='\\task'>
Match '\\\task': None
Match '\\\\task': None

As you can tell, the raw string defines a cleaner pattern than the regular string literal,
with which we had to use four consecutive backslashes. As you can imagine, when you
build a more complex pattern, you need more backslashes to denote special charac-
ters. Without raw strings, your patterns will look like puzzles. Thus, it’s always a good
practice to use raw strings to create regular-expression patterns.

READABILITY Using raw strings to build a pattern eliminates the need to
escape the special character backslash, making it easier for users to read.

38 CHAPTER 2 Processing and formatting strings

2.4.3 Understanding the essentials of a search pattern

The syntax of regular expressions confuses most programmers. As mentioned at the
beginning of section 2.4, regular expressions constitute a separate language with its
own unique syntax. The good news is that Python adopts regular expressions’ syntax
in general. In this section, I go over the essential components of a pattern.

BOUNDARY ANCHORS

When you work with strings, you may want to know whether a string begins or ends
with a particular pattern. These use cases are concerned with the boundaries of the
strings, and we refer to them as boundary anchors, including the beginning and the
end of a string, as illustrated in the following code:

^hi starts with hi
task$ ends with task
^hi task$ starts and ends with "hi task", and thus exact matching

The ^ symbol signifies that the pattern is concerned about the start of the string,
whereas the $ symbol signifies that the pattern is concerned about the end of the
string. The following code snippet shows some examples of these anchors:

re.search(r"^hi", "hi Python")
output: <re.Match object; span=(0, 2), match='hi'>

re.search(r"task$", "do the task")
output: <re.Match object; span=(7, 11), match='task'>

re.search(r"^hi task$", "hi task")
output: <re.Match object; span=(0, 7), match='hi task'>

re.search(r"^hi task$", "hi Python task")
output: None (omitted output in an interactive console)

You may know that there are startswith and endswith methods in the str class,
which work in simple cases. But when you have a more complex need, such as search-
ing a string that starts with one or more instances of h followed by i, it’s impossible to
use startswith because you must account for hi, hhi, hhhi, and more. In such a sce-
nario, regular expressions become very handy.

MAINTAINABILITY Although regular expressions are powerful, it’s always a
good idea to see whether a simpler solution would work, such as startswith
or endswith. These solutions are more straightforward and less error-prone.

QUANTIFIERS

In the previous section, I brought up the question of searching for a variable number
of characters, which requires creating a pattern that accounts for the quantity. Regular
expressions address this problem by supporting the quantifiers category. This cate-
gory includes several special characters:

392.4 What are the essentials of regular expressions?

hi? h followed by zero or one i
hi* h followed by zero or more i
hi+ h followed by one or more i
hi{3} h followed by iii
hi{1,3} h followed by i, ii, or iii
hi{2,} h followed by 2 or more i

As you can see, there are four general quantifiers: ? for 0 or 1, * for 0 or more, + for 1
or more, and {} for a range. One important thing to note: searching a string with the
patterns using ?, *, and + is greedy, which means that the pattern matches the longest
sequence whenever possible. To modify this default behavior, we can append the suf-
fix ? to these quantifiers:

test_string = "h hi hii hiii hiiii"
test_patterns = [r"hi?", r"hi*", r"hi+", r"hi{3}", r"hi{2,3}", r"hi{2,}",
 r"hi??", r"hi*?", r"hi+?", r"hi{2,}?"]

for pattern in test_patterns:
print(f"{pattern: <9}--> {re.findall(pattern, test_string)}")

output the following lines:
hi? ---> ['h', 'hi', 'hi', 'hi', 'hi']
hi* ---> ['h', 'hi', 'hii', 'hiii', 'hiiii']
hi+ ---> ['hi', 'hii', 'hiii', 'hiiii']
hi{3} ---> ['hiii', 'hiii']
hi{2,3} ---> ['hii', 'hiii', 'hiii']
hi{2,} ---> ['hii', 'hiii', 'hiiii']
hi?? ---> ['h', 'h', 'h', 'h', 'h']
hi*? ---> ['h', 'h', 'h', 'h', 'h']
hi+? ---> ['hi', 'hi', 'hi', 'hi']
hi{2,}? ---> ['hii', 'hii', 'hii']

These search results should be consistent with what you can expect. Among these
results, the last several patterns involve the use of the ? suffix, which makes the pat-
tern match the shortest possible sequence that satisfies the pattern instead of the lon-
gest one.

CHARACTER CLASSES AND SETS

The flexibility of regular expressions arises from the simplicity of using a few characters
to denote multiple possibilities of characters. When I introduced raw strings in section
2.4.2, I mentioned that you can use \d to denote any digit. You can specify many other
character sets with regular expressions. Here, I focus on the most common ones:

\d any decimal digit
\D any character that is not a decimal digit
\s any whitespace, including space, \t, \n, \r, \f, \v
\S any character that isn't a whitespace
\w any word character, means alphanumeric plus underscores
\W any character that is not a word character
. any character except a newline
[] a set of defined characters

40 CHAPTER 2 Processing and formatting strings

You should note a few things about using [] to define a character set:

 You can include individual characters. [abcxyz] will match any of these six charac-
ters, and [0z] will match "0" and "z".

 You can include a range of characters. [a-z] will match any character between "a"
and "z", and [A-Z] will match any character between "A" and "Z".

 You can even combine different ranges of characters. [a-dw-z] will match any charac-
ter between "a" and "d" and "w" and "z".

The best way to remember what each character set does is to study specific examples,
as shown in the following code snippet:

test_text = "#1$2m_ M\t"
patterns = ["\d", "\D", "\s", "\S", "\w", "\W", ".", "[lmn]"]
for pattern in patterns:
 print(f"{pattern: <9}---> {re.findall(pattern, test_text)}")

output the following lines:
\d ---> ['1', '2']
\D ---> ['#', '$', 'm', '_', ' ', 'M', '\t']
\s ---> [' ', '\t']
\S ---> ['#', '1', '$', '2', 'm', '_', 'M']
\w ---> ['1', '2', 'm', '_', 'M']
\W ---> ['#', '$', ' ', '\t']
. ---> ['#', '1', '$', '2', 'm', '_', ' ', 'M', '\t']
[lmn] ---> ['m']

The identified matches form several pairs of complements. \d locates all digits, for
example, and \D locates all the nondigits. Recognizing that these character classes
make the opposite matches helps you remember them. The key to mastering regular
expressions is practice!

LOGICAL OPERATORS

Like other programming languages, regular expressions have logical operations in
terms of defining the patterns. These operations are the most common ones:

a|b a or b
(abc) abc as a group
[^a] any character other than a

Use a pair of parentheses to denote an exact group of characters that must be present,
and use the caret sign to create a character set by negating a specific one. If you want
to find any character that is not s, for example, you can use [^s]. Here are some
examples for your reference:

re.findall(r"a|b", "a c d d b ab")
output: ['a', 'b', 'a', 'b']

re.findall(r"a|b", "c d d b")
output: ['b']

412.4 What are the essentials of regular expressions?

re.findall(r"(abc)", "ab bc abc ac")
output: ['abc']

re.findall(r"(abc)", "ab bc ac")
output: []

re.findall(r"[^a]", "abcde")
output: ['b', 'c', 'd', 'e']

2.4.4 Dissecting the matches

When you’ve learned to build a proper pattern, one obvious task is finding all the
matches, as you did with the findall method (section 2.4.3). The findall method
may be the most useful when the involved texts are short and we can easily figure out
where the matches are. In actual projects, we’ll likely deal with a large chunk of text,
so showing us what the matches are doesn’t help. Instead, we want to know where and
what the matches are. This task is what Match objects are all about. This section shows
how to process the matches.

CREATING MATCH OBJECTS

The match and search methods are often used for pattern searching. The major dif-
ference between match and search is where they look for matches. The match method
is interested in whether a match exists at the beginning of the string; the search
method scans the string until it finds a match (if one exists). Despite this difference,
both methods return a Match object when the pattern finds a match. For the sake of
learning Match objects, focus on an example that calls the search method:

match = re.search(r"(\w\d)+", "xyza2b1c3dd")

print(match)
output: <re.Match object; span=(3, 9), match='a2b1c3'>

The key information about a Match object is its matched string and the span. We can
retrieve them with their respective methods: group, span, start, and end, as shown in
the next listing.

print("matched:", match.group())
output: matched: a2b1c3

print("span:", match.span())
output: span: (3, 9)

print(f"start: {match.start()} & end: {match.end()}")
output: start: 3 & end: 9

Listing 2.6 Methods of a Match object

42 CHAPTER 2 Processing and formatting strings

When we use regular expressions, we perform specific operations only if a match is
identified. To make our life easy, a Match object always evaluates to True when used in
a conditional statement. Here’s a general-use style:

match = re.match("pattern", "string to match")
if match:
 print("do something with the matched")
else:
 print("found no matches")

READABILITY When you use if...else... with regular expressions, you can
include a Match object directly in the if clause as a Match object evaluates to
True.

WORKING WITH MULTIPLE GROUPS

One thing that may puzzle you is why these pieces of information are retrieved by call-
ing methods instead of attributes: match.span() vs. match.span. If you’re wondering
why, congratulations; you’re developing a good sense of the OOP principle. I agree with
you that from the OOP perspective, your intuition that the data should be attributes is
correct. But you implement the feature by using method invocations because pattern
searching can result in multiple groups. If you pay close attention to listing 2.6, you’ll
notice that you use the group method to retrieve the matched string. Are you wonder-
ing when a match can have multiple groups? Find out through an example:

match = re.match(r"(\w+), (\w+)", "Homework, urgent; today")
print(match)
output: <re.Match object; span=(0, 16), match='Homework, urgent'>

match.groups()
output: ('Homework', 'urgent')

match.group(0)
output: 'Homework, urgent'

match.group(1)
output: 'Homework'

match.group(2)
output: 'urgent'

This pattern involves two groups (enclosed within parentheses), each of which
searches for one or more word characters separated by a comma and a space. As men-
tioned previously, the matching is greedy because the longest possible sequence is
'Homework, urgent'. The identified match creates separate groups that correspond
to the pattern’s groups.

 By default, group 0 is the entire match. The subsequent groups are matched based
on the pattern’s groups. Because of the multiple groups that a pattern can match, it’s

432.4 What are the essentials of regular expressions?

better to use methods to retrieve each group’s information instead of an attribute,
which can’t accept arguments. The same grouping also applies to span:

match.span(0)
output: (0, 16)

match.span(1)
output: (0, 8)

match.span(2)
output: (10, 16)

2.4.5 Knowing the common methods
To use regular expressions effectively in our projects, we must know what functional-
ities are available for us to use. Table 2.3 summarizes the key methods; each method is
accompanied by an example for illustration purposes.

For the methods in table 2.3, I want to highlight the key points regarding their usages:

 Both search and match identify a single Match object. The biggest difference is
that match is anchored to the beginning of the string, whereas search scans the
string, and a match in the middle is also valid.

Table 2.3 Common regular expression methods

Method Code example Match/return value

search: Returns a Match
if a match is found anywhere
in the string.

re.search(r"\d+", "ab12xy") '12'

re.search(r"\d+", "abxy") None

match: Returns a Match
only if a match is found at
the string’s beginning.

re.match(r"\d+", "ab12xy") None

re.match(r"\d+", "12abxy") '12'

findall: Returns a list of
strings that match the pat-
tern. When the pattern has
multiple groups, the item is
a tuple.

re.findall(r"h[ie]\w", "hi
hey hello")

['hey', 'hel']

re.findall(r"(h|H)(i|e)",
"Hey hello")

[('H', 'e'), ('h', 'e')]

finditer: Returns an iter-
atorb that yields the Match
objects.

re.finditer(r"(h|H)(i|e)",
"hi Hey hello")

An iterator

split: Splits the string by
the pattern.

re.split(r"\d+",
'a1b2c3d4e')

['a', 'b', 'c', 'd', 'e']

sub: Creates a string by
replacing the matched with
the replacement.

re.sub(r"\D", "-",
'123,456_789')

'123-456-789'

bAn iterator is an object that can be iterated, such as in a for loop. I cover iterators in chapter 5.

44 CHAPTER 2 Processing and formatting strings

 When you try to locate all matches, the findall method returns all the matches
without providing any information about where they are. Thus, more com-
monly, you want to use finditer. That method returns an iterator that yields
each Match object, which has more descriptive information about the match
(such as location).

 The split method splits the string by all the matched patterns. Optionally, you
can specify the maximum number of splits that you want.

 The sub method’s name means substitute, and you use this method to replace
any identified pattern with the specified replacement. In an advanced use case,
you can specify a function instead of a string literal, which takes a Match object
as its argument to produce the desired replacement.

2.4.6 Discussion

The key steps in using regular expressions are (1) creating a pattern, (2) finding
matches, and (3) processing matches. These steps should be built on a clear under-
standing of the exact needs of your text processing job. Think of the pattern at a
higher level. Do you need boundary anchors, quantifiers, or character sets? Then drill
down to the syntax for these categories. Be prepared for your pattern not to work as
you expect. You must test your pattern by evaluating the matches with a subset of your
text. There are almost always some edge cases that will surprise you. Ensure that the
pattern accounts for rare cases before you deploy anything to production.

2.4.7 Challenge

Jerry is a graduate student. One of his projects requires him to extract data from text.
Suppose that the text data is "abc_,abc__,abc,,__abc_,_abc", where abc stands for
the needed data values. That is, the data values are separated by one or more separa-
tors. How can he use regular expressions to extract the data values?

HINT When you need to create a pattern that involves a variable number of
characters, think about using pattern quantifiers.

2.5 How do I use regular expressions to process texts?
Regular expressions are not the easiest topic to grasp because we’re creating a general
pattern that can match a variety of possibilities. In most cases, the pattern looks rather
abstract and thus is confusing to many beginners. Therefore, don’t feel frustrated if the
concept is not making sense to you now; it takes time to master regular expressions.
When you grasp them, you’ll find them powerful for processing textual data.

 Using our task management app as an example, suppose that we have the text shown
in the following listing to begin with. The text, which is the data recovered from a data-
base crash, contains multiple valid records of the tasks, but unfortunately, random text
appears throughout the data.

452.5 How do I use regular expressions to process texts?

text_data = """101, Homework; Complete physics and math
some random nonsense
102, Laundry; Wash all the clothes today
54, random; record
103, Museum; All about Egypt
1234, random; record
Another random record"""

Our job is to extract all the valid records from the text data, leaving out invalid
records. Suppose that there are several thousand lines of text, making it unrealistic to
go through the data manually. We need to use a general pattern-searching approach
to conquer this job, which is exactly what regular expressions are designed to do. In
this section, I go over the key steps in solving this problem.

2.5.1 Creating a working pattern to find the matches

The string shown in listing 2.7 highlights a common task when we deal with texts: clean-
ing up the data. Often, the needed data is mixed with unneeded data. Thus, we want to
implement a programmatic solution, taking advantage of regular expressions, to keep
only the needed data. In this section, you’ll learn the first step: creating the pattern.

 After making a careful inspection of the raw data, you notice that the valid records
have three contributing groups: the task ID number in the form of three digits, the
title of the task, and the description of the task. The first two groups are separated by
a comma, and the last two groups are separated by a semicolon. Based on these pieces
of information, you might build the following pattern, with each of the components
analyzed in detail:

r"(\d{3}), (\w+); (.+)"

(\d{3}): a group of 3 digits
, : string literals, a comma and a space
(\w+): a group of one or more word characters
; : string literals, a semicolon and a space
(.+): a group of one or more characters

Applying this pattern to the text data, you can have a quick look at the outcome. At
this stage, don’t worry about processing the matches, because you want to make sure
that the pattern works as expected. You can run the following code after you test and
modify the pattern multiple times before you reach the desired pattern:

regex = re.compile(r"(\d{3}), (\w+); (.+)")
for line in text_data.split("\n"):
 match = regex.match(line)
 if match:
 print(f"{'Matched:':<12}{match.group()}")
 else:
 print(f"{'No Match:':<12}{line}")

Listing 2.7 Text data to be processed

Triple quotes for multiline strings

Splits the
data rows
to extract
each row

Uses the match method to
search for the pattern at
the beginning of the string

Uses the group method
to show the matched
string

46 CHAPTER 2 Processing and formatting strings

output the following lines:
Matched: 101, Homework; Complete physics and math
No Match: some random nonsense
Matched: 102, Laundry; Wash all the clothes today
No Match: 54, random; record
Matched: 103, Museum; All about Egypt
No Match: 1234, random; record
No Match: Another random record

As mentioned in section 2.4.4, an important feature of the Match object is that it eval-
uates to True, allowing us to work on the Match object only if it is created by the match
method. From the printout, you see that you obtain valid records from the matched
objects. By contrast, in those unmatched cases, those records are indeed invalid.

2.5.2 Extracting the needed data from the matches

Because the pattern works as expected, it’s time to extract the data and prepare it for
further processing. To be specific, you want to save each record (ID, title, and descrip-
tion) as a tuple object, and the tuple objects form a list object.

 Notably, when you built your pattern, you included three separate groups that
accounted for each of the task’s data fields. These groups allow you to access these
individual matches for each group. The next listing shows how groups work.

regex = re.compile(r"(\d{3}), (\w+); (.+)")
tasks = []
for line in text_data.split("\n"):
 match = regex.match(line)
 if match:
 task = (match.group(1), match.group(2), match.group(3))
 tasks.append(task)

print(tasks)
output the following line
[('101', 'Homework', 'Complete physics and math'),

➥ ('102', 'Laundry', 'Wash all the clothes today'),

➥ ('103', 'Museum', 'All about Egypt')]

As shown in listing 2.8, we use the group method and access the identified three
groups in a sequential manner: group 1 for the ID, group 2 for the title, and group 3
for the description. As a related note, when we omit the number parameter in the
group method, we’ll retrieve the entire match across the groups (see section 2.4.4).

 In our example, we have three groups in the pattern. When our records get more
complicated, we may have to deal with more groups. Using the integers to track these
groups sequentially can be error-prone; it’s not difficult to miscount by one, which can
lead to unexpected behaviors.

 Isn’t a better solution available? That question leads to the discussion in section 2.5.3.

Listing 2.8 Extracting data from individual groups

Creates a
tuple from
multiple
groups

472.5 How do I use regular expressions to process texts?

2.5.3 Using named groups for text processing

In general, texts provide more semantic information than numbers do. If the integers
that refer to the groups can be confusing, do we have the option of using texts for
group referencing? Fortunately, Python supports this feature, which is called named
groups. In essence, this feature allows you to give a name to the group in such a way
that you can use the name to refer to the group for later processing.

 To name a group, you use the syntax (?P<group_name>pattern), in which you
name the pattern group as group_name. The name should be a valid Python identifier
because you must be able to retrieve it by calling the name. Now you can use the
named groups technique to update the code in listing 2.8, as the next listing shows.

regex = re.compile(r"(?P<task_id>\d{3}), (?P<task_title>\w+);
(?P<task_desc>.+)")

tasks = []
for line in text_data.split("\n"):
 match = regex.match(line)
 if match:
 task = (match.group('task_id'), match.group('task_title'),
 ➥ match.group('task_desc'))
 tasks.append(task)

In the code snippet, we named the three groups task_id, task_title, and task_
desc, which clearly indicate the data for each group. Later, instead of passing an inte-
ger to the group method, we can pass the group name directly. Compared with the
implementation in listing 2.8, using named groups in listing 2.9 improves code read-
ability; more important, it decreases the likelihood of referencing a wrong group, par-
ticularly if a pattern contains many more groups.

MAINTAINABILITY Always use sensible identifiers to name variables or any
objects. This approach not only improves readability, but also leads to fewer
possible mistakes because you know what data you’re dealing with by looking
at the names.

Although we use the group method to retrieve the individual items from the identi-
fied groups, named groups give us another option for retrieving the identified data:
the groupdict method. For the first identified match, we might have the following
data:

>>> match.groupdict()
{'task_id': '101', 'task_title': 'Homework', 'task_desc':

➥ 'Complete physics and math'}

If you prefer using this dict object for data processing, it’s also a good choice in terms
of code readability.

Listing 2.9 Using named groups to extract data

48 CHAPTER 2 Processing and formatting strings

2.5.4 Discussion

The first step in using regular expressions is knowing what business needs we want to
achieve and creating a pattern accordingly. You shouldn’t feel obsessed with making
the pattern correct on the first try. You must test your pattern with the text, and it’ll
take multiple rounds of back-and-forth effort to find the correct pattern (figure 2.5).

When you work with more groups identified through a pattern, I recommend that you
use named groups, as by naming these groups, you’re clearly telling the readers what
data a group holds. Later, it’ll be easier to refer to the groups because of their sensible
names.

2.5.5 Challenge

When we processed the text data to extract the records, we split the text into separate
rows. Assuming that each row indeed has one valid record or no record, could you
find a pattern that processes all the text without splitting the data into multiple rows?

HINT Each row ends with a newline character (\n). Integrate that character
into your pattern.

Summary
 An f-string is a concise way to interpolate variables and expressions.
 Applying a proper text alignment to an f-string makes the information clear by

creating visual boundaries for distinct pieces of data.
 F-strings are also good at formatting numbers, such as scientific notations and

precisions for decimals.
 Python strings have isalnum, isnumeric, and many other is- methods. You can

use them to determine the nature of a string.
 All Python data, such as integers and lists, can have the appearance of a string

(such as when data is transferred over the internet and all of it consists of
strings). We convert these strings to their native data types by evaluating them,
so we can use the data type–specific methods.

 When we need to join a few strings, it’s fine to use the concatenation symbols.
When we deal with multiple strings, however, it’s better to use the join method.

 The split method splits strings, which is a useful data processing tool as well as
the basis for processing tabulated text files. Although built-in modules are

Identify the text-
processing need

thoroughly.

Construct an
initial draft

pattern.

Verify the
pattern on a
subset data.

Process matches
and apply groups

when needed.

Update the pattern.

Figure 2.5 The general process of using regular expressions in processing texts

49Summary

available, such as csv, knowing these fundamentals is key to writing a script for
your own job.

 The key to using regular expressions is building a pattern that addresses your
needs. When we build a pattern, we need to start our thinking at a higher level.
Relevant questions can include these: Do I need multiple groups? How about
boundary anchors, character sets, or quantifiers?

 Named groups make it easier to refer to specific information when you use reg-
ular expressions to process complicated text data.

50

Using built-in
 data containers

As a general-purpose programming language, Python provides a range of built-in
data types for different purposes, including collection types. These collection types
of data serve as containers to hold integers, strings, instances of custom classes, and
all other kinds of objects. In every project, we deal with multiple objects at the same
time, and these scenarios often require data containers to handle these objects.
Every modern language has data containers as its core data models, highlighting
the importance of data containers as building blocks for any programming project.
As you’ll see in chapter 14 when we build our task management app, we’ll use data

This chapter covers
 Choosing lists over tuples and vice versa

 Sorting lists that consist of complex data types

 Using named tuples as a data container model

 Accessing a dictionary’s data

 Understanding hashability and its implications for
dictionaries and sets

 Applying set operations to manipulate nonset data

513.1 How do I choose between lists and tuples?

containers for a variety of jobs, such as using a list to hold custom instances of the
Task class (chapter 8). In this chapter, we’ll discuss the most common built-in data
containers, including lists, tuples, dictionaries, and sets. Please note that this chapter
isn’t intended to provide an exhaustive review of all the functionalities related to these
data models. Instead, we’ll focus on essential topics that matter most in our projects.

CONCEPT Data containers, such as lists and tuples, are objects that contain other
objects. By contrast, strings and integers are not data containers, as they don’t
contain other objects.

3.1 How do I choose between lists and tuples?
We often discuss lists and tuples together because of their similarity as data containers.
Both can hold objects in an ordered fashion, and the objects are accessible through
indexing. In many cases, we use them interchangeably. But some other cases may
require us to pick one over the other. Suppose that you need a data container to store
transaction records in a bank account. Should you use list or tuple? As another
example, if you need to show a transaction’s information, such as its amount and date,
should you use list or tuple?

 There are numerous scenarios like these in which both options seem to be plausi-
ble, but we end up choosing one over the other. In this section, we’ll discuss the key
distinguishing factors that guide our selection between lists and tuples.

3.1.1 Using tuples for immutability and using lists for mutability
One major difference between lists and tuples is mutability. Lists are mutable in such a
way that we can modify the data of a list object: we can append new items to the end
of a list, insert items into the middle, change the items, and remove items. To sup-
port this mutability, Python provides a series of methods in the list class, such as
append, extend, and remove, and you should be familiar with them. Figure 3.1 shows
these methods.

numbers.insert (0, 0) [0, 1, 2, 3]

numbers.append (4) [0, 1, 2, 3, 4]

numbers.extend ([5, 6, 7]) [0, 1, 2, 3, 4, 5, 6, 7]

numbers.remove (5) [0, 1, 2, 3, 4, 6, 7]

del numbers [3] [0, 1, 2, 4, 6, 7]

numbers = [1, 2, 3] [1, 2, 3]Creating a list

Inserting an item
at specified index

Appending an item
to the end

Extending the list
with multiple items

Removing an item by
specifying the value

Removing an item at
specified index

Items in the listOperations

Figure 3.1 Basic
operations with lists
as mutable objects

52 CHAPTER 3 Using built-in data containers

TRIVIA Lists’ remove method deletes only the first matching item. When
you’re removing an item that isn’t in the list, you encounter a ValueError.

By contrast with lists, tuples are immutable; we can’t modify the data of a tuple object.
To support this immutability feature and prevent any unnecessary confusion, Python
has no methods to modify tuple objects. Changing a tuple’s items is syntactically pos-
sible, but such action results in exceptions: calling a nonexistent method leads to an
AttributeError, and reassigning a tuple’s item leads to a TypeError, as the next list-
ing shows.

integers_tuple = (1, 2, 3)
integers_tuple.append(4)
ERROR: AttributeError: 'tuple' object has no attribute 'append'

integers_tuple[0] = 'zero'
ERROR: TypeError: 'tuple' object does not support item assignment

Because of the mutability difference, you should use lists instead of tuples when you
expect to update the data. For the task management app, we use lists to store the tasks
because we add new tasks or remove old tasks. When you don’t change the stored
data, you should use tuples, given their immutability. For the task app, we can use
tuples to store a task’s metadata, such as creation time and user, because they are
fixed. Although we can use lists where tuples are used, we prefer using tuples over lists
in these cases for several reasons:

 It prevents any unexpected changes to the data. Attempting to change the tuples’
data would result in either an AttributeError or a TypeError (listing 3.1).

 It makes clear our intention that the pertinent data should stay unchanged. We use
(creation_time, user) to store a task’s information instead of [creation_
time, user] to signify that these two values are fixed.

 Tuples are more memory-efficient than lists. When a list and a tuple hold the same
data, the list has a larger size than the tuple. The greater memory cost of lists
results from extra overheads to support mutability. Thus, in situations that require
many instances, we prefer using tuples because of their memory efficiency.

TRIVIA You can check an object’s memory usage by calling __sizeof__.

3.1.2 Using tuples for heterogeneity and using lists for homogeneity

We can store any data types in lists and tuples. When the items are of different types, or
when the items hold the same type but with distinct information, we say that they’re het-
erogeneous from the semantic perspective. Consider a real-life object—say, a box. The
information related to the box can include the size, material, and color. This informa-
tion is heterogeneous, as it represents different aspects of the box’s characteristics.

Listing 3.1 Immutability of tuple objects

Attempts to use a nonexistent
method on the tuple object

Attempts to assign a new value to a tuple’s item

533.1 How do I choose between lists and tuples?

When the items are of the same type—or, more strictly, when the data refers to the
same kind of information—we say that they’re homogeneous. When you move your
home, for example, you may use multiple boxes. These boxes are homogeneous
because they represent the same kind of objects.

 Lists and tuples can hold both heterogeneous and homogeneous data. Does that
fact mean that we give lists and tuples no preference? Certainly, the major determinant
is the mutability requirement for the data, as discussed in section 3.1.1. But when muta-
bility is a lesser concern, you should use data’s homogeneity to guide your choice.

 Let’s consider a more concrete example in the task application. In section 3.1.1, I men-
tioned that from the data-mutability perspective, it’s preferable to use a tuple (creation
_time, user) to refer to a task’s metadata, as it consists of distinct pieces of information:
when the task was created versus who created the task. You may hear people say that
tuples are structural because each item carries independent information that contrib-
utes to the tuple object. As a result, tuples are the preferred data structure to hold
semantically heterogeneous data.

 By contrast, the data stored in lists is semantically homogeneous. In the task appli-
cation, the tasks belong to the same semantic category; thus, we should use lists to
store tasks. By default, we can store the tasks based on the creation time in ascending
order. Therefore, as shown in figure 3.2, a list is viewed as a linear data structure that
holds homogeneous items.

3.1.3 Discussion

From the readability perspective, using tuples to hold data gives readers a clear signal
that the data isn’t changing. From the maintainability perspective, we prefer using
tuples to avoid any accidental changes in the pertinent data if it’s expected to stay the
same.

UserCreation time

(''08/25/2021 08:00 am'', ''user'')

Task 1 Task 2

Tasks
Linear and homogeneous

Task 3 Task 4 Task 5

Task meta information
structural and heterogenous

Figure 3.2 Homogeneity of list items and heterogeneity of tuple items. Lists are often used to hold data
of the same kind, termed homogeneous data. In the figure, we use a list to store multiple tasks. By
contrast, tuples are often used to hold data with different meanings, termed heterogeneous data. As
shown in the figure, we use a tuple to store the metadata of a task, which is fixed, distinct information.

54 CHAPTER 3 Using built-in data containers

 I should note that tuples’ immutability doesn’t prevent you from changing their
items’ data. If a tuple contains lists, such as numbers = ([1, 2], [1, 2]), it’s valid to
change the inner lists, such as adding an item to the first list (numbers[0]
.append(3)). This operation is valid because although we change the content of the
inner object, the reference to the object stays the same. As you’ll see in chapter 10,
we’ll make a distinction between objects and their references.

3.1.4 Challenge

Zoe works in a software company in the geography field. She’s building a location-
based application, and we know that a place has a name, description, and coordinates
(latitude and longitude). For the series of places that a user has visited, does she use
list or tuple to store them? For each place, she needs a data model to host its coor-
dinates. Should she choose list or tuple to store the latitude and longitude?

HINT Consider whether the stored data is mutable and/or homogeneous to
help you make the decision.

3.2 How do I sort lists of complicated data using custom functions?
Lists are sequence data (see chapter 4) whose order is determined by the insertion
order. Because of the supported mutability, we often rearrange a list into orders other
than the initial insertion order. Suppose that our project has a list object that holds
tasks for a given day, as shown in the following listing.

tasks = [
 {'title': 'Laundry', 'desc': 'Wash clothes', 'urgency': 3},
 {'title': 'Homework', 'desc': 'Physics + Math', 'urgency': 5},
 {'title': 'Museum', 'desc': 'Egyptian things', 'urgency': 2}
]

Suppose that we display the tasks in the order of their creation time or their urgency
levels. As you’ll find out, if we sort this list of dictionaries, we’ll encounter a TypeError
because Python doesn’t know how to compare dictionaries:

tasks.sort()
ERROR: TypeError: '<' not supported between instances of 'dict' and 'dict'

In this section, you’ll learn how to sort lists, particularly those consisting of compli-
cated data (such as dict objects as opposed to integers and strings) with custom
requirements.

3.2.1 Sorting lists using the default order

Because sorting lists is a common task, Python has a built-in method designed for sort-
ing: the sort method. The next listing shows some simple examples of using sort.

Listing 3.2 A list object consisting of multiple dict objects

553.2 How do I sort lists of complicated data using custom functions?

numbers = [12, 4, 1, 3, 7, 5, 9, 8]
numbers.sort()
print(numbers)
output: [1, 3, 4, 5, 7, 8, 9, 12]

names = ['Danny', 'Aaron', 'Zack', 'Jennifer', 'Mike', 'David']
names.sort(reverse=True)
print(names)
output: ['Zack', 'Mike', 'Jennifer', 'David', 'Danny', 'Aaron']

mixed = [3, 1, 2, 'John', ['c', 'd'], ['a', 'b']]
mixed.sort()
ERROR: TypeError: '<' not supported between instances of 'str' and 'int'

Note that the sorting operation is conducted in place, meaning that sorting changes
the order of the original list instead of creating a new list. Related to this in-place
feature, sort returns None. Thus, in the interactive Python console, you don’t see any
output after running numbers.sort() because None is automatically omitted for the
output in the console. Another thing to note is that the default sorting order is
ascending. If you specify the reverse parameter as True, you’ll get the list in descend-
ing order.

CONCEPT When we say that something happens to an object in place, it
means that the process modifies the object itself. The sort method modifies
the list object in place.

It seems that Python can’t sort a list containing different data types. In listing 3.3, we
encountered a TypeError when the list had integers, strings, and lists because by
default, Python doesn’t know how to compare objects of different types. Is there any
way to instruct Python to compare these objects? Section 3.2.2 discusses the answer.

3.2.2 Using a built-in function as the sorting key

Besides reverse, the sort method has a key parameter. As indicated by its name, this
parameter provides a key to the sorting problem. Specifically, you should set key with
a function, which produces a value from each item in the list. These derived values are
used for comparison, and the derived order determines the order of the list’s items.

TRIVIA Not only the sort method has the key parameter. Some other func-
tions, such as max and min, have the key parameter too. What you learn here
can be applied to these functions.

As mentioned at the end of section 3.2.1, Python doesn’t know how to compare
between integers, strings, and lists. Notably, Python does know how to compare strings.
Thus, a strategy for sorting data of different types is to convert it to strings by setting
the key parameter:

Listing 3.3 Sorting lists using the sort method

Sorts the numbers in place Sorts the
strings in
place but
requests that
the order be
reversed

56 CHAPTER 3 Using built-in data containers

mixed = [3, 1, 2, 'John', ['c', 'd'], ['a', 'b']]
mixed.sort(key=str)

print(mixed)
output: [1, 2, 3, 'John', ['a', 'b'], ['c', 'd']]

In the code, we use the str function (strictly, a class constructor; see section 10.5) as
the key argument, which converts each item to a string. Python sorts these strings as
proxies, ['3', '1', '2', 'John', "['c', 'd']", "['a', 'b']"], producing ['1', '2', '3', 'John',
"['a', 'b']", "['c', 'd']"]. Notably, each converted string is associated with its original
object, and Python renders the sorted list with the raw items.

3.2.3 Using custom functions for more complicated sorting needs

Section 3.2.2 discussed how to use key to sort a list of objects of various types, but
the example is too trivial to be useful in a real-life project. In listing 3.2, our task man-
agement app has a list object consisting of dict objects. In this section, you’ll see
how to sort this kind of list object.

 Although we can set str to key to make these dict objects comparable, the sorted
list isn’t what we want; the objects are not ordered by their urgency levels. To address this
need, we can create a custom function and set it to the key parameter, as the next listing
shows.

def using_urgency_level(task):
 return task['urgency']

tasks.sort(key=using_urgency_level, reverse=True)
print(tasks)

output the following lines (re-arranged for readability):
[{'title': 'Homework', 'desc': 'Physics + Math', 'urgency': 5},
{'title': 'Laundry', 'desc': 'Wash clothes', 'urgency': 3},
{'title': 'Museum', 'desc': 'Egyptian things', 'urgency': 2}]

Each item of the list is sent to the function using_urgency_level. It’s important to
note that this key function must take exactly one parameter, which corresponds to
each item of the list object. This function extracts the tasks’ urgency levels accord-
ing to which the sorting is conducted. Figure 3.3 shows the sorting process intuitively.

PEEK We can set key with a lambda function, an anonymous function cre-
ated by using the lambda keyword. To obtain the same sorting result by using
a lambda function, we could use tasks.sort(key=lambda x: x['urgency'],
reverse=True). We’ll discuss lambda functions in section 7.1.

Listing 3.4 Sorting tasks by setting a key

573.2 How do I sort lists of complicated data using custom functions?

3.2.4 Discussion

The sort method works only with lists because it’s an instance method of lists. When we
sort other container data types, such as tuples, sets, and dictionaries, we can use sorted,
which can take any iterable and return a sorted list. You can specify a custom sorting
function for sorted, too. Remember that the function to be set to the key argument
should take exactly one parameter. When the function for the key argument performs
a small operation, we should consider using a lambda function (see section 7.1).

3.2.5 Challenge

In this chapter, you learned to sort tasks by using their urgency levels, as shown in list-
ing 3.4. Can you come up with a solution to order the tasks by their descriptions’
lengths? The longer the description is, the higher the task’s rank.

{'title': 'Laundry',
'desc': ‘Wash

clothes', 'urgency': 3}

{'title': ‘Homework',
'desc': 'Physics +
Math', 'urgency': 5}

{'title': 'Museum',
'desc': 'Egyptian

things', 'urgency': 2}

Original list

def using_urgency_level(task):
return task['urgency']

The key function

Each item is passed as the task
parameter to the key function.

3 5 2

The extracted values will be used for sorting.
Note that we set reverse as True.

3

{'title': 'Laundry',
'desc': 'Wash

clothes', 'urgency': 3}

{'title': 'Homework',
'desc': 'Physics +
Math', 'urgency': 5}

{'title': 'Museum',
'desc': 'Egyptian

things', 'urgency': 2}

Each item has a corresponding value
extracted using the key function.

Using the raw items

Sorted list

25

Figure 3.3 The sorting process using a key function. A key function converts each item of the list
to a corresponding value. The generated values will be used as intermediate items to sort the list.
After the sorting, the original items are rendered in the order created by the intermediate items.

58 CHAPTER 3 Using built-in data containers

HINT Custom sorting requires setting the key parameter in the sort func-
tion. The built-in function len can check the length of a string.

3.3 How do I build a lightweight data model using named tuples?
The core of any project is data. If you’re building a social network app, the users and
their connections are the data. If you’re building an e-commerce website, the mer-
chandise and client information are the data. If you’re building a machine learning
model, the features and targets are the data. For our task management app, we need
to have a mechanism to process and handle task-related data.

 If you come from an object-oriented programming (OOP) background, your intu-
itive response is probably to create custom classes to manage data. But it’s a nontrivial
task to write a class. (You’ll learn best practices for creating a class in chapter 8.) With
the increasing complexity of our applications, we may have multiple classes to handle
different aspects of the data flow. For simpler data models, named tuples can be a per-
fect solution, especially when our primary concern is to have a lightweight data model
that is easy to use and holds data with little memory overhead.

3.3.1 Understanding alternative data models
Before we build a data model using named tuples, it’s essential for us to know our
options. In this section, we’re going to explore at least four other ways to manage the
data: lists, tuples, dictionaries, and custom classes.

 To create a context, let’s say that each task in our application has the following
pieces of information that we need to manage: title, description, and urgency level.
The next listing shows what the data models look like using list, tuple, and dict.

task_list = ['Laundry', 'Wash clothes', 3]

task_tuple = ('Laundry', 'Wash clothes', 3)

task_dict = {'title': 'Laundry', 'desc': 'Wash clothes', 'urgency': 3}

As shown in listing 3.5, these pieces of information are stored as individual items in
list and tuple and as key-value pairs in dict. Besides using the built-in classes, we
can create a custom class to store the data. You can find a skeleton of a custom class in
the following code snippet (and no worries if you’re unfamiliar with defining custom
classes; it’ll be covered in chapter 8):

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency

task_class = Task('Laundry', 'Wash clothes', 3)

Listing 3.5 Using built-in data models for data management

Uses a list

Uses a tuple

Uses a dictionary

593.3 How do I build a lightweight data model using named tuples?

Although each approach is plausible in some scenarios, various drawbacks make them
less ideal for our business need: a lightweight model to hold data.

 Lists are mutable, making them vulnerable to intentional and accidental changes.
Section 3.1 also discussed that we usually use lists to hold homogenous data. Using a
list to hold heterogeneous data isn’t a good idea. Although tuples are immutable, and
we don’t worry about data changes, to retrieve an attribute such as title, we must use
either the unpacking technique (section 4.4) or indexing (section 4.2). Neither tech-
nique is straightforward.

 Lists and tuples don’t have meta information about what data they’re holding. A
coworker who’s unfamiliar with the application won’t have any clues about the data
model when they review your code. Compared with lists and tuples, dictionaries pro-
vide meta information, as the keys inform what the data is. To retrieve these attributes,
however, we must use the corresponding keys (such as task_dict['title']). If we mis-
spell the keys or miss a quote, we’ll encounter a KeyError or SyntaxError.

 Lists, tuples, and dictionaries are generic types, and they have no ideas about the
specifics of the data model. Thus, modern integrated development environments
(IDEs) such as PyCharm and Visual Studio Code provide no useful autocompletion
hints for these data structures, decreasing your coding efficiency. We can overcome
this drawback by creating a custom class. When a Task instance is created, after we key
in the instance and a dot, the available attributes (such as title and desc) are
prompted automatically by your IDEs, facilitating coding speed.

CONCEPT An IDE provides comprehensive functionalities, such as autocom-
pletion hints and real-time code analysis, to facilitate software development.

The solution of implementing a custom class can have a few complications, however:

 Creating a custom class requires a considerable amount of boilerplate, and for
a simple data model such as a data holder, it is overkill to implement an entire
custom class.

 The memory cost is not negligible, particularly if you must deal with tons of
instances.

Each instance of a custom class consumes more memory than an instance of named
tuples, as discussed in section 3.3.2. When our project evolves, we want our data
model to do more things; we’ll move the lightweight data model to a fully equipped
custom class (chapter 8).

3.3.2 Creating named tuples to hold data

As indicated by the name, a named tuple is a kind of tuple. Named tuples are special
because the items they hold have names associated with them. Unlike regular tuples,
whose items are accessible by indices, named tuples support dot notation, accessing
items just like accessing attributes of a custom class instance. We can observe these fea-
tures in an example:

60 CHAPTER 3 Using built-in data containers

from collections import namedtuple

Task = namedtuple('Task', 'title desc urgency')
task_nt = Task('Laundry', 'Wash clothes', 3)

assert task_nt.title == 'Laundry'
assert task_nt.desc == 'Wash clothes'

Note a few significant things about the named tuple technique:

 The instance of the named tuple has the advantage of accessing its attributes with dot
notation. It’s not only faster to code because of the autocompletion hints, but is
also more readable, with a clean access pattern.

 The namedtuple is a factory function in the collections module. Because it’s a fac-
tory function, calling it returns a new class or a new instance object. In this case,
we got the Task class.

READABILITY Follow the convention of naming classes in Python by using the
uppercase camel form: ClassName. When you have multiple words, every
word’s first letter should be uppercase, as in TaskUser.

 In the namedtuple function, we specified the class name and its attributes for
the class. Notably, the data model’s attributes can be set as either a single string
(with spaces or commas as separators) or a list object (figure 3.4):

Task = namedtuple('Task', 'title, desc, urgency')

Task = namedtuple('Task', ['title', 'desc', 'urgency'])

READABILITY Specify the attributes by using a single string with spaces or
commas in the namedtuple function. The code is easier to type and read.

Now that you know about the named tuple, you can use the Task class to process the
data used in our application. For simplicity, suppose that our data source is a string
object that we receive from a particular application programming interface (API):

task_data = '''Laundry,Wash clothes,3
Homework,Physics + Math,5
Museum,Epyptian things,2'''

Creates the named tuple class

Creates an instance
of the named tuple

Accesses the instance’s attributes

namedtuple('Task', 'title, desc, urgency')

Class name should follow the
uppercase camel naming rule.

Separate attributes with
commas or spaces in a single
string, or use a list of strings.

Figure 3.4 Creating a
named tuple. The class
name should follow the up-
percase camel naming rule,
and the attributes should be
specified by a single string
or a list of strings.

613.3 How do I build a lightweight data model using named tuples?

CONCEPT An API defines a set of ways to build and integrate different com-
ponents, including software and hardware. A common kind of API refers to
various defined functions that your application can call to retrieve data from
another source.

To convert the text data to Task instance objects, here’s a possible solution:

for task_text in task_data.split('\n'):
 title, desc, urgency = task_text.split(',')
 task_nt = Task(title, desc, int(urgency))
 print(f"--> {task_nt}")

output the following lines
--> Task(title='Laundry', desc='Wash clothes', urgency=3)
--> Task(title='Homework', desc='Physics + Math', urgency=5)
--> Task(title='Museum', desc='Epyptian things', urgency=2)

This solution uses a few techniques that you’ve learned so far, including string splitting
and f-strings, and shows exactly how small things add up to make something work. To
take this a step further, we can take advantage of the named tuple class method _make,
which maps an iterable (the list created by split is an iterable; we’ll discuss iterables in
detail in chapter 5) to the named tuple. Here’s an updated solution:

for task_text in task_data.split('\n'):
 task_nt = Task._make(task_text.split(','))

PEEK You’ll learn about class methods in section 8.2.

Unlike custom classes, whose instances have per-instance dict representations through
__dict__, named tuples don’t have the underlying dict representations, which makes
named tuples a lightweight data model with negligible memory costs. Named tuples can
save significant amounts of memory when you need to create thousands of instances.

 Curious readers are encouraged to explore Python’s official website
(https://docs.python.org/3/library/collections.html) to find out about other features
of named tuples, such as creating a new named tuple from an existing one by replac-
ing field values and inspecting the fields’ default values.

3.3.3 Discussion

Compared with built-in types (such as lists, tuples, and dictionaries) and custom
classes, named tuples are a more proper, lightweight data model if your business con-
cern is a model to hold data with mostly read-only access requirements. The popular
data science Python library pandas, for example, allows you to access each row of its
DataFrame data model as a named tuple.

TRIVIA Most data scientists use pandas in their daily data processing jobs.
The library’s key data structure DataFrame represents data in the form of
spreadsheets.

Splits the
text data
into multiple
rows

Splits the text data
with commas

https://docs.python.org/3/library/collections.html

62 CHAPTER 3 Using built-in data containers

Because named tuples represent a new type, you should use a descriptive name with
the first letter uppercase, as in other custom classes. In the meantime, make the
named tuple class obvious. It is a good idea to place the code for creating a named
tuple class at the top of a module. After all, the code is only one line, and you don’t
want it buried.

MAINTAINABILITY Place the code of creating a named tuple class in a notice-
able location, such as at the top of a module. The code is one line, but it’s sig-
nificant: it creates a new class.

3.3.4 Challenge

For the task management app, suppose that we need to update a named tuple
Task(title='Laundry', desc='Wash clothes', urgency=3) by setting the urgency level
to 4. Can you change the level directly? If not, how can you change it?

HINT A named tuple is a tuple object, so it’s immutable, and changing its
stored data directly is not allowed.

3.4 How do I access dictionary keys, values, and items?
The most-used built-in data types include int, float, bool, str, list, tuple, set, and
dict. The first four types are primitive types because they’re the building blocks of
other data types. The other four types are data containers (figure 3.5). What makes
dict different from list, tuple, and set is the fact that it contains key-value pairs
instead of individual objects. Through storing the key-value pairs, dictionaries can
hold two categories of information.

Suppose that we have the following dictionary to store the urgencies of some tasks in
the task application. This dict object holds two sets of information, which are the
titles as the keys and the urgency levels as the values:

urgencies = {"Laundry": 3, "Homework": 5, "Museum": 2}

int: 1

float: 1.23

bool: True

str: "Hello"

dict: {1: "one"}

Primitive types Data containers

list: [1, 2, 3]

tuple: (4, 5, 6)

set: {7, 8, 9}

Contain items
that are
individual objects

Contain items that
are a pair of objects:
key and value

Contain no other
objects and are
“indivisible”

Figure 3.5 Common
data models in Python,
including primitive types
and data containers

633.4 How do I access dictionary keys, values, and items?

When we include dictionaries in our project, we often need to access their stored data:
the keys, the values, and the key-value pairs. In this section, we’re going to explore
different ways to access this data. Because we use dictionaries frequently in our projects,
knowing how to access a dict’s data is essential for using this powerful data type.

3.4.1 Using dynamic view objects (keys, values, and items) directly

Besides providing access to individual key-value pairs in a dictionary, such as urgencies
["Laundry"], Python provides three basic methods for retrieving a dictionary’s stored
data across all the pairs: keys, values, and items to access the keys, values, and the key-
value pairs, respectively. Let’s observe their basic uses:

urgencies = {"Laundry": 3, "Homework": 5, "Museum": 2}
urgen_keys = urgencies.keys()
urgen_values = urgencies.values()
urgen_items = urgencies.items()
print(urgen_keys, urgen_values, urgen_items, sep="\n")

output the following lines:
dict_keys(['Laundry', 'Homework', 'Museum'])
dict_values([3, 5, 2])
dict_items([('Laundry', 3), ('Homework', 5), ('Museum', 2)])

One assumption that many people make is that the objects created from these meth-
ods (keys, values, and items) are list objects. They’re not, however. They’re dict_
keys, dict_values, and dict_items, respectively. What’s most special about these
data types is the fact that they’re all dynamic view objects. If you’re familiar with database
terms, you should have heard of views, which refer to the virtual results computed or
collated dynamically from data in the database.

TRIVIA Views are the results of stored queries in a database. When the perti-
nent data is updated, the views are updated too.

Like views in a database, dictionary view objects are dynamic, updated automatically
with the change of the dict object. That is, whenever you modify the key-value pairs
stored in a dict object, these view objects get updated. Observe this effect:

urgencies["Grocery Shopping"] = 4

print(urgen_keys)
output: dict_keys(['Laundry', 'Homework', 'Museum', 'Grocery])

print(urgen_values)
output: dict_values([3, 5, 2, 4])

print(urgen_items)
output: dict_items([('Laundry', 3), ('Homework', 5), ('Museum', 2),

➥ ('Grocery, 4)])

64 CHAPTER 3 Using built-in data containers

This dynamic provides great convenience when we access a dictionary’s data because
the data is in perfect sync with the dict object. By contrast, the following example,
which doesn’t take advantage of the view object, is antipattern:

urgencies = {"Laundry": 3, "Homework": 5, "Museum": 2}

urgen_keys_list = list(urgencies.keys())
print(urgen_keys_list)
output: ['Laundry', 'Homework', 'Museum']

urgencies["Grocery"] = 4
print(urgen_keys_list)
output: ['Laundry', 'Homework', 'Museum']

We create a list for the keys. After we update the dictionary, the list stays the same
and doesn’t sync with the dict object. Thus, you may encounter unexpected errors,
such as trying to access a deleted item, when you use a list to track the keys of a dic-
tionary instead of using the dict_keys view object.

MAINTAINABILITY Always use view objects to access a dict’s data because
these view objects are dynamic; they will update when the dictionary’s data is
updated.

3.4.2 Being cautious with the KeyError exception

In section 3.4.1, we discussed three ways to access all the keys and/or values in a dictio-
nary. Most of the time, however, we need to access a single value by using subscript nota-
tion, which encloses the key in a pair of square brackets:

assert urgencies["Laundry"] == 3

assert urgencies["Homework"] == 5

CONCEPT Subscript notation is a common way to access data in a collection
data type. For dict objects, using subscript notation means using keys
enclosed in square brackets to access the corresponding values.

The major advantage of this method is its straightforwardness. If you have used dictio-
naries in other languages, you should be familiar with this approach. Thus, it is natu-
ral for you to use this feature when you access items of a dictionary. But unexpected
errors can happen if you’re not careful with the key. The following code snippet shows
such a problem:

urgencies["Homeworks"]
ERROR: KeyError: 'Homeworks'

When you’re accessing a key that doesn’t exist in the dictionary, you encounter the
KeyError exception. When an exception is raised, unless it’s handled with the
try...except... statement (section 12.3), your program crashes. We certainly don’t

653.4 How do I access dictionary keys, values, and items?

want our program to crash, so we should avoid this error by using alternative
approaches.

3.4.3 Avoiding KeyError with a hygiene check first: The non-Pythonic way

Because we know that KeyError exceptions occur only when the keys aren’t in the dic-
tionary object, we can check the key’s existence before retrieving the value, as in this
example:

if "Homework" in urgencies:
 urgency = urgencies["Homework"]
else:
 urgency = "N/A"

This solution helps us avoid the KeyError exception, but in the meantime, it’s cum-
bersome and non-Pythonic, because Pythonic code should be concise. Now, we’re
accessing only one item. Can you imagine accessing multiple items? We would have to
repeat this block of code, leading to distractive duplication in the codebase. Code
duplication should remind you of the DRY (Don’t Repeat Yourself) principle; we
should refactor our code to remove unnecessary repetitions. Consider this code:

def retrieve_urgency(task_title):
 if task_title in urgencies:
 urgency = urgencies[task_title]
 else:
 urgency = "N/A"
 return urgency

With the refactored code, we can retrieve a task’s urgency level without worrying
about the KeyError exception anymore:

retrieve_urgency("Homework")
output: 5

retrieve_urgency("Homeworks")
output: 'N/A'

The retrieve_urgency function is handy for retrieving a task’s urgency level, but it is
hardcoded, including the dict object (urgencies) and specific semantics (urgency). If
we access another dict’s data, we must define a similar function to avoid a KeyError.

 The more dictionary objects we have, the more functions we’ll have to create. Are
you seeing a higher level of repetition here? Our Python pioneers have already
considered this problem and have created a built-in function: the get method, discussed
in section 3.4.4.

3.4.4 Using the get method to access a dictionary item

Because it is a dict method, we can call the get method on any dict object by specify-
ing the key and a default value when the key doesn’t exist. When the default argument

Checks whether the
key is in the dictionary

66 CHAPTER 3 Using built-in data containers

is omitted, Python uses None as the default value. The following code snippet shows
some examples:

urgencies.get("Homework")
output: 5

urgencies.get("Homeworks", "N/A")
output: 'N/A'

urgencies.get("Homeworks")
output: None (None is automatically hidden in an interactive console)

The get method has the advantage of not raising KeyError when the key isn’t in the
dictionary. More importantly, it allows you to set a proper default value as the fallback
value. You can use get whenever you retrieve values from dictionaries, but I prefer
subscript notation, which I find to be more readable.

 There are scenarios in which get is preferable to subscript notation, however. One
such scenario is when you need to deal with the variable number of keyword arguments
(**kwargs) in a function definition. We’ll cover using **kwargs in section 6.4. For the
time being, you only need to know that kwargs is a dict object used in a function and
that these parameters are usually optional. Suppose that you’re building a Python pack-
age for the Python community, and this package has the following function:

def calculate_something(arg0, arg1, **kwargs):
 kwarg0 = kwargs.get("kwarg0", 0)
 kwarg1 = kwargs.get("kwarg1", "normal")
 kwarg2 = kwargs.get("kwarg2", [])
 kwarg3 = kwargs.get("kwarg3", "text")
 # ... and so on

possible invocations:
calculate_something(arg0, arg1)
calculate_something(arg0, arg1, kwarg0=5)
calculate_something(arg0, arg1, kwarg0=5, kwarg3="text")

In this example, calculate_something accepts multiple keyword arguments besides
two positional arguments. For conciseness, you may not want to list all optional key-
word arguments when their default values are almost always used; thus, you can wrap
them to a dict kwargs in the function header. In the function body, you’ll notice that
we use get multiple times, which allows us to set default values when the keys are miss-
ing from calling the function, and we include these proper default values in the get
method.

3.4.5 Watching for the setdefault method’s side effect

When people talk about alternatives to the get method, some may mention the set-
default method. This method is like the get method in that it also takes two parame-
ters: the key and a default value as the fallback. Observe some uses of setdefault:

673.4 How do I access dictionary keys, values, and items?

urgencies = {"Laundry": 3, "Homework": 5, "Museum": 2}
urgencies.setdefault("Homework")
output: 5

urgencies.setdefault("Homeworks", 0)
output: 0

urgencies.setdefault("Grocery")
output: None (None is automatically hidden in an interactive console)

This code snippet shows the similarity between setdefault and get. But what makes
setdefault differ from get is that when you call setdefault, an extra operation
(dict[key] = default_value) occurs when the key isn’t in the dictionary:

print(urgencies)
output: {'Laundry': 3, 'Homework': 5, 'Museum': 2, 'Homeworks': 0,

➥ 'Grocery': None}

We previously called setdefault with the keys "Homework", "Homeworks", and
"Grocery". Because the latter two keys were not in the dict initially, the following
operations occurred under the hood:

urgencies["Homeworks"] = 0
urgencies["Grocery"] = None

Because of this side effect, I don’t recommend using the setdefault method. The
name is confusing—typically, we don’t expect things to be returned by calling a method
that involves setting a value—and an implicit operation that many people may not know
(setting the specified default value or None if the key doesn’t exist) is involved.

MAINTAINABILITY Avoid using the setdefault method, as it can set the miss-
ing key’s value in an unexpected way. Use a more explicit approach, such as
the get method.

3.4.6 Discussion

Dictionary view objects are a brilliant design that dynamically tracks a dictionary’s
keys, values, and key-value pairs. As iterables, they can be used in a for loop (section
5.3) if you want to iterate the data of a dict object.

 Don’t feel obligated to use get whenever you access a key’s value. If you’re used to
subscript notation, feel free to use it. Sometimes, it’s a good idea to use subscript
notation in your own codebase, as you want any problems to surface during
development, and raising errors is an essential mechanism for identifying any
problems. If you misspell a key, using the get method may hide the KeyError exception
by providing the fallback value.

68 CHAPTER 3 Using built-in data containers

3.4.7 Challenge

The built-in id function checks an object’s memory address. Running id("Hello")
returns the address of the "Hello" object. Can you use the id function to track the
changes of a dictionary view object, such as dict_keys? You expect the view object’s
data to change with the update of the dict object. You should expect the view object’s
memory address to stay.

HINT An object has the same memory address throughout its lifecycle. Even
though the data of the object can change, the memory address should stay.

3.5 When do I use dictionaries and sets instead of lists and tuples?
We have extensively discussed two data containers: tuples and lists. Python has no
restriction regarding the data types that can be saved in them, and such flexibility
makes them attractive data models in any project. Section 3.4 mentions that dict is
useful because it stores key-value pairs, but how about sets? In addition, you may know
that not all data types can be stored in dictionaries and sets, as the next listing shows.

failed_dict = {[0, 2]: "even"}
ERROR: TypeError: unhashable type: 'list'

failed_set = {{"a": 0}}
ERROR: TypeError: unhashable type: 'dict'

When objects are unhashable, they can’t serve as dict keys or set items. At first
glance, this fact appears to be a deficit that harms the usefulness of these two data
structures. But there are good reasons for this design. In this section, we’ll explore
how the hashable restriction benefits data retrieval with these two data structures and
when we should use it. We’ll also study the hashable-versus-unhashable concept.

3.5.1 Taking advantage of the constant lookup efficiency

Dictionaries store key-value pairs, and this storage pattern allows us to retrieve data by
accessing the keys. Moreover, dictionaries have a significant advantage: superior
lookup efficiency for retrieving specific items. Because sets have the same underlying
storage mechanism (a hash table; see section 3.5.2) as dictionaries, they have the same
characteristics—efficient item lookup. In this section, we’ll see when to prefer dictio-
naries or sets over lists and tuples.

 Suppose that our application requires a considerable number of item retrievals or
lookups. From a theoretic perspective, we could use a list or a set to store the data.
We can run a simple experiment to compare the speed of retrieving a random item
from each object with the help of timeit and random modules, as shown in the next
listing.

Listing 3.6 Failed creation of dict and set objects

693.5 When do I use dictionaries and sets instead of lists and tuples?

from timeit import timeit

for count in [10, 100, 1000, 10000, 100000]:
setup_str = f"""from random import randint; n = {count};

➥ numbers_set = set(range(n));

➥ numbers_list = list(range(n))"""
 stmt_set = "randint(0, n-1) in numbers_set"
 stmt_list = "randint(0, n-1) in numbers_list"
 t_set = timeit(stmt_set, setup=setup_str, number=10000)
 t_list = timeit(stmt_list, setup=setup_str, number=10000)
 print(f"{count: >6}: {t_set:e} vs. {t_list:e}")

TRIVIA As part of the standard Python library, the timeit module allows us
to examine our operations’ performance, and the random module provides
functionalities for creating random numbers. The availability of these built-in
tools is another manifestation of how comprehensive Python is in terms of
routine tools for our work.

In listing 3.7, we use a for loop to go over multiple conditions in which the list and
set objects have varied numbers of items. After running the code, you’ll see the fol-
lowing output:

 10: 1.108225e-02 vs. 9.955332e-03
 100: 9.514037e-03 vs. 1.533820e-02
 1000: 1.051638e-02 vs. 7.346468e-02
 10000: 1.034654e-02 vs. 6.189157e-01
100000: 1.086105e-02 vs. 6.290399e+00

READABILITY We used f-strings to format the string output. Specifically, we
applied the text alignment format specifier to create a visual structure for bet-
ter readability.

With the increase in the number of the items in the set, the lookup time stays at the
same magnitude, which represents constant time, known as the O(1) time complexity.
That is, no matter how large the set grows, item lookup takes about the same time. By
contrast, the magnitude of lookup time increases linearly as a function of the list’s
size. Unlike sets, which use hash tables to index objects with hash values (section
3.5.2), lists require traverses to examine whether an item is contained, and the time
for such traversing depends directly on the number of the list’s items. This contrast
in time complexity highlights the benefit of using sets instead of lists when your busi-
ness need is item lookup.

 This example uses a set object as the test subject for item-lookup efficiency to
observe how we achieve O(1) time complexity. The same efficiency holds for dict
objects, as the underlying storage mechanism is the same: using a hash table. Each key
in a dict object and each item in a set object has a corresponding hash value. But
what does hash mean? Section 3.5.2 discusses that topic.

Listing 3.7 Comparing data retrieval speed between lists and sets

The
string
to set

up the
timing

test The string to check the
membership in a set object

The string
 to check the
membership

in a list
object

Finds out the average
execution time

Expect to see different results
due to different computers.

70 CHAPTER 3 Using built-in data containers

3.5.2 Understanding hashable and hashing

When you create dictionaries or sets, you don’t want to experience the TypeError
exception (listing 3.6). This exception is raised because we’re trying to use unhash-
able objects as dictionary keys or set items. As you can imagine, the opposite of unha-
shable is hashable, and it appears that only hashable objects can be used with
dictionaries and sets. But what does hashable mean? In this section, you’re going to
learn about both hashable and unhashable objects.

CONCEPT When your Python program encounters an error, we say that it
raises an exception. Other programming languages may use throw to signify
an error or exception.

Hashable isn’t an isolated concept. You have probably heard related terminologies,
such as hash value, hashing, hash table, and hashmap. At their core, hashable objects
use the same fundamental procedure: hashing. Figure 3.6 shows the general process of

Time complexity of algorithms
In computer science, algorithms can be conceptualized as defined instructions for
solving a problem, such as sorting a list or fetching an item from a sequence. Not all
algorithms have the same problem-solving speed. To quantify performance, we use
time complexity to describe the amount of time required to run an algorithm. To
denote the time complexity, we use so-called Big O notation, in which we use a pair
of parentheses to include a function of the number of involved items, typically
denoted as n. O(n), for example, means that the time needed for the algorithm is lin-
early dependent on the number of items involved; O(n2) means that the time needed
is quadratically related to the items’ count; and O(1) means that the time is constant
and doesn’t depend on the number of items involved. The following figure provides a
brief overview of the time complexities.

O(1)

O(log(n))

O(√)

O(n)

O(n2)

Input (n)

Ti
m

e

n

The curves of time
complexity of different
magnitudes. The variable
n represents the number
of items involved in the
computation.

713.5 When do I use dictionaries and sets instead of lists and tuples?

hashing, using dictionary keys as an example. We start with raw data values: four
strings. A hash function, which is often termed a hasher, carries out a series of compu-
tations by using specific algorithms and outputs the hash values (termed hashes) for
the raw data values.

 Note several key points about the hashing process:

 A hash function should be so computationally robust that it produces different hash val-
ues for different objects. In rare cases, a hash function can produce the same hash
value for different objects—a phenomenon termed hash collision, which must be
handled according to a specified protocol.

 A hash function should be so consistent that the same objects always have the same hash
values. When you set a password in an application, the password is hashed by
the hasher and stored in a database. When you try to log in again, the entered
password string would be hashed and compared with the stored hash value. In
these two cases, the same password should produce an identical hash value.

 For more complicated hashers, hashing is one-way traffic. By design (such as using a
random number), it’s almost impossible to reverse-calculate the raw data based
on a hash value. This irreversibility is required where cybersecurity is con-
cerned. Even if hackers get a password’s hash value, they can’t figure out the
password from the hash value (at least, not easily).

Python has implemented a hasher that produces hash values for its objects. Specifi-
cally, we can retrieve an object’s hash value by using the built-in hash function. The
following code shows some examples:

hash("Hello World!")
output: 9222343606437197585

hash(100)
output: 100

hash([1, 2, 3])
ERROR: TypeError: unhashable type: 'list'

Dictionary keys

John

Ashley

Zoe

Ben

Hasher 170230432

198309323

839823901

991309231

Hashes

Figure 3.6 The process of hashing, using dictionary keys as an example. A hash function (hasher)
hashes the keys of a dictionary, producing hashes as integer values. These hash values are uniquely
associated with each of the dictionary keys. Different hashers are expected to produce different hashes.

Expect a different value because
some hashers depend on the
operating system.

72 CHAPTER 3 Using built-in data containers

Not every object can produce a hash value by the hash function. Strings and integers
are hashable, but lists are unhashable. You may wonder why lists are unhashable or,
more broadly speaking, why dictionaries and sets are unhashable too. The reason is
simple: these unhashable data types are mutable. By design, the hash function gener-
ates a hash value based on the content of an object.

 The content of mutable data can change after creation. If we magically make a list
hashable, when we update the list with the changed content, we expect to have a dif-
ferent hash value. But a hash function should consistently produce the same hash
value for the same object, and in this case, we expect the hash value to stay the same
for the list object. Apparently, the list’s content change, resulting in a hash-value
change, is irreconcilable with the expected consistent hash value for the same list
object (figure 3.7).

By contrast, for immutable data such as integers, strings, and tuples, the contents stay
the same after creation. The consistency of the contents is key to applying a hash func-
tion to any object. Thus, all immutable data types are hashable.

 You may wonder whether there is a more straightforward way to determine the
hashability of an object without using the hash function. Listing 3.8 shows a solution.
Everything should be straightforward except the use of Hashable. For simplicity, you
can think of Hashable as being a class and every hashable object as being an instance
of this class.

from collections.abc import Hashable

def check_hashability():
 items = [{"a": 1}, [1], {1}, 1, 1.2, "test", (1, 2), True, None]
 for item in items:
 print(f"{str(type(item)): <18} | {isinstance(item, Hashable)}")

print(f"{'Data Type': <18} {'Hashable'}")

Listing 3.8 Checking the hashability of an object

[1, 2, 3]

[1, 2, 3, 4]

1487837429

1843298314

3482473892 Updated list

The same list object
The same list object
should produce the
same hash value.

Different contents
should produce
different hash values.

Figure 3.7 Irreconcilability of the hashing process for a mutable object. If a list is hashable,
on one hand, you expect the list to produce the same hash value, regardless of its content,
as the same object. On the other hand, after the list is updated, the different contents are
supposed to produce different hash values. These two scenarios are irreconcilable.

Creates
 a list of

objects of
varying

types
isinstance produces a Boolean

value for type checking.

733.5 When do I use dictionaries and sets instead of lists and tuples?

check_hashability()

output the following lines:
Data Type Hashable
<class 'dict'> | False
<class 'list'> | False
<class 'set'> | False
<class 'int'> | True
<class 'float'> | True
<class 'str'> | True
<class 'tuple'> | True
<class 'bool'> | True
<class 'NoneType'> | True

TRIVIA The abc submodule defines a series of abstract base classes (ABCs). It
allows you to check whether a class provides a particular interface, such as
hashable. In layperson’s terms, it helps you check whether an object can do
some specific things, such as being hashed.

Consistent with our previous discussion, mutable data—including dictionaries, lists,
and sets—is unhashable. By contrast, all other immutable data types are hashable. For
built-in data types, immutability is effectively equivalent to hashability. Table 3.1 pro-
vides an organized view of the common data types as a function of mutability and
hashability.

In section 3.1, we saw the immutability of tuple objects, and we couldn’t assign
another value to an item in the tuple object. In table 3.1, notice that strings are also
immutable in Python. The indication is that it’s impossible to change a character or a
substring in a string. The following code shows the immutability of strings:

text = "Hello, World."

text[-1] = "!"
ERROR: TypeError: 'str' object does not support item assignment

If you need to replace a substring, don’t forget strings’ replace method, which creates
a new string, as shown in the following code:

text.replace(".", "!")
output: 'Hello, World!'

Table 3.1 Common data types as a function of hashability

Mutability Hashability Data types Allowed as dictionary keys or set items

Mutable Unhashable dict, list, set No

Immutable Hashable int, float, str, tuple,
bool, NoneType

Yes

74 CHAPTER 3 Using built-in data containers

TRIVIA We know that we can use the id function to check the memory
address of an object, which should differ between objects. You can compare
the string and its counterpart with a replacement.

3.5.3 Discussion

Hashable is a key programming concept. Under the hood, Python uses hash tables as
the storage mechanism for dictionaries and sets. The most significant benefit of using
a hash table is that data retrieval has O(1) performance, making it an ideal data
model when you want to look up items quickly. We often use set objects to hold data
where membership is concerned, for example.

3.5.4 Challenge

Jennifer is learning Python because she’s pursuing a data science career. She has
learned that a dict object can’t have duplicate keys because of the underlying hash
table implementation. Suppose that she creates a dict object: numbers = {1: "one",
1.0: "one point one"}. What values do you expect the numbers to have?

HINT When you intentionally pass duplicate keys, the value of the latter one
overrides the value of the first one when you construct a dict object.

3.6 How do I use set operations to check the relationships
between lists?
Lists are the go-to data structure for storing homogenous data. Sometimes, we have
multiple lists to hold similar items, and we need to determine the relationships
between list objects. Suppose that we use an API to retrieve a list of stocks that are
recommended by an investment analysis company. Each client’s current stocks are
also saved as a list object. For simplicity, we have the following data to start with:

good_stocks = ["AAPL", "GOOG", "AMZN", "NVDA"]
client0 = ["GOOG", "AMZN"]
client1 = ["AMZN", "SNAP"]

One specific functionality of the application is to examine whether all of a client’s
stocks are contained in the recommended list. Do you know how to address this prob-
lem? You can use some list methods to solve it. Like their math counterparts, how-
ever, set objects in Python have a series of convenient methods for checking
relationships between set objects. In this section, we’re going to explore the unique
operations of the set class and see how to use these operations to solve problems con-
cerning relationships between lists.

3.6.1 Checking whether a list contains all items of another list

Implementing the preceding feature essentially requires us to address this question:
How can we check whether a list object contains all items of another list object? In
this section, you’ll learn how to use set operations to address this feature. Without

753.6 How do I use set operations to check the relationships between lists?

using the set operations, a beginner might consider a solution that involves the itera-
tion of the list object. To implement this routine functionality, we create a function
that we can call as often as necessary, as shown in the following listing.

def all_contained_in_recommended(recommended, personal):
 print(f"Is {personal} contained in {recommended}?")
 for stock in personal:
 if stock not in recommended:
 return False
 return True

MAINTAINABILITY Always think of creating a function when you need to pro-
vide a general solution for many similar use cases. When you need to modify
the feature, you need to change only this single function instead of separate
duplicate functions that do the same job.

The logic of the function in listing 3.9 is that if we can find any case when a stock isn’t
in the recommended list, we say that the client’s list isn’t entirely contained in the rec-
ommended list. Using this logic, we iterate the items of the client’s list. When any
stock is found not to be in the recommended list, we exit the function by returning
False; otherwise, we return True after iterating the entire list. With this function, we
can test a couple of cases:

print(all_contained_in_recommended(good_stocks, client0))
output the following lines:
Is ['GOOG', 'AMZN'] contained in ['AAPL', 'GOOG', 'AMZN', 'NVDA']?
True

print(all_contained_in_recommended(good_stocks, client1))
output the following lines:
Is ['AMZN', 'SNAP'] contained in ['AAPL', 'GOOG', 'AMZN', 'NVDA']?
False

Both use cases are working as expected. But a better solution doesn’t require creating
a function. One important principle of coding is Don’t reinvent the wheel. If we can use
an available solution, we should use it directly. Thus, the better solution takes advan-
tage of set-related operations:

good_stocks_set = set(good_stocks)

contained0 = good_stocks_set.issuperset(client0)
print(f"Is {client0} contained in {good_stocks}? {contained0}")
output: Is ['GOOG', 'AMZN'] contained in

➥ ['AAPL', 'GOOG', 'AMZN', 'NVDA']? True

contained1 = good_stocks_set.issuperset(client1)
print(f"Is {client1} contained in {good_stocks}? {contained1}")
output: Is ['AMZN', 'SNAP'] contained in

➥ ['AAPL', 'GOOG', 'AMZN', 'NVDA']? False

Listing 3.9 Check whether a list contains the entirety of another list

“not in” checks whether an item
isn’t contained in the collection.

Creates a set object Uses the issuperset
method

76 CHAPTER 3 Using built-in data containers

To use the issuperset method, we convert the list object good_stocks to a set
object good_stocks_set. We call issuperset on the good_stocks_set and pass the
list object client0 or client1 as an argument. As expected, we get the desired
results. Theoretically, we can use the issubset method to implement this functional-
ity, but it requires creating set objects for each client’s list, which is unnecessary repe-
tition. For this reason, issuperset is better than issubset when you share a set
object that presumably is the superset. In our case, it’s the recommended stock set.

 As you can tell, the solution that uses issuperset is more concise than the one
that uses a custom function. More importantly, when we use a built-in function instead
of a custom function, our program is less prone to bugs.

MAINTAINABILITY Writing functions to solve problems is great. Using existing
functions, such as the built-in ones, is even greater!

3.6.2 Checking whether a list contains any element of another list

Another common scenario regarding relationships between lists is whether a list con-
tains any element of another list. This section addresses that problem.

 To facilitate the discussion, let’s continue the example of stock recommendation.
Suppose that we want to check whether a client’s list of stocks contains any of the rec-
ommended stocks. As shown in section 3.6.1, this functionality is provided by the iter-
ation technique (see the following listing).

def contained_any_in_recommended(recommended, personal):
 print(f"Does {personal} contain any in {recommended}?")
 for stock in personal:
 if stock in recommended:
 return True
 return False

The logic of the function in listing 3.10 is opposite to the one in listing 3.9. If we can
find any item of the client’s list in the recommended list, our criterion is satisfied, and
the function returns True; otherwise, there is no matching record, and the function
returns False. The following code snippet shows two use cases:

print(contained_any_in_recommended(good_stocks, client0))
output the following lines:
Does ['GOOG', 'AMZN'] contain any in ['AAPL', 'GOOG', 'AMZN', 'NVDA']?
True

print(contained_any_in_recommended(good_stocks, client1))
output the following lines:
Does ['AMZN', 'SNAP'] contain any in ['AAPL', 'GOOG', 'AMZN', 'NVDA']?
True

Listing 3.10 Checking whether a list contains any item of another list

773.6 How do I use set operations to check the relationships between lists?

The question of whether a list contains any item of another list is essentially a question
of whether any overlap exists between them. Unfortunately, there are no built-in
methods to check the relationships between two list objects. Such methods exist for
set objects, however. One key set operation creates an intersection between two set
objects, which is exactly what we need. Here’s a solution:

good_stocks_set & set(client0)
output: {'AMZN', 'GOOG'}

bool(good_stocks_set & set(client0))
output: True

good_stocks_set & set(client1)
output: {'AMZN'}

bool(good_stocks_set & set(client1))
output: True

Using the intersection operator &, we conveniently retrieve the intersection between
two set objects. If we want to have the Boolean output, we can use the built-in bool
function, which evaluates any nonempty collection data, such as a set here, as True.

TRIVIA The bool function is the bool constructor, which creates a bool
object by evaluating the item inside the parentheses. set objects are evaluated
to be True if they contain at least one item.

Besides using & between two set objects, the intersection operation can be performed
with the intersection method. Like issuperset, what makes intersection conve-
nient is that it can take any iterable in such a way that we can send the list objects
client0 and client1 directly to the method without converting them to set objects
first. Observe this feature in the following code snippet:

good_stocks_set.intersection(client0)
output: {'AMZN', 'GOOG'}

good_stocks_set.intersection(client1)
output: {'AMZN'}

In sections 3.6.1 and 3.6.2, we used set operations to examine common relationships
between list objects. Let’s step back and take a look at more general operations with
set objects in Python, particularly for examining the relationships between sets.

3.6.3 Dealing with multiple set objects

As discussed in section 3.5, set objects are best for use cases that require membership
checking, because this operation has the O(1) complexity. Besides membership test-
ing, when you have multiple set objects that are related, you may need to carry out
operations between them. In this section, we touch base on operations dealing with

78 CHAPTER 3 Using built-in data containers

multiple set objects. Four set operations are most common: union, intersection, sym-
metric difference, and difference (figure 3.8).

All four operations have corresponding special operators, which simplify the syntax.
The following code snippet shows these operations. As you can see, these operations
are useful when you try to select the members that fit specific criteria, such as belong-
ing to both sets (intersection) or to either set (union):

tasks_a = {"Homework", "Laundry", "Grocery"}
tasks_b = {"Laundry", "Gaming"}

tasks_a | tasks_b
output: {'Laundry', 'Gaming', 'Homework', 'Grocery'}

tasks_a & tasks_b
output: {'Laundry'}

tasks_a ^ tasks_b
output: {'Homework', 'Grocery', 'Gaming'}

tasks_a - tasks_b
output: {'Homework', 'Grocery'}

TRIVIA You may get the results in a different order. The items stored in a set
object are unordered because they use hash tables and are not concerned
with the item order.

Besides these operations, which create a set from other sets, there are methods
issubset and issuperset, which check the relationships between two sets. issubset
checks whether the method caller is a subset of the other set (more generally, it can
be any iterable), and issuperset checks the opposite. Following are some trivial
examples:

A

A

A

A

B

B

B

B

Venn diagram

Union

Intersection
∩

Symmetric
difference

Difference

A B

Set operation
and notation

A | B

A & B
A B

A \ B

A ∆ B

∩

A ^ B

A - B

Python
operation

Figure 3.8 Set operations in Python. Four common
set operations are shown with their respective
mathematical notations, Venn diagrams, and
operations in Python. Union consists of members
from A and B. Intersection consists of members
common to A and B. Symmetric difference consists
of members of one set but not both. Difference
consists of members of one set but not both.

Union operation with |

Intersection operation with &

Symmetric difference operation with ^

Difference operation with -

793.6 How do I use set operations to check the relationships between lists?

small_set = {1, 2}
large_set = {1, 2, 3, 4}

assert small_set.issubset(large_set) == True
assert small_set.issuperset(large_set) == False

assert large_set.issubset(small_set) == False
assert large_set.issuperset(small_set) == True

We have seen the four set-related operations (union, intersection, symmetric differ-
ence, and difference), their corresponding methods, and their respective operators.
Interestingly, the issuperset and issubset methods have corresponding operators.
These methods and operators are summarized in table 3.2.

Although operators make your code more concise, they work only with set objects. By
contrast, all these methods can take iterables as their parameters; thus, they’re more
flexible. When you deal with iterables that aren’t set objects, you should consider
using these methods directly, which eliminates the need to convert them to set
objects first.

READABILITY Prefer using the pertinent methods when you perform set
operations; they’re not only more flexible (because they take any iterables),
but also more understandable (because of their names).

3.6.4 Discussion

Set objects are the preferred data model for storing unique members, and Python
provides a series of operations to manipulate multiple set objects and examine their
relationships. Because lists don’t have native methods to check the relationships

Table 3.2 Set operators and their corresponding methods

Set operation Operator Method

Union | union

Intersection & intersection

Symmetric difference ^ symmetric_difference

Difference - difference

Checks whether one set is a superset of the other >= issuperset

Checks whether one set is a subset of the other <= issubset

Checks whether one set is a strict superset of the
other

> N/A but can be achieved by combining
issuperset and !=

Checks whether one set is a strict subset of the
other

< N/A but can be achieved by combining
issubset and !=

80 CHAPTER 3 Using built-in data containers

between lists, we can conveniently convert lists to sets to derive the relationships of the
initial list objects.

3.6.5 Challenge

When we perform the union operation between two sets, this operation generates a
set consisting of all members from either set. Thus, this operation resembles an OR
operation. Do you know what will happen if you use the keyword or between two sets?
What result are you expecting for the operation {1, 2, 3} or {4, 5, 6}? In a similar
fashion, some people may liken the intersection operation to the AND operation. Can
you guess the result of the operation {1, 2, 3} and {4, 5, 6}?

HINT These evaluations are also known as short-circuit evaluations. The or
operation evaluates to the first object if the first object has a Boolean value of
True; otherwise, it evaluates to the second object. For the and operation, it
evaluates to the first object if the first object has a Boolean value of False;
otherwise, it evaluates to the second object.

Summary
 Lists are a mutable data type, allowing us to add, insert, update, and delete items,

whereas tuples are immutable in that you cannot modify them after creation.
 Besides their difference in mutability, lists and tuples are different in terms of

the homogeneity of the contained data. We use lists to hold items that are
semantically homogeneous, and these items form a linear ordered sequence.
We use tuples to hold items that are semantically distinct, and these items form
a structural sequence.

 Default sorting can sort a list only by using the numeric or lexicographic order,
which is rather limited. Thus, we need to understand how to use a custom func-
tion as a key argument to specify the sorting requirement.

 When you need a simple data container, you should consider using named
tuples, which allow you to create a class with one line of code. Named tuples
have a few advantages, including memory efficiency and dot notation for attri-
bute retrieval.

 When we access all the keys, values, or key-value pairs of a dictionary, we prefer
using the dictionary view objects because they will be updated automatically in
sync with the underlying dictionary object.

 Only hashable objects can be dictionary keys and set items in Python. Common
hashable data types include int, float, str, tuple, bool, and NoneType.

 With the underlying hash implementation, item lookup with dictionaries and
sets is efficient, with a time complexity of O(1).

 The get method retrieves a dictionary’s item without triggering the KeyError
exception. It’s the preferred method when you work with dictionaries that
other people created.

81Summary

 If you work with dictionaries that you create, you may want to use subscripting
(dict[key]), which allows any misspelling of the keys to surface by itself.

 A set is a data structure that is specialized to deal with members with unique
values. There are multiple operations between set objects, such as union and
difference. You can take advantage of these operations if you need to check the
relationships between other nonset data types, such as lists.

82

Dealing with
 sequence data

In chapter 3, you learned to use lists and tuples to hold data. One shared character-
istic of lists and tuples is that the held items have a specific order. These two data
structures are examples of the more general data type sequence. Python has other
sequence data types, such as strings and bytes. These sequence data models are
essential data structures that we use in our projects. The reason is simple: we use
data to model real life, which is full of ordered objects/events, such as waiting lines,
written languages, and house numbers, to name a few. Thus, the effective handling

This chapter covers
 Using slice objects to retrieve and manipulate

subsequences

 Combining the use of positive and negative
indexing in item retrieval

 Finding items in a sequence

 Unpacking a sequence

 Considering data models other than lists

834.1 How do I retrieve and manipulate subsequences with slice objects?

of sequence data is a universal need in programming projects regardless of our busi-
ness specialty.

 From Python’s implementation perspective, these sequence data structures share
many characteristics, and it’s worth discussing them together here. You want to kill
two birds with one stone, and you’ll find that the skills you may have thought applied
only to a specific data model (such as unpacking a tuple object) can be applied to all
sequence data models. As a related note, even though I’ll mostly use lists or strings in
the examples in this chapter, don’t mistakenly think that these techniques are avail-
able only to lists or strings.

4.1 How do I retrieve and manipulate subsequences
with slice objects?
When we have sequence data, we may be interested in obtaining a specific subset of
the sequence, which we refer to as subsequence. The built-in data types include the com-
mon sequence data models str, list, and tuple:

str is a sequence of characters:
text = "Hello, World!"

list is a mutable sequence of any kinds of objects
fruits = ["apple", "orange", "banana", "strawberry"]

tuple is an immutable sequence of any kinds of objects
vowels = ("a", "e", "i", "o", "u")

When we retrieve a subsequence of a list object, we can use slicing. The simplest
form of slicing is list[start:end], and the items between the start and end indices
(the item at the end index is excluded) are retrieved:

assert fruits[1:3] == ["orange", "banana"]

In this section, going beyond the basic form of slicing list[start:end], I’ll be dis-
cussing more advanced features of slicing, and you’ll learn how to use these features
to retrieve and manipulate subsequences.

4.1.1 Taking advantage of the full features of slicing

Besides specifying the start and end indices, slicing has a variety of permutations, giv-
ing us different ways to retrieve subsequences. We’ll discuss the most notable ones
here:

 Ignoring the start or the end index
 Not abusing the tolerance of out-of-range slicing indices
 Applying stride to the slicing

84 CHAPTER 4 Dealing with sequence data

IGNORING THE START OR THE END INDEX

By default, the start index is zero, so if you want to retrieve the first n items, the Pythonic
way is by omitting the start index and using list[:end]. By default, the end index is the
length of the list, and slicing selection doesn’t include the end index, so if you want to
retrieve the last n items of a list, you use list[start:]. As you can tell, ignoring the
start or end index removes the unnecessary code and improves readability:

assert fruits[:3] == ["apple", "orange", "banana"]

assert fruits[1:] == ["orange", "banana", "strawberry"]

What if you ignore both the start and end indices? You may have guessed the right
answer: list[:] retrieves all the items, which are a copy of the original list. (Section
10.3 discusses copying objects in more detail.) The following code snippet shows you
that [:] retrieves all the items of the list object:

assert fruits[:] == ["apple", "orange", "banana", "strawberry"]

READABILITY The code is easier to read when you ignore the start or the end
index (if possible).

NOT ABUSING THE TOLERANCE OF OUT-OF-RANGE SLICING INDICES

One feature of slicing is the tolerance of out-of-range indices, as Python bounds the
slicing with the maximally allowed range. Each item in a sequence has an index to
denote its position. When you use an index that matches no items in the sequence,
you encounter the IndexError exception, stating that the used index is out of range:

fruits[5]
ERROR: IndexError: list index out of range

Notably, Python tolerates the used indices in slicing if they’re out of the available
range, such as using indices that don’t correspond to any item in a sequence. Con-
sider the following examples to observe this feature:

numbers = [0, 1, 2, 3, 4, 5]
numbers[:20]
output: [0, 1, 2, 3, 4, 5]

numbers[-10000:2]
output: [0, 1, 2]

Although slicing’s tolerance of out-of-range indices appears to give us the flexibility of
retrieving items, I don’t recommend using this feature because it confuses readers.
They may wonder whether the code contains a typo or the programmer forgot to
update the indices. Either way, your code loses its clarity.

MAINTAINABILITY When you use out-of-range indices, you’re only confusing
yourself or your teammates.

Uses an index greater than the last item’s

Uses an index smaller than the first item’s

854.1 How do I retrieve and manipulate subsequences with slice objects?

APPLYING STRIDE TO THE SLICING

We can apply stride to the slicing to retrieve evenly spaced items. Slicing annotation
accepts an optional stride parameter: list[start:end:stride], which takes every
nth item from start until it reaches end. When we use stride (or step, as some users
name this parameter), we can still omit the start and end indices, and Python supplies
the applicable boundaries for us. Following are some common usages (illustrated in
figure 4.1):

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

assert numbers[2:5:2] == [3, 5]

assert numbers[::3] == [1, 4, 7]

assert numbers[::-1] == [9, 8, 7, 6, 5, 4, 3, 2, 1]

Using positive strides is straightforward. Notably, slicing also supports negative strides,
which can be confusing to many people. One Python trick that many people have
seen is reversing a list using list[::-1], as shown in the preceding example, but
many people don’t understand why. The reason is that when the step is negative, the
slicing starts from the right side and moves to the left side. Thus, the step of –1 means
that we’re continuously retrieving the item to the left. Because we didn’t specify the
start and end indices, the entire list was sliced from the right to the left; thus, it was
reversed. Figure 4.1 shows the contrast between positive and negative strides.

Although slicing supports negative steps, I don’t recommend using this feature
because it reduces readability. If you want subsequences from the left to the right, you
can use the reverse method to reverse the list in place (calling reverse changes the
original list), and then perform any slicing operations in the left-to-right direction.
This approach requires an extra line of code, but it makes it much easier for readers
to understand the slicing operations.

MAINTAINABILITY Avoid negative steps other than –1 when you use slices.
They’re not intuitive and can cause great confusion.

When the stride is 2,
every other item is kept.

When the stride is 3,
every third item is kept.

When the stride is
–1, slicing starts from
the right and moves
toward the left.

The end index

'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Dec''Aug' 'Sep' 'Nov''Oct'

11109876543210Index

Items

[2:8:2]
['Mar', 'May', 'Jul']

[9:1:-3]
['Oct', 'Jul', 'Apr'] The end index

Figure 4.1 Slicing a list with positive and negative strides. When the stride is positive, slicing starts
from the left side. When the stride is negative, slicing starts from the right side.

86 CHAPTER 4 Dealing with sequence data

4.1.2 Not confusing slices with ranges

Under the hood, retrieving a subsequence involves creating a slice object. That is,
slicing a list list[start:stop:end] is equivalent to list[slice(start, stop, step)].
But another class, range, has the same calling signature: range(start, stop, step).
This similarity confuses some beginners. In this section, I clarify this.

 slice and range are similar, as their constructors take start, stop, and step, cre-
ating the three attributes start, stop, and step:

slice_obj = slice(1, 10, 2)
range_obj = range(1, 10, 2)

slice_obj.start, slice_obj.stop, slice_obj.step
output: (1, 10, 2)

range_obj.start, range_obj.stop, range_obj.step
output: (1, 10, 2)

These similarities can be confusing. Slices and ranges differ in two aspects, however,
making them not interchangeable. First, ranges are iterables, but slices are not. The
implication is that we can use ranges to create a list or use them in a for loop, whereas
we can’t use slices in these operations. The following code snippet shows an example:

list(range(10))
output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

list(slice(10))
ERROR: TypeError: 'slice' object is not iterable

Second, we can use a slice object to retrieve items in a list or other sequence data. In
the following example, we get the odd numbers with the slice object, but the same
operation is not allowed with a range object:

numbers = list(range(10))

odd_slice = slice(1, 10, 2)
numbers[odd_slice]
output: [1, 3, 5, 7, 9]

odd_range = range(1, 10, 2)
numbers[odd_range]
ERROR: TypeError: list indices must be integers or slices, not range

Figure 4.2 shows you how slice and range objects differ; it also shows their similari-
ties in constructors and attributes.

874.1 How do I retrieve and manipulate subsequences with slice objects?

4.1.3 Using named slice objects to process sequence data

Most of the time, we use subscript-based slicing to retrieve items: list[start:stop].
This approach works when the data in the sequence is straightforward. When the
sequence has more complicated data, however, we should use slice objects with sensi-
ble names to improve our code’s readability.

 Suppose that we’re processing text data generated from an external source for our
task management app. Due to some formatting settings, the text data looks like this
(the numbers in the text are the indices of the characters):

tasks = """
0....5..............20..........................48......
1001 Laundry Wash all clothes 3
1002 Museum Visit Go to the Egypt exhibit 4
1003 Do Homework Physics and math 5
1004 Go to Gym Work out for 1 hour 2
"""

In the text, we notice that the same fields of data are aligned vertically in each row.
Using slice objects is a best practice, and you can find a possible implementation in
the next listing.

task_id = slice(5)
task_title = slice(5, 20)
task_desc = slice(20, 48)
task_urgency = slice(48, 49)

task_lines = tasks.split("\n")[2:-1]

tasks = []
for line in task_lines:
 task = (line[task_id].strip(), line[task_title].strip(),
 ➥ line[task_desc].strip(), line[task_urgency].strip())
 tasks.append(task)

print(tasks)

Listing 4.1 Using named slices in processing data

slice(start, end, step) range(start, end, step)

Similarity

Constructor

start, end, step start, end, step
Attributes

not an iterable iterable
Iterability

Difference

serves as subscript doesn’t serve as
subscriptRetrieving

sequence’s items

Slice Range

Figure 4.2 The similarities
and differences between
slice and range objects.
They have a similar
constructor pattern and
attributes. Ranges, but not
slices, are iterables, whereas
slices, but not ranges, serve
as subscripts for retrieving
items from a sequence.

Uses the strip
method to get rid
of trailing spaces

88 CHAPTER 4 Dealing with sequence data

output the following lines (re-formatted for clarity):
[('1001', 'Laundry', 'Wash all clothes', '3'),
('1002', 'Museum Visit', 'Go to the Egypt exhibit', '4'),
('1003', 'Do Homework', 'Physics and math', '5'),
('1004', 'Go to Gym', 'Work out for 1 hour', '2')]

To separate the task ID, title, description, and urgency level, we create four slice
objects that extract each corresponding substring. Technically, we can apply slicing
directly to the string, such as line[:5] for the title. The names of these slice objects,
however, clearly indicate what data each slice obtains. More importantly, from a
maintainability perspective, when we’re using named slices, if we have formatting
changes in the text files, such as extra spaces between data fields, it’s easier to modify
slice objects by updating the indices to reflect the new formatting requirements.

MAINTAINABILITY Named slices are easy to read and clearly indicate what data
they’re representing.

4.1.4 Manipulating list items with slicing operations

In sections 4.1.1 to 4.1.3, you learned about retrieving subsequences with slicing. These
operations are available to all sequence data models, including mutable ones, such as
list and bytearray, and to immutable ones, such as tuple and string (table 4.1).
Mutable sequence data models support another set of operations, which we term slice
surgery. In this section, you’ll learn how to manipulate items in a mutable sequence.

Using lists as an example, slice surgery means that we can manipulate a list’s subse-
quence obtained with a slice object. We can do several things with slice surgery to
manipulate a subsequence, including replacement, extension, shrinkage, and
removal. To replace a subsequence, we assign the same number of items to the subse-
quence that is retrieved:

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8]
numbers[:3] = [10, 11, 12]
numbers
output: [10, 11, 12, 3, 4, 5, 6, 7, 8]

To extend a subsequence, we assign a longer subsequence to the original subsequence:

numbers[3:] = [13, 14, 15, 16, 17, 18, 19, 20]
numbers
output: [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Table 4.1 Common sequence data models as a function of mutability

Mutability Data types Allowed for slice surgery

Mutable list, bytearray Yes

Immutable str, tuple, range, bytes No

894.1 How do I retrieve and manipulate subsequences with slice objects?

To shrink a subsequence, we assign a shorter subsequence to the original one:

numbers[:5] = [0, 1]
numbers
output: [0, 1, 15, 16, 17, 18, 19, 20]

Notably, the subsequence doesn’t have to be contiguous. Even with a stride in the
slice, we can still perform a replacement. As shown in the following example, because
the stride is 2, we’re updating every second item in the list, using the provided items:

numbers[::2] = [0, 0, 0, 0]
numbers
output: [0, 1, 0, 16, 0, 18, 0, 20]

When necessary, you can remove a subsequence by using the del statement. Alterna-
tively, you can assign an empty list to the subsequence so that the corresponding items
are removed too:

numbers = [0, 1, 0, 16, 0, 18, 0, 20]
del numbers[:4]
print(numbers)
output: [0, 18, 0, 20]

numbers[-2:] = []
print(numbers)
output: [0, 18]

4.1.5 Discussion

When you use a negative step in slicing, the slicing processes the sequence from right
to left. Because people are generally more familiar with left-to-right order, negative
striding can be confusing, and you should use it with caution.

 When you process a series of sequences in a consistent format, as shown in the
example of processing the text data (section 4.1.3), you should use named slice
objects, because each name clearly indicates the data that corresponds to that subse-
quence, improving your code’s readability.

4.1.6 Challenge

Jason is learning Python to analyze news about tourism as part of his machine learning
interests. In his job, he deals with a variety of sequence data. He wants to try slicing
with different sequence data types, such as strings and tuples. Can you help him find
the data types for the generated subsequences of these sequence types? Note that as
revealed in table 4.1, ranges are also a type of sequence. Please also try to subsequence
ranges.

HINT The generated subsequence should resemble the “parent” sequence in
terms of its type.

90 CHAPTER 4 Dealing with sequence data

4.2 How do I use positive and negative indexing to retrieve items?
One shared characteristic of sequence objects is that the stored data follows the linear
order, and each data point corresponds to a specific index, so we can use indexing to
retrieve the data from the sequence. In most programming languages, the index starts
counting from the left. Because we know that lists are a representative sequence data
model, we’ll use the following list object as an example throughout this section. Spe-
cifically, this list object stores the monthly revenue of a bookstore for the past year:

revenue_by_month = [95, 100, 80, 93, 92, 110, 102, 88, 96, 98, 115, 120]

Suppose that we want to retrieve November’s record. How can we do that? In this sec-
tion, you’re learning about using positive and negative indexing to solve data retrieval
questions from a sequence. As you’ll see, Python supports indices counting from the
right (negative indexing), and you’ll learn when to use positive or negative indexing.

4.2.1 Positive indexing starts from the beginning of the list

In section 4.1, you’ve seen that slices use positive indexing to create a subsequence.
From a general perspective, as in most other languages, we retrieve individual items
based on their indices, starting with 0 from the left. In this section, we’ll review how to
use positive indexing. I know that most of you are familiar with this technique, so I’ll
keep the discussion brief. Using positive indexing, to access January’s revenue and the
second season’s revenue, we can do the following:

revenue_jan = revenue_by_month[0]

revenue_season2 = revenue_by_month[3:6]

What should we do if we retrieve items toward the end? We may want to retrieve
November’s revenue and the fourth season’s revenue, for example. Our first reaction
may be the following:

revenue_nov = revenue_by_month[10]

revenue_season4 = revenue_by_month[9:]

Using positive indexing and slicing, we had to count to 10 and 9, respectively, to
retrieve the desired items. Certainly, it is manageable to count the indices if lists con-
tain tens of items. When there are more items, however, getting the correct indices by
counting from the beginning can be error-prone. Aren’t better ways available? The
next section discusses one of them: negative indexing.

