Christian Clausen
Foreword by Robert (. Martin

/l. MANNING

Quick overview of refactoring patterns

EXTRACT METHOD (P3.2.1)—Takes part of one method and extracts it into its
own method.

REPLACE TYPE CODE WITH CLASSES (P4.1.3)—Transforms an enum into an inter-
face, and the enums’ values become classes.

PUSH CODE INTO CLASSES (P4.1.5)—Is a natural continuation of REPLACE TYPE
CODE WITH CLASSES (P4.1.3), as it moves functionality into classes.

INLINE METHOD (P4.1.7)—Removes methods that no longer add readability to
our program.

SPECIALIZE METHOD (P4.2.2)—Removes unnecessary and problematic general-
ity from methods.

TRY DELETE THEN COMPILE (P4.5.1)—Removes unused methods from interfaces
and classes when we know their entire scope.

UNIFY SIMILAR CLASSES (P5.1.1)—Unifies two or more classes that differ from
each other in a set of constant methods.

COMBINE ifS (P5.2.1)—Reduces duplication by joining consecutive ifs that
have identical bodies.

INTRODUCE STRATEGY PATTERN (P5.4.2)—Replaces variance through if by instead
instantiating classes.

EXTRACT INTERFACE FROM IMPLEMENTATION (P5.4.4)—Replaces dependencies
on a class with an interface.

ELIMINATE GETTER OR SETTER (P6.1.3)—Eliminates getters and setters by mov-
ing the functionality closer to the data.

ENCAPSULATE DATA (P6.2.3)—Localizes invariants related to variables and
makes cohesion clearer.

ENFORCE SEQUENCE (P6.4.1)—Makes the compiler guarantee things happen in
a specific order.

Five Lines of Code

Fwe Lines of Code

HOW AND WHEN TO REFACTOR

CHRISTIAN CLAUSEN
FOREWORD BY ROBERT C. MARTIN

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Development editor: Helen Stergius
Technical development editor: Mark Elston

/l/l Manning Publications Co. Review editor: Mihaela Batinic¢
20 Baldwin Road Production editor: Keri Hales
PO Box 761 Copy editor: Tiffany Taylor
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Jean Francois Morin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617298318
Printed in the United States of America

www.manning.com

To my university mentors, who told me

The key to being consistently brilliant is hard work every day.
—Olivier Danvy
and
You’re missing the point.

—Mayer Goldberg

Thank you for teaching me to stop trying to do the right thing, and do the right thing.

brief contents

1 = Refactoring refactoring 1

2 = Looking under the hood of refactoring 13

PART 1 LEARN BY REFACTORING A COMPUTER GAMEccce0ceeee. 21

3

4
5
6

Shatter long functions 23
Make type codes work 44
Fuse similar code together 84
Defend the data 135

PART 2 TAKING WHAT YOU HAVE LEARNED INTO
THE REAL WORLD «ecvveeeeeecscscscscscscssscscssscssssssssssssssssses 171

7
8
9

10

11

12

13

14

Collaborate with the compiler 173

Stay away from comments 194

Love deleting code 200

Never be afraid to add code 221
Follow the structure in the code 235
Avoid optimizations and generality 254
Make bad code look bad 270
Wrapping up 285

contents

Joreword xvii

preface xix

acknowledgments — xxiii

about the author xxv

about the cover illustration xxvi

Refactoring refactoring 1

1.1
1.2

1.3

1.4
1.5

1.6

1.7

What is refactoring? 2
Skills: What to refactor? 3

An example code smell 4 = An example rule 4
Culture: When to refactor? 5

Refactoring in a legacy system 6 = When should you
not refactor? 6

Tools: How to refactor (safely) 7
Tools you need to get started 7

Programming language: TypeScript 8 = Editor: Visual
Studio Code 8 = Version control: Git 9

Overarching example: A 2D puzzle game 9

Practice makes perfect: A second codebase 11

A note on real-world software 11

X CONTENTS

Looking under the hood of refactoring 13
2.1 Improving readability and maintainability 13

Making code better 14 = Maintaining code . . . without
changing what it does 16

2.2 Gaining speed, flexibility, and stability 17

Favoring composition over inheritance 17 = Changing code
by addition rather than modification 18

2.3 Refactoring and your daily work 19
Refactoring as a method for learning 19

2.4 Defining the “domain” in a software context 20

PART 1 LEARN BY REFACTORING A COMPUTER GAME21

Shatter long functions 23
3.1 Establishing our first rule: Why five lines? 24
Rule: FIVE LINES 24

3.2 Introducing a refactoring pattern to break up
functions 27
Refactoring pattern: EXTRACT METHOD 31

3.3 Breaking up functions to balancing abstraction 35
Rule: EITHER CALL OR PASS 35 = Applying the rule 36

3.4 Properties of a good function name 37
3.5 Breaking up functions that are doing too much 39
Rule: IF ONLY AT THE START 40 = Applying the rule 41

Make type codes work 44
4.1 Refactoring a simple if statement 45

Rule: NEVER USE IF WITH ELSE -~ 45 = Applying the rule 47
Refactoring pattern: REPLACE TYPE CODE WITH CLASSES 49
Pushing code into classes 52 = Refactoring pattern: PUSH CODE
INTO CLASSES 54 = Inlining a superfluous method 58
Refactoring pattern: INLINE METHOD 59

4.2 Refactoring a large if statement 62

Removing generality 65 = Refactoring pattern: SPECIALIZE
METHOD 67 = The only switch allowed 69 = Rule: NEVER
USE SWITCH 71 = Eliminating the if 72

CONTENTS

4.3 Addressing code duplication 74

Couldn’t we use an abstract class instead of the interface? 76
Rule: ONLY INHERIT FROM INTERFACES 77 = What is up with all
this code duplication? 78

4.4 Refactoring a pair of complex if statements 78
4.5 Removing dead code 81
Refactoring pattern: TRY DELETE THEN COMPILE ~ 82

Fuse similar code together 84

5.1 Unifying similar classes 85

Refactoring pattern: UNIFY SIMILAR CLASSES 93
5.2 Unifying simple conditions 99

Refactoring pattern: COMBINE IFS 101

5.3 Unifying complex conditions 103
Using arithmetic rules for conditions 104 = Rule: USE PURE
CONDITIONS 104 = Applying condition arithmetic 107
5.4 Unifying code across classes 108

Introducing UML class diagrams to depict class relations 113
Refactoring pattern: INTRODUCE STRATEGY PATTERN 115
Rule: NO INTERFACE WITH ONLY ONE IMPLEMENTATION 122
Refactoring pattern: EXTRACT INTERFACE FROM
IMPLEMENTATION 123

5.5 Unifying similar functions 126

5.6 Unifying similar code 129

Defend the data 135

6.1 Encapsulating without getters 136

Rule: DO NOT USE GETTERS OR SETTERS 136 = Applying the
rule 138 = Refactoring pattern: ELIMINATE GETTER OR
SETTER 140 = Eliminating the final getter 142

6.2 Encapsulating simple data 146

Rule: NEVER HAVE COMMON AFFIXES 146 = Applying the
rule 147 = Refactoring pattern: ENCAPSULATE DATA 152

6.3 Encapsulating complex data 155
6.4 Eliminating a sequence invariant 162
Refactoring pattern: ENFORCE SEQUENCE 163

xii CONTENTS

6.5 Eliminating enums another way 165

Enumeration through private constructors 166 = Remapping
numbers to classes 167

PART 2 TAKING WHAT YOU HAVE LEARNED INTO
THE REAL WORLD ..ccveeecescecescescscescscescoscscescesesce 171

Collaborate with the compiler 173

7.1 Getting to know the compiler 174

Weakness: The halting problem limits compile-time knowledge 174
Strength: Reachability ensures that methods return 175 = Strength:
Definite assignment prevents accessing uninitialized variables 176
Strength: Access control helps encapsulate data 176 = Strength: Type
checking proves properties 177 = Weakness: Dereferencing null
crashes our application 178 = Weakness: Arithmetic errors cause
overflows or crashes 178 = Weakness: Out-of-bounds errors crash
our application 179 = Weakness: Infinite loops stall our
application 179 = Weakness: Deadlocks and race conditions

cause unintended behavior 180

7.2 Using the compiler 181
Making the compiler work 182 = Don’t fight the compiler 184

7.3 Trusting the compiler 189
Teach the compiler invariants 190 = Pay attention to
warnings 192

7.4 Trusting the compiler exclusively 192

Stay away from comments 194

8.1 Deleting outdated comments 196

8.2 Deleting commented-out code 196

8.3 Deleting trivial comments 197

8.4 Transforming comments into method names 197

Using comments for planning 198

8.5 Keeping invariant-documenting comments 198

Invariants in the process 199

CONTENTS

Love deleting code 200

9.1
9.2

9.3
9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

Deleting code may be the next frontier 201
Deleting code to get rid of incidental complexity 202

Technical ignorance from inexperience 202 = Technical waste
from time pressure 203 = Technical debt from circumstances 204
Technical drag from growing 204

Categorizing code based on intimacy 205
Deleting code in a legacy system 205

Using the strangler fig pattern to get insight 206 = Using the
strangler fig pattern to improve the code 208

Deleting code from a frozen project 209

Making the desired outcome the default 209 = Minimizing waste
with spike and stabilize 209

Deleting branches in version control 210
Minimizing waste by enforcing a branch limit 211
Deleting code documentation 212
Algorithm to determine how to codify knowledge 212

Deleting testing code 213

Deleting optimistic tests 213 = Deleting pessimistic tests 213
Fixing or deleting flaky tests 213 = Refactoring the code to get rid
of complicated tests 214 = Specializing tests to speed them up 214

Deleting configuration code 215
Scoping configuration in time 215

Deleting code to get rid of libraries 216
Limiting our reliance on external libraries 218

Deleting code from working features 219

Never be afraid to add code 221

10.1
10.2

10.3

10.4

10.5

Accepting uncertainty: Enter the danger 222

Using spikes to overcome the fear of building
the wrong thing 222

Overcoming the fear of waste or risk with a fixed
ratio 223

Overcoming the fear of imperfection by embracing
gradual improvement 225

How copy and paste effects change velocity 225

xXiv CONTENTS

10.6 Modification by addition through extensibility 226

10.7 Modification by addition enables backward
compatibility 227

10.8 Modification by addition through feature toggles 229

10.9 Modification by addition through branch by
abstraction 232

Follow the structure in the code 235

11.1 Categorizing structure based on scope and origin 236
11.2 Three ways that code mirrors behavior 237

Lxpressing behavior in the control flow 237 = Expressing
behavior in the structure of the data 239 = Expressing behavior
in the data 242

11.3 Adding code to expose structure 243

11.4 Observing instead of predicting, and using empirical
techniques 244

11.5 Gaining safety without understanding the code 245
Gaining safety through testing 245 = Gaining safety through
mastery 245 = Gaining safety through tool assistance 246

Gaining safety through formal verification 246 = Gaining safety
through fault tolerance 246

11.6 Identifying unexploited structures 246

Exploiting whitespace with extraction and encapsulation 247
Exploiting duplication with unification 248 = Exploiting
common affixes with encapsulation 251 = Exploiting the runtime
type with dynamic dispatch 252

Avoid optimizations and generality 254

12.1 Striving for simplicity 255
12.2 When and how to generalize 257
Building minimally to avoid generality 257 = Unifying things of
similar stability 258 = Eliminating unnecessary generality 258
12.3 When and how to optimize 258
Refactoring before optimizing 259 = Optimizing according to
the theory of constraints 261 = Guiding optimization with

metrics 263 = Choosing good algorithms and data structures 264
Using caching 265 = Isolating optimized code 267

CONTENTS

Make bad code look bad 270

13.1
13.2

13.3

13.4
13.5

Signaling process issues with bad code 271
Segregating into pristine and legacy code 272
The broken window theory 272

Approaches to defining bad code 273

The rules in this book: Simple and concrete 273 = Code smells:
Complete and abstract 273 = Cyclomatic complexity: Algorithmic
(objective) 274 = Cognitive complexity: Algorithmic

(subjective) 275

Rules for safely vandalizing code 275

Methods for safely vandalizing code 276

Using enums 276 = Using ints and strings as type codes 277
Putting magic numbers in the code 277 = Adding comments to the
code 278 = Putting whitespace in the code 279 = Grouping
things based on naming 279 = Adding context to names 280
Creating long methods 281 = Giving methods many

parameters 282 = Using getters and setters 283

Wrapping up 285

14.1

14.2

14.3

appendix

Reflecting on the journey of this book 285
Introduction: Motivation 286 = Part 1: Making it concrete 286
Part 2: Widening the horizon 286

Exploring the underlying philosophy 286

Searching for ever-smaller steps 286 = Searching for the underlying
structure 287 = Using the rules for collaboration 288
Prioritizing the team over individuals 288 = Prioritize simplicity
over completeness 288 = Using objects or higher-order

Junctions 289

Where to go from here? 290

Micro-architecture route 290 = Macro-architecture route 290
Software quality route 291

Installing the tools for part 1 293
index 297

Joreword

Have you ever read a book on software and thought that the author was talking over
your head? Did the book use unfamiliar vocabulary and overly complex concepts to
make its points? Did it make you feel as though it was written for some elite inner cir-
cle of know-it-alls that didn’t include you?