4.2.2 Negative indexing starts from the end of the list

Fortunately, Python supports negative indexing. We can count from left to right, and
we can also count from right to left. In this section, we’ll see how negative indexing
improves readability when we’re retrieving items near a sequence’s end.

The first item has
an index of 0. Retrieve the fourth,

fifth, and sixth items
with indices 3, 4, and 5.

November’s revenue
has an index of 10. Retrieve items starting

at index of 9 until the
last item.

914.2 How do I use positive and negative indexing to retrieve items?

 In the typical way, the indices of positive indexing start with 0 for the first item and
end with the list’s length minus 1 for the last item. With negative indexing, we use –1
for the last item, –2 for the last but one, –3 for the last but two, and so on. Thus, the
first item has a negative index of -len(list). Negative indexing is a brilliant design,
as it’s more intuitive. In daily life, we count from 1, with the adjustment of using a neg-
ative sign. Figure 4.3 shows both positive and negative indices for a list.

Let’s apply the feature of negative indexing to the retrieval of November’s revenue
and the fourth season’s revenue for the bookstore:

revenue_nov_neg = revenue_by_month[-2]
assert revenue_nov == revenue_nov_neg

revenue_season4_neg = revenue_by_month[-3:]
assert revenue_season4 == revenue_season4_neg

As shown in this example, we obtained the same results that we did with positive
indexing. But the negative-indexing approach has three advantages:

 It saves time. We need to count only a few items from the end of the list.
 It’s straightforward. We count from the right, and the n-th item has a negative

index of -n. We don’t have to make a mental adjustment to positive indices start-
ing with 0. We simply negate the number: 2 -> –2.

 It’s clear. We make it clear to the readers of our code that we are retrieving items
toward the end of the list, which is the most important advantage.

Thus, whenever you want to retrieve items that are close to the end of a sequence,
using negative indexing is always a good idea.

READABILITY It’s easy to spot the negative index when you’re trying to
retrieve any items near the end of the sequence.

4.2.3 Combining positive and negative indices as needed

Positive and negative indices aren’t mutually exclusive. For each item in the sequence,
the positive index and negative index are equivalent despite their different values,

'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Dec''Aug' 'Sep' 'Nov''Oct'

– 1

11

– 2

10

– 3

9

– 4

8

– 5

7

– 6

6

– 7

5

– 8

4

– 9

3

– 10

2

– 11

1

– 12

0

Negative
indices

Positive
indices

Items

Figure 4.3 Positive and negative indices in a list. Positive indices start the count from the left side with
an initial count of 0, whereas negative indices start the count from the right side with an initial count of -1.

November has an index of –2.

The fourth season includes the
last three items of the list.

92 CHAPTER 4 Dealing with sequence data

and they both refer to the same item, allowing us to combine both kinds of indices
whenever applicable.

 Suppose that you want to retrieve the items in the middle of a list. You can define
the slice by using both positive and negative indexing:

revenue_middle = revenue_by_month[1:-1]

print(revenue_middle)
output: [100, 80, 93, 92, 110, 102, 88, 96, 98, 115]

4.2.4 Discussion

When you retrieve items toward the end of a sequence, you should use negative indi-
ces. This section may be tedious to some readers, but I decided to include it because
sequence data models are used in many projects. It’s essential to form the good habit
of using negative indexing to denote the last item(s) in a sequence. You not only make
it easier to find an index of the last items, but also clearly signal to readers that the
code is concerned about items toward the sequence’s end. As always, readability is key
in any codebase.

4.2.5 Challenge

Jeffrey is a middle-school student who participates on the school’s robotics team. He
recently learned about positive indexing of a sequence. He knows that he can use the
length of the list to compute the positive index of an item toward the end, and he
wants to write some code to retrieve November’s revenue; this code involves calculat-
ing the list’s length. Can you help him?

HINT Remember that positive indexing starts with 0. Therefore, the last
item’s positive index is off 1 from the sequence’s length.

4.3 How do I find items in a sequence?
In sections 4.1 and 4.2, you learned about shared characteristics of sequence data
types, such as slicing and indexing. When we have a sequence, we want to know where
a specific item is in the sequence. In a list object consisting of tasks, for example, we
may want to know whether any task deals with completing a survey. As another exam-
ple, we may want to know whether the text description of a task includes the term
homework. More generally speaking, finding an item in a sequence is a common task,
and this section discusses several approaches that address this need.

4.3.1 Checking an item’s presence

The first step in finding an item in a sequence is checking the presence of the item.
This section discusses this topic.

 Many programming languages, such as JavaScript, check an item’s presence in a
sequence by implementing a named method: list.contains(item), list.includes
(item), or something similar. Python, however, takes a different approach to solving

Accesses revenue records
from February to November

934.3 How do I find items in a sequence?

this problem, using the in keyword. The general syntax is item in sequence, which
returns a Boolean value to indicate whether the item is present in the sequence. Fol-
lowing are some examples:

assert (8 in [1, 2, 3, 4, 5]) == False

assert ('cool' in 'Python is cool') == True

assert (404 in (404, 'Page Not Found')) == True

The item in sequence feature is useful when you’re interested only in the presence of a
specific item in the sequence. But a binary True or False isn’t enough in situations when
you need to know the exact index of the item. You may need to use the index of the
searched item as an anchor and retrieve a subsequence that starts with the anchor, for
example. In that case, you need to use the index method, as discussed in the next section.

4.3.2 Using the index method to locate the item

Another shared characteristic of sequence data is support for the index method,
which returns the item’s index in a sequence. In this section, you’ll learn how to use
the index method to locate a specific item.

 The following code snippet shows a few examples of using different types of
sequence data. As you can see, all sequence data has the index method:

[1, 2, 3, 4, 5].index(4)
output: 3

(404, 'Page Not Found').index('Page Not Found')
output: 1

'Python is cool'.index('cool')
output: 10

By default, the index is using the 0-based positive indices. When the checked item is
indeed in the sequence, everything works as expected, and we find the item’s index.

NOTE When there are duplicate items in the sequence, the index method
returns the index of the first matching item.

One caveat of the index method that many people fail to appreciate is that sometimes
the item isn’t contained in the sequence. Following is an example:

[1, 2, 3, 4, 5].index(8)
ERROR: ValueError: 8 is not in list

When an exception is raised—in this case, a ValueError exception—your program
crashes if this exception isn’t handled. Although you’ll learn exception handling in
chapter 12, here’s a quick peek at a solution that uses the try...except... statement:

The parentheses are required. Otherwise,
the equality == will be evaluated first.

== True can be omitted. I’m
including it here for clarity.

94 CHAPTER 4 Dealing with sequence data

def process_item_try(item):
 try:
 item_index = the_list.index(item)
 except ValueError:
 # do something when the item isn't present

 # do something with the item_index

You can write this code snippet in a different way to perform a presence check before
finding the index, as follows:

def process_item_check_first(item):
 if item in the_list:
 item_index = the_list.index(item)
 # do something with the item_index
 else:
 # do something when the item isn't present

On the surface, both approaches do the same job, but I prefer the first option, as it’s
more performant than the other. When we use the index method, Python needs to
traverse the sequence to check it against each item to identify a match, which is a time-
consuming operation. In a similar fashion, when we find whether an item is contained
in the sequence, Python needs to traverse the sequence too. Thus, when you use the
process_item_check_first approach, the time consumption is expected to double
because two traverses are involved, compared to one in the process_item_try
approach. Thus, when the sequence is short, either approach is fine, but when the
sequence is long, you should use the first approach.

4.3.3 Finding substrings in a string

As a sequence data type, strings support the index method, as you saw in section 4.3.2.
Moreover, we addressed the potential ValueError exception associated with the index
method. Compared with other sequence types, however, strings are special in that
they have two additional item-finding methods: find and rfind.

 Both methods return the index of the searched substring. What makes them better
than the index method is that they return –1 instead of raising the ValueError

EAFP vs. LBYL
A widely respected principle in Python is EAFP (Easier to Ask for Forgiveness Than Per-
mission). In this pattern, you use try...except... with the assumption that things
should work. If something goes wrong, we handle the error accordingly (forgiveness).

By contrast, another principle is known as LBYL (Look Before You Leap). This pattern
is more prevalent in other programming languages, such as C. In this pattern, you
check the applicable condition first, probably using an if statement (look), and apply
the operation (leap) only if the condition is valid.

954.3 How do I find items in a sequence?

exception when the substring isn’t found in the string. Thus, I recommend that you use
find or rfind when you search any substring, as shown in this example:

def find_string(substr):
 str_index = the_str.find(substr)
 if str_index >= 0:
 # do something with the str_index
 else:
 # do something when the substr isn’t present

Please note that the find method is available only to strings. You can’t use it with
other sequence data types, although I don’t see any technical difficulty in implement-
ing this feature in non-str sequence models.

TRIVIA You can use find only with strings, not with other sequence data types.

4.3.4 Finding an instance of custom classes in a list
When our projects grow in scope, we’ll use custom classes as our data models. In our
projects, we use lists to store multiple instances of a custom class. Chances are that we
want to know whether a specific instance exists in the list. In this section, you’ll learn
how to locate an instance of a custom class.

 Suppose that in our task management application, we use a list object to store a
day’s tasks. Consider the following listing to be our starting point. For simplicity, the
Task class has minimum implementations. To provide a proof of concept, the list
object contains four instances.

class Task:
 def __init__(self, title, urgency):
 self.title = title
 self.urgency = urgency

tasks = [
 Task("Laundry", 3),
 Task("Museum", 4),
 Task("Homework", 5),
 Task("Ticket", 2)
]

In our application, the interface shows the list of these tasks. One possible feature of
our application highlights the row of the task that matches the filtering criterion, such
as an urgency level of 5. To implement this feature, we need to know the index of the
task that has the desired urgency level. As you may realize, we can’t use the index
method, as we don’t know the task with the needed urgency level beforehand. Thus,
we must consider a different approach. Because we’re interested in obtaining a task
with the desired urgency level, we can iterate the entire list to find the potential
match. The following code snippet shows a working solution:

Listing 4.2 Creating a list of objects of custom classes

96 CHAPTER 4 Dealing with sequence data

needed_urgency = 5
needed_task_index = None

for task_i in range(len(tasks)):
 task = tasks[task_i]
 if task.urgency == needed_urgency:
 needed_task_index = task_i
 break

print(f"Task Index: {needed_task_index}")
output: Task Index: 2

We use a for loop to iterate the list to check each instance’s urgency attribute against
the desired level. When the task is found, we use the break statement (see section
5.4.1) to exit the for loop and complete the search. With the identified index, we can
update our application’s interface by highlighting the corresponding row of the task.

CONCEPT The break statement exits the present loop instantaneously.

4.3.5 Discussion

Calling index on a sequence returns the index of only the first matching item, so be
mindful that the sequence might contain other matching items. Because the index
method raises a ValueError exception if the item isn’t in the sequence, we can use the
try...except... statement (section 12.3) to handle the exception. Although we can
check the presence of a specific item, this LBYL approach requires two traverses of the
sequence, causing extra time overhead. Thus, it’s a good idea to use the EAFP
approach for better performance.

MAINTAINABILITY Prefer adopting the EAFP pattern whenever possible, as it
is generally more performant than LBYL.

4.3.6 Challenge

In the example of locating an object of custom class, the task with the needed urgency
level has an index of 2, which is the object Task("Homework", 5). What happens if you
run the code: tasks.index(Task("Homework", 5))? Will you get an index of 2 as the
result?

HINT Even though some objects appear to have the same data, they’re dis-
tinct objects that have different memory addresses. You can use the id func-
tion to explain the findings.

4.4 How do I unpack a sequence? Beyond tuple unpacking
Because tuples are immutable data containers, we use them to hold multiple objects
without the intention of changing the contents. To retrieve items from the tuple
object individually or consecutively, we’ve learned to use indexing and slicing (sec-
tions 4.2 and 4.3):

See section 4.3.6 for an
alternative technique.

Uses break
to exit the

for loop

974.4 How do I unpack a sequence? Beyond tuple unpacking

task = (1001, "Laundry", 5)

task_id = task[0]
task_title = task[1]
task_urgency = task[-1]

In this example, we used three separate assignments to create three variables, each of
which corresponds to one item of the tuple task. If the tuple object has more items,
we need to have more assignments, which can be tedious work that can make our
code look busy and less readable. Is there a better way to access multiple items with
corresponding variables?

 The answer is the unpacking technique. When it’s applied to tuples, it’s best known as
the tuple unpacking technique. The essential idea is that we conceptualize creating tuples
to hold data as a process of packing information. Not surprisingly, the reverse process—
retrieving the items—is termed unpacking. In this section, you’ll learn this important
technique with a primary focus on tuple objects. Note, however, that unpacking isn’t
only for tuples; it’s also for any iterables, including sequence data types.

4.4.1 Unpacking short sequences with one-to-one correspondence

When we work with tuples that contain a few items and need to use all items, we use
one-to-one unpacking, in which each item is assigned to a matching variable:

task = (1001, "Laundry", 5)
task_id, task_title, task_urgency = task

print(task_id, task_title, task_urgency)
output: 1001 Laundry 5

user_data = ("python_user", 35, "male")
username, age, gender = user_data
print(username, age, gender)
output: python_user 35 male

With this one-to-one unpacking technique, we used one line of code to create multi-
ple variables that correspond to each item in the tuple object. Please note that in the
preceding examples, the tuples were created first, mimicking the real-life situation in
which we obtain tuple objects created by other parts of our projects.

 Closely related to one-to-one unpacking is the multiple-assignment technique, in
which we create multiple variables by sharing a single assignment operator (the equal
sign):

x0, y0 = (90, 20)
(x1, y1) = 90, 20
(x2, y2) = (90, 20)

assert x0 == x1 == x2 == 90
assert y0 == y1 == y2 == 20

98 CHAPTER 4 Dealing with sequence data

The preceding code snippet shows a few varieties of multiple assignments. Although
their appearances are different, they perform the same job. On the right side, we cre-
ate tuple objects, and on the left side, we pass the same number of variables in such a
way that the items are unpacked on a one-to-one basis. Also, a notable feature to
observe in these assignments is the fact that parentheses are optional for creating and
unpacking tuples. The following code snippet shows the missing permutation that
complements the precedings in string examples:

x3, y3 = 90, 20

assert x3 == 90
assert y3 == 20

READABILITY Use multiple assignments only if the variables are closely
related. Prefer using separate lines of code for assignments when the variables
serve different purposes.

4.4.2 Retrieving consecutive items using the starred expression

In the preceding section, we retrieved multiple items by using the one-to-one unpack-
ing technique, which works well with tuples that contain a few items. When the tuples
have more items, we may want to retrieve some items as separate variables and some
consecutive items as a single variable. This section shows you how.

 Suppose that we’re hosting a gymnastics meet, and each player is scored by eight
judges. To calculate a player’s final score, we get rid of the lowest and highest scores
and then compute the mean of the remaining six scores. For the purpose of data
recording, we save the score records for each player: the lowest, middle, highest, and
final score. To simplify the example, assume that the scores have already been sorted
from low to high. Certainly, we can use indexing to generate these score records,
as follows:

player_scores = [6.1, 6.5, 6.8, 7.1, 7.3, 7.6, 8.2, 8.9]

lowest0 = player_scores[0]
middles0 = player_scores[1:-1]
highest0 = player_scores[-1]

final0 = sum(middles0) / len(middles0)

Instead of using the unpacking technique discussed later in this section, we use multi-
ple lines of code to create these variables one by one. This solution is not the most
Pythonic way to create multiple variables from sequence data. Unfortunately, if we try
to solve the problem by applying the syntax of the one-to-one unpacking technique,
we encounter a problem:

lowest1, middles1, highest1 = player_scores
ERROR: ValueError: too many values to unpack (expected 3)

994.4 How do I unpack a sequence? Beyond tuple unpacking

The error message is clear: there are too many values to unpack. Let’s take a closer
look. On the left side, we have three variables, so Python expects to unpack three
items from the tuple. But the tuple object contains eight items, which leads to a mis-
match. How can we solve the problem? A starred expression comes into play:

lowest2, *middles2, highest2 = player_scores
final2 = sum(middles2) / len(middles2)

assert lowest0 == lowest2 == player_scores[0]
assert middles0 == middles2 == player_scores[1:-1]
assert highest0 == highest2 == player_scores[-1]

You should note several characteristics of a starred expression:

 A starred expression uses an asterisk as a prefix for the variable (*var_name). All items
that are not denoted by other variables are captured by the variable. In this
case, the first and last items go with lowest2 and highest2, respectively. The six
items in the middle are captured by middles2. Thus, some Python users refer to
the starred expression as the capture-all asterisk.

 A starred expression produces a list object of the captured items, regardless of the data
type of the original sequence. We can observe this effect with a str object, as shown
in the following code snippet. Don’t make the mistake of assuming that the vari-
able b is a str object consisting of all the characters in the middle:

a, *b, c = "abcdefg"
assert b == ['b', 'c', 'd', 'e', 'f']

 The number of captured items in the list object can be zero. If all items are unpacked
with the proper number of variables, leaving zero items to account for, the
starred expression produces an empty list. Observe this effect:

first_score, *scores, last_score = [9.1, 8.9]
assert scores == []

 One assignment can use only one starred expression. Trying to use two starred expres-
sions is a syntax error. The reason is simple: a starred expression is intended to
capture all items that are not accounted for, so when two starred expressions
are used, it’s impossible to determine which one should capture which items:

score0, *scores0, *scores1, score1 = [9.1, 8.8, 9.2, 7.7, 8.4]
ERROR: SyntaxError: multiple starred expressions in assignment

4.4.3 Denoting unwanted items with underscores to remove distraction

We’ve discussed how to unpack a tuple or a list to access individual or consecutive
items. In any unpacking, we must provide a proper number of variables (with a starred
expression, if necessary) that corresponds to the items in the sequence. But we don’t
always use the unpacked items. In this case, we should use underscores in unpacking.

Uses a starred expression

100 CHAPTER 4 Dealing with sequence data

 In our task management app, suppose that we have an application programming
interface (API) that returns a task saved as a tuple object with four items: the task’s
ID, the task’s title, the task’s description, and the task’s status. As a reminder, the task’s
ID uniquely identifies a task in our application. We can define a function to update
data in our database, as shown in this code:

def update_status(t_id, t_status):
 # use task_id to locate the task in the database and update its status
 pass

task = (1001, "Laundry", "Wash clothes", "completed")
task_id, task_title, task_desc, task_status = task

update_status(task_id, task_status)

In the preceding code snippet, we unpacked the tuple object in such a way that all the
items are associated with their respective variables. By doing the one-to-one unpacking,
we present a significant implication to readers: we’ll use each unpacked item next. As
shown in the code, however, we needed to work only on the task’s ID and status.

 Thus, complete unpacking, which includes the assignment of variables that we
don’t need, is a distracting signal. To remove such a distraction, we should use the
underscores to denote these unwanted items, as follows:

task_id, _, _, task_status = task

The idea of using underscores is that if we don’t need some of the variables, we don’t
assign them meaningful names. The following features are associated with using
underscores in unpacking:

 You can use as many underscores as applicable. In our example, the tuple object has
four items. As we’re interested in only two items, we use two underscores plus
the task_id and task_status to unpack these items.

 The underscores are valid variable names. More than unpacking, using underscores
is a convention among Python users to denote unwanted variables. Even
though we give a signal that we don’t need these variables, we can refer to them
if we choose to do so. In our example, the _ variable holds the task description
because the former assignment of the task title (the first _) was overwritten.

 You can combine an asterisk and underscore in the starred expression. The following
code snippet shows an example:

task = (1001, "Laundry", "Wash clothes", "completed")
task_id, *_, task_status = task

READABILITY In sequence unpacking, denote unwanted items with under-
scores, which signifies that we shouldn’t bother using these items.

A utility function for
database updating

The API returns a
four-item tuple.

Unpacks the tuple
object completely

Combination of the
asterisk and underscore
in the starred expression

1014.5 When should I consider data models other than lists and tuples?

4.4.4 Discussion

Unpacking is the most readable way to retrieve individual or consecutive items in a
sequence. We should have a thorough understanding of the various techniques of
unpacking. Notably, I’ve mostly used tuples to show how unpacking works, but you
can apply the same unpacking technique to any iterables. When you learn more about
iterables in chapter 5, you can try using the unpacking technique with any iterables.

4.4.5 Challenge

Danny is working on a project in which he uses the unpacking technique to extract
data from list objects. What’s special about the data is the fact that the list objects
in his project have two layers, such as [1, (2, 3), 4]. How can he use one line of code
to unpack both layers to extract these four numbers as four variables?

HINT You can use parentheses to create layers during unpacking.

4.5 When should I consider data models other than lists and tuples?
Of the various sequence data types, the versatility of their features doubtless makes
lists and tuples satisfactory data containers in many common situations. When you
move on to specific projects, however, you’ll find that lists and tuples become less
ideal. Thus, you should be open-minded about alternative data structures that can be
the correct choice in certain use cases. In this section, I review some common scenar-
ios and recommended alternatives.

4.5.1 Using sets where membership is concerned

We often need to check whether the data container has the specific item under exam-
ination, a functionality that is termed membership checking. With lists and tuples, we’ve
learned that we can use either item in the_list to check the membership or the
index method as an indirect way to determine whether a list contains a specific item.
Please note that using index is less desirable because when the item isn’t in the list,
the ValueError exception is raised.

 Although lists support membership testing, you should consider using sets if your
application is concerned with membership. As covered in greater detail in section 3.5,
Python requires all the items in a set to be unique because under the hood, sets are
implemented by means of a hash table, which offers a significant benefit of constant
item lookup time, known as O(1) time complexity. By contrast, membership testing
lookup time is linear with the length of the list because Python needs to traverse the
sequence to find a potential match. The more items a list has, the more time the tra-
verse costs. Thus, you should use sets when your application is concerned with mem-
bership testing.

QUESTION Do you remember the hash table implementation as the storage
mechanism for set? See section 3.5.

102 CHAPTER 4 Dealing with sequence data

4.5.2 Using deques if you care about first-in-first-out

In certain applications, we want our data to have first-in, first-out (FIFO) capability.
FIFO emphasizes that the items that are added to the sequence first (first in) are
removed from the sequence first (first out). In this section, we’ll see a better model
when FIFO is concerned.

 Suppose that we’re building an online customer chat system for an enterprise.
Throughout business hours, clients check in, and we use a list to track the order of the
check-in sequence. It’s reasonable to connect those who check in first with the cus-
tomer support associates, which represents a FIFO need in the application. One possi-
ble solution uses lists, as shown in the following listing.

clients = list()

def check_in(client):
 clients.append(client)
 print(f"in: New client {client} joined the queue.")

def connect_to_associate(associate):
 if clients:
 client_to_connect = clients.pop(0)
 print(f"out: Remove {client_to_connect}, connecting to

➥ {associate}.")
 else:
 print("No more clients are waiting.")

In the snippet, the check_in function adds a new client to the end of the waiting
queue, which is a list object named clients. When an associate becomes available,
we connect the first client in the queue to the associate. To retrieve the first client, we
use the pop method of list objects. This method doesn’t only return the first item in
the list, but also removes it.

 The removal of the item at the beginning of a list object is significant. Under the
hood, Python shifts each of the items in the list to adjust the vacancy of the first item
in memory, which is an expensive operation with a time complexity of O(n). Given its
considerable complexity, we should consider an alternative solution: using deques.

TRIVIA Deque is pronounced “deck,” not “dee-queue.”

The deque data type is a double-ended queue. Because of its double-ended feature, it
supports insertion and removal from both ends, making it a perfect data type for
implementing the client chat management system, which requires FIFO. As men-
tioned previously, the invocation of the pop method on a list object is an expensive
operation in terms of both time and memory. By contrast, because deques’ ends are
both open, removing the leftmost item from a deque is a computationally trivial oper-
ation. Figure 4.4 illustrates the contrast between lists and deques.

Listing 4.3 Using lists to create the client queue system

Appends a new item
to the end of the list

Examines whether there are items
in the list. When the list is empty,
pop results in an IndexError.Removes the

first item in
the list

1034.5 When should I consider data models other than lists and tuples?

Let’s make a direct comparison between lists and deques for this operation. Consider
the following simplified setup for removing the first item from the waiting queue.
Please note that the next listing includes the use of a lambda function (chapter 7).

from collections import deque
from timeit import timeit

def time_fifo_testing(n):
 integer_l = list(range(n))
 integer_d = deque(range(n))
 t_l = timeit(lambda : integer_l.pop(0), number=n)
 t_d = timeit(lambda : integer_d.popleft(), number=n)
 return f"{n: >9} list: {t_l:.6e} | deque: {t_d:.6e}"

numbers = (100, 1000, 10000, 100000)
for number in numbers:
 print(time_fifo_testing(number))

output something like the following lines:
 100 list: 6.470000e-05 | deque: 3.790000e-05
 1000 list: 7.637000e-04 | deque: 3.435000e-04
 10000 list: 1.805050e-02 | deque: 2.134700e-03
 100000 list: 1.641030e+00 | deque: 1.336000e-02

The performance gain in this trivial example using deques over lists is significant with
two orders of magnitude for 100,000 items. For enterprise applications, such improve-
ment in a single aspect can be essential for improving overall user experiences. It’s
important to note that using the deque data type doesn’t involve any complicated imple-
mentations. So why not enjoy the performance gain without any cost other than using
a built-in data type? The next listing shows the modified implementation using deques.

Listing 4.4 Comparing the performance of deques and lists

pop(0)

Left side
closed ''A'' ''B'' ''C'' ''D'' ''E'' ''F''

''B'' ''C'' ''D'' ''E'' ''F''''A''

Remove
item. Shift items.

Right side
open

''A'' ''B'' ''C'' ''D'' ''E'' ''F''Left side
open

Right side
open

popleft()

''B'' ''C'' ''D'' ''E'' ''F''

No item shifting

“A”

Remove
item.

Lists
vs.

deques

Figure 4.4 Removing the first item in a list vs. a deque. Removing the leftmost item of a list
requires the shifting of all remaining items, making it an O(n) operation, whereas removing the
leftmost item of a deque requires no actions on the remaining items, making it an O(1) operation.

The deque data type is available in the
collections module in the standard library.

The timeit function calculates the average
execution time of an expression.

The popleft method
pops the first item
from the beginning
of the deque.

104 CHAPTER 4 Dealing with sequence data

from collections import deque

clients = deque()

def check_in(client):
 clients.append(client)
 print(f"in: New client {client} joined the queue.")

def connect_to_associate(associate):
 if clients:
 client_to_connect = clients.popleft()
 print(f"out: Remove {client_to_connect}, connecting to

➥ {associate}.")
 else:
 print("No more clients are waiting.")

4.5.3 Processing multidimensional data with NumPy and Pandas

So far, we’ve focused on linear sequence data structures, such as lists, tuples, and
strings. In real life, however, data can take a multidimensional shape, such as images
and videos. Images, for example, can be represented mathematically as three layers
(red, green, and blue) of two-dimensional pixel panels. It can be a nightmare to try to
use basic data models to represent high-dimensional data. Fortunately, Python’s open
source nature has bolstered the development of many third-party libraries and pack-
ages for processing multidimensional large-scale datasets. Thus, instead of using lists,
we should consider using alternatives that are designed for computationally heavy jobs.

 If you need to work on a large amount of numeric data, for example, you should
consider using NumPy arrays, which are the core data type implemented in the
NumPy package. It’s important to note that lots of related manipulations are available
in the package, such as reshaping, transformation, and various arithmetic operations.

 If you need to work on spreadsheet-like data with mixed data types (such as strings,
dates, and numbers), you should consider using pandas DataFrame, one of the core
data types implemented in the pandas packages. If you do machine learning, you
need to use tensors, which are the most important data types in major machine learn-
ing frameworks, such as TensorFlow and PyTorch. If your applications deal with a
large amount of multidimensional data, especially in the form of numeric values, you
should take advantage of these third-party libraries, which have specialized data types
and associated methods to ease your life.

4.5.4 Discussion

Lists and tuples are useful sequence data types for storing ordered items. Now, how-
ever, we know essential alternative data models. Certainly, the data models covered
here aren’t an exhaustive list. Instead, I want to convey only that you should be open-
minded about the data model choices. The decision must be driven by the specific
business need.

Listing 4.5 Using lists to create the client queue system

105Summary

MAINTAINABILITY Always pick the proper data models for different purposes.
Using an improper data model can make your project extremely hard to
maintain.

The bottom line in selecting data models is that you should take a need-driven approach
to choosing the best data model for specific components of your application. In other
words, your application should contain as many different data models as possible, with
each data model chosen to address specific needs. Figure 4.5 provides an overview of
the need-driven approach to data model selection.

4.5.5 Challenge

Emma is a beginner data scientist who is starting to use Python for her projects. She
understands that she can use lists to store one-dimensional data, such as a list of
numbers. But her projects involve lists embedded in another list object to hold two-
dimensional data that resembles a spreadsheet of four rows and three columns:

numbers = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]

What should she do if she wants to multiply each item by 3? You may notice that this job
is tedious. Can you help her think of another data model that is more appropriate?

HINT The array type in NumPy is specialized for performing operations on
multidimensional numeric data.

Summary
 You can use slicing to retrieve a subsequence. With slicing, you can specify

start, end, and step. Note that slicing supports a variety of methods of calling,
including omission of the start and end indices.

 We use slices to create subsequences from sequence data, whereas we use
ranges for iterations using the specified range and steps.

Application

list Ordered
mutable

tuple

Ordered
immutable Efficient lookup

mutable
key-value pairs

Mutable
efficient lookup

membership test
Mutable
ordered

first-in, first-out

n-dimensional
numeric computation

dict

set

deque

NumPy
array

Pandas
DataFrame

Two-dimensional
general data processing Figure 4.5 The data

models you choose depend
on the specific needs of your
application’s components.

106 CHAPTER 4 Dealing with sequence data

 Sequence data includes mutable and immutable types. We can manipulate
mutable types, such as lists and bytearrays, through slice surgery to replace,
expand, shrink, and remove subsequences.

 In a sequence, each item has an index to indicate its position. The positive indi-
ces start with 0 from the left with an increment of 1 moving toward the right,
and the negative indices start with –1 from the right with an increment of –1
moving toward the left.

 To improve our code’s readability, we should form the habit of using a positive
index when we refer to items at the beginning of the sequence and a negative
index for items toward the sequence’s end.

 We need to know the different ways of checking the item’s presence in a
sequence and understand the limitation of using the index method. For strings,
we should use the find or rfind method to locate a substring. For custom
instances, we should use iteration to check each of the items for a possible
match.

 Tuple unpacking is a notable feature for extracting items from a tuple object.
This technique is available for all sequence data types and other kinds of itera-
bles. But we should be familiar with different methods of unpacking, including
using underscores and starred expressions.

 Lists aren’t a one-size-fits-all solution. We should explore alternative data struc-
tures that are better for addressing specific business needs, such as NumPy
arrays for multidimensional numeric computations.

107

Iterables and iterations

Previous chapters mentioned iterables several times, and we know that lists, tuples,
and many other built-in data types are iterables. But we haven’t explicitly defined the
concept of iterables. We say that these data types are iterables, but we haven’t dis-
cussed why. In this chapter, you’ll find out how they constitute iterables. More impor-
tantly, we’ll explore how we can create the most common data models, such as lists and
dictionaries, from other iterables by using constructors and comprehensions.

 One essential mechanism for Python or any other programming language to
perform repetitive work is for-loop iterations (or while loop, with for loops being
more prevalent). In each iteration, the same operations can be applied to each item
of the iterables. We have a variety of ways to improve the performance of for loops

This chapter covers
 Understanding iterables and iterators

 Creating common data containers using iterables

 Using list, dictionary, and set comprehensions
for instantiation

 Improving for-loop iterations

 Using continue, break, and else in for and while
loops

108 CHAPTER 5 Iterables and iterations

by applying built-in functions, such as enumerate and zip, and by using optional state-
ments, including break and continue. In this chapter, you’ll learn about these topics.

5.1 How do I create common data containers using iterables?
Iterables shouldn’t be strangers to you. Chapter 2 reviewed essential techniques of
processing strings, and strings are iterables that consist of characters. Chapter 3 dis-
cussed several built-in data containers, including lists, tuples, sets, and dictionaries, all
of which are iterables that consist of individual items (or key-value pairs). Chapter 4
examined the shared methods among sequence data types, and all sequence data
types are iterables. As you can see, iterables are prevalent in Python.

 Indeed, iterables are an important base type on which many built-in data struc-
tures are built. Consider the following scenario. In the task management app, you
have two separate sources of data, with one being the task ID numbers and the other
being the task titles. You need to create a dict object that consists of ID-title pairs:

id_numbers = [101, 102, 103]
titles = ["Laundry", "Homework", "Soccer"]

desired_output = {101: "Laundry", 102: "Homework", 103: "Soccer"}

To create the desired output, beginners might think of using a for loop:

desired_output = {}
for item_i in range(len(id_numbers)):
 desired_output[id_numbers[item_i]] = titles[item_i]

A seemingly more advanced solution involves dictionary comprehension (section 5.2)
and the use of the zip function:

desired_output = {key: value for key, value in zip(id_numbers, titles)}

These solutions aren’t the best, however, because they don’t take advantage of the fact
that dict, as well as many built-in data containers, takes iterables directly for instantia-
tion. This section first reviews what iterables are and then moves on to discuss one key
technique: instantiating common built-in data containers by using iterables.

Instance, instantiation, constructor, and construction
In object-oriented programming (OOP) languages, including Python, the essential data
models are classes, including built-in classes such as list, dict, and tuple, and
custom classes that we create in our own projects. When we create an object that
belongs to the class, such as a dict object—num_dict = dict(one=1, two=2)—
we say that we create an instance of the class; thus, num_dict is an instance of the
dict class. Relatedly, the process of creating an instance is known as instantiation.
The same instantiation concept applies to custom classes.

1095.1 How do I create common data containers using iterables?

NOTE Chapter 8 covers instantiation in more detail.

5.1.1 Getting to know iterables and iterators

The use of iterables is not an isolated topic; a key related concept is iterators. Iterators
are a special data type from which we can retrieve each of their elements via a process
known as iteration. The key connection between iterables and iterators is that all the
iterables are converted to iterators before we can perform any iteration-related opera-
tions with them.

 Under the hood, two functions are doing the trick for us: iter and next. Figure
5.1 shows how iterables and iterators work together for iteration in three steps:

1 Create an iterator from an iterable by using iter. Iterators are designed to per-
form iteration of an iterable’s elements.

2 Render elements by using next. Calling next on the iterator retrieves the next
element if one is available.

3 Stop the iteration with the StopIteration exception. When no more elements
are available, calling next results in the StopIteration exception.

To illustrate the iteration process, consider one common iterable, a list object, from
which we create an iterator by using iter:

During the instantiation process, we use the dict function to create the dict object,
and this kind of function that creates instances of a class is known as the construc-
tor. As you may have seen or known, for custom classes, the constructor is the
__init__ function that you define. Because we use a constructor for instantiation,
we can also call the instantiation as construction.

Iterables

Iterators

iter()

next()

item
0

item
1

... item
n-1

item
n

next() next() next()

next()
StopIteration

Handled in a for loop

Figure 5.1 The workflow of iteration with iterators. Iterators are created by
using the iter function from iterables. The iterators use the next function
to retrieve the next item, if available. When the iterator exhausts its items,
the StopIteration exception is raised.

110 CHAPTER 5 Iterables and iterations

tasks = ["task0", "task1", "task2"]

tasks_iterator = iter(tasks)

tasks_iterator
output: <list_iterator object at 0x000001F232ACEE50>

We start with a list object, tasks, and create an iterator list_iterator by calling the
iter function. We can use the next function to retrieve the iterator’s items one by one:

next(tasks_iterator)
output: 'task0'

next(tasks_iterator)
output: 'task1'

next(tasks_iterator)
output: 'task2'

next(tasks_iterator)
ERROR: StopIteration

As you can see, every time we call next on the iterator, we retrieve the next item until
we exhaust the items of the iterator and encounter the StopIteration exception.

 This discussion of using iter and next provides a mechanistic overview of how
iteration works. In our code, we rarely need to create an iterator ourselves. Instead,
Python does the heavy lifting for us behind the scenes. Take the for loop, the most
common form of using iterables and iterators, as an example:

for task in tasks:
 print(task)

output the following lines:
task0
task1
task2

We use the list tasks directly in the for loop without worrying about creating an itera-
tor, as it’s processed automatically by Python. More importantly, instead of raising the
StopIteration exception when the list iterator is exhausted, the for loop is exited
safely, as the exception is handled for us.

5.1.2 Inspecting iterability

To better use iterables in our code, it’s essential for us to know what data types are iter-
ables beyond the ones we’ve already covered, including str, list, tuple, dict, and set.
In this section, you’ll find out how to determine whether a specific object is an iterable.

 From a practical perspective, any data type that can be used in a for loop is an iter-
able. What’s the formal way to determine an object’s iterability? You might infer from

The memory
address will be
different on your
computer.

1115.1 How do I create common data containers using iterables?

the previous section that if the object can be converted to an iterator by means of the
iter function, it is an iterable. The following code snippet shows you how objects (an
int object versus a list object) behave differently in terms of their iterability:

iter(5)
ERROR: TypeError: 'int' object is not iterable

iter([1, 2, 3])
output: <list_iterator object at 0x000001F232A44700>

CONCEPT Iterability refers to the characteristic of an object being an iterable,
such that it can be converted to an iterator for iteration.

On top of how to inspect an object’s iterability, we should be aware of what common
data types are iterables besides str, list, tuple, dict, and set. Using iter to deter-
mine iterability, we could come up with the solution shown in the next listing. Chap-
ter 12 discusses how try...except... works in greater detail.

def is_iterable(obj):
 try:
 _ = iter(obj)
 except TypeError:
 print(type(obj), "is not an iterable")
 else:
 print(type(obj), "is an iterable")

is_iterable(5)
output: <class 'int'> is not an iterable

is_iterable([1, 2, 3])
output: <class 'list'> is an iterable

In listing 5.1, to test whether an object is iterable, we try to call the iter function
directly with the object. When calling this function succeeds, the object is an iterable;
when calling fails, the object isn’t an iterable. Using the is_iterable function, we can
run the test for a series of built-in objects to determine what data types are iterables.
Table 5.1 shows common built-in iterables.

Listing 5.1 Checking whether an object is an iterable

Table 5.1 Common built-in iterables with code examples

Data type Code example Iterator type

str "Hello" str_iterator

list [1, 2, 3] list_iterator

tuple (1, 2, 3) tuple_iterator

Uses an underscore to denote that
we don't use the return result

The else clause executes when
there is no TypeError exception.

112 CHAPTER 5 Iterables and iterations

In table 5.1, you’ll notice some data types that I haven’t covered yet, such as map and
zip. Section 5.1.3 discusses some of these iterable types.

5.1.3 Using iterables to create built-in data containers

In chapter 2, we learned about collection data types, including lists, sets, tuples, and
dictionaries, also known as data containers. In simple scenarios, we can use their
respective literal forms to create the data when they involve a small number of elements.

 As shown in listing 5.2, we create a few data containers without using their con-
structors. Instead, we specify the data with its special syntactical requirements, such as
square brackets for list objects and curly braces for set objects. This instantiation
approach is known as using literals to create instances.

list_obj = [1, 2, 3]

tuple_obj = (404, "Connection Error")

dict_obj = {"one": 1, "two": 2}

set_obj = {1, 2, 3}

When we need to create container data that has many elements, however, it’s less con-
venient to use the literals. Notably, each of these collection data types has its own con-
structors, using the respective class names, and they can take iterables to create new
collection objects. The following listing shows how.

dict {"one": 1, "two": 2} dict_keyiteratora

set {1, 2, 3} set_iterator

range range(3) range_iterator

map map(int, ["1", "2"]) map

zip zip([1, 2], [2, 3]) zip

filter filter(bool, [1, None]) filter

enumerate enumerate([1, 2, 3]) enumerator

reversed reversed("Hello") reversed

aWhen you iterate dict, the default is to iterate its keys. The following two operations are equivalent: for
key in dict and for key in dict.keys(). You can iterate the values and the items of a dict
object. For more information, see section 5.3.7.

Listing 5.2 Using literals for instantiation

Table 5.1 Common built-in iterables with code examples (continued)

Data type Code example Iterator type

1135.1 How do I create common data containers using iterables?

integers_list = list(range(10))
assert integers_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

integers_tuple = tuple(integers_list)
assert integers_tuple == (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

dict_items = [("zero", 0), ("one", 1), ("two", 2)]
integers_dict = dict(dict_items)
assert integers_dict == {'zero': 0, 'one': 1, 'two': 2}

even_numbers = (-2, 4, 0, 2, 4, 2)
unique_evens = set(even_numbers)
assert unique_evens == {0, 2, 4, -2}

As shown in listing 5.3, the list, tuple, dict, and set constructors can take an iter-
able to create a corresponding object. The technique of creating objects from itera-
bles is often used in real-life projects when we deal with many kinds of iterables and
the involved data is related. Thus, we often take advantage of this feature to create
new data from existing iterables.

QUESTION Strings are iterables of characters. Suppose that we have a str
object: letters = "ABCDE". What’s the best way to create a list of characters,
["A", "B", "C", "D", "E"], from letters?

Suppose that our project has a list object of strings, with each representing a floating-
point number: numbers_str = ["1.23", "4.56", "7.89"]. To perform calculations
next, we convert strings to floats. We can achieve this conversion by using map, which
applies a function to each item of the iterable and creates the map iterator:

numbers_str = ["1.23", "4.56", "7.89"]

numbers_float = list(map(float, numbers_str))

assert numbers_float == [1.23, 4.56, 7.89]

In the preceding code example, the map function applies the built-in float function
(it’s the float constructor, to be precise) to each string, and the list constructor
takes the created map iterator to create a list object of floating-point numbers.

PEEK The map function is a higher-order function that takes a function as an
argument. Find more in section 7.2.

Compared with that of other data containers, the dict type’s constructor is special, as
it requires each item in the iterable to consist of two items, with the keys and values in
a paired manner. Besides using a list of tuples that each have two elements, a com-
mon way to create a dict object from existing iterables is to use the zip function to

Listing 5.3 Using iterables for instantiation

Calls the list constructor

Calls the tuple constructor

Calls the dict constructor

Calls the set constructor

114 CHAPTER 5 Iterables and iterations

join two iterables. This scenario is the same one that I posed earlier: how to create a
dict object from two list objects. Here’s the solution:

zipped_tasks = dict(zip(id_numbers, titles))

assert zipped_tasks == {101: "Laundry", 102: "Homework", 103: "Soccer"}

The magic of this operation is that the zip function joins the id_numbers and titles
side by side, forming a zip iterator that renders elements consisting of one item from
each iterable. Figure 5.2 shows how the zip function works.

In figure 5.2, the example uses two iterables to create the iterator: a zip object that
renders two-item tuple objects. The two-item tuples are what the dict constructor
needs, the first item becoming a key and the second item becoming the correspond-
ing value. In real projects, you’ll often use the zip function to create dict objects.

5.1.4 Discussion

Besides Python’s standard library, iterables are heavily used in third-party libraries.
The ndarray in the NumPy and the Series in the pandas library, for example, can

The zip object, an iterator

[101, 102, 103] [''Laundry'', ''Homework'', ''Soccer'']
zip

(101, ''Laundry'') (102, ''Homework'') (103, ''Soccer'')

Item 0 Item 1 Item 2

Figure 5.2 The zip function creates an iterator from multiple iterables. In the example, we
use two iterables. The zip function joins the items at the corresponding position from each
of the iterables. Please note that the order of the iterables used in the zip function matters
because the created tuples store the items in the order that matches the iterables’ order.

This zip and that zip
The zip function joins two or more iterables, with each iterable contributing one item
to the zip iterator’s elements. Most of the time, you use two iterables in a zip func-
tion, which mimics the action of your real-world jacket’s zipper. Thus, if you’re con-
fused about what the zip function does, think about what your jacket’s zipper does:
joins two rows of teeth, with the rows alternating to form a pair.

You may know that zipping is a file-compression concept. In Python, the zipfile
module provides the related functionalities of zipping and unzipping files.

1155.2 What are list, dictionary, and set comprehensions?

take an iterable for instantiation. If your work involves data science, you’ll find it
handy to convert data between different types of iterables.

5.1.5 Challenge

As an aspiring finance analyst, Ava is learning Python for her work. She’s fascinated by
the zip function, which connects multiple iterables. She wonders how zip works with
multiple iterables. Can you help her write some code to try to zip three iterables?
Commonly, the number of items in the iterables differs. Can you find out what hap-
pens if you use zip to join iterables of different numbers of items?

HINT Two iterables form two-item tuples after zipping. When one iterable is
shorter than others, the shorter iterable has nothing to contribute when its
elements are used up first.

5.2 What are list, dictionary, and set comprehensions?
If you ask an intermediate-level Python programmer what feature is one of the most
Pythonic, you may get the answer list comprehension, a concise way of creating list
objects. The following code snippet shows what list comprehension looks like:

numbers = [1, 2, 3, 4]
squares = [x * x for x in numbers]

assert squares == [1, 4, 9, 16]

As you can see, list comprehension doesn’t look like literals, as it doesn’t list the items
directly, but it doesn’t look like the constructor approach either, as it doesn’t call
list. List comprehension is a Pythonic feature that you’ll use often. Pythonic means
that it’s concise and readable (certainly given that you know the technique). Besides
list comprehension, dictionary and set comprehensions are available for creating dict
and set objects, respectively. In the next section, you’ll learn about these comprehen-
sion techniques and some pitfalls you should avoid.

5.2.1 Creating lists from iterables using list comprehension

We use different kinds of iterables to store a variety of data. Often, we need to convert
this data to a list object in our projects. In this section, you’ll learn to convert iterables
to list objects by using list comprehension. Suppose that in our task management appli-
cation, we have a list of instance objects of the Task class, as shown in the next listing.

from collections import namedtuple

Task = namedtuple("Task", "title, description, urgency")

tasks = [
 Task("Homework", "Physics and math", 5),

Listing 5.4 Creating a list of custom class instances

Custom class using
named tuples

116 CHAPTER 5 Iterables and iterations

 Task("Laundry", "Wash clothes", 3),
 Task("Museum", "Egypt exhibit", 4)
]

REMINDER A named tuple is a lightweight data model used to hold data and
support dot notations. See section 3.3 for more details.

In our app, we need a list object to get all the titles for these tasks. A beginner who
doesn’t know list comprehension might come up with the following solution:

task_titles = []
for task in tasks:
 task_titles.append(task.title)

assert task_titles == ['Homework', 'Laundry', 'Museum']

We use a for loop to iterate the items in tasks and retrieve their title attributes, and
we append them to the list object task_titles. This solution works, but it’s not the
most efficient or Pythonic. A better approach is to use list comprehension: [expres-
sion for item in iterable], in which the expression is a specific operation using
each item of the iterable. Expressions are evaluated to become the items in the cre-
ated list. The following code snippet shows how to use list comprehension to extract
the tasks’ titles:

titles = [task.title for task in tasks]

assert titles == ['Homework', 'Laundry', 'Museum']

As shown in this example, by using list comprehension, we create a list object of the
desired data. The example highlights the most significant advantage of using list com-
prehension: conciseness. You don’t need to use a for loop, and the operation goes into
one line of code. Although some beginners may find this technique to be puzzling,
when you become more experienced with Python, you’ll find list comprehension to
be not only concise, but also readable.

List comprehension or map
We use list comprehension to create a list object from an existing iterable. Notably,
we can create the same list object by using a list constructor together with the map
function. To derive the list of titles, for example, we can use the following alternative
solution:

def get_title(task):
 return task.title

titles = list(map(get_titles, tasks))

As section 7.1 discusses, we can also use a lambda function to eliminate the need
to create the get_title function: titles = list(map(lambda x: x.title, tasks)).

1175.2 What are list, dictionary, and set comprehensions?

5.2.2 Creating dictionaries from iterables using dictionary comprehension

dict is another key data container type in Python. As with list objects, we can create
dict objects by using comprehension: dictionary comprehension. In this section, I
quickly go over dictionary comprehension, as it has only a minor difference in syntax
from list comprehension. The principle is the same, providing a concise way to create
a dict object from an existing iterable.

 Because dictionaries consist of key-value pairs, dictionary comprehension includes
two expressions separated by a colon, as in {expr_key: expr_value for item in iter-
able}, in which expr_key evaluates to the key and expr_value evaluates to the corre-
sponding value. Another syntactical difference is the use of curly braces in dictionary
comprehension, as opposed to square brackets in list comprehension.

 Using the same list object tasks as our starting point, suppose that our applica-
tion needs a dict object in which the titles are the keys and the descriptions are the
values. The following code shows how we can address this need by using a for loop
and dictionary comprehension, providing a head-to-head comparison for readability:

title_dict0 = {}
for task in tasks:
 title_dict0[task.title] = task.description

title_dict1 = {task.title: task.description for task in tasks}

assert title_dict0 == title_dict1

Compared with the non-Pythonic for approach, dictionary comprehension is much
more concise. For experienced Python users, it’s also more readable, as by reading it,
you can tell that the titles become the keys and the descriptions become the values.
This clarity is another advantage of comprehension as a concise technique for creat-
ing data containers in Python.

5.2.3 Creating sets from iterables using set comprehension
In section 3.5, we learned that set objects are the perfect data model when we’re con-
cerned about membership testing. Thus, we often need set objects that are converted
from other iterables. We can achieve such conversion with set comprehension,
{expression for item in iterable}, in which expression evaluates to the set’s
items. In this section, you’ll learn about set comprehension.

As you can see, using list and map to create a list object is usually more verbose
than list comprehension; thus, it’s generally less readable. I recommend that you use
list comprehension instead of the map approach. Nevertheless, some people prefer
the map approach because it represents a coding style termed functional program-
ming. The style focuses on writing and using functions instead of focusing on objects,
as in OOP languages.

118 CHAPTER 5 Iterables and iterations

REMINDER Because of the underlying implementation using hash tables,
item lookup in a set object takes a constant amount of time, a phenomenon
known as O(1) time complexity.

Set comprehension uses curly braces instead of square brackets. Across all three com-
prehension techniques, you may notice that the symbols used are the same as their
respective literal forms: [] for list, {:} for dict, and {} for set. Thus, if you’re con-
fused about comprehensions’ symbols, think of their literal forms.

 The following code snippet shows the conciseness of set comprehension for creat-
ing a set object from an iterable compared with the for-loop approach. We use
task.title to derive each task’s title, which goes to the created set object:

title_set0 = set()
for task in tasks:
 title_set0.add(task.title)

title_set1 = {task.title for task in tasks}

assert title_set0 == title_set1 == {'Homework', 'Laundry', 'Museum'}

One thing to note is that like the set constructor (example: set([1, 1, 2, 2, 3, 3]) =
{1, 2, 3}), set comprehension removes duplicates for you automatically, because set
objects only store unique items due to the underlying hash implementations. That is,
objects that have the same value (and thus the same hash value; remember a hash
function’s consistency) can have only one copy in the set object, as shown in this
example:

numbers = [-3, -2, -1, 0, 1, 2, 3]

squares = {x*x for x in numbers}

assert squares == {0, 9, 4, 1}

5.2.4 Applying a filtering condition

When we iterate through an iterable, sometimes we need to evaluate whether the item
meets specific criteria before we perform the operations. In this section, you’ll see
how to apply a filtering condition to the comprehension technique.

 Suppose that for the tasks list, we want to generate a list of the titles only for the
tasks whose urgency level is greater than 3. In this case, we should filter the iterable by
using the if statement. A beginner who has no knowledge of list comprehension can
use a regular for loop to come up with the following solution:

filtered_titles0 = []
for task in tasks:
 if task.urgency > 3:
 filtered_titles0.append(task.title)

assert filtered_titles0 == ['Homework', 'Museum']

Creating an empty set requires
a set constructor, as there is no
literal form for an empty set.

Items in a set object
are unordered.

1195.2 What are list, dictionary, and set comprehensions?

In the for loop, we examine the task’s urgency level in each iteration and append the
task only if it passes the test. But a Pythonic solution is to integrate the if statement into
list comprehension: [expression for item in iterable if condition]. Specifically, we
append the if statement following the iterable to filter the applicable elements:

filtered_titles1 = [task.title for task in tasks if task.urgency > 3]

assert filtered_titles0 == filtered_titles1

Although the pertinent code isn’t shown here, the if statement can also be used in
dictionary and set comprehensions to filter unwanted items while creating dict and
set objects. If you’re interested, you can try that feature.

5.2.5 Using embedded for loops

When we have nested data, we may need to derive all the elements from each layer of
the nested structures. The list object tasks represents a layer of data, for example,
and each element is another layer of data, as each task has its own stored data. In this
section, you’ll learn how to use embedded for loops to derive the innermost items for
nested data.

 We’ll begin with a non-Pythonic approach as a direct comparison. When you use
for loops for iteration, you may know that you can embed a for loop in another for
loop, as follows:

flattened_items0 = []
for task in tasks:
 for item in task:
 flattened_items0.append(item)

assert flattened_items0 == ['Homework', 'Physics and math', 5,

➥ 'Laundry', 'Wash clothes', 3, 'Museum', 'Egypt exhibit', 4]

This operation of embedded for loops is valid is because tasks is a list of Task
instances, and each Task instance is a named tuple—a kind of iterable too. The same
operation is supported by list comprehension. That is, you can have embedded for
loops in list comprehension. Observe this feature:

flattened_items1 = [item for task in tasks for item in task]

assert flattened_items0 == flattened_items1

In this code, the first for loop extracts each task from the list object tasks, and the
second for loop extracts each item of the task object. This syntax may confuse some
beginners because of the two for loops. My tip is that they read the code as though
they’re dealing with regular embedded for loops. The first for refers to the outer
one, and the second for refers to the inner one: [expression for iterable in iter-
ables for item in iterable].

120 CHAPTER 5 Iterables and iterations

 Theoretically, you can have as many embedded for loops as you want. From a read-
ability perspective, however, I don’t recommend using comprehensions with more
than two layers of for loops, as I’ve discussed so far.

READABILITY Don’t use more than two layers of for loops. It’s hard to read a
list comprehension that has three or more layers of for loops.

5.2.6 Discussion

Section 5.2 discussed how to use list, dictionary, and set comprehensions as concise
ways to create list, dict, and set objects, respectively. Figure 5.3 summarizes these
techniques.

You should be clear about when you should use comprehensions. That is, when you
start with an iterable and want to create an instance of a list, dict, or set class, that
scenario probably is the best time to use comprehensions. Do you know why I say prob-
ably? There are a few exceptions.

 First, if you don’t need to manipulate the items in the iterable, you should consider
using their constructors directly. You start with a list object, numbers = [1, 1, 2, 3],
and you want to create a set object, for example. Although it’s not wrong to do so, you
shouldn’t use set comprehension: {x for x in numbers}. Instead, you should use a set
constructor, as it takes an iterable directly and creates a set object: set(numbers).

 Second, when the comprehension requires complicated expressions or deeply
nested for loops, it’s better to use the conventional for-loop approach. Suppose that
you have the following comprehension:

styles = ['long-sleeve', 'v-neck']
colors = ['white', 'black']
sizes = ['L', 'S']

options = [' '.join([style, color, size]) for style in styles

➥ for color in colors for size in sizes]

You can’t say that this code isn’t readable, but you should try your best to make your
code readable for most readers. Here’s an alternative:

[expression for item in iterable]

{key_expr : value_expr for item in iterable }

{expression for item in iterable }

iteration

[]

{:}

{}

comprehension

list

dict

set

instance

Figure 5.3 The general forms for list, dictionary, and set comprehensions.
Each comprehension involves iterating an iterable, uses distinct syntax for
comprehension, and creates the respective instance objects.

1215.3 How do I improve for-loop iterations with built-in functions?

options = []
for style in styles:
 for color in colors:
 for size in sizes:
 option = ' '.join([style, color, size])
 options.append(option)

Compared with the preceding solution, this one takes a few more lines of code, but it
clearly presents the multiple layers of for loops, which are easier to read and understand.

5.2.7 Challenge

Lucas is learning Python for his graduate research in the field of physics. He has real-
ized that list, dictionary, and set comprehensions use square brackets and curly braces.
He wonders what (expression for item in iterable) can do. Because this expres-
sion uses parentheses, which are used in creating tuples, is this approach tuple com-
prehension? Try running it, and tell Lucas what he’ll get.

HINT If the process were tuple comprehension, I would have covered it
already. You can check the nature of an object by using the type function.
Section 7.4 covers the created object.

5.3 How do I improve for-loop iterations with built-in functions?
In our projects, most data is expected to be presented in an organized form. In a dis-
cussion forum, for example, we need to lay out the posts with titles on the left side and
authors on the right side. To print a receipt in a clear format, we need to list the items
one by one together with their respective prices. As you can imagine, you can say that
every project uses structured information, and the universal need to store this infor-
mation justifies the implementation of various kinds of iterables of distinct character-
istics in Python.

 For the structured information—posts, ordered items, or any applicable data in
your projects—most of the time, the data is homogeneous, and we generally apply the
same operation. When you try to apply the same operation to an iterable, it’s best to
use a for loop, which has the following form (and you should be familiar with it):

for item in iterable:
 # the same operation goes here

Knowing this basic form is a good start toward addressing iteration-related problems.
But Python has more features that make for loops work better. In this section, you’ll
study the Pythonic implementations for the applicable use cases. I’ll show you a non-
Pythonic solution as a starting point, and then I’ll explore the Pythonic solution.
Finally, I’ll briefly explain the functions and techniques.

122 CHAPTER 5 Iterables and iterations

5.3.1 Enumerating items with enumerate
Many iterables are sequence data, such as lists and tuples. Each item has a correspond-
ing index—its position in the sequence data. We often want to use an item’s position
information together with the item’s data itself. In this section, I address this need,
which is known as enumeration.

 Suppose that our task management application has a list of instance objects of the
Task class. For simplicity, the Task class is implemented by using named tuples, as
shown in the following listing.

from collections import namedtuple

Task = namedtuple("Task", "title description urgency")
tasks = [
 Task("Homework", "Physics and math", 5),
 Task("Laundry", "Wash clothes", 3),
 Task("Museum", "Egypt exhibit", 4)
]

The use case is that we want to display these tasks in a numbered list:

Task 1: task1_title task1_description task1_urgency
Task 2: task2_title task2_description task2_urgency
Task 3: task3_title task3_description task3_urgency

If you think about a solution, you’ll probably notice that the only missing information
is the counter of each task—that is, the index of the task in the tasks. Thus, you may
come up with the following solution:

for task_i in range(len(tasks)):
 task = tasks[task_i]
 task_counter = task_i + 1
 print(f"Task {task_counter}: {task.title:<10}
 ➥ {task.description:<18} {task.urgency}")

output the following lines:
Task 1: Homework Physics and math 5
Task 2: Laundry Wash clothes 3
Task 3: Museum Egypt exhibit 4

READABILITY In the f-string (covered in section 2.1.4), we apply format speci-
fiers, such as text alignment used in the code, to format the interpolated
strings. This structural alignment provides better readability for the string
output.

The solution creates a range object using the length of tasks. Note that when you
send only one argument (len(tasks), which is 3) to the range constructor, it’s parsed
as the stop parameter; thus, the range object consists of the indexes of 0, 1, and 2.

Listing 5.5 Creating a list of custom class instances

1235.3 How do I improve for-loop iterations with built-in functions?

 Although this solution works for the use case, a more Pythonic solution takes
advantage of the enumerate function, which retrieves the items and generates a
counter for each one:

for task_i, task in enumerate(tasks, start=1):
 print(f"Task {task_i}: {task.title:<10}
 ➥ {task.description:<18} {task.urgency}")

The enumerate function takes an iterable and creates an iterator of the enumerate
type (table 5.1). This iterator renders a tuple object each time: (item_counter,
item), the item’s counter, and the item from the original iterable. By default, the
counter matches each item’s index, so the first item has a counter of 0. Notably, the
enumerate function takes an optional argument, start, which allows you to set the
number for the first item. In our case, we want to start the counting from 1, so we set
start=1 in the enumerate function.

REMINDER We also use tuple unpacking (section 4.4). Each item from the
enumerate iterator is a tuple object. One-to-one unpacking creates two vari-
ables, task_i and task, to access the counter and the item simultaneously.

5.3.2 Reversing items with reversed
In this section, we start with the same iterable: the list object tasks from section 5.3.1.
This time, we want to display the tasks in reverse order while keeping the original data
for other purposes. When you see this need, you may think of getting the items from the
last to the first one. This thought may lead you to the following solution:

for task_i in range(len(tasks)):
 task = tasks[-(task_i + 1)]
 print(f"Task: {task}")

output the following lines:
Task: Task(title='Museum', description='Egypt exhibit', urgency=4)
Task: Task(title='Laundry', description='Wash clothes', urgency=3)
Task: Task(title='Homework', description='Physics and math', urgency=5)

This solution creates a range object by using the length of the tasks. One special
thing about this solution involves using negative indexing (section 4.2) to retrieve the
items in the reverse order of the original list object. Because negative indexing starts
with –1 for the last item, we must add 1 to task_i before we negate the index. As you
can tell, figuring out how to create the desired negative indexes from positive indexes
isn’t straightforward. In this use case, a Pythonic solution takes advantage of the
reversed function, as follows:

for task in reversed(tasks):
 print(f"Task: {task}")

The reversed function takes a sequence data object and returns a reversed object.
Notably, the reversed object is an iterator that renders the items in the reverse order

124 CHAPTER 5 Iterables and iterations

of the original list object. Compared with the non-Pythonic solution, the solution
doesn’t need to deal with any indexes. Instead, we use task to directly access the items
that are rendered by the reversed iterator. Such direct access without any index con-
version is clean and readable.

5.3.3 Aligning iterables with zip

When we have multiple iterables to hold separate pieces of information for the same
objects, we want to perform operations that require information from all the iterables.
In this case, we need to join these iterables in some way. In this section, you’ll learn
about joining iterables with the zip function.

 The description of this use case may be confusing. I’ll elaborate it by providing a
concrete example. Besides the list object tasks, our application has two list
objects—dates, when the tasks are due, and locations, where the tasks should be car-
ried out:

dates = ["May 5, 2022", "May 9, 2022", "May 11, 2022"]

locations = ["School", "Home", "Downtown"]

We want to display the following information to the users: each task’s title, its due
date, and the task’s location. When you see this need, you may think that these itera-
bles contain different aspects of the same items. You may observe that the consistent
element across these iterables is that the information at a given index pertains to the
same task. Thus, you may come up with the following solution:

for task_i in range(len(tasks)):
 task = tasks[task_i]
 date = dates[task_i]
 location = locations[task_i]
 print(f"{task.title}: by {date} at {location}")

output the following lines:
Homework: by May 5, 2022 at School
Laundry: by May 9, 2022 at Home
Museum: by May 11, 2022 at Downtown

Because we know that the indexes are the consistent elements that allow us to refer to
the same tasks across these iterables, we create a range object to obtain the indexes. If
you recall, however, section 5.1.3 discusses how to use zip to join two iterables in cre-
ating a dict object. As mentioned there, a zip object is an iterator that renders tuple
objects aggregated from aligned iterables. Here’s a solution that uses the zip function:

for task, date, location in zip(tasks, dates, locations):
 print(f"{task.title}: by {date} at {location}")

The zip function takes multiple iterables (in our case, three) and aligns them side by
side. As an iterator, the created zip object from this function call renders a tuple

1255.3 How do I improve for-loop iterations with built-in functions?

object consisting of three items that the iterables contribute. Notably, as with the enu-
merate object, you use one-to-one tuple unpacking to create the task, date, and
location at the same time, which significantly improves your code’s conciseness and
readability. (You’ll get used to this feature and find it to be rather readable.)

 It’s also possible that the related iterables will have different numbers of items. By
default, the zip function stops zipping after the iterable with the fewest items is
exhausted. But if you want zipping to match the iterable with the most items, you may
want to use the zip_longest function, which is available in the itertools module
(see the following sidebar).

5.3.4 Chaining multiple iterables with chain

In the zip function, iterables are aligned side by side before their respective items are
zipped. But you may have multiple iterables that you want to join in such a way that
you can retrieve their items sequentially. That is, you want to use the iterables consec-
utively instead of simultaneously. In this section, you’ll explore this feature, which is
known as chaining of the iterables. Suppose that in addition to the list object tasks,
you have a list object that saves the tasks you just completed:

completed_tasks = [
 Task("Toaster", "Clean the toaster", 2),
 Task("Camera", "Export photos", 4),
 Task("Floor", "Mop the floor", 3)
]

Zipping iterables of different numbers of items
To show you how zip works, I’ve used only iterables of the same length. What would
happen if the iterables had different numbers of items?

By default, the zip function stops zipping when the iterable with the fewest items is
exhausted. If you run zip(range(3), range(4)), for example, you only get three
tuple objects. Sometimes, we want to ensure that the iterables have the same num-
bers of items. To enforce such congruency, Python 3.10 introduced the optional
parameter strict, which specifies that there are equal numbers of items when it’s
set to True. Please note that strict is set to False by default, so previous uses of
the zip function still work. Publishing a new software version without affecting the
code created using the old version is called backward compatibility.

For some use cases, we want to zip until the iterable with the most items is
exhausted. In these cases, we should consider using the zip_longest function,
which exists in the itertools module in the standard Python library. The following
code snippet shows its use. As you can see, when shorter iterables are exhausted,
Python uses None as fillers to zip with the remaining items of longer iterables:

>>> from itertools import zip_longest
>>> list(zip_longest(range(3), range(4), range(5)))
[(0, 0, 0), (1, 1, 1), (2, 2, 2), (None, 3, 3), (None, None, 4)]

126 CHAPTER 5 Iterables and iterations

The use case is that you want to show all the titles for the completed and pending
tasks. When you see this use case, you might create a list object that joins tasks and
completed_tasks, resulting in the following solution:

all_tasks = tasks + completed_tasks
for task in all_tasks:
 print(task.title)

output the following lines:
Homework
Laundry
Museum
Toaster
Camera
Floor

This solution works, but it involves creating an intermediate list object. Although
the problem usually doesn’t arise when the list object isn’t big, memory use can be
concerning if you must deal with multiple large list objects. Thus, a more Pythonic
solution involves the use of the chain function:

from itertools import chain

for task in chain(tasks, completed_tasks):
 print(task.title)

Like the zip_longest function, the chain function is available in the itertools mod-
ule. chain takes multiple iterables to create an iterator that aggregates all the items
from these iterables. Thus, both zip and chain can take multiple iterables and join
them in different ways. Figure 5.4 shows the differences.

In other words, the iteration of multiple iterables is processed through the chain iter-
ator, which doesn’t add memory overhead imposed by creating an intermediate list
object in the non-Pythonic solution.

''A'' ''B'' ''C''

1 2 3

zip (''A'', 1), (''B'', 2), (''C'', 3)

''A'' ''B'' ''C'' 1 2 3

chain

''A'', ''B'', ''C'', 1, 2, 3

Figure 5.4 Both zip and chain take
multiple iterables. The zip function joins
the iterables side by side at each index,
and the chain function joins the
iterables sequentially. The zip iterator
renders tuple objects with their elements
coming from each of the iterables. The
chain iterator renders the elements
sequentially from each of the iterables.
The figure uses two iterables as an
example, and both functions can take
more than two iterables.

1275.3 How do I improve for-loop iterations with built-in functions?

5.3.5 Filtering the iterable with filter

An iterable consists of multiple items. In some cases, however, we want to work with a
subset of the items that satisfies our needs. In this section, you’ll learn about filtering
an iterable with the filter function.

 Suppose that we want to display the information of the tasks whose urgency level
should be greater than 3. As shown in the comprehension techniques (section 5.2.4),
we can apply a filtering condition in a for loop:

for task in tasks:
 if task.urgency > 3:
 print(task)

output the following lines:
Task(title='Homework', description='Physics and math', urgency=5)
Task(title='Museum', description='Egypt exhibit', urgency=4)

I should say that this solution is perfectly fine, and I’m happy if you came up with it.
But a slightly better way, Pythonic or not (you decide; see section 5.3.6), is using the
filter function:

for task in filter(lambda x: x.urgency > 3, tasks):
 print(task)

The filter function takes a function that is applied to the items of the iterable. Each
item is evaluated by the function: if True, the item is kept, and if False, the item is
excluded. In our example, we use a lambda function, and x refers to an item from the
iterable. Although we saw lambda functions when we discussed sorting lists in section
3.2, they are discussed in detail in section 7.1. For now, you can think of lambda as a
regular function that returns a value from the expression—in our case, whether the
task’s urgency level is greater than 3.

5.3.6 Discussion

When you use reversed, you create an iterator that has the same items as the iterable
but in reverse order. You shouldn’t confuse reversed with the reverse method, which
reverses a list object in place. The in-place change implies that this method changes
the original list object and returns None. Thus, the following code won’t run! The
same distinction applies to sorted and sort. The former creates a sorted list object
and is compatible with a for loop. The latter returns None and is incompatible with a
for loop:

tasks = ["task1", "task2", "task3"]
for task in tasks.reverse():
 pass

Starting in Python 3.10, zip has an optional strict parameter. Setting strict to True
requires the length of the iterables to be the same; otherwise, zip stops when the iterable

128 CHAPTER 5 Iterables and iterations

with the fewest items is exhausted. As you’ll see in section 6.1, setting a default value to
a parameter allows users to omit the argument during the function call. The most sig-
nificant implication is that in an old codebase, any call of the zip function, such as
zip(list0, list1), still works even if you update your Python to version 3.10. The func-
tion will be interpreted as zip(list0, list1, strict=False), which doesn’t require
the iterables to have the same number of elements, as the old zip function before
Python 3.10 did. This brilliant design supports backward compatibility.

MAINTAINABILITY When you introduce new features to an existing codebase,
it’s best to have backward compatibility so you don’t need to go back to fix
code that uses the old features.

For more advanced iteration tools, look at the itertools module, which provides a
variety of iteration-related functionalities that you can explore—more than zip_
longest and chain. The range object, for example, is an iterable that renders integers
but not decimals. Notably, itertools has a function count that creates an iterator to
render evenly spaced values, including decimal values.

 For the filter function, some people prefer filter as a Pythonic implementa-
tion. But I don’t find using the filter function to be a significant improvement on
using an if statement. To me, using an if statement is more explicit, as it makes the
critical logical operation (the condition evaluation) stand out as a separate line of
code. It’s up to you whether to use filter or an if statement.

5.3.7 Challenge

In section 3.4, you learned that you can use keys(), values(), and items() to access a
dictionary’s keys, values, or key-value pairs. Do you know whether they’ll all be itera-
bles? If you need to iterate the key-value pairs, what’s the best way?

HINT The items function returns key-value pairs as tuple objects, and you
can use tuple unpacking to retrieve the key and value from each tuple object.

5.4 Using optional statements within for and while loops
So far, I’ve discussed how for loops help you do repeated work by going over iterables.
Besides for loops, we often use another important control flow, while loops, to per-
form repetitive work. If you aren’t familiar with the while loop, see the following exam-
ple. In essence, you specify a condition after the while keyword, and the code evaluates
the condition in every iteration. When the condition is True, the code in the body exe-
cutes; in the example, it runs when n is 1 and 2. When the condition is False, the while
loop is exited; in the example, n becomes 3 after the while loop completes:

n = 1
while n < 3:
 print(f"n's value: {n}")
 n += 1

1295.4 Using optional statements within for and while loops

print(f"n's value after while loop: {n}")

output the following lines:
n's value: 1
n's value: 2
n's value after while loop: 3

These control flows execute the code within the body during the iteration. But you don’t
always want to complete the iterations for all the elements. Suppose that we have a list
of tasks to complete for the week, as shown in the next listing, and we want to prioritize
the urgent tasks, so we need to find the first task that has an urgency level of 5.

from collections import namedtuple

Task = namedtuple("Task", "title, description, urgency")

tasks = [
 Task("Toaster", "Clean the toaster", 2),
 Task("Camera", "Export photos", 4),
 Task("Homework", "Physics and math", 5),
 Task("Floor", "Mop the floor", 3),
 Task("Internet", "Upgrade plan", 5),
 Task("Laundry", "Wash clothes", 3),
 Task("Museum", "Egypt exhibit", 4),
 Task("Utility", "Pay bills", 5)
]

If we try to address this need with a for loop, we might come up with the following
solution:

first_urgent_task0 = None
for counter, task in enumerate(tasks, 1):
 print(f"---checking task {counter}: {task.title}")
 if (task.urgency == 5) and (first_urgent_task0 is None):
 first_urgent_task0 = task

print(f"***first urgent task: {first_urgent_task0}")

output the following lines:
---checking task 1: Toaster
---checking task 2: Camera
---checking task 3: Homework
---checking task 4: Floor
---checking task 5: Internet
---checking task 6: Laundry
---checking task 7: Museum
---checking task 8: Utility
***first urgent task: Task("Homework", "Physics and math", 5)

REMINDER The enumerate function creates a counter for the iterable.

Listing 5.6 Finding the urgent task by creating a list

Task is a class
created by using
named tuples.

Sets the value
when the task is
urgent and the
first_urgent_task0
is not set

130 CHAPTER 5 Iterables and iterations

As you can see, the for loop iterates over the entire list object before it completes
the needed job. If you eyeball the list, you’ll notice that the task you’re looking for is
at the beginning; it’s highly inefficient if you have to wait for the iteration to complete
after the list object is exhausted in the for loop. Why not exit the for loop after the
needed task is found? Fortunately, it’s possible to change the default iteration behav-
iors with two optional statements: break and continue. Besides these two statements,
Python has a unique feature that allows you to use an else statement with the for and
while loops.

 In this section, I review how these statements work. More importantly, I use practi-
cal examples to show you how these statements improve the readability and efficiency
of your for and while loops.

5.4.1 Exiting the loops with the break statement

The preceding use case requires a mechanism to exit the for loop before iterating
over the entire iterable. We achieve this feature with a break statement, which stops
the iteration and makes execution exit the loop immediately. In this section, you’ll
learn how to use the break statement. To begin, quickly review a simple example to
establish a basic understanding of how break works from a technical perspective:

for number in range(5):
 print(f"Number: {number}")
 if number == 2:
 print("Breaking at 2")
 break

output the following lines:
Number: 0
Number: 1
Number: 2
Breaking at 2

You can see that the for loop stops running when number is 2, which reflects what
break does, exiting the for loop immediately. In case you’re wondering, the break
statement works the same way in a while loop:

number = 0
while number < 100:
 if number == 2:
 print("Breaking at 2")
 break
 else:
 number += 1
 print(f"Number: {number}")

output the following lines:
Number: 1
Number: 2
Breaking at 2

1315.4 Using optional statements within for and while loops

Putting these two examples together, you should observe the general use pattern: we
place the break statement within an if statement to check a specific condition.
During the iteration, the condition’s evaluation may change, and when it evaluates to
True, the break statement executes in such a way that the loop terminates instantly.
I’ve used for loops on various occasions. To give you a different taste, figure 5.5
depicts how break works in a while loop.

Now that you know how break works, the next step is solving the practical use case
introduced earlier. Because you need to find only the first urgent task, retrieving all
urgent tasks takes longer because the entire list is iterating. A better solution uses the
break statement, as shown in the next listing.

first_urgent_task1 = None

for task in tasks:
 if task.urgency == 5:
 first_urgent_task1 = task
 break

assert first_urgent_task0 == first_urgent_task1

As shown in listing 5.7, the for loop iterates the tasks and checks the urgency level
for each task. When it finds an urgent task, the iteration ends immediately because
we’ve obtained the needed information; any additional operation wastes time.

MAINTAINABILITY You want to give first_urgent_task1 an initial value,
which I set to None. If you don’t set an initial value, the only place where
first_urgent_task1 is set is within the body of the if statement. Chances
are that there are no urgent tasks, in which case first_urgent_task1 is never
set. Trying to access a variable that is never set crashes your application.

Listing 5.7 Finding the urgent task by using break

Truewhile
condition

if condition:
break

False

Exit the loop

some
operation

True

False

Reevaluation
Figure 5.5 How the break statement
works in a while loop. The condition in the
while loop’s head is evaluated in every
iteration. When it’s True, the execution
moves to the body of the while loop. At a
certain point, we place an if statement,
within which we use break. When this
condition evaluates to True, the break
statement executes and ends the while
loop. If the condition is False, it goes back
to the while loop’s head and evaluates the
condition again to determine whether the
while loop ends or continues.

Sets an initial value

132 CHAPTER 5 Iterables and iterations

5.4.2 Skipping an iteration with the continue statement

When we work with an iterable, we may need to apply operations only to some ele-
ments that meet specific criteria. You’ve learned that you can filter the iterable (sec-
tion 5.3.5). But you can also skip the operations for the elements that don’t meet the
criteria, which can be more readable. In this section, you’ll learn how to use continue
to skip the iterations of specific elements.

 Like break, the continue statement changes the default iteration behavior by skip-
ping the current iteration and moving to the next one. Here’s a simple for loop that
shows the action of continue:

for number in range(5):
 if number < 3:
 continue
 print(f"Number: {number}")

output the following lines:
Number: 3
Number: 4

For each of the first three iterations with 0, 1, and 2, the if condition evaluates to
True; the continue statement gets executed, the code moves to the next iteration, and
we don’t get any printout. Until the number becomes 3, the continue statement
doesn’t run, so the iteration proceeds to the print function call. Figure 5.6 shows how
continue works in general.

Consider a more practical example. Suppose that we need to apply a series of func-
tionalities to those urgent tasks. Without using the continue statement, we may have

if condition:
continue

Has next item

Exit the loop

some
operation

True

Next iteration

Falseiterator

Has no
next item

Figure 5.6 How the continue statement works in a for loop. When the iterator renders an item, the
code in the body of the for loop executes. In the body, the condition in the if statement is evaluated.
When the condition is True, the continue statement runs and skips to the next iteration. When it’s
False, the execution in the body of the for loop moves to some other operations until execution moves
to the next iteration. The iteration stops when the iterator exhausts its items and the for loop ends.

1335.4 Using optional statements within for and while loops

the following implementation for an illustration. Please note that the code in the next
listing won’t run, as we don’t define the do_something methods.

for task in tasks:
 if task.urgency > 4:
 result0 = task.do_something0()
 result1 = task.do_something1()
 if (result0 >= 0) and (result1 == "Hello"):
 task.do_something2()
 task.do_something3()
 task.do_something4()

In the example, we apply the functions only to urgent tasks. In other words, we don’t
need to apply any functions to the tasks that have an urgency level equal to or less
than 4. Thus, in this kind of situation, you can consider using continue as an alterna-
tive implementation, as the following listing shows.

for task in tasks:
 if task.urgency <= 4:
 continue
 result0 = task.do_something0()
 result1 = task.do_something1()
 if (result0 < 0) or (result1 != "Hello"):
 continue
 task.do_something2()
 task.do_something3()
 task.do_something4()

If you compare the implementations in listings 5.8 and 5.9, you’ll find that the major
difference is using the opposite evaluation conditions in two places. You may wonder
what differences these two implementations make. From a performance perspective,
they don’t make a difference, but their readability may be different. When you have a
series of operations to apply to items that meet a criterion, it’s usually more readable
to use the complementary evaluation criterion together with the continue statement
(figure 5.7).

Listing 5.8 Applying multiple operations for items when a condition is met

Listing 5.9 Skipping an iteration when a condition is met

for item in iterable:

multiple lines of
code for a variety

of operations

if item == the_condition:

for item in iterable:

multiple lines of code
for a variety of

operations

if item != oppo_cond:
continue

Without continue, two
layers of indentation

With continue, one layer of
indentation

Figure 5.7 Reducing indentation
layers with the continue
statement. Without continue,
the for loop needs two layers of
indentation. By contrast, the same
for loop needs one layer of
indentation when an opposite
evaluation condition is used.

134 CHAPTER 5 Iterables and iterations

As shown in figure 5.7, with continue, we reduce the needed level of indentations.
Thus, our code has better readability because we removed the deeply nested code.
Compare listings 5.7 and 5.8.

5.4.3 Using else statements in the for and while loops

We know that we can use an else statement together with an if statement. In essence,
the if...else... statement creates a logical branch by examining a condition. When
the condition is evaluated to be true, the operations within the if statement execute;
otherwise, the operations within the else statement execute. Notably, the operations of
these two statements are mutually exclusive, meaning that only one of them can run.

 In most programming languages, the else statement exists only in the
if...else... statement. Python is unusual in this regard; it allows us to use the else
statement in for and while loops. Note that adding an else statement to a for or
while loop isn’t common practice, and it can confuse many Python programmers,
particularly beginners. Although you want to use the else statement in a for or while
loop with caution, it’s helpful to know and use these features in the desired use sce-
narios. In this section, you’ll explore these use scenarios.

USING ELSE IN A FOR LOOP

When you append an else statement to a for loop, it forms the following structure:

for item in iterable:
 # some operations
else:
 # some other operations

Unlike the mutual exclusiveness of execution between if and else in the
if...else... statement, the else statement doesn’t form the opposite branch against
the for-loop part (or the iteration part). The execution rule is that the else statement
runs only one time after completing the iteration, but it’s skipped if the iteration is ter-
minated because of the break statement. The code in the next listing shows the rule.

def show_for_else_rule(breaking_number):
 for number in range(2):
 print(f"Iteration: {number}")
 if number == breaking_number:
 print(f"Break: {number}; Skip the else statement")
 break
 else:
 print("Running the else statement")
 print("Outside the for...else...")

show_for_else_rule(1)
output the following lines
Iteration: 0
Iteration: 1

Listing 5.10 How the for...else statement works

1355.4 Using optional statements within for and while loops

Break: 1; Skip the else statement
Outside the for...else...

show_for_else_rule(3)
output the following lines
Iteration: 0
Iteration: 1
Running the else statement
Outside the for...else...

As you can see, the factor that determines whether the else statement is skipped is
whether the break statement executes. In short: run break -> skip else and no break -
> run else. Thus, if the iteration involves no break statements, don’t append the else
statement because it executes anyway. In other words, a valid use case of the
for...else... statement is that you need to include a break statement in the itera-
tion part.

 Consider a practical use case. Suppose that we have a list of tasks, and we want to
locate the first task with the desired urgency level. We may have a solution that uses a
for...else... statement, as shown in the following listing.

def locate_task(urgency_level):
 for task in tasks:
 if task.urgency == urgency_level:
 working_task = task
 break
 else:
 working_task = None
 print(f"Working Task: {working_task}")

locate_task(1)
output: Working Task: None

locate_task(4)
output: Working Task: Task(title='Camera',

➥ description='Export photos', urgency=4)

In listing 5.11, we see that when the iteration finds a task with the desired urgency
level, it exits the loop in such a way that the else statement is skipped. When all the
iterations complete without triggering the break statement, however, such as when
the desired urgency level is 1, the else statement is executed, and we get the printout
of None for the task.

USING ELSE IN A WHILE LOOP

When you append an else statement to a while loop, it forms the following structure:

while the_condition:
 # some operations
else:
 # some other operations

Listing 5.11 A practical example of the for...else statement

136 CHAPTER 5 Iterables and iterations

Like the for...else... statement, the while...else... statement has the same exe-
cution rule: run break -> skip else and no break -> run else. Figure 5.8 shows the
rule for for and while loops.

As a practical example, suppose that we want to rest while we complete a series of tasks
in each session. To make our work effective in a session, we set a resting threshold as
the sum of the total urgency level for the completed tasks. The next listing shows a
possible implementation using the while...else... statement.

def complete_tasks_with_break(resting_threshold):
 completed_urgency_levels = 0
 while tasks:
 if completed_urgency_levels > resting_threshold:
 print("Coffee break now!")
 break
 next_task = tasks.pop()
 print(f"Completed: {next_task}")
 completed_urgency_levels += next_task.urgency
 else:
 print("Party! Completed all the tasks.")

tasks = [
 Task("Toaster", "Clean the toaster", 2),
 Task("Camera", "Export photos", 4),
 Task("Homework", "Physics and math", 5),
 Task("Floor", "Mop the floor", 3),
 Task("Internet", "Upgrade plan", 5)
]

complete_tasks_with_break(7)
output the following lines:
Completed: Task(title='Internet', description='Upgrade plan', urgency=5)
Completed: Task(title='Floor', description='Mop the floor', urgency=3)
Coffee break now!

Listing 5.12 A practical example of the while...else statement

some
operation

break

else

Run
break

Skip else

Skip break

outside operation

Run else
Figure 5.8 How else works in for and
while loops. In the iteration loop, if a break
statement runs, the iteration ends immediately,
and the else statement is skipped. If the loop
ends normally without running the break
statement, the else statement is executed.

A list
evaluates to
True if it is
nonempty.

pop removes and returns the
last item from a list object.

1375.4 Using optional statements within for and while loops

complete_tasks_with_break(6)
output the following lines:
Completed: Task(title='Homework', description='Physics and math', urgency=5)
Completed: Task(title='Camera', description='Export photos', urgency=4)
Coffee break now!

complete_tasks_with_break(5)
output the following lines:
Completed: Task(title='Toaster', description='Clean the toaster', urgency=2)
Party! Completed all the tasks.

READABILITY When you examine the emptiness of a data container or a
sequence object, such as str, list, or dict, it’s preferred that you use the object
itself, such as if tasks and while tasks. In these cases, if the tasks has any items,
it’s evaluated to be True. By contrast, a non-Pythonic or less-readable approach
involves examining the length of these objects, such as if len(tasks) > 0.

The first two calls on the complete_tasks_with_break function involve running the
break statement so that the else statement is skipped. By contrast, the third call com-
pletes the iterations without running the break statement so that the else statement
runs.

5.4.4 Discussion

You should be clear about when to use for and when to use while for iterations. Use
for loops when you have an iterable to begin with and the number of iterations
depends on the number of items that the iterable can render. By contrast, use while
loops when you’re not sure how many iterations you will run, as the while loop consis-
tently checks against a specific criterion to determine when to end.

 Avoid using else with for and while loops because this practice is unfamiliar to
most people and thus confuses many programmers. I don’t recommend using this fea-
ture in your codebase. I showed you the technique only in case you see other pro-
grammers use it.

MAINTAINABILITY Avoid using else with for and while loops, which can be
confusing.

5.4.5 Challenge

Listing 5.7 set an initial value of None to the first_urgent_task1 variable. As men-
tioned, setting this initial value is important because there’s no guarantee that an
urgent task can be found if you deal with a different set of tasks. Suppose that you
don’t set an initial value and use a list of tasks that doesn’t contain any urgent task. See
what happens if you try to access the first_urgent_task1 variable.

HINT If a variable hasn’t been assigned, Python has no way to figure out what
you mean by that variable.

138 CHAPTER 5 Iterables and iterations

Summary
 Iterables can be converted to iterators by means of the iter function. The itera-

tors are data objects that can render their elements one by one by using the
next function.

 Common data containers such as list, dict, set, and tuple can take iterables
to create their respective instance objects using their respective constructors.
Thus, whenever you have iterables of any type, if you need to create data con-
tainers from the existing iterables, think about using these constructors first.

 List, dictionary, and set comprehensions are concise ways to create list, dict,
and set objects, respectively. They eliminate the need to use a regular for loop
for instantiation. If you don’t manipulate the items, however, it’s likely that you
can use the constructor directly for instantiation.

 We use for loops to perform iterations on iterables, and they constitute an
essential way of applying the same operations to a group of items stored in an
iterable. To make for loops more effective, you need to remember the
advanced approaches to manipulating existing iterables, such as enumerate,
reversed, zip, chain, and filter. Among these functions, chain is part of the
itertools module, which has additional advanced operations with iterations.

 Both for and while loops can include three optional statements: break,
continue, and else. break exits the loop instantly, continue skips the current
iteration, and else runs when there is no break in the iteration loop. You need
to know the proper use cases for these statements.

Part 2

Defining functions

In part 1, we learned about using built-in data models to represent real-life
problems in our application. Converting real-life problems to proper abstract
data models, however, is only the first step in building our application. This data
is like raw material, and we must use appropriate equipment to process this raw
material, following a specific protocol to make the desired product. In our appli-
cation, the functions serve as the equipment, and the algorithms of the func-
tions define the protocol. As you can imagine, we can’t process any raw material
(the data) if we don’t have the necessary equipment and protocol (the functions
and their implementation details). In this part, you’ll learn various techniques
for writing functions—the driving forces behind any application’s data flow.

141

Defining
 user-friendly functions

In previous chapters, you’ve seen several examples of functions. Broadly speaking,
no matter what our applications are about, we define a wide range of functions to
perform various operations, such as making calculations and formatting strings.
When you work in a team environment, you often need to define functions that
allow your team members to reuse your code. When you publish a Python package,
the package should include well-defined functions for users like the built-in func-
tions provided by the standard Python library. Thus, it’s an essential skill to define

This chapter covers
 Setting proper default arguments for a function

 Setting and using the return value for a function

 Applying type hints to the parameters and the
return value

 Defining functions with a variable number of
positional and keyword arguments

 Creating proper docstrings for a function

142 CHAPTER 6 Defining user-friendly functions

user-friendly functions; even if you work on your own, you don’t want functions to be
hard to use.

 When I say user-friendly functions, I mean functions that are easy to understand, with
proper type hints for the arguments, and that are convenient to call, possibly using
default arguments. For functions that are self-explanatory, users can locate the
needed help information, usually in the form of docstrings.

 In this chapter, you’ll learn the key techniques underlying user-friendly functions.
When we build our own task management app in chapter 14, you’ll see the usage of
all these techniques, highlighting the importance of functions in any project.

6.1 How do I set default arguments to make function calls easier?
Depending on the specific requirements, functions may take zero to multiple argu-
ments. For functions, it’s easier to call those with fewer arguments; ideally, a function
is easiest to call if it doesn’t require any arguments. When a function has multiple
arguments, we can reduce the number of arguments needed for function calls by set-
ting default arguments.

 The biggest advantage of setting default arguments in a function is convenience. We
don’t need to set parameters when the default arguments are exactly what we need.
Moreover, the function needs flexibility so we can still override the default values by
setting the applicable arguments. In this section, you’ll learn about setting default
arguments.

6.1.1 Calling functions with default arguments

Setting default arguments in functions is a common technique for making function
calls easier and is prevalent in the standard Python library. In this section, let’s take a
quick look at some use cases to gain firsthand experience with the convenience of call-
ing functions with default arguments.

 Although we didn’t explicitly discuss default arguments in previous chapters, we
have taken advantage of this feature several times. Section 3.2, for example, discusses
how to use the sort method on list objects, as in the following code snippet:

numbers = [4, 5, 7, 2]

numbers.sort()

assert numbers == [2, 4, 5, 7]

When we want to sort the numbers list in descending order, we call the sort method
by setting the reverse parameter:

numbers.sort(reverse=True)

assert numbers == [7, 5, 4, 2]

1436.1 How do I set default arguments to make function calls easier?

Let’s examine the head of the sort method: sort(*, key=None, reverse=False).
You’ll notice that the parameters key and reverse have default values: None and
False. The default values for these parameters are often known as default arguments.

TRIVIA The asterisk in the sort method dictates that all the arguments fol-
lowing the asterisk should be set with their parameter names, such as numbers
.sort(reverse=True). By contrast, numbers.sort(True) is an invalid call.
This technique is known as setting keyword-only arguments. See section 6.4.1 for
more about it.

When Python’s core developers defined the sort method, they knew that when we sort
a list object, in most cases we use the lexicographic or numeric order, and we want the
items in ascending order so that they supply None and False as the default arguments
to the key and reverse parameters. When we use sort on a list object, we typically use
the_list.sort(), which is interpreted as the_list.sort(key=None, reverse=False)
because of the default arguments that are set in the function definition.

6.1.2 Defining functions with default arguments

Functions with default arguments are not only easy to call, but also flexible, support-
ing multiple use scenarios. In this section, you’ll study the general process of defining
functions with default arguments.

 When we initially define a function, it usually serves one specific purpose by taking
one or multiple arguments. Suppose that in our task management app, we update the
task’s status when the user completes a task. We can have the following function:
complete_task. Note that this function should have been defined as an instance
method (section 8.2). Here, I’m defining it outside the Task class for the purpose of
calling it conveniently:

class Task:
 def __init__(self, title, description, urgency):
 self.title = title
 self.description = description
 self.urgency = urgency

def complete_task(task):
 task.status = "completed"
 print(f"{task.title}'s status: completed")

task = Task("Homework", "Physics and math", 5)
complete_task(task)
output: Homework's status: completed

PEEK We use a custom class instead of a named tuple-based data model
here. A custom class gives us the flexibility of changing the instance object’s
attributes, which we can’t do with a named tuple model (section 3.3). Defin-
ing custom classes is covered in chapter 8.

Defines a custom class

144 CHAPTER 6 Defining user-friendly functions

When the user completes the task, we update its status to “completed,” which is one
thing the function does. Later, we realize that we may want the user to add a comple-
tion note for the task—that is, we need to expand the function’s functionality. With
this added functionality, our function has evolved to the following version:

def complete_task(task, note):
 task.status = "completed"
 task.note = note
 print(f"{task.title}'s status: completed; note: {note}")

After updating this function, we’re happy about our decision, but we recognize two
problems. First, we need to update our old code where we call complete_task(task),
as it’s missing an argument. Second, in most other places, we need to update the sta-
tus without worrying about setting any note, as follows:

Use case 1
complete_task(task1, "")

Use case 2
complete_task(task2, "")

Use case 3
complete_task(task3, "")

As you can see, we’re using the function in a pattern that sends an empty string as the
note, which may remind you of the DRY (Don’t Repeat Yourself) principle: when you
repeat something, chances are that you should refactor your code. In this case, we
mostly set the note to be an empty string, which is a perfect usage for setting default
arguments in function definitions, handling automatic argument setting for most use
cases:

def complete_task(task, note=""):
 task.status = "completed"
 task.note = note
 print(f"{task.title}'s status: completed; note: {note}")

With the updated function, when we don’t need to set the note, we can simply run

complete_task(task)

Besides the convenience of omitting an argument, the most important thing is that
updating the function doesn’t break any old code that calls the same function with
only the task argument. Because of the default argument in the updated function
definition, this function call in your old code complete_task(task) is automatically
interpreted as complete_task(task, "").

MAINTAINABILITY When you update your functions, it’s best to keep the same
calling signature so that existing code will still work without any update.

1456.1 How do I set default arguments to make function calls easier?

To provide a systematic overview, figure 6.1 shows the general process of evolving a
function with a single functionality to one with multiple functionalities by using
default arguments. In the figure, we define two roles: application programming inter-
face (API) developer, who defines the function, and API consumer, who uses the func-
tion in building the application. Certainly, depending on the size of a team, these
roles can be handled by different people. On smaller projects, however, it’s likely that
the same person will play both roles.

From the consumer’s perspective, calling a function with default arguments allows
them to omit setting the arguments, which automatically default to the preset values.
From the developer’s perspective, when you simplify the calling of the defined func-
tion, consumers are less likely to make mistakes because of the reduced number of
parameters. Thus, you’re improving consumers’ experience in two aspects:

 You’re providing an additional feature to the existing function. The function is more
flexible with multiple functionalities.

 You're making sure that the existing code that uses the old calling signature still works.
The missing argument will be interpreted with the default value.

6.1.3 Avoiding the pitfall of setting default arguments for mutable parameters
In section 6.1.2, you learned the rationale for setting default arguments and the evolv-
ing process of a function that uses default arguments. Our examples involved setting a
default argument of the str type. As discussed in chapter 3, strings are immutable.

Figure 6.1 An example of the general process of creating a function with default arguments. When API
developers receive feedback from the consumers, they add the needed parameter so that consumers can
set the note. Later, consumers realize that it’s tedious to set an empty string to the note and ask the
developer to change the API. The developer uses the default-arguments feature to update the API,
eliminating the need to set the note parameter when the empty string is the desired argument.

API developer

def complete_task(task):
task.status = ''completed''

Feed

def complete_task(task, note):
task.status = ''completed''
task.note = note

API consumer

complete_task(task0)
complete_task(task1)
complete_task(task2)

complete_task(task0, ''Done!'')
complete_task(task1, "")
complete_task(task2, "")

def complete_task(task, note=""):
task.status = ''completed''
task.note = note

complete_task(task0, ''Done!'')
complete_task(task1)
complete_task(task2)

I need to set a note.

Feed

Most of the time, the note is an empty string.

Feedback

Feedback

Update

Update

Feed

146 CHAPTER 6 Defining user-friendly functions

Another category of data models is the mutable ones, such as lists and dictionaries. In
this section, you’ll learn about setting the correct default arguments for mutable
parameters.