This is not that book. This book is down to earth, focused, and right on point.

Neither is this book a primer. It doesn’t start at the atom and bore you with the
basics of programming and languages. It doesn’t try to coddle you and keep you safe.
I guarantee that this book will challenge you. But it will challenge you without intimi-
dating you and without insulting your intelligence.

Refactoring is the discipline of transforming bad code into good code without
breaking it. When we consider that our entire civilization now depends on software
for its further existence, it seems unlikely that there is a topic more worthy of study.

Perhaps you think that’s hyperbolic. It’s not. Look around you. How many pro-
cessors running software are currently on your body? Your watch, your phone, your
car keys, your headphones . . . how many are within 30 meters of you? Your microwave,
your stove, your dishwasher, your thermostat, your clothes washer . . . and how about
your car?

These days, nothing happens in our society without software. You can’t buy or
sell anything, or drive or fly anywhere, or cook a hot dog, or watch TV, or call some-
one on the phone without software.

xvii

xviii

FOREWORD

And how much of that software is actually good code? Think of the systems you
are working on right now. Are they clean? Or are they, like most, a mess in desper-
ate need of refactoring?

This book does not present the kind of sterile and simplistic refactoring you
may have heard or read about before. This book talks about real refactoring. Refac-
toring in real projects. Refactoring in legacy systems. Refactoring in the kinds of
environments that we all face virtually every day.

What’s more, this book won’t make you feel guilty for not having automated
tests. The author realizes that most inherited systems grew and evolved over time,
and we are not so fortunate as to have such test suites.

This book lays down a set of simple rules that you can follow to reliably refactor
complex, messy, tangled, untested systems. By learning and following these rules,
you can make a real difference in the quality of the systems you maintain.

Don’t get me wrong—it’s not a silver bullet. Refactoring old, crufty, untested
code is never easy. But armed with the rules and examples in this book, you will be
able to make inroads against the cruft and tangle of systems that have bedeviled you
for too long.

So I advise you to read this book carefully. Study the examples. Think hard about
the abstractions and intentions the author presents. Get the codebase he offers, and
refactor it along with him. Follow his refactoring journey from beginning to end.

It will take time. It will be frustrating. It will challenge you. But you’ll come out the
other side with a set of skills that will serve you well for the rest of your career. You’'ll
also come out with a new intuition and understanding of what separates good code
from bad code, and just what it is that makes code clean.

—Robert C. Martin (aka Uncle Bob)

preface

My father taught me to code at a very young age, so I have been thinking about struc-
tures for as long as I can remember. I was always motivated by helping people; that is
why I got up in the morning. Therefore, teaching was naturally interesting to me. So
when I was offered a teaching assistant position at university, I accepted immediately. I
had a handful of these gigs, but unfortunately my luck ran out, and one semester
there was nothing I could teach.

Being entrepreneurial, I decided to start a student organization where students
would teach each other. Anyone was welcome to attend or speak, and the topics
ranged from lessons learned from side projects to advanced topics not covered by the
curriculum. I believed this would allow me to teach, and I was not wrong. As it turns
out, computer scientists are timid, so I had to host almost 60 weeks in a row to get the
ball rolling. I learned a great deal during this period, both about the topics I taught
and about teaching. These talks also spawned a community of curious people where I
met my best friends.

Some time after I left university, I was hanging out with one of those friends. We
were bored, so he asked me if I could improvise a talk because I had done so many of
them. I answered, “Let’s find out.” We opened a laptop, and without stopping for
breath, I typed out what is essentially the overarching example of part 1 of this book.

When I took my fingers off the keyboard, he was awestruck. He thought that was
the demonstration, but I had a different idea. I wanted to teach him refactoring.

My goal was that after one hour, he could code as though he were a master refac-
torer. Because refactoring and code quality are such intricate subjects, it was obvious

PREFACE

that we had to fake it. So, I looked at the code and tried to come up with rules that
would make him do the right thing while also being easy to remember. During the
exercise, even though we were faking it, he made real improvements to the code. The
results were so promising, and his improvement was so quick, that when I got home
that evening, I wrote down everything we had covered. I repeated the exercise when
we hired juniors at work, and slowly I collected, built, and refined the rules and refac-
toring patterns in this book.

Goal: The selected rules and refactoring patterns

Perfection is achieved, not when there is nothing more to add, but when there is
nothing left to take away.

—Antoine de Saint-Exupéry

There are hundreds of refactoring patterns in the world; I chose to include only 13. 1
did so because I believe deep understanding is more valuable than broad familiarity. I
also wanted to craft a complete, cohesive story because it helps add perspective and
makes the subject matter easier to organize mentally. The same arguments apply to
the rules.

There is no new thing under the sun.

—Book of Ecclesiastes

I don’t claim to have come up with much novel stuff in this book, but I think I have
combined things in a way that is both interesting and advantageous. Many of the rules
are derived from Robert C. Martin’s Clean Code (Pearson, 2008) but are modified to be
easier to understand and apply. Many refactoring patterns originated in Martin
Fowler’s Refactoring (Addison-Wesley Professional, 1999) but are adapted to take
advantage of the compiler instead of relying on strong test suites.

Audience and roadmap

This book consists of two parts with very different styles. The first builds a solid foun-
dation of refactoring and is targeted at individuals. Instead of comprehensiveness, I
focus on ease of learning. This part is for people who have yet to develop a solid foun-
dation for refactoring, such as students and junior or self-taught developers. If you
look at the book’s source code and think, “This seems easy to improve,” then part 1 is
not for you.

In part 2, I focus more on the context and the team. I have selected what I believe
to be the most valuable lessons about software development in the real world. Some
topics are mostly theoretical, like “Collaborate with the compiler” and “Follow the
structure in the code”; and some are primarily practical, like “Love deleting code” and
“Make bad code look bad.” Thus this part applies more widely, and even experienced
developers should learn from these chapters.

PREFACE xxi

Because the chapters of part 1 all use a single overarching example, they are linked
tightly together and should be read one after the other. But in part 2, the chapters are
largely self-contained, except for a few references to each other. If you do not have
time to read the whole book, you can easily pick the most exciting topics in part 2 and
read them in isolation.

About the teaching

I have spent much time reflecting on teaching. Transferring knowledge and skills
presents many challenges. A teacher has to stimulate motivation, confidence, and
reflection. But the student’s brain would rather conserve the energy, so it constantly
tries to distract from learning.

To overcome this struggling brain, we first need to stimulate motivation. I usually
do this by posing a simple-looking exercise; when students realize that they cannot
solve it, their natural curiosity takes over. This is the purpose of the code in part 1.
“Improve this codebase” seems like a simple instruction; however, the code is already
at a quality where many people don’t know how to make progress.

The second stage is to give students confidence to experiment and apply new
knowledge or skills. I first realized how important this is during extracurricular
French lessons. When our teacher wanted to teach us a new phrase, she would go
through the same steps:

She asked each of us to repeat the phrase verbatim. This pure imitation step
would force us to say the phrase once.

She asked each of us a question. We did not always understand the question,
but the intonation made it clear that it was a question. As we had no other tools
available, we again repeated the phrase. This repetition built confidence and
gave us the first bit of context for the phrase. Here, understanding started.

She asked us to use the phrase in a conversation. Being able to synthesize
something new is the goal of teaching and requires both understanding and
confidence.

I have learned that this approach follows the Japanese Shuhari concept from martial
arts, which is becoming increasingly popular. It consists of three parts: “Shu” is imita-
tion, with neither question nor understanding; “ha” is variation, doing something
slightly novel; and “ri” is originality, departing entirely from the known.

Shuhari underlines all of part 1. I recommend first following the rules without
understanding; then, once you understand their value, you can come up with varia-
tions. Finally, when you master them, you can move on to code smells. For the refac-
toring patterns, I show how to do something in the real code, and the reader should
follow along (imitation). Then I show the same refactoring pattern in a different con-
text (variation). Finally, I present another place to apply the pattern; here, I encour-
age the reader to attempt it on their own (synthesis).

xxii

PREFACE

You can use the book to verify the process and the Git tags to verify the code. If you
are not following along in the code, this will feel overly repetitive, so I urge you to
read part 1 with your hands on the keyboard.

About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. The code has been syntax highlighted
with keywords set in bold, making the structure of the code easier to understand.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Additionally, comments in the source code have often been removed from the
listings when the code is described in the text. Code annotations accompany many of
the listings, highlighting important concepts.

The code for the examples in this book is available for download from on the Man-
ning website (https://www.manning.com/books/five-lines-of-code) or in my GitHub
repository (https://github.com/thedrlambda/five-lines).

liveBook discussion forum

Purchase of Five Lines of Code includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://livebook.manning.com/#!/book/five-lines-of-code/discussion.
You can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

Bonus project

To help you get an additional grasp of how to use the rules and refactoring patterns in
this book, I've set up a bonus project. This project is slightly more advanced and comes
without a solution; you can get it from Github: https://github.com/thedrlambda/
bomb-guy. Good luck!

https://github.com/thedrlambda/five-lines
https://livebook.manning.com/#!/book/five-lines-of-code/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://www.manning.com/books/five-lines-of-code
https://www.manning.com/books/five-lines-of-code
https://www.manning.com/books/five-lines-of-code
https://github.com/thedrlambda/bomb-guy
https://github.com/thedrlambda/bomb-guy
https://github.com/thedrlambda/bomb-guy

acknowledgments

First, would not be the person I am, let alone have written this book, were it not for the
two people to whom this book is dedicated: Olivier Danvy and Mayer Goldberg. I cannot
thank each of you enough. You taught me type theory and lambda calculus, respectively,
which form the very foundation of this work. But like any excellent teacher, you did
much more. To Danvy: I know it was a surprise to you, but it is no surprise to me that you
are the most thanked person in science. You earn that by offering advice that is immedi-
ately applicable and that can still be useful years later. To Mayer: Your inexhaustible
enthusiasm, patience, and method for teaching arbitrarily complex topics in program-
ming have shaped how I think about and teach programming.

I also want to extend a huge thank you to Robert C. Martin; if someone finds this
book as inspiring as I found yours, I will be happy. I am also amazingly grateful that
you took the time to look at this book and decided to write the foreword.

The last person who contributed to this book is my graphics designer: thank you,
Lee McGorie. Your creativity and competence have pushed the quality of the graphics
to the level of the content.

Deep-felt thanks go out to everyone on my Manning team. My acquisition editor,
Andrew Waldron, offered fantastic feedback and enthusiasm that were the reasons I
decided to work with Manning. My development editor, Helen Stergius, was my sensei
throughout the enormous undertaking required to write a book like this one. Without
her encouragement and excellent feedback, this book would not have reached this level
of quality. My fantastic technical development editor was Mark Elston, whose comments
were always very insightful and accurate; his perspective on the topics complement my

xxiii

XXiv

ACKNOWLEDGMENTS

own perfectly. Also, thanks go to the copy editor, the marketing team, and Manning
itself for collaborating and being patient with me.

Another thank you goes out to the people who have mentored me in my work life.
To Jacob Blom: You taught me by example how to be a technically brilliant consultant
without sacrificing yourself or your values. Your passion for what you do is evident
through the fact that you could recognize and recall code you worked on 10 years
earlier—something that still baffles me. To Klaus Ngrregaard: Your level of inner
peace and goodness is something I aspire to every day. To Johan Abildskov: Never
have I met a person who has so much technical breadth and depth at the same time,
rivaled only by your kindness. Without you, this book would never have left my hard
drive. Also, I thank all the people I have mentored or worked with closely.

I also want to thank all the people who have helped this book become what it is
through feedback and countless technical discussions. I chose to spend time with you
because you make my life better. To Hannibal Keblovszki: Your curiosity spawned the
original idea for this book. To Mikkel Kringelbach: Thank you for helping any time I
asked, challenging me intellectually, and sharing your insight and experiences, which
benefited the book significantly. To Mikkel Brun Jakobsen: Your passion and compe-
tence in software craftsmanship inspire me and push me to be better. Thank you,
everyone who at any point considered yourself part of the spare-time teaching com-
munity; your unquenchable thirst for knowledge kept me teaching. Notably: Sune
Orth Sgrensen, Mathias Vorreiter Pedersen, Jens Jensen, Casper Freksen, Mathias
Bak, Frederik Brinck Truelsen, Kent Grigo, John Smedegaard, Richard M6hn, Kristoffer
Ngddebo Knudsen, Kenneth Hansen, Rasmus Buchholdt, and Kristoffer Just Andersen.