Suppose that when we complete a task, we can optionally add the task to a group of
tasks that we track. We may have the following working version to start with:

def complete_task(task, grouped_tasks=[]):
 task.status = "completed"
 grouped_tasks.append(task.title)
 return grouped_tasks

We set an empty list object to the grouped_tasks parameter as the default argument.
Our intention is that if we call this function by omitting the grouped_tasks argument,
an empty list object will be created. You can observe the result in the next listing.

task0 = Task("Homework", "Physics and math", 5)
task1 = Task("Fishing", "Fishing at the lake", 3)

work_tasks = complete_task(task0)
play_tasks = complete_task(task1)

print("Work Tasks:", work_tasks)
print("Play Tasks:", play_tasks)

output the following lines:
Work Tasks: ['Homework', 'Fishing']
Play Tasks: ['Homework', 'Fishing']

As shown in listing 6.1, for each invocation of the complete_task function with the
omission of grouped_tasks, we wanted to have a new list object that holds the com-
pleted task. Quite surprisingly, however, both list objects have the same items,
although we were expecting work_tasks and play_tasks to be ['Homework'] and
['Fishing'], respectively. If you take a closer look at these two list objects, you’ll find
that they’re the same object:

Listing 6.1 Using functions with mutable default arguments

What's the correct term: Arguments or parameters?
The terms arguments and parameters appear to be used interchangeably to refer to
the variables used in a function. A minor nuance exists, however. When we define
functions, we refer to the variables specified in the function head as parameters.
When we call functions, we refer to the variables we use as arguments. In other
words, parameters are the variables used in a function’s definition. By contrast, argu-
ments are the variables used in a function’s invocation.

Use the titles only
for simplicity.

1476.1 How do I set default arguments to make function calls easier?

assert work_tasks == play_tasks

assert work_tasks is play_tasks

The underlying reason for this phenomenon is that Python evaluates the function
when it’s defined. The evaluation has a side effect: any mutable default arguments are
created during evaluation and become part of the function. In our example, a list
object is created when the function is evaluated. Now that specific list object is used
as the grouped_tasks argument whenever the function is called without a grouped_
tasks argument being provided, as the code in the next listing shows.

def append_task(task, tasks=[]):
 tasks.append(task)
 print(f"Tasks: {tasks}; id: {id(tasks)}")

append_task.__defaults__
output: ([],)

id(append_task.__defaults__[0])
output: 4356663616

append_task("Homework")
output: Tasks: ['Homework']; id: 4356663616

append_task("Laundry")
output: Tasks: ['Homework', 'Laundry']; id: 4356663616

append_task.__defaults__
output: (['Homework', 'Laundry'],)

In listing 6.2, we use the built-in id function to check an object’s memory address.
When we work with the same object, the id function returns the same memory
address. As you can see, when we call the function without specifying the tasks argu-
ment, we’re getting the same object that is created from the function definition.

Listing 6.2 Using the same mutable object defined in the function

is compares whether two variables
refer to the same object.

An id function returns the memory
address, which uniquely identifies
an object.

__defaults__ retrieves the default
objects associated with the function.

CPython and the id function
When you write Python code, the code gets executed on your computer (the machine).
Notably, the Python code itself doesn’t talk to your machine directly. Instead, the code
must be compiled into bytecode before it can be executed. There are different imple-
mentations for compiling Python code. Among them, the most prevalent is CPython,
which is the original Python implementation and the one you can download from
Python’s official website. Other implementations such as Jython compile Python code
to Java bytecode.

148 CHAPTER 6 Defining user-friendly functions

If we can’t use [] or list() as the default value for a list parameter, what can we
use? Does this mean that we can’t set a default value for a mutable parameter? The
answer is no. The common practice is to use None as the default argument for mutable
parameters. The next listing shows the desired pattern.

def complete_task(task, grouped_tasks=None):
 task.status = "completed"
 if grouped_tasks is None:
 grouped_tasks = []
 grouped_tasks.append(task.title)
 return grouped_tasks

complete_task.__defaults__
output: (None,)

As you can see, the default argument for the function is None. In the function body, we
check whether the grouped_tasks argument is None, and when it is true, we create a
new list object. Every time we call this function with the omission of the grouped_
tasks arguments, the function creates a new list object for us, which is the desired
behavior.

MAINTAINABILITY When you set a default argument for a mutable parameter
in a function, set it to None.

6.1.4 Discussion

Setting default arguments in function definitions is a widely used pattern in Python’s
standard library. Besides the sort method, many built-in functions, such as sorted
and print, include default arguments. With default arguments, these functions are
easy to call; they also maintain flexibility if we set different arguments. You should be
mindful of the difference between mutable and immutable parameters. When you set
a wrong default argument for a mutable parameter, you can introduce bugs into your
codebase.

6.1.5 Challenge

Cory teaches Python coding in college. He wants to show his students that the default
arguments are evaluated when a function is defined, not when the function is called.
Can you help him think of another approach to support this claim?

Listing 6.3 Using None as the default value for mutable parameters

(continued)
In CPython, the id function returns the memory address of the object at that moment.
Thus, if you run the id function in the same code at different times or on different
machines, you should expect the memory addresses to be different. In a related note,
other Python implementations may use different identities for the id function.

When we compare an object with
None, use is instead of ==.

1496.2 How do I set and use the return value in function calls?

HINT Create a timestamp to check what happens during function definition
and calls. The following code allows you to retrieve a timestamp:

from datetime import datetime
timestamp = datetime.today()

6.2 How do I set and use the return value in function calls?
We define functions to perform specific operations. To use these functions, we call
them by sending the applicable arguments, which are a function’s input. When the
function completes its operation, it returns a value, which is a function’s output. By
now, you should know the importance of functions in your applications; thus, it’s criti-
cal to have not only the skills to deal with the input (such as setting a default argu-
ment, covered in section 6.1), but also the skills to deal with the output. In this
section, we’ll focus on studying how to set the return value and how to use it.

6.2.1 Returning a value implicitly or explicitly

We have used many built-in and custom functions in our examples. Some functions
return a value; others don’t appear to return a value. In this section, I show that every
Python function returns a value, although sometimes implicitly.

 The built-in sum function calculates the summation value of an iterable. Not sur-
prisingly, the returned value is the sum of the items of the iterable:

numbers = list(range(5))

sum_numbers = sum(numbers)

print(f"Sum of {numbers} is {sum_numbers}")
output: Sum of [0, 1, 2, 3, 4] is 10

In section 3.2, we learned about using sort to order the items of a list object. Notably,
the sort method sorts a list object in place, which means that sort changes the orig-
inal list object. Relatedly, if you check sort’s return value, you’ll find that it is None:

primes = [5, 7, 2, 3, 11]

sort_return_value = primes.sort()

print(f"Return value of sort: {sort_return_value}")
output: Return value of sort: None

Through these two examples, we should be aware that every function returns a value,
and we should be clear about what a function returns: None or something else. Don’t
assume what a function returns because you can make silly mistakes when you try to
chain method calls. The following problematic code is trying to sort the primes list
and append 13 to the end:

primes.sort().append(13)

150 CHAPTER 6 Defining user-friendly functions

QUESTION Do you know why this code won’t run? Check what sort returns.

6.2.2 Defining functions returning zero, one, or multiple values

The best way to understand how functions return values is to define functions so that
you have granular control of their behavior. In general, there are three scenarios in
terms of how many values a function returns: zero, one, and multiple.

RETURNING ZERO VALUES

Strictly speaking, we can’t define functions that return no values. As discussed in sec-
tion 6.2.1, every function has a return value, implicitly or explicitly. When we define a
function that doesn’t return anything, it is still evaluated to return None. Consider the
following example:

def append_task(task, grouped_tasks):
 grouped_tasks.append(task)

appended_no_return = append_task("Homework", [])

print(f"Appended: {appended_no_return}")
output: Appended: None

As we can see, the function definition doesn’t have a return statement. But when we
check the return value, the appended_no_return value is None. This result is consis-
tent with the discussion in section 6.2.1. Figure 6.2 shows a general pattern for defin-
ing a function without returning a variable explicitly.

QUESTION What’s the return value of a function when it has a bare return
statement?

RETURNING ONE VALUE

Returning a value is the most common form for functions. As you should be aware,
functions are defined to perform a specific operation. Typically, we expect to have one
output value from an operation, as it eliminates ambiguity about the function’s pur-
pose. Thus, in most cases, you should aim for your functions to return only one value.

 It’s time for a quick review of the process of assigning a function’s return value to a
variable—the most common form of calling a function. Consider the following
scenario:

Figure 6.2 The implicit return of a function. When a function doesn’t have a
return statement, it’s equivalent to a function that returns None.

def do_something():
the operations
no return statement

def do_something():
the operations
return None

Equivalent

1516.2 How do I set and use the return value in function calls?

def say_hello(person):
 hello = f"Hello, {person}!"
 return hello

greeting = say_hello("Rocky")

This code snippet shows a common use case: calling the function say_hello and assign-
ing its return value to the variable greeting. Do you know exactly what’s happening
behind the scenes? If so, you can skip to the next section; otherwise, see figure 6.3.

CONCEPT A namespace is a collection of defined variables that you can look
up and use. You can think of it as a dictionary object: the identifiers, such as a
function’s name, are the keys, and their corresponding objects are the values.
Section 10.2 discusses namespaces in detail.

When you create a variable from a function call, you’re using an assignment state-
ment. An assignment statement evaluates the right side’s expression; in our case, it’s
calling the function, which is looked up from the current namespace. After complet-
ing the operation defined in the function, execution returns the value and assigns it
to the greeting variable.

Figure 6.3 The process of creating a variable from a function call. When you define a function, the
function is saved to the namespace. When you call the function, it looks up the namespace to locate
the function and calls the function with the supplied arguments. When the function call is complete,
the returned value is sent back and assigned to the variable. When the assignment is complete, the
new variable is loaded into the same namespace so that it can be looked up for later use.

def say_hello(person):
hello = f ''Hello, {person}!''
return hellogreeting = say_hello(''Rocky'')

greeting = say_hello(''Rocky'')

greeting = ''Hello, Rocky!''

say_hello:

namespace

the function object

say_hello:

namespace

the function object

greeting: the str object

Save the function
to the namespace.

Determine that it’s an
assignment statement.

Evaluate the right
side’s expression.

Locate the
function object.

Return the value.

Assign the value to
the variable.

Save the str variable
to the namespace.

152 CHAPTER 6 Defining user-friendly functions

RETURNING MULTIPLE VALUES

When your function performs complicated operations, these operations may generate
two or more objects, and you’ll need all objects for subsequent processing. In this
case, you should consider returning all these objects as the function’s output.

 As you probably know, it’s standard for scientists to report the mean and the stan-
dard deviation of all the measures in an experiment. Suppose that you’re defining a
function to help scientists complete this job. The next listing shows a possible solution.

from statistics import mean, stdev

def generate_stats(measures):
 measure_mean = mean(measures)
 measure_std = stdev(measures)
 return measure_mean, measure_std

The generate_stats function returns the mean and the standard deviation simulta-
neously, which simplifies your codebase. A non-Pythonic approach might use two sep-
arate functions if each function returns only one value:

def calculate_mean(measures):
 measure_mean = mean(measures)
 return measure_mean

def calculate_std(measures):
 measure_std = stdev(measures)
 return measure_std

Notably, you don’t always want to return multiple values. In listing 6.4, the values
measure_mean and measure_std are closely related, and they constitute the statistical
reports of these experimental measures; thus, the listing is a valid example of
returning two values from a function.

 By contrast, when you’re trying to return two values that are unrelated, your func-
tion is likely to consist of mixed operations that serve separate purposes. The follow-
ing code snippet is an example of a poorly defined function:

def process_data(measures):
 formatted_measures = [f"{x} mg/L" for x in measures]
 measure_mean = mean(measures)
 return formatted_measures, measure_mean

As you can see, in the process_data function, the returned values aren’t related.
Thus, when some other people use this function, it’s hard for them to figure out
what’s coming from this function call because the function serves two distinct pur-
poses: formatting the measures and calculating the measures’ mean. A more readable
approach would define separate functions for each purpose. More important, these
functions should be named in a way that clearly reflects their purposes:

Listing 6.4 Returning multiple values from a function

1536.2 How do I set and use the return value in function calls?

def format_measures(measures):
 formatted_measures = [f"{x} mg/L" for x in measures]
 return formatted_measures

def calculate_mean(measures):
 measure_mean = mean(measures)
 return measure_mean

MAINTAINABILITY Functions should serve single purposes. When you think
that you’re “refactoring” or “saving” lines of code by combining functions that
serve different purposes, you’re making the code harder to use and read,
which can cause confusion for yourself and your teammates.

6.2.3 Using multiple values returned from a function call
When a function returns None or any other single value, using the return value is
straightforward. But a function can return multiple values in some cases. In this sec-
tion, we’ll discuss how to use multiple values returned from a function call.

 Although I’ve been saying that we can define a function that returns multiple values,
in fact, we can return only one object in any function. Check the use of the generate_
stats function that we defined in listing 6.4:

measures = [5.6, 7.0, 5.7, 5.8, 4.3, 5.2]

measures_stats = generate_stats(measures)

print(type(measures_stats), measures_stats)
output: <class 'tuple'> (5.6, 0.8786353054595518)

The returned value from calling generate_stats is a tuple object, although it
appears that we’re returning two values in the function definition. These two values
are packed into a single tuple object. In other words, strictly speaking, when we
appear to return multiple values in a function definition, we’re returning a single vari-
able that is a tuple object consisting of these values. Please note that as discussed
regarding tuple unpacking (section 4.4), parentheses are optional for creating a
tuple object.

 You can apply the tuple unpacking technique to using the multiple values
returned from a function, which is a concise, Pythonic way to access the individual
items of the returned tuple object, as shown in the next listing.

m_mean, m_std = generate_stats(measures)

print(f"Mean: {m_mean}; SD: {m_std}")
output: Mean: 5.6; SD: 0.8786353054595518

QUESTION What should you do if you want to use only the mean from calling
the generate_stats function?

Listing 6.5 Unpacking the return tuple object

The type function checks
the data type of the object.

154 CHAPTER 6 Defining user-friendly functions

6.2.4 Discussion

Your functions should serve a single purpose, so returning only one value is the pre-
ferred form of output. Although you can return as many values as you want from a
function, it’s not a good idea to return too many, because it is confusing for the func-
tion’s users to figure out what each of the values stands for. As a rule of thumb, it’s best
to have your function return one value. In some cases, using two to four values is fine,
but using five or more probably means that something is wrong with your function,
such as serving multiple purposes.

6.2.5 Challenge

Zoe continues to work on her location-centered application (section 3.1.4). She
defines multiple functions that return a place’s latitude and longitude:

def locate_me():
 # look up the user's current location
 return latitude0, longitude0

def locate_home():
 # look up the user's home location
 return latitude1, longitude1

def locate_work():
 # look up the user's work location
 return latitude2, longitude2

When you see the pattern repetition of return values, you realize that she should
refactor her code. What suggestion can you give her to make these functions return
one value?

HINT Named tuples (section 3.3) are a lightweight data model that you can
use to hold data.

6.3 How do I use type hints to write understandable functions?
When we define functions, Python doesn’t require that we specify the types of the
arguments and the return value. In most cases, our functions accept only specific data
types. Consider this function from listing 6.4:

def generate_stats(measures):
 pass

If users don’t know what kind of data types they need to use, they might call the func-
tion as follows:

generate_stats({"measure0": 7.9, "measure1": 6.8, "measure2": 7.0})

This function call doesn’t work because the function assumes that the argument mea-
sures is a list or tuple object. Thus, to reduce the possibility that others will use our

1556.3 How do I use type hints to write understandable functions?

functions incorrectly, we should consider using type hints in our function definitions.
Proper type hints tell users what kinds of arguments our functions take and what value
our functions return, making our functions more understandable. In the next section,
you’ll learn how to write user-friendly functions with type hints.

6.3.1 Providing type hinting to variables

In chapters 1–5, you learned about common data models such as str, list, tuple,
and dict. When we define a variable of a particular type, we create it without worrying
about specifying the data type. But we can indicate the data type of the variable, which
is the basis of applying type hints to functions. In this section, we’ll review the essential
skills for providing type hints to variables. Here’s a simple example of creating an int
variable:

number = 1

print(type(number))
output: <class 'int'>

TRIVIA The built-in type function allows us to inspect an object’s type.

As expected, the variable number has a data type of int. If we decide to assign this vari-
able with a different value, such as a string, to number, we can do the following in Python:

number = "one"

print(type(number))
output: <class 'str'>

In the code snippet, we assign a string literal to the variable number, which makes its
data type str. In other words, we’re working with the same variable, number, but its
data type has been converted from int to str with a simple reassignment. Using pro-
gramming terminology, we say that Python is dynamically typed—the type of variables
can change after their creation.

 By contrast, some other programming languages won’t let you change the type of a
variable after it’s defined; these languages are statically typed. Swift, the recommended
language for developing iPhone apps and other Apple-related systems, is a statically
typed language. In Swift, we can’t reassign a string value to a variable that is initially
defined as an integer. When a variable has a specific type, you can’t use a value of a dif-
ferent type for reassignment, as shown in the next listing.

var number = 1

number = "one"
error: cannot assign value of type 'String' to type 'Int'

Listing 6.6 An example of static typing in Swift

156 CHAPTER 6 Defining user-friendly functions

Even though Python is a dynamically typed language, we can provide type hints to the
variables that we create in Python. This feature, known as type hinting, was added to
Python 3.6. To provide a type hint, you use a semicolon after the variable name, after
which you specify the type of the variable. Following are some examples:

number: int = 3

name: str = "John"

primes: list = [1, 2, 3]

It’s important to know that type hinting doesn’t make Python a statically typed lan-
guage and that it doesn’t enforce the typing of the variable. (If you’re wondering
about the point of using type hints, see the next section.) You can still assign a value of
a different type to a variable that you create with type hinting and run the following
two lines of code without problems:

numbers: tuple = (1, 2, 3)

numbers = [1, 2, 3]

6.3.2 Using type hinting in function definitions
In section 6.3.1, you learned to provide type hinting to individual variables. In this sec-
tion, we’ll apply this technique to a function definition to see the benefits of defining
functions with type hints.

 Using type hinting in a function definition is no different from using it to create
variables except for one thing: providing hints to the return value. We’ll use the exam-
ple in the next listing (a modified version of the generate_stats function defined in
listing 6.4) to see how type hinting with functions works.

from statistics import mean, stdev

def generate_stats(measures: list) -> tuple:
 measure_mean = mean(measures)
 measure_std = stdev(measures)
 return measure_mean, measure_std

Adding type hints to a function’s parameters is the same as creating variables, and
both usages take the form param: data_type. Adding type hints to the return value is
different because in the function head, we don’t have an explicit variable for the
return value. Instead, we use -> data_type to indicate the type for the return value.
There are two major reasons to use type hints in the function definitions:

 Type hints make it clear to users what parameters the function takes and what it returns.
If you call help(generate_stats), for example, you’ll be able to see the func-
tion’s signature and use it correctly:

Listing 6.7 Using type hints in a function

1576.3 How do I use type hints to write understandable functions?

>>> help(generate_stats)
Help on function generatate_stats in module __main__:

generate_stats(measures: list) -> tuple

 Type hints facilitate coding efficiency by allowing you to check the proper types while you’re
coding. This advantage is not obvious if you use the console or a plain-text editor
because real-time code analysis is provided by the leading Python integrated
development environments (IDEs), either natively or through the installation
of plugins, also known as extensions.

Suppose that you define a function that accepts integers, and you specify this require-
ment by using type hints. Figure 6.4 shows how code analysis can result in meaningful
pop-up menus that help you ensure code quality.

6.3.3 Applying advanced type-hinting skills to function definitions

In section 6.3.2, you learned about the syntax of using type hints in a function defini-
tion. In several situations, however, you’ll find that the basic usage isn’t enough. In
this section, you’ll learn about some advanced uses for type hinting:

 Arguments with default values
 Custom classes
 Container objects
 Multiple data types

USING ARGUMENTS WITH DEFAULT VALUES

I’ve covered how to set a default value for a parameter in a function definition. When
this feature is combined with type hints, all we need to know is the order of the
sequence: type hint first and then the default value. The following code snippet shows
an example:

def calculate_product(a: int, b: int, multiplier: int = 1) -> int:
 c = a * b * multiplier
 return c

The parameter multiplier has a default value of 1 with the int type. Please note that
the spaces used in specifying the parameter’s default value and type are necessary

Figure 6.4 Pop-up menus are
shown for functions with type
hints in the Python editor
PyCharm. When you call the
function, the pop-up menu
shows the arguments and their
respective types. When you
call the function with the wrong
types, the pop-up menu shows
the incompatible types.

A pop-up hint about the
arguments and their types

Error warning when the
argument type is mismatched

158 CHAPTER 6 Defining user-friendly functions

because they help improve the readability of the code. Specifically, you should have
spaces before and after the type and the = sign.

READABILITY Spaces and empty lines are necessary in many places to improve
code readability by creating visual separators for distinct components.

WORKING WITH CUSTOM CLASSES

When our project grows, we introduce new classes to manage the data. These classes
are new types, and we can use them as we do built-in data types such as int, tuple,
and dict. The following listing shows how to include custom classes in function defi-
nitions by using type hints.

from collections import namedtuple

Task = namedtuple("Task", "title description urgency")

class User:
 pass

def assign_task(pending_task: Task, user: User):
 pass

TRIVIA The pass statement is used where code is required to fulfill syntacti-
cal requirements. As a placeholder, the pass statement does nothing. In the
body of a class definition, we’re required to write code to implement the class.
In this case, however, we can use pass to validate the class definition.

As shown in listing 6.8, we define two classes: Task (using the named tuple technique)
and User (using a typical class definition). When these classes are defined, we can use
them immediately. Python knows these classes are types and that they can be used to
indicate the types of the arguments in a function definition.

WORKING WITH CONTAINER OBJECTS

We have learned that several built-in data types, such as list and tuple, are contain-
ers because they can hold other objects. When it comes to type hints for these contain-
ers, you may notice that providing a type for the container itself isn’t always
meaningful enough. Suppose that we have a function for completing several tasks, as
shown in the following listing.

def complete_tasks(tasks: list):
 for task in tasks:
 pass

The function definition shows that the tasks argument is a list object, but it doesn’t
specify what objects go into the list. Thus, people may use a list of str objects or a
list of Task objects:

Listing 6.8 Using type hints with custom classes

Listing 6.9 Type hints using a container type

Uses the pass statement
as a placeholder

1596.3 How do I use type hints to write understandable functions?

complete_tasks(["Laundry", "Museum"])

complete_tasks([Task("Laundry", "Wash clothes", 5),

➥ Task("Museum", "Egyptian exhibit", 4)])

It’s true that when you add specific operations to the function, you make either str or
Tasks objects compatible, but it’s more user-friendly to provide specificity to the
tasks argument. Is it a list of str or Task objects? The next listing shows a modified
version of the function.

def complete_tasks_hinted(tasks: list[Task]):
 for task in tasks:
 pass

TRIVIA The type-hinting feature is evolving in recent Python versions. Some
features may be not available if you don’t use the latest version of Python.

Instead of using only list, you can use a pair of brackets following list to include
the expected data type of the contained objects. In our case, we expect the list
object to contain Task objects but not str objects. With this change, you’ll notice that
the IDE can give you a warning when you use a list object of an incompatible data
type, such as strings, as shown in figure 6.5.

Besides list, the most common container data types are dict, tuple, and set. Table
6.1 summarizes the respective type hints for the contained objects.

Listing 6.10 Type hints using a container of specific content types

Table 6.1 Type hints for common built-in container objects

Container type Code examples Explanation

list
list[str] A list of str objects

list[int] A list of int objects

tuple
tuple[float, int] A tuple of a float object and an int object

tuple[float, ...] A tuple of multiple float objects

Figure 6.5 Displaying a warning when the container holds objects of an
incompatible data type. The screenshot was taken from the Python IDE PyCharm.
Because of the IDE’s real-time code analysis, after you specify the argument that
is incorrect according to the type hints, the IDE displays a warning pop-up menu.

A list of strings is
used incorrectly.

160 CHAPTER 6 Defining user-friendly functions

TAKING MULTIPLE DATA TYPES

It’s possible for a function to take different data types for a specific parameter. In listing
6.6, the generate_stats function’s measures parameter is a list of numbers. But this
function would work the same way if we used a tuple of numbers. In this case, we should
use type hinting to indicate that a parameter can be of multiple types, as show in the next
listing.

from statistics import mean, stdev

def generate_stats(measures: list[float] | tuple[float, ...])

➥ -> tuple[float, float]:
 measure_mean = mean(measures)
 measure_std = stdev(measures)
 return measure_mean, measure_std

To specify multiple types for a parameter, we use the vertical bar | to separate types.
Notably, if you have more than two types, you can use more than one bar:

para0: int | float | str | list

6.3.4 Discussion
Python didn’t support type hints in its early days but gradually became equipped with
type-hinting features. One major addition to Python’s standard library is the typing
module for advanced type hinting. What you’ve learned in this chapter will make you
ready to learn anything new in the typing module. To give you a head start, the fol-
lowing code shows how to make type hints clearer with the typing module, as it
includes higher-level typing information (such as Sequence, which can capture any
sequence data types):

from statistics import mean, stdev
from typing import Sequence

def generate_stats(measures: Sequence[float]) -> tuple[float, float]:

dict

dict[int, str] A dict of keys using int objects and values using str
objects

dict[int, list[int]] A dict of keys using int objects and values using
list objects of int objects

set
set[int] A set of int objects

set[str] A set of str objects

Listing 6.11 Specifying multiple types

Table 6.1 Type hints for common built-in container objects (continued)

Container type Code examples Explanation

1616.4 How do I increase function flexibility with *args and **kwargs?

 measure_mean = mean(measures)
 measure_std = stdev(measures)
 return measure_mean, measure_std

6.3.5 Challenge

Andrew is building a Python package to process finance data. He uses type hints in the
package to make it easier for users. How can he write type hints when the parameter
for a function is a list of int or a list of str?

HINT The vertical bar indicates or, which doesn’t have to be between the type
annotations. In other words, it can be used within a type annotation, such as
set[int | str].

6.4 How do I increase function flexibility with *args and **kwargs?
When we define functions, we want them to solve specific problems. To call these
functions, we send the applicable arguments so they can perform the desired opera-
tions. So far, all the functions that we have defined accept a preset number of argu-
ments, but sometimes the desired use case requires more than a preset number of
arguments. Consider the head for the built-in print function:

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

On the surface, it appears that the print function takes five arguments, with the last
four having default values. As you may have noticed, however, we can print as many
objects as we want by using print, as the next listing shows.

word = "Hello"
numbers = [1, 2, 3]
prime_number = 11

print(word, numbers, prime_number)
outprint: Hello [1, 2, 3] 11

The reason why print can accept multiple objects is that * is used before the objects
parameter, which means a variable number (zero or more) of positional arguments.
This parameter specification technique is commonly denoted as *args. Using *args
makes the print function flexible enough to accept any number of objects. Notably,
there is another closely related technique for specifying a variable number of keyword
arguments, which is denoted as **kwargs. In the next section, you’ll learn how to use
*args and **kwargs to define functions that have good flexibility. Moreover, we’ll
introduce some key concepts in terms of arguments’ categories.

Listing 6.12 Using the built-in print function

162 CHAPTER 6 Defining user-friendly functions

6.4.1 Knowing positional and keyword arguments

You may have noticed that when we call functions, in the parentheses, we sometimes
use the arguments directly, and at other times, we use identifiers preceding the speci-
fied arguments. We have different terms for these two types of arguments.

 When the arguments have associated identifiers, they’re keyword arguments, and
these identifiers are used in the function body to refer to these arguments. When the
arguments don’t have associated identifiers, they’re positional arguments. In other
words, Python processes these arguments based on the arguments’ positions accord-
ing to the sequence in the function definition. To understand the distinction between
keyword and positional arguments, consider a simple function:

def multiply_numbers(a, b):
 return a * b

For a typical function like multiply_numbers, we can set the parameters as either posi-
tional or keyword arguments. Figure 6.6 shows a few ways to call this function with two
parameters.

From the various examples shown in figure 6.6, we can summarize the following key
points regarding the use of positional and keyword arguments:

 When you use positional arguments, the order of these arguments matters. The argu-
ments will be matched with the original parameters in the function head.

 When you use keyword arguments, the order of these arguments doesn't matter. The argu-
ments will be used according to the supplied keywords/identifiers.

 When you use both positional and keyword arguments, you have to place positional argu-
ments before any keyword arguments. Otherwise, you’ll raise a SyntaxError.

Figure 6.6 Using
positional and keyword
arguments in function
calls. If the arguments
have identifiers preceding
the arguments, they’re
keyword arguments. If
the arguments have no
identifiers, they’re
positional arguments.

a = 2
b = 1multiply_numbers(2, 1)

a = 3
b = 4

multiply_numbers(a=3, b=4)

multiply_numbers(5, b=6)
a = 5
b = 6

Positional and
keyword

a = 1
b = 2multiply_numbers(1, 2)

multiply_numbers(b=4, a=3)

Positional

Keyword

multiply_numbers(b=6, 5) SyntaxError

1636.4 How do I increase function flexibility with *args and **kwargs?

Now that you know the distinction between positional and keyword arguments, we’re
ready to discuss defining a variable number of positional and keyword arguments.

6.4.2 Accepting a variable number of positional arguments

In the print function (listing 6.12), *objects allows us to print as many objects as we
want, which improves its flexibility. In this section, you’ll learn how to define a func-
tion that accepts a variable number of positional arguments.

 To facilitate the discussion, I’ll begin with a simple function, the purpose of which
is to convert any number of objects to their corresponding string representations.
Apparently, we don’t know how many objects will be sent to the function call. Thus, we
want this function to be flexible, like the print function. The following code snippet
shows the function:

def stringify(*items):
 print(f"got {items} in {type(items)}")
 return [str(item) for item in items]

USING *ARGS AS A TUPLE

In the function’s head, we use *items to indicate that the function can take a variable
number of positional arguments. In essence, you use the asterisk (*) symbol to pre-
cede the argument name. Now that we know that with this function head, the user can

Positional-only and keyword-only arguments
Figure 6.6 shows that arguments can be set as either positional or keyword when you
call the function. That is, when you call a function with arguments, Python follows a
specific order to figure out what the arguments are against the function’s definition.
If the arguments are keyword, Python matches them with the corresponding parame-
ters in the definition. If the arguments are positional, Python processes them based
on their positions. In general, we don’t restrict how the arguments, either positional
or keyword, are set.

There are two more advanced ways to specify how the arguments should be set:
positional-only arguments can be set only positionally, and keyword-only arguments
can be set only with identifiers. If you recall, the sort method has the following head:
sort(*, key=None, reverse=False). The * specifies that all the arguments behind
it should be set only as keyword-only arguments.

By reinforcing keyword-only arguments, you’re forcing readers to use keyword
arguments, so they know exactly what parameters they’re setting. You can use this
feature if you want some arguments to be set only as keyword arguments.

For positional-only arguments, look at the sum function: sum(iterable, /, start=0).
The / specifies that the arguments before it should be set only as positional arguments.
This feature can be useful, but in your code, you rarely need to set arguments that
can be used only as positional arguments.

164 CHAPTER 6 Defining user-friendly functions

call it with an arbitrary number of positional arguments, the next question is how we
can use these positional arguments in the function body.

 Because we’ve included a line of code to print the arguments, print(f"got
{items} in {type(items)}"), we can call stringify to inspect what items is:

>>> stringify(1, "two", None)
got (1, 'two', None) in <class 'tuple'>
['1', 'two', 'None']

From the output, we know that all the positional arguments are packed into a tuple
object named items. Thus, we can apply any tuple-related techniques to items. In
the example, we use the list comprehension technique to iterate the items object.

PLACING *ARGS AS THE LAST POSITIONAL ARGUMENT

When you expect the user to call a function that accepts other specified positional
arguments besides *args, you should place *args at the end. Consider a modified ver-
sion of the stringify function:

def stringify_a(item0, *items):
 print(item0, items)

When we call stringify_a, Python knows to parse the positional arguments accord-
ingly. The first argument goes to item0, and the remaining arguments go to items:

>>> stringify_a(0)
0; ()
>>> stringify_a(0, 1)
0; (1,)

Apparently, the stringify_a function is valid. Now look at an invalid modification:

def stringify_b(*items, item0):
 print(item0, items)

When we call stringify_b with positional arguments, it is impossible for Python to
figure out which argument goes to which parameter. items means any number of
positional arguments, and Python doesn’t know where to stop, as in this example:

stringify_b(0, 1)
ERROR: TypeError: stringify_b() missing 1 required keyword-only argument:

➥ 'item0'

When we call stringify_b with only positional arguments, we encounter the Type-
Error, and the error message tells us that we’re missing the keyword-only argument
item0. Thus, we could use stringify_b if we set items as a keyword argument:

>>> stringify_b(0, item0=1)
1 (0,)

The return value of the function
is printed in the console.

1656.4 How do I increase function flexibility with *args and **kwargs?

Although the function call works, our original intention was to define a function that
could be called only with positional arguments. With that assumption, we should
remember to place *args at the end of the list of positional arguments.

6.4.3 Accepting a variable number of keyword arguments

In section 6.4.2, we learned to create a function that accepts any number of positional
arguments. As a counterpart, we can define a function that accepts any number of key-
word arguments. As a convention, we use **kwargs to denote the variable number of
keyword arguments. In this section, you’ll learn about **kwargs.

 To facilitate the discussion, I’ll start with a simple function that involves **kwargs.
Using the function as an example, here are the key points of using **kwargs:

def create_report(name, **grades):
 print(f"got {grades} in {type(grades)}")
 report_items = [f"***** Report Begin for {name} *****"]
 for subject, grade in grades.items():
 report_items.append(f"### {subject}: {grade}")
 report_items.append(f"***** Report End for {name} *****")
 print("\n".join(report_items))

USING **KWARGS AS A DICT

We know that the variable number of positional arguments is packed as a tuple
object. In a similar fashion, the variable number of keyword arguments is packed into
a single object: dict. Let’s see whether that’s the case by calling the create_report
function:

create_report("John", math=100, phys=98, bio=95)
output the following lines:
got {'math': 100, 'phys': 98, 'bio': 95} in <class 'dict'>
***** Report Begin for John *****
math: 100
phys: 98
bio: 95
***** Report End for John *****

From the printout, you can easily see that these keyword arguments form a dict
object. With this dict object, we can use applicable dict-related methods. In this
example, we iterate all the key-value pairs by using items.

PLACING **KWARGS AS THE LAST PARAMETER

When you use **kwargs in a function, you should remember the syntax rule that
**kwargs should be placed after all the other parameters. Related to this rule, posi-
tional arguments should be placed before all the keyword arguments. Figure 6.7
shows the general order of these kinds of arguments.

166 CHAPTER 6 Defining user-friendly functions

6.4.4 Discussion

Although using *args and **kwargs helps improve the flexibility of the defined func-
tions, it’s less explicit to the function’s users regarding the applicable parameters.
Thus, we shouldn’t abuse this feature. Only when you can’t know how many positional
or keyword arguments you expect the function to accept should you consider using
*args and **kwargs. In general, it’s preferred to use explicitly named positional and
keyword arguments in a function definition, because these argument names clearly
indicate what the parameters are presumed to be doing.

6.4.5 Challenge

Let’s continue the story about Cory, who teaches Python coding in college. The stu-
dents know that a function with **kwargs accepts a variable number of keyword argu-
ments, as in the following example:

def example(**kwargs):
 pass

To test the students’ knowledge of calling functions, he creates a list of ways to call the
preceding example function:

example(a=1, b=2)

example(1, 2)

example(2a=1, 2b=2)

example()

If you were one of the students, would you know which techniques are valid and which
are not? What makes some calls invalid?

HINT The keyword arguments use identifiers. Python has specific rules about
identifiers. They can’t start with a number, for example.

6.5 How do I write proper docstrings for a function?
When we come across a new function, it’s common to look up its documentation to
figure out how to use it. You can use the built-in isinstance function to check

Figure 6.7 The order of placing positional and keyword arguments in a function definition.
In general, positional arguments should always precede keyword arguments. *args should
be the last positional argument, and **kwargs should be the last keyword argument.

def example(arg0, arg1, *args, kwarg0, kwarg1, **kwargs):
pass

Positional
arguments

*args Keyword
arguments

**kwargs

1676.5 How do I write proper docstrings for a function?

whether an object belongs to a specific type, for example. But you don’t know how to
call this function. Besides looking up the information online, is there any way to get
the pertinent information? The answer is yes—with the help of the built-in help func-
tion, as the following listing shows.

>>> help(isinstance)
Help on built-in function isinstance in module builtins:

isinstance(obj, class_or_tuple, /)
Return whether an object is an instance of a class or

➥ of a subclass thereof.

A tuple, as in ``isinstance(x, (A, B, ...))``, may be given as the

➥ target to check against. This is equivalent to

➥ ``isinstance(x, A) or isinstance(x, B) or ...`` etc.

As shown in listing 6.13, we use the help function to retrieve the docstrings for the
isinstance function. Although this technique is less commonly known, you can also
retrieve a function’s docstring by accessing its special attribute __doc__:

>>> print(isinstance.__doc__)
Return whether an object is an instance of a class or

➥ of a subclass thereof.

A tuple, as in ``isinstance(x, (A, B, ...))``, may be given as the

➥ target to check against. This is equivalent to

➥ ``isinstance(x, A) or isinstance(x, B) or ...`` etc.

If you didn’t know, Python uses docstrings to refer to the documentation of a function,
a class, or a module to explain the functionalities of these things. In our case, we’re
viewing the docstrings for the function isinstance, which provides specific instruc-
tions on how to use isinstance. More importantly, you can conveniently access the
docstrings with a simple help call in a Python console without relying on any external
resources. In this section, you’ll learn to write proper docstrings for a function.

CONCEPT A docstring is a string that documents a module, class, function, or
method in such a way that users know how to use them properly.

6.5.1 Examining the basic structure of a function's docstring

A function’s docstring is a multiline string below the function’s head. As a convention,
we use triple quotes to enclose the string. You can use double or single quotation
marks to form the triple quotes as long as they’re matched. In this section, we review
the basic structure of a function’s docstring.

 For this multiline string, as a best practice, three key elements are required: a sum-
mary of the function, parameters, and a return value. If your function can raise one or

Listing 6.13 Getting the docstring by using help

168 CHAPTER 6 Defining user-friendly functions

multiple exceptions, you want to specify them too, as a fourth element. Figure 6.8
shows the building elements of a function’s docstring.

Notably, Python programmers haven’t reached a consensus regarding docstring style.
The docstring shown in figure 6.8 is called Google style because it’s officially recom-
mended by Google. Multiple styles have been adopted by different Python users and
IDEs. As one of the most common Python IDEs, PyCharm uses the so-called reStruc-
turedText (reST) style as the default option for docstrings; figure 6.9 shows an example.

Although Python programmers generally agree on what elements should be included
in a function’s docstring, it’s up to each individual programmer to choose a preferred
style or follow the company’s convention. In this section, we’ll stick to the reST style.
In the next sections, we’ll discuss the proper ways to define each element.

MAINTAINABILITY It’s important to stick to a specific docstring style in the
project. Consistency in documentation is essential for both readability and
maintainability.

6.5.2 Specifying the function's action as the summary

The first element in a function’s docstring is the summary of the function. The sum-
mary should be concise, occupying only one line if at all possible. It provides a high-
level description of the action that the function performs.

def example(param0, param1):
"""
This is an example function docstring.

Args:
param0:
param1:

Returns:
Describe the return value

Raises:
Describe any Exception

"""
the body of the function

Summary

Parameters

Return value

Exceptions

Figure 6.8 A function’s docstring
in Google style. Three elements are
required: summary, parameters,
and return value. If the function
raises any exception, it needs to
be specified too.

def example(param0, param1):
"""
This is an example function docstring.

:param param0:
:param param1:

:return:

:raises:
"""
the body of the function

Summary

Parameters

Return value

Exceptions

Figure 6.9 A function’s docstring
in the reST style used by PyCharm.
The key elements are the same as
docstrings in other styles: summary,
parameters, return value, and
exceptions (where applicable).

1696.5 How do I write proper docstrings for a function?

 In listing 6.13, for example, we saw the docstring for the built-in isinstance func-
tion. Its summary clearly indicates the function’s action: Return whether an object is
an instance of a class or of a subclass thereof. We should use the same philoso-
phy in creating our own summary. Notably, for some simple functions, it’s possible to
need only one line as the docstring. In this case, the summary constitutes the entire
docstring. The following simple function represents such a scenario:

def doubler(a):
 """Return the number multiplied by 2"""
 return a * 2

6.5.3 Documenting the parameters and the return value

After providing the summary for the function, the next step in creating a function’s
docstring is documenting each of the parameters used by the function. In reST style,
each parameter starts with :param, and different parameters are listed as separate
lines. For each parameter, we need to provide the following information:

 Parameter name—It should match exactly what is used in the function’s head.
 Parameter type—What type of data are you expecting for the parameter? Specify it.
 Description—Depending on how intuitive the parameter is, provide a useful

description to help users understand what this parameter is or why it’s needed
if its purpose isn’t clear.

 Default value (optional)—If the parameter has a default value, specify it. Nota-
bly, if it’s ambiguous why you choose a specific value as the default value, you
need to provide a brief justification.

You can see these guidelines in action in the following listing.

def quotient(dividend, divisor, taking_int=False):
 """
 Calculate the product of two numbers with a base factor.

 :param dividend: int | float, the dividend in the division
 :param divisor: int | float, the divisor in the division
 :param taking_int: bool, whether only taking the integer part of
 ➥ the quotient; default: False, which calculates the
 ➥ precise quotient of the two numbers

 :return: float | int, the quotient of the dividend and divisor
 """
 result = dividend / divisor
 if taking_int:
 result = int(result)
 return result

The example in listing 6.14 provides the needed docstring for the three parameters,
including parameter name, type, and explanation. In addition, because taking_int

Listing 6.14 Docstring example of a simple function

170 CHAPTER 6 Defining user-friendly functions

has a default value, it’s mentioned in the docstring. When one parameter’s docstring
expands more than one line, remember to insert some indentation for the second
line and later lines so that the delineation between different parameters is clear.

 From a readability perspective, we use sensible names for the function itself (quo-
tient) and all the parameters (dividend, divisor, and taking_int). Using sensible
names is key in a function definition because these names can provide intuitive infor-
mation about the function. If they’re named well, users probably don’t even need to
check the docstring to understand the function.

READABILITY Everything should be named sensibly for best readability. It’s
OK to use long names because autocompletion is a feature in common IDEs.
After you write the first couple of letters, you can select the needed name.

In other words, your goal in defining a function is to make it easy for users to under-
stand and use, minimizing the possibility that they must refer to the function’s doc-
strings. Keep in mind that the docstring should be a backup source of information for
your functions.

 For a function’s return value, the docstring uses :return to indicate the return
value’s type and explanation. The explanation should be concise and easy to
understand.

6.5.4 Specifying any exceptions possibly raised

When your function could raise any exceptions, you should specify them in the doc-
string so that when users read the docstrings, they know the possible exceptions to
expect and can avoid or handle them.

 Let’s consider the quotient function, which includes the division operation
dividend / divisor. We know that a division is undefined if the divisor is 0, and we
can see what will happen if we’re trying to divide a number by 0:

1 / 0
ERROR: ZeroDivisionError: division by zero

Thus, we should specify such an exception in the docstring, as shown in the next listing.

def quotient(dividend, divisor, taking_int=False):
 """
 Calculate the product of two numbers with a base factor.

 :param dividend: int | float, the dividend in the division
 :param divisor: int | float, the divisor in the division
 :param taking_int: bool, whether only taking the integer part of
 ➥ the quotient; default: False, which calculates the
 ➥ precise quotient of the two numbers

 :return: float | int, the quotient of the dividend and divisor

Listing 6.15 Specifying the possible exception in the docstring

171Summary

 :raises: ZeroDivisionError, when the divisor is 0
 """
 if divisor == 0:
 raise ZeroDivisionError("division by zero")
 result = dividend / divisor
 if taking_int:
 result = int(result)
 return result

In listing 6.15, we explicitly examine whether divisor is 0 and raise the ZeroDivision-
Error when it’s 0. Please note that even if we don’t raise this exception explicitly, such
an exception can still be raised when we call something like quotient(1, 0) because
Python raises ZeroDivisionError whenever applicable. Here, I explicitly raise this
exception because I want to show you how an exception raised by a function should be
documented in the docstring.

 On a related note, when we create our own Python modules, we often need to
define custom exceptions ourselves to explicitly raise these custom exceptions in the
functions we create. I cover custom exceptions in section 12.5.

6.5.5 Discussion

There are different styles in which to create a function’s docstrings. The key is sticking
to a specific style consistently. If you work on a team, use the style that your team has
agreed on. If you write functions/modules only for yourself, adopt the style you’re
most used to. Please remember that consistency in coding is key to sustained main-
tainability of any project.

6.5.6 Challenge

Jerry used to adopt the reST style for his docstrings, as shown in listing 6.15. He’s join-
ing a company that uses Google style for all the documentation. As a best practice,
what would the docstring look like if he rewrote the docstrings in listing 6.15 by using
Google style?

HINT Figure 6.8 shows a docstring that uses Google style.

Summary
 You should consider setting default values for the arguments whose values are

the same for most calls. The users don’t need to set them anymore when the
default values are used, making it easier to read these function calls with fewer
arguments.

 When you set default values for mutable arguments, such as list, don’t use the
constructor list(), because a function is evaluated when it’s defined, includ-
ing the default arguments. Using the constructor will result in different func-
tion calls manipulating the same mutable object and producing undesired side

Raises ZeroDivisionError
explicitly

172 CHAPTER 6 Defining user-friendly functions

effects. To avoid this pitfall, you should use None as the default value of mutable
arguments.

 Every Python function has a return value—either the explicitly returned value
or the implicitly returned None.

 A function can return multiple values that form a single tuple object. You can
use the tuple unpacking technique to retrieve individual items after the func-
tion call. That way, it’s clearer to the readers how you’re going to use the return
value.

 Although Python is a dynamically typed language, we can use type hints to pro-
vide useful typing information on the arguments and return value for a func-
tion. When you incorporate type hinting into a function definition, you make
your functions more readable, making it easier for users to understand your
function. More important, modern IDEs can take advantage of a function’s type
hints and provide real-time warnings if an incompatible type of object is used
for an argument.

 When we call a function, we often pass the needed arguments. When the argu-
ments use identifiers, they’re called keyword arguments. By contrast, arguments
that have no identifiers and are parsed based on their positions are positional argu-
ments. Positional arguments should always be placed before keyword arguments.

 Most of the time, it’s best to define a fixed number of positional and keyword
arguments. In certain situations, however, it’s necessary to define functions that
accept a variable number of positional and/or keyword arguments, which are
denoted as *args and **kwargs, respectively.

 You need to provide documentation, called docstrings, if your functions are to
be used publicly. A function’s docstring should include the function’s summary,
all the parameters, the return value, and the possible exceptions (if any).

 Developers use different styles for docstrings. When you write docstrings for
your functions, be sure to adopt a specific docstring style and use it consistently.
When you apply a docstring consistently, it’s easy for you to develop and main-
tain your code (you need to be savvy about only one style), and you also make
things easy for readers.

173

Using functions
 beyond the basics

You may have realized that in every project, the greatest amount of time that you
spend in development is devoted to writing functions. In chapter 6, we focused on
the fundamentals of writing and using functions. After covering these topics, you’re
able to write user-friendly functions to serve your work needs. Python knows the
integral role of functions in any project; thus, it has advanced features that you can
take advantage of to make functions serve your work better.

 In this chapter, you’ll learn about more-advanced function topics. You’ll find
that the pertinent concepts may sound advanced, but the pragmatic techniques are
not hard to apply to your daily coding work.

This chapter covers
 Using lambda functions for a small job

 Working with higher-order functions

 Creating and using decorators

 Using generators to obtain data

 Creating partial functions

174 CHAPTER 7 Using functions beyond the basics

7.1 How do I use lambda functions for small jobs?
When we define functions, we use the def keyword and then give the name to the
function, which serves as the identifier for the function. Although the terminology
isn’t common, we can refer to these functions as named functions because they have
associated identifiers.

 By contrast, you can define another type of function without specifying names in
Python. These functions are called anonymous functions. More formally, these functions
are known as lambda functions. When we discussed advanced sorting with custom func-
tions (section 3.2), we used an example involving setting a lambda function to the key
parameter in the sort method:

tasks.sort(key=lambda x: x['urgency'], reverse=True)

In this section, you’ll learn everything you need to know about using lambda func-
tions: the components and the best practices.

TRIVIA Calling anonymous functions lambda functions or expressions exists not
only in Python, but also in many other languages, such as Java. This name is
derived from the lambda calculus in mathematics.

7.1.1 Creating a lambda function

You may have seen some examples of lambdas but haven’t formally learned about cre-
ating them. First, let’s review the key elements that constitute a lambda function.

 Creating lambdas doesn’t involve using the def keyword and supplying an identifier,
as we do for a regular function. Instead, we use the lambda keyword to signal that we’re
creating a lambda function. Figure 7.1 shows the components of a lambda function.

As shown in figure 7.1, after the lambda keyword, we provide the arguments and a sin-
gle expression that uses the arguments to produce a value. Don’t forget that you need
to append a colon to the arguments. Please note that you can use zero for multiple
arguments in a lambda function. When the lambda function contains no arguments,
the colon is still required before you specify the expression.

CONCEPT Keywords are special words reserved by Python for performing pre-
defined operations, such as def for creating a function, class for creating a
class, and lambda for creating a lambda function.

lambda args: expression

The lambda keyword
in lowercase

The arguments
zero to multiple

A single expression

Figure 7.1 Creating a lambda
function that consists of three
components: the lambda
keyword, the arguments,
and the expression

1757.1 How do I use lambda functions for small jobs?

Unlike regular functions, which may return an object, lambda functions don’t return
anything. When they do, you get a syntax error:

lambda x: return x * 2

ERROR: SyntaxError: invalid syntax

The SyntaxError is expected because lambdas use expressions as opposed to state-
ments, and return x * 2 is a kind of statement.

REMINDER An expression evaluates to a single value or an object, whereas a
statement performs a specific action without evaluating to any object.

Now we know how to create a lambda function, and it’s time to give it a try:

doubler = lambda x: x * 2

This lambda function multiplies a number by 2. For demonstration purposes, we
assign the lambda function to a variable doubler, which allows us to inspect a lambda
function in greater detail. As you’ll see in the next section, however, it’s not good prac-
tice to assign a lambda function to a variable. When you inspect the lambda function’s
type, you’ll see that it is indeed a kind of function:

print(type(doubler))
output: <class 'function'>

Lambda functions are functions at their core, so we can call them as regular functions.
When you call a lambda function, you send the needed arguments as you normally do
with a regular function:

>>> doubler(5)
10

>>> doubler(8)
16

7.1.2 Using lambdas to perform a small one-time job

In section 7.1.1, I mentioned that you shouldn’t assign a lambda function to a vari-
able. The major reason is that a lambda function is supposed to perform a small job,
and it’s used a single time. In this section, I discuss what I mean by a small job.

 You may wonder what kind of use case a small job is. If you recall, you learned to
perform more complicated sorting with a custom function (listing 3.3) in section
3.2.1. For your quick reference, the code is shown in the next listing.

tasks = [
 {'title': 'Laundry', 'desc': 'Wash clothes', 'urgency': 3},

Listing 7.1 Sorting a list with a custom function

176 CHAPTER 7 Using functions beyond the basics

 {'title': 'Homework', 'desc': 'Physics + Math', 'urgency': 5},
 {'title': 'Museum', 'desc': 'Egyptian things', 'urgency': 2}
]

def using_urgency_level(task):
 return task['urgency']

tasks.sort(key=using_urgency_level, reverse=True)

We define the using_urgency_level function and set it to the key argument in the
sort method call. Notably, this using_urgency_level function performs a small job
to get a dict object’s value. Moreover, this function is used only once as the key argu-
ment in the sort method. By using the single-use lambda function part of calling sort
as the key argument, you’re not creating extra “noise” (the explicitly defined func-
tion), making your code cleaner. Thus, this example is a perfect scenario for the use
of a lambda function:

tasks.sort(key=lambda x: x['urgency'], reverse=True)

This lambda function takes one parameter, which stands for each dict object of the
list object, as in the using_urgency_level function.

REMINDER Calling both regular and lambda functions is an expression, tak-
ing input and generating output.

7.1.3 Avoiding pitfalls when using lambda functions

After you learn about lambda functions, you may think that they’re cool advanced
features for a variety of reasons. The name—lambda!—is cool. A lambda function is
concise—one line of code. Also, many Python beginners don’t know lambda functions
well, and they think that if they use this advanced feature, they’re no longer beginners.
If you have any of these thoughts, chances are that you’ll run into one of the following
pitfalls.

ASSIGNING A LAMBDA TO A VARIABLE

I have mentioned a couple of times that we don’t assign a lambda function to a vari-
able. Our reasoning (implied in the preceding section) is that we use a lambda func-
tion only once. From a readability perspective, however, it appears to be good practice
to assign a lambda function to a variable so that we can name the variable sensibly and
tell readers more about the lambda function. Consider the following example:

using_urgency_level = lambda x: x['urgency']

tasks.sort(key=using_urgency_level, reverse=True)

In this example, we use using_urgency_level to refer to the lambda function, and it
does give us some information about the sorting algorithm. The more important

1777.1 How do I use lambda functions for small jobs?

reason to avoid assigning a lambda function to a variable, however, is that debugging is
harder if the function goes wrong, as the next listing shows.

using_urgency_level0 = lambda x: x['urgency0']

tasks.sort(key=using_urgency_level0, reverse=True)
ERROR:
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 1, in <lambda>
KeyError: 'urgency0'

For a direct comparison, apply the same error (using a wrong key to access the value)
to a named function. The following listing shows what happens.

def using_urgency_level1(task):
 return task['urgency1']

tasks.sort(key=using_urgency_level1, reverse=True)
ERROR:
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in using_urgency_level1
KeyError: 'urgency1'

Between listings 7.2 and 7.3, I’ve highlighted the most significant difference, although
both code snippets show the same KeyError. When we use a named function, the
error message clearly shows where things went wrong: in the using_urgency_level1
function. By contrast, when we use a lambda function that uses a wrong key, the error
message tells us only that something is wrong with a <lambda> function. Such an error
message is unclear about where you can fix the problem, particularly if you’re using a
lambda function defined elsewhere.

MAINTAINABILITY Don’t assign a lambda function to a variable; the code will
be hard to debug if things go wrong.

USING BETTER ALTERNATIVES

We understand that lambda functions are intended to perform a small job. A com-
mon use scenario is to set a lambda function as the key parameter in functions, such
as sort, sorted, and max. In some situations, however, better alternatives exist.

 Suppose that we have a list of numbers, and we want to create a new list object
that has these numbers ordered based on their absolute values. You might come up
with the following solution:

Listing 7.2 KeyError with a lambda function

Listing 7.3 KeyError with a named function

178 CHAPTER 7 Using functions beyond the basics

integers = [-4, 3, 7, 0, -6]

sorted(integers, key=lambda x: abs(x))
output: [0, 3, -4, -6, 7]

In the lambda function, we use the built-in abs function, which calculates the absolute
value of the item. A more Pythonic solution is to use the abs function directly as the
key parameter:

sorted(integers, key=abs)

For another example, suppose that we have a list of tuples, with each tuple recording
a student’s scores in math, science, and art, and we want to find out what tuple object
has the highest total score. Consider the following solution:

scores = [(93, 95, 94), (92, 95, 96), (94, 97, 91), (95, 97, 99)]

max(scores, key=lambda x: x[0] + x[1] + x[2])
output: (95, 97, 99)

In this lambda function, we use indexing to retrieve each of the three scores and add
them to obtain the total score. But we know that the built-in sum function can take any
iterable to generate the sum for its items. Thus, we should take advantage of the sum
function directly. As a side note, you can call max(scores) to produce the same result.
Here, I’m including key=sum to be explicit regarding how the maximal item should be
selected:

max(scores, key=sum)

READABILITY Prefer using built-in functions or applicable alternatives, which
are generally more concise, to creating lambda functions.

7.1.4 Discussion

Lambda functions should perform only a small job for one-time use, such as serving
the key argument in built-in functions such as sorted, max, and min. Notably, lambda
functions are widely used in third-party libraries, such as pandas, a popular data sci-
ence library. In pandas, for example, we can use the apply function to create new data
from the existing DataFrame. The apply function takes a key parameter, which speci-
fies how you create the new data from existing data. Thus, lambda functions are a uni-
versal technique that you can use to specify a small job in terms of data extraction or
conversion.

7.1.5 Challenge

High-school student Linda is learning Python to batch-process her pictures and video
files. She knows that Python functions have a special attribute called __name__. She

1797.2 What are the implications of functions as objects?

tried to access this attribute for a lambda function and a named function. What do
you think the values should be?

HINT Go back to listings 7.2 and 7.3 to see what the error message says about
the named function and the lambda function.

7.2 What are the implications of functions as objects?
We know that Python is an object-oriented programming (OOP) language at its core.
From a general perspective, when we talk about objects, we’re usually referring to an
object as an entity that represents specific data. In the first five chapters, we focused
on a variety of topics related to data models, such as str, list, tuple, dict, and set.
These classes and their respective instances are examples of objects. An essential
implication of being an object is that we can manipulate the represented data by send-
ing it to a function. The following code snippet shows that we can use int and str
instance objects in functions:

def add_three(number):
 return number + 3

add_three(7)

def greeting_message(person):
 return f"Hello, {person}!"

greeting_message("Zoe")

Notably, in the preceding section, we mentioned that we could pass a named or
lambda function to the sort method:

tasks.sort(key=lambda x: x['urgency'], reverse=True)

Being able to set a function as an argument seems to imply that lambda functions, or
functions in general, represent some data, like other data models such as int and str.
If you go a step further, you may wonder whether functions are also objects. Indeed,
there is a saying that everything is an object in Python: Python treats functions like objects
too. In this section, I’ll cover the most significant implications of functions being
objects and present some practical use cases.

7.2.1 Storing functions in a data container

We know that basic data models can be interwoven to create enormous possibilities.
Particularly, we can use data containers to store almost any kind of data model. You
can have a list of int, str, dict, and set. In a dict, you can store int, str, list, and
dict as its values. In this section, you’ll learn about the first implication of functions as
objects: using functions with other data models. Specifically, we’ll see how we can take
advantage of storing functions in a data container.

Uses an int object in a function

Uses a str object in a function

180 CHAPTER 7 Using functions beyond the basics

 Suppose that we have an application programming interface (API) that allows
users to send a list of numbers and specify the needed action for the data. For simplic-
ity, let’s say the action is to calculate the mean, min, or max. The API function looks
like this:

def get_mean(data):
 return "mean of the data"

def get_min(data):
 return "min of the data"

def get_max(data):
 return "max of the data"

def process_data(data, action):
 if action == "mean":
 processed = get_mean(data)
 elif action == "min":
 processed = get_min(data)
 elif action == "max":
 processed = get_max(data)
 else:
 processed = "error in action"

 return processed

In this code snippet, get_mean, get_min, and get_max represent the functions that
perform the respective calculations. As you may notice, the process_data’s body is
rather cumbersome. Instead, if we save functions as values in a dict object, we’ll have
a better solution, as shown in the following listing.

actions = {"mean": get_mean, "min": get_min, "max": get_max}

def fallback_action(data):
 return "error in action"

def process_data(data, action):
 calculation = actions.get(action, fallback_action)
 processed = calculation(data)
 return processed

In listing 7.4, we have the actions dict, which saves all the needed actions. When the
user specifies an action, we can look up the dict object to locate the needed function.
By doing so, we eliminate the use of multiple branches of the if...elif...else...
statement. If you have more actions, you can improve readability significantly by sav-
ing functions in a dict object.

READABILITY Code is less readable if you have a complicated structure for an
if...elif...else... statement. Consider other alternatives whenever possible.

Listing 7.4 Saving functions in a dict object

The fallback function is called
when none of the defined
actions are used.

1817.2 What are the implications of functions as objects?

7.2.2 Sending functions as arguments to higher-order functions

The second implication of using functions as objects is that we can use functions as
arguments when we call other functions. When functions can accept other functions
as input (arguments) or return a function as output, we refer to these functions as
higher-order functions—functions on top of other functions. In this section, we’ll focus
on one notable higher-order function, map, to illustrate how to send a function as data
(argument) to another function.

In section 5.1, I briefly mentioned the map function, which has the calling signature
map(func, iterable), in which func is a function object, often called the mapping
function. The map function creates a map iterator, and I’ve shown you how to construct
a list object from the map iterator, as follows:

numbers_str = ["1.23", "4.56", "7.89"]

numbers = list(map(float, numbers_str))

assert numbers == [1.23, 4.56, 7.89]

TRIVIA The map function can take more than one iterable. When there are
multiple iterables, the items from each iterable are sent to the mapping func-
tion based on the order of the iterables. The most common use case of the
map function deals with one iterable, so it can be confusing for some begin-
ners if you use multiple iterables in map. Use this feature with caution.

Notably, from the perspective of writing Pythonic code, if you’re trying to create a list
object from the map iterator, it’s best to use the list comprehension technique instead:

numbers_list = [float(x) for x in numbers_str]

Higher-order functions
Higher-order functions take functions as arguments or return functions as output, as
shown in the following figure. Please note that if a function takes one or more func-
tions as parameters, it’s a higher-order function, and if a function returns a function
as its output, it’s a higher-order function too. If a function does both things, it’s cer-
tainly a higher-order function.

First-order functions are the opposite of higher-order functions. Notably, the concept
of higher-order functions is prevalent in many modern languages, such as JavaScript,
Kotlin, and Swift. Knowing this concept can benefit you if you ever need to use other
languages.

Higher-order
functionsFunction Function

Input Output Higher-order functions use
functions as arguments
and/or return functions.

182 CHAPTER 7 Using functions beyond the basics

Using a higher-order function, however, represents the functional coding style (for-
mally known as functional programming), as opposed to the more prevalent OOP
style in Python. In the functional coding style, we focus on applying and composing
functions. By contrast, in the OOP style, we focus on working with a variety of objects.
Because of list comprehension and generator expression (section 7.4), you can
replace most map-related usages with these two techniques, which are respected as
being more Pythonic. Because the map object can be an iterator, a valid use case is to
implement it in a for loop when the involved operations are complicated:

for number in map(float, numbers_str):
 # operation 1
 # operation 2
 # operation 3
 # operation 4
 ...

In this example, the for loop includes multiple operations that don’t fit into a list
comprehension. In this case, you should take advantage of the map iterator, which ren-
ders its items one by one without the need for you to construct a list object.

7.2.3 Using functions as a return value
In the preceding section, we focused on how to use functions as objects by sending
them as parameters to higher-order functions, such as map. In this section, we’ll focus
on the third implication of using functions as objects. Specifically, I’ll show you how to
create a higher-order function that returns a function.

 We use def to signify that we’re creating a function. You may not know that we can
embed the definition of a function inside another function, following this general
format:

def outside(x):
 def inside(y):
 pass
 pass

REMINDER We use the pass statement to satisfy the syntactic requirements
where statements are expected.

Suppose that we want to create a higher-order function. With this new function, we
can create incrementing functions that add a predefined number. Applying the pre-
ceding syntax, we can come up with the solution shown in the next listing.

def increment_maker(number):
 def increment(num0):
 return num0 + number

 return increment

Listing 7.5 Creating a function that returns a function

1837.3 How do I check functions’ performance with decorators?

READABILITY Add a blank line between the inner function and the outer
function’s return statement to improve readability. As a general rule, spaces
and empty lines are natural separators between different logical components.

As shown in listing 7.5, the outside function, known as the outer function, takes the
number parameter. Within the increment_maker function, we define an inner function:
the increment function, which takes another number (the num0 parameter). Unlike
first-order functions, which return None or some form of data, the higher-order func-
tion increment_maker returns the increment function as its output. Now we can see
how useful this higher-order function is because it allows us to create a series of incre-
menting functions, as shown in the next listing.

increment_one = increment_maker(1)
increment_three = increment_maker(3)
increment_five = increment_maker(5)
increment_ten = increment_maker(10)

increment_one(99), increment_three(88), increment_five(80),

➥ increment_ten(100)
output: (100, 91, 85, 110)

As shown in listing 7.6, we can create multiple functions conveniently by specifying
the desired incrementing values. When we call these functions, we obtain expected
results.

7.2.4 Discussion

As an OOP language, Python gives us additional flexibility to use functions by treating
them as regular objects. You may wonder whether the example shown in listing 7.5
and 7.6 is too trivial to be practical, and I absolutely agree. Here, I’m using this simple
example to provide a proof of concept. In section 7.3, I’ll talk about using decorators,
a practical technique built on creating a higher-order function.

7.2.5 Challenge

In listing 7.4, we saved functions in a dict object. Besides these functions, do you
understand the rationale for creating the fallback_action function? On a related
note, why do we use the get method instead of subscript notation?

HINT You can never predict how users will call a function that you define.
How do you handle a possible call like process_data([1, 2, 3], "maxx")?

7.3 How do I check functions’ performance with decorators?
Functions are integral components of any application. Your application’s performance,
particularly its responsiveness, depends largely on how fast your functions can process

Listing 7.6 Creating functions by calling a higher-order function

184 CHAPTER 7 Using functions beyond the basics

the data. Thus, during development, we often want to record the speed of our functions.
Using a naïve approach, we may create the solution shown in the next listing.

import random
import time

def example_func0():
 print("--- example_func0 starts")
 start_t = time.time()
 random_delay = random.randint(1, 5) * 0.1
 time.sleep(random_delay)
 end_t = time.time()
 print(f"*** example_func0 ends; used time: {end_t - start_t:.2f} s")

def example_func1():
 print("--- example_func1 starts")
 start_t = time.time()
 random_delay = random.randint(6, 10) * 0.1
 time.sleep(random_delay)
 end_t = time.time()
 print(f"*** example_func1 ends; used time: {end_t - start_t:.2f} s")

In listing 7.7, we calculate the time difference between when the function starts run-
ning and when it ends so that we know how long it takes. When this function is called,
we can observe its performance:

example_func0()
output the following lines:
--- example_func0 starts
*** example_func0 ends; used time: 0.20 s

example_func1()
output the following lines:
--- example_func1 starts
*** example_func1 ends; used time: 0.70 s

READABILITY It’s a good idea to have some patterned prefix if you expect
many lines of output that have similar words. These prefixes serve as distinct
visual cues.

You won’t have only one or two functions in your application that you need to
observe. Chances are that you’ll need to monitor the performance of tens or hun-
dreds of functions. It could be tedious to add the pertinent lines of code in listing 7.7
(highlighted in bold) to all these functions. If you recall the DRY (Don’t Repeat Your-
self) principle, if there are significant repetitions, it’s almost guaranteed that we’ll
need to refactor our code. In this section, I’ll show you how to use decorators to solve
this kind of problem: applying a shared action to multiple functions.

Listing 7.7 Recording a function’s performance

Injects a random delay (0.1–0.5
second) to mimic actual operations

Injects a random delay (0.6–1
second) to mimic actual operations

1857.3 How do I check functions’ performance with decorators?

7.3.1 Decorating a function to show its performance
I’ve mentioned decorators a few times, but you may not know what this term means.
Decorators are functions that provide additional functionalities to the decorated func-
tions. It’s important to note that decorators don’t change the way the decorated func-
tions work; thus, we call this process decoration. In this section, we’ll build a decorator
to track a function’s performance.

 Without introducing the mechanisms, I’ll show you some code before I explain
how things work. For now, you can skim the logging_time function and start to read
the code from the line @logging_time in the next listing.

import random
import time

def logging_time(func):
 def logger(*args, **kwargs):
 print(f"--- {func.__name__} starts")
 start_t = time.time()
 value_returned = func(*args, **kwargs)
 end_t = time.time()
 print(f"*** {func.__name__} ends; used time: {end_t - start_t:.2f} s")
 return value_returned

 return logger

@logging_time
def example_func2():
 random_delay = random.randint(3, 5) * 0.1
 time.sleep(random_delay)

example_func2()
output the following two lines:
--- example_func2 starts
*** example_func2 ends; used time: 0.40 s

As you can see in listing 7.8, when we call the example_func2 function, we get the out-
put showing its performance. No code does such a thing in the body of example_
func2, however. So what makes example_func2 output its performance data?

 The magic results from the @logging_time right above example_func2’s head.
This special syntax is about decoration; it means that the function defined below will
be decorated by the decorator function logging_time. We can apply this decorator
function to as many functions as we like, as in this example:

@logging_time
def example_func3():
 pass

@logging_time

Listing 7.8 Using a performance-logging decorator

186 CHAPTER 7 Using functions beyond the basics

def example_func4():
 pass

@logging_time
def example_func5():
 pass

MAINTAINABILITY Decorators extract the shared utility functionalities that
can be used by multiple functions. You need to maintain only the decorator
functions, not all individual decorated functions.

We’ve seen that we can apply the decorator function to multiple functions to perform
the shared functionalities. But we haven’t discussed what constitutes a decorator,
which is the topic of the next section.

7.3.2 Dissecting the decorator function

In section 7.2, I mentioned that a decorator is a kind of higher-order function. As
shown in listing 7.8, the logging_time function is a decorator—a form of closure.
(See the following sidebar for additional information.) Using this example, we’ll dis-
sect the decorator by identifying its key elements in this section.

Behind decorators: Closures
Decorators are a form of closure. From a broad perspective, closures represent an
advanced programming concept in many modern languages, including Kotlin, Swift,
and certainly Python. A closure is an inner function that is created and returned from
the outer function. Moreover, it requires the inner function to use the variable(s) in
the outer function’s scope, a technique called nonlocal variable binding.

As you will notice, several new terminologies are involved, including scopes and non-
local variable binding. Explaining this concept fully would require a whole section, if
not more. Nevertheless, this topic is an important one that can help you understand
related techniques, particularly decorators. Thus, I’m providing a figure to show the
essential components of a closure. Please note that you can use closures’ applica-
tions, such as decorators, without fully understanding closures, so don’t worry if the
concept doesn’t make sense to you.

In this figure, note three things: In the body of the outer function, we create an inner
function; the inner function uses parameters that belong to the outer function; and
the outer function returns the inner function as its output.

def outer(a):
b = 5

def inner():
return a + b

return inner

Outer
function Inner

function

A higher-order function that returns a
function as output

1877.3 How do I check functions’ performance with decorators?

ESSENTIAL STRUCTURE: A CLOSURE-GENERATING FUNCTION

If we leave out the implementation details of the logging_time function, we can have
the following backbone structure:

def logging_time_backbone(func):
 def logger(*args, **kwargs):
 # covering the body's details later
 pass

 return logger

If you recall, this structure represents a higher-order function, taking a function as
input and returning a function as output. In essence, a decorator processes a func-
tion, and we call this process decoration. But what’s happening to the decoration pro-
cess behind the scenes? To illustrate the underlying mechanism, I’ll show you this
code snippet first:

def before_deco():
 pass

after_deco = logging_time(before_deco)

after_deco()
output the following lines:
--- before_deco starts:
*** before_deco ends; used time: 0.00 s

It’s interesting to observe that calling the after_deco function results in the same
performance-related output as that of other previously decorated functions using
@logging_time. If you go back one step, you see that the after_deco function is created
by calling the decorator function logging_time and passing in the before_deco

When we create a function by calling the outer function, we’re creating a closure. If
you inspect the closure, you see that it is indeed the inner function created in the
outer function, and you can call the closure too:

>>> closure = outer(100)
>>> closure
<function outer.<locals>.inner at 0x7f89a812d5a0>
>>> closure()
105

There are even more ways to inspect the closure on a more in-depth level. We can
check, for example, what variables the closure binds:

>>> closure.__closure__[0].cell_contents
100
>>> closure.__closure__[1].cell_contents
5

188 CHAPTER 7 Using functions beyond the basics

function. Thus, as you may have figured out, decoration is a process of creating a closure
by sending an existing function to the decorator. Figure 7.2 shows this process.

*ARGS AND **KWARGS IN THE INNER FUNCTION

In section 6.4, you learned the concepts of *args and **kwargs and saw how to use them
to allow users to pass any number of positional and keyword arguments, respectively.
The rationale of using *args and **kwargs in the inner function is the same: you want
the decorator to be compatible with all functions, regardless of their calling signatures.

 To illustrate the necessity of using *args and **kwargs, consider a decorator that
doesn’t use them to see the problem we may run into. For simplicity, the decorator
monitor reports when a function is called:

def monitor(func):
 def monitored():
 print(f"*** {func.__name__} is called")
 func()

 return monitored

If we use this decorator for a function that doesn’t take any parameters, everything
works out fine:

@monitor
def example0():
 pass

example0()
output: *** example0 is called

If we use this decorator for a function that takes one or multiple parameters, however,
we’re running into a TypeError:

@decorator
def decorated():

pass

def decorator(func):
def decorated(*args, **kwargs):

return func()

return decorated

def decorated():
pass

decorated = decorator(decorated)

Figure 7.2 Applying a decorator is the process of creating a closure from the decorator function.
The decorator function is a higher-order function that takes a function (the to-be-decorated
function) and returns a function (the decorated function, a closure). Please note that we can
use the same variable name in an assignment statement. The Python interpreter will evaluate
the right side first and assign the evaluated value to the left side. Because the name is the same,
the old variable’s value is replaced by the new value.

1897.3 How do I check functions’ performance with decorators?

@monitor
def example1(param0):
 pass

example1("a string")
ERROR: TypeError: monitor.<locals>.monitored() takes 0 positional

➥ arguments but 1 was given

The error message tells us where the problem is. In the fourth line of the decorator
function monitor, we call the decorated function by using func(), which doesn’t spec-
ify any parameters! But the decorated example1 function expects one positional argu-
ment. As you can imagine, such incompatibility significantly restricts where you can
use decorators. Thus, to maximize decorators’ flexibility, it’s essential to include *args
and **kwargs in the inner function, because the created inner function will be the
decorated function, and using *args and **kwargs makes the inner function compat-
ible with any calling signature.

MAINTAINABILITY Use *args and **kwargs in the inner function of a decora-
tor to provide maximum flexibility to the decorator.

THE RETURN STATEMENT IN THE INNER FUNCTION

Section 6.2 mentions that every Python function returns a value either implicitly as
None or as an explicitly returned value. Thus, when we define the inner function, we
shouldn’t forget to add the return statement. Specifically, the return value should be
the one that you get by calling the decorated function.

 On a related note, be cautious about where you place the return statement. As you
may know, any code below the return statement can’t be executed because return
means that the current execution is done, and we’re giving the control back to the
caller where the execution was initiated. Thus, when we want to apply operations after
calling the decorated function, we use a temporary variable to store the return value.
After the extra operations, we return this variable. This is exactly what we did for the
logging_time function in listing 7.8. Figure 7.3 shows the contrast.

def decorator(func):
def decorated(*args, **kwargs):

some operations
temp_return = func()
some other operations
return temp_return

return decorated

def decorator(func):
def decorated(*args, **kwargs):

some operations
return func()
some other operations

return decorated

Wrong return Correct return

Can’t be executed Return at the end

def decorator(func):
def decorated(*args, **kwargs):

some operations
func()
some other operations

return decorated

Missing return

The return value is not used.

Figure 7.3 Place the return statement at the end of the inner function. First, we shouldn’t forget to add the
return statement. Otherwise, we’re changing how the decorated function behaves, as the expected return
value vanishes in the inner function. Second, we should place the return value at the end of the inner function
instead of somewhere in the middle.

190 CHAPTER 7 Using functions beyond the basics

7.3.3 Wrapping to carry over the decorated function’s metadata

So far, I’ve introduced the core features of decorators and how to create a logging_
time decorator to monitor the performance of any function through decoration. But
the decoration process may make the decorated function lose its metadata, such as its
docstring. In this section, we’ll see how to keep the decorated function’s metadata.
Before you jump into the solution, examine the following code for potential problems
that might arise after decoration:

def say_hi(person):
 """Greet someone"""
 print(f"Hi, {person}")

@logging_time
def say_hello(person):
 """Greet someone"""
 print(f"Hello, {person}")

print(say_hi.__doc__, say_hi.__name__, sep="; ")
output: Greet someone; say_hi

print(say_hello.__doc__, say_hello.__name__, sep="; ")
output: None; logger

As shown in this code, without decoration, we retrieved the say_hi function’s doc-
string by accessing its __doc__ attribute. By contrast, after decoration, we lost
say_hello’s docstring. In a similar manner, the decoration changed the function’s
name (accessible with the __name__ attribute). These function attributes, including
__doc__ and __name__ (known as its metadata), are affected by the decoration pro-
cess. Why? Give yourself a few seconds to think about it before moving on.

HINT Decoration converts the original function to a closure, which is an
inner function created from the decorator.

When we define a function without a decorator, the identifier (function name) rep-
resents the defined function and its associated operations. By contrast, when we define
a function with a decorator, the decorated function is more than a function, as it appears
to be. Instead, the inner function is created and returned by the decorator function, and
is known as a closure. Thus, accessing say_hello’s __doc__ attribute is equivalent to
accessing the __doc__ attribute of logging_time’s inner function, logger. To prove it,
we can run an experiment by adding some docstring to the inner function:

def logging_time_doc(func):
 def logger(*args, **kwargs):
 """Log the time"""
 print(f"--- {func.__name__} starts")
 start_t = time.time()
 value_returned = func(*args, **kwargs)
 end_t = time.time()

1917.3 How do I check functions’ performance with decorators?

 print(f"*** {func.__name__} ends; used time:
 ➥ {end_t - start_t:.2f} s")
 return value_returned

 return logger

@logging_time_doc
def example_doc():
 """Example function"""
 pass

print(example_doc.__doc__)
output: Log the time

The output supports our prediction, as it is indeed the docstring of the decorator’s
inner function. If we use this decorator for multiple functions, all the decorated func-
tions will have the same docstring and name that matches the inner function! We
can’t make things happen this way. Fortunately, Python provides a solution: we can use
the wraps decorator in the functools module, which takes care of keeping the cor-
rect metadata for the decorated function. Observe this effect in the next listing.

import functools

def logging_time_wraps(func):
 @functools.wraps(func)
 def logger(*args, **kwargs):
 """Log the time"""
 print(f"--- {func.__name__} starts")
 start_t = time.time()
 value_returned = func(*args, **kwargs)
 end_t = time.time()
 print(f"*** {func.__name__} ends; used time:
 ➥ {end_t - start_t:.2f} s")
 return value_returned

 return logger

@logging_time_wraps
def example_wraps():
 """Example function"""
 pass

print(example_wraps.__doc__, example_wraps.__name__, sep="; ")
output: Example function; example_wraps

We use the wraps decorator (boldface in listing 7.9) to decorate the inner function log-
ger. Notably, this decorator is different from what you’ve learned; it takes the decorated
function (func) as a parameter besides performing its decoration of the logger func-
tion. In other words, the wraps decorator uses both func and logger as its arguments.

Listing 7.9 Wrapping the decorated function

192 CHAPTER 7 Using functions beyond the basics

This feature is valid, as decorators are higher-order functions at their core, and they can
accept as many functions as applicable to use as arguments. More generally, this fea-
ture—a decorator accepting parameters—is more advanced, and typically, we don’t
need to use it. But I do want to challenge you on it at the end of this section!

MAINTAINABILITY Don’t forget to use the wraps decorator to keep the deco-
rated function’s metadata, particularly its docstring and name.

7.3.4 Discussion

This section’s topic probably represents one of the hardest that I’ve covered so far.
Nevertheless, after learning the material, you should feel accomplished; we con-
quered some complicated concepts and made a useful logging decorator. You should
know what constitutes a closure and why a decorator is an application of the closure
technique. In terms of best practices, when you define a decorator, it’s important to
use the wraps decorator to carry over the decorated function’s metadata.

7.3.5 Challenge

Mike is a web developer using Python as his work language. His work requires him to
define a few decorators that can take arguments. As a best practice, can you help him
write a decorator function—say, one named logging_time_app—that accepts an argu-
ment? The decorator performs the same job as the logging_time decorator. The
parameter is a string to denote the application’s name, which serves as the prefix for
all the output strings in the print function. When we use the decorator, we want to
achieve the following effect:

@logging_time_app("Task Tracker")
def example_app():
 pass

example_app()
output the following lines:
Task Tracker --- example_app starts
Task Tracker *** example_app ends; used time: 0.00 s

HINT 1 When a parameter is used in @decorator(param), we call the higher-
order function decorator with the param first, which subsequently returns
another decorator, perhaps called true_decorator. Next, the true_
decorator is applied to the to-be-decorated function as though we’d used
@true_decorator.

HINT 2 Don’t be afraid to create a higher-order function within another
higher-order function when both higher-order functions are decorators!

1937.4 How can I use generator functions as a memory-efficient data provider?

7.4 How can I use generator functions as a memory-
efficient data provider?
The core of any application is data. With the advent of data science and machine learn-
ing, many users have used Python to process enormous amounts of data—gigabytes or
more. When you deal with this magnitude of data, it can take minutes or even hours to
load all the data into memory. When multiple data processing steps are involved, each
step can take a long time, and the code is hard to debug if any step goes wrong. Besides
the extended wait time throughout processing, probably the biggest limitation is the fact
that some computers don’t have sufficient memory to handle so much data.

 As an illustration, consider a simple example that involves a large amount of data.
(Please note that I could have used a larger number, but the example might not have
been easy to run on a regular computer, so I used a moderately large number.) Sup-
pose that we need to calculate the sum of perfect squares that are generated for 1 to
1,000,000. Using a typical approach, we create a list object to hold these numbers
and then calculate their sum:

upper_limit = 1_000_000

squares_list = [x*x for x in range(1, upper_limit + 1)]

sum_list = sum(squares_list)

QUESTION Can you write a function that is decorated by logging_time to see
the time cost of running this sum operation?

If you run the code, you’ll notice that it takes quite some time to obtain the result.
And note that the object consumes considerable memory:

print(squares_list.__sizeof__())

output: 8448712

In this section, you’ll learn how to use generator functions to provide the needed data
in a memory-efficient approach.

7.4.1 Creating a generator to yield perfect squares

As a special kind of iterator, a generator is created from a generator function. Because a
generator is an iterator, it can render its items one by one. A generator is special
because it doesn’t store its items, and it retrieves and renders its items when needed.
This characteristic means that it’s a memory-efficient iterator for data rendering. In
this section, we’ll focus on generators.

 First, let’s solve the problem with the new technique: using generators to compute
the sum of perfect squares. The code in the next listing shows a solution.

The stop index isn't
used. Correct it by 1.

Different computers may produce varied results
due to different storage mechanisms.

194 CHAPTER 7 Using functions beyond the basics

def perfect_squares(limit):
 n = 1
 while n <= limit:
 yield n * n
 n += 1

squares_gen = perfect_squares(upper_limit)

sum_gen = sum(squares_gen)

assert sum_gen == sum_list == 333333833333500000

The perfect_squares function is a generator function. By calling this function with
upper_limit, we’re creating a generator named squares_gen. This generator renders
perfect squares: 12, 22, 32, 42, ... until 1,000,0002. As expected, the sum of these per-
fect squares obtained from the generator is the same as the result obtained from the
list object squares_list.

 The reason why this generator works resides in the body of the generator function.
The most significant feature to observe is the yield keyword, which is the hallmark of
a generator function. Whenever the operation executes to the yield line, it provides
the item n * n. The coolest thing about a generator is the fact that it remembers which
item it should yield next. Figure 7.4 shows how a generator works.

Listing 7.10 Creating a generator to calculate the sum of perfect squares

def perfect_squares(limit):
 n = 1

while n <= limit:
 yield n * n
 n += 1

squares_gen= perfect_squares(upper_limit)

sum(squares_gen)

next(squares_gen)

result

next(squares_gen)

next(squares_gen)

next(squares_gen)

n = 1, yield 12

n = 2, yield 22

n = limit - 1, yield (limit-1)2

n = limit, yield (limit) 2

...

Create a generator.

Use the generator.

Complete the calculation.

Request items
until the

generator is
exhausted.

Obtain items through
every next() call.

The while loop runs continuously
until the condition becomes False.

Figure 7.4 The flow of creating and using a generator. Calling a generator function creates a generator.
When we use the generator, it iterates its applicable items by going through the while loop. Every time
it encounters the yield keyword, it yields an item by calling next behind the scenes, as shown in the
gray box. When the condition (n <= limit) is no longer satisfied, the while loop ends, and there is
no more chance to encounter the yield keyword, so iteration ends.

1957.4 How can I use generator functions as a memory-efficient data provider?

As shown in figure 7.4, a generator is an iterator at its core, so using a generator
involves invoking the next function. Every next(squares_gen) call reinstates the exe-
cution of the generator, starting from where it was left: the line following the last
yield execution. As the yield statement is part of the while loop, the loop runs con-
tinuously, and each loop encounters the yield term once. When the loop is termi-
nated, all the items are yielded, the generator is exhausted, and we’re done with the
iteration.

REMINDER When you call next on iterators manually, you’ll encounter the
StopIteration exception.

As an important conception, yield is different from return, which terminates the cur-
rent execution and gives control back to the caller. By contrast, yield pauses the cur-
rent execution and gives control back to the caller temporarily. When requested, it
continues the execution. The scenario is like driving a car on a two-lane road. You can
yield to other cars when necessary, and after the yield, you go back to the original lane.

7.4.2 Using generators for their memory efficiency

In the preceding section, you learned how to create a generator from a generator
function. But why do we bother using generators? In this section, we’ll find out.

 The most important feature of a generator is that it renders an item when it’s
asked to do so. Related to this feature is a computer programming concept called lazy
evaluation, in which specific operations or variables aren’t evaluated until the need
arises. In terms of generators, they don’t create all the items in the first place. Instead,
a generator creates the next item only when it’s called on.

Because they yield their items once upon request, generators are memory-efficient. By
contrast, we’ve seen that the list object of the perfect squares of 1 to 1 million con-
sumes more than 8 MB (converted from 8,448,712 bytes). Now, it’s time to observe
how much memory a generator, which can render the same amount of data, costs:

squares_gen = perfect_squares(upper_limit)

print(squares_gen.__sizeof__())
output: 88

Lazy evaluation
Lazy evaluation exists in various forms in different programming languages, such as
Kotlin and Swift. An object can have an attribute that has a significant amount of
data, but this attribute is not an essential one. When we create such an object, it can
take a long time to prepare the attribute before we can use the object. Instead, we
can make this attribute “lazily” evaluated, which means that we’ll make the object
without having that attribute. The first time it’s called, we’ll prepare the attribute.

Your computer may
show a different value.

196 CHAPTER 7 Using functions beyond the basics

The size of the generator is only 88 bytes, which is about 0.001 percent of the list
object. The reason why it’s much smaller is that it needs to know only its current state;
when it needs the next item, it can start from its current state and create the next
item. By contrast, the list object needs to load all its items up front before it can use
the items.

7.4.3 Using generator expressions where applicable

We’ve seen how useful a generator is. But we need to create a generator function
before we can use it, which can be tedious. In this section, you’ll learn an alternative
way to create a generator: using an expression in a process called generator expression.

 When you learned about comprehensions in section 5.2, I mentioned that there is
no tuple comprehension, which otherwise could have used the following syntax:
(expression for x in iterable). In fact, this expression is the syntax for generator
expression. Now let’s rewrite the perfect_squares function as a generator expression:

>>> squares_gen_exp = (x * x for x in range(1, upper_limit))
>>> squares_gen_exp
<generator object <genexpr> at 0x7f89a8111f50>

Instead of using the yield keyword in a generator function, a generator expression
uses an expression directly to denote what the data should render. From the syntax per-
spective, you must pay attention to using parentheses; otherwise, you’ll produce a list
instead if you accidentally use square brackets. To show that a generator is an iterator,
you can use the next function to retrieve items from the generator one at a time:

>>> next(squares_gen_exp)
1
>>> next(squares_gen_exp)
4
>>> next(squares_gen_exp)
9

Let’s calculate the sum for the generator expression:

>>> sum_gen_exp = sum(squares_gen_exp)
>>> sum_gen_exp
333332833333499986

It’s working! But wait a second—why is the sum off by 14 compared with the sum that
we calculated previously?

QUESTION What did we do before using the squares_gen_exp?

As I mentioned before, a generator is lazily rendering its items by remembering its
state. The first next call retrieves 1, the second next call retrieves 4, and the third
next call retrieves 9. When we call sum(squares_gen_exp), the generator still remem-
bers its state, so it starts to render the next item, which is 16. As you should have

1977.5 How do I create partial functions to make routine function calls easier?

noticed, the difference of the sums results from being unable to use the first three
items, which have already been consumed by invoking next manually three times.

 From a syntax perspective, we can call the sum function with a generator expres-
sion directly, which eliminates the need to create an intermediate variable. When a
generator is straightforward, it’s the preferred approach:

>>> sum(x*x for x in range(4))
14

Please note that in this expression, we omit the parentheses for the generator expres-
sion, as it’s optional if it’s used within another pair of parentheses.

7.4.4 Discussion

Under the hood, the implementation of generators involves using the yield keyword.
Besides generators, an advanced technique, coroutines, also uses yield, and these corou-
tines are called generator-based coroutines. These coroutines, however, are being phased out
of Python, and you may see this technique only in legacy projects that use older versions
of Python. So don’t worry if you don’t know generator-based coroutines well.

7.4.5 Challenge

James teaches introductory Python programming to undergraduates in the mathe-
matics department. To use a familiar concept, he thought about Fibonacci numbers—
a sequence of numbers whose value is the sum of the previous two numbers, as in 0, 1,
1, 2, 3, 5, 8, 13. He challenged his students to write a generator function with an upper
limit to produce a generator that renders Fibonacci numbers until it reaches the spec-
ified limit.

HINT You can define the first two numbers yourself and then build the for-
mula by using the definition valuen+2 = valuen + valuen+1.

7.5 How do I create partial functions to make routine
function calls easier?
Functions aren’t isolated from other components of your application. Instead, they inter-
act with other entities by taking the input and returning the processed output. To
increase a function’s flexibility, we often define multiple parameters in a function so that
it can handle different forms of input to derive the needed results for different scenarios.

 Suppose that you use Python for your data science work. You have the following
function to perform statistical modeling using the specified dataset:

def run_stats_model(dataset, model, output_path):
 # process the dataset
 # apply the model
 # save the stats to the output path
 calculated_stats = 123
 return calculated_stats

Nominal value to
make the code run

198 CHAPTER 7 Using functions beyond the basics

This function is so important and universal that you use it in multiple projects. In
each of your projects, you use the same model and output to the same folder on dif-
ferent datasets. The following code snippet may reveal what you may be doing across
projects:

Project A
run_stats_model(dataset_a1, "model_a", "project_a/stats/")
run_stats_model(dataset_a2, "model_a", "project_a/stats/")
run_stats_model(dataset_a3, "model_a", "project_a/stats/")
run_stats_model(dataset_a4, "model_a", "project_a/stats/")

As you may realize, there is a repetition pattern here because the same parameters are
used across multiple function calls. Your first reaction may be to apply the default
parameters to the run_stats_model function. This solution is not optimal, however,
as you may still have to specify these parameters for other projects:

Project B
run_stats_model(dataset_b1, "model_b", "project_b/stats/")
run_stats_model(dataset_b2, "model_b", "project_b/stats/")
run_stats_model(dataset_b3, "model_b", "project_b/stats/")
run_stats_model(dataset_b4, "model_b", "project_b/stats/")

Project C
run_stats_model(dataset_c1, "model_c", "project_c/stats/")
run_stats_model(dataset_c2, "model_c", "project_c/stats/")
run_stats_model(dataset_c3, "model_c", "project_c/stats/")
run_stats_model(dataset_c4, "model_c", "project_c/stats/")

In the next section, you’ll learn about a new technique called partial functions, and
we’ll see how to use partial functions to simplify function calls when common parame-
ters are shared within each project.

7.5.1 “Localizing” shared functions to simplify function calls

For this business need, we use the same model and output path for the run_stats_
model function in each project. Because the run_stats_model is shared across multi-
ple projects, using this function within each project is local. Thus, we can operational-
ize the need as a localization question. This section discusses a working solution that
uses our existing knowledge.

 Because each project uses the same model and output path, we could create a vari-
ation version of the shared function for each project. At the top of the Project A file,
for example, we might create a function like this one:

def run_stats_model_a(dataset):
 model_stats = run_stats_model(dataset, "model_a", "project_a/stats/")
 return model_stats

1997.5 How do I create partial functions to make routine function calls easier?

READABILITY Even though I can write return run_stats_models(dataset,
"model_a", "project_a/stats/"), I want to use an intermediate variable to
denote the exact nature of the return value from the function call. In general,
it’s a good idea to return a clearly-defined variable instead of returning some-
thing directly from another function call.

The run_stats_model_a function is rather straightforward. It provides a convenience
function call wrapped around the run_stats_models function. With this localized
function, all the original calls to run_stats_models become the following:

Project A
run_stats_model_a(dataset_a1)
run_stats_model_a(dataset_a2)
run_stats_model_a(dataset_a3)
run_stats_model_a(dataset_a4)

7.5.2 Creating a partial function to localize a function

The preceding section defines a regular function to localize the shared function. It
works. But it reinvents the wheel, as Python has already implemented such functional-
ity for us. The more Pythonic solution is to use the partial function to localize a
shared function:

from functools import partial

run_stats_model_a = partial(run_stats_model, model="model_a",
output_path="project_a/stats/")

run_stats_model_a("dataset_a")
output: 123

The partial function exists in the functools module, which has a collection of
advanced function-related tools in the standard Python library. In the partial func-
tion, we specify the shared function and any additional parameters that we want to
set—in this case, the project-specific model and output path.

REMINDER We previously used wraps to keep a function’s metadata during
decoration. The wraps function is also in the functools module.

The created function run_stats_model_a is known as a partial function. When we call
it, we no longer need to specify the shared parameters, which have already been taken
care of. Using the partial function technique, we can create separate partial functions
for each project, and they can significantly simplify the calling signature, making your
code more readable.

200 CHAPTER 7 Using functions beyond the basics

7.5.3 Discussion

This entire section (7.5) is brief. I use a simple example to show you a useful technique:
partial functions. When you accumulate your codebase, you’ll find that you often need
to use some functions across multiple locations. In this case, you can create partial func-
tions from existing functions. These partial functions freeze the shared parameters in
a location, and you can omit these parameters to improve the clarity of your code.

7.5.4 Challenge

Partial functions are created from other functions. How can you find out which func-
tion a partial function is created from?

HINT A partial function has extra attributes compared with a regular function.
You can check its attributes by calling dir(partial_function_created).
Inspect the list to see which attribute is relevant.

Summary
 Lambda functions are intended to perform a small job for one-time use, which

implies that you don’t assign a lambda function to a variable.
 Although lambda functions are handy, don’t reinvent the wheel. Where applica-

ble, use built-in functions to perform the same job without defining a lambda
function, such as using the built-in int instead of lambda x: int(x).

 Functions are first-class citizens in Python, as they’re other objects. Any opera-
tions that you can do with an object can be applied to functions too.

 Higher-order functions take functions as input and/or return functions as output.
Some notable built-in higher-order functions include sorted, map, and filter.

 Using decorators, we can apply additional functionalities to other functions
without changing the decorated functions’ original functionalities.

 Although not introduced formally in this chapter, closures are an essential pro-
gramming concept. They’re inner functions created and returned by higher-
order functions, and they also bind variables defined by the higher-order func-
tion. Decorators are an application of the closure technique.

 We can create generators from a generator function, which uses the yield key-
word to yield an item and gives up control temporarily. When it’s called again, it
remembers its state and continues the execution by rendering the next applica-
ble item or completing iteration.

 Compared with other iterators, generators are more memory-efficient, as they
don’t load all their elements up front, unlike conventional iterators such as lists
and tuples, which must load all their items before they can be iterated.

 We use partial functions to freeze some parameters of a shared function so that
we have a localized version of the function that specifically serves the project. A
partial function eliminates the need to specify the frozen parameters, which
makes your code cleaner.

Part 3

Defining classes

Built-in data structures are the most generic data types, and we can use
them no matter what kind of application we’re building. Despite the prevalence
of these data types, their generic nature doesn’t allow us to define customized
data and operations for these objects. Thus, we must almost always define our
own classes. In these classes, we define a variety of attributes, giving us compart-
ments to store customized data and a series of methods to perform customized
operations. With the increasing complexity of our application, we define multi-
ple classes, and we need to ensure that these classes work coherently and collec-
tively. As you can imagine, defining well-behaved classes to serve an application
is a challenging task. In this part, you’ll learn the essential techniques for defin-
ing custom classes.

203

Defining
 user-friendly classes

The core of any application is data. Although built-in data types are useful for man-
aging data, you’ll find them to be limited because they only have attributes and
methods that are designed to address the most generic functionalities, including
named tuples (section 3.3). You may have noticed that you don’t have useful meth-
ods to manipulate tasks with named tuples. But the task management app (like all
applications in general) addresses specific business needs, which require data mod-
els that can handle those needs. Thus, custom classes are irreplaceable elements in
your application. By defining proper attributes for the class, you can better capture
the data needed in your application. By defining proper methods, you can better
process the data in your application.

This chapter covers
 Defining the initialization method

 Creating instance, static, and class methods

 Applying encapsulation to a class

 Creating proper string representations

 Defining a superclass and subclasses

204 CHAPTER 8 Defining user-friendly classes

 In this chapter, I focus on how to define attributes and different kinds of methods
for your class, mostly using the Task class as part of the task management app to
discuss the pertinent topics. The goal of defining a good custom class is to make it
user-friendly—not only robust in terms of its attributes and methods (what should be
available), but also maintainable in terms of implementing its functionalities in a clear
organization (how they are structured).

8.1 How do I define the initialization method for a class?
When we use built-in classes, such as list and dict, we can use their constructors to cre-
ate instance objects (or instances) of these classes. The process of creating an instance
is known as instantiation: you create the instance object. Under the hood, creating an
instance object involves calling the __init__ method, as shown in the next listing.

class Task:
 def __init__(self):
 print("Creating an instance of Task class")

task = Task()
output: Creating an instance of Task class

As you can see, we call the constructor Task() to create an instance, which triggers
calling the __init__ method. If you’re wondering what the name of this method
(init) means, it stands for initialization, setting the initial states for the instance
object. Thus, this method is the most essential method that you almost always define
in a custom class. In this section, you’ll learn the best practice for defining the initial-
ization method: __init__.