Finally, to all the reviewers: Ben McNamara, Billy O’Callaghan, Bonnie Malec,
Brent Honadel, Charles Lam, Christian Hasselbalch Thoudahl, Clive Harber, Daniel
Vasquez, David Trimm, Gustavo Filipe Ramos Gomes, Jeff Neumann, Joel Kotarski,
John Guthrie, John Norcott, Karthikeyarajan Rajendran, Kim Kjersulf, Luis Moux,
Marcel van den Brink, Marek Petak, Mathijs Affourtit, Orlando Méndez Morales,
Paulo Nuin, Ronald Haring, Shawn Mehaffie, Sebastian Larsson, Sergiu Popa, Tan
Wee, Taylor Dolezal, Tom Madden, Tyler Kowallis, and Ubaldo Pescatore—your sug-
gestions helped make this a better book.

about the author

CHRISTIAN CLAUSEN holds a master’s degree in computer science.
He specialized in programming languages, specifically, software
quality and how to code without bugs. He coauthored two peer-
reviewed papers on the topic of software quality, published in
some of the most prestigious journals and conferences. Christian
has worked as a software engineer on a project called Coccinelle
for a research group in Paris. He has taught introductory and
advanced programming topics in both object-oriented and func-
tional programming languages at two universities. Christian has
worked as a consultant and tech lead for five years.

XXV

about the cover illustration

The figure on the cover of Five Lines of Codeis captioned “Femme Samojede en habit
d’Eté,” or a Samoyed woman in summer attire. The illustration is taken from a collec-
tion of dress costumes from various countries by Jacques Grasset de Saint-Sauveur
(1757-1810), titled Costumes Civils Actuels de Tous les Peuples Connus, published in France
in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Gras-
set de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s
towns and regions were just 200 years ago. Isolated from each other, people spoke differ-
ent dialects and languages. In the streets or in the countryside, it was easy to identify
where they lived and what their trade or station in life was just by their dress.

The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Refactoring refactoring

This chapter covers

Understanding the elements of refactoring
Incorporating refactoring into your daily work

The importance of safety for refactoring

Introducing the overarching example for part 1

It is well known that high code quality leads to cheaper maintenance, fewer errors,
and happier developers. The most common way to get high code quality is through
refactoring. However, the way refactoring is usually taught—with code smells and unit
testing—imposes an unnecessarily high barrier to entry. I believe that anyone can
execute simple refactoring patterns safely with a little practice.

In software development, we place problems somewhere on the diagram shown
in figure 1.1, indicating a lack of sufficient skills, culture, tools, or a combination of
those. Refactoring is a sophisticated endeavor and therefore lies right in the mid-
dle. It requires each component:

Skills—We need the skills to know what code is bad and needs refactoring.
Experienced programmers can determine this through their knowledge of
code smells. But the boundaries of code smells are blurry (requiring judg-
ment and experience) or open to interpretation and therefore not easy to

2 CHAPTER 1 Refactoring refactoring

learn; and to a junior developer, understanding code smells can seem more like
a sixth sense than a skill.

= Culture—We need a culture and workflow that encourage taking the time to
perform refactoring. In many cases, this culture is implemented through the
famous red-green-refactor loop used in test-driven development. However, test-
driven development is a2 much more difficult craft, in my opinion. Red-green-
refactor also does not easily give way to doing refactoring in a legacy codebase.

= Tools—We need something to help ensure that what we are doing is safe. The
most common way to achieve this is through automated testing. But as already
mentioned, learning to do effective automated testing is difficult in itself.

Refactoring

Figure 1.1 Skills, culture, and tools

The following sections dive into each of these areas and describe how we can begin
our refactoring journey from a much simpler foundation without testing and abstract
code smells. Learning refactoring this way can quickly catapult junior developers’, stu-
dents’, and programming enthusiasts’ code quality to the next level. Tech leads can
also use the methods in this book as a basis for introducing refactoring in teams that
are not routinely doing it.

1.1 Whatis refactoring?

I answer the question “What is refactoring?” in a lot more detail in the next chapter,
but it is helpful to get an intuition for it up front before we dive into the different hows
of refactoring. In its simplest form, refactoring means “changing code without chang-
ing what it does.” Let’s start with an example of refactoring to make it clear what I'm
talking about. Here, we replace an expression with a local variable.

Listing 1.1 Before Listing 1.2 After

return pow(base, exp / 2) * pow(base, exp / 2); let result = pow(base, exp / 2);
return result * result;

1.2

Skills: What to refactor? 3

There are many possible reasons to refactor:

Making code faster (as in the previous example)
Making code smaller

Making code more general or reusable

Making code easier to read or maintain

The last reason is so important and central that we equate it with good code.

DEFINITION Good code is human-readable and easy to maintain, and it correctly
performs what it set out to do.

As refactoring mustn’t change what the code is doing, in this book we focus on
human-readable and easy to maintain. We discuss these reasons to refactor in more
detail in chapter 2. In this book, we only consider refactoring that results in good
code; therefore, the definition we use is as follows.

DEFINITION Refactoring—Changing code to make it more human-readable
and maintainable without changing what it does.

I should also mention that the type of refactoring we consider relies heavily on work-
ing with an object-oriented programming language.

Many people think of programming as writing code; however, most programmers
spend more time reading and trying to understand code than writing it. This is
because we work in a complex domain, and changing something without understand-
ing it can cause catastrophic failures.

So, the first argument for refactoring is purely economic: programmers’ time is
expensive, so if we make our codebase more readable, we free up time for implement-
ing new features. The second argument is that making our code more maintainable
means fewer, easier-to-fix bugs. Third, a good codebase is simply more fun. When we
read code, we build a model in our heads of what the code is doing; the more we have
to keep in our head at one time, the more exhausting it is. This is why it is much more
fun to start from scratch—and why debugging can be dreadful.

Skills: What to refactor?

Knowing what you should refactor is the first barrier to entry. Usually, refactoring is
taught alongside something called code smells. These “smells” are descriptions of things
that might suggest our code is bad. While they are powerful, they are also abstract and
difficult to get started with, and it takes time to develop a feel for them.

This book takes a different approach and presents easily recognizable, applicable
rules to determine what to refactor. These rules are easy to use and quick to learn.
They are also sometimes too strict and require you to fix code that is not smelly. On
rare occasions, we might follow the rules and still have smelly code.

As figure 1.2 illustrates, the overlap between smells and rules is not perfect. My
rules are not the be-all and end-all of good code. They are a head start on the road to

1.2.1

122

CHAPTER 1 Refactoring refactoring

developing a guru-like feeling for what good code is. Let’s look at an example of the
difference between a code smell and the rules in this book.

Figure 1.2 Rules and code smells

An example code smell

A well-known code smell is as follows: a function should do one thing. This is a great
guideline, but it is not easy to know what the one thing is. Look again at the earlier
code: is it smelly? Arguably, it divides, exponentiates, and then multiplies. Does that
mean it does three things? On the other hand, it only returns one number and doesn’t
change any state, so is it doing only one thing?

let result = pow(base, exp / 2);
return result * result;

An example rule

Compare the preceding code smell to the following rule (covered in detail in chapter
3): amethod should never have more than Five Lines of Code. We can determine this at
a glance, with no further questions to ask. The rule is clear, concise, and easy to
remember—especially since it is also the title of this book.

Remember, the rules presented in this book are like training wheels. As discussed
earlier, they cannot guarantee good code in every situation; and on some occasions, it
might be wrong to follow them. However, they are useful if you don’t know where to
start, and they motivate nice code refactoring.

Note that all the names of the rules are stated in absolute terms, using words like
never, so they are easy to remember. But the detailed descriptions often specify excep-
tions: when not to apply the rules. The descriptions also state the rules’ intentions. At
the beginning of learning refactoring, we only need to use the absolute names; when
those are internalized, we can start learning the exceptions as well, after which we can
begin to use the intentions—then we’ll be coding gurus.

1.3

Culture: When to refactor? 5

Culture: When to refactor?

Refactoring is like taking a shower.

—Kent Beck

Refactoring works best—and costs least—if you do it regularly. So if you can, I recom-
mend that you incorporate it into your daily work. Most of the literature suggests a
red-green-refactor workflow; but as mentioned earlier, this approach ties refactoring
to test-driven development—and in this book, we want to separate them and focus

specifically on the refactoring part. Therefore, I recommend a more general six-step

workflow to solve any programming task, as shown in figure 1.3:

1

Explore. Often, we are not completely sure what we need to build right from the
start. Sometimes the customer does not know what they want us to build; other
times, the requirements are written in ambiguous prose; sometimes we do not
even know if the task can be solved. So, always start by experimenting. Imple-
ment something quickly, and then you can validate with the customer that you
agree on what they need.

Specify. Once you know what you need to build, make it explicit. Optimally, this
results in some form of automated test.

Implement. Implement the code.

Test. Make sure the code passes the specification from step 2.

Refactor. Before delivering the code, make sure it is easy for the next person to
work with (and that next person might be you).

Deliver. There are many ways to deliver; the most common are through a pull
request or by pushing to a specific branch. The most important thing is that

your code gets to the users. Otherwise, what’s the point?

Pevie\

Development
workflow

A
%63
S
S

Figure 1.3 Workflow

Because we are doing rule-based refactoring, the workflow is straightforward and easy

to get started with. Figure 1.4 zooms in on step 5: refactor.

CHAPTER 1 Refactoring refactoring

Pick a method

(o)
©,

13.1

1.3.2

N ° [Fix any
7 Does the method compile errors
break a rule?

Find the rule’s corresponding Follow the
refactoring pattern instructions

Figure 1.4 Detailed view of the refactoring step

I have designed the rules so they are easy to remember and so that it’s easy to spot
when to use them without any assistance. This means finding a method that breaks
a rule is usually trivial. Every rule also has a few refactoring patterns linked with it,
making it easy to know exactly how to fix a problem. The refactoring patterns have
explicit step-by-step instructions to ensure that you do not accidentally break some-
thing. Many of the refactoring patterns in this book intentionally use compile errors
to help make sure you don’t introduce errors. Once we’ve practiced a little, both the
rules and the refactoring patterns will become second nature.

Refactoring in a legacy system

Even if we are starting from a large legacy system, there is a clever way to incorporate
refactoring into our daily work without having to stop everything and refactor the
whole codebase first. Simply following this awesome quote:

First make the change easy, then make the easy change.
—Kent Beck
Whenever we are about to implement something new, we start by refactoring, so it is

easy to add our new code. This is similar to getting all the ingredients ready before
you start baking.

When should you not refactor?

Mostly, refactoring is awesome, but it has a few downsides. Refactoring can be time
consuming, especially if you don’t do it regularly. And as mentioned earlier, program-
mer time is expensive.

1.4

1.5

Tools you need to get started 7

There are three types of codebases where refactoring probably isn’t worth it:

Code you are going to write, run only once, and then delete. This is what is
known as a spikein the Extreme Programming community.

Code that is in maintenance mode before it is going to be retired.

Code with strict performance requirements, such as an embedded system or a
high-end physics engine in a game.

In any other case, I argue that investing in refactoring is the smart choice.

Tools: How to refactor (safely)

I like automated tests as much as anybody. However, learning how to test software
effectively is a complicated skill in itself. So if you already know how to do automated
testing, feel free to use it throughout this book. If you don’t, don’t worry.

We can think about testing this way: automated testing is to software development
what brakes are to cars. Cars don’t have brakes because we want to go slowly—they
have brakes so we feel safe going fast. The same is true for software: automated tests
make us feel safe going fast. In this book, we are learning a completely new skill, so we
don’t need to go fast.

Instead, I propose relying more heavily on other tools, such as these:

Detailed, step-by-step, structured refactoring patterns akin to recipes
Version control
The compiler

I believe that if the refactoring patterns are carefully designed and performed in tiny
steps, it is possible to refactor without breaking anything. This is especially true in
cases where our IDE can perform the refactoring for us.

To remedy the fact that we don’t talk about testing in this book, we use the com-
piler and types to catch a lot of the common mistakes we might make. Even so, I rec-
ommend that you regularly open the application you are working on and check that it
is not completely broken. Whenever we have verified this, or when we know the com-
piler is happy, we make a commit so that if at some point the application is broken
and we don’t know how to immediately fix it, we can easily jump back to the last time
it was working.

If we are working on a real-world system without automated tests, we can still per-
form refactoring, but we need to get our confidence from somewhere. Confidence
can come from using an IDE to perform the refactoring; testing manually; taking truly
tiny steps; or something else. However, the extra time we would spend on these activi-
ties probably makes it more cost effective to do automated testing.

Tools you need to get started

As I said earlier, the types of refactoring discussed in this book need an object-oriented
language. That is the primary thing you need in order to read and understand this
book. Coding and refactoring are both crafts that we perform with our fingers.

1.5.1

1.5.2

CHAPTER 1 Refactoring refactoring

Therefore, they are best learned through the fingers by following along with the
examples, experimenting, and having fun while your hands learn the routines. To fol-
low along with the book, you need the tools described next. For installation instruc-
tions, see the appendix.