8.1.1 Demystifying self: The first parameter in __init__

In listing 8.1, although we don’t have any implementation for the __init__ method,
the method still has one parameter: self. More broadly, if you’ve ever read someone
else’s code, you should see that their __init__ method also uses self as its first
parameter. If you’ve wondered what self is, this section demystifies it by addressing
four questions:

 What does self stand for?
 Why don’t we need to send an argument for self?
 Is self a keyword?
 Do we have to use self as the parameter name?

SELF: THE INSTANCE OBJECT

The first question is what self stands for. When you define methods in a class, most of
the time, the methods are intended to manipulate instance objects, such as __init__,
which sets the initial attributes for the new instance object. Thus, we need a convenient

Listing 8.1 Creating a Task class with no meaningful initialization

2058.1 How do I define the initialization method for a class?

way to refer to the instance object. If you happen to know other object-oriented pro-
gramming (OOP) languages, you know that these languages may use this, that, self,
or it to refer to the instance object. Python uses self to refer to the instance objects
in the method definitions. To prove the claim that self refers to the newly created
instance object, we can use the built-in id function, which uniquely identifies an object
in the memory, as follows:

class Task:
 def __init__(self):
 print(f"Memory address (self): {id(self)}")

task = Task()
output: Memory address (self): 140702458470768

task_address = f"Memory address (task): {id(task)}"
print(task_address)
output: Memory address (task): 140702458470768

The printout reveals that the self’s and task’s memory addresses are the same, mean-
ing that they’re the same object—the newly created instance object of the Task class.

REMINDER The id function checks an object’s memory address. Because
each object has a unique memory address, when objects have the same mem-
ory address, they’re the same object.

SETTING SELF IMPLICITLY

When we create an instance object by calling the constructor Task(), we don’t use any
arguments. But the underlying __init__ method does require one argument: self.
How can you explain this apparent conflict? The reason is that the self argument is
set, however implicitly, by Python. As you’ll see, Python creates the instance object by
calling __new__ and sends it to __init__ as the self argument. To understand the
implicit setting of the self argument, observe the following code snippet:

class Task:
 def __init__(self):
 print(f"__init__ gets called, creating object at {id(self)}")

 def __new__(cls):
 new_task = object.__new__(cls)
 print(f"__new__ gets called, creating object at {id(new_task)}")
 return new_task

task = Task()
output the following lines:
__new__ gets called, creating object at 140702458469952
__init__ gets called, creating object at 140702458469952

In this code, we call the constructor Task(). Note that the construction involves the
sequential automatic invocation of two special methods under the hood: __new__ and

Expect a different value on
your computer, and each
run can have a new value.

206 CHAPTER 8 Defining user-friendly classes

__init__. The __new__ method creates and returns (boldfaced) the new instance
object, and the __init__ method doesn’t return anything. The reason for this differ-
ence in returning a value is that after you call __new__, you need to refer to the instance
object that you just created. Thus, if the __new__ method doesn’t return that new
instance object, you can’t access and use it. By contrast, the __init__ method takes self
as an argument; it refers to the new instance and manipulates the instance in-place.

 To simulate the fact that the instance construction is a two-step process that calls
__new__ and __init__, we can call these two methods manually. Please note that this
simulation is meant to demonstrate the underlying machinery and is rarely used in a
codebase:

task = Task.__new__(Task)
output: __new__ gets called, creating object at 140702458476192

Task.__init__(task)
output: __init__ gets called, creating object at 140702458476192

First, we use __new__ method to create an instance object: task. Then we can set task
as the self argument in the __init__ method. As you can tell from the memory address,
we’re manipulating the same instance object. Figure 8.1 summarizes the process.

Because of the equivalence between the call to the constructor and two-step instantia-
tion, you can think of using the constructor directly as being syntactic sugar for the
two-step process. Moreover, using the constructor for instantiation is more concise
and readable.

SELF IS NOT A KEYWORD

In Python, we use def to signify that we’re creating a function, and we use for to sig-
nify that we’re running a for loop. def and for are examples of keywords in Python,

task = Task()

task = Task.__new__(Task)

Task.__init__(task)

Complete the initialization process.

Create the new instance object.

__new__ returns
the new instance.

__init__ returns
None.

Instantiation

Detailed instantiation process

Equivalent

Figure 8.1 The detailed instantiation process behind the scenes. When you create an instance
object by calling the constructor, the instance object is created first by the __new__ method.
When it’s created, it’s sent to the __init__ method to complete the initialization, where the
instance’s attributes are set.

2078.1 How do I define the initialization method for a class?

meaning that they’re reserved by the language for special operations. Because we use
self to refer to the instance in Python, which appears to be a special operation, this
may lead some people to think that self is a keyword. As you’ll see, however, self is
not a keyword. One rule of keywords is that you can’t use keywords as a variable name,
as shown in this example:

def = 5
ERROR: SyntaxError: invalid syntax

class = 7
ERROR: SyntaxError: invalid syntax

self = 9
Works!

We can’t assign any value to def or class, but we can assign a value to self, clearly
indicating that self is qualitatively different from other keywords. In fact, a more for-
mal way to check whether a word is a reserved keyword is to take advantage of the
keyword module, which provides the convenient iskeyword function:

import keyword

words_to_check = ["def", "class", "self", "lambda"]
for word in words_to_check:
 print(f"Is {word:^8} a keyword? {keyword.iskeyword(word)}")

output the following lines:
Is def a keyword? True
Is class a keyword? True
Is self a keyword? False
Is lambda a keyword? True

As shown in the preceding code snippet, def, class, and lambda are identified as key-
words by the iskeyword function. By contrast, self isn’t a keyword.

TRIVIA You can get the entire list of keywords by calling the kwlist function
in the keyword module.

PREFERRING USING SELF AS THE PARAMETER NAME

We know that self refers to the instance object in __init__ and that it’s not a key-
word. We may have seen that the first argument in __init__ is always self; thus, we
may assume that it must be named self. We’re not required to use self as the param-
eter name, however. We can use any legitimate variable name (but it can’t be a key-
word). The following code snippet shows the use of this instead of self in __init__:

class Task:
 def __init__(this):
 print("An instance is created with this instead of self.")

task = Task()
output: An instance is created with this instead of self.

208 CHAPTER 8 Defining user-friendly classes

As you can see, we can still create an instance object of the Task class without any
problems when we use this. From the syntax perspective, we’re not obligated to use
self in __init__. But we should use self anyway; using self in __init__ is a conven-
tion, and every Python programmer should respect this convention.

READABILITY Follow the common conventions, such as using self in
__init__. When you follow the convention, it’s easier for others to read your
code because they know exactly what you mean.

8.1.2 Setting proper arguments in __init__

In the examples I’ve shown, I don’t include arguments other than self in the
__init__ method. This section shows what considerations we should give to the argu-
ments we use in the __init__ method.

 The __init__ method is intended to complete the initialization process for the
new instance object, particularly setting the essential attributes to the instance. The
discussion of named tuples in section 3.3 mentions that the Task class should handle
three attributes for each task: title, description, and urgency level. The following code
snippet shows the data model created with named tuples:

from collections import namedtuple

Task = namedtuple("Task", "title desc urgency")

task = Task("Laundry", "Wash clothes", 3)

print(task)
output: Task(title='Laundry', desc='Wash clothes', urgency=3)

As you can see, using the named tuples-based data model, we create the instance
object by specifying all three attributes. Thus, when we’re creating a custom class
other than named tuples, we should have the same mechanism that allows the users to
set these attributes, adding the necessary arguments to the __init__ method:

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency

By taking arguments, __init__ can perform an additional initialization procedure:
setting the initial attributes from the arguments for the instance. It’s important to
note that the arguments should be related to the attributes of the instance object. In
the body of the __init__ method, we’re setting the instance’s attributes with the argu-
ments. With this updated __init__ method, we can create an instance object by sup-
plying the arguments:

task = Task("Laundry", "Wash clothes", 3)

2098.1 How do I define the initialization method for a class?

When the instance is created, it has all the needed attributes set up. To inspect the
new instance’s attributes, you can check the instance’s special attribute __dict__. As
you can see, the new instance task has these attributes stored as a dict object:

print(task.__dict__)
output: {'title': 'Laundry', 'desc': 'Wash clothes', 'urgency': 3}

For the Task class, this specific example applies to the task management application,
but your project uses different custom classes that address your data modeling needs.
Thus, the question is what considerations you should use for the arguments in the
__init__ method when you build your own custom class. In general, I recommend
the following rules of thumb:

 Identify the required arguments. When you construct an instance, you want the new
instance to have all the attributes set up and ready for use. Thus, you need to
identify the arguments that are required to set the instance’s attributes.

 Prioritize key arguments. Your custom class may require ten initial attributes that
need to be set for a new instance object. Some attributes are always more
important than others, however. You want to list the more important ones
before the less important ones.

 Use key arguments as positional. This requirement is more of a style convention
than a rule. You want users to be able to set important arguments as positional
arguments, because calling a constructor without specifying keyword arguments
is cleaner than using keyword arguments.

 Limit the number of positional arguments. This point is related to the preceding one.
Although we prefer using positional arguments for the __init__ method, when
there are too many positional arguments, readers may not know which is which.
Thus, as a rule of thumb, I recommend using no more than four positional argu-
ments. You can make additional arguments keyword-only (section 6.4.1).

 Set applicable default values. At its core, __init__ is a function. Thus, to make
calling this function easier, you want to set default values for the arguments that
most users don’t bother changing. Of the ten initial attributes, it’s likely that
seven are the same in most use cases; thus, you can set default values for these
seven attributes.

8.1.3 Specifying all attributes in __init__

In section 8.1.2, we discussed setting arguments in the __init__ method. With these
arguments, we set the corresponding attributes for an instance object in the body of
the __init__ method. An instance object can have more attributes than those created
from __init__’s arguments. Although you can set an instance’s attributes anywhere in
the class’s body, the best practice is to specify all attributes of an instance object in the
body of the __init__ method. This section discusses this practice.

210 CHAPTER 8 Defining user-friendly classes

 First, consider the next listing, in which the instance’s attributes are initialized in
multiple places. Please note that I don’t recommend this pattern, as it’s unclear about
what attributes an instance can have.

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency

 def complete(self):
 self.status = "completed"

 def add_tag(self, tag):
 if not self.tags:
 self.tags = []
 self.tags.append(tag)

PEEK The methods whose first parameter is self are known as instance meth-
ods, which are intended to be called by the instance objects of the class. We’ll
discuss them in section 8.2.

In listing 8.2, besides the title, desc, and urgency attributes, we set the attributes
status and tags in the complete and add_tag methods, respectively. You don’t want
to adopt the pattern of initializing instance attributes everywhere (other than inside
the __init__ method) for two reasons:

 When you try to access these attributes, you encounter an AttributeError
unless you’ve called these two methods, which set these attributes accordingly.
In other words, if you access these attributes accidentally without calling the
related methods, your application will crash:

task = Task("Laundry", "Wash clothes", 3)
print(task.status)

ERROR: AttributeError: 'Task' object has no attribute 'status'

task.complete()
print(task.status)
output: completed

 It’s hard for users to know what attributes an instance object of the class can
have. Particularly when your application is complicated, it’s likely that your class
has many functionalities. If you set attributes in these methods, users have a
nightmare of a time trying to figure out the attributes of an instance object.

For these two reasons, we should specify all the attributes in __init__, even though some
attributes are to be updated through a specific method call. In these cases, these attri-
butes should have a reasonable initial value. The next listing shows the desired pattern.

Listing 8.2 Setting attributes elsewhere other than __init__

2118.1 How do I define the initialization method for a class?

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency
 self.status = "created"
 self.tags = []

 def complete(self):
 self.status = "completed"

 def add_tag(self, tag):
 self.tags.append(tag)

With the updated pattern, after you create an instance object, it has all the attributes
assigned properly, and we can inspect them by accessing the __dict__ special attribute:

task = Task("Laundry", "Wash clothes", 3)
print(task.__dict__)
output: {'title': 'Laundry', 'desc': 'Wash clothes',

➥ 'urgency': 3, 'status': 'created', 'tags': []}

MAINTAINABILITY By placing all the attributes in __init__, you make it clear
to your teammates what attributes an instance object of the class can have.
When you access any attribute, it always has a value, so no AttributeError
will be raised.

Now you can access the status and tags attributes without calling the complete and
add_tag methods first. More importantly, readers can scan the __init__ method to
know an instance’s available attributes instead of looking for attributes buried in vari-
ous methods (listing 8.2). Figure 8.2 shows the contrast between the two patterns.

Listing 8.3 Setting all attributes in __init__

Figure 8.2 The contrast between two patterns that differ in where they specify the attributes for
the instance object. In the unrecommended pattern, you initialize the attributes in various places.
In the recommended pattern, you initialize the attributes only in the __init__ method, making
it clear to readers what attributes an instance object has.

def __init__(self):
self.attr0 = ''zero''
self.attr1 = ''one''

Defining a class in which some
attributes are set outside __init__

def method0(self):
self.attr2 = ''two''

def method1(self):
self.attr3 = ''three''

An instance object
def __init__(self):

self.attr0 = ''zero''
self.attr1 = ''one''
self.attr2 = None
self.attr3 = None

Defining a class in which attributes
are set only inside __init__

def method0(self):
self.attr2 = ''two''

def method1(self):
self.attr3 = ''three''

attr0

attr1

attr2

attr3

Set after
instantiation

Set after
instantiation

Set only after
calling the
methods

RecommendedNot recommended

212 CHAPTER 8 Defining user-friendly classes

8.1.4 Defining class attributes outside the __init__ method

The initialization method should provide initialization for an instance object by defin-
ing its attributes on a per-instance basis. Notably, there can be shared attributes for all
instance objects. In this case, you should not include them as instance attributes and
should consider class attributes instead. This section discusses this feature.

CONCEPT Class attributes are those attributes that belong to the class (as an
object), and all the instance objects of the class share the attributes through
the class.

For simplicity, suppose that each task has an attribute user who creates the task. Theo-
retically, you can make user an instance attribute by using the following __init__
method:

def __init__(self, title, desc, urgency, user):
 self.title = title
 self.desc = desc
 self.urgency = urgency
 self.user = user

Because user is an instance attribute, you expect your application to need more mem-
ory, as you need to save user data for every instance. But it’s important to know that in
the application, after the user login, there will be only one user who will create all the
tasks. Thus, all the instances should share the attribute user. To help reduce the mem-
ory cost of saving user for each instance, you should create a class attribute in this
case:

class Task:
 user = "the logged in user"

 def __init__(self, title, desc, urgency):
 pass

Depending on the data model, you may need to define additional class attributes for
your class. Defining class attributes is an important technique for saving memory, as
the instances share the same attributes by referencing the same underlying object in
memory. From a readability perspective, it’s essential to know that you place the class
attributes below the class definition head and above the __init__ method.

READABILITY All the class attributes should be explicit and clear. Place them
right below the class definition head.

8.1.5 Discussion

You almost always implement the __init__ method in your custom class. The
__init__ method should include all the attributes for an instance object so that read-
ers don’t have to guess what attribute the instances have. Also, place the __init__

2138.2 When do I define instance, static, and class methods?

method before any other methods in the body of the class. Why? From a readability
perspective, we want to know what data a class can hold; the instance’s attributes rep-
resent the data that the class holds. Defining a proper __init__ method is the first
thing you want to work on in a custom class.

8.1.6 Challenge

Leah is working on the task management app to learn coding in Python. She sug-
gested allowing users to specify tags during instantiation. So, she needed to add tags
as an argument in the __init__ method (listing 8.3). In most cases, she expected
users to set an empty list to the tags argument. What default value should she set for
tags in this case?

HINT At its core, __init__ is a function. You may recall from section 6.1 that
we should set a default value for a mutable argument in a function.

8.2 When do I define instance, static, and class methods?
After we set proper attributes for the instance objects, it’s time to provide functional-
ities to the class. In listing 8.3, the class has two functions: complete and add_tag.
These functions are known as instance methods. Besides instance methods, you can
define static and class methods. These methods are intended for different use cases.
This section explores situations in which you need to define instance, static, or class
methods.

8.2.1 Defining instance methods for manipulating individual instances

An instance method is intended to be called on an instance object of the class. Thus,
when you want to change the data of an individual instance object or run operations
that rely on an individual instance object’s data, such as attributes or other instance
methods, you need to define instance methods.

REMINDER Syntactically, you’re allowed to use a different parameter name
for the self argument, but it’s a convention to use self as the name.

The hallmark of an instance method is that you set self as its first parameter. As dis-
cussed extensively in section 8.1.1, self refers to the instance object in the __init__
method, which is true for all instance methods. In listing 8.4, we verify that the self
argument in instance methods also refers to the instance object with a simple modifi-
cation of the Task class’s complete method from listing 8.3. Please note that to save
space, I don’t include other implementation details of the Task class, such as __init__.

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc

Listing 8.4 Creating and using an instance method

214 CHAPTER 8 Defining user-friendly classes

 self.urgency = urgency
 self._status = "created"

 def complete(self):
 print(f"Memory Address (self): {id(self)}")
 self.status = "completed"

task = Task("Laundry", "Wash clothes", 3)
task.complete()
output: Memory Address (self): 140508514865536

task_id = f"Memory Address (task): {id(task)}"
print(task_id)
output: Memory Address (task): 140508514865536

As you can see, self in the complete method has the same memory address as the
task instance, which indicates that self is indeed the instance object on which we call
the method. Under the hood, an instance method is invoked by the class calling the
method with the instance as an argument, as illustrated in figure 8.3.

The single purpose of an instance method is to manipulate a specific instance object.
That is, you always take the following calling pattern to use an instance method:
instance.instance_method(arg0, arg1, arg2).

 In the body of the instance method, the operations should be about manipulating
the instance object that we call the method on. Therefore, if you find out that the
method doesn’t manipulate the instance or doesn’t rely on the instance-related data,
it’s likely that the method shouldn’t be implemented as an instance method to begin
with. Instead, you may need to implement the method as a static method.

8.2.2 Defining static methods for utility functionalities

When you implement utility-related functions that are not specific to any instance,
you need to define a static method. This section discusses how to define a static
method.

 Unlike an instance method, which uses self as its first parameter, a static method
doesn’t use self, as it’s intended to be independent of any instance object, and there

task

task.complete()

Task

Task.complete(task)

task.status= ''completed''

Figure 8.3 The underlying action for calling an instance method. When you use an
instance object to call an instance method, it’s processed as using the class to call
the method with the instance object as an argument. At the end, the function’s
operations are applied to the instance object that calls the instance method.

2158.2 When do I define instance, static, and class methods?

is no need to refer to a specific instance. To define a static method, we use the static-
method decorator for the function within the body of the class. Consider the example
in listing 8.5.

REMINDER Decorators add additional functionalities to the decorated func-
tion without changing its original functionality.

from datetime import datetime

class Task:
 @staticmethod
 def get_timestamp():
 now = datetime.now()
 timestamp = now.strftime("%b %d %Y, %H:%M")
 return timestamp

In listing 8.5, get_timestamp is a static method defined with the @staticmethod deco-
rator. In this static method, we create a formatted timestamp string, which we can use
whenever we need to show users the exact time. To call this method, we use the follow-
ing pattern: CustomClass.static_method(arg0, arg1, arg2). We can try this pattern
with the get_timestamp static method:

refresh_time = f"Data Refreshed: {Task.get_timestamp()}"

print(refresh_time)
output: Data Refreshed: Mar 04 2022, 15:43

As you can see, we use the static method by calling Task.get_timestamp(), which
retrieves the current timestamp in the desired format. This operation represents a
general utility need; as you can imagine, there are multiple scenarios in which a time-
stamp should be displayed. Providing utility functionalities is the main purpose of
static methods. That is, when you need to define utility-related methods that are inde-
pendent of any instance object, you should use the @staticmethod decorator to cre-
ate static methods. When you read someone else’s custom class and notice any use of
@staticmethod, you know that it’s a static method, as the staticmethod decorator is a
hallmark of a static method.

8.2.3 Defining class methods for accessing class-level attributes

In section 8.2.2, you learned about defining static methods that are utility methods with-
out the need to access individual instance objects. It’s possible that some methods may
need to access the attributes of the class. In this case, you need to define a class method.

 The first hallmark of a class method is that you use cls as its first parameter. Like
self in an instance method, cls is not a keyword, and you can give this argument
other applicable names, but it’s a convention to name it cls, and every Python
programmer should respect this convention.

Listing 8.5 Creating a static method

216 CHAPTER 8 Defining user-friendly classes

READABILITY You name the first parameter as cls in a class method. When
other programmers see cls, they know that it’s referring to the class.

The implementation of static methods requires the staticmethod decorator. A class
method also uses the classmethod decorator—the second hallmark of a class method.
The method is called a class method because it needs to access the attributes or meth-
ods of the class. Consider an example. Suppose that in our task management applica-
tion, we obtain data in the form of a dict object, which stores the data for a task:

task_dict = {"title": "Laundry", "desc": "Wash clothes", "urgency": 3}

To construct an instance object of the Task class from this dict object, we may have to
do the following:

task = Task(task_dict["title"], task_dict["desc"], task_dict["urgency"])

But because we may often obtain this kind of dict data and create a corresponding
Task instance, we should provide a more convenient way to address this need. Fortu-
nately, a class method is a good solution, as the following listing shows.

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency
 self._status = "created"

 @classmethod
 def task_from_dict(cls, task_dict):
 title = task_dict["title"]
 desc = task_dict["desc"]
 urgency = task_dict["urgency"]
 task_obj = cls(title, desc, urgency)
 return task_obj

As you can see in listing 8.6, we define a class method called task_from_dict with
@classmethod. In the body of this method, because cls stands for the class that we’re
working with (Task), we can use the class’s constructor directly—cls(title, desc,
urgency)—to create an instance object. With this class method, we can conveniently
create a Task instance object from a dict object:

task = Task.task_from_dict(task_dict)

print(task.__dict__)
output: {'title': 'Laundry', 'desc': 'Wash clothes',

➥ 'urgency': 3, 'status': 'created', 'tags': []}

Listing 8.6 Creating a class method

2178.3 How do I apply finer access control to a class?

From a general perspective, a class method is used mostly as a factory method, meaning
that this kind of method is used to create an instance object from a particular form of
data. Section 4.5 mentions that DataFrame is a spreadsheet-like data model in the pan-
das library. It has a couple of class methods—from_dict and from_records—that you
can use to construct instance objects of the DataFrame class.

8.2.4 Discussion

Of the three kinds of methods, instance and class methods are the most straightforward.
Static methods are a little trickier. Because they’re intended to provide utility function-
alities, it’s generally acceptable to define them outside a class; after all, they don’t need
to manipulate any instance or the class. In general, I recommend that you place a static
method outside a class if it addresses a more general utility functionality than a class
should handle. Taking the data processing library pandas as an example, the core data
models are Series and DataFrame classes. One utility function, to_datetime, converts
data to a date object. This function addresses a more general need; thus, it’s not imple-
mented as a static method within Series or DataFrame.

8.2.5 Challenge

While Leah continues to work on the task management app, she realizes that she needs
to create an instance of the Task class from a tuple object: ("Laundry", "Wash clothes",
3). What kind of method should she implement to address this need in the class?

HINT We implement a method that creates an instance object from a dict
object in listing 8.6.

8.3 How do I apply finer access control to a class?
In a custom class, you may define tens of methods. Some methods are for internal use
by you (the developers of the class), whereas other methods are for other developers
that use your class. Consider the following scenario. In the Task class, another method
formats the note for the complete method:

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency
 self._status = "created"
 self.note = ""

 def complete(self, note = ""):
 self.status = "completed"
 self.note = self.format_note(note)

 def format_note(self, note):
 formatted_note = note.title()
 return formatted_note

218 CHAPTER 8 Defining user-friendly classes

When the user calls the complete method, this method sets a formatted note to the note
attribute by calling the format_note method. Notably, the user can also call format_
note directly. This behavior isn’t the desired behavior, as one key principle of OOP is
encapsulation: you expose only attributes and methods that users need to access and
nothing more. The implication of encapsulation is that you apply finer access control
to the class. In this section, we’ll talk about some key access control techniques.

CONCEPT Encapsulation refers to a coding principle that is widely adopted in
OOP languages, in which you bundle data and methods into a class and allow
access to only the part of the data relevant to users.

8.3.1 Creating protected methods by using an underscore as the prefix

At its core, Python is an OOP language. Unlike other OOP languages that use private
and/or protected for access control, however, Python has no formal mechanism that
restricts access to any attribute or method. In other words, everything in a class is public,
and Python doesn’t have protected or private as a keyword. The convention in creat-
ing an access-control mechanism is to use underscores as the prefix for the attribute or
method. A one-underscore prefix means protected, and a double-underscore prefix
means private (as discussed in section 8.3.2). In this section, you’ll learn about defining
protected methods. Notably, the same mechanism applies to creating protected and pri-
vate attributes.

 When I talked about named tuples in section 3.3, I mentioned that creating a
named tuple data model allows us to take advantage of an integrated development
environment’s (IDE’s) autocompletion hints by populating the available attributes
after you enter the dot following the object. This approach can be inconvenient, how-
ever, if the populated list includes the methods you’re not going to use. As a user,
you’re not going to call the format_note method yourself; thus, it’s ideal for the auto-
completion suggestion not to show format_note (figure 8.4).

 Apparently, by hiding the functions you don’t need in the autocompletion hint list,
you can have higher coding efficiency. But how does the IDE know what functions to
hide? The magic is in using an underscore as a prefix for the method’s name, which

Public, protected, and private
In a typical OOP language, to restrict access to a specific attribute or method, many
languages use protected or private as a keyword. The opposite of protected and
private is public, meaning that the attributes and methods are available to all
users both outside and inside a class. Protected means that the attributes and meth-
ods are available to the class and its subclasses but not outside the class. Private
means that the attributes and methods are only available to the class itself, not to
its subclasses or outside the class. Because of their restrictive access to the inside,
private and protected are also referred to as nonpublic.

2198.3 How do I apply finer access control to a class?

indicates that it’s a protected method. Instead of format_note, we can name the
method _format_note. The significance of the underscore prefix is twofold:

 This method is not intended to be used outside the class, so it’s not prompted
in the autocompletion hints when you work outside the class, as shown in the
right panel of figure 8.4.

 This method is still available as part of the autocompletion hints when you work
inside the class, as shown in figure 8.5.

These two implications are in line with the encapsulation principle. You restrict out-
side users’ access to the functions they don’t need and keep the same functions avail-
able to users who do need them.

Autocompletion hints
include format_note.

Autocompletion hints don’t
include format_note.

Not desired hints Desired hints

Figure 8.4 Different autocompletion hints provided for the instance object. It’s less desirable if the
autocompletion hints include functions that users don’t need to use—in this case, the format_note method.

A protected method is
listed in the autocompletion
hints within the class.

Figure 8.5 The availability of a protected method within the class. After you enter the dot, the available
attributes and methods for the instance object appear in the list, and the list includes the protected method.

220 CHAPTER 8 Defining user-friendly classes

8.3.2 Creating private methods by using double underscores as the prefix

In section 8.3.1, you learned how to define protected methods to restrict public access
to the methods you don’t want users to see. Besides using protected methods, you can
define private methods, which achieve the same encapsulation effect. In this section,
you’ll learn to define a private method. More importantly, you’ll see why it’s some-
times a good idea to define a private method instead of a protected method.

 You’ve learned that defining a private method requires two underscores as the pre-
fix. Let’s continue using the format_note method as an example. To make the
method private, change the name to __format_note. With this name change, the
method’s access is consistently restricted to the internal of the class (figure 8.6).

Protected and private methods are similar in terms of their availabilities inside the
class. As mentioned at the beginning of section 8.3.1, however, there are no strict non-
public methods in Python. If you want to access protected methods, you can, although
many IDEs display a warning, as shown in figure 8.7.

_format_note and
__format_note are two
distinct methods.

The autocompletion hints
include both methods within
the class.

The autocompletion hints
exclude both methods
outside the class.

Figure 8.6 Internal but no external access to private methods. The __format_note method starts with
double underscores, meaning that it’s private. A private method is available only within the class.

Call a protected method
outside the class.

The warning about accessing the
protected method

Figure 8.7 Calling a protected method outside a class is technically allowed, but a warning appears
in response to this unintended behavior, as protected methods are not intended for outside use.

2218.3 How do I apply finer access control to a class?

What happens when someone is trying to access a private method outside a class? A
seemingly strange thing happens. As shown in the following code snippet, no such
method or attribute exists:

task.__format_note("a note")
ERROR: AttributeError: 'Task' object has no attribute '__format_note'.

This “inaccessibility” of __format_note outside the class marks a major difference
between private and protected methods, as it seems to be more private than a pro-
tected method such as _format_note. Thus, if you want to have more restrictive access
to nonpublic methods, you should use double underscores as the prefix to create pri-
vate methods instead of using one underscore to create protected methods.

MAINTAINABILITY Because of the differential public access rule between pro-
tected and private methods, use private methods if you want to have restric-
tive access.

I said that Python has no real nonpublic methods, which is why I put quotation marks
around inaccessibility earlier in this section. But the question is how to access a private
method if you need to. You may want to manipulate some code within a package
developed by others, for example. As shown in the following code snippet, you can
access the private method by calling _Task__format_note("a note"):

task._Task__format_note("a note")
output: 'A Note'

This technique is called name mangling, which converts a private method to a differently
named method, allowing a private method to be called outside the class. Specifically, the
name mangling follows the rule __private_method -> _ClassName__private_method.
Thus, __format_note becomes _Task__format_note, and we can call this private
method outside the Task class.

CONCEPT Name mangling is the process of converting a private method name
to a different name by using _ClassName as a prefix. Then the private method
can be accessed outside the class.

In addition to having different public access rules, protected and private methods
have different rules for accessing them within the subclass where these methods are
defined. I’ll review this topic in section 8.5.

8.3.3 Creating read-only attributes with the property decorator

One major reason for implementing a custom class is that you can define as many
attributes as you need so that the custom class, as a cohesive entity, can bundle all
related data through well-defined attributes and methods. Notably, a custom class is
mutable, meaning that you can change the attributes of the instance objects. But you
may not want users to change some attributes. In that case, you should consider

222 CHAPTER 8 Defining user-friendly classes

another access control technique: read-only attributes. Users can read these attributes
but can’t change them. In this section, you’ll learn how to define read-only attributes.

 For the Task class, consider the status attribute. For now, users can freely change
the status attribute for an instance:

print(task.status)
output: created

task.status = "completed"
print(task.status)
output: completed

For encapsulation purposes, we don’t allow users to set the status attribute freely. To
update a task’s status to completed, for example, they should call the complete method.
So the question is how to prevent users from setting status manually. The solution is
to take advantage of the property decorator. The next listing shows the technique.

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency
 self._status = "created"

 @property
 def status(self):
 return self._status

 def complete(self):
 self._status = "completed"

In listing 8.7, we keep only the code that is relevant to defining a read-only attribute
technique. In the code, we should note three significant things:

 The instance has a protected attribute _status.
 We define an instance method status, which is decorated by the property

decorator.
 In the complete method, we update the _status attribute.

We know that when we call a method on an object, we use the call operator—the
parentheses following the method name. But the property decorator makes a
method accessible as though it’s an attribute. For simplicity, you can refer to a method
with the property decorator as a property, and you don’t need to use the call operator
to access a property:

Listing 8.7 Using the property decorator

2238.3 How do I apply finer access control to a class?

task = Task("Laundry", "Wash clothes", 3)

print(task.status)
output: created

Notably, a property represents a read-only attribute. You can read it as shown in the
preceding code snippet. You can’t set it, however, which is exactly what you want: to
prevent users from setting status directly, as shown in the following listing.

>>> task.status = "completed"
ERROR: AttributeError: can't set attribute 'status'

MAINTAINABILITY Creating read-only properties can prevent users from
changing a specific attribute, maintaining data stability.

In a more general scenario, when you define a read-only property, it’s common to
create a protected attribute designed to handle the corresponding data internally.
status, for example, is a read-only property, and we use _status to handle status-
related data inside the class.

QUESTION Why do we want to use a protected attribute instead of a private
attribute? Think about the difference between them in terms of access from a
subclass.

8.3.4 Verifying data integrity with a property setter

In section 8.3.3, we introduced the property decorator, which we used to create the
read-only property status for the Task class. The implication of the read-only property
is that we can’t set a value for it. That behavior isn’t always the desired behavior, however.
Sometimes, we want to have a mechanism to set a value for a property. One useful sce-
nario for setting a property is verifying data integrity, as discussed in this section.

CONCEPT In a conventional OOP language such as Java, two concepts are
related to a property: getter and setter. The getter is the method that allows
you to retrieve the property’s value, and the setter is the method through
which you set the value for the property. The property decorator creates a
getter, and in the following paragraphs, we’re creating a setter.

Suppose that we allow users to set the status property directly. The value must be a
valid one, however. Consider that a task’s status can be created, started, completed,
or suspended. How can we ensure that the set value is one of them? This kind of data
verification of property can be best addressed with the property setter technique, as
shown in the next listing.

Listing 8.8 Read-only property

224 CHAPTER 8 Defining user-friendly classes

class Task:
 # __init__ stays the same

 @property
 def status(self):
 return self._status

 @status.setter
 def status(self, value):
 allowed_values = ["created", "started", "completed", "suspended"]
 if value in allowed_values:
 self._status = value
 print(f"task status set to {value}")
 else:
 print(f"invalid status: {value}")

In listing 8.9, after creating the status property, we create a setter for this property by
using @status.setter, which adopts the general form @property_name.setter. This
setter is an instance method, which takes a value argument that stands for the value
we want to assign to the property. In the body of the setter, we verify that the value is
one of the four possibilities. With this setter, we’re able to set the status property:

task = Task("Laundry", "Wash clothes", 3)
task.status = "completed"
output: task status set to completed

task.status = "random"
output: invalid status: random

As you can see, we can directly set the status to completed. More important, when
we’re trying to set an invalid value, we’re notified of this error. Although we can create
getters and setters to convert attributes to properties, we don’t want to, because they
complicate the class. Unless you implement properties for reasons such as read-only
or data verification, you should access and set the attributes directly instead of going
through properties. This pattern of direct access and manipulation separates Python
from other OOP languages, making Python code more concise in general.

8.3.5 Discussion

Defining private and protected methods is an essential technique for implementing
encapsulation for the class; it helps minimize the public attributes of a class. When
users work with the classes, they’ll be given the autocompletion hints for these public
attributes, making their work more efficient. Don’t try to encapsulate everything by
creating setters and getters as some other OOP languages do; that practice isn’t
Pythonic. In most cases, you should use direct accessing and setting of attributes
instead of properties, because the former technique is more straightforward and
requires less implementation code.

Listing 8.9 Creating a setter for a property

The best practice is to raise an
exception (see section 12.4).

2258.4 How do I customize string representation for a class?

8.3.6 Challenge
Suppose that the urgency attribute should have an integer value between 1 and 5. Can
you convert it to a property with a setter? The setter allows you to check the value.

HINT You can use a protected attribute, such as _urgency, as the internal
representation of the urgency data, and create a property called urgency.

8.4 How do I customize string representation for a class?
In section 8.1, we studied the initialization method __init__. This kind of method, the
name of which is surrounded by two sets of double underscores, is known as a special
method. Special methods carry special operations, such as __init__, which is invoked
when we create an instance object using the constructor. Notably, when we implement
a special method in a class, we can say that we’re overriding this method, as all Python
classes are subclasses of the object class, which implements these special methods.

CONCEPT In an OOP language, overriding means that a subclass provides
different implementations for a method that is defined in its parent class.

In this section, I’ll show you two other special methods: __str__ and __repr__, which
provide customized string representations for a class.

8.4.1 Overriding __str__ to show meaningful information for an instance
In many places, we need to inspect the instance objects that we’re working with. One
common method is the print function, which shows the string representation of the
object. Using this method, we can see what an instance of the Task class looks like:

print(task)
output: <__main__.Task object at 0x7f9f280d6800>

The information includes the instance’s class and its memory address, but nothing
else. In other words, we don’t see anything more meaningful about the instance, such
as its attributes. In this section, we’ll see how we can show more meaningful informa-
tion of an instance with the print function.

 When you use print with a custom class instance, the special method that is invoked
is __str__, which defines the string representation of the instance. To provide custom-
ized string representation other than the default one shown in the preceding code
snippet, we can override __str__ in our Task class, as the next listing shows.

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency

 def __str__(self):
 return f"{self.title}: {self.desc}, urgency level {self.urgency}"

Listing 8.10 Overriding __str__ in a class

226 CHAPTER 8 Defining user-friendly classes

When you override __str__ in a class, you should note three things:

 It’s an instance method, as it’s intended to provide a string representation for
an instance object.

 It should return a str object as its return value.
 The returned string should provide descriptive information for the instance. In

our case, we want to show the key attributes of the instance, including title,
desc, and urgency.

After overriding the __str__ method, we can see what we observe with the print
function:

task = Task("Laundry", "Wash clothes", 3)

print(task)
output: Laundry: Wash clothes, urgency level 3

Besides print, we also often use an f-string to prepare string output for data display.
When you include an instance object in curly braces, the interpolation of the instance
calls the __str__ method under the hood. Observe this behavior:

planned_task = f"Next Task - {task}"

print(planned_task)
output: Next Task - Laundry: Wash clothes, urgency level 3

If you want to invoke the __str__ method on an instance explicitly, the preferred
approach is str(instance), although we can call Class.__str__(instance)directly:

str(task)
output: Laundry: Wash clothes, urgency level 3

8.4.2 Overriding __repr__ to provide instantiation information

Many people like to use Python in an interactive Python console, particularly when
they’re learning Python, as the console provides real-time output of the code. In the
console, if you enter a str variable, you see its string value:

>>> planned_task
'Next Task - Laundry: Wash clothes, urgency level 3'

If you try to do that with the task instance, you’ll see something like this:

>>> task
<__main__.Task object at 0x7f9f280d6f80>

We’ve already implemented the __str__ method, which doesn’t change the displayed
information for the instance in an interactive console. In this section, we’ll see how to
change the string representation displayed in a console.

2278.4 How do I customize string representation for a class?

 When the interactive console shows the string representation for the instance, the
special method that is invoked is __repr__. First, I’ll show you how to implement
__repr__ in a class (see listing 8.11) and explain key things to note:

 It’s an instance method, as it provides string representation information on an
instance-specific basis.

 It returns a string value.
 The string should provide information about the instantiation. Specifically, if

other users type the string as code, it should create an instance object that has
the same attributes as the current instance object.

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency

 def __str__(self):
 return f"{self.title}: {self.desc}, urgency level {self.urgency}"

 def __repr__(self):
 return f"Task({self.title!r}, {self.desc!r}, {self.urgency})"

After implementing __repr__, we can inspect the instance of the Task class in an
interactive Python console:

>>> task = Task("Laundry", "Wash clothes", 3)
>>> task
Task('Laundry', 'Wash clothes', 3)

To call __repr__ on an instance, you should use repr(instance) instead of
Class.__repr__(instance):

repr(task)
output: Task('Laundry', 'Wash clothes', 3)

8.4.3 Understanding the differences between __str__ and __repr__

In sections 8.4.1 and 8.4.2, you learned about __str__ and __repr__, both of which
are designed to provide string representation for instances of a custom class. This sec-
tion addresses their differences.

DIFFERENT PURPOSES

The first difference, which is also the biggest, is that the methods serve different pur-
poses. The string provided by __repr__ is intended for debugging and development,
so it’s for developers. Specifically, developers should be able to construct an instance
literally from the string. As mentioned in section 2.2, we can use the built-in function

Listing 8.11 Overriding __repr__ in a class

!r requests the __repr__
method to be used for

string interpolation.

228 CHAPTER 8 Defining user-friendly classes

eval to evaluate a string literal to derive the underlying object. We can do the same
thing here:

task = Task("Laundry", "Wash clothes", 3)

task_repr = repr(task)

task_repr_eval = eval(task_repr)

print(type(task_repr_eval))
output: <class '__main__.Task'>

print(task_repr_eval)
output: Laundry: Wash clothes, urgency level 3

By contrast, the string provided by __str__ is intended to show descriptive informa-
tion and is for regular users of the code. Thus, the string is less formal than that pro-
vided by __repr__, which shows the instantiation information.

DIFFERENT USAGES

Although both methods provide string representation for a class, __str__ is the
method that underlies both the print function and the interpolation in an f-string. By
contrast, __repr__ is the method to use when you try to inspect an instance in an
interactive console.

 In listing 8.11, you may notice that we append !r to the interpolation of
self.title. !r is known as a conversion flag, which requests that the interpolated
string of the object call __repr__ instead of __str__ to create the string representa-
tion. By default, interpolating an instance of a custom class uses the string created
from __str__. To override this default behavior, you use the conversion flag following
the instance: f"{instance!r}". Relatedly, the default conversion flag for an instance
is !s, which uses the string created from __str__. In other words, the expressions
f"{instance}" and f"{instance!s}" are equivalent.

 You may wonder why we need to use the !r flag for title and desc but not for
urgency. The reason is that both title and desc are str objects. Their string repre-
sentations from __str__ have no quotation marks. Thus, if we use their default inter-
polation, the string from __repr__ can’t be used to construct an instance object, as
follows:

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency

 def __str__(self):
 return f"{self.title}: {self.desc}, urgency level {self.urgency}"

 def __repr__(self):

2298.5 Why and how do I create a superclass and subclasses?

 return f"Task({self.title}, {self.desc}, {self.urgency})"

task = Task("Laundry", "Wash clothes", 3)

print(repr(task))
output: Task(Laundry, Wash clothes, 3)

In the revised class, we omit the !r conversion flag for title and desc. From the
printout, we can see that there are no more quotation marks for Laundry and Wash
clothes. As you can expect, we can’t construct a Task instance from this string:

eval(repr(task))
ERROR: SyntaxError: invalid syntax. Perhaps you forgot a comma?

By contrast, the string representation from __repr__ does have quotation marks, as
quotation marks are required for string literals, such as "Laundry" as opposed to
Laundry. The former is a valid str object, but the latter is not. (It will be treated as a
variable named Laundry, but it can’t be used because we never define a variable called
Laundry.)

8.4.4 Discussion

The essential purpose of the __repr__ method is to explain what the object is in an
unambiguous way. Because the string generated from the repr method (note that
calling repr invokes the __repr__ method in the class) should represent a text that we
can use to reconstruct a similar object, any strings generated by repr should have
quotes to make them valid Python string literals. Don’t forget to use the !r conversion
flag if you use an f-string. I recommend that you implement both the __str__ and
__repr__ methods for custom classes. If you prefer to implement only one method,
override __repr__, because Python uses __repr__ when __str__ isn’t implemented.

8.4.5 Challenge

For the Task class, we return f"Task({self.title!r}, {self.desc!r}, {self

.urgency})" for the __repr__ method, in which we hardcode the class name Task in
the f-string. A general programming principle is that we minimize hardcoded data. Do
you know how we can retrieve the class name programmatically?

HINT An instance has a special attribute __class__ to identify its class, and a
class has a special attribute __name__ to retrieve the class’s name.

8.5 Why and how do I create a superclass and subclasses?
An essential concept in OOP is inheritance, which generally refers to the process of cre-
ating a child class that can reuse the implementations, or part of them, of a parent
class. In the meantime, you can apply customized implementations to the child class,
which becomes better at addressing specific questions than the parent class. The child
class is also known as a subclass, and the parent class is also known as a superclass.

230 CHAPTER 8 Defining user-friendly classes

TRIVIA Subclasses and superclasses are relative. A subclass is its own sub-
class’s superclass.

Creating a subclass is a more advanced topic than many others that we have discussed
so far. As you’ll find out in this section, it’s less straightforward to manage a superclass
with multiple subclasses than distinct unrelated classes. Thus, a rule of thumb is that
you justify the use of subclasses before you commit to implementing subclasses. In this
section, we’ll review what constitutes good justification and examine the technical
details of implementing a subclass.

8.5.1 Identifying the use scenario of subclasses

When your project’s scope grows, you’ll define more classes to deal with increased
data. At this stage, all classes have no inheritance relationships. You notice, however,
that some classes are similar in their functionalities; a level of code repetition exists. If
you recall the DRY (Don’t Repeat Yourself) principle, you may realize that it’s time to
refactor these classes. One essential approach is creating subclasses to reduce the
overlapped implementations between classes. In this section, we’ll see when to use
subclasses.

Suppose that our task management application supports user registration. There are
two kinds of users: supervisors and subordinates. When we start to develop our appli-
cation, we’ve created two separate classes, Supervisor and Subordinate, to manage
the data for supervisors and subordinates, respectively. Figure 8.8 provides a visual
overview of the attributes and methods of these two classes.

 As you can see, these two classes are similar, sharing most attributes and methods.
In this case, you should consider creating a superclass that handles the shared func-
tionalities. To handle the distinct functionalities for each type, you can inherit the

Top-down (superclass to subclasses) or bottom-up
(subclasses to superclass)?
When you try to implement subclasses in a project, two common scenarios can hap-
pen. In the first scenario, you start with one class as a data model, and you realize
that you need to create subclasses from this class to form more specific data mod-
els. In the second scenario, you start with multiple classes as separate data models,
and you realize that a considerable number of functionalities are similar between
these classes. In this case, you can create a superclass from which the current class
can inherit.

Both scenarios can happen in a project. In this section, we’ll focus on the second
scenario: the bottom-up one. Based on my experience, a project typically starts with
a flat data model structure—multiple classes for each model. When you implement
these classes, you recognize similarities between them, making it necessary to cre-
ate a superclass.

2318.5 Why and how do I create a superclass and subclasses?

superclass to create two subclasses. Figure 8.9 provides a visual overview of the inheri-
tance structure.

As shown in figure 8.9, when we create a superclass, we move all the shared attributes
and methods from the subclasses to the superclass. In the subclasses, you implement
specific attributes and methods. These instructions may sound too abstract. Let’s see
more implementation code in the next section.

8.5.2 Inheriting the superclass's attributes and methods automatically

Earlier, I mentioned that overlapping of functionalities between classes is the basis of
creating a superclass, which helps reduce code repetition. In this section, you’ll learn
why we need less code with the inheritance.

 To see how superclass and subclass work together, let’s continue with the
Employee-Supervisor example. Please read the code in the next listing first. We don’t

Supervisor

Attributes:
name
employee_id
subordinates

Methods:
login()
logout()
supervise()

Subordinate

Attributes:
name
employee_id
supervisor

Methods:
login()
logout()
report()

Identical Different

Figure 8.8 Similarities
and differences between the
Supervisor and Subordinate
classes. Some attributes and
methods are the same in these
two classes; other attributes
and methods are different.

Employee

Attributes:
name
employee_id

Methods:
login()
logout()

Supervisor

Attributes and
methods from the

superclass

Distinct attributes:
subordinates

Distinct methods:
supervise()

Subordinate

Attributes and
methods from the

superclass

Distinct attributes:
supervisor

Distinct methods:
report()

Figure 8.9 Creating a superclass
that handles the shared attributes
and methods. In the subclasses,
you implement specific attributes
and methods. You should also note
that by default, the subclasses
inherit all nonprivate attributes and
methods from the superclass.

232 CHAPTER 8 Defining user-friendly classes

implement the customized __init__ in the Supervisor class; I leave that task for sec-
tion 8.5.6 instead.

class Employee:
 def __init__(self, name, employee_id):
 self.name = name
 self.employee_id = employee_id

 def login(self):
 print(f"An employee {self.name} just logged in.")

 def logout(self):
 print(f"An employee {self.name} just logged out.")

class Supervisor(Employee):
 pass

When you define a subclass, you specify the superclass in parentheses following the
class’s name. Here, the superclass is Employee, so we place it after Supervisor. Nota-
bly, the subclass Supervisor automatically inherits everything from its superclass
Employee, including its initialization and other methods. We can observe this feature
in the following code snippet:

supervisor = Supervisor("John", "1001")

print(supervisor.name)
output: John

supervisor.login()
output: An employee John just logged in.

As you can see, we create an instance by calling Supervisor("John", "1001"). The
body of the Supervisor class uses only the pass statement. Supervisor supports
instantiation, but the created instance object has attributes and methods because the
Supervisor class inherits from the Employee class.

 From a general perspective, when your subclasses have the same attributes and
methods as the superclass, you don’t need to provide any implementation in the sub-
class, as the subclass automatically gains all the attributes and methods from the
superclass.

8.5.3 Overriding the superclass's methods to provide customized behaviors

In section 8.5.2, you learned that subclasses automatically inherit all attributes and
methods from the superclass. Sometimes, however, you want to provide customized
behaviors to a subclass. In this section, you’ll learn how to override a superclass’s
method to provide specific implementations to a subclass.

Listing 8.12 Basic structure of a superclass and subclasses

2338.5 Why and how do I create a superclass and subclasses?

OVERRIDING A METHOD COMPLETELY

You can override a superclass’s method completely. Unlike some OOP languages, in
which you may have to use the override keyword, Python allows you to define the
same method with a distinct implementation from the superclass. Let’s use the login
method as an example:

class Supervisor(Employee):
 def login(self):
 print(f"A supervisor {self.name} just logged in.")

With this updated login method in the subclass, we can see that the instance of the
Supervisor class will call the login method of the subclass instead of that of the
superclass:

supervisor = Supervisor("John", "1001")

supervisor.login()
output: A supervisor John just logged in.

We don’t have a customized implementation for the logout method. As you can
expect, if we call logout on the instance, the Employee class’s logout implementation
will be triggered. How does Python determine which implementation it should use?
The answer pertains to an important concept: method resolution order (MRO), which
dictates the order of using a specific implementation of a method in a hierarchical
class structure.

CONCEPT MRO determines how a method or an attribute of an instance is
evaluated in an inherited class structure.

Because Python supports multiple inheritance—a class inherits from multiple
classes—the MRO in multiple inheritance is more complicated. Here, let’s focus on
the most common scenario: a subclass with only one superclass. Figure 8.10 illustrates
how the MRO works. Please note that when you define a class that has no explicit
superclass, Python uses the object class as its superclass—in the case of Employee, a
subclass of object.

 When you call a method on an instance, the instance object has an established
MRO through its class, which you can inspect with the mro method:

Supervisor.mro()

output the following line:
[<class '__main__.Supervisor'>, <class '__main__.Employee'>,

➥ <class 'object'>]

As you can see, the resolution order is Supervisor -> Employee -> object. That is, fol-
lowing this order, if the method is found to be implemented in any class, it’s resolved

234 CHAPTER 8 Defining user-friendly classes

and evaluated. If all the classes are examined without resolving the method, the
AttributeError exception is raised.

OVERRIDING A METHOD PARTIALLY

You don’t always want a different implementation for a method from the superclass.
Instead, you want to keep the implementation of the superclass, on top of which you
apply additional customization. In this case, we’re saying that we’re overriding a
method partially.

 This time, consider the logout method. Besides the superclass’s implementation,
we want to apply a customized behavior that is specific to a supervisor—for simplicity,
showing the message Additional logout actions for a supervisor. The following
code snippet shows how we should implement this behavior:

class Supervisor(Employee):
 def logout(self):
 super().logout()
 print("Additional logout actions for a supervisor")

The most significant thing to note is that we use super() as a reference to the super-
class to create a proxy object of the superclass. From a conceptual perspective, you can
think of super() as being a temporary instance object of the superclass, allowing us to
call the superclass’s logout method on this object. With this partially overridden
logout method, what output do you expect? The following is the result:

Employee

Supervisor

object

supervisor.some_method()

Inheritance structure

Implemented?

No

Yes

Implemented?

Yes

No

Implemented?

Yes

No

AttributeError

Call a method on
an instance of the
Supervisor class.

Figure 8.10 MRO in a hierarchical class structure. When you call a method on an instance, Python
checks the method with its class first. If the method is resolved, apply the implementation. If not,
move up to its superclass. If it’s still not, move up to the object superclass, trying to resolve the
method. If the method is still not resolved, raise the AttributeError exception. If there are
more levels for the class inheritance structure, every level is checked.

2358.5 Why and how do I create a superclass and subclasses?

supervisor = Supervisor("John", "1001")

supervisor.logout()
output the following lines:
An employee John just logged out.
Additional logout actions for a supervisor

From the output, we can see that calling logout on the supervisor instance invokes
not only the Employee class’s logout method through super().logout(), but also the
additional customized implementation in the Supervisor’s logout method.

8.5.4 Creating non-public methods of the superclass

In section 8.3, we introduced two nonpublic attributes/methods: protected and
private. Besides their naming difference (prefix with one underscore versus two
underscores), we also mentioned that they differ in their accessibility in a subclass. In
this section, we’ll observe this difference and see when to create a protected or a pri-
vate method from the class inheritance perspective.

 To begin, assume that our superclass Employee has the following implementation.
Besides the initialization method, we define one protected method, _request_
vacation, and one private method, __transfer_group:

class Employee:
 def __init__(self, name, employee_id):
 self.name = name
 self.employee_id = employee_id

 def _request_vacation(self):
 print("Send a vacation request to the employee's supervisor.")

 def __transfer_group(self):
 print("Transfer the employee to a different group.")

We are ready to create a subclass Supervisor that inherits from Employee. To illustrate
the difference between protected and private in terms of accessibility within a sub-
class, let’s try accessing these nonpublic methods within Supervisor:

class Supervisor(Employee):
 def do_something(self):
 self._request_vacation()
 self.__transfer_group()

In this subclass, we define an instance method do_something, within which we call
_request_vacation and __transfer_group. What do you expect will happen if you
call do_something? Give yourself a few moments to think. Remember that subclasses
inherit protected methods. If you’re ready, here’s the answer:

236 CHAPTER 8 Defining user-friendly classes

supervisor = Supervisor("John", "1001")
supervisor.do_something()

output the following lines:
Send a vacation request to the employee's supervisor.
ERROR: AttributeError: 'Supervisor' object has no attribute

➥ '_Supervisor__transfer_group'

As you can see, _request_vacation is successfully invoked, which is expected. But
__transfer_group can’t be invoked because using the double underscores as the pre-
fix triggers name mangling. Instead of trying to call __transfer_group, Python tries
to call _Supervisor__transfer_group, a method that is not defined in Supervisor!

 Given their different accessibility within subclasses, you should define nonpublic
methods based on this principle: if you expect that the subclasses should have access
to the nonpublic methods, you should define protected methods, which the sub-
classes can inherit. If you expect that the subclasses should have no access to the non-
public methods, you should define private methods.

8.5.5 Discussion

Creating a hierarchical class structure is an essential technique in the OOP world, and
it’s a critical skill for building a clean, maintainable codebase. The superclass is
responsible for handling attributes and methods that are shared among its subclasses.
Instead of handling methods in multiple locations if you define the same methods in
similar classes, you need to maintain these methods in only one place: the superclass.

 You should realize that creating a hierarchical class structure has a price. Because
subclasses depend on the behaviors of the superclass, this interrelationship or tight
coupling can make it tricky or hard to update your codebase. When you want to add
something to a subclass, you may also need to update its superclass. Thus, in your proj-
ect, it’s better to use flatter data models. If you notice overlapping functionalities
between classes, however, don’t hesitate to implement superclasses and subclasses.

8.5.6 Challenge

In section 8.1, we studied how to implement the __init__ method in a custom class.
If the subclass has the same implementation as the superclass, you don’t need to
override __init__ at all. But if you need customized initialization, as in the case of
Supervisor, you want to override __init__. How can you override __init__ in the
Supervisor class?

HINT Overriding __init__ isn’t different from overriding other methods. You
use super() to create a proxy object to use the constructor of the superclass.

237Summary

Summary
 Your class should have __init__ as the first method, and it should initialize all

attributes of an instance, even if some attributes have a value of None.
 The initialization method __init__ is an instance method, which uses self as

its first parameter. You should know how things work behind the scenes—how
an instance is created from calling the constructor.

 When all the instances share the same attribute values, you should define them
as class attributes, which helps save memory.

 In general, you can define three kinds of methods in a class: instance (note
that the first parameter is self), static (using the @staticmethod decorator),
and class (using the @classmethod decorator). You should know how these
methods differ and when to use which.

 When you define a class, consider minimizing the attributes and methods that
the users need access to. By “hiding” them, such as by defining protected
and private methods, you help users increase their coding efficiency because
they don’t need to bother with these nonpublic methods in the autocompletion
hint list.

 The property decorator allows you to create a read-only property, which helps
you create data integrity by disallowing data change. If you want to allow users
to change the property, you can create a setter for the property, which is also an
opportunity for you to verify data integrity in the setter.

 When you define a class, you want to override both __str__ and __repr__ so
that you can provide proper string representations for users and developers.

 Creating a hierarchical class structure helps you manage your data when there
are similarities between data models. The shared data can go to the superclass,
making it easier to develop and maintain your codebase.

 Think twice before you create a hierarchical class structure because you may
overcomplicate your data models by dealing with superclasses and subclasses.

238

Using classes
beyond the basics

Python is an object-oriented language at its core. The hallmark of an object-oriented
language is using objects to preserve data and provide functionalities, which
generally requires you to implement well-defined custom classes. In chapter 8, you
learned the essential techniques for defining a class. But many other techniques can
help us define more robust custom classes so that we can build a more maintainable
codebase with well-defined data models.

 Custom classes typically require implementation of several special methods, for
example, including __init__ and __repr__. As you code more, you may find it
tedious to write these methods, as they can be boilerplate. Did you know that you
can use the dataclass decorator to remove boilerplate?

This chapter covers
 Creating enumerations

 Eliminating boilerplate of a custom class

 Processing JSON data

 Creating lazy attributes

 Refactoring a cumbersome class

2399.1 How do I create enumerations?

 In this chapter, you’ll learn advanced techniques. Some of these techniques, such
as creating enumerations, have a specific use case (when you need enumerations, for
example, such as the task status in our task management application). Other tech-
niques are more fundamental, such as refactoring a cumbersome class and creating
lazy attributes, which you’ll find useful no matter what application you’re making.
Please pay special attention to these project-agnostic techniques.

9.1 How do I create enumerations?
In our applications, some data is naturally connected within the same concept
umbrella. Consider the four directions—north, east, south, and west—all of which
belong to the direction category. When we represent this data in our application, the
simplest way is to use strings: "north", "east", "south", and "west". When we write a
function that expects a direction, however, it may be unclear to the users what data
they should provide, even if we supply type hints to the function, as in this example:

def move_to(direction: str, distance: float):
 if direction in {"north", "south", "east", "west"}:
 message = f"Go to the {direction} for {distance} miles"
 else:
 message = "Wrong input for direction"
 print(message)

Because strings lack inherent semantics, when users call this function, they have no
clue about what they should provide and may use a semantically meaningful string
that is incompatible with the function:

move_to("North", 2)

output: Wrong input for direction

As you might expect, if we can provide more specific type information about the
direction parameter, it’ll be clear to users what they should enter. Also, when you
define a type that has discrete members, such as weekdays and seasons, you have a per-
fect use case for enumerations. This section explores that feature.

9.1.1 Avoiding a regular class for enumerations

Some people’s first thought about implementing enumerations may involve a regular
custom class. As discussed in this section, however, you may encounter a few draw-
backs if you use a regular class for enumerations. To begin, let’s see what a possible
implementation looks like using a custom class:

class Direction:
 NORTH = 0
 SOUTH = 1
 EAST = 2
 WEST = 3

240 CHAPTER 9 Using classes beyond the basics

From the style perspective, two things are noteworthy:

 Because these four directions are constants, it’s common to use all capital letters.
 In most programming languages, enumerations use whole integers as the val-

ues of the enumerated members.

Besides these two style notes, this implementation is a bit hacking by defining class
attributes in the Direction class. You can use these “enumerations” (they’re not true
enumerations, as you’ll see in section 9.1.3) by accessing these class attributes:

print(Direction.NORTH)
output: 0

print(Direction.SOUTH)
output: 1

You may notice a couple of drawbacks. First, the type for these members isn’t
Direction, which prevents you from using the members when you use Direction in a
function (figure 9.1).

The value of the member Direction.North is 0, which is an integer instead of an
instance of the Direction class. When you use enumerations, you should expect each
member to be an instance of the enumeration class.

 The other drawback is that you can’t iterate the class to go over each member, as
the “members” are class attributes; they don’t form a united entity and can’t represent
the enumeration concept. By contrast, a true enumeration class should support itera-
tion of each member. These drawbacks undermine a regular class for the purpose of
enumerations, which is a non-Pythonic implementation. As revealed in the next sec-
tion, we’ll use the enum module to address these drawbacks.

Type hints in a function

Incompatible type when the member is used

Figure 9.1 Incompatible type when class attributes in a class are used as enumerations.
You can use a custom class as the type hint for the argument, but you can’t use a member
in the function call.

2419.1 How do I create enumerations?

9.1.2 Creating an enumeration class

You learned about subclasses in section 8.5. Creating an enumeration class is the process
of creating a subclass of the built-in Enum class in the enum module. In this section, you’ll
learn to implement an enumeration class for directions. The next listing shows the code.

from enum import Enum

class Direction(Enum):
 NORTH = 0
 SOUTH = 1
 EAST = 2
 WEST = 3

Compared with a custom class implementation, a true enumeration class is a subclass of
the Enum class. By subclassing Enum, the enumeration class converts the seemingly class
attributes to discrete members. Within the body, we specify the members and their
associated values. Notably, we can also create the enumeration class as a one-liner:

class DirectionOneLiner(Enum):
 NORTH = 0; SOUTH = 1; EAST = 2; WEST = 3

Although you can declare the members in the enumeration class by using semicolons
to separate them on a single line, I recommend using the former style—defining each
member on its own line—because it has better readability.

READABILITY Each member in an enumeration class should occupy one line
so that it’s easier to see what the members are and to count the number of
members.

In many use cases, you don’t care about the raw values of the members. In our exam-
ples, we’ve been using small integers incrementally, but you can use any integers:

class DirectionRandomInt(Enum):
 NORTH = 100
 SOUTH = 200
 EAST = 300
 WEST = 400

In addition, Python doesn’t restrict what data you use for the members’ raw values.
You can also use strings instead of integers, as in this example:

class DirectionString(Enum):
 NORTH = "N"
 SOUTH = "S"
 EAST = "E"
 WEST = "W"

Listing 9.1 Implementing an enumeration class

242 CHAPTER 9 Using classes beyond the basics

9.1.3 Using enumerations

After we define the enumeration class, it’s time to explore how we use enumerations
from the class. This section covers that topic.

CHECKING AN ENUMERATION MEMBER'S TYPE

The first usage of enumerations pertains to checking the type of an enumerated mem-
ber. From section 9.1.1, we know that when we use a regular class, the enumerations
using class attributes don’t have the type of the class. Everything works differently in a
true enumeration class, as shown in this example:

north = Direction.NORTH

print("north type:", type(north))
output: north type: <enum 'Direction'>

print("north check instance of Direction:", isinstance(north, Direction))
output: north check instance of Direction: True

As you can see, the “attributes” of the enumeration class are of the type of the class:
the north variable has the type of the Direction class. That is, each member rep-
resents a predefined instance of the class.

USING AN ENUMERATION MEMBER'S ATTRIBUTES

As the members are essentially the enumeration class’s instances, it’s no surprise that
each member has instance attributes. Among those attributes, the most important are
name and value, which are the enumerated member’s name and its associated value:

print("north name:", north.name)
output: north name: NORTH

print("north value:", north.value)
output: north value: 0

The value of a member is useful in a variety of use cases. Suppose that we receive an
application programming interface (API) response in which an integer number indi-
cates the direction in which the user should go. The following code snippet shows this
scenario:

direction_value = 2

direction = Direction(direction_value)

print("Direction to go:", direction)
output: Direction to go: Direction.EAST

As you can see, we construct the enumerated member by supplying an applicable
value to the constructor. Because EAST has a value of 2 in the Direction class, calling

2439.1 How do I create enumerations?

the constructor with 2 creates the EAST direction. If you’re trying to create a member
with a value that isn’t among the defined values, you encounter an exception:

unknown_direction = Direction(8)
ERROR: ValueError: 8 is not a valid Direction

ITERATING ALL ENUMERATION MEMBERS

The major reason that we define enumerations is to group related concepts in the form
of members in the enumeration class. When users want to find out what these members
are, they can iterate the enumeration class—a feature that isn’t available for a regular
class. This section shows how to iterate the members of an enumeration class.

 The enumeration class Direction, as a subclass of Enum, is by design an iterable that
consists of its members. Thus, we can use the iteration techniques on the Direction
class, as follows:

all_directions = list(Direction)

print(all_directions)
output: [<Direction.NORTH: 0>, <Direction.SOUTH: 1>,

➥ <Direction.EAST: 2>, <Direction.WEST: 3>]

This code shows how to create a list object containing all the directions. As discussed
in section 5.1, we create the list by using the list constructor with the iterable: the
Direction class. Because Direction is an iterable, you can also use it in a for loop:

for direction in Direction:
 pass

9.1.4 Defining methods for the enumeration class

At its core, an enumeration class is still a Python custom class, so we can define appli-
cable methods to add more versatile functionalities to the class. We have learned how
to create an enumeration and know that the enumeration class is an iterable. We’re
ready to update the move_to function, as shown in this code snippet:

def move_to(direction: Direction, distance: float):
 if direction in Direction:
 message = f"Go to the {direction} for {distance} miles"
 else:
 message = "Wrong input for direction"
 print(message)

One significant thing to note is that we use direction in Direction to determine
whether the supplied direction argument is appropriate. When we call this function,
we get the desired type hints. The output doesn’t look perfect, however:

move_to(Direction.NORTH, 3)
output: Go to the Direction.NORTH for 3 miles

244 CHAPTER 9 Using classes beyond the basics

The output isn’t human-friendly, as the shown direction is "Direction.NORTH" instead
of north, as you would expect. To solve this problem, we can define a custom instance
method to show proper human-readable output for the members, as shown in the next
listing.

class Direction(Enum):
 NORTH = 0
 SOUTH = 1
 EAST = 2
 WEST = 3

 def __str__(self):
 return self.name.lower()

def move_to(direction: Direction, distance: float):
 if direction in Direction:
 message = f"Go to the {direction} for {distance} miles"
 else:
 message = "Wrong input for direction"
 print(message)

move_to(Direction.NORTH, 3)
output: Go to the north for 3 miles

In listing 9.2, two important things are noteworthy:

 We overrode the __str__ method in the Direction class. As covered in section
8.4, __str__ determines an instance’s string representation.

 In the f-string for the message, the curly braces enclose direction, which calls
the __str__ method behind the scenes. From the printout, you see that we get
the human-readable output for the direction argument.

The code snippet in listing 9.2 shows that you can override special methods in the
enumeration class. You can also define other methods as you need them. You could
define the move_to function as an instance method in the Direction class, for exam-
ple; I’ll leave that task as a challenge for you in section 9.1.6.

9.1.5 Discussion
Enumeration is the most common technique to use when you have related concepts
that fall into the same category. To use enumerations, create an enumeration class by
subclassing the Enum class in the enum module. When you need to add customized
behaviors to the enumeration class, you can define methods as you normally do with a
regular class.

9.1.6 Challenge
Zoe is building a location-based application in which she defines a Direction class, as
shown in the preceding sections. In listing 9.2, the move_to function is defined outside

Listing 9.2 Adding a custom method

2459.2 How do I use data classes to eliminate boilerplate code?

the Direction class, but she thinks that it makes more sense for this function to be an
instance method. Can you help her make the conversion?

HINT Place the move_to function within the body of the Direction class. For
an instance method, don’t forget that the first argument is self and that it
refers to the instance object.

9.2 How do I use data classes to eliminate boilerplate code?
Data is the core element of any programming project. All programs have a place for
data. In section 3.3, you learned about creating a lightweight data model by using
named tuples. Named tuples, however, are best used as data holders because of their
immutability. If you want data mutability and greater flexibility in data manipulation,
you need to create a custom class, as discussed in chapter 8. In a custom class, best prac-
tices include the implementation of special methods such as __init__ and __repr__:

class CustomData:
 def __init__(self, attr0, attr1, attr2):
 self.attr0 = attr0
 self.attr1 = attr1
 self.attr2 = attr2

 def __repr__(self):
 return f"CustomData({self.attr0}, {self.attr1}, {self.attr2})"

In the __init__ method, we assign all the arguments to each of the instance’s attri-
butes, whereas in the __repr__ method, we create an f-string that mimics a string lit-
eral for instantiation. The code for these methods is boilerplate, which means that
everything follows a predefined template. If you define many other classes, you’ll do
pretty much the same thing for these methods. Why can’t we eliminate this boiler-
plate? In this section, we’re going to discover how to use data classes to create a class
without all the boilerplate.

CONCEPT In programming, boilerplate means code that is used without any
significant modification in places where highly similar (or identical) code is
required. Boilerplate is a pattern of repetition, although at a higher level.

9.2.1 Creating a data class using the dataclass decorator

Section 7.3 introduced decorators, which provide additional functionalities to the
decorated function without modifying the original function’s performance. Decora-
tors can do more than decorate just functions, however; when they’re defined prop-
erly, they can also decorate classes. One such special decorator is dataclass, which
addresses the boilerplate by decorating the class, as discussed in this section.

 The dataclass decorator is available in the dataclasses module. Before I discuss
how to use this decorator, examine the code in the next listing, which creates a data
class that models bill management for a restaurant.

246 CHAPTER 9 Using classes beyond the basics

from dataclasses import dataclass

@dataclass
class Bill:
 table_number: int
 meal_amount: float
 served_by: str
 tip_amount: float

Observe three things in listing 9.3:

 We import the dataclass decorator from the dataclasses module, which is part of the
standard Python library. If you install Python from the official Python website, the
dataclasses module should already be on your computer.

 As with using a decorator with a function, you place the decorator above the class’s head
in the form of @dataclass.

 In the body of the class, you specify the attributes with their respective types. Note that
specifying the types is required for a data class.

At the beginning of this section, I mentioned that we can use data classes to get rid of
some boilerplate, including __init__ and __repr__. In other words, the dataclass
decorator has taken care of the boilerplate:

bill0 = Bill(5, 60.5, "John", 10)

bill_output = f"Today's bill: {bill0}"

print(bill_output)
output: Today's bill: Bill(table_number=5, meal_amount=60.5,

➥ served_by='John', tip_amount=10)

As you can see, we create an instance object of the Bill class, although the __init__
method is never explicitly defined in the class. In a similar fashion, without imple-
menting the __repr__ method, we get the string representation for the instance in
the correct form, which mimics the string for instantiation.

9.2.2 Setting default values for the fields

Setting default values for some attributes in the initialization method keeps the code
clean and saves users’ time. Data classes support default values for the attributes. In
this section, you’ll learn the rules for setting default values in data classes.

 Before I jump into the technicalities, I need to clarify one key concept. In a custom
class, below the head, we list the class attributes. In a data class, the dataclass decora-
tor converts these attributes to instance attributes, which are known as fields. I men-
tioned that type annotations are required for these fields. Why? Mechanistically
speaking, the dataclass decorator takes advantage of the class’s annotations to locate
the fields:

Listing 9.3 Creating a data class

2479.2 How do I use data classes to eliminate boilerplate code?

print(Bill.__annotations__)
output: {'table_number': <class 'int'>, 'meal_amount':

➥ <class 'float'>, 'served_by': <class 'str'>,

➥ 'tip_amount': <class 'float'>}

As you can see, we retrieve all the fields of the class by accessing the __annotations__
special attribute. Conversely, if you don’t annotate some attributes, they can’t be part
of the __annotations__ attribute, preventing the dataclass decorator from locating
these fields. Thus, the dataclass decorator can’t help construct the data class prop-
erly. Figure 9.2 summarizes the underlying process of creating a data class.

In figure 9.2, using the annotated fields, the dataclass decorator creates the applicable
__init__ method. When you set default values for the fields, they become part of
the __init__ method too. Setting default values for the fields involves using the syntax
described in chapter 6: you specify the default value after the type annotation, as the fol-
lowing listing shows.

@dataclass
class Bill:
 table_number: int
 meal_amount: float
 served_by: str
 tip_amount: float = 0

Because you specify the default value for the tip_amount field, when you create an
instance object of the Bill class, you can omit this field, which will be filled with the
default value instead:

bill1 = Bill(5, 60.5, "John")

print(bill1)
output: Bill(table_number=5, meal_amount=60.5,

➥ served_by='John', tip_amount=0)

Listing 9.4 Setting a default value for fields

Figure 9.2 The underlying workflow of creating a data class using the dataclass decorator. The
dataclass decorator takes advantage of the type annotations for the fields to create the boilerplate,
including __init__ and __repr__.

@dataclass

class DataClass:

attr0: int

attr1: str

Annotated class attributes

{'attr0': <class 'int'>,
'attr1': <class 'str'>}

Annotated fields

def __init__(self, attr0: int, attr1: str):
self.attr0 = attr0
self.attr1 = attr1

def __repr__(self):
return f''DataClass({self.attr0},

{self.attr1!r})''

Automatically
implement
boilerplate

Initialization

String representation

248 CHAPTER 9 Using classes beyond the basics

When I discussed setting default arguments for a function in section 6.1, I emphasized
that an argument with a default value can’t precede arguments without default values.
The same rule applies to a data class. When you set a field with a default value that
precedes other fields that have no default values, you encounter a TypeError. If you
use an integrated development environment (IDE) such as PyCharm, a warning is dis-
played when you do (figure 9.3).

9.2.3 Making data classes immutable

Compared with immutable named tuples, the fields of data classes can be modified
for each instance; thus, data classes are mutable. Depending on the specific use case,
however, mutability may be not desired for the data. In this section, you’ll learn to
make data classes immutable.

 The dataclass decorator cannot only be used by itself without any arguments, in
the form of @dataclass, but it can also take additional arguments to provide custom-
ized decoration behaviors. Some notable arguments include init and repr, which are
set to True by default, meaning that we request that the dataclass decorator imple-
ment __init__ and __repr__. Among other arguments, one pertains to mutability:
frozen. When you want your data class to be immutable, you should set frozen to
True. The following code snippet shows the usage:

@dataclass(frozen=True)
class ImmutableBill:
 meal_amount: float
 served_by: str

immutable_bill = ImmutableBill(50, "John")
immutable_bill.served_by = "David"

ERROR: dataclasses.FrozenInstanceError: cannot assign

➥ to field 'served_by'

Creating a data class

A field with a default value

Other fields without default values

Figure 9.3 Warning about placing a field with a default value before fields that have no default values in a
data class definition

2499.2 How do I use data classes to eliminate boilerplate code?

As you can see for the data class ImmutableBill, after the instance is created, we can’t
update its fields anymore. Such immutability protects you from unintended data
changes—a feature that you can obtain from named tuples, which are defined to be
immutable.

MAINTAINABILITY If you don’t want your data classes to change their data,
consider making their fields frozen to prevent unintended changes.

9.2.4 Creating a subclass of an existing data class

At its core, a data class has the same extensibility as other regular custom classes. As
covered in section 8.5, we can create a class hierarchy. In terms of data classes, we can
also create a subclass. But several aspects of the dataclass decorator make subclass-
ing a data class different from subclassing regular classes (defined without a data-
class decorator), as discussed in this section.

INHERITING THE SUPERCLASS'S FIELDS

We know that in a data class, its attributes become data fields. When you create a sub-
class of an existing data class, all the fields of the superclass automatically become part
of the subclass’s fields:

@dataclass
class BaseBill:
 meal_amount: float

@dataclass
class TippedBill(BaseBill):
 tip_amount: float

QUESTION Can you try subclassing a frozen dataclass?

As shown in this example, we created the TippedBill class as a subclass of BaseBill.
Both classes should use the dataclass decorator to make them data classes. The sub-
class TippedBill’s constructor includes both the fields of the superclass and its own
fields:

tipped_bill = TippedBill(60, 10)

print(tipped_bill)
output: TippedBill(meal_amount=60, tip_amount=10)

When you create an instance of the subclass, remember that the superclass’s fields
come first, followed by the subclass’s fields. The order matters!

AVOIDING DEFAULT VALUES FOR THE SUPERCLASS

We have seen that a subclass of a data class uses all the fields from its superclass and its
own fields, following the order superclass -> subclass. In section 9.2.2, however, you

250 CHAPTER 9 Using classes beyond the basics

learned that fields with default values must come behind those that don’t have default
values. This requirement has an important implication: if a superclass has fields with
default values, you must specify default values for each subclass’s fields. Otherwise,
your code won’t work, as shown in this example:

@dataclass
class BaseBill:
 meal_amount: float = 50

@dataclass
class TippedBill(BaseBill):
 tip_amount: float

ERROR: TypeError: non-default argument 'tip_amount'

➥ follows default argument

Thus, in most cases, you may want to avoid setting default values for the superclass so
that you’ll have more flexibility to implement your subclasses. If you do set default val-
ues for the superclass, you must specify default values for the subclasses too:

@dataclass
class BaseBill:
 meal_amount: float = 50

@dataclass
class TippedBill(BaseBill):
 tip_amount: float = 0

9.2.5 Discussion

Using the dataclass decorator, you can easily convert a regular class to a data class,
which helps eliminate a lot of boilerplate that you would have to write otherwise.
Compared with named tuples, which are a lightweight data model, we use data classes
because they’re mutable data models and because they support extensibility by defin-
ing customized functionalities, like regular custom classes. If necessary, we can freeze
the attributes to prevent unwanted data changes—an advantage that named tuples
also have.

9.2.6 Challenge

Bradley works on the analysis team of a website company. He uses data classes in his
project. He knows that when he sets default values for a mutable argument in a func-
tion (section 6.1), the convention is to use None as the default value. But he’s not sure
what value he should use for a mutable data class’s field, such as list. Can you figure
out what default value he should set?

HINT The dataclass module has a function called field, which is designed
to set a default value for a mutable field.

2519.3 How do I prepare and process JSON data?

9.3 How do I prepare and process JSON data?
When your application has interactions with outside entities, such as other websites,
there should be a mechanism for data exchange. You may need to download data
from another server, for example, usually in the form of APIs. JavaScript Object Nota-
tion (JSON) is one of the most popular formats for data interchanges between differ-
ent systems. Suppose that our task management application gets the following JSON
data from a server using one API, which resembles a dict object in Python:

{
 "title": "Laundry",
 "desc": "Wash clothes",
 "urgency": 3
}

For another API, we may get the following data, which resembles a list object consist-
ing of two dict objects in Python. Please note that I’ve formatted the strings by using
proper indentation to make them easier to read:

[
 {
 "title": "Laundry",
 "desc": "Wash clothes",
 "urgency": 3
 },
 {
 "title": "Homework",
 "desc": "Physics + Math",
 "urgency": 5
 }
]

When you receive this data as strings, to further manipulate the data, you want to con-
vert it to the proper classes (discussed in chapter 8). More generally, JSON’s remark-
able readability and its object-like structure make it a universal data format in any
application you may work on. In this section, you’ll learn about the essential tech-
niques for processing JSON data in Python.

9.3.1 Understanding JSON’s data structure

Before you learn to process JSON data, you need to know the structure of JSON data
and its relationship with Python’s data types. This section is devoted to introducing
JSON data. If you know the topic well, please feel free to skip to the next section.

 JSON data is structured as JSON objects in the form of key-value pairs scoped by a
pair of curly braces, such as {"title": "Laundry", "desc": "Wash clothes",
"urgency": 3}. JSON objects require their keys to be only strings, and this require-
ment allows the standard communication between different systems. The values shown

252 CHAPTER 9 Using classes beyond the basics

include strings and integers, but JSON supports other data types, including Boolean,
arrays (like list in Python), and objects, as summarized in table 9.1.

We know that we can use single or double quotes for Python strings. But JSON strings
must be enclosed only in double quotes. The improper use of single quotes creates
invalid JSON data that can’t be processed by a common JSON parser.

NOTE You can use only double quotes to enclose strings in JSON.

It’s important to know that JSON supports nested data structures. A JSON object can
hold another JSON object, for example. An array can be a list of any supported data
types, including objects. Following are some examples:

embedded object: {"one": {"one": 1}, "two": {"two": 2}}
array of strings: ["one", "two", "three"]

The flexibility of mixing different data types in JSON allows us to construct compli-
cated data with clear structural information, all in the form of key-value pairs.

9.3.2 Mapping data types between JSON and Python

When you use Python to make applications, and your applications have interactions
with other systems via JSON, you must know how to convert data between JSON and
Python. At a high level, the conversion is about how different JSON data types are
mapped to the corresponding Python data types.

 Because both JSON and Python are used for general purposes, it’s no surprise that
JSON data types have corresponding native Python data structures. Figure 9.4 shows
these conversions. Most of the conversions are straightforward. But Python doesn’t
have a native data type that matches numbers in JSON objects, which don’t differenti-
ate integers from floating-point numbers and refer to them as numbers collectively. By
contrast, Python uses int and float to represent JSON numbers when they’re inte-
gers or real numbers.

Table 9.1 JSON data types

Data type Data content

String String literals enclosed in double quotes

Number Number literals, including integers and decimals

Boolean Boolean values, true or false (all lowercase)

Array A list of supported data types wrapped in square brackets

Object Key-value pairs surrounded by curly braces

Null A special value (null) representing an empty value for any valid data type

2539.3 How do I prepare and process JSON data?

9.3.3 Deserializing JSON strings

When we read JSON data into data structures of other programming languages, such
as Python, we decode or deserialize JSON data. A more formal term for the reading-and-
decoding process is deserialization. In this section, you’ll learn how to read JSON data
into Python.

 I’ve mentioned that it’s common for web services to use JSON objects as API
responses and that these responses take the form of text to facilitate intersystem data
exchange. Consider a response expressed as a Python string object:

tasks_json = """
[
 {
 "title": "Laundry",
 "desc": "Wash clothes",
 "urgency": 3
 },
 {
 "title": "Homework",
 "desc": "Physics + Math",
 "urgency": 5
 }
]
"""

The standard Python library contains the json module, which is specialized for deseri-
alizing JSON data. To read this JSON string, we use the loads method. As shown in the
following code snippet, we obtain a list object that consists of two nicely formatted
dict objects, which represent the two JSON objects originally saved in the JSON array:

import json

tasks_read = json.loads(tasks_json)

print(tasks_read)
output: [{'title': 'Laundry', 'desc': 'Wash clothes', 'urgency': 3},

➥ {'title': 'Homework', 'desc': 'Physics + Math', 'urgency': 5}]

str: ''one''

int: 123

float: 2.5

bool: True

list: [1, 2]

dict: {''one'': 1}

NoneType: None

String: ''one''

Number, integer: 123

Number, real: 2.5

Boolean: true

Array: [1, 2]

Object: {''one'': 1}

Null: null

JSON Python

Data conversion Figure 9.4 Data conversion
between JSON and Python with
supporting examples. Please note
that these types have different
names in JSON and Python, such
as String vs. str, due to the
different terminologies used by
these two languages.

Uses triple quotes for multiline strings

254 CHAPTER 9 Using classes beyond the basics

We can’t take advantage of the functionalities defined in the Task class, as discussed in
chapter 9, if the data is in the form of dictionaries. Thus, we need to convert these
dict objects to instances of the Task class. This conversion highlights a perfect use
case for class methods, as shown in the following listing.

from dataclasses import dataclass

@dataclass
class Task:
 title: str
 desc: str
 urgency: int

@classmethod
def task_from_dict(cls, task_dict):
 return cls(**task_dict)

tasks = [Task.task_from_dict(x) for x in tasks_read]

print(tasks)
output: [Task(title='Laundry', desc='Wash clothes', urgency=3),

➥ Task(title='Homework', desc='Physics + Math', urgency=5)]

In listing 9.5, we successfully converted the list of dict objects to a list of Task
instance objects, as we planned. Notably, we used several techniques that we’ve
learned so far. As mentioned in chapter 1 (section 1.4), we’re trying to synthesize a
variety of techniques along the way. Here are the key takeaways:

 We use the dataclass decorator (section 9.2) on the Task class so that we don’t
have to implement the boilerplate for __init__ and __repr__.

 The cls argument in the class method (section 8.2.3) task_from_dict refers to
the class Task.

 We know that **kwargs refers to the variable number of keyword arguments
(section 6.4) and is packed as a dict object. Conversely, to access the key-value
pairs, the ** operator converts the dict object to keyword arguments, which
the constructor uses to create a new instance of the Task class.

We’ve seen how to convert a JSON array to a list object in Python. The loads
method is flexible. The method does more than convert JSON arrays; it can also parse
any JSON data types other than objects. Following are a few examples:

json.loads("2.2")
output: 2.2

json.loads('"A string"')
output: 'A string'

Listing 9.5 Converting dict objects to instances of a custom class

2559.3 How do I prepare and process JSON data?

json.loads('false')
output: False

json.loads('null') is None
output: True

These strings represent JSON data, including floating-point number, string, Boolean,
and Null, and they’re all converted by loads without any customization. All the con-
version happens automatically, which highlights Python’s power as a general-purpose
language.

9.3.4 Serializing Python data to JSON format

When you process JSON data from external entities, you’re building an incoming
communication route. In the meantime, you may need to build an outgoing route so
that your application can send applicable information to the outside world.

 As illustrated in figure 9.5, the
opposite of deserializing JSON
data is creating JSON data from
other data, a process called serial-
ization. Thus, when we convert
Python data to JSON data, we
serialize Python objects to JSON
data. This section addresses JSON
serialization.

 Like the loads method, the json module has the dumps method to handle JSON data
serialization. For the basic built-in data types, the conversions are straightforward:

builtin_data = ['text', False, {"0": None, 1: [1.0, 2.0]}]

builtin_json = repr(json.dumps(builtin_data))

print(builtin_json)
output: '["text", false, {"0": null, "1": [1.0, 2.0]}]'

In this example, notice that the dumps method creates a JSON array that holds differ-
ent kinds of JSON data. The most significant observation is that although the original
list object uses native Python data structures, the generated JSON string has the
respective JSON data structures. Note the following conversions:

 The string enclosed in single quotes ('text') now uses double quotes
("text").

 The Python bool object False becomes false.
 The object None becomes null.
 Because only strings can be JSON keys, the number 1 is automatically converted

to its string counterpart, "1".

Boolean value

JSON null to Python None

To show the quotes for
a string, use repr.

Python
data

JSON
data

Deserialization

Serialization

Figure 9.5 Data conversion between JSON and Python.
When you convert JSON to Python, the process is
deserialization; when you convert Python to JSON, the
process is serialization.

256 CHAPTER 9 Using classes beyond the basics

What happens if you try to serialize an instance object of a custom class, like Task?
Here’s the result:

json.dumps(tasks[0])

ERROR: TypeError: Object of type Task is not JSON serializable

As you can see, we can’t serialize a custom class instance. The major reason is that for
a custom class, an instance object may contain many attributes and other metadata, so
without a proper instruction, Python can’t know what data should be serialized. Thus,
to make a custom class serializable, we must provide instructions for serialization.
Here is one possible solution (please note that alternative solutions exist):

dumped_task = json.dumps(tasks[0], default=lambda x: x.__dict__)

print(dumped_task)
output: {"title": "Laundry", "desc": "Wash clothes", "urgency": 3}

The most significant change we made to the dumps function call uses the default
argument. This argument instructs what object (as a fallback) the encoder (the
underlying object that makes the encoding or serialization) should use when it can’t
serialize the object. In this case, because we know that the encoder can’t serialize the
Task class instance object, we instruct the encoder to use its dict representation
instead. The encoder knows how to convert the built-in dict class.

 We often use two other features during conversion. First, to create JSON objects in
a more readable format, we can set the indent argument to have proper indentation:

task_dict = {"title": "Laundry", "desc": "Wash clothes", "urgency": 3}

print(json.dumps(task_dict, indent=2))
output the following lines:
{
 "title": "Laundry",
 "desc": "Wash clothes",
 "urgency": 3
}

Every level is nicely indented to indicate the relative structure of JSON objects and
their key-value pairs.

READABILITY Use proper indentation to improve the readability of JSON
data. Readability is especially relevant if you’re creating a JSON string.

The other useful feature is setting the sort_keys argument. Because we set it to True,
the created JSON string has its keys sorted alphabetically, making it easier for us to
look up information, particularly for multiple items. Observe this feature:

2579.4 How do I create lazy attributes to improve performance?

user_info = {"name": "John", "age": 35, "city": "San Francisco",

➥ "home": "123 Main St.", "zip_code": 12345, "sex": "Male"}

print(json.dumps(user_info, indent=2, sort_keys=True))
output the following lines:
{
 "age": 35,
 "city": "San Francisco",
 "home": "123 Main St.",
 "name": "John",
 "sex": "Male",
 "zip_code": 12345
}

9.3.5 Discussion

JSON is probably the most popular data format used in data exchange between differ-
ent systems. You should know how to deserialize and serialize JSON data by using
native Python objects. One important thing to note is that instances of custom classes
in Python are not JSON-serializable by default, so you should specify custom encoding
behavior. Besides working on JSON strings, the json module has the dump and load
methods to process JSON files directly. The calling signatures of these methods are
almost identical to those of dumps and loads, respectively.

9.3.6 Challenge

Lucas is building a social media web app as his summer intern project. In his app, he
uses named tuples in the data models. Suppose that the project has the following
named-tuples class:

from collections import namedtuple

User = namedtuple("User", "first_name last_name age")
user = User("John", "Smith", "39")

What happens if he tries to serialize the user object?

HINT A tuple object is JSON-serializable and becomes a JSON array after
serialization.

9.4 How do I create lazy attributes to improve performance?
Lazy evaluation is a general programming implementation paradigm that defers
evaluating operations until it’s requested to do so. Usually, lazy evaluation is the
preferred evaluation pattern when the operation is expensive, requiring extensive
processing time or memory. Generators (section 7.4), for example, are applications of
lazy evaluation, which delays retrieving and yielding the next item. Lazy evaluation is
also a relevant topic in custom classes. Specifically, you can define lazy attributes for
instance objects to save time or memory. In this section, you’ll learn about defining
lazy attributes.

258 CHAPTER 9 Using classes beyond the basics

9.4.1 Identifying the use scenario

Let’s start by identifying a proper use scenario. Suppose that our task management
app is a social media app in which a user can follow other users. One functionality is
to view a user’s followers. In the app, we can further view a user’s detailed profile by
tapping the user’s thumbnail image. Consider the implementation in the next listing.

class User:
 def __init__(self, username):
 self.username = username
 self.profile_data = self._get_profile_data()
 print(f"### User {username} created")

 def _get_profile_data(self):
 # get the data from the server and load it into memory
 print("*** Run the expensive operation")
 fetched_data = " Extensive data, including thumbnail,
 ➥ followers, etc."
 return fetched_data

def get_followers(username):
 # get the followers from the server for the user
 usernames_fetched = ["John", "Aaron", "Zack"]
 followers = [User(username) for username in usernames_fetched]
 return followers

We define the User class to manage user-related data, and the get_followers func-
tion fetches the followers for a user. When we call this function, we observe the follow-
ing output:

followers = get_followers("Ashley")
output the following lines:
*** Run the expensive operation
User John created
*** Run the expensive operation
User Aaron created
*** Run the expensive operation
User Zack created

As you can see, when we get a user’s followers, we’re creating multiple instance objects
for each user. This process requires an expensive operation to get the profile data, as
the application must connect to the remote server to download the data and load it
into memory. The profile data isn’t needed, however, because we need to display only
followers’ usernames unless a user taps a follower; then the follower’s profile data
becomes relevant. It’s an unnecessary operation to load data for all users up front, so
we should consider using the lazy evaluation technique to avoid the heavy lifting. The
following sections explore two ways to implement lazy attributes.

Listing 9.6 Creating the User class

2599.4 How do I create lazy attributes to improve performance?

9.4.2 Overriding the __getattr_ special method to implement lazy attributes

In a custom class, we can override several special methods other than __str__ and
__repr__ to define customized behaviors (section 8.3). One such method, __getattr__,
pertains to retrieving an instance’s attributes. In this section, we’ll see how to implement
lazy attributes by overriding __getattr__.

 For custom classes, instance objects have their attributes saved in a dict object,
which is accessible through the special attribute __dict__. This dict object uses the
attribute names as the keys and the attribute values as the corresponding values.
When you access an instance object’s attribute by using dot notation, if the dict
object contains the attribute, it returns the value. If the dict object doesn’t contain
the attribute, the special method __getattr__ gets called as a fallback mechanism
and tries to provide a value for the requested attribute. Figure 9.6 depicts the order of
resolving an instance’s attribute that pertains to accessing __dict__ and __getattr__.

NOTE The attribute resolution order is more complicated than what’s shown
in figure 9.6. An instance’s attribute can also use the class’s attribute as a fall-
back, for example. Figure 9.6 is a simplified version that applies to common
scenarios.

Now that we understand how __dict__ and __getattr__ work together to provide
the needed attributes for an instance object, we’re ready to see the specific implemen-
tation of overriding __getattr__ for a lazy attribute, as shown in the next listing.

class User:
 def __init__(self, username):
 self.username = username
 print(f"### User {username} created")

 def __getattr__(self, item):
 print(f"__getattr__ called for {item}")
 if item == "profile_data":
 profile_data = self._get_profile_data()

Listing 9.7 Overriding __getattr__ in a class

Access
attribute.

obj obj.__dict__

Instance object dict representation

obj.attr0

Check the dict
representation.

Yes
value0

__ getattr __

No

Yes
value0

No
AttributeError

Raise

Figure 9.6 The order of resolving an
instance object’s attribute. Python first
checks whether the dict object of the
instance object contains the attribute. If the
dict object doesn't contain the attribute,
Python checks whether it can return a value
by calling the __getattr__ special method.

260 CHAPTER 9 Using classes beyond the basics

 setattr(self, item, profile_data)
 return profile_data

 def _get_profile_data(self):
 # get the data from the server and load it into memory
 print("*** Run the expensive operation")
 fetched_data = "Extensive data, including thumbnail,
 ➥ followers, etc."
 return fetched_data

Compared with listing 9.6, there are two significant changes in listing 9.7:

 The __init__ method removes setting the profile_data attribute. This removal is nec-
essary because if it’s set, even with None, the profile_data attribute and its value
are stored in the object’s __dict__ attribute. The special method __getattr__
can’t be called, defeating the purpose of implementing a lazy attribute with
__getattr__.

 In the __getattr__ method, we specify that when the profile_data attribute is accessed,
we’ll run the expensive operation to get the profile data for the user. It’s important to note
that we also set the fetched data by using setattr; when the profile_data
attribute is accessed again, it will become available immediately.

With these changes, we expect the following actions:

 Action 1—When a user is created, there is no profile data, preventing the expen-
sive operation up front.

 Action 2—When we do access the attribute, the expensive operation can be trig-
gered to provide the requested attribute.

 Action 3—When we access the attribute for the second time, there’s no need to
run the expensive operation again.

Let’s see whether our expectation is met:

followers = get_followers("Ashley")
output the following lines:
User John created
User Aaron created
User Zack created

follower0 = followers[0]
follower0.profile_data
output the following lines:
__getattr__ called for profile_data
*** Run the expensive operation
'Extensive data, including thumbnail, followers, etc.'

follower0.profile_data
'Extensive data, including thumbnail, followers, etc.'

For Action 1, when we get one user’s followers, the created User instance objects contain
only usernames, which saves memory! For Action 2, when we access profile_data

Action 1

Action 2

Action 3

2619.4 How do I create lazy attributes to improve performance?

for the first time, the expensive operation runs to fetch the data. For Action 3, when we
access profile_data for the second time, we get the data without triggering the expen-
sive operation, which saves time!

9.4.3 Implementing a property as a lazy attribute

In section 8.3, you learned to use the property decorator to create read-only proper-
ties as a finer access-control approach. Because the property decorator allows us to
“intercept” how an attribute is accessed, we can use it to implement the lazy attribute
feature, as discussed in this section. Please note that a property isn’t strictly an attri-
bute, but properties and attributes are similar in terms of supporting dot notation.

 By now, you should be familiar with using the property decorator. You can jump
directly into the next listing to see how to create a lazy attribute involving @property.

class User:
 def __init__(self, username):
 self.username = username
 self._profile_data = None
 print(f"### User {username} created")

 @property
 def profile_data(self):
 if self._profile_data is None:
 print("_profile_data is None")
 self._profile_data = self._get_profile_data()
 else:
 print("_profile_data is set")
 return self._profile_data

 def _get_profile_data(self):
 # get the data from the server and load it into memory
 print("*** Run the expensive operation")
 fetched_data = "Extensive data, including thumbnail,
 ➥ followers, etc."
 return fetched_data

Compared with listing 9.6, there are two significant changes in listing 9.8:

 In the __init__ method, we set the _profile_data attribute as None. The _profile_
data is the internally managed counterpart of the profile_data property; setting
it to None saves memory compared with getting the data during instantiation.

 We implement profile_data as a property. In this method, we check whether
_profile_data is set, and we run the expensive operation only when _profile_
data isn’t set. If it’s set, we return the value.

As discussed in section 9.4.2, we expect the same three actions from the User class
implemented in listing 9.8:

Listing 9.8 Creating a decorator for a lazy attribute

262 CHAPTER 9 Using classes beyond the basics

followers = get_followers("Ashley")
output the following lines:
User John created
User Aaron created
User Zack created

follower0 = followers[0]
follower0.profile_data
output the following lines:
_profile_data is None
*** Run the expensive operation
'Extensive data, including thumbnail, followers, etc.'

follower0.profile_data
output the following lines:
_profile_data is set
'Extensive data, including thumbnail, followers, etc.'