Programming language: TypeScript

All the coding examples presented in this book are written in TypeScript. I chose
TypeScript for multiple reasons. Most important, it looks and feels similar to the most
commonly used programming languages—Java, C#, C++, and JavaScript—and thus,
people familiar with any of those languages should be able to read TypeScript without
any problem. TypeScript also provides a way to go from completely “un-object-oriented”
code (thatis, code without a single class) to highly object-oriented code.

NOTE To better utilize space in the printed book, this book uses a program-
ming style that avoids line breaks while still being readable. I'm not advocat-
ing that you use the same style—unless you are coincidentally also writing a
book containing lots of TypeScript code. This is also why indentation and
braces are sometimes formatted differently in the book than in the project
code.

If you are unfamiliar with TypeScript, I’ll explain any gotchas as they appear, in boxes
like the following.

In TypeScript ...

We use identity (===) to check equality, because it acts more like what we expect
from equality than double equals (==). Consider the following:

0 ==""|s true.
0 === ""|s false.

Even though the examples are in TypeScript, all refactoring patterns and rules are
general and apply to any object-oriented language. In rare cases, TypeScript helps or
hinders us; these cases are explicitly stated, and we discuss how to handle these situa-
tions in other common languages.

Editor: Visual Studio Code

I do not assume that you are using a specific editor; however, if you don’t have a pref-
erence, I recommend Visual Studio Code. It works well with TypeScript. Also, it sup-
ports running tsc -w in a background terminal that does the compiling so we don’t
forget to do it.

NOTE Visual Studio Codeis an entirely different tool than Visual Studio.

1.5.3

1.6

Overarching example: A 2D puzzle game 9

Version control: Git

Although you are not required to use version control to follow along with this book, I
strongly recommend it, as it makes it much easier to undo something if you get lost in
the middle.

Resetting to the reference solution

At any point, you can jump to the code as it should look at the beginning of a major
section with a command like

git reset --hard section-2.1

Caution: You will lose any changes you have made.

Overarching example: A 2D puzzle game

Finally, let’s discuss how I am going to teach all these wonderful rules and amazing
refactoring patterns. The book is built around a single overarching example: a 2D
block-pushing puzzle game, similar to the classic game Boulder Dash (figure 1.5).

Figure 1.5 A screenshot of the game out of the box

This means we have one substantial codebase to play with throughout part 1 of the
book. Having one example saves time because we don’t have to become familiar with
a new example in every chapter.

The example is written in a realistic style, similar to what is used in the industry. It
is by no means an easy exercise unless you have the skills learned in this book. The

10

CHAPTER 1 Refactoring refactoring

code already adheres to the DRY (Don’t Repeat Yourself) KISS (Keep It Simple, Stu-
pid) principles; even so, it is no more pleasant than a dry kiss.

I chose a computer game because when we test manually, it is easy to spot if some-
thing behaves incorrectly: we have an intuition for how it should behave. It is also
slightly more fun to test than looking at something like logs from a financial system.

The user controls the player square using the arrow keys. The objective of the
game is to get the box (labeled 2 in figure 1.5) to the lower-right corner. Although
the colors don’t appear in the printed book, the game elements are different colors
as follows:

The red square is the player.

Brown squares are boxes.

Blue squares are stones.

Yellow squares are keys or locks—we fix this later.
Greenish squares are called flux.

Gray squares are walls.

White squares are air (empty).

If a box or stone is not supported by anything, it falls. The player can push one stone
or box at a time, provided it is not obstructed or falling. The path between the box
and the lower-right corner is initially obstructed by a lock, so the player has to get a
key to remove it. Flux can be “eaten” (removed) by the player by stepping on it.

Now would be a great time to get the game and play around with it:

Open a console where you want the game to be stored.
git clone https://github.com/thedrlambda/five-lines downloads the
source code for the game.
tsc -w compiles the TypeScript to JavaScript every time it changes.

Open index.html in a browser.

It is possible to change the level in the code, so feel free to have fun creating your own
maps by updating the array in the map variable (for an example, see the appendix):

Open the folder in Visual Studio Code.

Select Terminal and then New Terminal.

Run the command tsc -w.

TypeScript is now compiling your changes in the background, and you can
close the terminal.

Every time you make a change, wait for a moment while TypeScript compiles,
and then refresh your browser.

This is the same procedure you’ll use when coding along with the examples in part 1.
Before we get to that, though, we build a more detailed foundation of refactoring in
the next chapter.

l1.6.1

1.7

A note on real-world software 11

Practice makes perfect: A second codebase

As I am a strong believer in practice, I have made another project, provided without a
solution. You can use this project on rereading, if you want a challenge; or as exercises
for students, if you are a teacher. This project is a 2D action game. Both codebases
use the same style and structure, they have the same elements, and it takes the same
steps to refactor them. Although this second codebase is slightly more advanced,
carefully following the rules and refactoring patterns should yield the desired result.
To get this project, use the same steps as described with the URL https://github
.com/thedrlambda/bomb-guy.

A note on real-world software

It is important to reiterate that the focus of this book is introducing refactoring. The
focus is not on providing specific rules that you can apply to production code in all cir-
cumstances. The way to use the rules is to first learn their names and follow them.
Once this is easy for you, learn the descriptions with their exceptions; finally, use this
to build an understanding of the underlying code smell. This journey is illustrated in
figure 1.6.

& Master code smells

Follow rule descriptions — E
F Follow rule names

g

Figure 1.6 How to use the rules

This also answers why we cannot make an automatic refactoring program. (We might
be able to make a plugin to highlight possibly problematic areas in the code, based on
the rules.) The purpose of the rules is to build understanding. In short: follow the
rules until you know better.

Also note that because we focus only on learning refactoring, and we have a safe
environment, we can get away without automated tests—but this probably is not true
for real systems. We do so because it is much easier to learn automated testing and
refactoring separately.

12

CHAPTER 1 Refactoring refactoring

Summary

Executing refactoring requires a combination of skills to know what to refactor,
culture to know when to refactor, and tools to know how to refactor.
Conventionally, code smells are used to describe what to refactor. These are dif-
ficult for junior programmers to internalize because they are fuzzy. This book
provides concrete rules to replace code smells while learning. The rules have
three levels of abstraction: very concrete names, descriptions that add nuance
in the form of exceptions, and, finally, the intention of the smells they are
derived from.

I believe that automated testing and refactoring can be learned separately to fur-
ther lower the barrier to entry. Instead of automated testing, we utilize the com-
piler, version control, and manual testing.

The workflow of refactoring is connected with test-driven development in the
red-green-refactor loop. But this again implies a dependency on automated test-
ing. Instead, I suggest using a six-step workflow (explore, specify, implement, test,
refactor, deliver) for new code or doing refactoring right before changing code.
Throughout part 1 of this book, we use Visual Studio Code, TypeScript, and Git
to transform the source code of a 2D puzzle game.