Consistent with our expected actions, users don’t have their profile data loaded when
they’re created. Instead, the expensive operation is run when a user’s profile data is
requested, which is exactly what lazy evaluation is all about—delaying evaluation until
we must do it, thereby saving time (not running the time-consuming operation) and
memory (not using any memory to store a large amount of data).

9.4.4 Discussion

You can override __getattr__ or implement a property to provide lazily evaluated attri-
butes to a custom class. I recommend using the property approach; it’s more straight-
forward, and all the implementations are explicit. By contrast, overriding __getattr__
requires knowledge of how a Python instance object’s attribute resolution order works.

9.4.5 Challenge

Tim is updating a Python package that his company has published. An API in the
package accesses an object’s attribute, such as user.initials. With recent updates,
he needs to have finer control of this attribute. How can he create a property to main-
tain the API?

HINT Both properties and attributes support dot notation. You can convert a
previously defined attribute to a property in the updated codebase.

9.5 How do I define classes to have distinct concerns?
As you develop your project, you’ll find that you must deal with more data. Suppose that
you start with one class to manage the data. To accommodate the increasing data vol-
umes, your class can become cumbersome if you’re sticking to a single class. One under-
lying cause of the problem is the fact that the class may have mixed concerns; a single
class models different kinds of data, which can make your project hard to maintain.

 Imagine the two scenarios shown in figure 9.7. In the first scenario, one large box
(your class) holds two kinds of objects (the data). In the second scenario, you have

2639.5 How do I define classes to have distinct concerns?

two smaller boxes (two separate classes), each of which holds only one kind of object.
You can tell which scenario is better for managing the objects.

 In this section, I show you how to define classes that have distinct concerns, which
is a vital form of refactoring your project. This topic is important for improving the
long-term maintainability of your project, as it’s easier to move multiple lighter boxes
than to move a gigantic heavy box. You’ll find it manageable to maintain and update
the data models when each class focuses on one purpose.

9.5.1 Analyzing a class
In an ideal project, we have an experienced leader who can design the perfect data
structures for our project: our project has multiple small classes, each of which
addresses a specific data model. Suppose, however, that you’re assigned to update and
maintain a legacy project in your company. You find that the essential data model is a
single gigantic class, making this project almost impossible to update. In this section,
you’ll see what the cumbersome class might look like and how to analyze it.

 Suppose that this project involves a program that a school district uses to manage
data. One key class is Student, which stores all student-related data. This class has the
structure shown in the following listing. Please note that for simplicity, I’m showing
only part of the Student class.

class Student:
 def __init__(self, first_name, last_name, student_id):
 self.first_name = first_name
 self.last_name = last_name
 self.student_id = student_id
 self.account_number = self.get_account_number()
 self.balance = self.get_balance()
 age, gender, race = self.get_demographics()
 self.age = age
 self.gender = gender
 self.race = race

Listing 9.9 A class with mixed purposes

vs.

One large box consists of two
kinds of objects.

Two smaller boxes consist of one
kind of object each.

Figure 9.7 Better organization when objects are handled by their own type in
separate boxes as opposed to a large box that stores mixed objects

264 CHAPTER 9 Using classes beyond the basics

 def get_account_number(self):
 # query database to locate the account number using student_id
 account_number = 123456
 return account_number

 def get_balance(self):
 # query database to get the balance for the account number
 balance = 100.00
 return balance

 def get_demographics(self):
 # query database to get the demographics using student_id
 birthday = "08/14/2010"
 age = self.calculated_age(birthday)
 gender = "Female"
 race = "Black"
 return age, gender, race

 @staticmethod
 def calculated_age(birthday):
 # get today's date and calculate the difference from birthday
 age = 12
 return age

Before you do anything with the existing class, it’s a good idea to generate a diagram
to inspect its components. Although you can create such a diagram in different ways,
the key is to view the structure at a high level. For this purpose, use the Unified Mod-
eling Language (UML) diagram (figure 9.8).

CONCEPT UML is a standard way to visualize a system’s design, showing a sys-
tem’s components and their connections.

In version 0 of the UML diagram, you’re not judgmental and are listing only the struc-
tural components of the Student class. To help view the data, you list the names of the
methods without any implementation details. After you obtain the class’s structural
information, the next step is inspecting its functional components (figure 9.9).

 In the UML diagram (version 1), the methods that collectively fulfill the same
functionality are grouped together. Here, we have two functional components: one
that handles a student’s lunch account and one that handles the student’s demo-
graphics. In addition, each functional component has related attributes.

Student

first_name, last_name
student_id, account_number,
balance, age, gender, race

get_account_number
get_balance
get_demographics
calculate_age

Identify the
class name.

List all the
attributes.

List all the
methods.

Figure 9.8 The UML diagram (version 0) of the
Student class. In the diagram, we list all the
attributes and the methods for the class.

2659.5 How do I define classes to have distinct concerns?

9.5.2 Creating additional classes to isolate the concerns

Figure 9.9 shows part of the Student class. In an actual project, this class might con-
tain many other functionalities, and functionalities such as lunch account and demo-
graphics might include other methods. The function for managing lunch accounts,
for example, might have many additional operations, such as suspending a lost card
and consolidating multiple accounts. Implementing these operations makes the
Student class complicated. As discussed in this section, we should create additional
classes that have separate concerns.

 When we analyzed the Student class, we recognized two major functional components:
lunch account and demographics, which represent concerns distinct from the Student
class. Thus, these two functional components can form their own classes. Before we write
any code, we can continue to work on our UML diagram (figure 9.10), an updated version
of which reflects the additional structural components of our application.

Student

first_name
last_name
student_id

account_number, balance
get_account_number
get_balance

age, gender, race,
get_demographics
calculate_age

Lunch account

Demographics
Figure 9.9 The UML diagram (version 1) of
the Student class. In this diagram, we group
the methods based on their functionalities.

Account

account_number
balance

load_money
get_balance
suspend_account
consolidate_accounts

Demographics

age
gender
race

get_demo_data
update_demo_data
change_name

Student

first_name
last_name
student_id

account_number, balance
get_account_number
get_balance

age, gender, race,
get_demographics
calculate_age

Figure 9.10 Isolate the functionalities of handling Account and Demographics to
form separate classes (UML diagram version 2). Please note that I list some other
attributes and methods that could exist in each class.

266 CHAPTER 9 Using classes beyond the basics

The updated UML diagram depicts two additional classes: Account and Demographics.
The Account class has the attributes and methods for managing a student’s lunch
account, and the Demographics class has the attributes and methods to handle a stu-
dent’s demographic information.

9.5.3 Connecting related classes

When we created the Account and Demographics classes, the process was one-way; we
extracted information from the existing Student class. These two classes are still
standalone and don’t work with the Student class yet. In this section, we’ll connect
them so that they work together in a neat way.

CONNECTING THE DATA USING ATTRIBUTES

One thing you may have noticed is that the Account and Demographics classes have
the student_id attribute. Because of the uniqueness of student identification num-
bers, all the data of a specific student can be connected via the unique student_id. To
create two-way traffic between Student and Account/Demographics, an instance
object of the Student class should have access to account and demographic informa-
tion via the student_id. The next listing connects the instance objects.

class Account:
 def __init__(self, student_id):
 # query the database to get additional information using student_id
 self.account_number = 123456
 self.balance = 100

class Demographics:
 def __init__(self, student_id):
 # query the database to get additional information using student_id
 self.age = 12
 self.gender = "Female"
 self.race = "Black"

class Student:
 def __init__(self, first_name, last_name, student_id):
 self.first_name = first_name
 self.last_name = last_name
 self.student_id = student_id
 self.account = Account(self.student_id)
 self.demographics = Demographics(self.student_id)

In listing 9.10, we define Account and Demographics classes implementing only the
initialization method. Notably, we update the Student class’s initialization method by
adding two attributes: account and demographics, which are instance objects of the
Account and Demographics classes, respectively. By doing so, we connect these three
classes. We can now inspect the attributes of an instance of the Student class:

Listing 9.10 Separating classes to have distinct concerns

2679.5 How do I define classes to have distinct concerns?

student = Student("John", "Smith", "987654")
print(student.account.__dict__)
output: {'account_number': 123456, 'balance': 100}

print(student.demographics.__dict__)
output: {'age': 12, 'gender': 'Female', 'race': 'Black'}

As you can see, the instance student has the correct account and demographic infor-
mation because it has the instances of Account and Demographics as its attributes.
Note that we can save student_id as an attribute for the instance objects of the
Account and Demographics classes. We don’t have to do so, however, because an
instance object of Student has attributes of account and demographics; the connec-
tions have been established.

CONNECTING THE METHODS

Connecting the data between these three classes is straightforward. The fun part is
connecting the methods.

 The purpose of creating additional classes isn’t only about having them hold a spe-
cific attribute. The more important part is using these classes to provide the dedicated
functionalities. Specifically, our plan is to move all the implementations of account
management to the Account class and to move all the implementations of demo-
graphics to the Demographics class. The following listing shows updated versions of
the Account and Demographics classes.

class Account:
 def __init__(self, student_id):
 self.student_id = student_id
 # query the database to get additional information using student_id
 self.account_number = self.get_account_number_from_db()
 self.balance = self.get_balance_from_db()

 def get_account_number_from_db(self):
 # query database to locate the account number using student_id
 account_number = 123456
 return account_number

 def get_balance_from_db(self):
 # query database to get the balance for the account number
 balance = 100.00
 return balance

class Demographics:
 def __init__(self, student_id):
 self.student_id = student_id
 # query the database to get additional information
 age, gender, race = self.get_demographics_from_db()
 self.age = age

Listing 9.11 The updated Account and Demographics classes

268 CHAPTER 9 Using classes beyond the basics

 self.gender = gender
 self.race = race

 def get_demographics_from_db(self):
 # query database to get the demographics using student_id
 birthday = "08/14/2010"
 age = self.calculated_age(birthday)
 gender = "Female"
 race = "Black"
 return age, gender, race

 @staticmethod
 def calculated_age(birthday):
 # get today's date and calculate the difference from birthday
 age = 12
 return age

QUESTION If the database operations are expensive, such as hosting the data-
base in the cloud, they may be implemented as lazy attributes. Can you recall
how? See section 9.4.

In our application, whenever we want to show the student’s account information, we
can take advantage of the Account class directly. We can show the student’s balance by
running the following code:

balance_output = f"Balance: {student.account.balance}"

print(balance_output)
output: Balance: 100.0

In a similar manner, we can show the student’s demographics by running the follow-
ing code:

demo = student.demographics

demo_output = f"Age: {demo.age}; Gender: {demo.gender}; Race: {demo.race}"

print(demo_output)
output: Age: 12; Gender: Female; Race: Black

Note that some users may prefer working with methods from fewer classes, so they
might create some methods in the Student class:

class Student:
 def __init__(self, first_name, last_name, student_id):
 self.first_name = first_name
 self.last_name = last_name
 self.student_id = student_id
 self.account = Account(self.student_id)
 self.demographics = Demographics(self.student_id)

269Summary

 def get_account_balance(self):
 return self.account.balance

 def get_demographics(self):
 demo = self.demographics
 return demo.age, demo.gender, demo.race

We can get the account balance and the demographics by calling the get_account_
balance and get_demographics methods on the Student instance. I don’t recom-
mend this pattern, however. It makes the connection between the Student and
Account/Demographics classes too tight—a problem known as tight coupling. When
you update your Account class, you may also have to update the Student class because
its functionality (get_account_balance) depends on Account.

MAINTAINABILITY Don’t introduce tight coupling between related classes.
The classes should be in a loosely coupled state for best maintainability.

9.5.4 Discussion

Before you start your project, it’s a good habit to use a UML diagram to lay out the
necessary classes for data management. Don’t expect that work to be a one-time deal,
however. As your project progresses, you may realize that some classes are becoming
more complicated. It’s a great habit to think about your data models from time to time
throughout the project’s development process. The single objective is to make the classes
slim and loosely connected—that is, related classes work together but don’t depend
heavily on one another, making refactoring hard in such a tight-coupling design.

9.5.5 Challenge

In this section’s code snippets, I intentionally made all the methods in the classes pub-
lic. As discussed in section 8.3, however, it’s a best practice to make methods that users
don’t need to access nonpublic. As a challenge, can you make the applicable methods
in listing 9.11 nonpublic?

HINT If you want to define a nonpublic method, prefix the method name
with an underscore.

Summary
 Create an enumeration class by subclassing Enum when you need to group

related concepts.
 The enumeration class makes iteration over possible values and membership

checking convenient.
 Use the dataclass decorator to create classes to avoid boilerplate, such as

implementing __init__ and __repr__. When you use this decorator, remem-
ber to use the type annotations to create the applicable fields.

270 CHAPTER 9 Using classes beyond the basics

 JSON data is the universal data exchange format for different systems. We can
use the json module to convert JSON to native Python data structures (JSON
deserialization) and the other way around (JSON serialization).

 An instance object of a custom class usually isn’t JSON-serializable. You should
provide specific encoding instructions for JSON serialization of the class.

 You can use __getattr__ to implement lazy attributes, but you must under-
stand that __getattr__ is a fallback mechanism when an attribute isn’t con-
tained in the object’s __dict__ attribute.

 Implementing a property allows you to have finer control of specific attributes.
In the case of lazy attributes, you can set None to an internally managed counter-
part. When the attribute is requested, you can set the counterpart attribute.

 Classes should be kept for a single purpose. When your class grows in its scope
and you realize that it has mixed purposes, you should refactor your class to cre-
ate distinct classes, each of which addresses a specific need.

 Use a UML diagram to analyze a class’s structure, which allows you to have a
clear understanding of the class at a high level.

Part 4

Manipulating
 objects and files

Python is an object-oriented programming language by design. Its modules,
packages, and built-in data types, as well as functions and custom classes and
their instances, are all objects. Thus, the common characteristics of objects are
an essential topic that every Python user should know well. In this part, we focus
on the fundamentals of using objects in Python.

 In addition to objects, this part covers reading and processing files, which are
the most common data storage mechanisms. As a general-purpose language,
Python makes it possible for us to do the following:

 Read data stored in a file, either as pure text or as comma-delimited data
 Write data to a file
 Move, delete, and copy files
 Obtain the metadata of files, such as modification times

273

Fundamentals of objects

Objects are everywhere in Python, as Python is an object-oriented programming
(OOP) language by design. We work with objects constantly in our applications.
Thus, it’s important to know the fundamentals of using objects, particularly instance
objects of a custom class, as they’re the most prevalent data model in applications. In
a function, for example, we expect that users may send different types of data, and
we can add this flexibility by handling applicable data types accordingly. As another
example, copying an object is necessary when we have a working copy to update while
keeping the original object intact in case we need to revert our update. In this
chapter, I’ll cover the fundamentals of objects. Certainly, this chapter isn’t intended
to be exhaustive, as everything is an object in Python, and I can’t cover all the aspects
of how objects are used. Another thing to note is that some sections address a specific
problem (section 10.4, for example, is about changing a variable in a different

This chapter covers
 Inspecting objects

 Illustrating an object’s lifecycle

 Copying an object

 Resolving a variable: the LEGB rule

 Understanding an object’s callability

274 CHAPTER 10 Fundamentals of objects

scope), but I’ll use addressing the specific problem to cover a more general topic (such
as the variable lookup order).

10.1 How do I inspect an object’s type to improve code flexibility?
We always work with a variety of objects, such as functions, classes, and instances. Let’s
use custom functions as an example. Most of our coding work involves writing func-
tions: defining the input, performing the operations, and providing the output. A
function’s input usually has a specific type requirement; accordingly, users must use
one specific type of data to call a function. Consider the following function, which fil-
ters the list of tasks (the tasks argument) based on their urgencies in our task man-
agement app:

def filter_tasks(tasks, by_urgency):
 pass

Our first thought may be that the by_urgency argument should be an integer, such
as 4 and 5 as possible arguments. Thus, the function may have the following
implementation:

def filter_tasks(tasks, by_urgency):
 filtered = [x for x in tasks if x.urgency == by_urgency]
 return filtered

REMINDER To use this function, you need to create the Task class (chapter
8) and create some instances to be used as the tasks argument.

In the function’s body, we use a list comprehension to select the tasks whose urgency
level matches that supplied by the by_urgency argument. It’s entirely plausible,
however, to have a feature that allows users to filter tasks with multiple urgency levels like
this: filter_tasks([4, 5]). For this feature, the function should have the following
implementation instead:

def filter_tasks(tasks, by_urgency):
 filtered = [x for x in tasks if x.urgency in by_urgency]
 return filtered

Instead of comparing the integer values, now we use item in list to check whether a
task’s urgency level is in the provided urgency values.

 To accommodate these two cases, we should have a mechanism to check the
by_urgency argument and filter the tasks accordingly. This form of checking an
object’s type is an example of object introspection—inspecting an object to find out its
characteristics, such as type, attributes, and methods. In this section, we’ll review the
key techniques of object introspection and their use scenarios with a primary focus on
improving code flexibility. Using the filter_tasks function as our work subject, we’ll
write a single function that can take different kinds of input.

27510.1 How do I inspect an object’s type to improve code flexibility?

CONCEPT Introspection is the act of examining an object’s type or properties,
such as attributes, during the execution of the program.

10.1.1 Checking an object’s type using type

In the code example in section 10.1, to provide flexibility in handling an int or a list
as an argument in the filter_tasks function, we need to check the argument’s type.
In this section, we’ll see what built-in functions we can use to check an object’s type.

 The first function that may come to your mind is type. Calling type on an object
returns its type, and you’ve seen this usage several times. The following code snippet
shows some examples as a quick refresher:

print(type(4))
output: <class 'int'>

print(type([4, 5]))
output: <class 'list'>

As expected, 4 has a type of int, and [4, 5] has a type of list. We know how to obtain
an object’s type information, so the next question to ask is how we can compare the
type of an object against the desired type. If you overthink the comparison, you may
not get the answer, which is to compare the object’s type with the class:

assert (type(4) is int)

assert (type([4, 5]) is list)

QUESTION When you compare two objects, are == and is the same?

Based on these comparisons, we can now update the filter_tasks function to han-
dle both calling scenarios, as shown in the next listing. Please note that we simplify the
condition by assuming that there are only two possibilities for the by_urgency argu-
ment: int and list.

def filter_tasks(tasks, by_urgency):
 if type(by_urgency) is list:
 filtered = [x for x in tasks if x.urgency in by_urgency]
 else:
 filtered = [x for x in tasks if x.urgency == by_urgency]
 return filtered

As shown in this listing, when by_urgency is a list, we check the presence of the
urgency in the list, and when by_urgency is an int, we compare each task’s urgency
level with the number.

Listing 10.1 Comparing an object’s type with a class

276 CHAPTER 10 Fundamentals of objects

10.1.2 Checking an object’s type using isinstance

Another useful introspection function is isinstance, which checks whether an object
is an instance of the specified class. As you’ll see in this section, isinstance does a
similar job to type, but it’s the preferred approach for checking an object’s type.

 When you learned about creating proper docstrings for a function (section 6.5),
you used help on the isinstance function, but I didn’t expand the discussion of its
usage. Now it’s time to learn formally what we can do with isinstance:

assert isinstance(4, int)

assert isinstance([4, 5], list)

The first argument is the object, and the second argument is the specific class. In fact,
the second argument can also be a tuple of classes, allowing you to check an object
flexibly against multiple classes. Observe this feature:

passed_arg0 = [4, 5]
passed_arg1 = (4, 5)

assert isinstance(passed_arg0, (list, tuple))
assert isinstance(passed_arg1, (list, tuple))

If your function takes either list or tuple, for example, you can combine the test in a
single isinstance call, as shown in the preceding code snippet. Note that the rela-
tionship between these classes is equivalent to an “or” evaluation:

assert isinstance([4, 5], list) or isinstance([4, 5], tuple)

Using the isinstance function, we can update the filter_tasks function to handle
by_urgency as int or list, as the following listing shows.

def filter_tasks(tasks, by_urgency):
 if isinstance(by_urgency, list):
 filtered = [x for x in tasks if x.urgency in by_urgency]
 else:
 filtered = [x for x in tasks if x.urgency == by_urgency]
 return filtered

When you compare listings 10.1 and 10.2, you may notice that both type and
isinstance determine whether an object is of a specific type. But they’re not the same.

 When we use type to determine an object’s type, we’re doing a one-to-one compar-
ison: the object’s type against the specified type. By contrast, isinstance is more flex-
ible, and it’s a one-to-many comparison; it checks against not only a class, but also its
superclass. That is, isinstance considers class inheritance, but type doesn’t. Sound
confusing? Here’s a general example:

Listing 10.2 Checking an object’s type using isinstance

27710.1 How do I inspect an object’s type to improve code flexibility?

class User:
 pass

class Supervisor(User):
 pass

supervisor = Supervisor()

comparisons = [
 type(supervisor) is User,
 type(supervisor) is Supervisor,
 isinstance(supervisor, User),
 isinstance(supervisor, Supervisor)
]

print(comparisons)
output: [False, True, True, True]

From the first and second comparisons, you can tell that when you use type, the
obtained type information is specific to the immediate class: Supervisor. By contrast,
although supervisor is an instance of the Supervisor class, not the User class,
isinstance also uses the information that Supervisor is a subclass of User, and it
returns True even if you check the instance against the superclass User.

 This flexibility is important, as even if our function checks a specific type using
isinstance, such as User, it’s still valid if we call the function by sending an instance
of Supervisor (an argument named user), which passes the isinstance(user,
User) check.

MAINTAINABILITY To improve the robustness of type checking, you should
use isinstance when you’re checking an object’s type, as this function con-
siders not only the object’s immediate class, but also the class’s subclasses.

10.1.3 Checking an object’s type generically

In listings 10.1 and 10.2, we assumed that the passed by_urgency argument is either
int or list. But it’s not user-friendly if another user tries to call the filter_tasks
function as filter_tasks(tasks, (4, 5)). That is, instead of using list, the user
calls the function with a tuple object. As you can see, to provide greater flexibility to
our function, it’s rather restrictive to check only the argument’s type against a specific
kind. In this section, we’ll see how we can obtain an object’s type information more
generically.

 We know that isinstance is preferred over type in checking an object’s type.
Moreover, we can specify multiple classes in isinstance. Thus, the next listing shows
a working solution for checking by_urgency in the filter_tasks function against
multiple classes.

278 CHAPTER 10 Fundamentals of objects

def filter_tasks(tasks, by_urgency):
 if isinstance(by_urgency, (list, tuple)):
 filtered = [x for x in tasks if x.urgency in by_urgency]
 else:
 filtered = [x for x in tasks if x.urgency == by_urgency]
 return filtered

As you might expect, the updated filter_tasks function can handle list and tuple
for the by_urgency argument. But it’s also possible that a user may want to call this
function with a set object: filter_tasks(tasks, {4, 5}). The current implementa-
tion can’t handle this call. Theoretically, we can add set to the isinstance function
call. The problem is that many other list-like data types, such as Series in the pan-
das library, can be used for by_urgency. Thus, it’s impossible to list all these types one
by one, considering that you can also define custom classes. We should have a mecha-
nism to check an object’s type generically.

 In the standard library, the collections.abc module defines several abstract base
classes (where the name abc comes from), which can be used to test whether a specific
class has attributes or methods, a concept known as interface in programming.

CONCEPT In OOP, interface represents the defined attributes, functions,
methods, classes, and other applicable components of an entity (such as a
class or a package) that developers can use.

Relevant to the present topic is the Collection abstract class, which requires three
key special methods: __contains__ (to check whether an item exists: item in obj),
__iter__ (convertible to an iterator: iter(obj)), and __len__ (to check the number
of items: len(obj)). list, tuple, set, and many other types of data containers,
including Series, implement these methods, and all of them are concrete (as
opposed to abstract) classes of Collection. Thus, we can update the filter_tasks
function to be more generic in terms of checking the by_urgency argument’s type, as
the next listing shows.

from collections.abc import Collection

def filter_tasks(tasks, by_urgency):
 if isinstance(by_urgency, Collection):
 filtered = [x for x in tasks if x.urgency in by_urgency]
 else:
 filtered = [x for x in tasks if x.urgency == by_urgency]
 return filtered

By using the abstract Collection class, we can accommodate all the collection-like
data types without identifying the variety of classes that a user may send, which helps
improve our code’s flexibility.

Listing 10.3 Checking an object’s type against multiple classes using isinstance

Listing 10.4 Checking an object’s type against an abstract class

27910.2 What’s the lifecycle of instance objects?

 As you can see from these sections, we’re gradually improving the flexibility of our
function by checking the type of the argument by using type and isinstance with
one type, isinstance with multiple definite types, and isinstance with a generic
type. Figure 10.1 provides a visual summary of these usages.

10.1.4 Discussion

Checking an object’s type is an essential aspect of object introspection. There are too
many other introspection techniques to cover comprehensively. As a developer, when
you’re using a new library that you’re not familiar with, instead of looking up the
information online, you can run dir(obj), which returns all the available attributes
and methods for the object.

 The collections.abc module has many other abstract base classes. One abstract
class is Sequence, and list is a concrete class of Sequence. Another abstract class is
Iterable, which defines the __iter__ interface.

10.1.5 Challenge

In listing 5.1, we defined the following function to check whether an object is an iterable:

def is_iterable(obj):
 try:
 _ = iter(obj)
 except TypeError:
 print(type(obj), "is not an iterable")
 else:
 print(type(obj), "is an iterable")

We mentioned that Iterable is an abstract class in the collections.abc module. Can
you rewrite the is_iterable function by taking advantage of the Iterable class?

HINT If an object is an iterable, its class must have implemented __iter__
and have the corresponding interface for the Iterable class.

10.2 What’s the lifecycle of instance objects?
When a project grows in its scope, you define your own custom classes. When you
learn to implement custom classes (chapters 8 and 9), you come across various terms

type(object)A specific type
one-to-one

object

isinstance(
object, cls)

Boolean
one-to-one

isinstance(object,
(cls0, cls1)) Boolean

one-to-multiple
definite

isinstance(
object, abs_cls)

Boolean
one-to-multiple

generic

Figure 10.1 Checking an object’s type information using type and isinstance. cls, as
well as cls0 and cls1, refer to specific classes, whereas abs_cls refers to an abstract
class that might represent an unlimited number of classes that use the interface.

280 CHAPTER 10 Fundamentals of objects

related to the creation of custom class instances. Understanding the lifecycle of these
instances is a fundamental skill that enables you, the Python developer, to manipulate
these instances properly.

 In this section, I’ll review the key events of an instance object by going through
specific examples. During this process, you’ll see terms describing essential program-
ming concepts that you need to know to communicate with other developers effec-
tively. Some of these terms are covered in chapter 8; I’ll briefly review them here and
place the discussion in the context of an object’s lifecycle.

10.2.1 Instantiating an object

The life of an instance object starts with its creation, known as instantiation. This sec-
tion reviews the instantiation process.

REMINDER Instantiation is the process of creating an instance object of a spe-
cific class.

For some built-in data types, such as str and list, we can use literals to create an
instance, such as "Hello, World!" for a str instance and [1, 2, 3] for a list
instance. Other than these literals for creating built-in data types, a more general situ-
ation is calling the constructor of a class. Consider the following Task class (and note
that I’m keeping its implementation minimal so that I can focus on showing you the
most relevant content):

class Task:
 def __new__(cls, *args):
 new_task = object.__new__(cls)
 print(f"__new__ is called, creating an instance at {id(new_task)}")
 return new_task

 def __init__(self, title):
 self.title = title
 print(f"__init__ is called, initializing an instance
 ➥ at {id(self)}")

In the Task class, besides the __init__ method, we implement the __new__ method.
Note that we typically don’t implement __new__, as there isn’t much we need to worry
about in this method. Here, in both __new__ and __init__, we add two print func-
tion calls, allowing us to see when each function is called. More importantly, the
printed message will inform us of the memory address of the instance (using the id
function), allowing us to know the identity of the object for tracking purposes. With
this class, let’s see what happens when we create an instance object:

task = Task("Laundry")

output the following lines:
__new__ is called, creating an instance at 140557771534976

Expect a different
memory address
on your computer.

28110.2 What’s the lifecycle of instance objects?

__init__ is called, initializing an instance at 140557771534976

print("task memory address:", id(task))
output: task memory address: 140557771534976

When we call the Task’s constructor, __new__ is invoked first, creating the instance
without assigning any attributes; at this stage, it’s a brand-new object, as indicated by
the method name. The purpose of this step is to allocate a specific slot in the memory
to save the object. This is also why we can obtain the instance’s memory address.

 The next step is invoking the __init__ method, in which the newly created
instance gets its attribute assignment to complete the initialization process. As indi-
cated by the same memory address, we’re constantly dealing with the same object in
__new__, in __init__, and in the created task variable. Putting all these observations
together, figure 10.2 shows the instantiation process.

10.2.2 Being active in applicable namespaces

You create an instance by calling the class constructor. Next, you use the created
instance. This section introduces the namespace concept. You’ll see that the created
instance is active in an applicable namespace, allowing it to be used.

 We created an instance object of the Task class by running task = Task
("Laundry"), in which the variable task represents the instance object. Later in our
code, we may want to retrieve the task’s title attribute, as follows:

title_output = f"Title: {task.title}"

When we write this line of code, we implicitly assume that the task variable refers to the
variable that we’ve defined: an instance of the Task class. When Python tries to run this
line of code, however, it doesn’t know our assumption; instead, it needs a mechanism

Custom
class

Calling
constructor

__new__

Create object
allocate memory

__init__

Initialization
set attributes

Instance
object

Creating
instance

Figure 10.2 The instantiation process of a custom class. After we call
the constructor of a custom class, behind the scenes, the __new__ and
__init__ methods are invoked sequentially, with __new__ creating the
new object and __init__ completing the initialization process. In the
end, the construction results in the creation of an instance object.

282 CHAPTER 10 Fundamentals of objects

to locate the task variable so that it can create the f-string. The mechanism for looking
up variables involves namespaces, which track the variables that have been defined.

CONCEPT Working as a dictionary, a namespace tracks variables that have been
defined within its space. When you use a variable, the namespace can help
locate the variable’s information.

Suppose that the Task class is defined and the task instance is created in the same
Python file, which forms a module. In this module, we have a global namespace that tracks
all the variables, and we can check these variables by calling the globals function:

print(globals())
output the following data:
{'__name__': '__main__', '__doc__': None, '__package__': None,

➥ '__loader__': <class '_frozen_importlib.BuiltinImporter'>,

➥ '__spec__': None, '__annotations__': {}, '__builtins__':

➥ <module 'builtins' (built-in)>, 'Task': <class '__main__.Task'>,

➥ 'task': <__main__.Task object at 0x7fd6280af280>}

You can think of namespaces as being dictionaries in which the active variables are
the keys and the corresponding values (objects) are the values. The preceding exam-
ple highlights two variables: the Task class and the instance task. After we define the
class and create an instance, both objects enter the namespace, and they can be
located whenever we use these variables. As a quick reference, the following identity
comparison shows that the values of 'Task' and 'task' are indeed the class and the
instance object:

assert Task is globals()["Task"]

assert task is globals()["task"]

After we create the instance, we can use it, as it can be resolved by looking up the
global namespace, which has registered the created instance.

10.2.3 Tracking reference counts

When an object is active in the namespace, Python tracks how many other objects
hold references to it for memory management purposes. This important event is hap-
pening behind the scenes, and many modern OOP languages have a similar feature.
In this section, we’ll discuss the mechanism of tracking reference counts.

 A computer has a fixed amount of memory. When our applications are running,
we create objects that consume memory. The more objects we add, the more memory
our application uses. If we keep creating objects, our computer may run out of mem-
ory, causing our applications to crash and maybe even freezing up the computer.
Thus, our applications should have a mechanism for removing objects from memory
when we’re no longer using them. Reference counting is such a mechanism.

28310.2 What’s the lifecycle of instance objects?

UNDERSTANDING THE DISTINCTION BETWEEN OBJECTS AND VARIABLES

To understand how reference counting works, we first need to understand the distinc-
tion between objects and variables. When we run task = Task("Laundry"), two dis-
tinct things happen:

 An instance object is created, creating the actual object and its related data
stored in memory.

 The object is referenced by the variable task, using a label to refer to the
underlying object in memory.

Notably, the relationship between the object and the label can change. In Python,
which is a dynamically typed language, we can assign a different object to the same
label; the object that was associated with the label still exists in memory, but now the
label references the new object (figure 10.3).

As shown in figure 10.3, we create a variable named task by assigning it to an instance
of the Task class so that the variable task is referencing the Task instance object.
When we assign the same variable task to another str object, task no longer refer-
ences the Task instance object; instead, it references the str object.

INCREMENTING AND DECREMENTING REFERENCE COUNTS

Now we understand the distinction between objects and variables, and we know that a
variable represents a reference to the underlying object in memory. Such a reference
to the object is counted as 1 to start with the initial assignment statement. This section
shows how we can change the reference counts.

 Before we try to change an object’s reference count, we should find a way to track
the reference count. In Python, we can use the getrefcount function in the sys
module:

Task(''Laundry'')

Memory

''a str object''

Memory

task

Variable

task = Task(''Laundry'')

task = ''a str object''

Task(''Laundry'')

Memory

task

Variable

1

2

Figure 10.3 The relationship between objects and variables. In the assignment statement,
an instance object of the Task class is created in memory, and this object is associated with
the task variable. Later, we assign a str object to the task variable. This reassignment
disrupts the previous association between task and the actual Task("Laundry") object
and creates a new association between task and the str object.

284 CHAPTER 10 Fundamentals of objects

import sys

task = Task("Laundry")

assert sys.getrefcount(task) == 2

The preceding example has two references to the Task instance object. Wait a second.
Shouldn’t there only be one reference—the task variable in the assignment? It’s an
awesome question. The answer is that using the variable in the getrefcount function
call creates another reference to the object, making the current reference count 2.
More generally, using a variable in a function increments the underlying object’s ref-
erence count.

 We know how to track an object’s reference count, and we can do some experi-
ments to manipulate the count for an object. To increase this count, one common
approach is to include the variable in a data container, such as a dict or a list object:

work = {"to_do": task}
assert sys.getrefcount(task) == 3

tasks = [task]
assert sys.getrefcount(task) == 4

In both cases, using task in a dict and a list object increments the reference count
by 1. We’ve seen how reference counting increments, and it’s time to see how we can
decrement the count. The common way is to use the del statement:

del tasks

assert sys.getrefcount(task) == 3

After removing tasks, we remove a reference to the instance object; thus, the refer-
ence count drops by 1. We can also delete work to reduce the reference count by 1,
but doing the same thing all the time is boring. Instead of deleting the dict object, we
can manipulate the work objectby replacing task with a different value, in which case
we also remove a reference to the Task instance:

work["to_do"] = "nothing"

assert sys.getrefcount(task) == 2

You can see how responsively and instantaneously Python tracks the reference count
for us. But what does reference counting end up with? Let’s continue exploring the
lifecycle of the instance object.

10.2.4 Destructing the object

Section 10.2.3 discussed how Python tracks reference counts. The key is that when an
object’s reference count reaches zero, Python destructs the object so that the memory

28510.2 What’s the lifecycle of instance objects?

that it occupied can be released for the system to use. In this section, we take a closer
look at the destruction process.

 Like the construction process, the destruction process is typically handled in Python
through automatic reference counting. To zoom in on the destruction process, we can
override __del__, the special method related to object destruction, as shown in the next
listing.

class Task:
 def __init__(self, title):
 print(f"__init__ is called, initializing an instance
 ➥ at {id(self)}")
 self.title = title

 def __del__(self):
 print(f"__del__ is called, destructing an instance at {id(self)}")

With this updated Task class, let’s write some code to review initialization and the
global namespace processes:

task = Task("Homework")
output: __init__ is called, initializing an instance at 140557504542416

assert "task" in globals()

To set the reference count to zero manually so that we can trigger the destruction pro-
cess, we can use the del statement:

del task
output: __del__ is called, destructing an instance at 140557504542416

assert "task" not in globals()

As you can see, calling del on task invokes the __del__ special method. By cross-
checking the memory address, we’re indeed removing the same instance that we cre-
ated. Notably, after the destruction, "task" is also removed from the namespace, and
we can no longer access the task variable. If you insist on trying, you’ll see an error:

title_output = f"Title: {task.title}"

ERROR: NameError: name 'task' is not defined. Did you mean: 'Task'?

10.2.5 Discussion
This section discusses the major events in the lifecycle of an object, using an instance
object of a custom class as an example. Putting all the key points together, figure 10.4
shows the big picture of an object’s lifecycle.

 The great thing about working with Python is that these events are largely
automatic; Python does the heavy lifting behind the scenes. Unless you’re building a

Listing 10.5 Overriding __del__ in a class

286 CHAPTER 10 Fundamentals of objects

memory-intensive application, you don’t need to worry about these underlying events.
Nevertheless, these concepts are fundamental to OOP, and if you’re also learning
another OOP language, this knowledge can expedite your learning process.

 A key module that I haven’t mentioned is gc, the name of which stands for garbage
collection. This module has advanced algorithms to handle memory management while
working with the reference counting mechanism. Reference counting can’t destruct
objects when cyclic referencing happens, for example. This problematic scenario
arises when two or more objects reference each other, and their reference counts can
never reach 0. Interested readers can explore the gc module to find out how this kind
of problem (cyclic referencing) is handled.

10.2.6 Challenge

As a Python beginner, James is particularly interested in how reference counting works
for custom class instances. He has a question. Suppose that he creates an instance vari-
able, such as task = Task("Homework"), and he knows that the reference count for the
underlying object is 1—the task variable. Does using the task variable in a function
increment its reference counts? Write some code to tell him what happens.

HINT You can check the reference count of an argument by including get-
refcount in the function.

10.3 How do I copy an object?
When we work with an object, we can modify its attributes, but we may also want to
keep its original attributes in case we need to cancel the modification. This need is
common in many applications. In our task management application, one feature
allows users to edit an existing task. After the user makes some changes, they can
either save the update or cancel the edits. In this use case, we create a copy of the orig-
inal task so we have the new copy for tracking the updates and the original one as the
backup. In this section, you’ll learn the proper way to copy an object.

Custom
class

Instance
object

Instantiation Stay active in
namespace

Use object and
create reference

Reference
counting

Register the label
in namespace

Reference
count = 0

Destruction

Figure 10.4 The key events in an object’s lifecycle. An object starts with the
construction and becomes active in an applicable namespace. During its usage,
Python tracks its reference count. When there are no references to the object,
Python destructs it to make its occupied memory available again.

28710.3 How do I copy an object?

10.3.1 Creating a (shallow) copy

In Python, the copy module provides copy-related functionalities for objects. This sec-
tion shows how to make a copy. More precisely, it discusses creating a shallow copy as
opposed to a deep copy; section 10.3.2 distinguishes between those two processes.

 Suppose that we’ve created the following class Task for our application. For sim-
plicity, the class has implemented only __init__ and __repr__:

class Task:
 def __init__(self, title, desc):
 self.title = title
 self.desc = desc

 def __repr__(self):
 return f"Task({self.title!r}, {self.desc!r})"

 def save_data(self):
 # update the database
 pass

In the application, the user can view the list of tasks and can edit a specific task if they
want. They may want to edit the following instance of Task, for example:

task = Task("Homework", "Math and physics")

If the user is happy with the edit, the updated task is saved, and if the user cancels the
edit, everything in the original task is kept. Because an instance of the Task class has a
dict representation, a naïve solution to creating a copy may use the dict object as an
“informal” copy of the original instance:

task_dict = task.__dict__

task_dict_copied = task_dict.copy()

print(task_dict_copied)
output: {'title': 'Homework', 'desc': 'Math and physics'}

As shown in this example, we obtain the dict representation using __dict__. For this
dict object, we can create a copy using its instance method copy. When the user edits
the task, we use the dict object to track the changes. This solution has a complicating
factor, however: after the dict object is updated, we must revert the dict object to an
instance of Task so that we can use additional functionalities implemented by the
Task class. Otherwise, we can’t do much with a dict object because we have no access
to task-related functionalities such as save_data.

 Instead of making a copy of the instance’s dictionary representation, we can copy it
directly by using the functionalities available in the copy module. The following code
snippet shows a better solution that makes a real copy of the instance:

288 CHAPTER 10 Fundamentals of objects

from copy import copy

task_copied = copy(task)

print(task_copied)
output: Task('Homework', 'Math and physics')

TRIVIA Note that the function copy has the same name as the module copy.
This example isn’t the only case in which a function has the same name as its
module. The datetime module has a function called datetime, for example,
so you’ll sometimes see from datetime import datetime.

We import the copy function from the copy module, and we can send the instance
task to the copy function. The printout shows that the copied variable task_copied
holds the same data as task and confirms that it’s a copy of the original task. With
this copied task, after the user makes the edits, we run task_copied.save_data() to
update our database.

10.3.2 Noting the potential problem of a shallow copy

At the beginning of section 10.3.1, I mentioned that there are two kinds of copies:
shallow and deep. The copy function is creating a shallow copy. But what’s a shallow
copy, and what’s a deep copy? In this section, I’ll show how these types of copies differ
and discuss a potential problem that might arise from a shallow copy.

 For our task management application, suppose that we can have tags for each task.
To address this need, our Task class may look like this:

class Task:
 def __init__(self, title, desc, tags = None):
 self.title = title
 self.desc = desc
 self.tags = [] if tags is None else tags

 def __repr__(self):
 return f"Task({self.title!r}, {self.desc!r}, {self.tags})"

 def save_data(self):
 pass

CONCEPT A ternary expression is evaluated based on a logical condition and has
the format value_when_true if condition else value_when_false. When
you use a ternary expression to assign a value, the process is called ternary
assignment.

With this updated class, let’s create an instance and make a copy using the copy func-
tion in the next listing.

Ternary assignment

28910.3 How do I copy an object?

task = Task("Homework", "Math and physics", ["school", "urgent"])

task_copied = copy(task)

print(task_copied)
output: Task('Homework', 'Math and physics', ['school', 'urgent'])

In the application, the user starts to update the task. Specifically, the user adds
another tag to the task:

task_copied.tags.append("red")

print(task_copied)
output: Task('Homework', 'Math and physics', ['school', 'urgent', 'red'])

As you can see, we’re able to update the copied task’s tags. But the user decides to can-
cel this edit. In this scenario, we still use the original task’s data. Because we haven’t
touched the original task, its data should stay the same:

print(task)
output: Task('Homework', 'Math and physics', ['school', 'urgent', 'red'])

We’re sure that the original task has the tags:['school', 'urgent'], but why has it
been changed? Specifically, it’s been changed to match the list object in the copied
task. This situation can’t be a coincidence, as you should suspect. It seems that task
and task_copied have the same list object for tags. This hypothesis is easy to test:

assert task.tags is task_copied.tags

assert id(task.tags) == id(task_copied.tags)

Listing 10.6 Creating a copy of an existing task

Checking equality with is or ==
When I compare two objects in Python, you may notice that sometimes I use is, and
at other times I use ==. is compares whether two objects are the same object, so
it’s also known as the identity test. By contrast, == compares whether two objects
have the same value. Because they’re intended for different comparisons (identity
versus value), they should be used differently. In the common use case of comparing
an object against None, for example, you should use is, although you may have seen
people use ==. None is a singleton object, meaning that only one object holds None
in an application. Whenever you use None, it’s the same object accessed from the
memory. Thus, a comparison of an object with None should use is, as the compari-
son is supposed to be an identity test. The same identity test is intended to be used
to compare task.tags and task_copied.tags.

290 CHAPTER 10 Fundamentals of objects

As shown in the preceding example, both equality comparisons (identity and memory
address) support our hypothesis that the list object of task_copied’s tags is the
same as task’s. Why could that happen? This unexpected sharing of the list object
highlights the difference between shallow and deep copies. In a shallow copy, we copy
the outmost data container. Between copies, we share the contained mutable objects,
such as the list object for tags. By contrast, in a deep copy, we copy not only the out-
most container, but also recursive copies of the interior objects. Both types of copies
leave the contained immutable objects (such as strings and tuples) alone, as they have
no way to manipulate those objects anyway. Figure 10.5 shows the differences between
deep and shallow copies.

In figure 10.5, we use a list object, which contains a str "hello" and a list
[3, 4, 5]. When we make a shallow copy, we copy only the outermost list object. The
interior list object [3, 4, 5] and the immutable str object "hello" are shared by
the shallow copy and its original list. By contrast, when we make a deep copy, the
outmost container and its mutable item, the interior list object, are copied distinctly
for each object.

 Because of the differences in the way the two types of copies deal with interior
mutable objects, if you make only a shallow copy, you can overwrite the data in the

(continued)
On the other hand, if we want to compare the memory addresses of the two list
objects, we should use == instead. Every time we call the id function on an object,
it creates an int object to denote the object’s memory address. Thus, calling id two
times creates two distinct int objects, and we’re only comparing whether these two
int objects have equal values.

[''hello'', [3, 4, 5]]

hello [3, 4, 5]

Shallow
copy

[''hello'', [3, 4, 5]]

hello [3, 4, 5]

Deep
copy

[''hello'', [3, 4, 5]]

hello [3, 4, 5]

Distinct copies for
mutable objects

No copies for
mutable objects

The same copy for
immutable objects

Figure 10.5 The distinction between shallow and deep copies. In a shallow copy,
the outmost data container (or any noncontainer object, such as a string) and its
immutable contained objects are copied, but not the interior mutable objects, such
as a list. By contrast, in a deep copy, the outmost container and all its interior
objects have distinct copies. The gray boxes represent objects in memory.

29110.3 How do I copy an object?

original object accidentally. Thus, if you want two real copies of independent objects,
you should create a deep copy, as shown in the next section.

10.3.3 Creating a deep copy

Now that we know the difference between shallow and deep copies, we can revisit the
task editing feature of our application. For this feature, we want the original task and
the copied task to be distinct, sharing no interior mutable objects—in our case, the
tags attribute—so that we’re free to update the mutable attribute tags without affect-
ing the original task. Based on the distinction between shallow and deep copies, this
feature requires us to create a deep copy.

 Besides the copy function, the copy module has a deepcopy function. That func-
tion is specifically designed to create a deep copy of an object:

from copy import deepcopy

task = Task("Homework", "Math and physics", ["school", "urgent"])

task_deepcopied = deepcopy(task)

print(task_deepcopied)
output: Task('Homework', 'Math and physics', ['school', 'urgent'])

In this code, we use the deepcopy function to create a copy of the original task. At this
stage, we shouldn’t expect a difference between a shallow copy and a deep copy
because we haven’t manipulated the interior mutable object yet. Next, it’s time to see
the usefulness of a deep copy:

task_deepcopied.tags.append("red")

print(task_deepcopied)
output: Task('Homework', 'Math and physics', ['school', 'urgent', 'red'])

print(task)
output: Task('Homework', 'Math and physics', ['school', 'urgent'])

In this code snippet, we update the data for the deep copied task’s tags attribute.
Notably, this change exists in task_deepcopied but not in task—the expected behav-
ior, because the deep copy creates a distinct copy of each interior object, including
the mutable list object tags.

10.3.4 Discussion

Shallow and deep copies differ in their behaviors when they copy the interior mutable
objects, usually in the form of data containers, such as list, dict, and set. Shallow
copies don’t create a copy for these interior data containers, which can save memory if
you’re not concerned about the shared interior objects. By contrast, when you expect

292 CHAPTER 10 Fundamentals of objects

to create a copy with distinct data, such as when you edit a task and want to keep its
original data, you should use a deep copy instead.

10.3.5 Challenge

In the examples, we use copy and deepcopy functions in the copy module. Calling
these functions creates a shallow copy and a deep copy, respectively. Notably, you can
override two special methods, __copy__ and __deepcopy__, in a custom class, which
will be triggered when you use the copy and deepcopy functions. In the case of over-
riding __copy__, suppose that we change the title for the copied task: "Homework" ->
"Copied: Homework". We also want the copy to have a distinct copy of the tags attri-
bute, making it like a deep copy. Can you implement this feature?

HINT Copying an instance is supposed to be instance-specific, so __copy__
should be an instance method. In the body, you should return a new instance
with the updated task’s title and a new list object for tags.

10.4 How do I access and change a variable in a different scope?
Section 10.2 introduced the concept of namespaces. When we define a class, such as
Task, in a Python module (a .py file), the class is registered in the global namespace,
which takes the form of a dictionary: the identifiers are the keys, and the correspond-
ing objects are the values. Suppose that in our task management app, we have a mod-
ule with the filename of task.py. This file contains the code shown in the next listing.

db_filename = "N/A"

def set_database(db_name):
 db_filename = db_name

set_database("tasks.sqlite")

print(db_filename)
output: "N/A"

In listing 10.7, we have the variable db_filename, which is the file path of our task
management app. By calling the set_database, we set the db_name to db_filename.
In the printout, however, db_filename has a value of "N/A". This result is unexpected,
as we thought we’d changed it. What happened?

 In this section, I’ll show you how to access and change a variable in this scenario.
More generally, this kind of problem pertains to manipulating variables in a different
scope, with a special emphasis on cases involving two keywords: global and nonlocal.
Through the examples, you’ll learn how to access variables, which are resolved by
applying the LEGB rule.

Listing 10.7 Attempting to change a global variable

29310.4 How do I access and change a variable in a different scope?

10.4.1 Accessing any variable: The LEGB rule for name lookup

Scopes and namespaces are closely related. Scopes form the boundaries for name-
spaces, and namespaces constitute the contents of scopes. Using a Python module as an
example, figure 10.6 shows the relationship between namespaces and scopes.

As shown in figure 10.6, the namespace tracks all the objects, each of which has its
own identifier in the module. Thus, we can think of a namespace as being a container
whose internal space is filled with different objects. The scope is the container’s entire
enclosing structure, defining the boundary of the module.

 To interpret code from Python’s perspective, when Python encounters a variable,
it’s trying to resolve that variable, meaning that it needs to find the variable’s refer-
enced object. Section 10.2.2 mentioned that Python looks up variables in a namespace
that is associated with a scope. There are different levels of scopes for the lookup
order, known as the LEGB rule.

CONCEPT The LEGB rule dictates the order of resolving a variable in Python,
from local (L), to enclosing (E), global (G), and built-in (B).

The acronym LEGB stands for local, enclosing, global, and built-in scopes in an incre-
mental order in terms of scale. A module forms a global scope. Above the global, the
built-in scope holds the namespaces for all the built-in functions and classes. In the
module, you can define a class or a function, each of which forms a local scope.

TRIVIA It may sound weird to refer to a module’s scope as global. But if you
recall that a function within a module creates a local scope, it’s not too sur-
prising to call a scope global when it’s larger than local. This logic may help
you remember the distinction.

But what about the enclosing scope? When I introduced decorators in section 7.3, I
nested a function within another function. For the inner function, the local scope of the
outer function is known as the enclosing scope. Figure 10.7 shows how variables/functions
(referred to as names in general) are resolved by looking up a specific scope.

var0

var1

cls0

cls1

fun0

func1

var2

Module

Scope

Namespace

Figure 10.6 The relationship between the global namespace and the global
scope. In a module, the global namespace tracks all the variables, as well as
functions and classes, in the form of a dictionary. The global namespace
resides in the global scope, which defines the boundary.

294 CHAPTER 10 Fundamentals of objects

The LEGB rule applies in the sequential order for variable resolution. As shown in fig-
ure 10.8, for a variable (or a name in general, or a name as an identifier, which can
refer to a function, a list, or even a class), Python first searches its local scope. If the
name is resolved, the corresponding value is used. If not, Python continues searching
the enclosing scope. If the name is resolved, the value is used—and so on for the
global and built-in scopes sequentially. If a name can’t be resolved after Python checks
all these scopes, a NameError is raised.

10.4.2 Changing a global variable in a local scope

At the beginning of this section, I presented a problem in which we failed to change
the variable db_filename by calling the set_database function. In section 10.4.1, you

Local

Built-in
scope Global

Global Local

Enclosing

Figure 10.7 Examples of variable resolution. Functions such as int and print are built-in
functions, and they’re resolved by looking up the built-in scope. The variable number and the
function outer_fun are resolved in the global scope. The variable x is used in inner_fun, which
is resolved in the enclosing scope. number_str and x_str are resolved in the local scope.

Local

Enclosing

Global

Built-in

Executing: c = int(a)

Resolving a

Resolved

Couldn’t resolve
NameError

The scopes

Figure 10.8 The general process
of resolving a variable: the LEGB rule.
When Python encounters a variable,
it tries to resolve it by looking up the
local, enclosing (if applicable), global,
and built-in scopes sequentially. If the
variable is resolved, Python uses the
value; otherwise, it raises a
NameError.

29510.4 How do I access and change a variable in a different scope?

learned that db_filename represents a global variable, whereas the set_database
function forms a local scope. Thus, the problem is generalized as changing a global
variable in a local scope, which is the topic of this section.

 Before I show you the solution, focus on part of the code in listing 10.7. Note that
I’m calling the print function to show you what’s available in the function’s local
scope:

db_filename = "N/A"

def set_database(db_name):
 db_filename = db_name
 print(list(locals()))

For the first assignment statement (db_filename = "N/A"), we create a variable named
db_filename in the global scope. Then we define the set_database function in the
next several lines. If we check the global namespace, we expect it to include both
db_filename and set_database:

print(list(globals()))
output: ['__name__', '__doc__', '__package__', '__loader__', '__spec__',

➥ '__annotations__', '__builtins__', 'db_filename', 'set_database']

In the body of the set_database function, the code that requires our special atten-
tion is db_filename = db_name, the intention of which is to update the global variable
db_filename. But the printout in listing 10.7 shows that it doesn’t work.

 Let’s observe one more thing before we find the explanation. You may have noticed
that I also included an extra line of code: print(list(locals())), which generates the
registered objects in the local scope of the set_database function. When we call this
function, we should be able to observe the local namespace’s content:

set_database("tasks.sqlite")
output: ['db_name', 'db_filename']

The set_database function’s local namespace has two variables: db_name and
db_filename. When Python executes the line of code db_filename = db_name, how
does the LEGB rule play out in resolving db_filename and db_name, respectively?

 The variable db_name exists only in the local scope, and it’s resolved to be the argu-
ment that we use for the function call. For db_filename, both local and global scopes
have a variable with such a name, but according to the LEGB rule, the one in the local
scope is used. As the one in the local scope has no registered value, Python interprets
this line of code as an assignment statement to create a new variable instead of updat-
ing the existing global variable.

 Now that we know what happened, it’s easier to understand the solution: using the
global keyword to denote that a specific variable is global instead of local, as the next
listing shows.

296 CHAPTER 10 Fundamentals of objects

db_filename = "N/A"

def set_database(db_name):
 global db_filename
 db_filename = db_name
 print(list(locals()))

set_database("tasks.sqlite")
output: ['db_name']

print(db_filename)
output: tasks.sqlite

In the body of the set_database function, before the assignment, we denote that
db_filename is global so that the local scope won’t register this name again. Next, we
run the assignment. Python knows that it’s updating the db_filename in the global
scope. We can observe the updated value (tasks.sqlite) by printing db_filename,
which no longer has the initial value "N/A".

 Please note that you use the global keyword only when you attempt to change a
global variable in a local scope. If you use the global variable without any assignment
or update, you don’t need to use global, as it’ll be resolved through accessing the
global scope.

10.4.3 Changing an enclosing variable

In section 10.4.2, you learned about using global to change a global variable in a
local scope. Another keyword, nonlocal, changes an enclosing variable in a local
scope. nonlocal is used less often than global, as global scopes are everywhere, but
enclosing scopes exist only in functions that have nested functions. Thus, I’ll briefly
introduce changing an enclosing variable in this section. To help explain this feature,
I’ll use the simple code example in the following listing.

def change_text(using_nonlocal: bool):
 text = "N/A"
 def inner_fun0():
 text = "No nonlocal"

 def inner_fun1():
 nonlocal text
 text = "Using nonlocal"

 inner_fun1() if using_nonlocal else inner_fun0()
 return text

change_text(using_nonlocal=False)

Listing 10.8 Changing a global variable successfully

Listing 10.9 Changing a nonlocal variable

29710.5 What’s callability, and what does it imply?

output: 'N/A'

change_text(using_nonlocal=True)
output: 'Using nonlocal'

In the change_text function, we define a local variable text. The two inner functions
form their own local scopes; to them, the change_text function’s scope is the enclos-
ing scope. These two functions differ in whether they declare text as a nonlocal vari-
able by using the nonlocal keyword. When you use the nonlocal keyword, you’re
telling Python to use the variable text in the enclosing scope.

 From the printout, we can see that calling the inner function inner_fun1 changes
the nonlocal variable text successfully. Calling inner_fun0 has no effect on the non-
local variable text, however, because Python interprets text = "No nonlocal" as a reg-
ular assignment statement instead of updating the nonlocal variable.

10.4.4 Discussion

Section 10.4 covers how Python resolves variables, as well as functions and classes, by
following the LEGB order (Local -> Enclosing -> Global -> Built-in). When you write
code that involves multiple scopes, remember what scopes are expected to resolve spe-
cific variables. Because of the complication of the LEGB order, remember to use the
global keyword if you need to update a global variable in a local scope. Don’t make a
silly mistake by assuming that you can make the update by calling a function, as we
attempted in listing 10.7.

10.4.5 Challenge

John has a programming background in Swift, the language used for creating macOS
and iOS apps. In Swift, an if...else... statement can form a scope separate from
the global scope. How can he find out whether the if...else... statement has its
local scope in Python?

HINT Create a global variable and attempt to change it in the if...else...
statement. If a local scope does exist, you can’t change its value if you don’t
use the global keyword.

10.5 What’s callability, and what does it imply?
As an OOP language, Python organizes its building blocks—such as packages, modules,
classes, functions, and data—as different kinds of objects. Thus, understanding the
characteristics of objects is essential to writing better Python code. In section 3.1, when
we discussed choosing between lists and tuples, we discussed hashability and mutability,
which refer to an object’s capability to be hashed and mutated, respectively.

 Besides hashability and mutability, a key characteristic of objects is callability—
whether an object can be called. As in most modern languages, we call an object in
Python by using a pair of parentheses (the call operator). Thus, if an object can be
used with the call operator, we say that it’s callable; if an object can’t be used with the

298 CHAPTER 10 Fundamentals of objects

call operator, it’s not callable. In fact, Python has a built-in function, callable, that
can check an object’s callability. We know that we can call a function, and we should
expect it to be callable, as follows:

def doubler(x):
 return 2 * x

assert callable(doubler)

The concept of callability seems to be straightforward, but callability is an underlying
mechanism for several key features in Python. This section reviews the important prac-
tical implications of an object’s callability.

10.5.1 Distinguishing classes from functions

We can call a class, such as Task("Homework", "Math and physics"), to create an
instance object of the Task class. We can also call a function, such as print("Hello,
World!"), to perform a defined operation. Thus, both classes and functions are call-
able, and the same callability can make it hard to distinguish classes from functions.
You may often hear people say that Python has many useful built-in functions, such as
list, range, and sum, but not all of them are functions. The first implication of calla-
bility involves the nuances between classes and functions.

CONCEPT Callable means an object that can be called. When a function
expects a callable, such as the sorted function’s key argument, you can pass a
function or a class. If you have a custom class that implements __call__, you
can use an instance of that class as a callable too!

Many of these “functions” are not functions. Instead, they are classes, such as bool,
int, and dict, as opposed to callable and hash, which are functions. The major rea-
son why they’re not easy to differentiate is their shared callability, but the difference is
notable from a semantic perspective. When we call these classes, we obtain an instance
object of the class, such as calling bool to obtain a bool object, and calling dict
returns a dict object.

TRIVIA These built-in classes have their names in lowercase, as opposed to
the camel naming convention for custom classes. Naming these built-in types
in lowercase is for historic reasons: they were named that way in early versions
of Python.

By contrast, real functions aren’t directly associated with any underlying classes. Thus,
we don’t get an instance object of the same name by calling these functions. We don’t
expect to get a sum object by calling sum or a hash object by calling hash, for example.
By contrast, we do obtain a range object by calling range or a slice object by calling
slice.

29910.5 What’s callability, and what does it imply?

10.5.2 Revisiting the higher-order function map

One manifestation of Python’s functional programming is higher-order functions: func-
tions that take other functions as an argument or return functions as the output. Sec-
tion 7.2 introduced one higher-order function, map, but is it a real function? Your
intuition may tell you that it is. Intuition can be wrong, however. We’ll revisit map in
this section.

 The easiest way to inspect an object is to call it with the print function. We expect
a custom or built-in function to be a function:

def do_something():
 pass

print(do_something)
output: <function do_something at 0x7fe8180f30a0>

print(sum)
output: <built-in function sum>

If map is indeed a function, we should expect a printed message telling us that it’s a
built-in function, such as sum. Let’s see whether that’s the case:

print(map)
output: <class 'map'>

Unlike what you may have thought, map isn’t a function. Instead, it’s a class: the map
class. Consistent with map’s being a class, calling map creates a map object, like built-in
classes such as list and dict:

print(map(int, ["1", "2.0", "3"]))
output: <map object at 0x7fe8180df700>

The misconception that map is a function may result from the assumption that classes
usually take nonfunction objects for instance construction. Don’t forget, however, that
all of Python’s functions are objects. Thus, the map class is special in the sense that the
construction involves accepting functions as an argument.

10.5.3 Using callable as the key argument

Several Python functions include a parameter called key that’s used when functions
perform sorting, such as sorted, or comparison, such as max. In section 3.2, the list’s
sort method uses a function as key; we may have an assumption that we can use only
a function for the key argument. But any callable can be the key argument, as dis-
cussed in this section.

 The easiest scenario for using a class instead of a function as the key argument in
sorted is using the built-in str class. Suppose that we want to sort a list of poker cards.
Without setting a key argument, the sorting fails due to the inability to compare inte-
gers and strings:

300 CHAPTER 10 Fundamentals of objects

cards = [10, 1, "J", "A"]

print(sorted(cards))
ERROR: TypeError: '<' not supported between instances of 'str' and 'int'

print(sorted(cards, key=str))
output: [1, 10, 'A', 'J']

Because str is used as the key, the sorting can happen, but the order isn’t right: A
should be greater than J. Let’s solve the problem by creating a class, PokerOrder, as
shown in the next listing.

class PokerOrder(int):
 def __new__(cls, x):
 numbers_mapping = {'J': 11, 'Q': 12, 'K': 13, 'A': 14}
 casted_number = numbers_mapping.get(x, x)
 return super().__new__(PokerOrder, casted_number)

REMINDER When we’re trying to retrieve a value from a dict object, the get
method can include a fallback value when the key doesn’t exist.

In the PokerOrder class, we override the __new__ method so that we can modify the
default behavior when we construct an instance of the PokerOrder, which is a subclass
of int. Notably, as covered in section 8.1, super() creates a proxy object that refers to
the superclass int, which expects to take a number (the casted_number in our imple-
mentation) to construct an instance. Specifically, if the card is between 2 and 10, we use
the number. If the card is J, Q, K, or A, we cast it to its corresponding integers so the class
can map the non-number cards to the correct numeric values. Let’s sort them now:

print(sorted(cards, key=PokerOrder))
output: [1, 10, 'J', 'A']

10.5.4 Creating decorators as classes

In section 7.3, you learned about creating decorators, which are higher-order func-
tions that modify decorated functions without affecting the intended operations of
the decorated functions. Behind the scenes, the decoration process sends the to-be-
decorated function to the decorator. That is, the decoration process essentially calls a
higher-order function. Because classes are also callable, this characteristic allows us to
create decorators in the form of a custom class, as shown in this section. To refresh
your memory, the following code snippet shows how to create a decorator that can log
a function’s execution time:

import time

def logging_time(func):
 def logger(*args, **kwargs):

Listing 10.10 Creating a custom class for sorting poker cards

30110.5 What’s callability, and what does it imply?

 start = time.time()
 result = func(*args, **kwargs)
 print(f"Calling {func.__name__}: {time.time() - start:.5f}")
 return result

 return logger

Please note that I use only the minimum elements for a decorator. If you’re unfamiliar
with decorators, refer to section 7.3 for best practices in creating a decorator. To con-
vert this function to a class, bear in mind that the constructor for the class expects to
take a function as its argument. We may have the following solution:

import time

class TimeLogger:
 def __init__(self, func):
 def logger(*args, **kwargs):
 start = time.time()
 result = func(*args, **kwargs)
 print(f"Calling {func.__name__}: {time.time() - start:.5f}")
 return result
 self._logger = logger

 def __call__(self, *args, **kwargs):
 return self._logger(*args, **kwargs)

Notice two things in this code snippet:

 The protected attribute _logger is used to store the created inner function
internally, as we know that the decoration process is creating a closure, which is
an inner function.

 We override the special method __call__, which is invoked when we try to call
an instance of the class. That is, when we call the decorated function, we should
call the closure instead, which is the _logger attribute. Note that by implement-
ing __call__ in a custom class, we make the instances of the class callable.
Thus, as shown in figure 10.9, we should know that besides functions and
classes, instance objects of a class that implements __call__ are also callable, as
in the case of the TimeLogger class.

Callable
Functions Classes

Instances of classes
that implement __call__

Obtain the return
value of the function.

Obtain an instance of
the class.

Obtain the return
value of __call__.

Figure 10.9 Three types
of callable objects and their
expected results after calling. You
call functions to get their return
values. You call classes to get
instance objects. And you call a
callable instance to get the result
of the __call__ method.

302 CHAPTER 10 Fundamentals of objects

With this class, we can use the same syntax to decorate a function:

@TimeLogger
def calculate_sum(n):
 return sum(range(n))

result = calculate_sum(100_000)
output: Calling calculate_sum: 0.00181

Note, however, that the decorated function is no longer a function. Instead, it’s an
instance object of the TimeLogger class:

print(calculate_sum)

output: <__main__.TimeLogger object at 0x7fe8180de710>

By default, we can’t call an instance object. We can’t write [1, 2, 3]() or "Hello,
World!"(), for example. To make this instance object behave like a function, we over-
ride the __call__ special method, which returns the _logger attribute—a function
and therefore callable. In other words, we pass the call operation of an instance object
to its function attribute (_logger) to make this instance object callable.

10.5.5 Discussion

This section focuses on Python objects’ callability—their ability to be called by the call
operator (). In essence, both classes and functions are callable, which creates a lot of
crosstalk possibilities, such as serving as the key argument and creating a decorator by
using a custom class. Particularly in the latter case, you can implement complicated
decorators that take parameters. Using a class makes it easier to offer this flexibility, as
you can add other attributes to the instance object.

10.5.6 Challenge

Ruby creates the TimeLogger class as a decorator to log the functions’ performance in
her project. As discussed in section 7.3, one best practice for implementing a decora-
tor is using the wraps decorator from the functools module. How should she use the
wraps in the TimeLogger class?

HINT We wrap the decorated function before we define the inner function.

Summary
 We can check the type of an object by using the built-in type function. Obtain-

ing the type information during the run time of our program makes it possible
for us to write flexible code.

 The isinstance function can check whether an object is an instance of a class
or a tuple of classes. isinstance is also more flexible than type, as it gives us a
valid result if the checked class has a superclass.

303Summary

 The collections.abc module allows us to check an object’s generic type to
apply the same operations to multiple classes that implement the same interface.

 An instance object of a class goes through this process: Instantiation -> active in
a namespace -> being tracked regarding the reference counts (happening
simultaneously with its activeness in a namespace) -> destruction.

 When you make a copy of an object, the default copying behavior is copying
only the outmost data container, termed a shallow copy.

 When you need the copy to have distinct copies for the contained mutable
objects, you should create a deep copy, allowing you to manipulate the inner
mutable objects without affecting the original one.

 The built-in copy module is designed to copy objects in a standard way. But you
can override __copy__ and __deepcopy__ if you want to define customized
copying behaviors for your class.

 When Python needs to resolve a variable or a name in general, it uses the LEGB
rule (Local -> Enclosing -> Global -> Built-in) to find a value for the used name.

 When you want to change a variable in a local scope, dependent on where the
variable is initially defined, you need to use the global or nonlocal keyword,
the former for a globally defined variable and the latter for a variable in the
enclosing scope, which exists only for a nested function.

 Both classes and functions are callable natively. Despite the shared callability,
you need to know the distinction between classes and functions for the built-in
functions. Because of the shared callability, you can use classes and functions in
some common scenarios, such as using them as a key argument or creating a
decorator.

304

Dealing with files

Files are integral to any computer system or application. We use files to store data.
We share data with our teammates by using files. When we obtain a file from others,
we need to open the file, read its content, process the data, and write some data to
another file or append data to the same file. These operations are concerned with
the contents of the files. Our application can use hundreds of different Python
objects, and some objects require excessive calculations or other processing steps,
so it’s ideal that we can save these objects as files. When we need to use these
objects again, we can load them from files, which can save lots of processing time.

 Files are everywhere in any computer system, and our job can include many
kinds of file manipulations, such as moving files to a destination, extracting files of
a specific kind, and finding out the files that we’ve modified in the last week. Ade-
quate knowledge of performing these operations in a programmatic way allows us

This chapter covers
 Reading and writing files

 Processing tabulated data files

 Preserving data as files

 Managing files on your computer

 Accessing file metadata

30511.1 How do I read and write files using context management?

to perform jobs that we can’t do easily in a manual way and track any changes that
we’ve made to the files. In this chapter, we’ll cover important topics concerning files—
not only reading and writing from a content perspective, but also common file opera-
tions such as moving and copying files.

11.1 How do I read and write files using context management?
Our projects can involve a variety of file types, such as tabulated data, media, and pure
text files. When we work with these files, the first step is to read them to process the
contained data. Although we can use special software to manipulate files, our projects
often require that we process files programmatically, particularly when we process
many files. To take advantage of Python tools such as pandas to process tabulated
data, we must also read files programmatically. As you can imagine, dealing with files
programmatically is an essential operation for general data processing. In this section,
you’ll learn how to read and write files in Python. As textual data is the most common
form, we’ll use text files in our examples. The general techniques, however, apply to
other file formats, such as binary files that store byte data.

11.1.1 Opening and closing files: Context manager

The most basic file-handling operations are opening and closing files. In this section,
we’ll see how to open and close files in two ways: using the basic approach and using a
context manager (which we’ll discuss soon).

 Suppose that we use text files to store the data for our task management applica-
tion. To start, we can create a text file named tasks.txt, which has the following data:

1001,Homework,5
1002,Laundry,3
1003,Grocery,4

Each row of the data represents a task’s information: the ID number, the title, and the
urgency level. For simplicity, we have three rows of data. We can open this file by using
the built-in open function:

text_file = open("tasks.txt")

print(text_file)
output: <_io.TextIOWrapper name='tasks.txt' mode='r' encoding='UTF-8'>

We inspect the text_file object by using the print function and get four pieces of
information:

 This object is an instance of the _io.TextIOWrapper, the class that creates a
buffered text stream providing higher-level access to the underlying text data in
the file. This kind of object is also known as a stream or file object.

 name tells you the file’s name.

306 CHAPTER 11 Dealing with files

 mode indicates how the file is read. 'r' means read mode, in which we only read
the file. In read mode, you can’t perform nonread operations, such as writing
data to the file.

 The encoding indicates how the text file is encoded. In most cases, you don’t
need to worry about it, because most data is encoded with UTF-8 (it also has
backward compatibility with ASCII encoding, if you’ve heard about ASCII),
which is the most common form of encoding in the Unicode system.

With the created file object, we can read the data. We have different ways to read the
data (section 11.1.2), but the most straightforward one is the read method shown in
the next listing.

text_data = text_file.read()

print(type(text_data))
output: <class 'str'>

print(text_data)
output the following lines:
1001,Homework,5
1002,Laundry,3
1003,Grocery,4

The read method reads all the text data in the file as a string, and we can print out the
string to make sure that it indeed matches the text in the file. We can apply additional
processing steps to this string, such as splitting each row to extract the underlying data
(section 2.3). When we’re done with the processing, we can close the file by using the
close method. After we close the file, we can verify the status by accessing the closed
attribute, which should be True:

text_file.close()

assert text_file.closed

You should always close the file when you’re done with it. As files are shared resources
in your computer, if you forget to close them, any changes you’ve made with the file
object may get lost in the actual file. After you close the file, all the updates to the file
are saved, and when other processes access the file, they have the latest data.

 To prevent us from losing data due to forgetting to close a file, we can use the con-
text management technique: the with statement, which is the Pythonic way to read files,
as shown in the next listing.

with open("tasks.txt") as file:
 print(f"file object: {file}")
 data = file.read()

Listing 11.1 Reading data as a string

Listing 11.2 Using with to open a file

Checks with type

The with statement

30711.1 How do I read and write files using context management?

 print(data)

output the following lines:
file object: <_io.TextIOWrapper name='tasks.txt' mode='r' encoding='UTF-8'>
1001,Homework,5
1002,Laundry,3
1003,Grocery,4

The syntax of using the with statement is with open("filepath") as file, which is the
head, and which creates the file object and assigns it to the variable file. Then we create
an indentation to indicate the body in which we define the applicable operations. As you
can see in listing 11.2, we obtain the same output that we got in listing 11.1. The most
significant advantage of using the with statement is that we no longer need to close the
file explicitly. When the with statement is complete, the file closes automatically:

assert file.closed

The automatic closing of the file results from using the with statement, which is
known as the context management technique. A context manager establishes a con-
nection to the applicable resource object in the with statement’s head, and in the
body, you manipulate the object. When you complete the body and exit the with state-
ment, the context manager automatically closes the connection to the resource. For a
file, the manager releases the file object. Figure 11.1 shows how a context manager
works, using the file object as a concrete example.

11.1.2 Reading data from a file in different ways

Listing 11.1 shows the read method, which obtains the entire text data. When the text
file is large, it can take considerable time to load all the data, and sometimes, a com-
puter may not have enough memory to hold that much data. Thus, we must use other
ways to read data depending on specific use cases, as we’ll discuss in this section.

with open('' filepath '') as file:

data = file.read ()
other data operations

outside code

The head connects
the resource: the
file object.

The body uses
the file object.

Upon exiting, the context
manager releases the resource.

Proper indentation
separates the body
from the head.

The with statement has
a head and a body.

Figure 11.1 The flow of a context manager using file management as an example. The with
statement consists of the head and the body. The head connects the resource, and the body uses
the resource. When you exit the with statement, the context manager releases the resource.

308 CHAPTER 11 Dealing with files

READING LINES AS A GENERATOR

In section 7.4, you learned about generators, which are memory-efficient data provid-
ers because they yield items individually upon request. A file object represents a
stream of data, and we can use the file object as though it’s a generator, yielding each
line of data one at a time.

 The most common way to process the file as a generator is to read the lines one by
one using the for loop so that we process each line of data, as the next listing shows.
To add some flavor to the file reading, I include some code that converts each line to
an instance of the Task class.

from collections import namedtuple

Task = namedtuple("Task", "task_id title urgency")

with open("tasks.txt") as file:
 for line in file:
 stripped_line = line.strip()
 task_id, title, urgency = stripped_line.split(",")
 task = Task(task_id, title, urgency)
 print(f"{stripped_line}: {task}")

output the following lines:
1001,Homework,5: Task(task_id='1001', title='Homework', urgency='5')
1002,Laundry,3: Task(task_id='1002', title='Laundry', urgency='3')
1003,Grocery,4: Task(task_id='1003', title='Grocery', urgency='4')

As you can see, we use the file as the iterator in the for loop, which yields each of the
lines. Please note that each line ends with an “invisible” line break, and you should use
strip to remove it. We use the split elements to create an instance of the Task class.

QUESTION What happens if you don’t remove the line break?

READING LINES TO FORM A LIST

If the file doesn’t have too much data, we can read the lines to form a list object
using the readlines method. Because list objects are mutable, it’ll be easier to
change the data and save it for other purposes.

 Suppose that we want to extract all the data from the text file tasks.txt as a list
object, and we want to add a row number to each row. Here is the desired output:

desired_output = [
 '#1: 1001,Homework,5',
 '#2: 1002,Laundry,3',
 '#3: 1003,Grocery,4'
]

Because the expected output is a list object, we can take advantage of readlines to cre-
ate a list object, which allows us to manipulate the data due to its mutability, as shown
in the next listing.

Listing 11.3 Reading the file as a generator

Creates a named
tuple class

Removes the
trailing line break

Splits the string
with commas

30911.1 How do I read and write files using context management?

with open("tasks.txt") as file:
 lines = file.readlines()
 updated_lines = [f"#{row}: {line.strip()}" for row, line
 ➥ in enumerate(lines, start=1)]

assert desired_output == updated_lines

We use the enumerate function (section 5.3.1) to create a counter for the iteration
besides the item. Using list comprehension (section 5.2.1), we create the list object
updated_lines, which matches the expected list object, desired_output.

READING A SINGLE LINE

In a rarer case, we may want to read a single line. We may want to read only the header
of a file to find the columns of a CSV file, for example. (For more on processing CSV
files, see section 11.2.) Although we can read all the lines and retrieve the first item, it
can be time-consuming to read that much data. Instead, we can use the readline
method to read the text in a single line, which costs less time than reading all the lines.

 Notably, we can use readline multiple times. The file object tracks where the read-
ing ends every time (like a generator, a file object knows where the item is in the
order), and the next time we call readline, it continues reading from where it left off,
as shown in the following listing.

with open("tasks.txt") as file:
 print(file.readline())
 print(file.readline())
 print(file.readline(5))
 print(file.readline(8))
 print(file.readline())

output the following lines:
1001,Homework,5

1002,Laundry,3

1003,
Grocery,
4

Notice three things in listing 11.5:

 readline optionally takes a size argument, which reads up to the number of
characters in that line. file.readline(5) reads 1003, for example, and file
.readline(8) reads Grocery,.

 We obtain individual lines by calling readline multiple times.
 The line ends with a line break. When we call readline, it reads the entire line,

including the line break; therefore, there are empty lines in the printout message.

Listing 11.4 Reading the lines as a list

Listing 11.5 Reading a single line

enumerate creates a counter.

Prints the following empty
line due to the line break

310 CHAPTER 11 Dealing with files

NOTE Like readline, both read and readlines can take the size argument,
which specifies how many characters to read from the file.

11.1.3 Writing data to a file in different ways

We read data from a file to process the stored data. When we’re done editing or have
prepared data from another source, we need to write the data to a file for long-term
preservation. This section describes common use scenarios in terms of writing data.

WRITING STRING DATA TO A NEW FILE

In many cases, we have our data ready and want to save it to a new file. Suppose that
we have the following data:

data = """1001,Homework,5
1002,Laundry,3
1003,Grocery,4"""

To write this data to a new file, we can create a file object by using the with statement.
Instead of creating an empty file ahead of time, we call the open function with the
path for the new file, which creates the new file at the specified path, as the next list-
ing shows.

with open("tasks_new.txt", "w") as file:
 print("File:", file)
 result = file.write(data)
 print("Writing result:", result)

output the following lines:
File: <_io.TextIOWrapper name='tasks_new.txt' mode='w' encoding='UTF-8'>
Writing result: 45

In the open function, besides the file path, we specify that the mode for this file object
is "w", meaning that it’s write mode as opposed to read mode, which is the default.
From the printout message, we see that the file object does have 'w' mode. To write
the string data to the new file, we call the write method. Calling this method returns
the number of characters that have been written—in our case, 45.

 Specifying "w" mode for the file object is required for writing operations. If you
open the file using the default read mode, you can’t write any data, as in the following
example:

with open("tasks_new.txt") as file:
 print("File:", file)
 result = file.write(data)
 print("Writing result:", result)

ERROR: io.UnsupportedOperation: not writable

Listing 11.6 Writing to a new file

Specifies the write mode

The default is read mode.

31111.1 How do I read and write files using context management?

WRITING A LIST OF LINES TO A NEW FILE

We’ve seen that we can read data from a file in the form of the lines as a list object.
Not surprisingly, we can also write a list of lines to a file. The method involved is
writelines. As you do when you write string data, you need to open a file with write
mode enabled, as shown in the next listing.

list_data = [
 '1001,Homework,5',
 '1002,Laundry,3',
 '1003,Grocery,4'
]

with open("tasks_list_write.txt", "w") as file:
 file.writelines(list_data)

If you open the tasks_list_write.txt file, you’ll notice that the data may not
appear to be correct:

with open("tasks_list_write.txt") as file:
 print(file.read())

output: 1001,Homework,51002,Laundry,31003,Grocery,4

This behavior is expected. writelines writes the data sequentially, there are no line
breaks in any item of the data, and you shouldn’t expect the file to have multiple lines.
Thus, you need to add line breaks to your data if you want to create a file with multi-
ple lines, and I’ll leave that task as a challenge (section 11.1.5).

 So far, we’ve seen how to read and write data in different ways by using a variety of
methods, including read, write, readline, readlines, and writelines. To help dif-
ferentiate them, figure 11.2 illustrates these operations.

As you may notice (or be curious about), the operations between reading and writing
are almost symmetrical; the only exception is that there’s no writeline on the left

Listing 11.7 Writing a list to a file

writelines
returns None.

read The entire text
as a string

One line as a
string

readline

Multiple lines as
a list

readlines

writeTo write a single
string

To write a list of
strings

writelines

Data DataFile
Writing operations Reading operations

Figure 11.2 Key reading and writing functions with files. When you have data, you can write
it to the file by using write and writelines. When you read the file, you can obtain the text
data by calling read, readline, and readlines. These functions have different usages.

312 CHAPTER 11 Dealing with files

side. There’s no need for one, however. When you want to write a line, use the write
method.

APPENDING STRING DATA TO AN EXISTING FILE

When you have new data, you want to append the data to an existing file. Suppose
that you create a new task, which has the following data:

new_task = "1004,Museum,3"

You want to write this data to the end of the tasks.txt file. Instead of enabling write
mode, you should use append mode, as shown in the next listing.

with open("tasks.txt", "a") as file:
 file.write(f"\n{new_task}")

In the open function, specify "a" to open the file in append mode; the write method
adds data to the end of the file. One thing to note is that the new_task is prefixed by a
line break (\n) so that you can add the data as a new line instead of adding it to the
last row of the file.

 The underlying mechanism for the append mode is that when we read or write, we’re
using the cursor to determine the position of the operation. I’ve mentioned that a file
object represents a stream of data and the cursor sets the position in the stream. Table
11.1 provides more information about the modes and their cursor positions.

When we have mode "a" for the file, we have the cursor at the end, so the newly
added text is appended to the end. For the most-used "r" and "w" modes, we have the
cursor at the beginning, so the corresponding read and write operations start from
the beginning.

Listing 11.8 Appending data to an existing file

Table 11.1 File modes

Modea

aread: reads the data; write: writes new data; create: creates a new file; truncate: resizes the file;
cursor position: when the operation starts.

read write create truncate Cursor position

r * Start

w * * * Start

a * * End

r+ * * Start

w+ * * * * Start

a+ * * * End

x * Start

Adds a line break

31311.2 How do I deal with tabulated data files?

11.1.4 Discussion

Using the with statement when you read and write files is the Pythonic way. The with
statement is designed more for context management than for processing files. More
broadly, we use a context manager when we deal with shared resources, such as a con-
nection to a database. As section 14.3 discusses, when you work with a SQLite data-
base, you can carry out database operations by using the connection under context
management, as follows:

import sqlite3

with con = sqlite3.connect("database.sqlite"):
 # do your operations here
 pass

11.1.5 Challenge

In Leo’s daily job as an electrical engineer, he often needs to use Python to write data
to files. One day, he tried to write a list object to a new file, as we did in listing 11.7.
But he found that the file only had one line instead of multiple lines, with each line
representing an item of the list object. How can he change the list object so that
the file has multiple lines?

HINT You can append the line break to each item.

11.2 How do I deal with tabulated data files?
Many people use Microsoft Excel to handle data files, and this data is referred to as
spreadsheets. More generally, spreadsheets are known as tabulated data, which includes
rows and columns. A company’s sales data can be saved as tabulated data. A school can
record exam results as tabulated data. The collected data from a research project can
be stored as tabulated data. As you can see, tabulated data has universal usage, so pro-
cessing tabulated data is an essential data-handling skill. From a general perspective,
you can convert tabulated data to CSV (comma-separated values) files to facilitate data
exchange between different systems. This section focuses on processing CSV files—a
representative format for tabulated data files.

11.2.1 Reading a CSV file using csv reader

As always, we start our data processing jobs by reading the data. For frontend applica-
tions, we need to read the data before we can display it. Suppose that our task man-
agement application uses a CSV file to store task-related data: the file tasks.txt
(section 11.1). To show these tasks in our application, we need to know how to read a
CSV file, as we’ll discuss in this section.

 Although I didn’t specify it in section 11.1, the tasks.txt file is a CSV file. Thus,
we’ve learned how to read a CSV file. But we had to split the string ourselves to obtain
the stored data, which is a common operation in dealing with CSV files. Not surprisingly,

314 CHAPTER 11 Dealing with files

the standard Python library provides a built-in solution for this purpose: the csv mod-
ule, which allows us to read the data directly with a csv_reader, as the next listing shows.

import csv

with open("tasks.txt", newline="") as file:
 csv_reader = csv.reader(file)
 for row in csv_reader:
 print(row)

output the following lines:
['1001', 'Homework', '5']
['1002', 'Laundry', '3']
['1003', 'Grocery', '4']

TRIVIA The official Python documentation recommends specifying the new-
line character as “” to ensure cross-platform consistency in the way the system
treats it. For more information, see https://docs.python.org/3/library/
csv.html.

As shown in listing 11.9, we create the csv_reader by calling the reader function with
the file object. The created csv_reader is an iterator, so we can iterate over the reader
by using a for loop. Each item is a list object that consists of the values separated by
commas—the same output that we obtained in listing 11.5. But we didn’t reinvent the
wheel; we used the built-in csv module!

REMINDER Don’t reinvent the wheel. Always use available solutions, particu-
larly those provided by the standard library.

Notably, we know that list constructor can take an iterable to create a list object.
Thus, we can call the list constructor to retrieve all the rows as a list object:

with open("tasks.txt", newline="") as file:
 csv_reader = csv.reader(file)
 tasks_rows = list(csv_reader)
 print(tasks_rows)

output the following line:
[['1001', 'Homework', '5'], ['1002', 'Laundry', '3'],

➥ ['1003', 'Grocery', '4']]

11.2.2 Reading a CSV file that has a header

In the tasks.txt file, we only have three fields of data: the ID number, the title, and
the urgency level. When your file has many fields, it’s hard to know which field keeps
what data. Thus, to prevent any ambiguity, many CSV files use a header to mark each
field. In this section, you’ll learn about reading a CSV file with a header. Suppose that
we add the field names to the tasks.txt file, which has the following data:

Listing 11.9 Reading a CSV file using the csv module

Imports the module

You might see another line if you
append data in section 11.1.

https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html

31511.2 How do I deal with tabulated data files?

task_id,title,urgency
1001,Homework,5
1002,Laundry,3
1003,Grocery,4

As you can see, the first row defines the three fields that map to each value in subse-
quent rows. When you have a CSV file with a header, the best approach is to read each
row as a dict object, with the header’s field names becoming the keys, as the next list-
ing shows.

with open("tasks.txt", newline="") as file:
 csv_reader = csv.reader(file)
 fields = next(csv_reader)
 print("Field:", fields)
 for row in csv_reader:
 task_dict = dict(zip(fields, row))
 print(task_dict)

output the following lines:
Field: ['task_id', 'title', 'urgency']
{'task_id': '1001', 'title': 'Homework', 'urgency': '5'}
{'task_id': '1002', 'title': 'Laundry', 'urgency': '3'}
{'task_id': '1003', 'title': 'Grocery', 'urgency': '4'}

As a refresher on several techniques that I’ve covered previously, here are the high-
lights of listing 11.10:

 Because the csv_reader is an iterator (section 5.1), we can call the next func-
tion on it to obtain the first row’s data.

 When we consume the first item of the iterator, the iteration continues with the
second item. In the for loop, the csv_reader yields items starting from the sec-
ond row.

 The dict constructor takes an iterable, with each element having two items. We
use the zip function to create a zip object by joining fields and row. The out-
put reveals that we obtain three dict objects that correspond to the data in the
CSV file.

As you may notice, it’s not intuitive to read the first row separately and construct the
needed data. But CSV files with a header are so common that an easier solution must
exist. Indeed, the csv module provides an additional reader—DictReader—that spe-
cifically addresses this need, as shown in the next listing.

with open("tasks.txt", newline="") as file:
 csv_reader = csv.DictReader(file)
 for row in csv_reader:
 print(row)

Listing 11.10 Reading a CSV file with a header using the csv_reader

Listing 11.11 Reading a CSV file with a header using DictReader

Obtains the next item

Creates a dict object

316 CHAPTER 11 Dealing with files

output the following lines:
{'task_id': '1001', 'title': 'Homework', 'urgency': '5'}
{'task_id': '1002', 'title': 'Laundry', 'urgency': '3'}
{'task_id': '1003', 'title': 'Grocery', 'urgency': '4'}

Instead of calling the reader function, we call the DictReader constructor to create a
DictReader object that takes the first row as the keys. As you can see, the solution in
listing 11.11 is much cleaner than the one in listing 11.10, which highlights the con-
ciseness of Python code if you use the right technique. As a side note to facilitate your
learning process, if you find common problems on your daily job, chances are that
Python already has solutions for them, and you only need to locate them! In my expe-
rience, you can start your search on Google with the phrase “Python + your job at
hand.” If you want to read PDF files with Python, for example, you can search “Python
read pdf files.” Usually, the first few pages of search results should be sufficient for you
to find the potential solution.

QUESTION As csv_reader is an iterator, how can you retrieve all the data as a
list object that consists of these dict objects?

11.2.3 Writing data to a CSV file

After we have processed our data, it’s time to save that data back to a CSV file. reader
and DictReader have counterpart writers: writer and DictWriter. As you can imag-
ine, writer writes a list object, and DictWriter writes a dict object. This section
shows how. Because the writers are straightforward, this section is short.

 Suppose that we want to add the row 1004,Museum,3 to the CSV file. With a
writer, we need to convert this string to a list object:

new_task = "1004,Museum,3"

with open("tasks.txt", "a", newline="") as file:
 file.write("\n")
 csv_writer = csv.writer(file)
 csv_writer.writerow(new_task.split(","))

As with writing data to a regular text file, if we know that the last line of data doesn’t
end with a line break, we should add a line break: file.write("\n").

REMINDER The file mode should be "a"—append mode. If you use "w", all
the existing data will be erased.

Sometimes, data is processed in the form of dict objects. Suppose that we want to save
the following data to a new CSV file:

tasks = [
 {'task_id': '1001', 'title': 'Homework', 'urgency': '5'},
 {'task_id': '1002', 'title': 'Laundry', 'urgency': '3'},
 {'task_id': '1003', 'title': 'Grocery', 'urgency': '4'}
]

Creates a list to
write using split

31711.2 How do I deal with tabulated data files?

The data is a list object that consists of multiple dict objects. In this case, we should
use DictWriter, as shown in the following listing.

fields = ['task_id', 'title', 'urgency']

with open("tasks_dict.txt", "w", newline="") as file:
 csv_writer = csv.DictWriter(file, fieldnames=fields)
 csv_writer.writeheader()
 csv_writer.writerows(tasks)

Three things are worth noting in listing 11.12:

 When we create an instance of DictWriter, we need to specify the field names
by setting the fieldnames argument.

 We call the writeheader method to write the header.
 Because we have the dict objects as a list object, we can write the entire data-

set by calling the writerows method instead of the writerow method, which
writes only one row.

So far, I’ve covered how to read and write data with a CSV file. As you may realize, read-
ing and writing data involves symmetrical operations: reader versus writer and Dict-
Reader versus DictWriter. Figure 11.3 provides a visual summary of these operations.
If you work with lists, you should choose reader and writer. If you work with dictionar-
ies, you should choose DictReader and DictWriter. Another factor to consider is
whether the CSV file uses a header; if it does, operations are easier with DictReader
and DictWriter.

11.2.4 Discussion

Tabulated data can be converted to CSV format. Using the built-in csv module, we have
the capability to process CSV data conveniently, including reading and writing data. We
need to be familiar with these two-way operations. Notably, if we need to perform

Listing 11.12 Writing data to a CSV using DictWriter

Writes
the

header Writes multiple rows

File
object

csv.reader

csv.DictReader

Reading

Preferred when the
CSV file has no header

Preferred when the
CSV file has header

Each row
as a list

Each row
as a dict

csv.writer

csv.DictWriter

Writing

To write a
list as a

row

To write a
dict as a

row

Figure 11.3 Reading and writing operations using the csv module. Reading operations involve reader
and DictReader, with the former reading each row as a list and the latter reading it as a dict. Writing
operations involve writer and DictWriter, with the former writing a list to a row and the latter writing
a dict.

318 CHAPTER 11 Dealing with files

numeric operations with the CSV data, we need to explore third-party libraries, such as
pandas, for advanced processing functions. These packages can read CSV files with a
simple function call. We can call pandas.read_csv("filepath.csv"), for example, to
create a DataFrame (a tabulated data model) from a CSV file so that we can use this
DataFrame for a variety of operations.

11.2.5 Challenge

Leo uses CSV files to store some experimental results for his electrical engineering
work. For one project, he called the writerows method with a DictWriter to write a
list object that consists of multiple dict objects, as in listing 11.12. How can he use
this method with a regular CSV writer to write multiple list objects?

HINT You need to organize your data in a list object, with each item repre-
senting the data for a row:

tasks = [
 ['1001', 'Homework', '5'],
 ['1002', 'Laundry', '3'],
 ['1003', 'Grocery', '4']
]

11.3 How do I preserve data as files using pickling?
During the execution of our programs, our code generates hundreds of objects.
When data scientists prepare data, they perform multiple processing steps and create
a considerable amount of data. Some data is large—hundreds of megabytes or even
gigabytes—and it can take a long time to rerun the code to generate the data. It would
be nice to store the data permanently in the form of files on a computer.

 In section 11.2, we studied how to write tabulated data to files. But our data can be
in other forms, such as dict, list, and tuple, as well as classes and functions. Thus,
we should have a more general mechanism to preserve data. In this section, you’ll
learn about pickling, which allows us to preserve various forms of Python data.

11.3.1 Pickling objects for data preservation

The terms pickle and pickling come from the preservation of food by using vinegar,
brine, or similar solutions. In Python, pickling refers to the process of converting
objects to a binary format for data preservation. When a normal program stops, the
data may be lost, which can be undesirable. Some data requires excessive time to pro-
cess, and we want to preserve data so that we can retrieve it conveniently later. In this
section, we’ll see how to preserve data with the built-in pickle module.

CONCEPT Pickling is the process of creating a binary format from existing
objects for data preservation.

31911.3 How do I preserve data as files using pickling?

We can pickle almost any object in Python. Suppose that we use different forms of
data to store a task’s information in our task management application. Let’s see how
we can pickle these objects:

import pickle

task_tuple = (1001, "Homework", 5)
task_dict = {'task_id': '1002', 'title': 'Laundry', 'urgency': 3}

with open("task_tuple_saved.pickle", "wb") as file:
 pickle.dump(task_tuple, file)

with open("task_dict_saved.pickle", "wb") as file:
 pickle.dump(task_dict, file)

In this code snippet, we create one tuple and one dict object for pickling. I want to
emphasize two key points.

 The dump function saves the data to a file. When we work with a file, we use the open
function to create a file object so that we establish a connection to the pertinent
file.

 When we open the file, we should use "wb" mode. This mode means that we’re per-
forming writing operations and that the file should be in binary format. By con-
trast, when we deal with text files, we don’t need to worry about specifying the
mode, as we use the default mode: "t" for "text".

After running the code, your current directory has two new files: task_tuple_saved
.pickle and task_dict_saved.pickle. If you want to open them with a text editor,
you won’t see anything meaningful. Likewise, when you try to open an image with a
text editor, you’ll see some readable content mixed with meaningless text because of
the binary format. How can you use the data saved in the pickle files? The next section
explains.

11.3.2 Restoring data by unpickling

We pickle objects to preserve them as a file via a process known as pickling. Later,
when we need the data again, we retrieve data from a pickle file—the opposite process
to pickling, called unpickling. In this section, you’ll learn about restoring data by
unpickling.

 When we discussed JavaScript Object Notation (JSON) data serialization (section
9.3), we used dump to create a JSON file, which has the same calling signature as dump
for pickling. When we read JSON files, we used the load function. As you may expect,
unpickling also uses load:

with open("task_tuple_saved.pickle", "rb") as file:
 task_tuple_loaded = pickle.load(file)

with open("task_dict_saved.pickle", "rb") as file:
 task_dict_loaded = pickle.load(file)

Imports the module

320 CHAPTER 11 Dealing with files

Unpickling requires that we open the file in read mode. Remember that pickle files
are binary, so we need to use "rb" as the open mode. Unlike the dump function, which
returns None, we expect to obtain the data by calling the load function on the file
object. Thus, we assign the return value to a variable.

 To check the fidelity of data preservation, we can compare the unpickled data with
the original objects. The restored objects are equal to the original ones. This fidelity is
important, as we’re assured that we can recreate the original data after pickling:

assert task_tuple == task_tuple_loaded
assert task_dict == task_dict_loaded

Can we pickle the instance objects of custom classes too? The answer is yes. Consider
the following example:

class Task:
 def __init__(self, title, urgency):
 self.title = title
 self.urgency = urgency

task = Task("Laundry", 3)

with open("task_class_saved.pickle", "wb") as file:
 pickle.dump(task, file)

with open("task_class_saved.pickle", "rb") as file:
 task_class_loaded = pickle.load(file)

assert task.__dict__ == task_class_loaded.__dict__
assert task is not task_class_loaded

In this code snippet, we pickle and unpickle an instance object of the Task class, and
the original object and the pickled/unpickled object have the same attributes, as
revealed by the comparison of their dictionary representations. Notably, they’re not
the same object, as revealed by the identity comparison (is not).

 Although we can pickle instances of custom classes, we should pay extra attention
to them. The reason is that for built-in classes, when you unpickle these objects,
Python knows how to unpickle them because their types are known. By contrast,
Python may not know your custom classes if you haven’t defined them when you
unpickle. That is, if you unpickle an instance object (in our case, an instance of the
Task class), you’ll encounter an error when the namespace doesn’t have the Task
class. Consider the following example:

del Task

with open("task_class_saved.pickle", "rb") as file:
 task_class_loaded = pickle.load(file)

ERROR: AttributeError: Can't get attribute 'Task' on <module '__main__'

➥ (built-in)>

Removes Task from the global namespace

32111.3 How do I preserve data as files using pickling?

To mimic a situation in which you unpickle an instance when its class is not defined,
we remove the Task class from the global namespace by running del Task. After that,
we can’t obtain the custom instance, as it can’t find the Task class for instantiation.

MAINTAINABILITY When you unpickle instances of a custom class, make sure
that you’ve defined the class in the corresponding namespace.

When you learned about JSON data conversion, you learned that dump and load are
for manipulating JSON files, and dumps and loads are for dealing with JSON strings.
Pickling has counterpart functions with the same names: dump and load for pickle
files, and dumps and loads for pickle strings in binary form (known as bytes; see list-
ing 11.13), as depicted in figure 11.4.

The preceding examples focus on pickle files, and you’ll see some examples of pickle-
related binary strings in the next section.

11.3.3 Weighing the pros and cons of pickling
We’ve seen how pickling and unpickling work for data preservation. It’s important to
know the pros and cons of pickling. This section reviews the most important aspects of
pickling, which will help us determine whether pickling is the right choice for data
preservation in our project.

COMPATIBILITY WITH MOST OBJECTS

As another common storage and data exchange mechanism, JSON is compatible with
the built-in data types, but it doesn’t work with custom classes unless we provide spe-
cific JSON serialization instructions, such as by setting the default argument in call-
ing dump or dumps (section 9.3). Moreover, JSON can’t natively handle all objects, such
as functions. By contrast, pickling is compatible with many more kinds of objects out
of the box. To see pickling’s flexibility, observe an example of preserving a simple
function in the next listing.

def doubler(x):
 return x * 2

Listing 11.13 Pickling a function to bytes

Objects

Binary string
dumps

dump Binary file

Pickling

Binary string loads

loadBinary file

Unpickling

Figure 11.4 Pickling and unpickling in the forms of strings and files. In
pickling, you call dumps to create a binary string and dump to create a
binary file. In unpickling, you call loads to create an object from a binary
string and load to create an object from a binary file.

322 CHAPTER 11 Dealing with files

doubler_pickle = pickle.dumps(doubler)
print(doubler_pickle)

output: b'\x80\x04\x95\x18\x00\x00\x00\x00\x00\x00\x00\x8c\x08

➥ __main__\x94\x8c\x07doubler\x94\x93\x94.'

As shown in this code, we pickle the function doubler as bytes data, which resumes the
look of a string but starts with b to denote that it’s a bytes object. We can unpickle this
bytes object to reconstruct the function, which should do the same job as doubler:

doubler_loaded = pickle.loads(doubler_pickle)

assert doubler_loaded(5) == doubler(5)

We’ve seen that pickling works with custom classes without any specific instructions
(see listing 11.14), unlike JSON serialization, which requires special instruction for
encoding instances (section 9.3). But pickling doesn’t work with every object in
Python. We can’t pickle a module, for example:

import os

os_dumped = pickle.dumps(os)

ERROR: TypeError: cannot pickle 'module' object

Also, we can’t also pickle file objects and connections to databases, as they use
resources in a dynamic manner, which pickling can’t handle. Except for these limita-
tions, pickling works with most kinds of objects, serving as a versatile mechanism for
data preservation.

DATA SECURITY

When we deal with any data, the first factor we may fail to consider is data security.
When we obtain files, we should wonder whether they are safe. The same principle
applies to pickle files; we should be cautious about pickled data’s security.

 Because pickling allows us to preserve almost any object, hackers have the oppor-
tunity to embed malicious code inside an object. In sections 11.3.1 and 11.3.2, we’ve
seen how pickling works with built-in data types, such as tuple and dict. You can’t do
much with these built-in data types. If someone creates a custom class, however, they
can define customized behaviors that can hack the pickling system. Consider the fol-
lowing example:

import os

class MaliciousTask:
 def __init__(self, title, urgency):
 self.title = title
 self.urgency = urgency

32311.3 How do I preserve data as files using pickling?

 def __reduce__(self):
 print("__reduce__ is called")
 return os.system, ('touch hacking.txt',)

In this code snippet, someone defines the class MaliciousTask. This class has imple-
mented the special method __reduce__, which is involved in the pickling process.
The return value, if run, results in creating the hacking.txt file on your computer.
The file is empty, but it can be programmed to contain malicious code that will dam-
age your computer system!

 If you’re not paying attention to this malicious source code and trying to unpickle
an instance of this class, your computer can become vulnerable because of the added
file from calling __reduce__. The next listing shows this effect.

malicious_task = MaliciousTask("Set fire", 5)

with open("test_malicious.pickle", "wb") as file:
 pickle.dump(malicious_task, file)

output: __reduce__ is called

Note that I included the output "__reduce__ is called" to show you that __reduce__
is involved in pickling. The command for creating a potentially malicious file is part of
the pickle file. When you unpickle this kind of file, the following problem arises:

with open("test_malicious.pickle", "rb") as file:
 pickle.load(file)

After unpickling the file, if you check your directory, you’ll see that the file hacking
.txt sneakily shows up! Real malicious code won’t leave such apparent traces, how-
ever. Thus, you should be cautious when you try to pickle and unpickle objects. The
rule of thumb is to pickle only objects that come from trusted sources, such as the
built-in ones, classes that you created yourself, or reputable third-party packages.

STORAGE SIZE AND SPEED

Another advantage of pickling is its smaller storage size and faster reading/writing
speed compared with text-based storage, such as CSV format. I’ve mentioned several
times that pandas is one of the most prevalent Python packages for data science. Its
core data model is known as DataFrame, which is a tabulated data structure. You can
save DataFrame objects as CSV files or pickle files. In general, using pickle files to read
and write data is much faster than using CSV files, and pickle files tend to be smaller
than CSV files for storing the same amount of data.

Listing 11.14 Pickling an instance of a custom class

Creates one-
item tuple

324 CHAPTER 11 Dealing with files

11.3.4 Discussion

Pickling is a convenient storage mechanism that is compatible with most kinds of
Python objects, including custom classes. There are pros and cons to using pickles, of
course. The rule of thumb is that if you work on data-related projects, pickles can be a
great choice, providing faster reading/writing speed than CSV files. As a reminder, be
cautious about the security vulnerability of pickling data from untrusted sources.

11.3.5 Challenge

As a cybersecurity analyst in a hospital, Roger evaluates security associated with the
pickling technique in Python. He tried to pickle an instance of the MaliciousTask
class that adds a file (hacking.txt) to the current working directory, as we did in list-
ing 11.14. How can he modify the class to make it remove the hacking.txt file during
pickling?

HINT We used the command touch hacking.txt to create this file. We can
use the command rm hacking.txt to remove this file. Don’t forget where you
should place this command.

11.4 How do I manage files on my computer?
No matter what projects you’re working on, it’s inevitable that you’ll deal with files.
After all, files are the most versatile containers for storing organized information. In
the preceding sections, you learned about reading data from files and writing data to
files. But you haven’t learned anything about manipulating files in their entirety (not
concerned with the content, but the files themselves), as well as manipulating directo-
ries, such as by moving and copying files.

 Consider the following use scenario. Suppose that you’re conducting a scientific
experiment in which each participant completes a reaction time test. This test consists
of multiple trials, and after the test is run, the software generates several files. Because
we run the experiment with multiple subjects, the data directory has the following files:

subject_123.config
subject_123.dat
subject_123.txt
subject_124.config
subject_124.dat
subject_124.txt
subject_125.config
subject_125.dat
subject_125.txt

We are concerned about the files of a specific type. Specifically, when we’re done with the
data collection, how can we extract only those data files (.dat) and move them to a new
directory? We also want to delete the text files (.txt) because we don’t need them.

 In this section, we’ll address these needs and common file-handling techniques.
Please note that Python is a general-purpose language, and when it comes to file

32511.4 How do I manage files on my computer?

handling, there can be multiple solutions involving different libraries, such as os and
pathlib. I’ll focus on the generalizable ones.

11.4.1 Creating a directory and files

To follow along with the entire section, you’ll start by learning how to create a new
directory and a bunch of mock files. When you deal with file paths or directory paths,
if you’ve been using the os module, I recommend that you use the pathlib module
instead; it’s a more compact module that specializes in handling paths. Using path-
lib, you can easily make a new directory:

from pathlib import Path

data_folder = Path("data")
data_folder.mkdir()

The central data model in the pathlib is Path, a class designated for path-related
operations. To make a directory using the Path object, for example, call the mkdir
method, which creates the data folder in your current directory. You can check its
existence programmatically by calling exists:

assert data_folder.exists()

When you have the folder ready, you can create a bunch of mock files, and you’ll use
these files for manipulation later in this section:

subject_ids = [123, 124, 125]
extensions = ["config", "dat", "txt"]

for subject_id in subject_ids:
 for extension in extensions:
 filename = f"subject_{subject_id}.{extension}"
 filepath = data_folder / filename
 with open(filepath, "w") as file:
 file.write(f"It's the file {filename}.")

For now, you should know how to create a file with some data by using the open
function in a with statement (section 11.1). One thing to note is that you construct a
file path by using the operation directory_path / filename. You may know that
Windows and macOS use different symbols (backslash versus forward slash) to
separate the levels in a directory: data\subject_123.dat vs. data/subject_123.dat. When
you create a filepath using directory_path / filename, this operation is operating
system agnostic, meaning that the same code can run on either of these platforms. If
you arbitrarily create the path—say, data\subject_123.dat—your code may not run
on a different system. This cross-platform compatibility is another advantage of using
pathlib instead of the os module (in which you may have to use the raw strings as
paths), which is platform dependent.

Makes a directory

Creates a file path

326 CHAPTER 11 Dealing with files

11.4.2 Retrieving the list of files of a specific kind

The next step is retrieving all the .dat files in the directory so that we can process
these files for scoring data purposes. To retrieve all files of a specific kind, we call the
glob method on a directory path in which we specify a pattern for filenames. All files
that match this pattern can be found, as the next listing shows.

data_folder = Path("data")

data_files = data_folder.glob("*.dat")
print("Data files:", data_files)

for data_file in data_files:
 print(f"Processing file: {data_file}")
 # applicable data processing steps here

output the following lines:
Data files: <generator object Path.glob at 0x100b5c040>

Processing file: data/subject_124.dat
Processing file: data/subject_125.dat
Processing file: data/subject_123.dat

We specify that the pattern is *.dat, locating the files with an extension of .dat. Nota-
bly, the file list matching this pattern forms a generator, and we can use it in a for
loop. From the printout message, we see that we indeed obtain all the .dat files. One
potential drawback is that the list isn’t sorted, which may make it hard to eyeball what
files have been processed. As an improvement, we can sort the generator to organize
the files better:

data_files = data_folder.glob("*.dat")

for data_file in sorted(data_files):
 print(f"Processing file: {data_file}")
 # applicable data processing steps here

output the following lines:
Processing file: data/subject_123.dat
Processing file: data/subject_124.dat
Processing file: data/subject_125.dat

REMINDER Generators are consumable. When you exhaust the items in a
generator, you must recreate the generator, allowing it to yield its items.

11.4.3 Moving files to a different folder

To organize our project’s data in a scientific experiment, we can place a participant’s
data in their own folders. For the participant with ID number 123, for example, we

Listing 11.15 Retrieving files of the same kind

Creates a generator object

Expect a different
memory address on
your computer.

Recreates the generator

Sorts the generator
to create a list

32711.4 How do I manage files on my computer?

want all their data to reside in the subject_123 folder. In this section, you’ll learn
about moving files to address this need.

 When we move files, the idea is to “rename” the file’s path. That is, if you rename the
file data/subject_123.dat to subjects/subject_123/subject_123.dat, it moves
from the data folder to the subject_123 folder. Using this knowledge, we can come up
with the solution in listing 11.16. Please note that we use the mkdir method, which
allows us to create a multilevel directory even when some intermediate levels don’t
exist. We set the parents argument as True in the mkdir call in the next listing; it creates
any missing intermediate levels of the path as needed.

subject_ids = [123, 124, 125]
data_folder = Path("data")

for subject_id in subject_ids:
 subject_folder = Path(f"subjects/subject_{subject_id}")
 subject_folder.mkdir(parents=True, exist_ok=True)

 for subject_file in data_folder.glob(f"*{subject_id}*"):
 filename = subject_file.name
 target_path = subject_folder / filename
 _ = subject_file.rename(target_path)
 print(f"Moving {filename} to {target_path}")

output the following lines:
Moving subject_123.config to subjects/subject_123/subject_123.config
Moving subject_123.dat to subjects/subject_123/subject_123.dat
Moving subject_123.txt to subjects/subject_123/subject_123.txt
Moving subject_124.config to subjects/subject_124/subject_124.config
Moving subject_124.dat to subjects/subject_124/subject_124.dat
Moving subject_124.txt to subjects/subject_124/subject_124.txt
Moving subject_125.dat to subjects/subject_125/subject_125.dat
Moving subject_125.config to subjects/subject_125/subject_125.config
Moving subject_125.txt to subjects/subject_125/subject_125.txt

After running this code, we should see that the current directory has a new folder,
subjects, which contains three folders for each subject. Moving a file generally
requires four steps (figure 11.5): identify the file you’re moving, retrieve the filename,
construct the new filename, and rename the file with the new filename.

Listing 11.16 Moving files to a target folder

Creates the
subject folder

Gets the
filename

Constructs the
target path

data/subject_123.dat subject_123.dat

subjects/subject_123/subject_123.dat

1. Obtain the
 original file.

2. Retrieve the
 filename.

3. Construct the
 target file path.

4. Rename to the
 target file path.

Figure 11.5
The general
process of moving a
file. In essence, you
rename the file from
its original path to
the target path.

328 CHAPTER 11 Dealing with files

11.4.4 Copying files to a different folder

Copying files allows us to keep the original files and have a second copy. Suppose that
instead of moving the files from data to the subjects folder, we copy the data instead.
(You need to recreate the initial data files to follow along.) Here, I introduce the
shutil module, which provides a high-level application programming interface (API)
for manipulating files.

 This module has the copy method and the calling signature copy(src, dst), in
which src stands for the source file and dst stands for the destination path. Using this
method, we can copy the files to each subject’s folder, as shown in the next listing.

import shutil

shutil.rmtree("subjects")

subject_ids = [123, 124, 125]
data_folder = Path("data")

for subject_id in subject_ids:
 subject_folder = Path(f"subjects/subject_{subject_id}")
 subject_folder.mkdir(parents=True, exist_ok=True)

 for subject_file in data_folder.glob(f"*{subject_id}*"):
 filename = subject_file.name
 target_path = subject_folder / filename
 _ = shutil.copy(subject_file, target_path)
 print(f"Copying {filename} to {target_path}")

output the following lines:
Copying subject_123.config to subjects/subject_123/subject_123.config
Copying subject_123.dat to subjects/subject_123/subject_123.dat
Copying subject_123.txt to subjects/subject_123/subject_123.txt
Copying subject_124.config to subjects/subject_124/subject_124.config
Copying subject_124.dat to subjects/subject_124/subject_124.dat
Copying subject_124.txt to subjects/subject_124/subject_124.txt
Copying subject_125.dat to subjects/subject_125/subject_125.dat
Copying subject_125.config to subjects/subject_125/subject_125.config
Copying subject_125.txt to subjects/subject_125/subject_125.txt

As shown in listing 11.17, we use the rmtree function to remove a folder and its con-
tents, as rmtree doesn’t care about the directory’s emptiness. By contrast, we could
run into a problem if we use Path.rmdir to remove a directory that is not empty.
Observe this feature:

Path("subjects").rmdir()
ERROR: OSError: [Errno 66] Directory not empty: 'subjects'

Listing 11.17 Copying files to a target folder

Removes a folder
and its contents

Use an underscore
when you don't use
a function's return
value.

32911.4 How do I manage files on my computer?

In listing 11.16, we moved files. Copying files involves the same procedure: identify
the files, obtain the filename, construct the target path, and use the copy function of
the shutil module.

11.4.5 Deleting a specific kind of files

At section 11.4’s beginning, I mentioned that one business need is to remove the .txt
files in the data folder—specifically, the individual data files that may contain a subject’s
privacy data—and we must remove the original files for security concerns. From a gen-
eral perspective, we need to delete a specific kind of files, as we’ll discuss in this section.

 The Path class provides the unlink method to delete a file. To use this feature, we
need to obtain instances of the Path objects and call unlink on them:

data_folder = Path("data")

for file in data_folder.glob("*.txt"):
 before = file.exists()
 file.unlink()
 after = file.exists()
 print(f"Deleting {file}, existing? {before} -> {after}")

output the following lines:
Deleting data/subject_123.txt, existing? True -> False
Deleting data/subject_124.txt, existing? True -> False
Deleting data/subject_125.txt, existing? True -> False

To show that the deletion works, we check the existence of a file before and after the
deletion. As you can see, each file exists before the deletion, and it’s gone after the
deletion.

11.4.6 Discussion

When we manipulate files, we can do the operations manually, but we may lose track
of what we’ve done with the files. Although we can write down each operation, it’s
tedious and inconvenient to record all the operations. Thus, to make the file opera-
tions more reproducible and trackable, we should write code to manipulate the files.

11.4.7 Challenge

Cassi uses Python to manage files on her computer. One lesson she learned is that
when she copies files to a different folder, she shouldn’t overwrite any files. That is, it’s
possible that the target folder may have the same files that she moved earlier. More-
over, these files may have been processed and contain new data. How can she update
the code in listing 11.17 so that she copies files only if those files don’t exist in the tar-
get folder?

HINT You can call exists on the Path instance object to determine whether a
file exists.

330 CHAPTER 11 Dealing with files

11.5 How do I retrieve file metadata?
In section 11.4, you learned how to manipulate files on a computer. For the moving
and copying operations, we retrieved the filename by accessing the name attribute of
the Path object. Besides the filename, a file has metadata that can be important in spe-
cific use cases. We need to retrieve a file’s directory to construct another path to access
another file in the same directory, for example.

 Suppose that we continue to handle the experimental data in section 11.4. In the
data folder, we need to process those data (.dat) files. But we must obtain additional
configuration (.config) files for each subject. We can call glob to obtain the list of
.dat files. But how can we easily locate the corresponding .config file for each sub-
ject? This section addresses this question and other operations related to accessing a
file’s metadata.

11.5.1 Retrieving the filename-related information

When I say the filename-related information, I’m referring to the directory, filename, and
file extension. These pieces of information are attributes of the Path class. Let’s use
some code examples to learn about them.

 For the problem, we start with the data file: subjects/subject_123/subject_
123.dat. How can we retrieve subjects/subject_123/subject_123.config? These
two files have the same directory and filename but have distinct file extensions. Observ-
ing these characteristics, we can come up with the solution shown in the next listing.

from pathlib import Path

subjects_folder = Path("subjects")

for dat_path in subjects_folder.glob("**/*.dat"):

 subject_dir = dat_path.parent

 filename = dat_path.stem

 config_path = subject_dir / f"{filename}.config"

 print(f"{subject_dir} & {filename} -> {config_path}")

 dat_exists = dat_path.exists()
 config_exists = config_path.exists()

 with open(dat_path) as dat_file, open(config_path) as config_file:
 print(f"Process {filename}: dat? {dat_exists}, config?
 ➥ {config_exists}\n")
 # process the subject's data

output the following lines:
subjects/subject_125 & subject_125 -> subjects/subject_125/subject_125.config

Listing 11.18 Retrieving filename information

Retrieves all data files

Retrieves the file directory

Retrieves the filename

Opens
both
files

33111.5 How do I retrieve file metadata?

Process subject_125: dat? True, config? True

subjects/subject_124 & subject_124 -> subjects/subject_124/subject_124.config
Process subject_124: dat? True, config? True

subjects/subject_123 & subject_123 -> subjects/subject_123/subject_123.config
Process subject_123: dat? True, config? True

In listing 11.18, from the printout message, we see that we process each subject’s data
by accessing both .dat and .config files. Four things are worth noting:

 Because there are folders within subjects_folder, when you try to access files
within these subdirectories, the pattern involves **/, meaning that the files
reside in subdirectories.

 For each Path instance, we can access its parent attribute, which returns the
directory of the path.

 For each Path instance, we can access its stem attribute, which returns the file-
name without the extension of the path.

 In the with statement, we can open two files at the same time, creating two file
objects that we can work on simultaneously.

You can retrieve the entire filename, including the extension, by accessing name (list-
ing 11.17), and you can retrieve only the extension by accessing suffix, as follows
(please note that the extension includes the dot symbol):

dat_path = Path("subjects/subject/subject_123.dat")

assert dat_path.suffix == ".dat"

Figure 11.6 shows which attributes correspond to filename data.

11.5.2 Retrieving the file's size and time information

When you use a file-explorer app on your computer, you can see a few columns other
than name, such as file size and the time when the file was last updated. This metadata
can be useful in specific scenarios. This section discusses a few of those scenarios.

 For experimental data, it’s typical for each subject’s data file to have a stable size if
the data recording was done correctly. Thus, without opening the file to check the
content, we can check a file’s size to quickly determine data integrity before applying
any processing procedure. The function shown in the next listing addresses this need.

subjects/subject_123/subject_123.dat

Parent Name

Stem Suffix
An instance of Path

Figure 11.6 Retrieving a file’s filename-related data
with an instance of the Path class. You can access its
parent (the directory), name (filename, including
extension), stem (filename only, with no extension),
and suffix (file extension).

332 CHAPTER 11 Dealing with files

def process_data_using_size_cutoff(min_size, max_size):
 data_folder = Path("data")
 for dat_path in data_folder.glob("*.dat"):
 filename = dat_path.name
 size = dat_path.stat().st_size
 if min_size < size < max_size:
 print(f"{filename}, Good; {size}, within
 ➥ [{min_size}, {max_size}]")
 else:
 print(f"{filename}, Bad; {size}, outside
 ➥ [{min_size}, {max_size}]")

In this code snippet, we call the stat() to retrieve the file’s status-related data, among
which st_size is the size information in bytes. Using this function, we can test a few
variations of the cutoffs to determine data integrity:

process_data_using_size_cutoff(20, 40)
output the following lines:
subject_124.dat, Good; 30, within [20, 40]
subject_125.dat, Good; 30, within [20, 40]
subject_123.dat, Good; 30, within [20, 40]

process_data_using_size_cutoff(40, 60)
output the following lines:
subject_124.dat, Bad; 30, outside [40, 60]
subject_125.dat, Bad; 30, outside [40, 60]
subject_123.dat, Bad; 30, outside [40, 60]

As you can see, when we require the range to be 20–40, all the files are good, as all
their sizes are 30. If we define the size window as 40–60, all the files are bad.

 Sometimes, we screen files based on their content modification time. To retrieve
time-related metadata, we can call the stat method on the Path instance:

import time

subject_dat_path = Path("data/subject_123.dat")

modified_time = subject_dat_path.stat().st_mtime

readable_time = time.ctime(modified_time)

print(f"Modification time: {modified_time} -> {readable_time}")

output: Modification time: 1652123144.9999998 -> Mon May 9 14:05:44 2022

In this code, we’re accessing the attribute st_mtime, which is the time when the file was
modified in terms of content (not filename changes or other metadata). This value
represents the seconds since the epoch: January 1, 1970, 00:00:00 (UTC). We can use

Listing 11.19 Creating a function to screen file sizes

Retrieves the file size

Chained
comparisons

The content modification time

Converts to human-readable time

Expect a different value.

333Summary

the ctime function in the time module to convert this value to a human-readable
timestamp.

11.5.3 Discussion

This section focused on the file’s directory, filename, extension, size, and time-related
metadata. Note, however, that a file’s metadata contains many other pieces of informa-
tion, such as the file’s permission modes, although your projects may need only the
metadata covered in this section. When you’re thinking about accessing a file’s meta-
data, you should know that you can call the stat method on an instance of the Path class.

11.5.4 Challenge

Albert is a graduate student with a major in chemistry. He loves to use Python to man-
age his computer programmatically. How can he write a function to select a direc-
tory’s files that were modified in the past 24 hours?

HINT With the time module, you can call time to retrieve the number of sec-
onds since the epoch. You can compare a file’s content modification time
with this value for the 24-hour adjustment. Remember that you need to calcu-
late the number of seconds in 24 hours.

Summary
 When you perform reading/writing operations with a file, use the with state-

ment, which closes the file automatically, using a context manager.
 The default open mode is "r" (read). Performing any writing operations

requires you to use "w" (write) or "a" (append), with the latter appending data
to the file’s end.

 The built-in csv module is specialized to read and write CSV data. Although
this topic isn’t the focus of this book, if you need to perform numeric computa-
tions and data processing, consider using a third-party library such as pandas.

 When CSV files have headers, prefer using csv.DictReader, which handles the
headers, over the other common data reader, csv.reader.

 As the counterparts to csv.reader and csv.DictReader, csv.writer and
csv.DictWriter are used to create CSV files. The latter is better at handling
headers.

 Pickling is a built-in mechanism for storing Python objects as binary data. Com-
pared with JSON, pickling is more flexible because it supports more data types,
including functions.

 Be cautious about pickling’s data security. Don’t pickle or unpickle any data
from potentially untrusted sources.

 Instead of using CSV files as a storage mechanism for tabulated data, you can
use pickling to save data size and increase reading/writing speed.

334 CHAPTER 11 Dealing with files

 The built-in module pathlib provides various methods and attributes for its
Path class. You should be familiar with using pathlib to perform file manage-
ment, such as creating a directory and moving files.

 A file doesn’t contain only its content, but also its name, directory, modification
time, and other metadata that can contain the information you need. You
should know how to retrieve this data through the Path class.

Part 5

Safeguarding the codebase

As programmers, we should take responsibility for our code. Taking
responsibility means ensuring the quality of our code by making it functional,
with the fewest possible bugs (and preferably none). We can improve code qual-
ity in four distinct ways:

 We can log important events during the execution of our program, mak-
ing it possible to know what has happened and to provide a solution
quickly should any problem arise.

 We can integrate exception handling into our program, because handling
possible exceptions properly prevents our program from crashing.

 We should debug our program during the development phase—the best
time to remove bugs, because we have the freshest memory of the code.

 We should test our program thoroughly, making sure that every part
works before product delivery.

In this part, you’ll learn these four ways to write robust and reliable programs.

337

Logging and
 exception handling

When we move our application into production, we temporarily “lose” control of
our product; we must rely on the product itself to behave. If we’ve been extremely
careful during the development phase, we may be lucky enough to have a perfect
product that has no bugs. This almost never happens, however. Thus, we should
know that a variety of problems, such as an unusual amount of traffic to our web
app, can occur. Should any problem arise, we don’t panic; we start the problem-
solving process.

 Sometimes, we don’t have the chance to talk to the users who report the problem,
and even if we do, the information they provide can be rather limited, which can’t
help us identify the underlying problems. Fortunately, because we expected that
problems could arise with our product, our application logs the user’s activities and

This chapter covers
 Logging to files

 Formatting logs properly

 Handling exceptions

 Raising exceptions

338 CHAPTER 12 Logging and exception handling

the related application events, which makes it possible for us to study where things
might have gone wrong. These logging records play an essential role in making our
product run smoothly by monitoring its performance continuously. Because logging is
so useful, we should integrate it into our application during development. In the mean-
time, because of user input, we should expect specific exceptions to occur. It’s not
uncommon, for example, for someone to try to get the result of one divided by zero,
which causes the ZeroDivisionError exception; we should handle this exception
properly so that the application will continue to run. In this chapter, we study logging
and exception handling.

12.1 How do I monitor my program with logging?
The most frustrating thing in software development could well be debugging a prob-
lem that you can’t reproduce. If you’re lucky enough, you may have various anecdotal
descriptions from some less tech-savvy end users. These descriptions may be meaning-
less, however, as the same problem on the surface can have multiple root causes.
Thus, it’s common sense that you should set up logging properly to monitor the per-
formance of your application before turning it over to end users. When a user
encounters any problem in a specific module of your application, you can pull out the
pertinent logging information, and it should take much less time to solve the prob-
lem. This section introduces the essential features of logging in Python.

12.1.1 Creating the Logger object to log application events

Everything is an object in Python, so it’s not surprising that we use an object to log
application events. Specifically, the Logger object does the logging for us. In this sec-
tion, you’ll learn about best practices for creating a Logger object.

 In the standard Python library, the logging module provides the logging function-
alities. This module has the Logger class, and that class’s constructor takes a name to
create an instance object:

import logging

logger_not_good = logging.Logger("task_app")

This code snippet creates a Logger object. But are you wondering why I call this
logger logger_not_good? Before I explain, take a look at the proper way to create a
Logger object:

logger_good = logging.getLogger("task_app")

Here, we call the getLogger function by supplying the name of the logger. The reason
we should use getLogger instead of calling the constructor is that we want a shared
instance of the Logger class to handle logging. More specifically, in an application or
in a module, we may want to retrieve the logger in multiple places. If we use the con-
structor, we end up with multiple distinct loggers, as in this example:

33912.1 How do I monitor my program with logging?

logger0 = logging.Logger("task_app")
logger1 = logging.Logger("task_app")
logger2 = logging.Logger("task_app")

assert logger0 is not logger1
assert logger1 is not logger2
assert logger0 is not logger2

You must configure these loggers separately (I discuss configurations in section 12.2),
making sure that they have the same configurations so they’ll work properly. There is
no reason why you should use multiple loggers for the same module, however; only
one logger should do the job. As this example shows, using getLogger ensures that we
always retrieve the same logger:

logger0_good = logging.getLogger("task_app")
logger1_good = logging.getLogger("task_app")
logger2_good = logging.getLogger("task_app")

assert logger0_good is logger1_good is logger2_good

Using the is comparisons, you can tell that the logger is the same no matter how
many times you called getLogger. When it’s the same logger, you can configure it
once, and it’ll behave the same way throughout its lifecycle during your application’s
execution.

 As a best practice, if you’re creating a module-level logger for each module in your
application, I recommend that you create the logger by running logging.getLogger
(__name__). __name__ is a special attribute for a module name. When you name the
module taskier.py, for example, the module’s __name__ attribute is taskier.

MAINTAINABILITY Always use getLogger to retrieve the same logger for your
module or application. For module-level loggers, it’s best to use getLogger
(__name__) to get the logger.

12.1.2 Using files to store application events

In all the previous chapters, I almost always used the print function to show the
important messages during the execution of specific code snippets. Suppose that we
want to make a log when a user creates a task in our task management application.
The following listing shows a simplified version of the code.

class Task:
 def __init__(self, title):
 self.title = title

 def remove_from_db(self):
 # operations to remove the task from the database
 task_removed = True

Listing 12.1 Creating a log using print

You can combine these comparisons
in a single comparison by using AND
operations.

340 CHAPTER 12 Logging and exception handling

 return task_removed

task = Task("Laundry")
if task.remove_from_db():
 print(f"removed the task {task.title} from the database")

We can print a message after the task is removed successfully. But this approach can
work only during the active coding phase because the printout message is showing up
in the Python console. When you submit your application for production, it’s almost
impossible for you to monitor the printout messages in a continuous manner. Thus, a
sustainable approach is to store the application events using a permanent medium:
files. In this section, I’ll show you how to send events to files.

NOTE When you store events in a file, you can examine these events as many
times as you want; thus, your approach is sustainable. By contrast, if you use
the print function, the events are sent to the console, and when the console
is closed, you lose the recorded information.

We can think of the logger that oversees everything in terms of logging. Thus, to log
events in a file, we must provide specific configuration to the logger, which we do by set-
ting handlers. The logging module includes a class called FileHandler; we can use this
class to specify a file to which the logger should save events, as the next listing shows.

logger = logging.getLogger(__name__)

file_handler = logging.FileHandler("taskier.log")

logger.addHandler(file_handler)

As shown in listing 12.2, we specify that we want all the records to go to the
taskier.log file and associate the file with the logger by calling the addHandler
method. Notably, after you run this code, you should see that your current directory
has the taskier.log file. Now that the logger knows where to save the records, we’re
ready to check out how logging works in the next listing.

task = Task("Laundry")
if task.remove_from_db():
 logger.warning(f"removed the task {task.title} from the database")

In this code snippet, we’re writing a warning record by calling logger.warning. If we
open the taskier.log file, we should be able to see the record.

PEEK Each logging message is a log record, which is an instance of the
LogRecord class. Section 12.2.3 discusses formatting log records.

Listing 12.2 Adding a file handler to the logger

Listing 12.3 Writing a record to the log file

Specifies the file handler

Adds the handler to the logger

34112.1 How do I monitor my program with logging?

If you prefer a programmatic way to see the record, run the following code. You know
how to read a text file (section 11.1), right? Please note that I wrote a function to
check the file content, because we’ll check the log file multiple times later, and it’s
helpful to have a function for this purpose:

def check_log_content(filename):
 with open(filename) as file:
 return file.read()

log_records = check_log_content("taskier.log")
print(log_records)

output: removed the task Laundry from the database

REMINDER Use the with statement to open a file so that it can close the file
automatically.

As you can see, we read the entire file, and the content matches what we expected: a
single record about removing the task from the database.

12.1.3 Adding multiple handlers to the logger
In section 12.1.2, we saw how to add a file handler to a logger to send log records to a
file. A logger can have multiple handlers, as we’ll discuss in this section.

 Besides file handlers, the logging module provides stream handlers, which can log
the records in an interactive console. During the development of the software, we can
use files to preserve the log records for later reference, but in the meantime, we can
add a stream handler to the logger so that we can view the records in a console for
real-time feedback, as in the following listing. This way, we don’t need to open or read
the log to retrieve the records.

stream_handler = logging.StreamHandler()

logger.addHandler(stream_handler)

logger.warning("Just a random warning event.")
output the following: Just a random warning event.

We call the StreamHandler constructor to create a stream handler and add it to the
logger. When we send a warning log record to the logger, this message gets printed in
the console. In the meantime, we can check that the same logger also records the mes-
sage in the file handler that we added earlier:

log_records = check_log_content("taskier.log")

print(log_records)
output the following lines:
removed the task Laundry from the database
Just a random warning event.

Listing 12.4 Using a stream handler with the logger

342 CHAPTER 12 Logging and exception handling

As you can see, the log file records the same event as the stream handler. Please note
that the log file has the record that we entered earlier.

 For a logger, you can set more than a file handler and a stream handler. In fact,
you can set multiple file handlers to the logger. Suppose that you want to have two
duplicate log files for backup purposes. You can have two file handlers for each of the
log files. Moreover, you can set different levels for the handlers (as discussed in sec-
tion 12.2.2) and achieve finer control of the handlers in terms of what kinds of log
records they capture.

 In most cases, we’ll need to use only stream and file handlers. But several other
kinds of handlers can be handy in specific use cases. Although I’m not going to dis-
cuss them in detail because they’re not often used, it’s good to know about their exis-
tence (see http://mng.bz/E0pD).

 As shown in figure 12.1, we can attach different kinds of handlers to a logger. I’ve
covered stream and file handlers. Some notable handlers include SMTP handlers,
which can send log records as an email; HTTP handlers, which can send log records
to a web server via an HTTP GET or POST request; and Queue handlers, which can
send log records to a queue, such as one in a different thread.

12.1.4 Discussion

We should use files to log important application events so that we can locate the nec-
essary information to fix any problems that arise. During the development phase, it
would be helpful to set a stream handler to the logger so that you can view the log
records on the console in real time.

12.1.5 Challenge

John recently started to integrate logging into his project. He knows that he can call
logging.getLogger(__name__) to retrieve the logger used by the module. He runs
the code in listing 12.2, which adds a file handler to the logger. If he runs the code

Logger

StreamHandler

FileHandler

SMTPHandler

HTTPHandler

QueueHandler

Attaching
handlers

Send events to the console.

Save events to a file.

Send events to an email address.

Send events to a web server.

Send events to a different thread.

Figure 12.1 Common handlers can be attached to a logger. When we
create a logger, we can instantiate a variety of handlers and attach them
to the logger. These handlers have their respective intended uses.

http://mng.bz/E0pD

34312.2 How do I save log records properly?

multiple times, the logger has multiple file handlers, even though these file handlers
are referring to the same file. When he logs any events, the file has duplicate records.
How can he update the code in listing 12.2 so that it adds the file handler only once?
If he does have multiple handlers set to the logger, how can he remove them?

HINT 1 A logger has a method called hasHandlers, which you can use to
check whether a logger has handlers. You can add a handler if the logger
doesn’t have any.

HINT 2 You can save a logger’s handlers as a list object, and you can empty
the list so that the handlers will be removed from the logger.

12.2 How do I save log records properly?
Depending on the size of your application, over an extended period of time, the log
file can accumulate many records, on the magnitude of thousands or millions. Check-
ing the records to find needed information can be a real pain. For demonstration pur-
poses, I used simple messages for the log records in section 12.1. For a task
management application, however, you can expect to see some records like this:

-- app is starting
-- created a new task Laundry
-- removed the task from the database
-- successfully changed the tags for the task
-- updated the task's status to completed
-- FAILED to change the task's status!!!

As you can see, with minimum formatting (two leading dashes) for the records, it’s
hard to spot the potential records for a reported problem. Fortunately, we can catego-
rize and format the log records to include more information, making our debugging
experience less painful. In this section, I’ll show you how to save log records properly
by focusing on using different levels for logging, and I’ll show you how to apply for-
matting to the log records for improved readability.

12.2.1 Categorizing application events with levels

Not all problems in software have the same level of priority. Some problems need to
be fixed now, while others can wait. We can apply the same logic to our logging sys-
tem. By using different logging levels, we can highlight the urgency/importance of
the problems. In listing 12.3, we call logger.warning to write a record, which is at the
warning level. As this section discusses, there are multiple levels higher than a warn-
ing, and you’ll learn how file handlers and logging work with levels.

 In Python’s logging module, we have access to five levels (DEBUG, INFO, WARNING,
ERROR, and CRITICAL) plus a base level (NOTSET), which has a numeric value of 0 and
isn’t typically used. Each level has a numeric value, and the higher the value, the more
serious the problem. Figure 12.2 shows these levels and the general guidelines regard-
ing what records should be captured at each level.

344 CHAPTER 12 Logging and exception handling

These five levels are defined as integer constants in the logging module; they have
numeric values from 10 to 50, in increments of 10. As shown in figure 12.1, these lev-
els are intended for different purposes, and you should respect the guidelines when
you use these levels. But I haven’t talked about how to use these levels.

 The first use of the levels is to set the level of a logger. Besides the file handlers
attribute, a logger has an important attribute called level. When we set a specific level,
such as INFO, of a logger, all logging records at the level of INFO or more serious
(meaning WARNING, ERROR, and CRITICAL) will be captured by the logger. Let’s see it in
action:

logger = logging.getLogger(__name__)
logger.setLevel(logging.WARNING)

print(logger.level, logging._levelToName[logger.level])
output: 30 WARNING

In this code snippet, we set the logger with the level of WARNING, and when we check
the logger’s level, it’s indeed WARNING. With the logger set at a level of WARNING, we
expect that only warnings, errors, and critical messages will be captured by the logger.
We can observe this effect in the following listing.

def logging_messages_all_levels():
 logger.critical("--Critical message")
 logger.error("--Error message")
 logger.warning("--Warning message")
 logger.info("--Info message")
 logger.debug("--Debug message")

logging_messages_all_levels()

Listing 12.5 Logging records at different levels

Severity

50

40

30

20

10

Numeric
values

DEBUG

INFO

WARNING

ERROR

CRITICAL

Logging
levels

Serious errors in core functionalities

Intended usages

Errors in some functionalities

Unexpected behaviors that can lead to errors

Informational for expected behaviors

For diagnosis of problems

Figure 12.2 The five levels of logging for different usages. There are five logging
levels—DEBUG, INFO, WARNING, ERROR, and CRITICAL—with increasing severity.

Gets the name
for the level

34512.2 How do I save log records properly?

log_records = check_log_content("taskier.log")
print(log_records)

output the following lines:
removed the task Laundry from the database
Just a random warning event.
--Critical message
--Error message
--Warning message

As shown in listing 12.5, we send five messages, each corresponding to the five levels.
From the printout, you can see that the INFO and DEBUG messages aren’t recorded in
the log file because the logger is set at the WARNING level.

 As you may have noticed, we use logger.critical to send a critical message, logger
.error to send an error message, and so on. It’s important to know these methods, as
we can create log records at different levels. The level settings directly determine how
the logger will capture records. File handlers can also accept level settings, as discussed
in the next section.

12.2.2 Setting a handler’s level

The other use of levels is setting the level of a handler. When we set the level of the log-
ger, the level applies at the logger level, which isn’t always desirable. A logger can have
multiple handlers, and we might apply different levels to these handlers so that they can
save logging records at their designated levels. This section discusses such usage.

 Let’s use file handlers as an example. Suppose that our task management application
has two log files, with one recording WARNING-level records and above, and the other
recording only CRITICAL records. The next listing shows a possible implementation.

logger.setLevel(logging.DEBUG)

handler_warning = logging.FileHandler("taskier_warning.log")
handler_warning.setLevel(logging.WARNING)
logger.addHandler(handler_warning)

handler_critical = logging.FileHandler("taskier_critical.log")
handler_critical.setLevel(logging.CRITICAL)
logger.addHandler(handler_critical)

logging_messages_all_levels()

warning_log_records = check_log_content("taskier_warning.log")
print(warning_log_records)
output the following lines:
--Critical message
--Error message
--Warning message

Listing 12.6 Setting levels to individual file handlers

Sets the logger’s level to DEBUG

Adds a handler at the WARNING level

Adds a handler at the CRITICAL level

346 CHAPTER 12 Logging and exception handling

critical_log_records = check_log_content("taskier_critical.log")
print(critical_log_records)
output the following line:
--Critical message

As shown in listing 12.6, we first set the logger’s level to DEBUG, which allows the logger
to catch any message at the DEBUG level or above. To show how we can customize the
levels at the handler level, I’m adding two file handlers to the logger, one at the
WARNING level and the other at the CRITICAL level.

 After we log multiple messages at all levels, we see that each file captures the records
at their designated levels. The taskier_critical.log file has only one CRITICAL
record, and the taskier_warning.log file has WARNING, ERROR, and CRITICAL
messages.

12.2.3 Setting formats to the handler

In the preceding section, you learned about initializing a logger and configuring the
logger with a file handler and the desired logging level. Another important configura-
tion is formatting the log records. Without proper formatting, it’s hard to locate the
problems. The goal of formatting log records is to highlight the key information in
each log record, such as the time of the event and the level of the message.

 Although we could have continued to configure a file handler for formatting, we
must read the log file to retrieve the log records, which is somewhat inconvenient for
tutorial purposes. Thus, we’ll use a stream handler instead. The stream handler out-
puts the log records in an interactive console, making it easier to see the results (see
the following listing).

import logging

logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)

logger.handlers = []

formatter = logging.Formatter("%(asctime)s [%(levelname)s] –

➥ %(name)s - %(message)s")

stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)

def log_some_records():
 logger.info("App is starting")
 logger.error("Failed to save the task to the db")
 logger.info("Created a task by the user")

Listing 12.7 Formatting log records for a stream handler

Retrieves the logger
and sets the level

Removes previously set handlers

Creates a formatter

Configures the handler
with formatter

34712.2 How do I save log records properly?

 logger.critical("Can't update the status of the task")

log_some_records()

output the following lines:
2022-05-18 10:45:00,900 [INFO] - __main__ - App is starting
2022-05-18 10:45:00,907 [ERROR] - __main__ - Failed to save the

➥ task to the db
2022-05-18 10:45:00,912 [INFO] - __main__ - Created a task by the user
2022-05-18 10:45:00,917 [CRITICAL] - __main__ - Can't update the

➥ status of the task

As shown in listing 12.7, the logging module has the Formatter class, which we can
use to create an instance for formatting. Please note that the formatter uses % style
instead of f-strings (section 2.1), per the requirement of the class. In essence, the for-
matter should include the time when the event is recorded, the level of the record,
and the message. It’s also useful to include the name of the module—in our case, the
__main__ module, because we run it in an interactive console.

 From the printout records, as you can tell, the readability of the log is much
improved. It’s much easier for us to focus on records, such as ERROR and CRITICAL,
because the records include the level. In the meantime, we have the timestamps of the
events, which we can use to correlate the events with applicable events outside our
application. If we see many errors at midnight, for example, is that because the server
is under maintenance at that time?

READABILITY Always format the log records to make it easier to locate perti-
nent problems.

12.2.4 Discussion

By now, you should have a good understanding of how logging works in Python. Fig-
ure 12.3 illustrates the general workflow of logging.

Retrieve logger

Set level
(optional)

Add file handler

Note:
1. Add multiple handlers if needed.
2. Set a level for each handler if needed.
3. Important! Set a formatter to the handler.

Log relevant
events

logger.critical -> CRITICAL messages
logger.error -> ERROR messages
logger.warning -> WARNING messages
logger.info -> INFO messages
logger.debug -> DEBUG messages

call logging.getLogger

Figure 12.3 The general process of logging. The first step is retrieving the logger by calling
getLogger. Then (optionally) we can set a level of the logger. To log records in a file, we should add a
file handler to the logger. We can call the corresponding method to record a message at a specific level.

348 CHAPTER 12 Logging and exception handling

We should be clear about what the five levels are and use them in an expected man-
ner. If some functionalities are essential to the normal execution of the software, for
example, you should log them as CRITICAL when they go wrong. Because a logger can
log only messages at levels equal to or above the set level, if we want to have more-
inclusive log records, it’s important to set the logger’s level to INFO or DEBUG so that
more records can be captured.

12.2.5 Challenge
John is new to event logging in a project. He has realized that he can set levels to both
the logger and the handler. Suppose that the logger has the level of WARNING, and the
handler has the level of DEBUG. What happens if he calls logger.info("It's an info
message.")? Will the handler capture this record?

HINT The message is checked against the logger’s level before the logger
sends it to a handler.

12.3 How do I handle exceptions?
When we discussed how to convert strings to obtain their underlying data in section
2.2, you learned that some strings represent numbers (such as "1" and "2") and that
we can call the int constructor with these strings to obtain these integer values. Sup-
pose that our task management app has a function that processes string data, which
represents a row of data in a text file that stores tasks. For simplicity, suppose that a
task has only title and urgency levels as its attributes:

from collections import namedtuple
Task = namedtuple("Task", ["title", "urgency"])
task_text0 = "Laundry,3"

def process_task_string0(text):
 title, urgency_str = text.split(",")
 urgency = int(urgency_str)
 task = Task(title, urgency)
 return task

processed_task0 = process_task_string0(task_text0)

assert processed_task0 == Task(title='Laundry', urgency=3)

In this code snippet, we define the process_task_string0 to process the text data
and create an instance of the Task class. Everything seems to be fine. But what can
happen if the text is corrupted as Laundry,3#? Let’s try it:

task_text1 = "Laudry,3#"
processed_task1 = process_task_string0(task_text1)
ERROR: ValueError: invalid literal for int() with base 10: '3#'

We can’t convert 3# to a valid integer by calling int("3#"), which leads to the Value-
Error exception.

Creates a named
tuple class

Unpacks the
created list object

34912.3 How do I handle exceptions?

 On many occasions, we can’t assume things will go as we expect, particularly when
dealing with blocks of code that require specific input to work. The int constructor,
for example, requires an integer or a string representing an integer value. In such a
case, we should handle the potential ValueError exception during the development
phase, preventing the error from stopping our application during its run time. This
section discusses the key aspects of exception handling in Python.

12.3.1 Handling exceptions with try. . .except. . .

When exceptions such as ValueError happen, your application stops running (unless
the exception handled as discussed in this section). This phenomenon—when soft-
ware stops execution abruptly—is commonly known as a crash. Software can crash in
different ways, some of which are outside the control of the software itself, such as
when the computer runs out of memory. When we expect that running a block of
code could result in specific exceptions, for example, we should account for this possi-
bility by handling the exceptions properly to prevent the application from crashing.
In this section, we’ll see the basic code blocks for exception handling.

 Exceptions, or errors, are a general concept in all programming languages. The stan-
dard way to handle exceptions in Python is to use the try...except... block. Many
other languages use try...catch... blocks. Figure 12.4 shows the general workflow
of the try...except... statement.

As shown in figure 12.4, Python tries to execute the code in the try clause. If every-
thing works well, it skips the except clause and continues to run the code outside the

try:
the code could raise an exception

except:
handle the exception

some other code

The try...except statement

The code following try...except...

If no exception occurs,
skip the except clause
and execute the code
following the
try...except... statement.

If an exception
occurs, execute
the except clause.

After executing the except clause,
execute the code following the
try...except... statement.

Figure 12.4 The workflow of a try...except statement. We include the code that potentially
raises an exception in the try clause. When such an exception is raised, the except clause gets
executed, and execution moves to the code outside the statement. If no exception is raised when
the code in the try clause is executed, Python skips the except clause.

350 CHAPTER 12 Logging and exception handling

try...except statement. If an exception does occur, the except clause gets executed,
and any code in the try clause following the code that raises the exception is skipped
too. The next listing shows an example of how try...except... works.

def process_task_string1(text):
 title, urgency_str = text.split(",")
 try:
 urgency = int(urgency_str)
 except:
 print("Couldn't cast the number")
 return None
 task = Task(title, urgency)
 return task

PEEK Don’t use a bare except statement. See section 12.3.2.

In listing 12.8, the process_task_string1 function includes the try...except...
statement. Specifically, in the try clause, we include code that potentially raises an
exception—in this case, the casting of the urgency_str to an integer. As an important
note, we don’t want to fill the try clause with lots of code because it makes it hard to
know which code can lead to an exception.

READABILITY The try clause should include only the code that can raise an
exception.

For simplicity and demonstration purposes, the except clause includes calling the
print function. It’s important to know that the except clause gets executed only if an
exception is caught. We can observe this effect in the following code snippet:

processed_task1 = process_task_string1(task_text1)
output: Couldn't cast the number

assert processed_task1 is None

We return None in the except clause, and we can verify it by comparing processed_
task1 with None. If the execution of the try clause doesn’t raise any exception, the
except clause is skipped, and the code outside the try...except... statement con-
tinues to execute:

processed_task0 = process_task_string1(task_text0)

assert processed_task0 == Task(title='Laundry', urgency=3)

QUESTION Do you think the comparison works with custom class objects
instead of a named tuple class like Task in this example?

Listing 12.8 Using try...except in a function

35112.3 How do I handle exceptions?

As you can see, when task_text0 contains the proper data to construct an instance of
the Task class, everything works as it does in the process_task_string0 function, as
though the try...except... statement doesn’t exist in process_task_string1!

12.3.2 Specifying the exception in the except clause

In listing 12.8, the except clause uses a bare except by the keyword itself. I don’t rec-
ommend this usage, however. Instead, the except clause allows us to specify what
exception we’re handling in the clause. As covered in this section, we should be
explicit about the exception to catch.

 Specifying the exception is necessary; otherwise, the bare except clause will catch
all the exceptions, even those that you don’t expect. Suppose that we have a pending
task that is to be updated after casting the level of urgency:

def process_task_string2(text):
 title, urgency_str = text.split(",")
 try:
 urgency = int(urgency_str)
 pending_task.urgency = urgency
 except:
 print("Couldn't cast the number")
 return None
 task = Task(title, urgency)
 return task

NOTE We typically minimize the code in the try clause. I included an extra
line of code that results in an exception for teaching purposes only to illus-
trate the fact that we may have to handle multiple exceptions.

The preceding try clause has an extra line of code: pending_task.urgency =
urgency. You may have realized that this code would result in a NameError exception
because we never define a variable with this name, and it’s not available in any name-
space. Observe this effect in the following code snippet:

pending_task.urgency = 3
ERROR: NameError: name 'pending_task' is not defined

Thus, when we call process_task_string2, we could have both ValueError and
NameError exceptions, and the bare except will handle both exceptions without any
differentiation:

process_task_string2("Laundry,3")
output: Couldn't cast the number

We should expect task_text0 to get processed without any problems, and we should
get a casted urgency level of 3. But the printout message suggests that the number
couldn’t be casted, suggesting that something is wrong with the casting.

352 CHAPTER 12 Logging and exception handling

 To avoid ambiguity, never use a bare except; instead, be explicit about the excep-
tion. In this case, we already know that ValueError is possible; thus, we specify this
exception following the except keyword. This clause gets executed if the ValueError
exception is raised because the try clause ran, as the next listing shows.

def process_task_string3(text):
 title, urgency_str = text.split(",")
 try:
 urgency = int(urgency_str)
 pending_task.urgency = urgency
 except ValueError:
 print("Couldn't cast the number")
 return None
 task = Task(title, urgency)
 return task

With the updated function, the code shows the printout message only if a ValueError
exception is caught:

process_task_string3("Laundry,3#")
output: Couldn't cast the number

Because the int constructor can’t cast "3#" to an integer, the ValueError exception is
handled as expected. Note that when we call this function with a string that is
expected to produce a correct instance of Task, we should still see a NameError
because we don’t have code to handle it:

process_task_string3("Laudry,3")
ERROR: NameError: name 'pending_task' is not defined

12.3.3 Handling multiple exceptions

We know that code executes linearly, and after the casting operation int(urgency_
str), the execution continues to pending_task.urgency = urgency, which should
raise a NameError exception. As of now, that exception is not handled. We can handle
multiple exceptions in the try...except... statement.

 We have two ways to handle multiple exceptions. When the exceptions are unre-
lated, we should use multiple except clauses, with each except handling a distinct
kind of exception, as shown in the following listing.

def process_task_string4(text):
 title, urgency_str = text.split(",")
 try:
 urgency = int(urgency_str)

Listing 12.9 Specifying the exception

Listing 12.10 Using multiple except clauses

35312.3 How do I handle exceptions?

 pending_task.urgency = urgency
 except ValueError:
 print("Couldn't cast the number")
 return None
 except NameError:
 print("You're referencing an undefined name")
 return None
 task = Task(title, urgency)
 return task

As shown in listing 12.10, we update the function by adding an extra except clause
that handles the potential NameError exception.

NOTE Our code includes these seemingly “silly” mistakes for demonstration
purposes. Some of the mistakes pertain to the quality of the code itself, and
these mistakes should be fixed by changing the code instead of handling the
exception.

With this update, we can verify that this exception is handled, as shown by the print-
out message:

process_task_string4("Laundry,3")
output: You're referencing an undefined name

MAINTAINABILITY Use separate except clauses for exceptions that are unre-
lated. If the exceptions are semantically related, you can group them by using
a single except clause. If you prefer, however, you can still handle these
exceptions separately.

Besides using multiple except clauses, you can specify multiple exceptions in a single
except clause to handle multiple exceptions. The next listing shows an example.

def process_task_string5(text):
 title, urgency_str = text.split(",")
 try:
 urgency = int(urgency_str)
 pending_task.urgency = urgency
 except (ValueError, NameError):
 print("Couldn't process the task string")
 return None
 task = Task(title, urgency)
 return task

In this example, we list both exceptions as a tuple object in a single except clause.
This way, if either exception is caught, the same except clause gets executed:

process_task_string5("Laundry,3")
output: Couldn't process the task string

Listing 12.11 Multiple exceptions in an except clause

Expect the NameError.

354 CHAPTER 12 Logging and exception handling

process_task_string5("Laundry,3#")
output: Couldn't process the task string

We tried two different strings, with "Laundry,3" raising the NameError exception and
"Laundry,3#" raising the ValueError exception. Please note that when an exception
is caught, the execution jumps to the except clause. In the latter case, when running
int(urgency_str) raises the ValueError, we wouldn’t expect the NameError too.

12.3.4 Showing more information about an exception

The except clause handles the specified exception when such an exception is caught.
In the code examples that I’ve used so far, I’ve printed out messages as feedback on
the exception. But these messages lack details about the exceptions, and I could show
users more specific information.

 To obtain more information about an exception that is caught, we can assign the
exception to a variable, using the except SpecificException as var_name syntax. We
can update our function to take advantage of this feature as shown in the next listing.

def process_task_string6(text):
 title, urgency_str = text.split(",")
 try:
 urgency = int(urgency_str)
 except ValueError as ex:
 print(f"Couldn't cast the number. Description: {ex}")
 return None
 task = Task(title, urgency)
 return task

As highlighted in listing 12.12, we assign the caught ValueError exception as ex so that
we can use this variable in the clause. For simplicity, we’ll print out only the ValueError
exception:

process_task_string6("Laundry,3#")
output the following line:
Couldn't cast the number. Description: invalid literal

➥ for int() with base 10: '3#'

From the message, we know that the casting fails because "3#" can’t be converted to
an integer number. Please note that I call the print function to show a detailed
description of the exception for teaching purposes. For a frontend application, such
as the task management app, we can display a WARNING message to notify users of this
mistake, and they can correct it accordingly.

Listing 12.12 Creating a variable from the exception

Expect the ValueError.

35512.4 How do I use else and finally clauses in exception handling?

12.3.5 Discussion

Handling exceptions properly is key to improving the user’s experience with your
applications. We can’t overlook the consequences of exceptions; they’ll crash your
applications when they’re not handled properly. Thus, during the development phase
of our applications, we should be cautious about code that can easily go wrong. Don’t
be concerned about using try...except... statements in code. Although they may
appear to lengthen the code, they make applications more robust; they can still run
even when exceptions occur because they’re handled properly.

12.3.6 Challenge

Bob is an experienced programmer who uses best practices in his code. He under-
stands that when he writes a try...except... statement, he should be explicit about
the exact exceptions that he’s handling. Many kinds of exceptions exist. How can he
find out which exception is appropriate for a specific use case during the develop-
ment phase? In listing 12.9, for example, how can he know that he needs to handle a
possible ValueError exception?

HINT Besides looking up information about exceptions in the official Python
documentation, you can run the potentially problematic code to see what
exceptions you’re getting; then you can handle them accordingly.

12.4 How do I use else and finally clauses in exception handling?
The most basic form of handling exceptions in Python is using the try...except...
statement. This statement consists of one try clause and at least one except clause.
The following example is part of listing 12.12:

try:
 urgency = int(urgency_str)
except ValueError as ex:
 print(f"Couldn't cast the number. Description: {ex}")
 return None
task = Task(title, urgency)

We know that the code task = Task(title, urgency) runs after the try...except...
statement. Notably, the except clause includes a return statement (return None). If I
didn’t include it, we would encounter the UnboundLocalError exception due to run-
ning task = Task(title, urgency) without defining urgency in the except clause.
But we know that the code task = Task(title, urgency) is relevant only if the code in
the try clause runs without raising exceptions. Is there a better way to make clear that
we want some code to run only if there are no exceptions? This question leads to the
topic of the next section: adding an else clause to the try...except... statement.
Section 12.4.2 discusses the finally clause, another optional component in the full
try...except... statement.

356 CHAPTER 12 Logging and exception handling

12.4.1 Using else to continue the logic of the code in the try clause
In section 12.3, I mentioned that it’s critical to minimize the length of the try clause
by including only the code that can raise exceptions. When the try clause completes
its execution, Python runs the code after the try...except... statement. The code
after the statement, however, makes sense only if executing the code in the try clause
doesn’t raise any exceptions. To implement this feature, we should use the else clause
on top of the try and except clauses.

 In the try...except... statement, the try keyword means that we’re going to try
some code that may raise exceptions, and the except keyword means that we’re going
to handle the exceptions we’re catching. How about the term else? This name may
sound confusing. (What else?) To understand it, we must acknowledge that the entire
try...except...else... statement aims to handle exceptions. More specifically, one
objective is to catch such exceptions. Thus, it makes sense to say that if we can catch
the exception, we’ll handle it; otherwise, we’ll continue execution. The else clause
does the job for the “otherwise” portion. The next listing shows an example.

def process_task_string7(text):
 title, urgency_str = text.split(",")
 try:
 urgency = int(urgency_str)
 except ValueError as ex:
 print(f"Couldn't cast the number. Description: {ex}")
 return None
 else:
 task = Task(title, urgency)
 return task

As shown in listing 12.13, we include an else clause after the except clause. In the
else clause, we create an instance object of the Task class (defined at the beginning
of section 12.3) using title and urgency. We should expect to obtain an instance
object if we don’t have the ValueError exception:

processed_task7 = process_task_string7("Laundry,3")

assert processed_task7 == Task("Laundry", 3)

As shown in this code snippet, we obtain an instance class of the Task class, which sug-
gests that the code in the else clause executes successfully. What happens when a
ValueError exception is raised? Observe the result:

processed_task = process_task_string7("Laundry,3#")
output the following line:
Couldn't cast the number. Description: invalid literal for

➥ int() with base 10: '3#'

print(processed_task)
output: None

Listing 12.13 Adding the else clause to the try...except statement

You can omit this optional
return None statement.

35712.4 How do I use else and finally clauses in exception handling?

The first thing to note is that the except clause executes because of the caught Value-
Error exception. The other thing to note is that the return value of calling process_
task_string7 is None, which suggests that the code in the else clause doesn’t run
when the except clause runs and returns None.

12.4.2 Cleaning up the exception handling with the finally clause
As you saw in section 12.4.1, only one of the except and else clauses runs. If the try
clause raises exceptions, the except clause (handled exceptions) runs; if the try
clause raises no exceptions, the else clause runs. Sometimes, however, we have some
code that we’d like to run regardless of the exception status. In the function that pro-
cesses the task string, for example, we may want to notify users that the processing has
been done, whether or not it was successful. That task is exactly what the finally
clause can do, as we’ll see in this section. Figure 12.5 provides a graphic overview of
the four possible clauses in exception handling.

As indicated by its name, the finally clause should be placed at the end of the
try...except... statement (figure 12.5). If you use an else clause, the finally clause
should follow it; otherwise, it follows the except clause. The code in the finally clause
runs no matter what the exception-raising status is. The next listing shows how finally
works by continuing the example of processing a string that stores a task’s data.

def process_task_string8(text):
 title, urgency_str = text.split(",")
 try:
 urgency = int(urgency_str)
 except ValueError as ex:

Listing 12.14 Using the finally clause in the try...except statement

try:
the code could raise an exception

except SpecificException:
handle the exception

else:
runs when no exception

finally:
runs regardless of exception

If no exception
occurs, skip to
the else clause.

Run the finally
clause next.

If an exception
occurs, run the
except clause.

Run the finally
clause next.

Figure 12.5 The four clauses in a complete try...except...else...finally... statement.
The try clause includes the code that could raise an exception. The except clause includes the
code that handles the possible exception. The else clause runs only if no exceptions are raised. The
finally clause runs after the except clause or the else clause.

358 CHAPTER 12 Logging and exception handling

 print(f"Couldn't cast the number. Description: {ex}")
 return None
 else:
 task = Task(title, urgency)
 return task
 finally:
 print(f"Done processing text: {text}")

In listing 12.14, we add the finally clause to the try...except... statement. For
simplicity, we print out a message showing that the processing is done. This finally
clause should run whether or not the ValueError exception is raised:

task_no_exception = process_task_string8("Laundry,3")
output the following line:
Done processing text: Laundry,3

task_exception = process_task_string8("Laundry,3#")
output the following lines:
Couldn't cast the number. Description: invalid literal for int()

➥ with base 10: '3#'
Done processing text: Laundry,3#

In both invocations of the process_task_string8 function, we see that the finally
clause executes by printing out the f-string message. You may wonder what the point
of using the finally clause is. If it’s going to run regardless of exception status, why
don’t we place it outside the try...except... statement? Because we know that code
typically executes linearly, by placing it outside the statement, we guarantee that it will
follow the except or else clause.

 As you may notice, I used the word typically because an atypical rule applies to the
finally clause. If the try clause reaches a break, continue, or return statement, the
finally clause runs before executing the break, continue, or return statement. This
rule is necessary to ensure that the code in the finally clause runs, because in a typi-
cal scenario, these statements end the current execution and skip the remaining code.
We can observe this effect in the following example:

def process_task_string9(text):
 title, urgency_str = text.split(",")
 try:
 urgency = int(urgency_str)
 task = Task(title, urgency)
 return task
 except ValueError as ex:
 print(f"Couldn't cast the number. Description: {ex}")
 return None
 finally:
 print(f"Done processing text: {text}")

task = process_task_string9("Laundry,3")
output: Done processing text: Laundry,3

assert task == Task("Laundry", 3)

35912.4 How do I use else and finally clauses in exception handling?

As highlighted in the code snippet, we include a return statement in the try clause.
Unlike in other scenarios, the return statement ends a function’s execution immedi-
ately. Here, we see that the print function is called in the finally clause, supporting
our earlier notion that the finally clause runs regardless of the exception status and
even if the try or except clause contains a return statement. Because a finally
clause executes whether or not an exception is raised, we often use a finally clause
when we deal with shared resources, such as files and network connections. We want
to release those resources (in the finally clause) whether or not the desired opera-
tion is done (in the try clause) or an exception is raised (in the except clause).

12.4.3 Discussion

Of the four clauses in the exception handling feature, you should always use try and
except because they constitute the fundamentals of handling an exception. The try
clause “tries” to run the code, as it may raise exceptions, and the except clause
catches and handles the exceptions. Although the else and finally clauses are
optional, they have their use cases, which you should know.

12.4.4 Challenge

We know that in the presence of the finally clause, if the try clause includes a
return statement, it still runs the code in the finally clause before running the
return statement in the try clause. What’s the return value of calling the process_
task_challenge function in the following example?

def process_task_challenge(text):
 title, urgency_str = text.split(",")
 try:
 urgency = int(urgency_str)
 task = Task(title, urgency)
 return task
 except ValueError as ex:
 print(f"Couldn't cast the number. Description: {ex}")
 return None
 finally:
 print(f"Done processing text: {text}")
 return "finally"

processed = process_task_challenge("Laundry,3")
print(processed)

HINT Because the code in the finally clause runs before the return state-
ment in the try clause, it ends the function immediately, as the finally
clause includes a return statement itself. The return statement in the try
clause is skipped.

360 CHAPTER 12 Logging and exception handling

12.5 How do I raise informative exceptions with custom
exception classes?
When we learn to program in Python, we make various kinds of mistakes. Some errors
are due to syntax errors, such as missing the colon in the if...else... statement.
When we have a basic understanding of all the syntaxes, we may encounter other
errors related mostly to the correct use of specific features from a semantic or logical
perspective. As extensively used in sections 12.3 and 12.4, ValueError is such an error.
As another example, when we try to divide a number by zero, we encounter the
ZeroDivisionError:

int("3#")
ERROR: ValueError: invalid literal for int() with base 10: '3#'

1 / 0
ERROR: ZeroDivisionError: division by zero

In both cases, the error message not only tells us the specific exception name, but also
supplies a description of the error, which helps us figure out what we did incorrectly.
When we’re creating a library or package for other developers to use, it’s important to
display a proper error message to users so that they know how to debug their code or
handle the exception. In this section, you’ll learn how to raise informative exceptions
with custom exception classes.

12.5.1 Raising exceptions with a custom message

So far, we’ve seen the exceptions raised when Python evaluates our code. We haven’t
learned how to raise exceptions ourselves, however. In this section, I’ll show how we
can raise exceptions and how to provide custom messages for exceptions.

CONCEPT When we “produce” an exception in the code to indicate some
problems, we say that we raise an exception. Some other languages use throw
for this purpose.

I’ve been using raise to state that some code produces an exception. Not surprisingly,
raise is a keyword in Python for raising exceptions. When we run the following code
in the console, we should also see the traceback:

>>> raise ValueError
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError

>>> raise ZeroDivisionError
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError

36112.5 How do I raise informative exceptions with custom exception classes?

We raise an exception by using the format raise ExceptionClass. ValueError and
ZeroDivisionError are two exception classes. Strictly speaking, when we raise an
exception, we’re raising an instance object of the exception class; thus, the format of
this example is syntactic sugar for raise ExceptionClass(), in which Exception-
Class() creates an instance object of the class.

CONCEPT In programming, syntactic sugar refers to usages that are simple but
perform the same operations as counterparts that are more complicated.

It’s also true that when we handle an exception, we’re dealing with an instance of an
exception class. Observe the effect in this example:

try:
 1 / 0
except ZeroDivisionError as ex:
 print(f"Type: {type(ex)}")
print(f"Is an instance of ZeroDivisionError?

➥ {isinstance(ex, ZeroDivisionError)}")

output the following lines:
Type: <class 'ZeroDivisionError'>
Is an instance of ZeroDivisionError? True

As shown in this example, we know that 1 / 0 leads to raising the ZeroDivisionError
exception, and we handle it in the except clause. From the printout message, we know
that the raised exception is indeed an instance object of the ZeroDivisionError class.

 Running raise ValueError doesn’t seem to be useful. If you recall, when we call
int("3#"), the error message explicitly tells us the cause of this exception: Value-
Error: invalid literal for int() with base 10: ' 3#'. To supply a custom message
to the exception, we use the format raise ExceptionClass("custom message"). A few
examples follow:

raise ValueError("Please use the correct parameter.")
ERROR: ValueError: Please use the correct parameter.

code_used = "3#"
raise ValueError(f"You used a wrong parameter: {code_used!r}")
ERROR: ValueError: You used a wrong parameter: '3#'

When we supply a custom message to the exception class constructor, the raised
exception is accompanied by the message, which informs users of the details of the
exception. Please note that this message should be concise; we don’t want to over-
whelm users with a chunky description that may only confuse them.

READABILITY When you supply custom messages to an exception class, be
concise.

Uses the repr !r
conversion to
make a string
within quotes

362 CHAPTER 12 Logging and exception handling

12.5.2 Preferring built-in exception classes

When we discussed data models in the early chapters, you learned about the built-in
data types, such as str (chapter 2), list, and tuple (chapter 3) before you learned
about custom classes (chapters 8 and 9). The reason for this order is that built-in data
types are the most basic form for representing data, and all Python programmers
understand them well. We can apply the same philosophy to exceptions. When we
need to raise exceptions, we prefer using built-in exception types.

 We know that exceptions are raised by creating instance objects from exception
classes. Thus, to use built-in exception classes, we need to know the most common
ones. Don’t be afraid of not knowing them; everyone who’s learning to code makes all
kinds of mistakes that raise exceptions. You’ll gradually learn which exception is asso-
ciated with what errors in your code. Figure 12.6 provides an overview of common
exceptions.

BaseException is the base class for all built-in exceptions, including system-exiting
exceptions such as KeyboardInterrupt and SystemExit. As a rule, we should not
inherit this class to define our own custom exception classes; instead, we should use
the Exception class (see section 12.5.3) to avoid catching system-exiting exceptions.
Common exception classes that we’ve encountered, such as ValueError and Name-
Error, are direct or indirect subclasses of the Exception class.

 Although it’s not difficult to define custom exception classes, when we think of
raising an exception, we should first consider the built-in exception classes because
they’re better known by ordinary developers. Consider a simple example:

BaseException

Exception

KeyboardInterrupt

NameError When the name, such as a variable or a function, is not found

LookupError
KeyError When using a key that doesn’t exist in a dictionary

IndexError When using a wrong index for a sequence

ArithmeticError ZeroDivisionError When trying to divide a number by zero

AttributeError When an attribute doesn’t exist

AssertionError When the assert statement fails

ValueError When using a correct type, but the value is incorrect

TypeError When using an inappropriate type of data

Figure 12.6 The common built-in exception classes. The BaseException class is the superclass for all other
exception classes. Most exception classes that we interact with are subclasses of the Exception class.

36312.5 How do I raise informative exceptions with custom exception classes?

class Task:
 def __init__(self, title):
 self.title = title

In this code snippet, we define the Task class with a title attribute, which is a string.
As of now, we don’t force users to use a str object to instantiate the Task class. If we do
want to enforce this requirement, we can include type checking in our code and raise
an exception when the supplied argument isn’t a str object, as shown in the next listing.

class Task:
 def __init__(self, title):
 if isinstance(title, str):
 self.title = title
 else:
 raise TypeError("Please instantiate the Task
 ➥ using string as its title")

task = Task(100)
ERROR: TypeError: Please instantiate the Task using string as its title

By using the built-in TypeError in listing 12.15, we make it easier for users to under-
stand that they used a wrong type for the argument.

READABILITY Prefer using built-in exception classes when you raise excep-
tions, as they’re more familiar to users.

12.5.3 Defining custom exception classes

When you create your own Python package, it’s common to define custom exception
classes if the built-in ones can’t meet your needs. In this section, I’ll show you the best
practices for defining custom exception classes.

 As mentioned briefly in section 12.5.2, our custom exception classes should inherit
from the Exception class. For a custom package, the best practice is to create a base
exception class for your package and then create additional exception classes by
inheriting your base exception class. Creating a base exception for your package
allows users to handle all the exceptions of your package, should such a need arise.

 Create a base exception class for your package if you need to define your own cus-
tom exception classes, which should inherit from the base class. Suppose that for the
task management app, we’re making the app a package that other developers can use
to build their own apps. They can use the Task class as the data model to build another
app by using a different frontend library, for example. For this package, which might be
named taskier, we can define a base exception class named TaskierError:

class TaskierError(Exception):
 pass

Listing 12.15 Creating a class that raises an exception in its constructor

364 CHAPTER 12 Logging and exception handling

In this package-specific base exception class, we don’t need to have any implementa-
tion details. We can simply use a pass statement to fulfill the syntax requirement. (A
class’s body can’t be empty.)

 For the taskier package, we can define more specific exception classes. We can
allow the users to upload a CSV file from their computers to retrieve the data from
multiple tasks, for example. The following listing defines an exception requiring the
file to have the .csv extension.

class FileExtensionError(TaskierError):
 def __init__(self, file_path):
 super().__init__()
 self.file_path = file_path

 def __str__(self):
 return f"The file ({self.file_path}) doesn't appear to be a
 ➥ CSV file."

In another part of our package
from pathlib import Path

def upload_file(file_path):
 path = Path(file_path)
 if path.suffix.lower() != ".csv":
 raise FileExtensionError(file_path)
 else:
 print(f"Processing the file at {file_path}")

Notice two significant things in listing 12.16:

 The custom exception class can take additional arguments for instantiation. Here, we
include the file_path argument (note that the message for creating an excep-
tion is optional) because we want to show readers that the file at the specified
path isn’t in the correct form.

 We override the __str__ method. As you may recall from section 8.4, this method is
called when we print an instance object.

In another part of our package, we use this exception class. As shown in the preceding
code, the upload_file function checks the file’s extension (section 11.5) and raises
the exception when the extension is incorrect.

 When another developer uses our package, they may build a control widget, allow-
ing users to upload a file. They may have the following functionality in their app:

def custom_upload_file(file_path):
 try:
 upload_file(file_path)
 except FileExtensionError as ex:
 print(ex)

Listing 12.16 Defining a custom exception class

36512.5 How do I raise informative exceptions with custom exception classes?

 else:
 print("Custom upload file is done.")

custom_upload_file("tasks.csv") #A Calling the function with a CSV file
output the following lines:
Processing the file at tasks.csv
Custom upload file is done.

custom_upload_file("tasks.docx") #B Calling the function with a docx file
output: The file at tasks.docx doesn't appear to be a CSV file.

In this example, we call the custom function with two different types of files: CSV files
and Microsoft Word document files. As you can see, when we don’t use the correct
file, the except clause catches the FileExtensionError and prints the message that
we implement in the __str__ class.

 We can define additional custom exception classes in our package if necessary. We
can define an exception class called FileFormatError to use when the file doesn’t
contain the desired data, for example. As another example, we can define an excep-
tion class called InputArgumentError to use when developers use wrong arguments
for critical functions. Both classes should inherit the TaskierError. Figure 12.7 shows
the hierarchy of exception classes in a custom package.

12.5.4 Discussion

Although you can define custom exception classes to raise informative exceptions,
you should prefer using the built-in exception classes whenever possible. If you’re cre-
ating a custom package or library, however, you may find that it makes more sense to
create your own custom exception classes to produce more specific error messages,
thus helping the users of the package (developers) debug the problems. Notably, you
should define a package-specific base exception class first. These custom exception
classes behave like regular custom classes, and you can override special methods such
as __str__ if necessary.

Exception

TaskierError

FileExtensionError FileFormatError InputArgumentError

Figure 12.7 The hierarchy of custom exception classes in a custom package. We create
a package-specific base exception class by inheriting the Exception class. From this
base class, we can define multiple exception classes that raise specific exceptions.

366 CHAPTER 12 Logging and exception handling

12.5.5 Challenge

In listing 12.15, the Task class can raise the TypeError exception in its constructor.
Can you write some code that handles this exception by using the try...except...
else...finally... statement?

HINT You should call the constructor in the try clause and handle the possi-
ble TypeError exception.

Summary
 It’s best practice to call getLogger to retrieve the logger for your module, which

guarantees that you obtain the same logger instead of creating multiple ones.
 For long-term storage purposes, it’s common to attach a file handler to a logger

so that log records can be saved to files.
 During the development phase, it’s helpful to show the logs in a console. You

can also add a stream handler to the logger.
 To better track the severity of log records, you should categorize those records

with different levels: DEBUG, INFO, WARNING, ERROR, and CRITICAL.
 You can set the logger and the handlers with a proper logging level so that they

track records at the desired level.
 For readability, it’s always a good idea to format the log records. Key informa-

tion includes the timestamp, the level of severity, the applicable module, and
the message.

 The try...except... statement is the basic format for handling exceptions in
Python. The try clause should include only the code that can raise exceptions.
You should be explicit about the exceptions that you’re handling in the except
clause.

 Although you can bundle multiple exceptions as a tuple object in a single
except clause, I recommend that you use multiple except clauses instead of
one except clause—unless the exceptions are indeed closely related.

 The else clause runs when the try clause doesn’t raise exceptions. The
finally clause can be used to clean up exception handling; it runs no matter
whether an exception is raised in the try clause.

 You can raise exceptions by using the built-in exception classes and supply cus-
tom messages to these exceptions to be more informative.

 When you define custom exception classes, remember that you should inherit
the Exception class but not the BaseException class.

 If your package includes custom exception classes, it’s best practice to define a
package-specific base exception class from which you define additional custom
exception subclasses.

367

Debugging and testing

Completing a programming project from scratch to production is like building a
house. After you lay out the foundation, set up the frames and walls, complete the
roof, and install the doors and windows, you feel that most of the house is done.
But when you proceed to interior decoration, such as flooring, lights, furniture,
and closets, you’ll realize that it’s still far from completion.

 You’ve worked hard on your application for three months, feeling that you’ve
completed 90% of the project. Before you push it into production, however, you
must ensure its performance by debugging and testing it rigorously. It wouldn’t sur-
prise me if the last estimated 10% costs you another three months—the same
amount of time you needed for the first 90%. The debugging and testing phase is
analogous to the interior decoration of a house—it’s so essential that your applica-
tion can’t live without it—and you don’t want to hear your client’s complaints after
launch day. Thus, let’s tackle the debugging and testing jobs while the application

This chapter covers
 Reading tracebacks

 Debugging your application interactively

 Testing functions

 Testing a class

368 CHAPTER 13 Debugging and testing

is still in our possession. In this chapter, you’ll learn the essential techniques that you
can apply to conduct a rigorous final touch-up of your application: debugging and
testing.

13.1 How do I spot problems with tracebacks?
When our code fails to run due to exceptions, Python not only tells us about the
exception, but also provides other information about where the exception is raised.
Suppose that when we defined the Task class, we misspelled a method call. When we
create an instance object of the Task class and call the instance method update_
urgency, we’ll encounter an AttributeError exception. Try running the code in the
next listing in a console.

class Task:
 def __init__(self, title, urgency):
 self.title = title
 self.urgency = urgency

 def _update_db(self):
 # update the record in the database
 print("update the database")

 def update_urgency(self, urgency):
 self.urgency = urgency
 self.update_db()

task = Task("Laundry", 3)
task.update_urgency(4)
output the following error:
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 10, in update_urgency
AttributeError: 'Task' object has no attribute 'update_db'

NOTE When you submit your code to a console, empty lines are removed, so
you see a mismatch between the line number in the traceback and the one in
the file. Because we often run code in the console and in a file, I’ll show you
the tracebacks in both modes in this section.

In most previous code snippets involving exceptions, I showed only the last line of the
exception. Here, I’m showing the entire output message of the exception. Besides the
exception line, the output has information such as the involved method name and
line number, all of which can help us locate the buggy problem. These pieces of infor-
mation in the output are known as tracebacks. Using tracebacks to locate a problem is
the first step in debugging our code. In this section, you’ll learn how to read trace-
backs and how to use them to locate problems in our code.

Listing 13.1 Showing a traceback when running some code

The line
number is
10 without

counting
empty
lines.

The line of code that
raises the exception

36913.1 How do I spot problems with tracebacks?

13.1.1 Understanding how a traceback is generated

Tracebacks are detailed descriptions of how an exception is raised. In chapter 12, we
learned about reading a traceback’s last line, which consists of an exception’s type and
description. Here, let’s step back to understand how a traceback is generated, as it’s the
basis for us to read tracebacks correctly and collect the information about the exception.

 During the running of our application, events happen continuously, such as creat-
ing instances, accessing their attributes, and calling their methods. When something
doesn’t work as expected, our application may encounter an exception and stop exe-
cution. Although running a specific line of code, such as task.update_urgency(4) in
listing 13.1, appears to be the direct cause of our application’s termination, the line
may not be the one to blame; the exception may be due to an underlying operation
somewhere else. Thus, without resorting to tracebacks, we must understand the gen-
eral execution process to know how an exception is raised.

 Let’s use the code in listing 13.1 as an example. Figure 13.1 is a simple diagram of
the essential execution steps.

The code in listing 13.1 consists of four major steps:

 Defining the Task class
 Creating an instance of Task
 Calling the update_urgency method
 Using the update_urgency method’s definition in the class

As annotated in listing 13.1, task.update_urgency(4) leads to the exception, and not
because calling the method itself is wrong. Under the hood, something is wrong with
the method definition. As you may notice in listing 13.1, update_urgency incorrectly
calls update_db instead of _update_db, as it’s supposed to do.

 These four steps represent a snapshot of execution sequences when running a pro-
gram, which involves thousands of continuous operations. From a general perspec-
tive, we can build an operation tree (figure 13.2). Each box represents a distinct
operation. Such an operation can be referred to as a call, which corresponds to the

Create an
instance of Task.

init

Call the update_urgency
method on the instance.

_update_db

update_urgency self.urgency= urgency
self.update_db()

Define the Task class.

Use the update_urgency
method in the Task.

1

3

4

2

Figure 13.1 The execution process
of the code in listing 13.1. The first
step is defining the Task class. The
second step is creating an instance
of the class. The third step is calling
the update_urgency method. The
fourth step is using the method’s
definition in the class.

370 CHAPTER 13 Debugging and testing

term in a traceback’s title: Traceback (most recent call last). These operations
form the call stack, which tracks the progression of the application’s execution.

CONCEPT A call stack tracks the sequence of execution from the current call
to the underlying operations that are required to complete the execution.
These sequential operations form the call stack.

Tracebacks are built on the call stack. They start with the call to the line of code that
ultimately leads to the exception and record the operation (or the call) that the line
of code invokes. If that operation doesn’t raise the exception, tracebacks continue to
record the next operation until they locate the code that raises the exception. Figure
13.2 shows a schematic representation of a traceback.

13.1.2 Analyzing a traceback when running code in a console

In section 13.1.1, we examined how a traceback is generated under the hood. Now
we’re ready to find out what elements constitute the traceback generated by running
code in a console.

 Let’s continue with the traceback shown in listing 13.1. Figure 13.3 shows the
essential elements of a traceback that is generated by running code in a console.

Operation X

Operation B

...

Operation A

Current operation The line of code that ultimately
leads to the exception

The line of code that raises
the exception

Intermediate operations
Figure 13.2 A schematic representation of
building a traceback. A traceback starts with
the line of code that ultimately leads to the
exception and follows the operations involved
until arriving at the line of code that raises the
exception directly.

Traceback (most recent call last):

File ''<stdin>'', line 1, in <module>

File ''<stdin>'', line 10, in update_urgency

AttributeError: 'Task' object has no attribute 'update_db'

The console

Line number

The buggy code

The raised exception

The code that ultimately
leads to the exception

Figure 13.3 Highlighting the key elements of a traceback generated in a console. Each line represents
a distinct operation, as depicted in figure 13.2. For each line, the key elements include the source file
of the operation, the line number, and the buggy code. The last line shows the exception.

37113.1 How do I spot problems with tracebacks?

Each line in the traceback represents an operation or a call. The first line is the line of
code that ultimately leads to the exception: task.update_urgency(4). Let’s take a
closer look at the second line to examine the key elements. Because we run the code in
listing 13.1 in a console, the source of the involved operation is <stdin>, which
represents the standard input: the console. Line 10 (annotated in listing 13.1; the line-
number counts don’t include the empty lines when the code is submitted in the console)
is the line where the exception is raised during execution of the update_urgency
method. Specifically, this line is self.update_db(), which can’t work because the class
doesn’t have the update_db instance method; therefore, the AttributeError exception
is raised, as shown in the last line.

13.1.3 Analyzing a traceback when running a script

In section 13.1.2, we focused on analyzing a traceback created by running code in a
console. From a more general perspective, we often run our code as a script by using a
command-line tool. In this section, we’ll see more interesting stuff in tracebacks.

 To maintain some consistency, save the code in listing 13.1 to a script file named
task_test.py. Watch for one change toward the end of the code snippet:

class Task:
 def __init__(self, title, urgency):
 self.title = title
 self.urgency = urgency

 def _update_db(self):
 # update the record in the database
 print("update the database")

 def update_urgency(self, urgency):
 self.urgency = urgency
 self.update_db()

if __name__ == "__main__":
 task = Task("Laundry", 3)
 task.update_urgency(4)

As you can see, instead of creating an instance and calling the method directly, as in
listing 13.1, we now include the pertinent code in a conditional statement, which runs
only if the special attribute __name__ is equal to "__main__". It’s a best practice to
include this statement, which allows you to run the file as a script and as a module.
When you run the file as a script, the special attribute __name__ has a value of
"__main__", so the statement evaluates as True and runs the included operations. In
the meantime, when you import the file as a module, the module’s name is the file’s
name, which isn’t "__main__", so you can’t run the included code unexpectedly. In
the remaining sections, we’ll include the if statement in our script files.

372 CHAPTER 13 Debugging and testing

MAINTAINABILITY In most cases, when your Python file is intended to be exe-
cuted both as a script and a module, you should include the operations in an
if statement (if __name__ == "__main__": # operations) if you want these
operations to run only as a script. If you don’t, when the file is imported as a
module, these operations will be executed.

You can run the following command in your command-line tool (listing 13.2), such as
the Terminal app if you use a Mac computer or the cmd tool if you use a Windows com-
puter. Please note that you need to navigate to the current directory if you don’t use
the full path of the script file.

$ python3 task_test.py

Traceback (most recent call last):
 File "/full_path/task_test.py", line 17, in <module>
 task.update_urgency(4)
 File "/full_path/task_test.py", line 12, in update_urgency
 self.update_db()
AttributeError: 'Task' object has no attribute 'update_db'. Did you mean:

➥ '_update_db'?

Compared with the traceback generated by executing code in a console, the traceback
generated by running the script has additional information. As highlighted in listing
13.2, the traceback also shows the exact operation for that call. In the update_urgency
method, for example, the code self.update_db() raises the AttributeError excep-
tion. The differences between the tracebacks from running the code in the console
and running it as a script file arise because Python creates the call stack differently in
these two running modes. When the code is running in the console, the call stack
tracks only the lines, and while a script is executing, it tracks the specific operations.

13.1.4 Focusing on the last call in a traceback

We’ve seen a couple of tracebacks that are generated by running code in a Python
console or executing a script from a command line. You may have noticed where to
spot the problem in a traceback, and this section addresses this topic formally.

 By design, the traceback shows the call stack in a linear fashion from top to bot-
tom. That is, the last call is shown at the bottom, which directly contributes to the
exception that is raised. Thus, to solve the problem, we should focus on the last call.
In the examples that we’ve used, the AttributeError exception informs us of the
problem: AttributeError: 'Task' object has no attribute 'update_db'. For the
traceback that is generated when we run the file as a script (listing 13.2), the error
message even suggests Did you mean: '_update_db'? Please note that this additional
information may be not available in earlier Python versions.

Listing 13.2 Running a Python script that generates a traceback

$ means the command line’s prompt.

I use python3, as macOS
defaults to Python version 2.

37313.2 How do I debug my program interactively?

TRIVIA Showing the Did you mean exception message is a recent addition to
Python. Depending on your Python version and the Python editor you use,
you may not see it.

This suggestion is exactly what we should be taking. We go to the definition of the
update_urgency method, shown in the last call of the traceback (use the line number
to locate the code quickly), and replace update_db with _update_db. Note the differ-
ence in using an underscore prefix. After making this change, we can run the script
again:

$ python3 task_test.py
output: update the database

As expected, we don’t see the AttributeError exception. Now the script is working
properly.

13.1.5 Discussion

In this section, I use a simple example to show the structure of a traceback and how to
read it to fix a trivial problem in our code. In general, the last call pertains to the
problem that we might fix. When your project uses multiple dependencies, however,
it’s very likely that you’ll see more complicated tracebacks. I bet you’ll find that the
last call in the traceback isn’t your code! When this happens, you must read the trace-
back upward by tracing to earlier calls, where you’ll find the code you wrote. This call
is more likely to be the cause of the problem that you want to tackle.

13.1.6 Challenge

Joe is a junior software developer. As part of his job, he’s been assigned to debug prob-
lems for the work-productivity software that the company develops. As part of his
learning experience, he’s playing with tracebacks. In listing 13.1, the traceback
includes two calls. To have some fun, how can he update the Task class by adding and
using a few more methods to produce a traceback with more than two calls?

HINT You can add one or two methods, one of which contains buggy code
that raises an exception. Use these methods in other methods to create multi-
ple sequential calls.

13.2 How do I debug my program interactively?
It’s always a good idea to identify bugs during the development phase so that you
don’t have to deal with your clients’ complaints after product delivery. You may like to
debug the program after every part is (almost) done. But I recommend that you
debug your application bit by bit along the road, which minimizes the chances of
bugs. Although you can check a traceback from an exception to solve a bug, it’s not
always enough to let you check each involved operation closely, because an exception
crashes your application instantly.

374 CHAPTER 13 Debugging and testing

 Another essential debugging technique is the interactive debugger, which allows you
to inspect your application in real time while it’s running. In this section, you’ll learn
about the key features of the built-in debugger. Figure 13.4 shows the general aspects
of debugging a program interactively. I cover those aspects in this section.

As covered in chapters 6 and 7, we know that functions are integral to applications.
They also constitute most of the body of a custom class (chapter 8). Writing bug-free
functions is the major objective for any programmer, so this section uses functions as
examples to show the interactive debugging process.

13.2.1 Activating the debugger with a breakpoint

In most cases, it doesn’t take us long to locate a buggy spot, because when our applica-
tion crashes due to an exception, the generated traceback can inform us about the
location of the exception. When we know the problem’s location, we can start our
intervention by adding a breakpoint to activate the debugger.

CONCEPT A breakpoint is a point where you request that your application stop
executing for debugging purposes.

As part of the standard Python library, the module pdb provides the essential function-
alities for debugging through an interactive debugger. To activate this debugger, you
can call its set_trace function:

def create_task():
 import pdb; pdb.set_trace()

create_task()
output the following lines:
--Return--
> <stdin>(2)create_task()->None
(Pdb)

Program

Add breakpoints.

Debugging mode

Activate
debugger

Line-by-line
inspection

Stepping
into another
operation

Inspecting
variables

Use debugging
features.

Figure 13.4 The general aspects of
debugging programs in Python. For a
program, we add breakpoints to the
places where we debug. When the
execution encounters the breakpoint,
it activates the interactive debugger.
Then we can perform a variety of
debugging tasks, such as running
code line by line.

Adding a breakpoint

37513.2 How do I debug my program interactively?

In the create_task function, you import the pdb module and call set_trace to insert
a breakpoint. (Please note that you could’ve moved the import statement outside the
function; it’s only a convention to place it before set_trace.) When you call this
function, you’ll notice that the debugger is activated; your Python console has
changed its prompt from the default >>> to (Pdb), suggesting that Python has entered
debug mode.

 Although you can activate the debugger by calling import pdb; pdb.set_trace(),
I’m showing it here so that you’ll understand what this line of code means. You may
have seen this usage in some legacy projects. A cleaner way, however, is to use a feature
that was added in Python 3.7. You call the built-in breakpoint function directly, as fol-
lows (if you have your debugger on, you can terminate it by pressing q):

def create_task():
 breakpoint()

create_task()

From the output, you should see that the breakpoint function achieves the same
effect by activating the debugger; it’s a convenience function that calls set_trace
under the hood. Notably, debug mode is interactive, and many options are available
to help you debug your function, as discussed in the next section.

13.2.2 Running code line by line

When we carry out an operation, such as a function call, the operations happen
instantaneously by executing its entire body. If it succeeds, we get the return value (or
None implicitly). If it fails, we may get an exception or a value that we don’t expect. In
either case, the operation is too fast for us to know exactly what’s going on with the
function. If we can run code line by line, we can gain a better understanding of each
step in the operation, giving us a higher chance of solving a possible bug. In this sec-
tion, I’ll show you how to run code line by line. Equally important, you’ll see some key
options of the debugger.

 Suppose that in our task management application, we obtain text data that con-
tains a task’s information, and we want to convert this data to an instance object of the
Task class. For tutorial purposes, let’s add a breakpoint in one of the functions and
save the code in a script file named task_debug.py, as shown in the next listing.
Although debugging works when you submit your code in a console, a real project is
more like running a script, so we’ll use debugging with a script here.

from collections import namedtuple
Task = namedtuple("Task", "title urgency")

def obtain_text_data(want_bad):
 text = "Laundry,3#" if want_bad else "Laundry,3"

Listing 13.3 Creating a function containing a breakpoint (task_bebug.py)

Creating a named tuple class

376 CHAPTER 13 Debugging and testing

 return text

def create_task(inject_bug: bool):
 breakpoint()
 task_text = obtain_text_data(inject_bug)
 title, urgency_text = task_text.split(",")
 urgency = int(urgency_text)
 task = Task(title, urgency)
 return task

if __name__ == "__main__":
 create_task(inject_bug=False)

The create_task function creates the task by processing text data from calling
obtain_text_data. To allow us to mimic situations when the function call fails, we
have a Boolean argument to introduce a bug when needed. With this setup, we can
move on to debugging the script without expecting a bug (inject_bug=False).
Launch a command-line tool and navigate to the current directory, and then run the
following command to execute the script:

$ python3 task_debug.py
> /full_path/task_debug.py(10)create_task()
-> task_text = obtain_text_data(inject_bug)
(Pdb)

You should see that we’re in debug mode with (Pdb) as the prompt. The number (10)
informs us of the line number, and current execution stops in the create_task func-
tion. It also shows the next line that is going to be executed, which is the calling of the
obtain_text_data function.

 To execute this line, we can press n, which stands for next. You’ll see that we com-
plete running the present line, showing the next line of code:

> /full_path/task_debug.py(11)create_task()
-> title, urgency_text = task_text.split(",")
(Pdb)

If we want to execute the next line, we can press Return (on a Mac) or Enter (on a
Windows computer), which should repeat the previous command: n. Execution moves
to the next line:

> /full_path/task_debug.py(12)create_task()
-> urgency = int(urgency_text)
(Pdb)

As you can expect, if we keep pressing Enter or Return, the entire script will complete
without any problems. But that’s not fun, right? Let’s see some other options for
debugging.

Adding a
breakpoint

This is line number 10.

37713.2 How do I debug my program interactively?

 Sometimes, you may want to see other lines to get a bigger picture of the function.
To do that, you can press the l key (lowercase L), because l stands for the list
command:

(Pdb) l
 7
 8 def create_task(inject_bug: bool):
 9 breakpoint()
 10 task_text = obtain_text_data(inject_bug)
 11 title, urgency_text = task_text.split(",")
 12 -> urgency = int(urgency_text)
 13 task = Task(title, urgency)
 14 return task
 15
 16 if __name__ == "__main__":
 17 create_task(inject_bug=False)
(Pdb)

This information is helpful in two ways: it shows all the lines that surround the current
line, with the line numbers clearly labeled; and it uses an arrow to indicate the current
line.

13.2.3 Stepping into another function

In the debugging in section 13.2.2, the first line of code calls another function:
task_text = obtain_text_data(inject_bug). You may notice that we get the return
value instantaneously. Although it’s not the case here, the called function can go
wrong, and we may want to zoom into the called function to see its operation. We can
quit the current debug session by pressing q and then run the script again in the
command-line tool:

$ python3 task_debug.py
> /full_path/task_debug.py(10)create_task()
-> task_text = obtain_text_data(inject_bug)
(Pdb)

Instead of pressing n, which executes the next line, we want to press s, which stands
for step; we’re asking to execute the next step. In this case, the next step is the calling
of the obtain_text_data function:

(Pdb) s
--Call--
> /full_path/task_debug.py(4)obtain_text_data()
-> def obtain_text_data(want_bad):

As you can see, we’ve zoomed into the function call instead of obtaining its return
value directly. If we continue to press s or Return, we’ll view the entire function:

378 CHAPTER 13 Debugging and testing

Pdb) s
> /full_path/task_debug.py(5)obtain_text_data()
-> text = "Laundry,3#" if want_bad else "Laundry,3"
(Pdb) s
> /full_path/task_debug.py(6)obtain_text_data()
-> return text
(Pdb) s
--Return--
> /full_path/task_debug.py(6)obtain_text_data()->'Laundry,3'
-> return text

The last operation shows the return value for calling the function: 'Laundry,3'. If we
continue to press s, we’ll go back to our original function, create_task:

(Pdb) s
> /full_path/task_debug.py(11)create_task()
-> title, urgency_text = task_text.split(",")

You may notice that the commands n (next) and s (step) are similar, as both com-
mands can execute the next line in most cases. The difference is that step allows you
to step into another function call, as you’ve seen. Figure 13.5 shows the difference
between n and s.

In figure 13.5, although the step command attempts to execute the next line, it stops
at the next possible occasion. In this case, that occasion is the calling of the obtain_
text_data function.

13.2.4 Inspecting pertinent variables

We can see what’s being executed, but we haven’t done anything proactively. Some-
times, a function call can’t work because it doesn’t have correct arguments. Even
though the arguments may be the correct type, chances are that the values are incom-
patible, so we want to check the variables’ values inside the function. In this section,
we’ll learn about inspecting variables in a function. We can change the last line of the
script (task_debug.py) to create_task(inject_bug=True), and we can run the
script from the command line:

def create_task(inject_bug: bool):
breakpoint()
task_text = obtain_text_data(inject_bug)
title, urgency_text = task_text.split(",")
urgency = int(urgency_text)
task = Task(title, urgency)
return task

def obtain_text_data(want_bad):
the operation

step
Next:
the entire line

The next possible occasion

Figure 13.5 The difference between the next and step commands in debugging. The next
command executes the entire line; the step command attempts to execute the next line but
stops at the next possible occasion. In the example, step is calling another function.

37913.2 How do I debug my program interactively?

> /full_path/task_debug.py(10)create_task()
-> task_text = obtain_text_data(inject_bug)
(Pdb) n
> /full_path/task_debug.py(11)create_task()
-> title, urgency_text = task_text.split(",")
(Pdb) n
> /full_path/task_debug.py(12)create_task()
-> urgency = int(urgency_text)

Suppose we know that the next line will raise the AttributeError exception. We can
inspect the pertinent variables to see the potential cause of this exception:

(Pdb) p urgency_text
'3#'

As shown in the preceding code snippet, we can use the command p to retrieve the
variable’s value. If we want to display multiple variables, we can list them sequentially,
with commas as separators:

(Pdb) p urgency_text, task_text
('3#', 'Laundry,3#')

It can be tedious to list all the variables that we want to check. We can take advantage
of the feature that allows us to call a function directly in the debugger. Here, we can
call the locals function, which shows the local namespace (section 10.4):

(Pdb) locals()
{'inject_bug': True, 'task_text': 'Laundry,3#', 'title':

➥ 'Laundry', 'urgency_text': '3#'}

We can observe all the variables in the function’s local scope, giving us the full picture
of the function’s status.

13.2.5 Discussion

The tracebacks (section 13.1) provide a snapshot after your application has stopped
executing, and everything that leads to the exception happens instantaneously. This
static information doesn’t give you an opportunity to check each operation in a slow-
motion manner; everything happens way too fast. By contrast, the debugger covered
in this section is on-demand. You decide when the application can proceed to the
next line, which gives you time to study each line closely to identify the possible cause
of a bug. More importantly, the debugger is interactive, and you can explore options
other than n, l, s, and p. You can find out more about the interactive debugger on the
official Python website at https://docs.python.org/3/library/pdb.html.

13.2.6 Challenge

Dylan is an eager learner of Python who wants to know the details of almost every
technique. When he learns about debugging, he wants to know what’s happening

https://docs.python.org/3/library/pdb.html

380 CHAPTER 13 Debugging and testing

during a function call in terms of the local namespace. For the example discussed in
13.2.4, instead of calling locals to retrieve the variables in a local scope after running
a few lines, he wants to call locals after he starts the debugger. How do you expect
the variable lists to change over the course of the function call?

HINT A namespace is dynamic. After the execution creates a new variable, it’s
registered in the namespace.

13.3 How do I test my functions automatically?
After completing your program’s functionalities and removing the obvious bugs
through either the tracebacks or interactive debugging, you feel that your application
is almost ready for delivery. But you want to do one more thing: test your program
thoroughly. Testing is a broad concept that can be manifested in a variety of ways.
When you’re removing any bugs from your application, you’re testing. When you’re
calling some functions to ensure that they work as expected in your application,
you’re testing. These examples are manual testing, however.

 Although manual testing is acceptable when you work on smaller projects, it can be
exhausting if your project’s scope is significant; every time you make changes to your
code, you may have to go through each involved feature to ensure that it doesn’t break
due to the changes. As you can imagine, manual testing can be a time-consuming
factor that delays your progress. Fortunately, you can develop automatic testing for
your application. Specifically, you can write code that tests the codebase of the
application. Whenever you make changes to your codebase, you can run the test code,
which can save considerable time. In this section, I’ll show you some important
techniques for implementing automatic testing, with a special focus on functions.

MAINTAINABILITY Testing is an important tool for ensuring the maintainabil-
ity of your codebase. Sections 13.3 and 13.4 provide only introductory infor-
mation. If your job assignment is mainly about testing, you should look at
educational materials on testing, such as The Art of Unit Testing: With Examples
in C#, by Roy Osherove (Manning, 2019).

13.3.1 Understanding the basis for testing functions

We know that functions are integral to our application. If we can ensure that every
function works as expected, our application will stand strong. This section shows the
key elements of testing a function.

 Let’s start with a simple function, which we can build on when we have more com-
plicated functions to test. Suppose that our task management app has the following
function to create a task, as an instance object of the Task class, from a string. We’re sav-
ing the function in the task_func.py file so that we can use it in our test, as the next
listing shows.

38113.3 How do I test my functions automatically?

class Task:
 def __init__(self, title, urgency):
 self.title = title
 self.urgency = urgency

def create_task(text):
 title, urgency_text = text.split(",")
 urgency = int(urgency_text)
 task = Task(title, urgency)
 return task

For a specific functionality in our project (although we can use different implementa-
tion details), we generally expect that for given input, a function should return defi-
nite output. No matter how we’re going to change the implementation details of
create_task, for example, we should expect the following to be true:

assert create_task("Laundry,3").__dict__ == Task("Laundry", 3).__dict__

Here, we’re using an assert statement to verify the certainty of our function. In this
case, we expect the dictionary representation of these two instances to be the same.
Please note that instances of a custom class aren’t equal out of the box, but their dic-
tionary representations can be compared for equality as a proxy. From a general per-
spective, this certainty of specific input producing specific output is the basis of testing
functions. Figure 13.6 illustrates how testing functions works.

13.3.2 Creating a TestCase subclass for testing functions

Now that we know the basis of testing functions, we’re ready to implement automatic
testing by taking advantage of the unittest module (part of the standard Python
library). This module provides important functionalities for testing our program auto-
matically. Specifically, the module’s TestCase class allows us to test our function, as
shown in the following listing.

Listing 13.4 Defining a function to be tested (task_func.py)

Creates a custom class

Function
Any

applicable
input

Calculated
output

Test functionSpecific
input

Certain
output

Call the function. Compare

Figure 13.6 The general process of testing functions. In the test function, we use specific
input to call the function, and the produced output is compared with the expected output.

382 CHAPTER 13 Debugging and testing

from task_func import Task, create_task
import unittest

class TestTaskCreation(unittest.TestCase):
 def test_create_task(self):
 task_text = "Laundry,3"
 created_task = create_task(task_text)
 self.assertEqual(created_task.__dict__,
 ➥ Task("Laundry", 3).__dict__)

if __name__ == "__main__":
 unittest.main()

NOTE If you have problems importing the class and the function, you may
want to open the chapter’s folder in your Python integrated development
environment (IDE).

In listing 13.5, we create the TestTaskCreation class by inheriting the TestCase class.
It’s a convention to name our own test classes starting with Test. In the body of the
class, we define an instance method that is designated to test the create_task func-
tion. It’s important to name this method with the test_ prefix so that when we run a
test, Python knows that this method should be called. Figure 13.7 shows the composi-
tion of the test class in relation to the functions we’re testing.

READABILITY Name your test class starting with Test, and follow it with the
specific functionality your class is testing. Its methods should be named with
the test_ prefix so that Python will run these methods during testing.

The test_create_task method calls the to-be-tested function (create_task) with
the specific input and compares the return value with the expected output. The com-
parison is done by calling assertEqual, which asserts that the two instances of the
Task class are equal in their values. If that assertion is true, we’re confident that our
function works as expected. In the last line, we call unittest.main(), which will run

Listing 13.5 Testing a function using TestCase (test_task_func.py)

Imports the class and function
from the script file

Imports the
module

Inherits the TestCase class

Calls the function to be tested

def func1():
pass

def func2():
pass

def func3():
pass

def test_func1():
pass

def test_func2():
pass

def test_func3():
pass

The TestFuncsclass,
a subclass of TestCaseA set of functions

Figure 13.7 Creating a test class that
tests a set of functions. A test function
should use test_ as its prefix, followed by
the name of the function that it tests. The
class should be named with a prefix of Test
and is a subclass of the TestCase.

38313.3 How do I test my functions automatically?

all the defined tests in the TestTaskCreation class. With this setup, we’re ready to test
our function in a command-line tool:

$ python3 test_task_func.py
output the following lines:
.
--
Ran 1 test in 0.000s

OK

For now, we have one unit of a test case: test_create_task. But we can define multi-
ple test cases.

CONCEPT A test case is an individual unit of testing that checks for a specific
response when a particular set of input is provided.

Suppose that we have another function that creates an instance of the Task class from
a dict object. We add this function to the task_func.py file as follows:

def create_task_from_dict(task_data):
 title = task_data["title"]
 urgency = task_data["urgency"]
 task = Task(title, urgency)
 return task

This function should be straightforward: it retrieves the needed values from the dict
object and creates the instance object. We can update our test class to test this func-
tion too, as shown in the following listing.

from task_func import Task, create_task, create_task_from_dict
import unittest

class TestTaskCreation(unittest.TestCase):
 def test_create_task(self):
 task_text = "Laundry,3"
 created_task = create_task(task_text)
 self.assertEqual(created_task.__dict__,
 ➥ Task("Laundry", 3).__dict__)

 def test_create_task_from_dict(self):
 task_data = {"title": "Laundry", "urgency": 3}
 created_task = create_task_from_dict(task_data)
 self.assertEqual(created_task.__dict__,
 ➥ Task("Laundry", 3).__dict__)

if __name__ == "__main__":
 unittest.main()

Listing 13.6 Testing multiple functions (test_task_func.py)

384 CHAPTER 13 Debugging and testing

As with test_create_task, we define a method that starts with test_. In this added
method, we’re ensuring that the function works with the special case we’ve been
using. We can run the test again:

$ python3 test_task_func.py
output the following lines:
..
--
Ran 2 tests in 0.000s

OK

As you can see, we defined two methods in the test class, so Python ran two tests for us,
and both were OK. By the way, you may notice the two dots in the first line; the num-
ber of dots represents the number of tests that were run.

13.3.3 Setting up the test

We’ve seen how our test class can test two functions together. Notably, these two func-
tions have something in common: both create an instance of the Task class. When we
test them, we also create an instance of the Task class so that we can do the compari-
son. If you recall (section 2.1.4), repetition is a signal that there may be a need for
refactoring. In this section, we set up the test, which can extract things in common in
testing functions.

MAINTAINABILITY Always pay attention to possible opportunities for refactoring,
such as code repetition. Refactoring improves your codebase’s maintainability.

The TestClass has a setUp method that we can override. This method is called
before running any test, so we can take advantage of this opportunity to carry out the
operations that our test method shares. (Please note that these operations depend on
what data we set up for our testing.) See the next listing for an example.

from task_func import Task, create_task, create_task_from_dict
import unittest

class TestTaskCreation(unittest.TestCase):
 def setUp(self):
 task_to_compare = Task("Laundry", 3)
 self.task_dict = task_to_compare.__dict__

 def test_create_task(self):
 task_text = "Laundry,3"
 created_task = create_task(task_text)
 self.assertEqual(created_task.__dict__, self.task_dict)

 def test_create_task_from_dict(self):
 task_data = {"title": "Laundry", "urgency": 3}

Listing 13.7 Overriding the setUp method (test_task_func.py)

38513.4 How do I test a class automatically?

 created_task = create_task_from_dict(task_data)
 self.assertEqual(created_task.__dict__, self.task_dict)

if __name__ == "__main__":
 unittest.main()

As highlighted in listing 13.7, we update the class by adding an attribute. Specifically,
we’re defining the task_dict, which holds the dict object that our test methods will
use for equality comparisons. In the test methods, we can refer to the instance attri-
bute task_dict directly; we don’t need to create duplicate instance objects for com-
parison. If we run the test script file again, we’ll see the same result.

TRIVIA As you may have noticed, the methods in the unittest module use
the lowercase camel naming convention (such as setUp and assertEqual)
instead of snake case (such as set_up and assert_equal). The methods are
named as they are for legacy reasons; they were adapted from Java-based
tools, which use camel case.

13.3.4 Discussion

In the test class’s methods, we only use assertEqual to test equality between the desired
output and the generated output. But there are other convenient methods to assert that
the generated output meets the requirement of the desired output. assertIn(a, b),
for example, checks whether a is in b, and assertTrue(a) checks whether a is True.
These methods are straightforward to use, and you should get familiar with them.
You can find these methods in the official documentation of the unittest module
(https://docs.python.org/3/library/unittest.html).

13.3.5 Challenge

Aaron is building software for weather forecasting, and he’s learning to run some unit
tests in his project. While he’s following along with this section, in which we defined
two functions and tested them with the TestTaskCreation class, he’s tasked with writ-
ing another function and its corresponding test method. Suppose that the function
creates an instance of the Task class from a tuple object ("Laundry", 3). Can you
provide a solution?

HINT You can probably name this function create_task_from_tuple, in
which you can use tuple unpacking (section 4.4) to get the title and urgency
level for instantiation.

13.4 How do I test a class automatically?
Although functions are integral to our application, the custom classes are the
cornerstone of our application, as they’re the data models that bundle the necessary
data and functionalities as a coherent entity. Typically, we don’t need to worry about
testing the attributes of a custom class, as those attributes should be defined in a

https://docs.python.org/3/library/unittest.html

386 CHAPTER 13 Debugging and testing

straightforward fashion. Thus, testing a class is mainly about testing its methods, as
discussed in this section.

13.4.1 Creating a TestCase subclass for testing a class

Methods are functions, and they’re called methods because they’re defined within a
class. Thus, testing a class’s methods boils down to testing these functions, which is
covered extensively in section 13.3. As you’ll see in this section, we’ll still create a
TestCase subclass for testing a class. The examples use class methods, but the same
testing principle applies to instance and static methods too.

 In section 13.3, we worked on two functions: create_task and create_task_
from_dict. As you may have realized, we can convert them to custom methods.
Because these two methods use the constructor to create an instance of the Task class,
they’re perfect use cases for class methods, as the next listing shows.

class Task:
 def __init__(self, title, urgency):
 self.title = title
 self.urgency = urgency

 @classmethod
 def task_from_text(cls, text_data):
 title, urgency_text = text_data.split(",")
 urgency = int(urgency_text)
 task = cls(title, urgency)
 return task

 @classmethod
 def task_from_dict(cls, task_data):
 title = task_data["title"]
 urgency = task_data["urgency"]
 task = cls(title, urgency)
 return task

In listing 13.8, the Task class has the task_from_text and task_from_dict class meth-
ods, which are converted from the create_task and create_task_from_dict func-
tions, respectively.

REMINDER The class method uses cls as its first argument, which refers to
the class. See section 8.2.

To test this class, we’ll create the TestTask class as a subclass of the TestCase class, in
which we define two methods that correspond to the two class methods. Save the code
in the next listing in a file called test_task_class.py.

Listing 13.8 Creating a class for testing (task_class.py)

38713.4 How do I test a class automatically?

from task_class import Task
import unittest

class TestTask(unittest.TestCase):
 def setUp(self):
 task_to_compare = Task("Laundry", 3)
 self.task_dict = task_to_compare.__dict__

 def test_create_task_from_text(self):
 task_text = "Laundry,3"
 created_task = Task.task_from_text(task_text)
 self.assertEqual(created_task.__dict__, self.task_dict)

 def test_create_task_from_dict(self):
 task_data = {"title": "Laundry", "urgency": 3}
 created_task = Task.task_from_dict(task_data)
 self.assertEqual(created_task.__dict__, self.task_dict)

if __name__ == "__main__":
 unittest.main()

As we did with the TestCreationTask class, we define the test methods with names
starting with test_ in the TestTask class so that when we run the script, all these test
methods will run automatically. Observe the effect in the following code snippet:

$ python3 test_task_class.py
..
--
Ran 2 tests in 0.000s

OK

As expected, two tests were run, and neither had problems.

13.4.2 Responding to test failures
The purpose of testing is to ensure that the units we’re testing work as expected. As
you can imagine, the success of all tests is never guaranteed. When some tests fail, we
need to know how to respond to those failures. Consider adding the following func-
tion to the Task class from listing 13.8:

def formatted_display(self):
 displayed_text = f"{self.title} ({self.urgency})"
 return displayed_text

This instance method creates a formatted display for the task. To test this instance
method, we can add the following test method to the TestTask class (listing 13.9):

def test_formatted_display(self):
 task = Task("Laundry", 3)
 displayed_text = task.formatted_display()
 self.assertEqual(displayed_text, "Laundry(3)")

Listing 13.9 Creating a class for testing a class (test_task_class.py)

Sets up the test

388 CHAPTER 13 Debugging and testing

As you may have noticed, to simulate a test failure, I intentionally omitted the space
between the task’s title and its urgency level in the assertEqual call. If we’re running
the test, we should expect a failure:

$ python3 test_task_class.py
..F
==
FAIL: test_formatted_display (__main__.TestTask)
--
Traceback (most recent call last):
 File "/full_path/test_task_class.py", line 22, in test_formatted_display
 self.assertEqual(displayed_text, "Laundry(3)")
AssertionError: 'Laundry (3)' != 'Laundry(3)'
- Laundry (3)
? -
+ Laundry(3)

--
Ran 3 tests in 0.001s

FAILED (failures=1)

Instead of seeing three dots, which correspond to three successful tests, we’re seeing
..F. The F indicates a test failure, and the detailed description of the failure informs
us why the test fails: because of the AssertionError between these two strings. This
error message should give us enough information to solve the problem. We can add a
space in the string 'Laundry(3)' to make the comparison equal.

13.4.3 Discussion

Testing should be an integral step in software development to ensure the quality of
the product. During development, you should focus on removing bugs at the smallest
possible scale. That is, you should do some manual testing whenever you complete a
feature, even it’s a tiny one. You shouldn’t think “I’ll do the development now without
doing any manual testing.” It’s much easier to solve any problem while you’re working
on it. Although automatic testing can be powerful, you may have to refresh your mem-
ory before you can solve any problems that arise.

13.4.4 Challenge

A test that fails doesn’t have to be an AssertionError in our test class. It’s also possi-
ble that something is wrong with our code itself. Can you update the formatted_
display method to make it raise an exception and see what happens during the test?

HINT The simplest way to raise an exception is to do so manually, such as
raise TypeError.

389Summary

Summary
 Tracebacks are detailed information that shows you how an exception is raised.

The detailed information represents a series of operations or calls.
 When you try to solve the problem from a traceback, you should focus on the

last call in a traceback where the exception is raised.
 To examine some code’s execution closely, you can set a breakpoint, which acti-

vates the debugger. The pdb module is specifically designed for interactive
debugging.

 With the interactive debugger, you can move execution line by line (the n com-
mand) so that we can know which line is the source of a problem.

 When you want to step into another operation, such as calling a function, you
should use the s command instead of the n command, which executes the
entire line instantly.

 The unittest module provides functionalities for automatic testing. It has the
TestCase class, from which you can define your own test cases by creating a
subclass.

 You should respect the naming rules in terms of creating a testing method. It
should start with test_, and the class should start with Test.

 The basis of testing a function is the certainty of a function’s intended opera-
tion. When you provide some defined input, the function should generate the
output without any ambiguity.

 In most cases, you can use assertEqual to evaluate the test results. You can use
other methods in the TestCase class.

 Testing a class is effectively testing its methods, and you can apply the same
techniques that you use to test functions to test methods.

Part 6

Building a web app

The best way to evaluate a chess player’s skill level is to let them play a real
game against another player instead of asking them how many openings they
can play. To play a real game, a player must know the opening game, the middle
game, and the end game.

 For a programmer, completing a project is like playing chess: you must have
comprehensive knowledge, including (but not limited to) choosing the right
data models, writing good functions, and defining well-structured classes. In this
part, we complete the task management app that we talked about in the first five
parts. We not only review the techniques we’ve learned but also use these tech-
niques in the context of a realistic project. Completing a project is always fun
and creates a sense of accomplishment. Don’t you agree?

393

Completing a real project

Chapters 2–12 focused on individual techniques, with considerable cross-referencing
of pertinent techniques. When I introduced built-in data types (chapters 2–5), for
example, we created functions to perform some repeated work. When I discussed
functions (chapters 6 and 7) and classes (chapters 8 and 9), we used built-in data
types. From examples in the context of the task management app, you’ve seen that
these techniques depend on one another to solve realistic problems. Solving these
isolated problems is fun in the sense of learning pertinent techniques. The ultimate
purpose of learning these individual techniques, however, is to use them collectively
to complete a real project from beginning to end.

 In this chapter, we’re going to complete the task management app project (sec-
tion 1.4.3) from the beginning, creating a virtual environment (section 14.1),
defining the proper data models (section 14.2), using the backend database (sec-
tion 14.3), implementing the frontend app (section 14.4), and publishing our

This chapter covers
 Setting up virtual environments

 Building data models

 Working with a local database

 Building a web app

394 CHAPTER 14 Completing a real project

package for distribution (appendix E online). As an important note, although we’re
going to learn a few new techniques, such as using a local database, we’ll focus on syn-
thesizing the techniques that we learned in chapters 2–12.

14.1 How do I use a virtual environment for my project?
As mentioned in chapter 1 (section 1.2), we have many choices of open source Python
packages to use in our project. We can install third-party packages with Python’s pack-
age installer pip (see appendix B online), which is a command-line tool that allows
you to install and uninstall Python packages with one line of command.

 By default, these packages are installed at the system level, which means that all your
projects must share these packages. Different projects, however, may require distinct
versions of the packages, and you can’t reconcile these conflicts easily if the systemwide
packages that your projects share are in different versions than the ones required by
your project. In this section, I’ll show you how to reconcile this dilemma by using virtual
environments.

14.1.1 Understanding the rationale for virtual environments

Virtual environments reconcile the problem of different projects requiring packages
in multiple versions. What is a virtual environment, and what can it do? This section
answers these questions.

 First, I’ll elaborate on the package conflict problem. When you have only one proj-
ect, you’re fine in terms of using packages. Often, you’re probably working on multi-
ple projects simultaneously—a situation that can introduce a package management
problem. In one project, you use package A, version 1.0; in another project, you need
package A, version 1.5, so you upgrade the package to version 1.5. You’ve likely cre-
ated a dilemma. When you go back to your first project, your code may break, because
chances are that some of the features in package A are removed in version 1.5.

 You can certainly downgrade to version 1.0 to work on the first project, but when
you want to work on your second project, you must run the upgrade again. I don’t
think you want to do a lot of back-and-forth downgrading and upgrading.

 The best solution is to use virtual environments. Virtual environments are isolated
work directories in which you install the packages you need for a project. Because
each project has its own virtual environment, you can install different packages (or
packages of different versions) in their respective work directories. Moreover, in
advanced virtual environment management tools such as conda, you can have a dis-
tinct Python version for each virtual environment, together with different packages,
giving you greater flexibility to manage environments for separate projects, as shown
in figure 14.1.

CONCEPT A virtual environment is a directory tree that contains Python and
third-party dependencies that are isolated from the installations—including
Python and third-party dependencies—on the computer.

39514.1 How do I use a virtual environment for my project?

Figure 14.1 shows three projects with virtual environments. In the virtual environ-
ment, you use the needed Python version and the third-party dependencies with their
applicable versions. By using a distinct virtual environment, you don’t need to worry
about different projects requiring conflicting versions of a package, because each
project uses its own dependencies.

MAINTAINABILITY Create a distinct virtual environment for each project to
prevent your projects from having conflicting dependencies.

14.1.2 Creating a virtual environment for each project

The root cause of the dilemma described in section 14.1.1 is that you share packages
on your computer because you installed them at the system level. What if you could
install packages separately for each project? This is exactly how a virtual environment
works.

 As part of the standard Python library, the venv module provides the core function-
alities for virtual environment management. Several third-party tools, such as conda and
virtualenv, can manage virtual environments in Python. Although they have slightly
different features, the fundamentals are about the same as what the built-in venv mod-
ule offers. For this reason, I’ll use the venv module to show the core techniques.

 To create a virtual environment, you need to open a command-line tool, such as
Terminal for Mac or the cmd tool for Windows. For your app project, you create the
taskier_app directory, which I refer to throughout this chapter. Navigate to the
taskier_app directory (use the cd command to change the directory), and run the
following command:

$ python3 -m venv taskier-env

Project A

Python 3.8

package a 1.0

package b 2.0

package c

Project B

Python 3.9

package a 1.5

package d

package e

Project C

Python 3.10

package b 2.2

package e

package f

Virtual environment A Virtual environment B Virtual environment C

dependencies dependencies dependencies

Figure 14.1 Creating multiple virtual environments for each project. In each virtual environment,
you can have a distinct version of Python and a different set of third-party dependencies.

396 CHAPTER 14 Completing a real project

If you use Windows, you may need to use python instead of python3, which I use
because I’m using a Mac. The command creates a virtual environment named
taskier-env, as you’re using this environment to build your task management app
taskier. You should name the environment related to the project so that when you
have multiple environments, you’ll know which environment is for which project.
That is, each project will have its own properly named virtual environment for depen-
dency management, and there will be no dependency conflicts between projects.

MAINTAINABILITY Name the virtual environment related to the project that it
serves.

You’ll notice that a folder named taskier-env appears in the directory. This folder
holds all the folders and files needed for the virtual environment. If you’re curious,
the bin folder (macOS only; in Windows, you’ll see a folder called Scripts or some-
thing similar) contains the essential tools for the environment, including the link to
the Python interpreter, pip (section 14.1.3), and activation scripts (section 14.1.3).

14.1.3 Installing packages in the virtual environment
You understand that virtual environments are isolated work directories for your projects
and that it’s safe to install any packages needed for this project without affecting other
projects. In this section, I’ll show you how to install packages in a virtual environment.

 First, create the virtual environment taskier-env for the project. To use this envi-
ronment, run the following command:

for Mac:
$ source taskier-env/bin/activate

for Windows:
> taskier-env\Scripts\activate.bat

NOTE If the command doesn’t work in your command-line tool, see this page
of the official Python website for further instructions: https://docs.python
.org/3/library/venv.html.

The command activates the virtual environment, allowing you to install packages in
the virtual environment. You’ll see that the command line has the virtual environ-
ment’s name as a prefix (taskier-env), which signifies that the environment is acti-
vated and ready for package installation.

 The most common Python package installation tool is pip; you can find detailed
instructions on how to use pip in appendix B online. In brief, you’ll install the
streamlit library for the task management app, and this library will provide the tools
to build the frontend for the project as a web app. I chose this library because it’s easy
to build a web app with it, which allows you to focus on the content instead of the lay-
out of the web elements. This command installs streamlit (version 1.10.0 at the time
this book was written):

$ pip install streamlit==1.10.0

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

39714.1 How do I use a virtual environment for my project?

For best reproducibility, I recommend that you install the same version. It’s entirely
possible, however, that your web app will still run with the latest streamlit version.

14.1.4 Using virtual environments in Visual Studio Code

For this project, you’ll use Visual Studio Code (VSC) as your coding tool because it’s
an open source integrated development environment (IDE) with powerful extension
capability. (See appendix A online for installation instructions.) In this section, I’ll
show you how to use virtual environments in VSC.

 Open the project directory (taskier_app) in VSC; press Cmd+Shift+P (Mac) or
Ctrl+Shift+P (Windows) to display the command menu; and enter Python: Select
Interpreter, which brings up the list of available virtual environments. You should be
able to see the virtual environment taskier-env in the list. Select the 'taskier-env':
venv option (figure 14.2).

NOTE You need to open the project directory (taskier_app) by choosing
File > Open Folder in VSC. Otherwise, you may not see the environment in
the list.

To verify that you’re indeed using this environment, create a file (say, test_env.py) in
the parent directory (taskier_app). When you open this file, you should see the sta-
tus bar at the bottom of the VSC window, as shown in figure 14.3.

 Please note that although your project is going to be completed with Python
3.10.4, it should be compatible with earlier versions (Python 3.8 and later), as the
techniques I’ve been covering are stable core features of Python.

Select the
taskier-env
interpreter.

Figure 14.2 Selecting the proper interpreter in the correct virtual environment. Note
that you may not see other options on your computer; this figure shows the full list of
virtual environments available on my computer.

398 CHAPTER 14 Completing a real project

14.1.5 Discussion

The venv module provides essential features for creating a virtual environment and is
convenient to use because it comes with the standard Python library. The module has
a drawback, however: by default, it uses the systemwide Python. If you want to use a
specific version of Python for your project, you should use other virtual environment
management tools, such as conda. With conda, you can enjoy all the benefits of install-
ing environment-specific packages that you have with venv. Moreover, you can have an
isolated Python installation in the virtual environment, giving you greater flexibility in
project configuration in terms of Python version and third-party packages.

14.1.6 Challenge

Jerry works as a data scientist at a real estate company. He knows that it’s a good idea
to have separate virtual environments for his project. As a practice, how can he create
a virtual environment named python-env? In the environment, he needs to install

The environment name

Created by venv
Python version

Figure 14.3 The status bar showing key information on running Python in VSC, including the Python version,
the virtual environment, and the environment’s creation tool (venv).

Using conda for virtual environment management
To have a distinct Python interpreter for your project, you can use conda to manage
the virtual environments. You can find installation instructions on its official website:
https://conda.io. After you install conda, you can use it to create virtual environ-
ments in your preferred command-line tool.

For your project, you have Python 3.10.4 and the dependency of streamlit 1.10.0.
You can use the following command to create the desired virtual environment:

conda create -n taskier-env python=3.10.4 streamlit=1.10.0

(Please note that if you run the following code after creating the virtual environment
with venv, you may see two virtual environments with the same name and distinct
file paths.) After running this command, you can activate this environment by running
conda activate taskier-env and then work on this virtual environment. To set up
the environment in VSC, bring up the Python interpreter list, and choose the one in
the taskier-env environment.

https://conda.io

39914.2 How do I build the data models for my project?

the pandas library. After the installation, he also wants to configure VSC to use this
environment.

HINT Follow the instructions covered in this section.

14.2 How do I build the data models for my project?
The core of any application is data, although data takes a variety of forms, such as text
and image. Regardless of the form of the data, when we build an application, we typi-
cally define custom classes to represent the data as attributes. We prepare and process
data through functions or methods within the custom classes. This data and related
operations are collectively referred to as data models for an application. In this section,
we’ll review the data models used in our task management app.

14.2.1 Identifying the business needs

The data models should serve the business needs of our project. To build the data mod-
els properly, we must first identify the features of our task management app. The app
is a demonstration project, so I’ll include sufficient features to serve as a backbone to
show you the essential techniques of Python. Please note that I don’t want to overcom-
plicate the app, which would make it hard to focus on learning these essentials.

 In our app, users can create a new task, view the list of tasks, edit a task, and delete
a task. It would also be helpful if users could sort and filter the tasks by specific crite-
ria. Figure 14.4 summarizes these features.

As shown in figure 14.4, each task has a few attributes: title (title), desc (descrip-
tion), urgency (level of urgency), and status (status). When you build a real applica-
tion with many more features, you’ll need to design the app’s user interface (the
frontend) in such a way that you can determine whether you have all the features you
need and how the features interact. For our task management app, I’ll keep the inter-
face simple, focusing on the coding portion instead of on the app’s interface design.

New Task

Create

Task 0

Task 1

Task 2

Task 3

View/sort/filter list

Task 0

Title
Description

Urgency
Status

...

View details

Unneeded
Task

Delete

Figure 14.4 The key features of the task management app. In the app, users can
create a new task; view, sort, and filter tasks; view a task’s details; and delete a task.

400 CHAPTER 14 Completing a real project

PEEK We’ll build a web app as our app’s frontend. Because the streamlit
framework helps us lay out the elements of a web app (such as text display
and input boxes), we’ll use it as our tool.

14.2.2 Creating helper classes and functions

Before analyzing the code for the Task class (section 14.2.3), I want to introduce the
needed helper classes and functions in this section. We’re going to create a file named
taskier.py to store the Task class. At the head of this file, we’re importing the neces-
sary dependencies as follows (and please note that I’ll cover the use of these modules
when I discuss the pertinent code):

import csv
import re
import sqlite3
from enum import IntEnum, Enum
from pathlib import Path
from random import choice
from string import ascii_lowercase

A task has three possible statuses: created, ongoing, and completed. We’ll use enumer-
ation to represent these statuses:

class TaskStatus(IntEnum):
 CREATED = 0
 ONGOING = 1
 COMPLETED = 2

 @classmethod
 def formatted_options(cls):
 return [x.name.title() for x in cls]

In section 9.1, we learned about enumeration by subclassing the Enum class. Here, we
subclass IntEnum class, which is like the Enum class but has an added benefit: we can
sort statuses because their raw values are integer numbers. In this enumeration class,
we define a class method (section 8.2), which creates a list of strings to be used in our
web app (section 14.4).

 In section 11.2, we studied how to process tabulated data by using the csv module.
To show you the pertinent techniques, I’ll use a CSV file as the data source, even
though a CSV file typically isn’t preferred as the database; as a formal database choice,
I’ll show you how to use SQLite in section 14.3. To include both options in the web
app, we can use an enumeration class:

class TaskierDBOption(Enum):
 DB_CSV = "tasks.csv"
 DB_SQLITE = "tasks.sqlite"

app_db = TaskierDBOption.DB_CSV.value

40114.2 How do I build the data models for my project?

We created a global variable app_db to track the database option. Now we default it to
the CSV file option. In the web app, for demonstration purposes, we let users choose
the database option, and we use the function in the next listing to update the database
choice.

def set_db_option(option):
 global app_db
 app_db = option
 db_path = Path(option)
 if not db_path.exists():
 Task.load_seed_data()
 elif app_db == TaskierDBOption.DB_SQLITE.value:
 Task.con = sqlite3.connect(app_db)

Because we’re changing the variable in the global scope, we need to use the global
keyword before we can change it (section 10.4). If the file doesn’t exist at the path,
we’re going to create the data file and load some seeding data for demonstration pur-
poses, using the Task’s load_seed_data method (section 14.2.3). Although I’ll talk
more about the SQLite database in section 14.3, listing 14.1 includes a line of code
(Task.con = sqlite3.connect(app_db)) that creates a connection to the database
when the database option is SQLite.

 From the exception-handling perspective, we’ll create our own exception class,
allowing us to raise custom exceptions. As discussed in section 12.5, our exception
class is a subclass of the Exception class:

class TaskierError(Exception):
 pass

Because we can provide custom error messages when we use this class, we don’t need
to implement any methods; we’ll use the pass statement to fulfill the syntax require-
ment. Please note that if we want to provide more specific exceptions, we can create
subclasses from the TaskierError class.

14.2.3 Creating the Task class to address these needs

We’ve identified the core features of our app, and we’re ready to implement the Task
class to address our business needs. In this section, we’ll build the Task class. To facili-
tate teaching, I’ll analyze the code directly with an emphasis on individual methods.

CREATING AND SAVING TASKS

In our app, each task is modeled as an instance of the Task class. We create instance
objects to model the tasks. In this section, I’ll show you the code that creates and saves
instance objects to a file.

 The initialization method allows us to define custom attributes for the instance
objects (section 8.1). We override the __init__ method to configure the instantiation.

Listing 14.1 Setting the database option for the app

Checks a path’s existence

402 CHAPTER 14 Completing a real project

In the definition, we use the type hints (section 6.3) for each of the arguments. We also
provide docstrings for the method by using Google style (section 6.5.1):

class Task:
 def __init__(self, task_id: str, title: str, desc: str, urgency:
 ➥ int, status=TaskStatus.CREATED, completion_note=""):
 """Initialize the instance object of the Task class

 Args:
 task_id (str): The randomly generated string as the identifier
 title (str): The title
 desc (str): The description
 urgency (int): The urgency level, 1 - 5
 status (_type_, optional): The status. Defaults to
 ➥ TaskStatus.CREATED.
 completion_note (str, optional): The note when a task is
 ➥ completed. Defaults to "".
 """
 self.task_id = task_id
 self.title = title
 self.desc = desc
 self.urgency = urgency
 self.status = TaskStatus(status)
 self.completion_note = completion_note

We use a form to collect the title, description, and urgency level, and then use this
information to create an instance of the Task class. As you can see in the following
code snippet, task_from_form_entry is a class method because we don’t need to
access or manipulate per-instance data. Instead, this method accesses the class’s con-
structor:

@classmethod
def task_from_form_entry(cls, title: str, desc: str, urgency: int):
 """Create a task from the form's entry

 Args:
 title (str): The task's title
 desc (str): The task's description
 urgency (int): The task's urgency level (1 - 5)

 Returns:
 Task: an instance of the Task class
 """
 task_id = cls.random_string()
 task = cls(task_id, title, desc, urgency)
 return task

NOTE I could have specified that the class method’s return type is Self,
which refers to the class, but it’s not available until Python 3.11. For compati-
bility with earlier Python versions, I omitted the type hints for the return type.

40314.2 How do I build the data models for my project?

In this class method, we call the random_string method to get a random string as the
new task’s ID number. Because the generation of the random string can be a utility
function for other purposes, we implement it as a static method, as it doesn’t use the
class or instance-related attributes:

@staticmethod
def random_string(length=8):
 """Create a random ASCII string using the specified length

 Args:
 length (int, optional): The desired length for the random
 ➥ string. Defaults to 8.

 Returns:
 str: The random string
 """
 return "".join(choice(ascii_lowercase) for _ in range(length))

In this method, we use the lowercase ASCII character set (imported from the string
module) as our source, randomly pick eight characters using the choice function in
the random module, and concatenate these characters using the join method (section
2.3). When we’ve created the instance, we need to save it to the database, and we can
use the save_to_db method, as shown in the following listing.

def save_to_db(self):
 """Save the record to the database
 """
 if app_db == TaskierDBOption.DB_CSV.value:
 with open(app_db, "a", newline="") as file:
 csv_writer = csv.writer(file)
 db_record = self._formatted_db_record()
 csv_writer.writerow(db_record)
 else:
 # operations when the database is the SQLite3
 pass

def _formatted_db_record(self):
 db_record = (self.task_id, self.title, self.desc, self.urgency,
 ➥ self.status.value, self.completion_note)
 return db_record

We open the CSV file in append mode using the with statement (section 11.1). Using
the CSV writer, we can write a row of data into the CSV file. As you may notice, we call
the protected method _formatted_db_record to obtain the record we’re going to
write to the file. The underscore prefix indicates that the method is nonpublic (sec-
tion 8.3.1).

Listing 14.2 Saving a record to the database

404 CHAPTER 14 Completing a real project

READING TASKS FROM THE DATA SOURCE

When we have multiple tasks in the database, it’s time to read and display the tasks. To
load tasks from the database, we create the load_tasks method, as the next listing shows.

@classmethod
def load_tasks(cls, statuses: list[TaskStatus]=None, urgencies:

➥ list[int]=None, content: str=""):
 """Load tasks matching specific criteria

 Args:
 statuses (list[TaskStatus], optional): Filter tasks with
 ➥ the specified statuses.
 Defaults to None, meaning no requirements on statuses
 urgencies (list[int], optional): Filter tasks with the
 ➥ specified urgencies.
 Defaults to None, meaning no requirements on urgencies
 content (str, optional): Filter tasks with the specified
 ➥ content (title, desc, or note).
 Defaults to "".

 Returns:
 list[Task]: The list of tasks that match the criteria
 """
 tasks = list()
 if app_db == TaskierDBOption.DB_CSV.value:
 with open(app_db, newline="") as file:
 reader = csv.reader(file)
 for row in reader:
 task_id, title, desc, urgency_str, status_str, note = row
 urgency = int(urgency_str)
 status = TaskStatus(int(status_str))
 if statuses and (status not in statuses):
 continue
 if urgencies and (urgency not in urgencies):
 continue
 if content and all([note.find(content) < 0,
 ➥ desc.find(content) < 0, title.find(content) < 0]):
 continue
 task = cls(task_id, title, desc, urgency, status, note)
 tasks.append(task)
 else:
 # using the SQLite as the data source
 pass
 return tasks

NOTE The type hint usage list[TaskStatus] is available in Python 3.9 and
later. If you experience an exception related to this usage, it’s likely that
you’re using an older version of Python.

Listing 14.3 Loading tasks from the database

Uses find
to search a

substring

40514.2 How do I build the data models for my project?

In listing 14.3, I want to highlight the following techniques:

 The created CSV reader from the file can be used as a generator (section 11.2),
with each item representing a row of data.

 We use tuple unpacking (section 4.4) to obtain the six data elements sequen-
tially. Each of these elements is in the form of a string.

 We obtain the desired urgency and status attributes by using the int and Task-
Status constructors, respectively. Please note that we could have used a
try...except... statement to obtain the data, but we’re sure about the data
integrity here, so the conversion should work. When we’re processing outside
data, we should use the exception-handling techniques.

 When we search a substring, we prefer using find, as it doesn’t raise an excep-
tion, unlike the index method (section 4.3.2).

 Related to the substring searching, the built-in all function returns True if all
the items in the list are evaluated to be True. The entire line means that if the
function call specifies the content argument, and we can’t find any match in
the note, desc, or title, we’ll skip the current row by triggering the continue
statement.

 Because our app allows users to select tasks that meet specific criteria—includ-
ing statuses, urgencies, and content (for title, description, and completion
note)—we want to define the load_tasks method that can load not only all the
tasks, but also a subset of tasks. If the argument statuses is not None, and the
current row’s status is not in the statuses, we can skip the current row by call-
ing the continue statement. The same logic applies to the urgencies and con-
tent arguments.

UPDATING A TASK IN THE DATA SOURCE

When the user makes changes to a task, we need to update the record in the database.
For this purpose, we use the update_in_db method, as the next listing shows.

def update_in_db(self):
 """Update the record in the database
 """
 if app_db == TaskierDBOption.DB_CSV.value:
 updated_record = f"{','.join(map(str,
 ➥ self._formatted_db_record()))}\n"
 with open(app_db, "r+") as file:
 saved_records = file.read()
 pattern = re.compile(rf"{self.task_id}.+?\n")
 if re.search(pattern, saved_records):
 updated_records = re.sub(pattern,
 ➥ updated_record, saved_records)
 file.seek(0)
 file.truncate()
 file.write(updated_records)

Listing 14.4 Updating a record in the database

Compiles the regular
expression pattern

406 CHAPTER 14 Completing a real project

 else:
 raise TaskierError("The task appears to be
 ➥ removed already!")
 else:
 # using the SQLite as the data source
 pass

In this method, I want to show you the usefulness of regular expressions. In essence,
we read all the text data from the CSV file. The pattern is to search the string that
starts with the task ID number and ends with a newline break. The replacement is the
updated record that we obtain by calling the _formatted_db_record method. Note
that because we’re writing text data to the file, we need to convert the formatted
record’s data to strings using the map function (section 7.2.2).

 From a performance perspective, we can replace the updated record directly with-
out searching for its existence. But because of the design of our app (section 14.4.3),
it’s possible that the user may be trying to update a task that has been removed. To
accommodate this need, we’re raising an exception when the record doesn’t exist.

 Although we didn’t have a chance to discuss the seek and truncate methods in
section 11.1, they’re easy to understand. In essence, we call seek(0) to move the cur-
sor of the file stream to the beginning and call truncate to remove all the text data.
When the file is empty, we can write the updated_records to the file.

DELETING A TASK FROM THE DATA SOURCE

If the user wants to delete a task, it’s possible for them to do so. We can define the
delete_from_db method to address this need, as shown in the next listing.

def delete_from_db(self):
 """Delete the record from the database
 """
 if app_db == TaskierDBOption.DB_CSV.value:
 with open(app_db, "r+") as file:
 lines = file.readlines()
 for line in lines:
 if line.startswith(self.task_id):
 lines.remove(line)
 break
 file.seek(0)
 file.truncate()
 file.writelines(lines)
 else:
 # using the SQLite as the data source
 pass

In this method, we call readlines (section 11.1) to obtain the text data as a list
object. We use this method because list objects are mutable (section 3.1), allowing
us to remove a task. For each line, we examine whether it starts with the task ID num-
ber, and when we find it, we call the break statement to exit the for loop immediately.

Listing 14.5 Deleting a record from the database

40714.2 How do I build the data models for my project?

After the lines object is updated, we can write it back to the file by calling the write-
lines method.

 We define a method, load_seed_data, to load some tasks so that the app can dis-
play some data. In this method, we create three tasks and save them to the database by
calling the save_to_db method:

@classmethod
def load_seed_data(cls):
 """Load seeding data for the web app
 """
 task0 = cls.task_from_form_entry("Laundry", "Wash clothes", 3)
 task1 = cls.task_from_form_entry("Homework", "Math and physics", 5)
 task2 = cls.task_from_form_entry("Museum", "Egypt things", 4)
 for task in [task0, task1, task2]:
 task.save_to_db()

Last but not least, we define the string representation methods, __str__ and
__repr__ (section 8.4):

def __str__(self) -> str:
 stars = "\u2605" * self.urgency
 return f"{self.title} ({self.desc}) {stars}"

def __repr__(self) -> str:
 return f"{self.__class__.__name__}({self.task_id!r},
 ➥ {self.title!r}, {self.desc!r}, {self.urgency},
 ➥ {self.status}, {self.completion_note!r})"

NOTE _str_ is for informational purposes and _repr_ is for coding develop-
ment purposes, if you’re wondering about the difference between these two
methods.

14.2.4 Discussion

Our data models should serve our business needs. It’s important to identify the app’s
features before we implement our data models. Although I’m showing the final ver-
sion of the code, it has taken me considerable time with multiple iterations of the
code to arrive at this version. Be patient with yourself when you work on any project.

PEEK The Task class serves the web app that we’re going to build in section 14.4.

14.2.5 Challenge

While Kathy is studying this book, she writes all the code to learn all the topics covered
in this book. When she works on the Task class, she thinks it’s possible that users may
try to delete a task that has already been removed from the database. How can she
update the delete_from_db method to make it raise an exception when the record
doesn’t exist?

408 CHAPTER 14 Completing a real project

HINT You can examine whether the record has been located before carrying
out the desired operation.

14.3 How do I use SQLite as my application’s database?
A database hosts the data for your application. Depending on the nature of your appli-
cation, such as data volume and processing requirements, you have a variety of
options for the database—Microsoft SQL, Oracle, MySQL, and PostgreSQL, to name
a few. These options are generally for enterprise-level applications, and it takes time
and resources to set up the infrastructure and maintain its performance. Unlike these
enterprise database solutions, SQLite is a kind of lightweight database that requires
virtually no setup on your computer, as it uses your computer’s disk directly as the
storage mechanism. In this section, I’ll show you how to use SQLite as our applica-
tion’s database.

14.3.1 Creating the database

The creation of an SQLite database is almost instant, requiring only a few function calls.
Specifically, we’ll use the built-in sqlite3 module, which is in the standard Python
library. This module provides all the application programming interfaces (APIs) needed
to create and manipulate the SQLite database. We’ll start with creating a database.

 Because the database is shared by all the instances of the Task class, we’ll define
the connection to the database as a class attribute. Through this connection, we’ll per-
form all database-related operations, such as data query and updating. We don’t work
on the database directly at the physical level because we want other processes to use
the database if necessary. Therefore, we establish a connection and work on it as we
create a file object on a file instead of manipulating the file directly:

class Task:
 con: sqlite3.Connection

To create a database, we define the create_sqlite_database method:

@classmethod
def create_sqlite_database(cls):
 """Create the SQLite database
 """
 with sqlite3.connect(TaskierDBOption.DB_SQLITE.value) as con:
 cls.con = con
 cursor = con.cursor()
 cursor.execute("CREATE TABLE task (task_id text, title text,
 ➥ desc text, urgency integer, status integer, completion_note text);")

We perform two operations in this method:

 By calling connect function, we’re establishing a connection to the database at the speci-
fied path. Notably, if the database doesn’t exist at the path, this function call also
creates the database. We use the with statement, which creates a context man-
ager to commit the execution automatically.

Saves it
as a class

variable

40914.3 How do I use SQLite as my application’s database?

 We’re adding a new table, task, to the database. Please note that this code runs only
when there is no database. The command is CREATE TABLE table_name
(field0_name field0_type, field1_name field1_type, ...). Another thing
you may notice is that we create a cursor to run the statement—a standard oper-
ation in SQLite and SQL databases in general.

We intend to call this create_sqlite_database method when users set the database
option, so we need to update the set_db_option function in listing 14.1 as follows:

def set_db_option(option):
 global app_db
 app_db = option
 db_path = Path(option)
 if not db_path.exists():
 if app_db == TaskierDBOption.DB_SQLITE.value:
 Task.create_sqlite_database()
 Task.load_seed_data()
 elif app_db == TaskierDBOption.DB_SQLITE.value:
 Task.con = sqlite3.connect(app_db)

I boldfaced the added code, which is a simple call of the create_sqlite_database
method when the database doesn’t exist. As a side note on the elif portion, when the
SQLite database exists and the database choice is SQLite, we establish a connection to
the database. Before we jump into the code to perform data operations using the SQLite
database, take a quick look at figure 14.5, which depicts the most common operations.

As shown in figure 14.5, we perform four common operations when we use an SQLite
database (or any database in general): query (retrieving records from the database),
insert (saving a new record to the database), update (updating an existing record),
and delete (removing a record from the database). The following sections address
these four operations individually.

14.3.2 Retrieving records from the database

To display data in our app, we need to retrieve records from the database. We’ve seen
how we can use the csv module to read data from a CSV file (section 14.2.3). Here, I
show you how to retrieve data by using the SQLite database.

SQLite database

Query

Insert

Update

Delete

Query the database to
retrieve records.

Save a new record to
the database.

Delete an existing
record in the database.

Update an existing
record in the database.

Figure 14.5 Common operations
with an SQLite database: query,
insert, update, and delete. Query
retrieves records from the
database, insert saves a new
record to the database, update
updates an existing record, and
delete removes an existing record.

410 CHAPTER 14 Completing a real project

 We’ve defined the load_tasks method (listing 14.3) to obtain the tasks data. Now
we’ll update this method to let it work with the SQLite database (listing 14.6). Please
note that I’m showing you only the code that is pertinent for reading data from the
SQLite database and omitting the code for using the CSV file.

@classmethod
def load_tasks(cls, statuses: list[TaskStatus]=None,

➥ urgencies: list[int]=None, content: str=""):
 """The docstring as before
 """
 tasks = list()
 if app_db == TaskierDBOption.DB_CSV.value:
 # csv-related code from listing 14.3
 pass
 else:
 with cls.con as con:
 if statuses is None:
 statuses = tuple(map(int, TaskStatus))
 else:
 statuses = tuple(statuses) * 2
 if urgencies is None:
 urgencies = tuple(range(1, 6))
 else:
 urgencies = tuple(urgencies) * 2
 sql_stmt = f"SELECT * FROM task WHERE status in {statuses}
 ➥ and urgency in {urgencies}"
 if content:
 sql_stmt += f" and ((completion_note LIKE '%{content}%')
 ➥ or (desc LIKE '%{content}%') or (title LIKE
 ➥ '%{content}%'))"
 cursor = con.cursor()
 cursor.execute(sql_stmt)
 tasks_tuple = cursor.fetchall()
 tasks = [Task(*x) for x in tasks_tuple]
 return tasks

Note the following points about this code:

 Because I want to create a single SQL statement to handle two scenarios—all the
tasks (using no filtering conditions for the arguments) and a subset of tasks (using
filtering conditions for the arguments)—I list all the statuses when the statuses
argument is None by running statuses = tuple(map(int, TaskStatus)).

 Similar logic applies to the urgencies argument. When the user wants to
retrieve all the tasks, we require the records’ urgency field to fall in the range
1–5, which is the possible range of urgency levels.

 One tricky part to understand is that when statuses and urgencies are not
None, I use tuple(statuses) * 2 and tuple(urgencies) * 2. I do this to fulfil the
SQL statement syntax requirement when users pick only one item for status or
urgency. Specifically, if users specify one urgency level, such as 2, from this input,

Listing 14.6 Loading data from the SQLite database

41114.3 How do I use SQLite as my application’s database?

we’re going to have a one-item tuple object (2,). Using this tuple object
directly in the sql_stmt is invalid, so we duplicate the items in the tuple object,
changing (2,) to (2,2), which is a valid SQL statement.

 The LIKE operation is SQL syntax for obtaining records that match the speci-
fied substring. We update the sql_stmt only when the content argument is set.
The portion content is evaluated as True if the string contains any characters.

 The fetchall function retrieves all the records as a list object based on the
executed SQL statement. Each record is returned as a tuple object in the form
of (task_id, title, desc, urgency, status, completion_note). Using list
comprehension, we convert these tuple objects to Task instance objects.

 During the conversion from a tuple object to an instance, we use the asterisk oper-
ation, which unpacks the tuple object and sends the items to the constructor.

14.3.3 Saving records to the database

When we have created records, we need to save them to the database. We can save the
records one by one or save them all together. In this section, I’ll show both techniques.

 Listing 14.2 defines the save_to_db method for the CSV file as the data source.
We’re going to update this method to make it compatible with the SQLite database
(listing 14.7).

def save_to_db(self):
 """Save the record to the database
 """
 if app_db == TaskierDBOption.DB_CSV.value:
 # operations when the database is the CSV file
 pass
 else:
 with self.con as con:
 cursor = con.cursor()
 sql_stmt = f"INSERT INTO task VALUES (?, ?, ?, ?, ?, ?);"
 cursor.execute(sql_stmt, self._formatted_db_record())

The syntax for saving a record to an SQLite database is INSERT INTO table VALUES (?,
?, ...). The question mark represents a placeholder, and the number of placehold-
ers (six, in our case) should match the number of items in the record, as obtained by
calling _formatted_db_record. Please note that you can execute a statement without
using placeholders, as we did in listing 14.6. If you use the placeholders, you specify
these values as the second argument in the execute function call.

 Another thing to note is that we call self.con to retrieve the connection to the
database. Although we define con as the class attribute, when we access the con attri-
bute of an instance, it uses the class attribute as the fallback.

 What should we do if we want to save multiple records in a single SQL statement?
That feature is supported. Instead of calling execute, we call the executemany

Listing 14.7 Saving a record to the SQLite database

412 CHAPTER 14 Completing a real project

function. In the function call, the second argument is a list of records. Although we’re
not going to implement it in the Task class (the instance method save_to_db is
sufficient for demonstration purposes), the next listing shows how to save multiple
records to an SQLite database.

task0 = Task.task_from_form_entry("Laundry", "Wash clothes", 3)
task1 = Task.task_from_form_entry("Homework", "Math and physics", 5)
task2 = Task.task_from_form_entry("Museum", "Egypt things", 4)

with Task.con as con:
 cursor = con.cursor()
 tasks = [task0, task1, task2]
 formatted_records = [task._formatted_db_record() for task in tasks]
 sql_stmt = f"INSERT INTO task VALUES (?, ?, ?, ?, ?, ?);"
 cursor.executemany(sql_stmt, formatted_records)

14.3.4 Updating a record in a database

Our task management app allows users to edit a task. After editing the task, we need to
update the record in the database. This section shows how to update a record in the
SQLite database.

 The update_in_db method is responsible for updating a record. The following
code updates the method to include the code for the SQLite database portion:

def update_in_db(self):
 """Update the record in the database
 """
 if app_db == TaskierDBOption.DB_CSV.value:
 # operations when the database is the CSV file
 pass
 else:
 with self.con as con:
 cursor = con.cursor()
 count_sql = f"SELECT COUNT(*) FROM task WHERE
 ➥ task_id = {self.task_id!r}"
 row_count = cursor.execute(count_sql).fetchone()[0]
 if row_count > 0:
 sql_stmt = f"UPDATE task SET task_id = ?, title = ?,
 ➥ desc = ?, urgency = ?, status = ?, completion_note = ?
 ➥ WHERE task_id = {self.task_id!r}"
 cursor.execute(sql_stmt, self._formatted_db_record())
 else:
 raise TaskierError("The task appears to be
 ➥ removed already!")

Note that we first examine the number of records that match the task ID number,
which should be 1—thus, greater than 0. If the record has been removed, we raise an
exception indicating that fact, as we did in listing 14.4 when we implemented this
method using a CSV file as our data source.

Listing 14.8 Saving multiple records to the SQLite database

Counts the
existing
records

41314.3 How do I use SQLite as my application’s database?

 The syntax for updating a record in an SQLite database is UPDATE table SET
field0_name = ?, field1_name = ?, ... WHERE condition. In this syntax, we shouldn’t
omit the WHERE clause, which filters the record; if we do, we’ll update all the records
accidentally. Again, we’re using placeholders for the execute function call. In the
clause, we specify the task_id using !r as the conversion, which produces the task ID
in single quotes ('example_id') as opposed to example_id.

14.3.5 Deleting a record from the database

Our task management app allows users to remove a task. When a task is removed, we
need to delete the record from the database. In this section, I’ll show how to address
this need.

 The delete_from_db method is responsible for deleting a record. The following
code updates the method to include the code for the SQLite database portion:

def delete_from_db(self):
 """Delete the record from the database
 """
 if app_db == TaskierDBOption.DB_CSV.value:
 # operations when the database is the CSV file
 pass
 else:
 with self.con as con:
 cursor = con.cursor()
 cursor.execute(f"DELETE FROM task WHERE task_id =
 ➥ {self.task_id!r}")

The syntax for deleting a record in an SQLite database is DELETE FROM table WHERE
condition. The only thing to note is that we still use !r for the task’s ID number to
create a string within single quotes.

14.3.6 Discussion

Because SQLite is a lightweight database with little configuration, we can use it when
we prototype our application. When we’re moving the application to production, we
can upgrade it by using a larger database, such as Oracle and MySQL. Although I’ve
focused on text and integers as the data types, which satisfies our business needs,
SQLite has limitations. For one, it doesn’t support all data types, such as date and
Boolean values. As a workaround, we can use strings in the format MMDDYY-
HHMMSS, the number of seconds since a reference date for the date, and integers 0
and 1 for false and true.

14.3.7 Challenge

We’ve seen that we can use a CSV file and SQLite as our database option. Can you
write a decorator to log the time needed to call a method? You can compare which is
faster by using a CSV file or an SQLite database for data-related manipulations.

HINT Section 7.3 discusses creating a decorator.

414 CHAPTER 14 Completing a real project

14.4 How do I build a web app as the frontend?
Web apps are a popular choice for many programming projects. Their most signifi-
cant benefit is their cross-platform compatibility. They can run on any web browser,
which means that you can access the app on any computer, any smartphone, and even
any television set that supports web browsers. In addition, web apps require zero
installation and configuration on the client’s side because they run on a web browser,
and all the features of a web app are loaded as web elements.

 As you can tell, web apps provide the most attractive outlet for any business. In this
section, I’ll show you how to build a web app by using streamlit, a third-party Python
framework for web developments. Please note that this framework provides a wide
range of features, and I won’t provide a comprehensive tutorial on using this frame-
work. Instead, I’ll focus on implementing the features of our task management appli-
cation in the form of a web app.

14.4.1 Understanding the essential features of streamlit

To use streamlit to create the web app, you should have a good understanding of
this framework. In this section, I’ll introduce essential knowledge of this framework.

 After we install streamlit in our virtual environment (taskier-env; section 14.1),
in addition to using the framework in our Python files, the installation of streamlit
includes using command line-based functionalities—that is, we can use a command-
line tool as the interface to invoke actions relevant to manipulating web apps built
with streamlit. The most important command is streamlit run taskier_app.py. As
indicated by its name, this command launches a web app running in your default web
browser, using taskier_app.py as the source file.

 The first essential feature of streamlit is converting a Python script file to a web
app. That’s the major reason why streamlit is a popular web framework choice for
Python developers. If you know Python, you can use streamlit to build a web app.

 The other essential feature of streamlit is automatic layout of web elements, such
as buttons and text-input boxes. This framework provides common web elements
(widgets) out of the box. Figure 14.6 shows the available widgets implemented in the
framework. Please note that these widgets may change in the latest release of the
streamlit framework.

 I won’t discuss how to use the widgets because they’re straightforward to use; also,
you can find instructions at https://streamlit.io/. I’ll show some screenshots in section
14.4.2. You’ll see that when you use these widgets in your script, you specify the widget
type with the necessary configurations, such as the text shown on the button, leaving
the heavy work of laying out the elements to the framework.

 Another notable feature of the streamlit framework is the reloading of the entire
script linearly (from top to bottom) when there is any change in the input, such as users
having selected an option of the radio widget. This feature is the core of this frame-
work’s execution model. Some beginning users of this framework may be frustrated
because their experience of using a web app has taught them that a page doesn’t reload

https://streamlit.io/

41514.4 How do I build a web app as the frontend?

automatically when they click an option of the radio widget. Although it can be a draw-
back in some use cases, we have a workaround to address this problem: session state
(section 14.4.3).

14.4.2 Understanding the app’s interface
Before I show you the code for creating the web app, you need to see what the app
looks like. This section shows the app’s interface.

 The first page shows the list of tasks (figure 14.7). On the left side is a sidebar,
which includes the menu options, such as showing tasks and choosing the database
option. On the right side is the main content area. In this case, the content is the list
of tasks. You can choose how to sort and filter the list of tasks by using the sidebar. For
clarity, we show the sort/filter menu only when we show the list of tasks.

 For each task in the list, you can click the View Detail button to display the details
of the task (figure 14.8). On the left side, we’re adding some widgets, which allow users
to delete the task. On the right side, we’re showing the task’s details in the main content
area, which includes an Update Task button for saving the updated task to the database.

 If users click the New Task button on the sidebar, they’ll be directed to a form
where they can create a task (figure 14.9). In the main content area, we’re displaying a
form, which collects the data needed for a new task. Users click Save Task to save the
record to the database.

Date picker

Time picker

Pick a date
from a calendar.

Pick a time from
a drop-down list.

Date and time

File uploader

Camera input

Color picker

Upload a file.

Upload an image
from a camera.

Pick a color
from a panel.

Multimedia

Text input

Text area

Collect text in a
single-line field.

Collect text in a
multiline box.

Textual data

Slider

Number input

Pick a number
from a range.

Enter a number
in a box.

Numeric data

Check box

Radio Select box

Multiselect

Select slider Pick an option
from a slider.

Single or multiple choices

Pick multiple options
from a drop-down list.

Pick an option.

Check a box (binary).

Button

Download
button

Clickable

Trigger an event
after clicking.

Download data
after clicking.

streamlit
widgets

Figure 14.6 The available widgets in the streamlit framework. The six categories are Clickable
(buttons), Single or Multiple Choice, Numeric Data, Textual Data, Multimedia, and Date and Time.

416 CHAPTER 14 Completing a real project

Sidebar Main content area

Click to show
the tasks.

Configure to
sort/filter the tasks.

Click to show the
form for creating
a new task.

Select the
database option.

Click to show the
task’s details.

Load sample data to
the database manually.

Figure 14.7 The interface for showing the list of tasks. The main interface includes a sidebar,
which shows menu information. The main content area shows the tasks.

Figure 14.8 The interface for showing a task’s details. In the sidebar, we display some widgets that
allow users to delete the task. In the main content area, we display the task’s details.

Option to
delete the task

Details of the task

Click to update the task.

41714.4 How do I build a web app as the frontend?

14.4.3 Tracking user activities using session state

As a loose definition to facilitate the discussion of streamlit, I refer to a session as
users accessing a web app in a web browser, typically in the form of a tab in modern
browsers. While the tab is active without being refreshed, we can use session state to
track users’ activity, stored as key-value pairs. This section shows what data we need to
track for our app.

 We’ll create the taskier_app.py file as the script for our web app, and all the code
discussed in this section will go into this file unless noted otherwise. At the top of this
file, we import the dependencies. We’ll talk about these dependencies when they
become relevant in the context of the code; for now, we’ll focus on streamlit. As a
convention, we typically use st as an alias for streamlit, making it easier to refer to
the framework. We call st.session_state to retrieve session data, for example:

import copy
import streamlit as st
from taskier import Task, TaskierDBOption, set_db_option,

➥ TaskStatus, TaskierError
from taskier_app_helper import TaskierMenuOption, TaskierFilterKey

session = st.session_state

Click to save the task.

Form to create a new task

Figure 14.9 The interface for creating a new task. After entering the data, users can click the Save Task
button to save it to the database.

418 CHAPTER 14 Completing a real project

sidebar = st.sidebar
status_options = TaskStatus.formatted_options()
menu_key = "selected_menu_option"
working_task_key = "working_task"
sorting_params_key = "sorting_params"
sorting_orders = ["Ascending", "Descending"]
sorting_keys = {"Title": "title", "Description": "desc", "Urgency":

➥ "urgency", "Status": "status", "Note": "completion_note"}

Besides dependencies, this code includes variables that we refer to often in the app,
and all of these variables are concerned either with setting up the sidebar or the ses-
sion state.

 The first item that we want to track in a session is the selected menu option. We
want to show three main pages (section 14.4.2): the list of tasks, a task’s details, and a
form for creating a new task. Because a session state stores data in the form of key-
value pairs, for this item, we’ll call the key selected_menu_option, which saves one of
these three menu options that are implemented as an enumeration class in the
taskier_app_helper.py file:

from enum import Enum

class TaskierMenuOption(Enum):
 SHOW_TASKS = "Show Tasks"
 NEW_TASK = "New Task"
 SHOW_TASK_DETAIL = "Show Task Detail"

class TaskierFilterKey(Enum):
 SORTING_KEY = "sorting_key"
 SORTING_ORDER = "sorting_order"
 SELECTED_STATUSES = "selected_statuses"
 SELECTED_URGENCIES = "selected_urgencies"
 SELECTED_CONTENT = "selected_content"

You may notice that we define the TaskierFilterKey class in the helper file. This class
pertains to the second item we’re tracking in session state: how users choose to sort
and filter the list of tasks. Users can view only tasks with an urgency level of 3, for
example. These sorting and filtering parameters are saved as a dict object by means
of the key sorting_params in session state.

NOTE We could have used two dict objects to track sorting and filtering
parameters separately. But many web apps, including ours, have the same
user interface for filtering and sorting. It’s cleaner for us to use one dict
object to track these parameters generated from a single user interface.
Unless I specify otherwise, I refer to sorting and filtering parameters inter-
changeably.

41914.4 How do I build a web app as the frontend?

When the user wants to view a task’s details, we need to track which task the user is view-
ing. In session state, we use the working_task key to store this task, which is an instance
of the Task class. As we need to update several key-value pairs in a variety of functions
in the session, it’s a good idea to define a function for this job in the taskier_
app.py file:

def update_session_tracking(key, value):
 session[key] = value

We can use the update_session_tracking function to update the values for the cor-
responding keys. Notably, streamlit runs the entire script from top to bottom when-
ever any change in user input occurs. Thus, we want to set the keys to their initial
values only when the session doesn’t have these keys. If these keys have been set, we
don’t want to override their existing values, which we use to track users’ activity. The
following code snippet shows how we set the initial session state:

def init_session():
 if menu_key not in session:
 update_session_tracking(menu_key,
 ➥ TaskierMenuOption.SHOW_TASKS.value)
 update_session_tracking(working_task_key, None)
 update_session_tracking(sorting_params_key, {x.value: None for x
 ➥ in TaskierFilterKey})

Because we use streamlit to run the file as a script, it’s good practice to use if
__name__ == "__main__" at the end of the file in case we want to use this file as a mod-
ule, as shown in the following listing.

if __name__ == "__main__":
 init_session()
 setup_sidebar()
 if session[menu_key] == TaskierMenuOption.SHOW_TASKS.value:
 show_tasks()
 elif session[menu_key] == TaskierMenuOption.NEW_TASK.value:
 show_new_task_entry()
 elif session[menu_key] == TaskierMenuOption.SHOW_TASK_DETAIL.value:
 show_task_detail()
 else:
 st.write("No matching menu")

As annotated in listing 14.9, we call the init_session function, which sets up the ses-
sion state that can track users’ activity. The next function we call is setup_sidebar, dis-
cussed in section 14.4.4.

Listing 14.9 Calling the functions to create the web app

Initiates the session

420 CHAPTER 14 Completing a real project

14.4.4 Setting up the sidebar

We typically use a sidebar to show menu or optional configuration settings. In this sec-
tion, I’ll show how to set up the sidebar for our app. We configure the sidebar by call-
ing the setup_sidebar function, as shown in the next listing.

def setup_sidebar():
 sidebar.button("Show Tasks", on_click=update_session_tracking,
 ➥ args=(menu_key, TaskierMenuOption.SHOW_TASKS.value))

 sidebar.button("New Task", on_click=update_session_tracking,
 ➥ args=(menu_key, TaskierMenuOption.NEW_TASK.value))

 selected_db = sidebar.radio("Choose Database Option", [x.value for x
 ➥ in TaskierDBOption])
 set_db_option(selected_db)

 sidebar.button("Load Data to Database", on_click=Task.load_seed_data)

 sidebar.markdown("___")

 if session[menu_key] == TaskierMenuOption.SHOW_TASKS.value:
 setup_filters()
 elif session[menu_key] == TaskierMenuOption.SHOW_TASK_DETAIL.value:
 setup_deletion()

CONCEPT Markdown is a lightweight markup language for creating format-
ted text. In these examples, we use three underlines ___, which translate to a
divider widget that forms a visual separator between sections.

Listing 14.10 is the first time that we add widgets to our web app. In general, we add a
widget in the following syntax: st.widget_name(widget_label, value_or_options,
key=widget_id, on_click=on_click_if_applicable, args=args_if_any). For a
sidebar, we can use sidebar.widget_name. Using the button and radio widgets as
examples, figure 14.10 illustrates the anatomy of the pertinent code.

 When we add a widget, such as a radio (figure 14.10), we can optionally use the
return value of the function call. st.radio adds the radio, for example, and when
users pick an option, we can obtain the index from this function call. In our case, we
use this index to know which database option is chosen by calling the set_db_option
function (listing 14.1). When the database option is selected, we’ll configure the data-
base behind the scenes, such as by creating the SQLite database and adding the task
table. Related to this widget, to help you interact with this app from the learning per-
spective, I’m adding a Load Data to Database button to add more data to the database.

 When users elect to show the tasks, we display the options for sorting and filtering
by calling the setup_filters function. In case you wonder whether it’s necessary to
make this function private (we’re writing a script for developers, not for other users),

Listing 14.10 Setting up the sidebar

Adds a button

Adds a radio

Adds a divider

42114.4 How do I build a web app as the frontend?

it’s fine to name functions without using an underscore prefix, which would otherwise
reduce readability:

def setup_filters():
 filter_params = session[sorting_params_key]
 with sidebar.expander("Sort and Filter", expanded=True):
 filter_params[TaskierFilterKey.SORTING_KEY.value] =
 ➥ st.selectbox("Sorted by", sorting_keys)
 filter_params[TaskierFilterKey.SORTING_ORDER.value] =
 ➥ st.radio("Sorting order", sorting_orders)
 filter_params[TaskierFilterKey.SELECTED_STATUSES.value] =
 ➥ st.multiselect("Show tasks with status (defaults to all)",
 ➥ options=status_options)
 filter_params[TaskierFilterKey.SELECTED_URGENCIES.value] =
 ➥ st.multiselect("Show tasks with urgency level (defaults to all)",
 ➥ options=range(1, 6))
 filter_params[TaskierFilterKey.SELECTED_CONTENT.value] =
 ➥ st.text_input("Show tasks with the content (defaults to all)")

Because the sorting and filtering parameters belong to the same conceptual category,
I use an expander widget named Sort and Filter. In the expander, we define five
widgets: a selectbox to pick one of the tasks’ attributes (title, description, urgency,
status, or completion note) for sorting; a radio to determine the sort order
(descending or ascending); a multiselect to specify the selected statuses; another
multiselect to specify the selected urgency levels; and a text_input to filter tasks with
the specified content. Figure 14.11 shows how to select a subset of tasks by specifying
these parameters.

st.button(“Show Tasks”, on_click=func, args=(arg0, arg1))

st.radio(“Choose Database Option”, [“Option 0”, “Option 1”])

The button’s
display name

call func(arg0, arg1)
If clicked

This call adds a button and
returns a Boolean to indicate
whether the button is clicked.

The radio’s label

This call adds a radio and
returns an integer to
indicate the index of the
option selected.

Figure 14.10 Dissecting the code for adding a button and a radio in streamlit. Calling
st.button adds a button to the web page and returns a Boolean that indicates the button’s click
status. Calling st.radio adds a radio to the web page and returns an integer that indicates the
selected option’s index. Each function includes additional arguments that configure the widgets.

422 CHAPTER 14 Completing a real project

When the user views a task’s detail in the main content area, we show the deletion
option in the sidebar by calling the setup_deletion function:

def setup_deletion():
 task = session[working_task_key]
 text_title = sidebar.text_input("Enter task title to delete",
 ➥ key="existing_delete")
 submitted = sidebar.button("Delete Task")
 if submitted:
 if text_title == task.title:
 task.delete_from_db()
 sidebar.success("Your task has been deleted.")
 else:
 sidebar.error("You must enter the exact text for the
 ➥ title to delete.")

In this function, we retrieve the task by accessing the session’s working_task key. To
prevent users from deleting a task accidentally, we require them to type the task’s title
before removing it from the database. The new feature calls the success and error
functions, which are useful for providing real-time positive and negative feedback on
the actions the users performed (figure 14.12).

Sorting by urgency level

Sorting using ascending order

Filtering the tasks with a status of created

Filtering the tasks with urgency level 4 or 5

No specific filtering for the content

Sorted and filtered tasks

Figure 14.11 Selecting a
subset of tasks by using the
Sort and Filter widget.
After users specify the sorting
and filtering parameters, the
tasks are retrieved based on
these criteria and displayed in
the main content area.

42314.4 How do I build a web app as the frontend?

14.4.5 Showing the tasks

In a task management app, it’s useful to show the list of available tasks that users can
work on. Thus, the page that shows the tasks is important. This section shows how to
implement this feature by using streamlit. In listing 14.9, we called the show_tasks
function to configure the web elements for showing the tasks. The next listing shows
how the show_tasks function is implemented.

def show_tasks():
 filter_params = session[sorting_params_key]
 if filter_params[TaskierFilterKey.SORTING_KEY.value] is not None:
 reading_params = get_reading_params(filter_params)
 tasks = Task.load_tasks(**reading_params)
 sorting_key = sorting_keys[filter_params[
 ➥ TaskierFilterKey.SORTING_KEY.value]]
 should_reverse = filter_params[
 ➥ TaskierFilterKey.SORTING_ORDER.value] == sorting_orders[1]
 tasks.sort(key=lambda x: getattr(x, sorting_key),
 ➥ reverse=should_reverse)
 else:
 tasks = Task.load_tasks()

 for task in tasks:
 col1, col2 = st.columns([3, 1])
 col1.write(str(task))
 col2.button("View Detail", key=task.task_id,
 ➥ on_click=wants_task_detail, args=(task,))
 st.write(f"Status: {task.status.name.title()}")
 st.markdown("___")

Listing 14.11 Showing the tasks in the web app

st.success() st.error()

Enter task title to delete

Delete Task Delete Task

Your task has been deleted.

Enter task title to delete

You must enter the exact text for the title
to delete.

Museum Museums

Figure 14.12 Success and error feedback in the web app. We call st.success to
provide positive feedback and st.error to provide negative feedback.

Retrieves
the data

Creates two columns as a
grid for clearer display

Displays
the data

424 CHAPTER 14 Completing a real project

This code has two parts. The first part retrieves the data, with and without using the
sorting and filtering parameters, and the second part displays the data by using the
widgets.

 The first part of listing 14.11 involves two steps:

1 Obtain the filtering parameters from user input by calling the get_reading_params
function. We’ll discuss this function later in this section.

2 Sort the tasks based on the sorting parameters provided. Because we use list, a mutable
object (section 3.1), to store tasks, we can sort the tasks by using the sort method
(section 3.2). Because the sorting key can change, such as from title to desc, it
can be tedious if we’re creating different lambda functions as the key argument,
such as lambda x: x.title to sort by the title and lambda x: x.urgency to sort by
the urgency level. Thus, we’re using a generic approach to retrieve the
corresponding attribute dynamically: lambda x: getattr(x, sorting_key).

The second part of listing 14.11 uses applicable widgets to display the tasks. Here, I’m
using a new widget called columns, which is an invisible widget used for organizational
purposes. Specifically, the call st.columns([3, 1]) creates two columns with a width
ratio of 3:1, and the return value of this call is a tuple that represents these two columns.
Using tuple unpacking, we’re getting the references to them, named col1 and col2,
and we can add widgets to the columns. One of these widgets is the View Detail button,
and when it’s clicked, we show the details for the task in the main content area, as dis-
cussed next in section 14.4.6. Here’s how the get_reading_params function works:

def get_reading_params(filter_params):
 reading_params = dict.fromkeys(["statuses", "urgencies", "content"])
 if selected_statuses := filter_params[
 ➥ TaskierFilterKey.SELECTED_STATUSES.value]:
 reading_params["statuses"] = [status_options.index(x) for x
 ➥ in selected_statuses]
 if selected_urgencies := filter_params[
 ➥ TaskierFilterKey.SELECTED_URGENCIES.value]:
 reading_params["urgencies"] = selected_urgencies
 if selected_content := filter_params[
 ➥ TaskierFilterKey.SELECTED_CONTENT.value]:
 reading_params["content"] = selected_content
 return reading_params

As shown in figure 14.11, users can configure three filtering parameters: status,
urgency, and content. Everything should be straightforward in this code snippet
except for one new technique that we haven’t seen before: assignment expression. This
technique uses the := symbol (nicknamed the walrus operator), which was introduced
in Python 3.8. The code selected_statuses := filter_params[TaskierFilter-
Key.SELECTED_STATUSES.value], for example, means that we’re trying to retrieve the
value of the selected_statuses key in the filter_params dictionary and assign it to
a variable called selected_statuses. If this value isn’t None, we’re going to run the
code within the if statement. Typically, an assignment is a statement, so we can’t use it

42514.4 How do I build a web app as the frontend?

in an if statement, which requires the clause to be an expression. As you can see,
assignment expression does two things: assigns a value and evaluates it.

REMINDER An expression evaluates to an object, whereas a statement per-
forms an action without returning a value. See section 2.1.3 for a detailed dis-
cussion of the differences between expressions and statements.

14.4.6 Showing a task’s details

The list of tasks provides overall information for each task. We can display more
detailed information about the task. This section shows how to address this need.

 For the View Detail button, we set the on_click argument using the wants_task_
detail function and the args argument using (task,). If a user clicks this button,
we’ll call wants_task_detail(task):

def wants_task_detail(task: Task):
 update_session_tracking(working_task_key, task)
 update_session_tracking(menu_key,
 ➥ TaskierMenuOption.SHOW_TASK_DETAIL.value)

This function call does two things:

 It sets the task associated with the View Detail button as the current working
task.

 It changes the selected menu to show a task’s details. By changing the menu,
when the web app reloads, we show the task detail page by calling the
show_task_detail function, as shown in the next listing.

def show_task_detail():
 task = session[working_task_key]
 form = st.form("existing_task_form", clear_on_submit=False)

 form.title("Task Detail")

 task.title = form.text_input("The title", value=task.title,
 ➥ key="existing_task_title")

 task.desc = form.text_input("The description", value=task.desc,
 ➥ key="existing_task_desc")

 task.urgency = form.slider("The urgency level", min_value=1,
 ➥ max_value=5, value=task.urgency)

 status = form.selectbox("The status", index=task.status,
 ➥ options=status_options, key="existing_task_status")
 task.status = TaskStatus(status_options.index(status))

 task.completion_note = form.text_input("The completion note",
 ➥ value=task.completion_note, key="existing_task_note")

Listing 14.12 Showing a task’s detail

426 CHAPTER 14 Completing a real project

 submitted = form.form_submit_button("Update Task")
 if submitted:
 try:
 task.update_in_db()
 except TaskierError:
 form.error("Couldn't update the task as it's maybe
 ➥ deleted already.")
 else:
 session[working_task_key] = task
 form.success("Your Task Was Updated!")

Note three things in listing 14.12:

 We’re using the form widget to group individual widgets, such as slider and
text_input. The form widget can remember the user’s input for its contained
widgets so that when the web page is reloaded, it shows the user’s input.

 When we’re done with the updating, we call the form_submit_button, which
adds the Submit button to the form and uses the return value, which is True
when the button is clicked.

 When we’re submitting this form to update the record in our database, we’re
using the try...except...else... statement (sections 12.3 and 12.4). We use
exception handling here because it’s possible that the user may have deleted
the task by using the deletion option on the sidebar or may have used another
tab to delete the task.

Please note that in an actual web app, you may not want to design your interface this
way. If the user has deleted an item, you should direct them to a page that doesn’t
show the deleted item. I provide this example purely for demonstration purposes to
show how to use exception handling in a project.

14.4.7 Creating a new task

In the task management app, we allow users to create a new task. This section shows
how to implement this feature in our web app. For this feature, we’re defining the
show_new_task_entry function, as the following listing shows.

def show_new_task_entry():
 with st.form("new_task_form", clear_on_submit=True):
 st.title("New Task")

 title = st.text_input("The title", key="new_task_title")

 desc = st.text_input("The description", key="new_task_desc")

 urgency = st.slider("The urgency level", min_value=1, max_value=5)

 submitted = st.form_submit_button("Save Task")

Listing 14.13 Creating a new task in the web app

42714.4 How do I build a web app as the frontend?

 if submitted:
 task = Task.task_from_form_entry(title, desc, urgency)
 task.save_to_db()
 st.success("Your Task Was Saved!")

As we did in the task detail page, we’re using the form widget for new task entry.
What’s different from listing 14.12 is that we’re using the with statement for the form,
creating a context manager (section 11.1). In the with statement, when we call
st.text_input to create a text-input box, streamlit knows that the box should be
placed within the form because of the context manager. By contrast, when we didn’t
use a context manager in listing 14.12, we explicitly called form.text_input to add a
text-input box to the form. Both approaches—using and not using a context man-
ager—are acceptable.

14.4.8 Organizing your project

We’ve seen how we implement our features individually. From the maintainability per-
spective, it’s essential to organize your project so that it’s easier for team members to
read and locate the pertinent functionalities. In this section, I’ll show the best practice
to organize your project by using streamlit to develop the web app. Because the final
product is a web app, I’ll focus first on the script file taskier_app.py, which is respon-
sible for creating the web app.

 In general, this script consists of three components: dependencies, global vari-
ables, and functions for configuring the interface. For our web app, the script uses the
Task class as its core data model. Although the script file is the only place to use the
Task class in our app, we don’t want to put the class in the script file for two reasons:

 We’re making it hard to read the script file to understand how the web app is
built because the Task class occupies considerable space in the code, and it
doesn’t contribute to the web app’s interface.

 It would be inconvenient to use this class for other purposes, such as building a
desktop app. Thus, it’s critical to use a separate file to implement our data model.

When we use the data model in our app, we import it as a dependency. For the script
file, we place the dependencies at the top of the file, as shown in the following code
snippet. The dependencies not only serve the code in the script, but also provide
important information that readers of the code (such as teammates) want to know,
such as what libraries and packages the script uses:

import streamlit as st
from taskier import Task, TaskierDBOption, set_db_option,

➥ TaskStatus, TaskierError
from taskier_app_helper import TaskierMenuOption, TaskierFilterKey

As you may notice, we’re saving the TaskierMenuOption and TaskierFilterKey
classes in a different file (taskier_app_helper.py) so that the taskier_app.py file
includes only the code for building the web’s interface.

428 CHAPTER 14 Completing a real project

 After clarifying the organization of the dependencies, we can analyze the organiza-
tion of the script file’s components. Figure 14.13 provides a graphic analysis.

For the code that configures the interface, I’ve organized the functions based on their
intended purposes. Related functions are grouped together. The code for session
tracking is at the top because it’s the driving force for tracking user activity. In the
middle are the functions for configuring the main content area. At the end are the
functions that set up the sidebar.

14.4.9 Running the app

We’ve completed the code and organized it nicely. It’s time to run the app and give it
a try. (Please note that when you work on app development, you should run the app
in a browser so that you can see the code’s performance in real time.) To run the app,
enter the streamlit command in the command-line tool:

$ streamlit run taskier_app.py

Make sure that you run the command after you navigate to the directory where the
taskier_app.py file is saved; otherwise, you need to specify the full path to the script
file. You should see a new tab in your default browser, with our app running in the tab.

Dependencies

Global Variables

def update_session_tracking():

def init_session():

def show_tasks():

def get_reading_params():

def wants_task_detail():

def show_task_detail():

def show_new_task_entry():

def setup_filters():

def setup_deletion():

def setup_sidebar():

if __name__ == "__main__":

Tracking the session state

Showing the tasks

Showing a task’s details

Showing the form for a new task

Configuring the sidebar

Running the script’s functions

Importing streamlit and data models

Defining variables for tracking session

Configuring
the interface

Figure 14.13 The organization of the taskier_app.py file. The file has three components:
dependencies, global variables, and configuration of the interface.

429Summary

14.4.10Discussion

It takes some time to get familiar with a framework such as streamlit. This section
isn’t about the technicalities of using this framework. Instead, by building this web
app, including its interface and its supporting data models, you saw how the tech-
niques covered in the book contribute to a real project. Toward the end of this sec-
tion, I showed you how to organize the project. Although this app is a toy project, it’s
still important to organize your code in a readable, maintainable way.

NOTE The company behind the streamlit framework allows you to publish
your web app for free if you host your app’s code publicly on GitHub. You can
find information about sharing your apps at https://share.streamlit.io/.

14.4.11Challenge

One of the global variables that we define is sorting_keys, which is a dict object:
{"Title": "title", "Description": "desc", "Urgency": "urgency", "Status":
"status", "Note": "completion_note"}. We use this object when we create a
selectbox widget: st.selectbox("Sorted by", sorting_keys). In this call, we use
the dict object as options for the widget. Why can we use a dict object instead of a
list object, such as list(sorting_keys.keys())?

HINT We can send any iterable to the selectbox as the options. A dict
object is iterable, using its keys as the iterator’s elements by default.

Summary
 You should create a virtual environment for each project, forming an isolated

environment to manage the dependencies for the project and avoiding depen-
dency requirements between projects.

 The venv module is the built-in solution for managing virtual environments.
 Some third-party tools, such as conda, allow you to have a distinct Python inter-

preter for each virtual environment, which can give you more flexibility if your
projects use different versions of Python.

 Data models should serve the business needs of your project. Thus, before writ-
ing code for implementing your data models, you should identify your needs.

 Your code files should be readable. For a class, you should write docstrings for
each method you’re defining.

 SQLite is a lightweight database that requires no preconfiguration. You can cre-
ate an SQLite database in all major operating systems, including those for por-
table devices such as smartphones.

 Compared with CSV files, an SQLite database is a more formal database choice.
I used a CSV file as a data source for tutorial purposes, but for a real project,
you should always consider using a formal database.

https://share.streamlit.io/

430 CHAPTER 14 Completing a real project

 Web apps are great options for showcasing your projects, as they’re platform-
agnostic. Python supports several web frameworks, including streamlit, which
all Python developers can use to build a web app easily.

 Although the project you created for this book is a tiny one, you should orga-
nize your files and their internal code. This is critical for improving readability
and maintainability.

431

solutions to the challenges

Chapter 1
No challenges to get started with Python. You win!

Chapter 2

Section 2.1
We start with the following dict object:

product = {"name": "Vacuum", "price": 130.675}

Following is the solution for producing the desired output:

product_tag = f"{product['name']}: {{{product['price']:.2f}}}"

assert product_tag == "Vacuum: {130.68}"

Normally, we use curly braces to interpolate variables, so to make them mean the
brace symbols themselves instead of interpolations, you need to use {{ to mean the
brace symbol itself. Thus, {{{var_name} is interpreted as one left curly brace plus
an interpolated string from var_name.

Section 2.2
When we use the input function to collect users’ input, we’re getting strings. When
we expect numeric values, we need to convert them to a corresponding numeric
value. We can have the following code:

x = input("What's today's temperature in your area?")
x_num = float(x)
if x_num < 10:
 x_output = f"You entered {x_num:.1f} degrees. It's cold!"

Converts a string to a floating-point number

.1f is
the floating-
point format
specifier.

432 solutions to the challenges

elif 10 <= x_num < 25:
 x_output = f"You entered {x_num:.1f} degrees. It's cool!"
else:
 x_output = f"You entered {x_num:.1f} degrees. It's hot!"

print(x_output)

If you look at how x_output is created multiple times, you may notice a pattern of rep-
etition: the only difference is the adjective that describes weather. Thus, a better solu-
tion is

x = input("What's today's temperature in your area?")
x_num = float(x)
if x_num < 10:
 x_whether = "cold"
elif 10 <= x_num < 25:
 x_whether = "cool"
else:
 x_whether = "hot"

x_output = f"You entered {x_num:.1f} degrees. It's {x_whether}!"
print(x_output)

Section 2.3
The argument maxsplit specifies the maximal number of splits when you use split
or rsplit. When you ignore this argument, both methods will use all occurrences of
the separator. Alternatively, if you set this argument that is greater than the number of
occurrences, you expect the same result for both methods as follows:

fruits = "apple,orange,pineapple,cherry,watermelon"
assert fruits.split(",") == fruits.split(",", 10) ==

➥ fruits.rsplit(",") == fruits.rsplit(",", 10) ==

➥ ['apple', 'orange', 'pineapple', 'cherry', 'watermelon']

If you use a number that is smaller than the maximally available splits, however, you
expect split and rsplit to produce different results:

assert fruits.split(",", 3) == ['apple', 'orange', 'pineapple',

➥ 'cherry,watermelon']

assert fruits.rsplit(",", 3) == ['apple,orange', 'pineapple',

➥ 'cherry', 'watermelon']

Section 2.4
Suppose that you want to split the following string:

data_to_split = "abc_,abc__,abc,,__abc_,_abc"

433solutions to the challenges

As you can see, the separators are a variable mixture of _ and ,. To split such string
data, we can use the following pattern: [,_]+, which means that there can be multiple
matching occurrences of _ or , in the string. Applying this pattern, we can create the
desired split:

import re
pattern = r"[,_]+"
splitted = re.split(pattern, data_to_split)
print(splitted)
output: ['abc', 'abc', 'abc', 'abc', 'abc']

Section 2.5
When we process multiline text, we can use \n to identify the end of a line. Thus, to
extract the needed records without splitting the lines, we can try the following pattern
by specifying that the record ends with a newline character:

text_data = """101, Homework; Complete physics and math
some random nonsense
102, Laundry; Wash all the clothes today
54, random; record
103, Museum; All about Egypt
1234, random; record
Another random record"""

import re
pattern = r"(\d{3}), (\w+); (.+)\n"
splitted = re.findall(pattern, text_data)
print(splitted)

output: [('101', 'Homework', 'Complete physics and math'), ('102',

➥ 'Laundry', 'Wash all the clothes today'), ('103', 'Museum',

➥ 'All about Egypt'), ('234', 'random', 'record')]

Everything appears to work, but there is one exception: we also include the incorrect
record ('234', 'random', 'record'). If we compare this record with our pattern,
matching it isn’t a surprise because we don’t have any restriction in terms of what pre-
cedes the three-digit identifier. Following is a more accurate way to build the pattern:

pattern = r"(?<!\d)(\d{3}), (\w+); (.+)\n"
splitted = re.findall(pattern, text_data)
print(splitted)

output: [('101', 'Homework', 'Complete physics and math'), ('102',

➥ 'Laundry', 'Wash all the clothes today'), ('103', 'Museum',

➥ 'All about Egypt')]

The part (?<!\d) is known as the negative look-behind assertion, which means that it
matches text that has a three-digit number only if it’s not preceded by any number.
Please note that this example shows advanced use of regular expressions. You can find

Uses the raw string
for pattern creation

434 solutions to the challenges

more information on the official Python website at https://docs.python.org/3/
library/re.html.

Chapter 3

Section 3.1
When you need to hold a series of places, such as a person’s trip history, you want to
use list as the data model because you expect that users may change the places
they’ve visited (to add new ones, for example).

 A place has a specific coordinate, and you don’t expect it to change. Thus, you
want to use tuple to hold the coordinate data:

(latitude, longitude)

Section 3.2
Following is the list that we want to sort based on the length of the descriptions:

tasks = [
 {'title': 'Laundry', 'desc': 'Wash clothes', 'urgency': 3},
 {'title': 'Homework', 'desc': 'Physics + Math', 'urgency': 5},
 {'title': 'Museum', 'desc': 'Egyptian things', 'urgency': 2}
]

We know that we need to set a function to the key argument, and the function should
calculate the length of a task’s description as follows:

def using_by_desc_len(task):
 return len(task["desc"])

tasks.sort(key=using_by_desc_len, reverse=True)
print(tasks)

output: [{'title': 'Museum', 'desc': 'Egyptian things', 'urgency':

➥ 2}, {'title': 'Homework', 'desc': 'Physics + Math', 'urgency':

➥ 5}, {'title': 'Laundry', 'desc': 'Wash clothes', 'urgency': 3}]

We define the function using_by_desc_len, which returns the task’s description
length. As a reminder, this function will serve as the key argument, which must take
exactly one argument. It’s necessary to set the reverse argument to True, as the chal-
lenge requires the task to have a higher rank if its description is longer. If you already
know lambda functions (section 7.1), you can use the following code to sort:

tasks.sort(key=lambda x:len(x["desc"]), reverse=True)

Section 3.3
Because a named tuple is a tuple object, we can’t change it due to its immutability. If
we insist, we’ll encounter an AttributeError:

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

435solutions to the challenges

from collections import namedtuple

Task = namedtuple("Task", "title desc urgency")
task = Task(title='Laundry', desc='Wash clothes', urgency=3)

task.urgency = 4
ERROR: AttributeError: can't set attribute

But named tuples provide a workaround in the form of the _replace method:

task._replace(urgency=4)
output: Task(title='Laundry', desc='Wash clothes', urgency=4)

Please note that this method creates a new tuple object that has the changed value
instead of making an in-place change of the original object.

Section 3.4
Suppose that we have the dict object numbers:

numbers = {"one": 1, "two": 2, "three": 3}
numbers_key = numbers.keys()
id_key = id(numbers_key)
print(id_key)

output 140660045849520

In this code snippet, we also obtain the keys by using the keys method, which is a dic-
tionary view object. The built-in id function can get the memory address of this view
object. We’ll change the dict object by adding a new key-value pair:

numbers["four"] = 4

After this change, we see that the keys are updated automatically in the numbers_key
object and that the memory address stays the same because the update manipulates
the same object:

print(numbers_key)
output: dict_keys(['one', 'two', 'three', 'four'])

print(id_key)
output: 140660045849520

Section 3.5
The keys in a dict object must be hashable because the hash values will be used by the
underlying hash table as the storage mechanism. When you have keys that have the
same hash values, the last-seen rule applies: the value associated with the key that is set
later becomes the value for the key. In our case, an integer of 1 and a floating-point
number of 1.0 have the same hash value:

assert hash(1) == hash(1.0) == 1

Expect a different value
on your computer.

436 solutions to the challenges

Thus, under the last-seen rule, we should expect the value associated with 1.0 to
become the key’s value:

numbers = {1: "one", 1.0: "one point one"}

print(numbers)
output: {1: 'one point one'}

Section 3.6
As indicated in the hint, these evaluations are known as short-circuit evaluations. When
Python tries to evaluate expr_a or expr_b, if it finds the first expression to be True, it
uses the first object; otherwise, it uses the second expression. Some examples support
this rule:

assert ({1, 2, 3} or {4, 5, 6}) == {1, 2, 3}
assert (False or []) == []
assert ("Hello" or "World") == "Hello"

When Python tries to evaluate expr_a and expr_b, if it finds the first expression to be
False, it uses the first object; otherwise, it uses the second expression. Some examples
support this rule:

assert ({1, 2, 3} and {4, 5, 6}) == {4, 5, 6}
assert (False and []) == False
assert ("Hello" and "World") == "World"

This rule may be trickier to remember than the or operations. Here’s a hint: because
they’re short-circuit evaluations for and operations, they’re evaluated to be True only
if both are True. Thus, if Python finds the first expression to be False, the evaluation
is done; the result must be False. For this reason, Python uses the first expression.

Chapter 4

Section 4.1
When you create a subsequence from a slice, it should be exactly like the original
sequence. A few examples follow:

num_list = [1, 2, 3, 4]
num_tuple = (1, 2, 3, 4)
num_str = "1234"

print(num_list[:2])
output: [1, 2]

print(num_tuple[:2])
output: (1, 2)

print(num_str[:2])
output: 12

437solutions to the challenges

You can do the same slicing with a range object. As you might expect, the subse-
quence is also a range object:

num_range = range(1, 5)

print(num_range[:2])
output: range(1, 3)

Section 4.2
We need to obtain sales for November. Following is the entire year’s data:

revenue_by_month = [95, 100, 80, 93, 92, 110, 102, 88, 96, 98, 115, 120]

As discussed in the section, we can obtain this data point with revenue_by_month[-2]
using the negative index. If we want to use a positive index, we can obtain it by calcu-
lating the length:

assert revenue_by_month[-2] ==

➥ revenue_by_month[len(revenue_by_month) - 2]

Section 4.3
If you run the following code snippet, you’ll encounter a ValueError:

class Task:
 def __init__(self, title, urgency):
 self.title = title
 self.urgency = urgency

tasks = [
 Task("Laundry", 3),
 Task("Museum", 4),
 Task("Homework", 5),
 Task("Ticket", 2)
]

task_to_search = Task("Homework", 5)
tasks.index(task_to_search)
ERROR: ValueError: <__main__.Task object at 0x7fee281be3e0>

➥ is not in list

The reason for this error is that although task_to_search appears to have the same
attributes for the third item in the tasks list, the instance objects of a custom class
aren’t comparable out of the box. Built-in data, such as strings, is comparable, so you
can use the index method to locate the item. To make the comparison work, you must
override the __eq__ special method:

class Task:
 def __init__(self, title, urgency):
 self.title = title

438 solutions to the challenges

 self.urgency = urgency

 def __eq__(self, __o: object):
 return self.__dict__ == __o.__dict__

tasks = [
 Task("Laundry", 3),
 Task("Museum", 4),
 Task("Homework", 5),
 Task("Ticket", 2)
]

task_to_search = Task("Homework", 5)
print(tasks.index(task_to_search))
output: 2

Please note that you’ll learn about defining custom classes in chapter 8.

Section 4.4
When you unpack a list object with embedded structures, you can unpack the inner
ones as though they stand alone. The following code shows how:

data_to_unpack = [1, (2, 3), 4]

a, (b, c), d = data_to_unpack
print(a, b, c, d)
output: 1, 2, 3, 4

Section 4.5
If you multiply the nested list object by 3 directly, you’re repeating the elements
three times:

numbers = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
print(numbers * 3)

output: [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [1, 2, 3],

➥ [4, 5, 6], [7, 8, 9], [10, 11, 12], [1, 2, 3], [4, 5, 6], [7, 8, 9],

➥ [10, 11, 12]]

The desired output, however, multiplies each element by 3. With this kind of data, you
must use for loops:

numbers_multiplied = []
for number_list in numbers:
 embedded_list = []
 for number in number_list:
 number_multiplied = number * 3
 embedded_list.append(number_multiplied)
 numbers_multiplied.append(embedded_list)

print(numbers_multiplied)
output: [[3, 6, 9], [12, 15, 18], [21, 24, 27], [30, 33, 36]]

439solutions to the challenges

The embedded for loops are not easy to read. A better solution is to use list compre-
hension, as discussed in section 5.2:

numbers_multiplied2 = [x*3 for number_list in numbers for x in number_list]
assert numbers_multiplied == numbers_multiplied2

Notably, if your application involves lots of numeric computation, data structures such
as array in the NumPy library (see the package-installation instructions in appendix B
online) are better options. You can find a cleaner solution by using the NumPy library
as follows:

import numpy as np

numbers_array = np.array(numbers)

print(numbers_array * 3)

output the following lines:
[[3 6 9]
 [12 15 18]
 [21 24 27]
 [30 33 36]]

As shown in this code snippet, multiplication with a NumPy array is like other alge-
braic operations that you normally do with numbers. Isn’t this approach much more
convenient?

Chapter 5

Section 5.1
To join three or even more iterables, we list them sequentially. Each item of the zip
iterator consists of one member from each iterable, forming a tuple object, as in this
example:

numbers_int = [1, 2, 3]
numbers_word = ("one", "two", "three")
letters = "abc"
for item in zip(numbers_int, numbers_word, letters):
 print(item)

output the following lines:
(1, 'one', 'a')
(2, 'two', 'b')
(3, 'three', 'c')

The number of items forming from the zip depends on the iterable with the fewest
items. The following example provides an illustration:

numbers_fewer = [1, 2]
numbers_more = [3, 4, 5, 6]

440 solutions to the challenges

for item in zip(numbers_fewer, numbers_more):
 print(item)

output the following lines:
(1, 3)
(2, 4)

One iterable, numbers_fewer, has two items, whereas the other, numbers_more, has four
items. When we zip them, we have two pairs, matching the number of numbers_fewer.

Section 5.2
Try running the code using (expression for item in iterable). Consider the follow-
ing example:

numbers = [1, 2, 3]

numbers_gen = (x*x for x in numbers)

print(type(numbers_gen))
output: <class 'generator'>

As shown in this code snippet, the expression (x*x for x in numbers) creates a gener-
ator, which is a kind of memory-efficient iterator (section 7.4). Apparently, it’s not a
tuple object, and there’s no such thing as tuple comprehension in Python.

Section 5.3
Suppose that we have the following dict object:

numbers = {"one": 1, "two": 2}

We can iterate through the keys of this dict object:

for key in numbers.keys():
 print(key)

output the following lines:
one
two

We can iterate through the values of this dict object:

for value in numbers.values():
 print(value)

output the following lines:
1
2

441solutions to the challenges

We can iterate through the key-value pairs:

for key, value in numbers.items():
 print(f"{key}: {value}")

output the following lines:
one: 1
two: 2

In the preceding code, the items form the key and value as tuple objects, and we can
unpack the tuple. Notably, there is syntactic sugar. When we iterate over the keys, we
can use the dict object itself directly, as follows:

for key in numbers:
 print(key)

output the following lines:
one
two

Section 5.4
For your reference, the list of tasks that you need to search through is

from collections import namedtuple

Task = namedtuple("Task", "title, description, urgency")

tasks = [
 Task("Toaster", "Clean the toaster", 2),
 Task("Camera", "Export photos", 4),
 Task("Homework", "Physics and math", 5),
 Task("Floor", "Mop the floor", 3),
 Task("Internet", "Upgrade plan", 5),
 Task("Laundry", "Wash clothes", 3),
 Task("Museum", "Egypt exhibit", 4),
 Task("Utility", "Pay bills", 5)
]

When you try to find the urgent task by using a break statement, you can do the fol-
lowing (as shown in listing 5.7):

first_urgent_task1 = None

for task in tasks:
 if task.urgency == 5:
 first_urgent_task1 = task
 break

print(first_urgent_task1)
output: Task(title='Homework', description='Physics and math', urgency=5)

442 solutions to the challenges

The challenge is asking about what happens if we don’t set an initial value for
first_urgent_task1. Because it’s possible that we may not encounter any urgent
task, the first_urgent_task1 is never set, making it unusable. Consider the following
modification to see the potential problem:

for task in tasks:
 if task.urgency > 5:
 first_urgent_task2 = task
 break

print(first_urgent_task2)
ERROR: NameError: name 'first_urgent_task2' is not defined.

As shown in this code snippet, we require a task to be urgent if its urgency level is
greater than 5. With this condition, it appears that no tasks meet this criterion, so
first_urgen_task2 is never set. When we try to print it out, we encounter a Name-
Error (see section 10.4).

Chapter 6

Section 6.1
We can embed a timestamp as a default argument. This timestamp reflects the time
when it’s defined instead of the time when it’s called:

from datetime import datetime
from time import sleep

def set_start_time(time=datetime.today()):
 print(f"Time: {time}")

for _ in range(3):
 set_start_time()
 sleep(1.0)

output the following lines:
Time: 2022-04-25 20:22:06.337848
Time: 2022-04-25 20:22:06.337848
Time: 2022-04-25 20:22:06.337848

As you can see, we call the function multiple times, thinking that we could get differ-
ent timestamps. But every timestamp is the same, showing the time when the function
was created.

Section 6.2
The return value has the same structure, latitude and longitude, and we can create
a named tuple to capture these two values. Following is a possible refactored version:

from collections import namedtuple

Coordinate = namedtuple("Coordinate", ["latitude", "longitude"])

443solutions to the challenges

def locate_me():
 # look up the user's current location
 return coordinate0

def locate_home():
 # look up the user's home location
 return coordinate1

def locate_work():
 # look up the user's work location
 return coordinate2

Instead of returning two values, now we can return only a tuple object for each of
these functions.

Section 6.3
The following function can take an argument as a list of int or str, with the type
hints provided:

def run_computation(numbers: list[int | str]):
 pass

In the example, we use the type hint: list[int | str], meaning that the list object
can consist of integers or strings.

Section 6.4
The call example(a=1, b=2) is valid, as we’re using two keyword arguments. The call
example(1, 2) is invalid, as we’re using positional arguments, but the function accepts
keyword arguments. The call example(2a=1, 2b=2) is invalid, as these identifiers are
invalid (they can’t start with a number). The call example() is valid, as it’s using zero
keyword arguments. **kwargs means a variable number of keyword arguments,
including zero keyword arguments.

Section 6.5
We can have the following docstring using Google style:

def quotient(dividend, divisor, taking_int=False):
 """
 Calculate the product of two numbers with a base factor.

 Args:
 dividend: int | float, the dividend in the division
 divisor: int | float, the divisor in the division
 taking_int: bool, whether only taking the integer part of
 ➥ the quotient;
 default: False, which calculates the precise quotient of the
 ➥ two numbers

 Returns:

444 solutions to the challenges

 float | int, the quotient of the dividend and divisor

 Raises:
 ZeroDivisionError, when the divisor is 0
 """

 if divisor == 0:
 raise ZeroDivisionError("division by zero")
 result = dividend / divisor
 if taking_int:
 result = int(result)
 return result

Chapter 7

Section 7.1
All lambda functions have the name <lambda>, a nominal name for them, which is
also why lambda functions are known as anonymous. By contrast, a regularly defined
function has a name that matches the identifier defined in the function head:

add_five = lambda x: x + 5

print(add_five.__name__)
output: <lambda>

def add_ten(x):
 return x + 10

print(add_ten.__name__)
output: add_ten

Section 7.2
As stated in the hint, it’s possible that the user might use an argument that doesn’t
match any of the specified conditions. We should be prepared for this kind of unde-
sired calling. By using get, we can use the fallback_action when the specified action
isn’t in the actions dict object.

Section 7.3
As shown in the hints, we need to add another layer of function that deals with the
argument. Here’s the solution:

import functools
import time

def logging_time_app(app_name):
 def decorator(func):
 @functools.wraps(func)
 def logger(*args, **kwargs):
 """Log the time"""
 print(f"{app_name} --- {func.__name__} starts")

445solutions to the challenges

 start_t = time.time()
 value_returned = func(*args, **kwargs)
 end_t = time.time()
 print(f"{app_name} *** {func.__name__} ends; used time:
 ➥ {end_t – start_t:.2f} s")
 return value_returned

 return logger

 return decorator

@logging_time_app("Task Tracker")
def example_app():
 pass

example_app()
output the following lines:
Task Tracker --- example_app starts
Task Tracker *** example_app ends; used time: 0.00 s

The outmost function logging_time_app is the decorator, which takes the app name
as its argument. Within this function, we define our typical decorator as we normally
do, and this decorator takes the actual function that we’re going to decorate.

Section 7.4
Based on the hint, we can write the following generator function, which yields num-
bers in the Fibonacci sequence:

def fibonacci(n):
 a, b = 0, 1
while a < n:
 yield a
 a, b = b, a + b

As the Fibonacci sequence is built up by summing two consecutive numbers to create
the next one, we initialize the sequence with its first two numbers and create the sub-
sequent ones accordingly. We can try this function by creating a list object:

below_fiften = fibonacci(15)

numbers = list(below_fiften)

print(numbers)
output: [0, 1, 1, 2, 3, 5, 8, 13]

The list represents a Fibonacci sequence up to 13.

Section 7.5
Suppose that we have the function run_stats_model and the partial function
run_stats_model_a:

446 solutions to the challenges

from functools import partial

def run_stats_model(dataset, model, output_path):
 calculated_stats = 123
 return calculated_stats

run_stats_model_a = partial(run_stats_model, model="model_a",

➥ output_path="project_a/stats/")

The partial function is created from run_stats_model. Using the hint, we can see this
partial function’s attributes:

print(dir(run_stats_model_a))
output: ['__call__', '__class__', '__class_getitem__', '__delattr__',

➥ '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__',

➥ '__getattribute__', '__gt__', '__hash__', '__init__',

➥ '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__',

➥ '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',

➥ '__setstate__', '__sizeof__', '__str__', '__subclasshook__',

➥ '__vectorcalloffset__', 'args', 'func', 'keywords']

As you may see, the function has an attribute called func, which may be the one tell-
ing us which function is the source function:

print(run_stats_model_a.func)
output: <function run_stats_model at 0x7fedf82c30a0>

Indeed, it’s the function run_stats_model. You can also try finding out what the attri-
butes args and keywords are.

Chapter 8

Section 8.1
In section 6.1, I said that we should use None as the default value for a mutable argu-
ment. We should do the same thing with the __init__ method:

class Task:
 def __init__(self, title, desc, urgency, tags=None):
 self.title = title
 self.desc = desc
 self.urgency = urgency
 if tags is None:
 self.tags = []
 else:
 self.tags = tags

We can also try the ternary expression var = value_true if condition else value_
false. Thus, we can update the preceding code this way:

class Task:
 def __init__(self, title, desc, urgency, tags=None):

447solutions to the challenges

 self.title = title
 self.desc = desc
 self.urgency = urgency
 self.tags = [] if tags is None else tags

Section 8.2
As we create an instance object from the tuple object, we need access to the class’s
constructor. Thus, we need to define a class method to access a class’s data:

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency

 @classmethod
 def task_from_tuple(cls, data):
 title, desc, urgency = data
 return cls(title, desc, urgency)

Section 8.3
Following the example shown in listing 8.9, we can apply the same thing to urgency:

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self._urgency = urgency

 @property
 def urgency(self):
 return self._urgency

 @urgency.setter
 def urgency(self, value):
 if value in range(1, 6):
 self._urgency = value
 else:
 raise ValueError("Can't set a value outside of 1 – 5")

For detailed explanations, see listing 8.9.

Section 8.4
Instead of hardcoding the class name, we can use its special attributes to retrieve this
information programmatically:

class Task:
 def __init__(self, title, desc, urgency):
 self.title = title
 self.desc = desc
 self.urgency = urgency

448 solutions to the challenges

 def __repr__(self):
 return f"{self.__class__.__name__}({self.title!r}, {self.desc!r},
 ➥ {self.urgency})"

The __class__ special attribute gets the instance object’s class, which has the
__name__ special attribute to get its class name.

Section 8.5
The following code shows how to override the initialization method in a subclass:

class Employee:
 def __init__(self, name, employee_id):
 self.name = name
 self.employee_id = employee_id

class Supervisor:
 def __init__(self, name, employee_id, subordinates):
 super().__init__(name, employee_id)
 self.subordinates = subordinates

In the Supervisor class’s __init__ method, we use super() to create a proxy object
to its superclass Employee, so we can use its __init__ method by sending name and
employee_id.

Chapter 9

Section 9.1
Because move_to is related to a specific instance, we can convert it to an instance
method of the Direction class:

from enum import Enum

class Direction(Enum):
 NORTH = 0
 SOUTH = 1
 EAST = 2
 WEST = 3

 def __str__(self):
 return self.name.lower()

 def move_to(self, distance: float):
 if self in self.__class__:
 message = f"Go to the {self} for {distance} miles"
 else:
 message = "Wrong input for direction"
 print(message)

449solutions to the challenges

As shown in this code snippet, we rename the move_to method’s first argument as self,
which refers to the instance object. Within the body, we can use self.__class__ to get
a reference to the class Direction.

Section 9.2
When we create a data class, if we’re setting a default value for a field, we can use the
dataclasses module’s field function, which handles setting the default value for
mutable fields. The following code shows how to implement this feature:

from dataclasses import dataclass, field

@dataclass
class Bill:
 table_number: int
 meal_amount: float
 served_by: str
 tip_amount: float
 dishes: field(default_factory=list)

In this code, the dishes field is mutable, and we can specify the default_factory
argument as list so that it creates an empty list object.

Section 9.3
As stated in the hint, tuple objects are serializable, and we can convert them directly to
JavaScript Object Notation (JSON) strings as follows:

import json
from collections import namedtuple

User = namedtuple("User", "first_name last_name age")
user = User("John", "Smith", "39")

print(json.dumps(user))
output: ["John", "Smith", "39"]

Section 9.4
Suppose that you build a client management app, using the following Client data
model:

class ClientV0:
 def __init__(self, first_name, last_name, middle_initial='-'):
 self.first_name = first_name
 self.last_name = last_name
 self.middle_initial = middle_initial
 self.initials = first_name[0] + middle_initial + last_name[0]

Everything should be straightforward. When you get an instance object’s initials, it’s
using the value that you set initially. But the app has a function that allows users to

450 solutions to the challenges

change their names, so their initials may be updating too. To make the initials calcu-
late on the go, we can convert the attribute initials to a function as follows:

class ClientV1:
 def __init__(self, first_name, last_name, middle_initial='-'):
 self.first_name = first_name
 self.last_name = last_name
 self.middle_initial = middle_initial

 def initials(self):
 return self.first_name[0] + self.middle_initial + self.last_name[0]

This approach works—but it may break your code. Previously, you used client.ini-
tials to access a client’s initials; now you must use client.initials(). To avoid using
the call operator, you can apply the property decorator:

class ClientV2:
 def __init__(self, first_name, last_name, middle_initial='-'):
 self.first_name = first_name
 self.last_name = last_name
 self.middle_initial = middle_initial

@property
 def initials(self):
 return self.first_name[0] + self.middle_initial + self.last_name[0]

This way, you can keep your application programming interface (API) consistent by
using just client.initials, but you provide the calculation on the go by calling a
function for this property. Thus, using a decorator can help you avoid API break
changes. You can keep your API consistent even though the implementation has
become a property instead of an attribute.

Section 9.5
Because all these methods can be nonpublic, I’m converting them to protected meth-
ods by using an underscore prefix:

class Account:
 def __init__(self, student_id):
 self.student_id = student_id
 # query the database to get additional information using student_id
 self.account_number = self._get_account_number_from_db()
 self.balance = self._get_balance_from_db()

 def _get_account_number_from_db(self):
 # query database to locate the account number using student_id
 account_number = 123456
 return account_number

 def _get_balance_from_db(self):
 # query database to get the balance for the account number
 balance = 100.00
 return balance

451solutions to the challenges

class Demographics:
 def __init__(self, student_id):
 self.student_id = student_id
 # query the database to get additional information
 age, gender, race = self._get_demographics_from_db()
 self.age = age
 self.gender = gender
 self.race = race

 def _get_demographics_from_db(self):
 # query database to get the demographics using student_id
 birthday = "08/14/2010"
 age = self._calculated_age(birthday)
 gender = "Female"
 race = "Black"
 return age, gender, race

 @staticmethod
 def _calculated_age(birthday):
 # get today's date and calculate the difference from birthday
 age = 12
 return age

Chapter 10

Section 10.1
As mentioned in the hint, the collections.abc module has the Iterable class, and iter-
ables should generally have implemented the required method __iter__. Thus, we can
use the isinstance function on this class to examine whether an object is an iterable:

from collections.abc import Iterable

def is_iterable(obj):
 if isinstance(obj, Iterable):
 outcome = "is an iterable"
 else:
 outcome = "is not an iterable"
 print(type(obj), outcome)

Using this updated function, we can check some common data types:

is_iterable([1, 2, 3])
output: <class 'list'> is an iterable

is_iterable((404, "Data"))
output: <class 'tuple'> is an iterable

is_iterable("abc")
output: <class 'str'> is an iterable

is_iterable(456)
output: <class 'int'> is not an iterable

452 solutions to the challenges

Section 10.2
To test how using a variable in a function changes the reference count, we can write a
trivial function:

import sys

class Task:
 def __init__(self, title):
 self.title = title

task = Task("Homework")

def get_detail(obj):
 print(sys.getrefcount(obj))

If we call get_detail with the task variable, the reference count becomes

get_detail(task)
output: 4

Why 4? The first count is the task variable itself. When you call get_detail, you send
task, making the count 2. The function get_detail takes task, making the count 2.
Within the function’s body, calling sys.getrefcount adds another count, making the
count 4.

Section 10.3
According to the requirements specified in the challenge, we can update our Task
class to the following edition:

class Task:
 def __init__(self, title, desc, tags = None):
 self.title = title
 self.desc = desc
 self.tags = [] if tags is None else tags

 def __copy__(self):
 new_title = f"Copied: {self.title}"
 new_desc = self.desc
 new_tags = self.tags.copy()
 new_task = self.__class__(new_title, new_desc, new_tags)
 return new_task

In the __copy__ method, we create a new title and a new tags list for the copied
object. We can check whether the __copy__ method works as intended by using this
code:

from copy import copy

task = Task("Homework", "Math and physics", ["school", "urgent"])

new_task = copy(task)

453solutions to the challenges

print(new_task.__dict__)
output: {'title': 'Copied: Homework', 'desc': 'Math and physics',

➥ 'tags': ['school', 'urgent']}

To double-check whether the tags attributes of these two objects are indeed different,
we can try changing one list:

task.tags.append("red")
print(task.tags)
output: ['school', 'urgent', 'red']

print(new_task.tags)
output: ['school', 'urgent']

Everything works as expected: task.tags and new_task.tags are two distinct list
objects.

Section 10.4
In Python, the if...else... statement doesn’t form its own scope, unlike classes and
functions. As there is no scope, you can change a global variable without using the
global keyword, as shown in this example:

import random

weather = "sunny"

if random.randint(1, 100) % 2:
weather = "cloudy"
else:
 weather = "rainy"

print(weather)
output: cloudy

As shown in this code snippet, we change the weather variable without the global
keyword, indicating that the if...else... statement doesn’t form a scope, making
weather fall outside it.

Section 10.5
When you define a decorator as a class, to keep the metadata for a decorated func-
tion, you know that you need to wrap the function. But unlike a decorator function, in
which you use the wraps decorator, a class-based decorator uses the method
update_wrapper, which helps keep the metadata:

import time
import functools

class TimeLogger:
 def __init__(self, func):

You may get a different result
because of the randomness.

454 solutions to the challenges

 functools.update_wrapper(self, func)
 def logger(*args, **kwargs):
 start = time.time()
 result = func(*args, **kwargs)
 print(f"Calling {func.__name__}: {time.time() – start:.5f}")
 return result
 self._logger = logger

 def __call__(self, *args, **kwargs):
 return self._logger(*args, **kwargs)

@TimeLogger
def calculate_sum(n):
 return sum(range(n))

print(calculate_sum.__name__)
output: calculate_sum

Using update_wrapper is like using the wraps decorator. You update the wrapper in
the __init__ method of the TimeLogger class. Notably, the wraps decorator is syntac-
tic sugar, as it’s invoking the update_wrapper under the hood.

Chapter 11

Section 11.1
We need to add a line break to each item. Using the list comprehension, we can create
a new list object by using the list_data:

list_data = [
'1001,Homework,5',
'1002,Laundry,3',
'1003,Grocery,4'
]

updated_list_data = [f"{x}\n" for x in list_data]

With the updated list, we can use the writelines function to produce the desired file.
We can double-check whether the writing is successful by reading the data:

with open("tasks_list_write.txt", "w") as file:
 file.writelines(updated_list_data)

with open("tasks_list_write.txt") as file:
 print(file.read())

output the following lines:
1001,Homework,5
1002,Laundry,3
1003,Grocery,4

455solutions to the challenges

Section 11.2
The writerows works with a list object, so we can embed each row’s data (list
object) within an outer list object, as suggested by the hint:

tasks = [
 ['1001', 'Homework', '5'],
 ['1002', 'Laundry', '3'],
 ['1003', 'Grocery', '4']
]

Then we can run the following code to write this list:

import csv

with open("tasks_writer.txt", "w", newline="") as file:
 csv_writer = csv.writer(file)
 csv_writer.writerows(tasks)

If we open the file tasks_writer.txt, we should see that the data is entered correctly.

Section 11.3
We override the __reduce__ method within the MaliciousTask class as follows:

import os

class MaliciousTask:
 def __init__(self, title, urgency):
 self.title = title
 self.urgency = urgency

 def __reduce__(self):
 print("__reduce__ is called")
 return os.system, ('rm hacking.txt',)

Specifically, we use ('rm hacking.txt',) instead of ('touch hacking.txt'). The
command rm means that we’ll delete the specified file. After updating the class, we
can run the code in listing 11.14 to see the effect.

Section 11.4
We can call the exists method on an instance of the Path class to check a file’s exis-
tence. Thus, we can update listing 11.17 to the following version:

from pathlib import Path
import shutil

shutil.rmtree("subjects")

subject_ids = [123, 124, 125]
data_folder = Path("data")

for subject_id in subject_ids:

Removes the existing folder

456 solutions to the challenges

 subject_folder = Path(f"subjects/subject_{subject_id}")
 subject_folder.mkdir(parents=True, exist_ok=True)

 for subject_file in data_folder.glob(f"*{subject_id}*"):
 filename = subject_file.name
 target_path = subject_folder / filename
 if not target_path.exists():
 _ = shutil.copy(subject_file, target_path)
 print(f"Copying {filename} to {target_path}")
 else:
 print(f"{filename} already exists at {target_path}")

As highlighted in this code, we copy the files only if the file at the target path doesn’t
exist, preventing us from overwriting already-processed files.

Section 11.5
We know that we can find a file’s modification time by accessing st_mtime of a file’s
status. Thus, we can create the following function to return the files whose modifica-
tion times are within the past 24 hours:

from pathlib import Path
import time

def select_recent_files_24h(directory):
 dir_path = Path(directory)
 current_time = time.time()
 time_cutoff = current_time – 24 * 3600
 good_files = []
 for file_path in dir_path.glob("*"):
 file_time = file_path.stat().st_mtime
 if time_cutoff <= file_time <= current_time:
 good_files.append(file_path)

 return good_files

The pattern "*" allows us to go over all the files in the directory. We specify that the
file’s modification time must reside in the range of the previous 24 hours. If a file
meets this requirement, we add it to the good_files list as this function’s final output.

Chapter 12

Section 12.1
We can call the logger’s hasHandlers method to check whether the logger has any
handlers before we add the handler:

import logging

logger = logging.getLogger(__name__)

if not logger.hasHandlers():
 file_handler = logging.FileHandler("taskier.log")
 logger.addHandler(file_handler)

457solutions to the challenges

To clear the handlers, we can manipulate the logger’s handlers attribute, which is a
list object:

print(logger.handlers)
output: [<FileHandler /directory/taskier.log (NOTSET)>]

logger.handlers.clear()

print(logger.handlers)
output: []

Section 12.2
To demonstrate what happens, I use a stream handler so that the messages can be
printed in the console:

import logging

logger = logging.getLogger(__name__)
logger.handlers = []
logger.setLevel(logging.WARNING)

stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
logger.addHandler(stream_handler)

logger.info("It's an info message.")
output: None (hide automatically in the console)
logger.warning("It's a warning message.")
output: It's a warning message.

If you run this code in the console, you’ll see that only the warning message is shown;
the logging message at the INFO level is lower than the logger’s level, so it won’t be
sent to the handler. By contrast, the message at the WARNING level meets the logger’s
level requirement and is forwarded to the handler.

Section 12.3
As suggested by the hint, you can run the potentially problematic code in the console
and see what happens. Here’s an example:

>>> urgency = int("3#")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '3#'

You’ll see that you encounter the ValueError exception. Step backward and add this
exception in the try...except... statement:

try:
 urgency = int(urgency_str)
except ValueError:
 # the operation when ValueError happens

Removes all the handlers

458 solutions to the challenges

Section 12.4
If you run the code in the challenge, you’ll see that your console has the following
output:

Done processing text: Laundry,3
finally

You don’t see the task get returned, as the return statement in the finally gets exe-
cuted before the try clause’s return statement.

Section 12.5
To allow you to try the code multiple times, I’m defining a function that can create a
task based on different kinds of input:

def create_task(task_title):
 try:
 print(f"Trying to process {task_title}")
 task = Task(task_title)
 except TypeError as e:
 print(f"Couldn't create the task, error: {e}")
 else:
 print(f"Created task: {task}")
 finally:
 print(f"Done processing {task_title}")

This function uses all four clauses in exception handling. Try calling this function:

>>> create_task(100)
Trying to process 100
Couldn't create the task, error: Please instantiate the Task using

➥ string as its title
Done processing 100
>>> create_task("Laundry")
Trying to process Laundry
Created task: <__main__.Task object at 0x1043e7b80>
Done processing Laundry

When you use a non-str object, you see that the try, except, and finally clauses get
executed. When you use a str object, you see that the try, else, and finally clauses
get executed.

Chapter 13

Section 13.1
There are different ways to make the tracebacks more complicated. Following is a pos-
sible solution:

class Task:
 def __init__(self, title, urgency):
 self.title = title

459solutions to the challenges

 self.urgency = urgency

 def _report(self):
 print("report")
 report = "Urgency: " + self.urgency

 def _send_report(self):
 print("send report")
 self._report()

 def _update_db(self):
 # update the record in the database
 print("update the database")
 self._send_report()

 def update_urgency(self, urgency):
 self.urgency = urgency
 self._update_db()

task = Task("Laundry", 3)
task.update_urgency(4)

output the following lines:
update the database
send report
report
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 17, in update_urgency
 File "<stdin>", line 14, in _update_db
 File "<stdin>", line 10, in _send_report
 File "<stdin>", line 7, in _report
TypeError: can only concatenate str (not "int") to str

In the class, we use multiple methods to call one another, resulting in a traceback that
has multiple calls.

Section 13.2
Namespaces track variables dynamically. Calling the built-in locals function reveals
what’s available in the local namespace at the specific moment. The following code
snippet is a snapshot of the changes:

$ python3 task_debug.py
> /fullpath/task_debug.py(10)create_task()
-> task_text = obtain_text_data(inject_bug)
(Pdb) locals()
{'inject_bug': False}
(Pdb) n
> /fullpath/task_debug.py(11)create_task()
-> title, urgency_text = task_text.split(",")
(Pdb) locals()
{'inject_bug': False, 'task_text': 'Laundry,3'}
(Pdb)

460 solutions to the challenges

Section 13.3
We can have the following function create an instance of the Task class from a tuple
object:

def create_task_from_tuple(task_tuple):
 title, urgency = task_tuple
 task = Task(title, urgency)
 return task

We can define the following test function in the test class for the create_task_
from_tuple function:

import unittest

class TestTaskCreation(unittest.TestCase):
 def setUp(self):
 task_to_compare = Task("Laundry", 3)
 self.task_dict = task_to_compare.__dict__

 def test_create_task_from_tuple(self):
 task_tuple = ("Laundry", 3)
 created_task = create_task_from_tuple(task_tuple)
 self.assertEqual(created_task.__dict__, self.task_dict)

Section 13.4
You can update the method to make it raise an exception explicitly. You need to
change the Task class in the test_class.py file as follows:

class Task:
 def __init__(self, title, urgency):
 self.title = title
 self.urgency = urgency

 def formatted_display(self):
 displayed_text = f"{self.title} ({self.urgency})"
 raise TypeError("This is a TypeError")
 # the next return statement will be skipped due to raising
 ➥ an exception
 return displayed_text

When you run the test_task_class.py again, you’ll see the following output in the
command-line tool, showing that we encounter an error due to the TypeError in our
code. Note that the output shows ..E instead of ..F because it’s an error instead of a
test failure:

$ python3 test_task_class.py
..E
==
ERROR: test_formatted_display (__main__.TestTask)
--

461solutions to the challenges

Traceback (most recent call last):
 File "/fullpath/test_task_class.py", line 21, in test_formatted_display
 displayed_text = task.formatted_display()
 File "/fullpath/task_class.py", line 22, in formatted_display
 raise TypeError("This is a TypeError")
TypeError: This is a TypeError

--
Ran 3 tests in 0.001s

FAILED (errors=1)

Chapter 14

Section 14.1
Use a tool such as Terminal if your computer is a Mac or a command-line tool if your
computer operates under Windows. Navigate to the desired directory, and then run
the following command to create a virtual environment:

$ python3 -m venv python-env

After creating the virtual environment, you need to activate it by running the follow-
ing command:

for Mac:
$ source taskier-env/bin/activate

for Windows:
> taskier-env\Scripts\activate.bat

To install the pandas library, run the following command:

$ pip install pandas

To use this virtual environment in Visual Studio Code, see section 14.1.4 for detailed
instructions.

Section 14.2
We can use a Boolean flag to indicate whether the record is found:

def delete_from_db(self):
 """Delete the record from the database
 """
 if app_db == TaskierDBOption.DB_CSV.value:
 with open(app_db, "r+") as file:
 lines = file.readlines()
 found_record = False
 for line in lines:
 if line.startswith(self.task_id):
 found_record = True

462 solutions to the challenges

 lines.remove(line)
 break
 if not found_record:
 raise Exception("Record not found error.")
 else:
 file.seek(0)
 file.truncate()
 file.writelines(lines)

As shown in this code snippet, we set an initial False value for the flag. If we find the
record, we make it True. We can raise an exception when the Boolean value is False.

Section 14.3
Chapter 7 covered how to create a time-logging decorator. Here’s a possible imple-
mentation taken from listing 7.9:

import functools
import time

def logging_time_wraps(func):
 @functools.wraps(func)
 def logger(*args, **kwargs):
 """Log the time"""
 print(f"--- {func.__name__} starts")
 start_t = time.time()
 value_returned = func(*args, **kwargs)
 end_t = time.time()
 print(f"*** {func.__name__} ends; used time: {end_t –
 ➥ start_t:.10f} s")
 return value_returned

 return logger

You can use this decorator to decorate the methods in the class. To show a proof of
concept, I decorate the load_tasks method:

@classmethod
@logging_time_wraps
def load_tasks(cls, statuses: list[TaskStatus]=None,

➥ urgencies: list[int]=None, content: str=""):

Although I don’t intend to perform a formal comparison, it appears that the SQLite 3
database outperforms the CSV file in terms of data-reading speed. Please note that
we’re dealing with a small amount of data, so the difference between these two
sources appears to be trivial:

Using the CSV file as the data source
*** load_tasks ends; used time: 0.0008411407 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0005502701 s
--- load_tasks starts

463solutions to the challenges

*** load_tasks ends; used time: 0.0004429817 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0002791882 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0003058910 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0005359650 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0002870560 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0004091263 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0004007816 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0002658367 s

Using the SQLite as the data source
--- load_tasks starts
*** load_tasks ends; used time: 0.0003259182 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0002837181 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0004198551 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0002789497 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0003492832 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0003030300 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0004410744 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0003309250 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0003337860 s
--- load_tasks starts
*** load_tasks ends; used time: 0.0002810955 s

Section 14.4
We can use any iterable as the option in the selectbox widget in streamlit. When we
use a dict object as an iterable, using the dict and dict.keys() is the same, as in this
example:

numbers = {0: "zero", 1: "one", 2: "two"}

assert list(numbers) == list(numbers.keys())

465

index

Symbols

__annotations__ attribute 247
__call__ method 301–302
__class__ attribute 229
__class__ special attribute 448
__contains__ method 278
__copy__ method 292
__deepcopy_ function 292
__del__ special method 285
__dict__ attribute 260
__dict__ special attribute 209, 211
__doc__ attribute 167, 190
__getattr_ special method 259–261
__getattr__ method 260
__getattr__ special method 259
__init__ (initialization) method 204–213

defining class attributes outside 212
self as first parameter in 204–208

instance object 204–205
preferring using self as parameter name

207–208
self is not keyword 206–207
setting self implicitly 205–206

setting proper arguments in 208–209
specifying all attributes in 209–211

__init__ class 287
__init__ function 109
__init__ method 204–205, 208–213, 245–247, 261,

280–281, 401, 446, 448, 454
__iter__ interface 279
__iter__ method 278
__len__ method 278
__main__ module 347
__name__ attribute 190
__name__ special attribute 178, 229, 371, 448

__name__special attribute 371
__new__ method 205–206, 280–281
__reduce__ method 323, 455
__repr__ class 287
__repr__ method 225, 227–229, 245–246
__repr__ string representation method 407
__str_ method 225
__str__ class 365
__str__ method 225–226, 228–229, 244, 365
__str__ string representation method 407
__transfer_group method 235
(_logger) function attribute 302
@staticmethod decorator 215
**kwargs 161–166

accepting variable number of keyword
arguments 165
placing **kwargs as last parameter 165
using **kwargs as dict 165

accepting variable number of positional
arguments 163–165
placing *args as last positional

argument 164–165
using *args as tuple 163–164

in inner function 188–189
positional and keyword arguments 162–163

*args 161–166
accepting variable number of keyword

arguments 165
placing **kwargs as last parameter 165
using **kwargs as dict 165

accepting variable number of positional
arguments 163–165
placing *args as last positional

argument 164–165
using *args as tuple 163–164

in inner function 188–189
positional and keyword arguments 162–163

INDEX466

A

abc submodule 73
ABCs (abstract base classes) 73, 278
abs function 178
access control, class 217–225

creating private methods by using double
underscores as prefix 220–221

creating protected methods by using
underscore as prefix 218–219

creating read-only attributes with property
decorator 221–223

verifying data integrity with property setter
223–224

activating debugger 374–375
active in applicable namespaces 281–282
addHandler method 340
aligning strings 18–20
all function 405
alphanumeric values 24–25
and operation 80, 246, 436
anonymous functions 174
APIs (application programming interfaces) 408, 450
append method 51
append mode 312
application events

categorizing with levels 343–345
creating Logger object to log 338–339
using files to store 339–341

args attribute 446
array data structure 439
array data type 105, 252
assert statement 16, 381
assertEqual call 388
assignment expression technique 424
ast module 28–29
AttributeError exception 234, 368, 371–373, 379
attributes

class methods for accessing 215–217
connecting data using 266–267
inheriting superclass attributes and methods

automatically 231–232
lazy attributes to improve performance 257–262

identifying use scenario 258
implementing property as 261–262
overriding __getattr_ special method to

implement 259–261

B

backward compatibility 125
BaseException class 362
boilerplate code elimination 245–250

creating data class using dataclass
decorator 245–246

creating subclass of existing data class 249–250
making data classes immutable 248–249
setting default values for fields 246–248

bool class and objects 62, 77, 80, 252, 298
boundary anchors 38
break statement 96, 130–131, 358, 406, 441
breakpoint 374–375
built-in data containers 81

accessing dictionary keys, values, and
items 62–68
KeyError exception 64–65
setdefault method side effect 66–67
using dynamic view objects 63–64
using get method to access dictionary

item 65–66
building lightweight data model using

named tuples 58–62
alternative data models 58–59
creating named tuples to hold data 59–61

choosing between lists and tuples 54–81
tuples for heterogeneity and lists for

homogeneity 52–53
tuples for immutability and lists for

mutability 51–52
creating using iterables 112–114
sorting lists of complicated data 54–57

sorting lists using default order 54–55
using built-in function as sorting key 55–56
using custom functions for 56

using set operations to check relationships
between lists 74–80
checking whether list contains all items of

another list 74–76
checking whether list contains any element

of another list 76–77
dealing with multiple set objects 77–79

when to use dictionaries and sets instead of
lists and tuples 68–74
hashable and hashing 70–74
taking advantage of constant lookup

efficiency 68–69
built-in exception classes 362–363
bytes data 322

C

caching 36
call stack 370
callability and callable 125–126, 297–302

callable function 298
creating decorators as classes 300–302
distinguishing classes from functions 298
higher-order function map() 299
using callable as key argument 299–300

capture-all asterisk 99

INDEX 467

casting 25
character classes and sets 39–40
choice function 403
class attributes 212
class methods 215–217
classes 203–270

__init__ method for class 204–213
defining class attributes outside 212
self as first parameter in 204–208
setting proper arguments in 208–209
specifying all attributes in 209–211

applying access control to 217–225
creating private methods by using double

underscores as prefix 220–221
creating protected methods by using

underscore as prefix 218–219
creating read-only attributes with property

decorator 221–223
verifying data integrity with property

setter 223–224
class methods for accessing class-level

attributes 215–217
creating decorators as 300–302
creating helper classes 400–401
creating superclass and subclasses 229–236

creating non-public methods of
superclass 235–236

identifying use scenario of subclasses 230–231
inheriting superclass attributes and methods

automatically 231–232
overriding superclass methods to provide

customized behaviors 232–235
customizing string representation for 225–229

differences between __str__ and
__repr__ 227–229

overriding __repr__ to provide instantiation
information 226–227

overriding __str__ to show meaningful
information for instance 225–226

defining classes to have distinct concerns
262–269
analyzing class 263–264
connecting related classes 266–269
creating additional classes to isolate

concerns 265–266
distinguishing from functions 298
enumerations 239–245

avoiding regular class 239–240
creating enumeration class 241
defining methods for enumeration class

243–244
using 242–243

instance methods for manipulating individual
instances 213–214

JSON data 251–257

data structure 251–252
deserializing JSON strings 253–255
mapping data types between Python and 252
serializing Python data to JSON format

255–256
lazy attributes to improve performance 257–262

identifying use scenario 258
implementing property as 261–262
overriding __getattr_ special method to

implement 259–261
raising informative exceptions with custom

exception classes 360–366
defining custom exception classes 363–365
preferring built-in exception classes 362–363

static methods for utility functionalities
214–215

testing automatically 385–388
creating TestCase subclass for 386–387
responding to test failures 387–388

using data classes to eliminate boilerplate
code 245–250
creating data class using dataclass

decorator 245–246
creating subclass of existing data class

249–250
making data classes immutable 248–249
setting default values for fields 246–248

classmethod decorator 216
close method 306
closed attribute 306
closing files 305–307
closure 186, 190
closure-generating function 187–188
Collection class 278
collections module 60
collections.abc module 278–279, 451
columns widget 424
compile function 36
comprehensions 115–121

applying filtering condition 118–119
creating dictionaries from iterables using

dictionary comprehension 117
creating lists from iterables using list

comprehension 115–116
creating sets from iterables using set

comprehension 117–118
using embedded for loops 119–120

conda 394–395, 398
construction 108, 204, 285, 299
constructor 26, 108, 112, 204, 216, 242, 280, 285,

299, 338
container objects 158–159
context manager 305–307
continue 132–134, 358, 405
conversion flag 228

INDEX468

converting strings 23–29
casting strings to numbers 25–26
checking whether strings represent alpha-

numeric values 24–25
evaluating strings to derive their represented

data 27–28
copy function 287–288, 291–292, 328–329, 452
copying

files 328–329
objects 286–292

creating deep copy 291
creating shallow copy 287–288
noting potential problem of shallow

copy 288–291
count function 128
CRITICAL level 343–346
CSV (comma-separated values) files

reading using csv reader 313–314
reading with header 314–316
writing data to 316–317

csv module 314–315, 317, 400, 409
csv reader 313–314

D

data
converting strings for represented data 23–29

casting strings to numbers 25–26
checking whether strings represent alpha-

numeric values 24–25
evaluating strings to derive their represented

data 27–28
extracting from matches 46

data classes 245–250
creating subclass of existing data class 249–250
creating using dataclass decorator 245–246
making immutable 248–249
setting default values for fields 246–248

data containers 51
built-in data containers 81

accessing dictionary keys, values, and
items 62–68

building lightweight data model using
named tuples 58–62

choosing between lists and tuples 54–81
sorting lists of complicated data 54–57
using set operations to check relationships

between lists 74–80
when to use dictionaries and sets instead of

lists and tuples 68–74
creating using iterables 108–115

built-in data containers 112–114
getting to know iterables and iterators 109–110
inspecting iterability 110–112

storing functions in 179–180

data integrity 223–224
data models 399–407

alternative data models 58–59, 101–105
processing multidimensional data with

NumPy and Pandas 104
using deques for FIFO 102–103
using sets when membership is

concerned 101
creating helper classes and functions 400–401
creating Task class to address needs 401–407

creating and saving tasks 401–403
deleting task from data source 406–407
reading tasks from data source 404–405
updating task in data source 405–406

identifying business needs 399
lightweight data model 58–62

alternative data models 58–59
creating named tuples to hold data 59–61

data security 322–323
dataclass decorator 238, 245–250, 254
dataclasses module 245–246, 250, 449
DataFrame 61, 217, 318
datetime 288
DEBUG logging level 343–344, 346
debugging 367–389

interactive 373–380
activating debugger with breakpoint 374–375
inspecting pertinent variables 378–379
running code line by line 375–377
stepping into another function 377–378

spotting problems with tracebacks 368–373
analyzing traceback when running code in

console 370–371
analyzing traceback when running

script 371–372
focusing on last call in traceback 372–373
how traceback is generated 369–370

decorators 183–192
creating as classes 300–302
creating data class using dataclass

decorator 245–246
creating read-only attributes with property

decorator 221–223
decorating function to show its

performance 185–186
dissecting decorator function 186–189

*args and **kwargs in inner function 188–189
return statement in inner function 189
structure 187–188

implementing property as lazy attribute 261–262
wrapping to carry over decorated function

metadata 190–192
deep copy 291
deepcopy function 291–292
def keyword 174

INDEX 469

default arguments 142–148
calling functions with 142–143
defining functions with 143–145
mutable parameters and 145–148

default sorting order 54–55
default values 157–158
del statement 89, 284–285
deleting

files 329
records from database 413
tasks from data source 406–407

delimiters 31–32
deques 102–103
deserializing JSON strings 253–255
destructing object 284–285
dict 16, 23, 27, 47, 54, 56, 58, 61–74, 108–115, 117,

119–120, 124, 137, 155, 158–160, 179–180,
183, 204, 209, 216, 251, 253–254, 256, 259,
284, 287, 298–300, 315–319, 322, 383, 385,
418, 429, 431, 435, 440–441, 463

dict_keys view objects 64
dictionary comprehension 117
DictReader constructor 316
DictReader objects 316
docstrings 166–171

documenting parameters and return
value 169–170

specifying any exceptions possibly
raised 170–171

specifying function action as summary 168–169
structure of function docstring 167–168

domain-independent knowledge 6–7
don’t reinvent the wheel principle 75
dot notation 59
double-ended queue 102
DRY (Don’t Repeat Yourself) principle 3, 19, 65,

144, 184, 230
dump method 257, 319–320
dumps method 255–256
dynamic view objects 63–64

E

EAFP (Easier to Ask for Forgiveness Than
Permission) 94

else clause 356–357
else statements 134–137

in for loop 134–135
in while loop 135–137

embedded for loops 119–120
encapsulation 218
enclosing variable 296–297
endswith method 38
Enum class 241, 243–244, 400
enum module 240–241, 244

enumerate 108, 112, 122–123, 125, 129, 309
enumerations 122, 239–245

avoiding regular class 239–240
creating enumeration class 241
defining methods for enumeration class

243–244
using 242–243

checking enumeration member type 242
iterating all enumeration members 243
using enumeration member attributes

242–243
error function 422
Error level 343–344, 346
eval function 27, 228
except clause 350–352
Exception class 362–363, 365, 401
exception handling 348–355

cleaning up with finally clause 357–359
else clause to continue logic of code in try

clause 356–357
handling multiple exceptions 352–354
raising informative exceptions with custom

exception classes 360–366
defining custom exception classes 363–365
preferring built-in exception classes 362–363
raising exceptions with custom message

360–361
showing more information of exception 354
specifying exception in docstrings 170–171
specifying exception in except clause 351–352
with try...except 349–351

exceptions 349
exec function 28
execute function call 411, 413
executemany function 412
exists method 455
expressions 16–18
extend method 51

F

f-strings 14–23
applying specifiers to format 18–22

aligning strings to create visual structure
18–20

formatting numbers 21–22
formatting strings before f-strings 14–15
using to interpolate expressions 16–18
using to interpolate variables 15–16

factory function 60
factory method 217
failures, test 387–388
fetchall function 411
field function 250, 449
fields 246–248

INDEX470

FIFO (first-in-first-out) 102–103
file object 305, 307
FileHandler class 340
files 304–307

managing on computer 324–329
copying files to different folder 328–329
creating directory and files 325
deleting specific kind of files 329
moving files to different folder 326–327
retrieving list of files of specific kind 326

opening and closing with context
manager 305–307

preserving data as files using pickling 318–324
pickling objects for data preservation 318–319
restoring data by unpickling 319–321
weighing pros and cons of pickling 321–323

reading data from 307–310
reading lines as generator 308
reading lines to form list 308–309
reading single line 309–310

retrieving file metadata 330–333
retrieving file size and time information

331–333
retrieving filename-related information

330–331
storing application events using 339–341
tabulated data files 313–318

reading CSV file that has header 314–316
reading CSV file using csv reader 313–314
writing data to CSV file 316–317

writing data to 310–312
appending string data to existing file 312
writing list of lines to new file 311–312
writing string data to new file 310

filter 112, 127–128
filtering condition 118–119
finally clause 357–359
find method 94–95
findall method 41, 43–44
finditer method 43
first-order functions 181
float constructor 26–27, 29
float object 25–26, 62, 80, 113
for key in dict operation 112
for key in dict.keys() operation 112
for loops 7, 67, 69, 86, 96, 182, 206, 238, 308,

314–315, 326, 406, 438–439
embedded for loops 119–120
improving iterations with built-in

functions 121–128
chain function 125–126
enumerate function 122–123
filter function 127
reversed function 123–124
zip function 124–125

using optional statements within 128–137
exiting loops with break statement 130–131
skipping iteration with continue

statement 132–134
using else statements 134–137

for...else... statement 135–136
form widget 426–427
format method 15
format specifiers 18–22

aligning strings to create visual structure 18–20
formatting numbers 21–22

Formatter class 347
frameworks 5
from_dict class method 217
functional programming 117
functions 173–200

checking performance with decorators 183–192
decorating function to show its

performance 185–186
dissecting decorator function 186–189
wrapping to carry over decorated function

metadata 190–192
creating helper 400–401
distinguishing classes from 298
generator functions 193–197

creating generator to yield perfect
squares 193–195

using generator expressions 196–197
using generator for memory efficiency 195–

196
implications of functions as objects 179–183

sending functions as arguments to higher-
order functions 181–182

storing functions in data container 179–180
using functions as return value 182–183

improving for-loop iterations with 121–128
chain function 125–126
enumerate function 122–123
filter function 127
reversed function 123–124
zip function 124–125

interactive debugging and stepping into
377–378

lambda functions 174–179
avoiding pitfalls when using 176–178
creating 174–175
using to perform small one-time job 175–176

partial functions 197–200
creating to localize function 199
localizing shared functions 198–199

sorting lists using custom functions 56
testing automatically 380–385

basis for 380–381
creating TestCase subclass for 381–384
setting up test 384–385

INDEX 471

functions (continued)
user-friendly functions 141–172

increasing function flexibility with *args and
**kwargs 161–166

setting and using return value in function
calls 149–154

setting default arguments 142–148
using type hints 154–161
writing docstrings for function 166–171

using built-in function as sorting key 55–56
functools module 191, 199, 302

G

gc (garbage collection) module 286
generator expressions 196–197
generator functions 193–197
generator-based coroutines 197
generators

creating to yield perfect squares 193–195
reading lines as 308
using for memory efficiency 195–196
using generator expressions 196–197

get method 65–66, 183, 300
GET request 342
get_account_balance method 269
getLogger function 338
getrefcount function 283–284
getter method 223
glob method 326
global keyword 292, 295–297, 401, 453
global namespace 282
global variable 294–296
globals function 282
group method 41–42, 46–47
groupdict method 47
groups

using named groups for text processing 47
working with multiple 42–43

H

handlers
adding multiple 341–342
setting formats to 346–347
setting handler level 345–346

handlers attribute 457
hash function 71–72, 298
hash objects 298
hashable and hashing 70–74
hasHandlers method 343, 456
hasher 71
hashing 70
help function 167

helper classes 400–401
heterogeneity 52–53
higher-order functions 181, 299
homogeneity 52–53

I

id function 68, 74, 96, 147–148, 205, 280, 435
IDE (Integrated Development Environment) 3,

59, 157, 218, 248, 397
identity test 289
if statement 94, 118–119, 128, 131–132, 134,

371–372, 424–425
if...elif...else 7, 134, 180, 297, 360, 453
immutability

making data classes 248–249
tuples for 51–52

import statement 375
in keyword 93
index method 93–96, 101, 437
IndexError exception 84
indexing

ignoring start or end index 84
retrieving items using 90–92

combining positive and negative indices
91–92

negative indexing 90–91
positive indexing 90

tolerance of out-of-range slicing indices 84
INFO level 343–344, 457
informative exceptions 360–366

defining custom exception classes 363–365
preferring built-in exception classes 362–363
raising exceptions with custom message

360–361
initialization 204
inner function

*args and **kwargs in 188–189
return statement in 189

input function 23
installing

packages in virtual environments 396–397
instance methods 213–214
instance objects 204–205, 225–229, 279–286
instantiating object 280–281
instantiation 108, 204, 280
int object 25–27, 29, 62, 80, 111, 155, 157–158,

179, 290, 294, 298, 300, 348–349, 352, 405
IntEnum class 400
interactive debugging 373–380

activating debugger with breakpoint 374–375
inspecting pertinent variables 378–379
running code line by line 375–377
stepping into another function 377–378

INDEX472

interface 278
interpolated string literals 15
interpolation

using f-strings to interpolate expressions 16–18
using f-strings to interpolate variables 15–16

intersection method 77
introspection 274–275
is comparisons 339
isalnum method 24
isalpha method 24
isdecimal method 25
isdigit method 25
isidentifier method 25
isinstance 166–167, 169, 276–277, 279, 451
iskeyword function 207
isnumeric method 24–25
issubset method 76, 78–79
issuperset method 76, 78–79
item in sequence feature 93
items method 63
iter function 109–111
Iterable 279, 451
Iterable class 279
iterables and iterations 107–138

comprehensions 115–121
applying filtering condition 118–119
dictionary comprehension 117
list comprehension 115–116
set comprehension 117–118
using embedded for loops 119–120

creating common data containers using
iterables 108–115
getting to know iterables and iterators

109–110
inspecting iterability 110–112
using iterables to create built-in data

containers 112–114
improving for-loop iterations with built-in

functions 121–128
chain function 125–126
enumerate function 122–123
filter function 127
reversed function 123–124
zip function 124–125

iterating all enumeration members 243
using optional statements within for and while

loops 128–137
exiting loops with break statement 130–131
skipping iteration with continue

statement 132–134
using else statements 134–137

itertools module 125, 128

J

join method 31–32, 34, 403
joining strings

with any delimiters 31–32
with whitespaces 30

JSON (JavaScript Object Notation) 251–257, 449
data structure 251–252
deserializing JSON strings 253–255
mapping data types between Python and 252
serializing Python data to JSON format 255–256

json module 253, 255, 257

K

key argument 55–56, 58, 143, 174, 178, 299–300
KeyboardInterrupt exception 362
KeyError exception

avoiding 65
being cautious with 64–65

keys method 63, 435
keyword arguments

accepting variable number of 165
placing **kwargs as last parameter 165
using **kwargs as dict 165

overview 162–163
self not as keyword 206–207

keyword module 207
keyword-only arguments 163
keywords 174

L

lambda functions 174–179
avoiding pitfalls when using 176–178

assigning lambda to variable 176–177
using better alternatives 177–178

creating 174–175
using to perform small one-time job 175–176

lambda keyword 56, 174
last call, in tracebacks 372–373
lazy attributes 257–262

identifying use scenario 258
implementing property as 261–262
overriding __getattr_ special method to

implement 259–261
lazy evaluation 195, 257
LBYL (Look Before You Leap) principle 94
LEGB (local, enclosing, global, and built-in)

rule 293–294
len function 58
levels, logging

categorizing application events with 343–345
setting handler level 345–346

INDEX 473

libraries 5–6
lightweight data model 58–62

alternative data models 58–59
creating named tuples to hold data 59–61

LIKE operation 411
list command 377
list object 16, 18, 27–28, 31–32, 51, 54–56, 58, 60,

62–63, 69, 72, 74–75, 77, 83–84, 90, 92, 95, 99,
101, 108–117, 120, 123–127, 130, 137, 142–
143, 146–149, 155, 158–159, 176–177, 179,
181–182, 193, 195–196, 204, 243, 251, 253–
255, 280, 284, 289–291, 298–299, 308, 311,
313–314, 316–318, 343, 406, 411, 424, 429,
438, 443, 445, 449, 453, 455, 457

list_iterator iterator 110
list-like data types 278
literal_eval function 28
load method 257, 319–320
loads method 253–255
local scope 294–296
locals function 379, 459
Logger class 338–339
logging 337–366

exception handling 348–355
cleaning up with finally clause 357–359
else clause to continue logic of code in try

clause 356–357
handling multiple exceptions 352–354
showing more information of exception 354
specifying exception in except clause

351–352
with try...except 349–351

monitoring program with 338–343
adding multiple handlers to logger 341–342
creating Logger object to log application

events 338–339
using files to store application events 339–341

raising informative exceptions with custom
exception classes 360–366
defining custom exception classes 363–365
preferring built-in exception classes 362–363
raising exceptions with custom message

360–361
saving log records 343–348

categorizing application events with
levels 343–345

setting formats to handler 346–347
setting handler level 345–346

logging module 338, 340–341, 343, 347
logical operators 40
LogRecord class 340
lookup efficiency 68–69
low-level development 6

M

maintainability 3–4
_make tuple class method 61
manipulating list items 88–89
map object 112–113, 116–117, 181–182, 299, 406
match method 41, 43, 46
Match objects 41–44, 46
match.span 42
matches 41–43

creating match objects 41–42
creating working pattern to find 45–46
extracting needed data from 46
working with multiple groups 42–43

max function 177–178
maxsplit parameter 34
memory efficiency 195–196
metadata

retrieving file 330–333
retrieving file size and time information

331–333
retrieving filename-related information

330–331
wrapping decorated function 190–192

method resolution order (MRO) 233
min function 178
mkdir method 325, 327
monitoring program 338–343

adding multiple handlers to logger 341–342
creating Logger object to log application

events 338–339
using files to store application events 339–341

moving files 326–327
multidimensional data 104
multiple return values

defining functions with 152
using from function call 153

multiple-assignment technique 97
mutability 51–52
mutable parameters 145–148

N

n (next) command 378
name attribute 242, 330
name mangling 221
named functions 174
named groups 47
named slice objects 87–88
named tuples 58–62

alternative data models 58–59
creating named tuples to hold data 59–61

namedtuple function 60
NameError exception 351–354

INDEX474

namespaces 151
active in applicable 281–282
LEGB rule for lookup 293–294

need-driven approach 105
negative indexing

combining positive and 91–92
from end of list 90–91

negative look-behind assertion 433
next command 378
next function 109–110, 195–196, 315
non-public methods 235–236
None function 148
None object 255
NoneType data type 80
nonlocal keyword 292, 296–297
nonlocal variable binding 186
NOTSET base level 343
Null data type 252
Number data type 252
NumPy 104

O

O(1) time complexity 118
object class 225, 233
Object data type 252
objects 273–303

accessing and changing variables in different
scope 292–297
changing enclosing variable 296–297
changing global variable in local scope

294–296
LEGB rule for name lookup 293–294

callability 297–302
creating decorators as classes 300–302
distinguishing classes from functions 298
higher-order function map() 299
using callable as key argument 299–300

checking object type 274–279
checking generically 277–279
using isinstance 276–277
using type 275

copying 286–292
creating deep copy 291
creating shallow copy 287–288
noting potential problem of shallow

copy 288–291
implications of functions as 179–183

sending functions as arguments to higher-
order functions 181–182

storing functions in data container 179–180
using functions as return value 182–183

lifecycle of instance objects 279–286
being active in applicable namespaces 281–282
destructing object 284–285

instantiating object 280–281
tracking reference counts 282–284

pickling
compatibility with 321–322
for data preservation 318–319

OOP (object-oriented programming) 35, 58, 108,
179, 205, 273

open function 305, 310, 312, 319, 325
opening files 305–307
or operation 80, 436
os module 325
overriding

__getattr_ special method to implement
259–261

__repr__ to provide instantiation
information 226–227

__str__ to show meaningful information
for instance 225–226

superclass methods to provide customized
behaviors 232–235
overriding method completely 233–234
overriding method partially 234–235

P

packages 5–6
installing in virtual environments 396–397

pandas 104, 399
parameter name 169
parameter type 169
parameters

creating function docstring 169–170
placing **kwargs as last parameter 165
self in __init__ method 204–208

instance object 204–205
preferring using self as parameter name

207–208
self is not keyword 206–207
setting self implicitly 205–206

parent attribute 331
partial functions 197–200

creating to localize function 199
localizing shared functions 198–199

pass statement 158, 182, 232, 364, 401
Path object 325, 329–333, 455
pathlib module 325
Pattern object 35–36
patterns

creating to find matches 45–46
creating with raw string 36–37
search patterns 38–40

boundary anchors 38
character classes and sets 39–40
logical operators 40
quantifiers 38–39

INDEX 475

pdb module 374–375
per-instance dict representations 61
pickling 318–324

objects for data preservation 318–319
restoring data by unpickling 319–321
weighing pros and cons of 321–323

compatibility with most objects 321–322
data security 322–323
storage size and speed 323

pop method 102
positional arguments

accepting variable number of 163–165
placing *args as last positional

argument 164–165
using *args as tuple 163–164

overview 162–163
positive indexing

combining negative and 91–92
from beginning of list 90

POST request 342
prefix

private methods by using double underscores
as 220–221

protected methods by using underscore as
218–219

print function 132, 148, 161, 163, 192, 225–226,
280, 294–295, 299, 305, 339–340, 350, 354, 359

private methods 220–221
process_data function 152
process_item_check_first approach 94
process_item_try approach 94
process_task_challenge function 359
process_task_string0 function 351
process_task_string1 function 350
process_task_string8 function 358
profile_data attribute 260–261
profile_data property 261
programmers 2–4

considering maintainability before writing
code 3–4

focusing on writing readable Python code 2–3
property decorator 450

implementing as lazy attribute 261–262
read-only attributes with 221–223

property setter 223–224
protected methods 218–219

Q

quantifiers 38–39
quotient function 170

R

raise keyword 360
random module 68–69, 403
range object 86–87, 112, 122–124, 128, 298, 437
raw strings 36–37
re module 35
read method 306–307, 311
read mode 306, 310, 320
read-only attributes 221–223
readability 2–3
reader function 314, 316
readline method 309, 311
readlines method 308, 311
refactor 19
reference counts 282–284

distinction between objects and variables 283
incrementing and decrementing reference

counts 283–284
regex (regular expressions) 34–44

creating pattern with raw string 36–37
dissecting matches 41–43

creating match objects 41–42
working with multiple groups 42–43

essentials of search pattern 38–40
boundary anchors 38
character classes and sets 39–40
logical operators 40
quantifiers 38–39

knowing common methods 43–44
processing texts 44–48

creating working pattern to find matches
45–46

extracting needed data from matches 46
using named groups for text processing 47

using in Python 35–36
remove method 51–52
replace method 73, 435
repr method 229
reST (reStructuredText) 168
retrieving records from database 409–411
return statement 150, 189, 355, 358–359, 458
return values 149–154

creating function docstring 169–170
defining functions returning zero, one, or

multiple values 150–152
returning multiple values 152
returning one value 150–151
returning zero values 150

returning value implicitly or explicitly 149
using functions as 182–183
using multiple values returned from function

call 153
reverse method 85, 127
reverse parameter 55, 142–143

INDEX476

reversed object 112, 123–124
rfind method 94
rm command 455
rmtree function 328
rsplit method 34

S

s (step) command 378
scopes 292–297

changing enclosing variable 296–297
changing global variable in local scope 294–296
LEGB rule for name lookup 293–294

script, tracebacks and 371–372
search method 36, 41, 43
search patterns 38–40

boundary anchors 38
character classes and sets 39–40
logical operators 40
quantifiers 38–39

security, pickling 322–323
seek method 406
self 204–208

instance object 204–205
not as keyword 206–207
preferring using self as parameter name

207–208
setting self implicitly 205–206

Sequence abstract class 279
Sequence concrete class 279
sequence data 106

finding items in sequence 92–96
checking presence of item 92–93
finding instance of custom classes in list

95–96
finding substrings in string 94–95
using index method to locate item 93–94

retrieving and manipulating subsequences with
slice objects 83–89
features of slicing 83–85
manipulating list items with slicing

operations 88–89
not confusing slices with ranges 86
using named slice objects to process sequence

data 87–88
unpacking 96–101

denoting unwanted items with underscores to
remove distraction 99–100

retrieving consecutive items using starred
expression 98–99

short sequences with one-to-one
correspondence 97–98

using indexing to retrieve items 90–92
combining positive and negative indices

91–92

negative indexing 90–91
positive indexing 90

when to consider data models other than lists
and tuples 101–105
processing multidimensional data with

NumPy and Pandas 104
using deques for FIFO (first-in-first-out)

102–103
using sets when membership is

concerned 101
serializing Python data 255–256
Series class 217
session state 417–419
set comprehension 117–118
set object 62, 69, 74, 76–79, 110–113, 115,

117–120, 159–160, 179, 291
set operations 75, 77–79
setdefault method 66–67
sets

checking relationships between lists using
74–80
checking whether list contains all items of

another list 74–76
checking whether list contains any element

of another list 76–77
dealing with multiple set objects 77–79

for membership 101
when to use 68–74

hashable and hashing 70–74
taking advantage of constant lookup

efficiency 68–69
setters 223–224
setting keyword-only arguments 143
setUp method 384
shallow copy

creating 287–288
noting potential problem of 288–291

short-circuit evaluations 80, 436
show_new_task_entry function 426
show_task_detail function 425
show_tasks function 423
shutil module 328–329
size

of pickling storage 323
retrieving file metadata 331–333

skipping iteration 132–134
slice objects 86–89, 298
slicing 83–89

features of 83–85
applying stride to slicing 85
ignoring start or end index 84
not abusing tolerance of out-of-range slicing

indices 84
manipulating list items with slicing

operations 88–89

INDEX 477

slicing (continued)
not confusing slices with ranges 86
using named slice objects to process sequence

data 87–88
sort method 54–55, 57–58, 142–143, 148–149, 163,

174, 176–177, 179, 424
sorted function 148, 177–178, 298
sorting lists 54–57

using built-in function as sorting key 55–56
using custom functions for 56
using default order 54–55

span method 41
special methods 225
split method 33–34, 43–44
splitting strings 32–34
SQLite database 408–413

creating database 408–409
deleting record from database 413
retrieving records from database 409–411
saving records to database 411–412
updating record in database 412–413

sqlite3 module 408
st_mtime attribute 332
starred expression 98–99
start attribute 86
startswith method 38
stat method 332–333
static methods 214–215
staticmethod decorator 215–216
status (status) attribute 399
stem attribute 331
step attribute 86
step command 378
stop attribute 86
stop parameter 122
StopIteration exception 109–110, 195
storage size, pickling 323
str object 14–15, 27, 34, 38, 56, 62, 80, 83, 110–111,

137, 145, 155, 158–159, 179, 226, 229, 280,
283, 299, 363, 458

StreamHandler constructor 341
streamlit 414–415
strict parameter 125, 127
stride parameter 85
strides 85
string module 403
strings 49

appending string data to existing file 312
converting to retrieve represented data 23–29

casting strings to numbers 25–26
checking whether strings represent alpha-

numeric values 24–25
evaluating strings to derive their represented

data 27–28
deserializing JSON strings 253–255

f-strings 14–23
applying specifiers to format f-strings 18–22
formatting strings before f-strings 14–15
using to interpolate expressions 16–18
using to interpolate variables 15–16

finding substrings in 94–95
joining strings

with any delimiters 31–32
with whitespaces 30

regular expressions 34–44
creating pattern with raw string 36–37
dissecting matches 41–43
essentials of search pattern 38–40
knowing common methods 43–44
processing texts 44–48
using in Python 35–36

splitting strings to create list of strings 32–34
writing string data to new file 310

sub method 43–44
subclasses

creating subclass of existing data class 249–250
avoiding default values for superclass

249–250
inheriting superclass fields 249

identifying use scenario of 230–231
subsequences 83–89

features of slicing 83–85
manipulating list items with slicing

operations 88–89
not confusing slices with ranges 86
using named slice objects to process sequence

data 87–88
substrings 94–95
sum function 149, 178, 197, 298–299
sum operation 193
superclass 229–236

avoiding default values for 249–250
creating non-public methods of 235–236
identifying use scenario of subclasses 230–231
inheriting attributes and methods

automatically 231–232
inheriting superclass fields 249
overriding superclass methods to provide

customized behaviors 232–235
overriding method completely 233–234
overriding method partially 234–235

syntactic sugar 361
sys module 283

T

tabulated data files 313–318
reading CSV file that has header 314–316
reading CSV file using csv reader 313–314
writing data to CSV file 316–317

INDEX478

Task class 368–369, 373, 375, 380, 382–387,
452, 460

creating and saving tasks 401–403
deleting task from data source 406–407
reading tasks from data source 404–405
updating task in data source 405–406

taskier package 364
taskier-env environment 396–398, 414
TaskierError base exception class 363
TaskierError class 401
TaskierFilterKey class 418, 427
TaskierMenuOption class 427
ternary assignment process 288
ternary expression 288
TestCase class 381–382, 386
TestCase subclass

testing class 386–387
testing functions 381–384

testing
class automatically 385–388

creating TestCase subclass for 386–387
responding to test failures 387–388

functions automatically 380–385
basis for testing functions 380–381
creating TestCase subclass for 381–384
setting up test 384–385

text processing using regular expressions 44–48
creating working pattern to find

matches 45–46
extracting needed data from matches 46
using named groups for text processing 47

tight coupling 269
time information metadata 331–333
time module 333
timeit module 68–69
tracebacks 368–373

analyzing
when running code in console 370–371
when running script 371–372

focusing on last call in 372–373
how traceback is generated 369–370

truncate method 406
try clause 356–357
try keyword 356
try...except statement 26, 64, 93, 96, 349–352,

355–358, 405, 457
try...except...else statement 356, 426
try...except...else...finally statement 357
tuple object 16, 27, 52–53, 58, 62, 73, 80, 83,

96–100, 108, 110–111, 113–114, 123–125,
128, 153–155, 158–159, 165, 179, 217, 257,
277, 322, 353, 411, 435, 441, 443, 447, 460

tuple unpacking technique 97

tuples 54–81
building lightweight data model using named

tuples 58–62
alternative data models 58–59
creating named tuples to hold data 59–61

for heterogeneity 52–53
for immutability 51–52
using *args as 163–164
when to consider data models other than

101–105
processing multidimensional data with

NumPy and Pandas 104
using deques for FIFO (first-in-first-out)

102–103
using sets when membership is

concerned 101
when to use dictionaries and sets instead of

68–74
hashable and hashing 70–74
taking advantage of constant lookup

efficiency 68–69
type function 121, 155, 275
type hinting 154–161

advanced uses for 157–160
taking multiple data types 160
using arguments with default values 157–158
working with container objects 158–159
working with custom classes 158

in function definitions 156–157
providing to variables 155–156

TypeError exception 70, 366
typing module 160

U

UML (Unified Modeling Language) 264
underscores

denoting unwanted items with 99–100
private methods by using double underscores

as prefix 220–221
protected methods by using as prefix 218–219

unittest module 381, 385
unpacking 96–101

denoting unwanted items with underscores to
remove distraction 99–100

retrieving consecutive items using starred
expression 98–99

short sequences with one-to-one
correspondence 97–98

unpickling 319–321
user-friendly functions 141–172

increasing function flexibility with *args and
**kwargs 161–166
accepting variable number of keyword

arguments 165

INDEX 479

user-friendly functions (continued)
accepting variable number of positional

arguments 163–165
positional and keyword arguments 162–163

setting and using return value in function
calls 149–154
defining functions returning zero, one, or

multiple values 150–152
returning value implicitly or explicitly 149
using multiple values returned from function

call 153
setting default arguments 142–148

calling functions with 142–143
defining functions with 143–145
mutable parameters and 145–148

using type hints 154–161
advanced uses for 157–160
in function definitions 156–157
providing to variables 155–156

writing docstrings for function 166–171
documenting parameters and return

value 169–170
specifying any exceptions possibly raised

170–171
specifying function action as summary

168–169
structure of function docstring 167–168

using_by_desc_len function 434
using_urgency_level function 56, 176
using_urgency_level1 function 177
utility functionalities 214–215

V

value attribute 242
ValueError exception 93–96, 101, 348–349,

351–352, 354–358, 362, 457
values 62–68

accessing using dynamic view objects 63–64
KeyError exception

avoiding 65
being cautious with 64–65

setdefault method side effect 66–67
using get method to access dictionary item

65–66
variables

accessing and changing in different scope
292–297
changing enclosing variable 296–297
changing global variable in local scope

294–296
LEGB rule for name lookup 293–294

assigning lambda to 176–177

distinction between objects and 283
inspecting 378–379
providing type hinting to 155–156
using f-strings to interpolate 15–16

venv module 395, 398
view objects 64, 80
virtual environments 394–399

creating for each project 395–396
installing packages in 396–397
rationale for 394–395
using in VSC 397

virtualenv tool 395
VSC (Visual Studio Code)

using virtual environments in 397

W

walrus operator 424
WARNING level 343–344, 346, 457
web apps 414–429

app interface 415
creating new task 426–427
features of streamlit 414–415
organizing project 427–428
running app 428
setting up sidebar 420–422
showing task's details 425–426
showing tasks 423–425
tracking user activities using session state

417–419
while keyword 128
while loops 7, 128–137, 194–195

exiting loops with break statement 130–131
skipping iteration with continue statement

132–134
using else statements 134–137

while...else... statement 136
whitespaces 30
with statement 306–307, 310, 313, 331, 341,

403, 408, 427
wrapping decorated function 190–192
wraps class 302
wraps decorator 191–192, 302, 454
wraps function 199
write method 310–312
write mode 310
writeheader method 317
writelines method 311, 407, 454
writerow method 317
writerows method 317–318
writing data to files 310–312

appending string data to existing file 312
to CSV files 316–317
writing list of lines to new file 311–312
writing string data to new file 310

INDEX480

Y

yield execution 195
yield keyword 194, 196–197
yield line 194
yield statement 195

Z

ZeroDivisionError exception 338, 361
zip object 112, 114, 124–126, 315
zip_longest function 125–126
zipfile module 114

How this book is organized: A road map to the six parts of the book

• Objects: mutability, hashability, callability,
 copying, instantiation and destruction
• Inspection: type, isinstance, generic types
• Namespace: scope, LEGB, global, nonlocal
• Using files: context manager, tabulated data,
 metadata, moving and copying
• Pickling: flexibility and integrity

Part 1. Built-in data models

• Strings: formatting and data extracting
• Lists: mutability, homogeneity, sorting
• Tuples: immutability, heterogeneity,
 named tuples
• Dictionaries: hashability, key-value
 pairs, view objects
• Sets: hashability, set operations
• Sequences: indexing, slicing,
 unpacking, searching
• Iterables: comprehensions, iterations

Part 2. Writing good functions

• Structure: input arguments, return value
• Default arguments: immutable and mutable
• Variable number of arguments: *args, **kwargs
• Annotations: type hints, generic types
• Docstrings: parameters, return value, exceptions
• Advanced concepts: lambda, decorator, closure,
 higher-order function, generator, partial function

Part 3. Defining good classes

• Initialization: specifying all attributes
• Methods: instance, static, and class methods
• Access control: protected, private, property
• String representations: __str__ and __repr__
• Hierarchy: superclass and subclass
• Enumerations: enum and iterations
• Data classes: removing boilerplate, fields
• Lazy evaluation: property and __getattr__ Part 4. Using objects and files

Part 6. Completing a project to build a web app

Working on the project as the shared context

Part 5. Safeguarding programs

• Logging: levels, handlers, proper log records
• Exceptions: try...except...else...finally, handle
 specific exceptions, custom
 exceptions
• Debugging: tracebacks, interactive
 debugging
• Testing: test cases, functions, classes

Yong Cui

ISBN-13: 978-1-61729-974-2

P
ython How-To uses a simple but powerful method to lock
in 63 core Python skills. You’ll start with a question, like
“How do I fi nd items in a sequence?” Next, you’ll see an

example showing the basic solution in crystal-clear code. You’ll
then explore interesting variations, such as fi nding substrings
or identifying custom classes. Finally, you’ll practice with a
challenge exercise before moving on to the next How-To.

Th is practical guide covers all the language features you’ll need
to get up and running with Python. As you go, you’ll explore
best practices for writing great Python code. Practical sugges-
tions and engaging graphics make each important technique
come to life. Author Yong Cui’s careful cross-referencing
reveals how you can reuse features and concepts in diff erent
contexts.

What’s Inside
How to:
● Join and split strings
● Access dictionary keys, values, and items
● Set and use the return value in function calls
● Process JSON data
● Create lazy attributes to improve performance
● Change variables in a diff erent namespace
…and much more.

For beginning to intermediate Python programmers.

Dr. Yong Cui has been working with Python in bioscience for
data analysis, machine learning, and tool development for over
15 years.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Python How-To

PYTHON / SOFTWARE DEVELOPMENT

M A N N I N G

“Insightful, with practical
and immediate application.”—James Matlock, Wake Technical

Community College

“Useful examples that
correctly answer the basic

“how-to” questions
you ask yourself while

 programming.”—Vitosh K. Doynov
DHL Global Forwarding

“Written from the
developer’s point of view!
Cui does a masterful job

helping the reader understand
 elegant Pythonic solutions.”—Chris Villanueva, Fulton-Nevets

Domestic Holdings

“I loved how the challenges
reinforce each topic.”—Chris Kardell, DEBS

See first page

	Python How-To
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the appendices
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	Chapter 1: Developing a pragmatic learning strategy
	1.1 Aiming at becoming a pragmatic programmer
	1.1.1 Focusing on writing readable Python code
	1.1.2 Considering maintainability even before you write any code

	1.2 What Python can do well or as well as other languages
	1.3 What Python can’t do or can’t do well
	1.4 What you’ll learn in this book
	1.4.1 Focusing on domain-independent knowledge
	1.4.2 Solving problems through synthesis
	1.4.3 Learning skills in context

	Part 1: Using built-in data models
	Chapter 2: Processing and formatting strings
	2.1 How do I use f-strings for string interpolation and formatting?
	2.1.1 Formatting strings before f-strings
	2.1.2 Using f-strings to interpolate variables
	2.1.3 Using f-strings to interpolate expressions
	2.1.4 Applying specifiers to format f-strings
	2.1.5 Discussion
	2.1.6 Challenge

	2.2 How do I convert strings to retrieve the represented data?
	2.2.1 Checking whether strings represent alphanumeric values
	2.2.2 Casting strings to numbers
	2.2.3 Evaluating strings to derive their represented data
	2.2.4 Discussion
	2.2.5 Challenge

	2.3 How do I join and split strings?
	2.3.1 Joining strings with whitespaces
	2.3.2 Joining strings with any delimiters
	2.3.3 Splitting strings to create a list of strings
	2.3.4 Discussion
	2.3.5 Challenge

	2.4 What are the essentials of regular expressions?
	2.4.1 Using regular expressions in Python
	2.4.2 Creating the pattern with a raw string
	2.4.3 Understanding the essentials of a search pattern
	2.4.4 Dissecting the matches
	2.4.5 Knowing the common methods
	2.4.6 Discussion
	2.4.7 Challenge

	2.5 How do I use regular expressions to process texts?
	2.5.1 Creating a working pattern to find the matches
	2.5.2 Extracting the needed data from the matches
	2.5.3 Using named groups for text processing
	2.5.4 Discussion
	2.5.5 Challenge

	Chapter 3: Using built-in data containers
	3.1 How do I choose between lists and tuples?
	3.1.1 Using tuples for immutability and using lists for mutability
	3.1.2 Using tuples for heterogeneity and using lists for homogeneity
	3.1.3 Discussion
	3.1.4 Challenge

	3.2 How do I sort lists of complicated data using custom functions?
	3.2.1 Sorting lists using the default order
	3.2.2 Using a built-in function as the sorting key
	3.2.3 Using custom functions for more complicated sorting needs
	3.2.4 Discussion
	3.2.5 Challenge

	3.3 How do I build a lightweight data model using named tuples?
	3.3.1 Understanding alternative data models
	3.3.2 Creating named tuples to hold data
	3.3.3 Discussion
	3.3.4 Challenge

	3.4 How do I access dictionary keys, values, and items?
	3.4.1 Using dynamic view objects (keys, values, and items) directly
	3.4.2 Being cautious with the KeyError exception
	3.4.3 Avoiding KeyError with a hygiene check first: The non-Pythonic way
	3.4.4 Using the get method to access a dictionary item
	3.4.5 Watching for the setdefault method’s side effect
	3.4.6 Discussion
	3.4.7 Challenge

	3.5 When do I use dictionaries and sets instead of lists and tuples?
	3.5.1 Taking advantage of the constant lookup efficiency
	3.5.2 Understanding hashable and hashing
	3.5.3 Discussion
	3.5.4 Challenge

	3.6 How do I use set operations to check the relationships between lists?
	3.6.1 Checking whether a list contains all items of another list
	3.6.2 Checking whether a list contains any element of another list
	3.6.3 Dealing with multiple set objects
	3.6.4 Discussion
	3.6.5 Challenge

	Chapter 4: Dealing with sequence data
	4.1 How do I retrieve and manipulate subsequences with slice objects?
	4.1.1 Taking advantage of the full features of slicing
	4.1.2 Not confusing slices with ranges
	4.1.3 Using named slice objects to process sequence data
	4.1.4 Manipulating list items with slicing operations
	4.1.5 Discussion
	4.1.6 Challenge

	4.2 How do I use positive and negative indexing to retrieve items?
	4.2.1 Positive indexing starts from the beginning of the list
	4.2.2 Negative indexing starts from the end of the list
	4.2.3 Combining positive and negative indices as needed
	4.2.4 Discussion
	4.2.5 Challenge

	4.3 How do I find items in a sequence?
	4.3.1 Checking an item’s presence
	4.3.2 Using the index method to locate the item
	4.3.3 Finding substrings in a string
	4.3.4 Finding an instance of custom classes in a list
	4.3.5 Discussion
	4.3.6 Challenge

	4.4 How do I unpack a sequence? Beyond tuple unpacking
	4.4.1 Unpacking short sequences with one-to-one correspondence
	4.4.2 Retrieving consecutive items using the starred expression
	4.4.3 Denoting unwanted items with underscores to remove distraction
	4.4.4 Discussion
	4.4.5 Challenge

	4.5 When should I consider data models other than lists and tuples?
	4.5.1 Using sets where membership is concerned
	4.5.2 Using deques if you care about first-in-first-out
	4.5.3 Processing multidimensional data with NumPy and Pandas
	4.5.4 Discussion
	4.5.5 Challenge

	Chapter 5: Iterables and iterations
	5.1 How do I create common data containers using iterables?
	5.1.1 Getting to know iterables and iterators
	5.1.2 Inspecting iterability
	5.1.3 Using iterables to create built-in data containers
	5.1.4 Discussion
	5.1.5 Challenge

	5.2 What are list, dictionary, and set comprehensions?
	5.2.1 Creating lists from iterables using list comprehension
	5.2.2 Creating dictionaries from iterables using dictionary comprehension
	5.2.3 Creating sets from iterables using set comprehension
	5.2.4 Applying a filtering condition
	5.2.5 Using embedded for loops
	5.2.6 Discussion
	5.2.7 Challenge

	5.3 How do I improve for-loop iterations with built-in functions?
	5.3.1 Enumerating items with enumerate
	5.3.2 Reversing items with reversed
	5.3.3 Aligning iterables with zip
	5.3.4 Chaining multiple iterables with chain
	5.3.5 Filtering the iterable with filter
	5.3.6 Discussion
	5.3.7 Challenge

	5.4 Using optional statements within for and while loops
	5.4.1 Exiting the loops with the break statement
	5.4.2 Skipping an iteration with the continue statement
	5.4.3 Using else statements in the for and while loops
	5.4.4 Discussion
	5.4.5 Challenge

	Part 2: Defining functions
	Chapter 6: Defining user-friendly functions
	6.1 How do I set default arguments to make function calls easier?
	6.1.1 Calling functions with default arguments
	6.1.2 Defining functions with default arguments
	6.1.3 Avoiding the pitfall of setting default arguments for mutable parameters
	6.1.4 Discussion
	6.1.5 Challenge

	6.2 How do I set and use the return value in function calls?
	6.2.1 Returning a value implicitly or explicitly
	6.2.2 Defining functions returning zero, one, or multiple values
	6.2.3 Using multiple values returned from a function call
	6.2.4 Discussion
	6.2.5 Challenge

	6.3 How do I use type hints to write understandable functions?
	6.3.1 Providing type hinting to variables
	6.3.2 Using type hinting in function definitions
	6.3.3 Applying advanced type-hinting skills to function definitions
	6.3.4 Discussion
	6.3.5 Challenge

	6.4 How do I increase function flexibility with *args and **kwargs?
	6.4.1 Knowing positional and keyword arguments
	6.4.2 Accepting a variable number of positional arguments
	6.4.3 Accepting a variable number of keyword arguments
	6.4.4 Discussion
	6.4.5 Challenge

	6.5 How do I write proper docstrings for a function?
	6.5.1 Examining the basic structure of a function's docstring
	6.5.2 Specifying the function's action as the summary
	6.5.3 Documenting the parameters and the return value
	6.5.4 Specifying any exceptions possibly raised
	6.5.5 Discussion
	6.5.6 Challenge

	Chapter 7: Using functions beyond the basics
	7.1 How do I use lambda functions for small jobs?
	7.1.1 Creating a lambda function
	7.1.2 Using lambdas to perform a small one-time job
	7.1.3 Avoiding pitfalls when using lambda functions
	7.1.4 Discussion
	7.1.5 Challenge

	7.2 What are the implications of functions as objects?
	7.2.1 Storing functions in a data container
	7.2.2 Sending functions as arguments to higher-order functions
	7.2.3 Using functions as a return value
	7.2.4 Discussion
	7.2.5 Challenge

	7.3 How do I check functions’ performance with decorators?
	7.3.1 Decorating a function to show its performance
	7.3.2 Dissecting the decorator function
	7.3.3 Wrapping to carry over the decorated function’s metadata
	7.3.4 Discussion
	7.3.5 Challenge

	7.4 How can I use generator functions as a memory- efficient data provider?
	7.4.1 Creating a generator to yield perfect squares
	7.4.2 Using generators for their memory efficiency
	7.4.3 Using generator expressions where applicable
	7.4.4 Discussion
	7.4.5 Challenge

	7.5 How do I create partial functions to make routine function calls easier?
	7.5.1 “Localizing” shared functions to simplify function calls
	7.5.2 Creating a partial function to localize a function
	7.5.3 Discussion
	7.5.4 Challenge

	Part 3: Defining classes
	Chapter 8: Defining user-friendly classes
	8.1 How do I define the initialization method for a class?
	8.1.1 Demystifying self: The first parameter in __init__
	8.1.2 Setting proper arguments in __init__
	8.1.3 Specifying all attributes in __init__
	8.1.4 Defining class attributes outside the __init__ method
	8.1.5 Discussion
	8.1.6 Challenge

	8.2 When do I define instance, static, and class methods?
	8.2.1 Defining instance methods for manipulating individual instances
	8.2.2 Defining static methods for utility functionalities
	8.2.3 Defining class methods for accessing class-level attributes
	8.2.4 Discussion
	8.2.5 Challenge

	8.3 How do I apply finer access control to a class?
	8.3.1 Creating protected methods by using an underscore as the prefix
	8.3.2 Creating private methods by using double underscores as the prefix
	8.3.3 Creating read-only attributes with the property decorator
	8.3.4 Verifying data integrity with a property setter
	8.3.5 Discussion
	8.3.6 Challenge

	8.4 How do I customize string representation for a class?
	8.4.1 Overriding __str__ to show meaningful information for an instance
	8.4.2 Overriding __repr__ to provide instantiation information
	8.4.3 Understanding the differences between __str__ and __repr__
	8.4.4 Discussion
	8.4.5 Challenge

	8.5 Why and how do I create a superclass and subclasses?
	8.5.1 Identifying the use scenario of subclasses
	8.5.2 Inheriting the superclass's attributes and methods automatically
	8.5.3 Overriding the superclass's methods to provide customized behaviors
	8.5.4 Creating non-public methods of the superclass
	8.5.5 Discussion
	8.5.6 Challenge

	Chapter 9: Using classes beyond the basics
	9.1 How do I create enumerations?
	9.1.1 Avoiding a regular class for enumerations
	9.1.2 Creating an enumeration class
	9.1.3 Using enumerations
	9.1.4 Defining methods for the enumeration class
	9.1.5 Discussion
	9.1.6 Challenge

	9.2 How do I use data classes to eliminate boilerplate code?
	9.2.1 Creating a data class using the dataclass decorator
	9.2.2 Setting default values for the fields
	9.2.3 Making data classes immutable
	9.2.4 Creating a subclass of an existing data class
	9.2.5 Discussion
	9.2.6 Challenge

	9.3 How do I prepare and process JSON data?
	9.3.1 Understanding JSON’s data structure
	9.3.2 Mapping data types between JSON and Python
	9.3.3 Deserializing JSON strings
	9.3.4 Serializing Python data to JSON format
	9.3.5 Discussion
	9.3.6 Challenge

	9.4 How do I create lazy attributes to improve performance?
	9.4.1 Identifying the use scenario
	9.4.2 Overriding the __getattr_ special method to implement lazy attributes
	9.4.3 Implementing a property as a lazy attribute
	9.4.4 Discussion
	9.4.5 Challenge

	9.5 How do I define classes to have distinct concerns?
	9.5.1 Analyzing a class
	9.5.2 Creating additional classes to isolate the concerns
	9.5.3 Connecting related classes
	9.5.4 Discussion
	9.5.5 Challenge

	Part 4: Manipulating objects and files
	Chapter 10: Fundamentals of objects
	10.1 How do I inspect an object’s type to improve code flexibility?
	10.1.1 Checking an object’s type using type
	10.1.2 Checking an object’s type using isinstance
	10.1.3 Checking an object’s type generically
	10.1.4 Discussion
	10.1.5 Challenge

	10.2 What’s the lifecycle of instance objects?
	10.2.1 Instantiating an object
	10.2.2 Being active in applicable namespaces
	10.2.3 Tracking reference counts
	10.2.4 Destructing the object
	10.2.5 Discussion
	10.2.6 Challenge

	10.3 How do I copy an object?
	10.3.1 Creating a (shallow) copy
	10.3.2 Noting the potential problem of a shallow copy
	10.3.3 Creating a deep copy
	10.3.4 Discussion
	10.3.5 Challenge

	10.4 How do I access and change a variable in a different scope?
	10.4.1 Accessing any variable: The LEGB rule for name lookup
	10.4.2 Changing a global variable in a local scope
	10.4.3 Changing an enclosing variable
	10.4.4 Discussion
	10.4.5 Challenge

	10.5 What’s callability, and what does it imply?
	10.5.1 Distinguishing classes from functions
	10.5.2 Revisiting the higher-order function map
	10.5.3 Using callable as the key argument
	10.5.4 Creating decorators as classes
	10.5.5 Discussion
	10.5.6 Challenge

	Chapter 11: Dealing with files
	11.1 How do I read and write files using context management?
	11.1.1 Opening and closing files: Context manager
	11.1.2 Reading data from a file in different ways
	11.1.3 Writing data to a file in different ways
	11.1.4 Discussion
	11.1.5 Challenge

	11.2 How do I deal with tabulated data files?
	11.2.1 Reading a CSV file using csv reader
	11.2.2 Reading a CSV file that has a header
	11.2.3 Writing data to a CSV file
	11.2.4 Discussion
	11.2.5 Challenge

	11.3 How do I preserve data as files using pickling?
	11.3.1 Pickling objects for data preservation
	11.3.2 Restoring data by unpickling
	11.3.3 Weighing the pros and cons of pickling
	11.3.4 Discussion
	11.3.5 Challenge

	11.4 How do I manage files on my computer?
	11.4.1 Creating a directory and files
	11.4.2 Retrieving the list of files of a specific kind
	11.4.3 Moving files to a different folder
	11.4.4 Copying files to a different folder
	11.4.5 Deleting a specific kind of files
	11.4.6 Discussion
	11.4.7 Challenge

	11.5 How do I retrieve file metadata?
	11.5.1 Retrieving the filename-related information
	11.5.2 Retrieving the file's size and time information
	11.5.3 Discussion
	11.5.4 Challenge

	Part 5: Safeguarding the codebase
	Chapter 12: Logging and exception handling
	12.1 How do I monitor my program with logging?
	12.1.1 Creating the Logger object to log application events
	12.1.2 Using files to store application events
	12.1.3 Adding multiple handlers to the logger
	12.1.4 Discussion
	12.1.5 Challenge

	12.2 How do I save log records properly?
	12.2.1 Categorizing application events with levels
	12.2.2 Setting a handler’s level
	12.2.3 Setting formats to the handler
	12.2.4 Discussion
	12.2.5 Challenge

	12.3 How do I handle exceptions?
	12.3.1 Handling exceptions with try. . .except. . .
	12.3.2 Specifying the exception in the except clause
	12.3.3 Handling multiple exceptions
	12.3.4 Showing more information about an exception
	12.3.5 Discussion
	12.3.6 Challenge

	12.4 How do I use else and finally clauses in exception handling?
	12.4.1 Using else to continue the logic of the code in the try clause
	12.4.2 Cleaning up the exception handling with the finally clause
	12.4.3 Discussion
	12.4.4 Challenge

	12.5 How do I raise informative exceptions with custom exception classes?
	12.5.1 Raising exceptions with a custom message
	12.5.2 Preferring built-in exception classes
	12.5.3 Defining custom exception classes
	12.5.4 Discussion
	12.5.5 Challenge

	Chapter 13: Debugging and testing
	13.1 How do I spot problems with tracebacks?
	13.1.1 Understanding how a traceback is generated
	13.1.2 Analyzing a traceback when running code in a console
	13.1.3 Analyzing a traceback when running a script
	13.1.4 Focusing on the last call in a traceback
	13.1.5 Discussion
	13.1.6 Challenge

	13.2 How do I debug my program interactively?
	13.2.1 Activating the debugger with a breakpoint
	13.2.2 Running code line by line
	13.2.3 Stepping into another function
	13.2.4 Inspecting pertinent variables
	13.2.5 Discussion
	13.2.6 Challenge

	13.3 How do I test my functions automatically?
	13.3.1 Understanding the basis for testing functions
	13.3.2 Creating a TestCase subclass for testing functions
	13.3.3 Setting up the test
	13.3.4 Discussion
	13.3.5 Challenge

	13.4 How do I test a class automatically?
	13.4.1 Creating a TestCase subclass for testing a class
	13.4.2 Responding to test failures
	13.4.3 Discussion
	13.4.4 Challenge

	Part 6: Building a web app
	Chapter 14: Completing a real project
	14.1 How do I use a virtual environment for my project?
	14.1.1 Understanding the rationale for virtual environments
	14.1.2 Creating a virtual environment for each project
	14.1.3 Installing packages in the virtual environment
	14.1.4 Using virtual environments in Visual Studio Code
	14.1.5 Discussion
	14.1.6 Challenge

	14.2 How do I build the data models for my project?
	14.2.1 Identifying the business needs
	14.2.2 Creating helper classes and functions
	14.2.3 Creating the Task class to address these needs
	14.2.4 Discussion
	14.2.5 Challenge

	14.3 How do I use SQLite as my application’s database?
	14.3.1 Creating the database
	14.3.2 Retrieving records from the database
	14.3.3 Saving records to the database
	14.3.4 Updating a record in a database
	14.3.5 Deleting a record from the database
	14.3.6 Discussion
	14.3.7 Challenge

	14.4 How do I build a web app as the frontend?
	14.4.1 Understanding the essential features of streamlit
	14.4.2 Understanding the app’s interface
	14.4.3 Tracking user activities using session state
	14.4.4 Setting up the sidebar
	14.4.5 Showing the tasks
	14.4.6 Showing a task’s details
	14.4.7 Creating a new task
	14.4.8 Organizing your project
	14.4.9 Running the app
	14.4.10 Discussion
	14.4.11 Challenge

	solutions to the challenges
	Chapter 1
	Chapter 2
	Section 2.1
	Section 2.2
	Section 2.3
	Section 2.4
	Section 2.5

	Chapter 3
	Section 3.1
	Section 3.2
	Section 3.3
	Section 3.4
	Section 3.5
	Section 3.6

	Chapter 4
	Section 4.1
	Section 4.2
	Section 4.3
	Section 4.4
	Section 4.5

	Chapter 5
	Section 5.1
	Section 5.2
	Section 5.3
	Section 5.4

	Chapter 6
	Section 6.1
	Section 6.2
	Section 6.3
	Section 6.4
	Section 6.5

	Chapter 7
	Section 7.1
	Section 7.2
	Section 7.3
	Section 7.4
	Section 7.5

	Chapter 8
	Section 8.1
	Section 8.2
	Section 8.3
	Section 8.4
	Section 8.5

	Chapter 9
	Section 9.1
	Section 9.2
	Section 9.3
	Section 9.4
	Section 9.5

	Chapter 10
	Section 10.1
	Section 10.2
	Section 10.3
	Section 10.4
	Section 10.5

	Chapter 11
	Section 11.1
	Section 11.2
	Section 11.3
	Section 11.4
	Section 11.5

	Chapter 12
	Section 12.1
	Section 12.2
	Section 12.3
	Section 12.4
	Section 12.5

	Chapter 13
	Section 13.1
	Section 13.2
	Section 13.3
	Section 13.4

	Chapter 14
	Section 14.1
	Section 14.2
	Section 14.3
	Section 14.4

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