2.1

Looking under
the hood of refactoring

This chapter covers

Using readability to communicate intent
Localizing invariants to improve maintainability

Enabling change by addition to speed up
development

Making refactoring part of daily work

In the last chapter, we took a look at the different elements involved in refactoring.
In this chapter, we dive into the technical details to form a solid foundation of what
refactoring is and why it is important from a technical perspective.

Improving readability and maintainability
We start by reiterating the definition of refactoring that we use in this book: refac-
toring is making code better without changing what it does. Let’s break down the

two main components of this definition: making code better and without changing
what it does.

13

14

211

CHAPTER 2 Looking under the hood of refactoring

Making code better

We already saw that better code excels in readability and maintainability and why that
matters. But we did not discuss what readability and maintainability are, or how refac-
toring affects them.

READABILITY
Readability is the code’s aptitude for communicating its intent. This means that if we
assume the code works as intended, it is very easy to figure out what the code does.
There are many ways to communicate intent in code: having and following conven-
tions; writing comments; variable, method, class, and file naming; using whitespace;
and so on.

These techniques can be more or less effective, and we discuss them in detail later.
For now, let’s look at a simple artificial function that breaks all the communication
methods I just described. On the right is the same method without breaking them.
One version is hard to read, and the other is easy to read.

Listing 2.1 Example of really unreadable code Listing 2.2 Same code written more readably

function checkvValue (str: boolean) {
—=> // Check value

—>

Comment that just
repeats a name

}

function isTrue (bool: boolean) {

Bad method name: a
parameter named str

if (str !== false) that is a boolean if (bool)
// return return true;

return true;

else;

return str;

Comment that just

repeats the code
// otherwise else

. return false;
Easy-to-miss

semicolon (;) and a)
trivial comment

Double negation
is hard to read. Misleading indentation; and at

this point, str can only be false,
so it’s clearer to just put that.

Cleaned up like this, it is clear that we could have simply written the following.

Listing 2.3 Same code, simplified

function isTrue (bool: boolean) {
return bool;

}

MAINTAINABILITY

Whenever we need to change some functionality, whether to fix a bug or add a fea-
ture, we often start by investigating the context of where we suspect the new code
should go. We try to assess what the code is currently doing and how we can safely,
quickly, and easily modify it to accommodate our new goal. Maintainability is an
expression of how much we need to investigate.

Improving readability and maintainability 15

It is easy to see that the more code we need to read and include in our investiga-
tion, the longer it takes—and the more likely we are to miss something. Therefore,
maintainability is closely tied to the risk that is inherent any time we make a change.

Many programmers at every level are deliberate and careful during the investiga-
tion phase. Everyone has accidentally missed something at some point and seen the
consequences. Being careful also means that if we cannot readily determine whether
something is important, we usually err on the side of caution. Having a long investi-
gation phase is a symptom that code maintainability is bad, and we should strive to
improve it.

In some systems, when we change something in one location, something breaks
somewhere seemingly unrelated. Imagine an online store where making a change to the
recommendation feature breaks the payment subsystem. We call such systems fragile.

The root of this fragility is usually global state. Here, global means outside the scope
we are considering. From the perspective of a method, fields are global. The concept
of state is a bit more abstract; it is anything that can change while our program is run-
ning. This includes all the variables, but also the data in a database, the files on the
hard drive, and the hardware itself. (Technically, even the user’s intention and all of
reality are state in some sense, but they’re unimportant for our purposes.)

A useful trick to help think about global state is to look for braces: { ... }. Every-
thing outside the braces is considered global state for everything inside the braces.

The problem with global state is that we often associate properties with our data.
The danger is that when data is global, it can be accessed or modified by someone
who associates different properties with it, thereby inadvertently breaking our proper-
ties. Properties that we do not explicitly check in the code (or check only with asser-
tions) are called invariants. “This number will never be negative” and “This file
definitely exists” are examples of invariants. Unfortunately, it is nearly impossible to
ensure that invariants remain valid, especially as the system changes, programmers
forget, and new people are added to the team.

How nonlocal invariants corrupt

Say we are working on an application for a grocery store. The store sells fruits and
vegetables, so in our system, all items have a daysUntilExpiry property. We imple-
ment a feature that runs every day, subtracts one from daysUntilExpiry, and auto-
matically removes items if the value reaches zero. We now have an invariant that
daysUntilExpiry is always positive.

In our system, we also want an urgency property to show how important it is to sell
each item. Items with higher value should have higher urgency, and so should
items with fewer daysUntilExpiry. We therefore implement urgency = value /
daysUntilExpiry. This cannot go wrong since we know that daysUntilExpiry is
always positive.

Two years later, we are asked to update the system because the store has started
selling light bulbs. We quickly add light bulbs. Light bulbs do not have an expiry date,

16

212

CHAPTER 2 Looking under the hood of refactoring

(continued)

and we remember the feature that subtracts days and removes items if their days-
UntilExpiry reaches zero—but we completely forget the invariant. We decide to set
daysUntilExpiry to zero to start with; this way, it will not be zero after the function
subtracts one.

We have violated the invariant, and this results in the system crashing when it tries
to calculate the urgency of any light bulb: Error: Division by zero.

We can improve maintainability by explicitly checking properties, thereby removing
invariants. However, doing so changes what the code does, which refactoring is not
allowed to do, as we will see in the next section. Instead, refactoring tends to improve
maintainability by moving the invariants closer together so they are easier to see. This
is called localizing invariants: things that change together should be together.

Maintaining code . . . without changing what it does

“What does the code do?” is an interesting, albeit somewhat metaphysical, question.
Our first instinct is to think of code as a black box and say that we may change whatever
goes on inside as long as it is indistinguishable from the outside. If we put a value in,
we should get the same result before and after a refactoring—even if the result is an
exception.

This is mostly true, with one notable exception: we may change performance. Spe-
cifically, we rarely care if the code gets slower while refactoring. There are multiple
reasons for this. First, in most systems, performance is less valuable than readability
and maintainability. Second, if performance is important, it should be handled in a
separate phase from refactoring, guided by profiling tools or performance experts.
We discuss optimization in much more detail in chapter 12.

When we refactor, we need to consider the boundaries of our black box. How
much code do we intend to change? The more code we include, the more things we
can change. This is especially important when working with other people, because if
someone makes changes to code we are refactoring, we can end up with nasty merge
conflicts. We essentially need to reserve the code we are refactoring so no one else
changes it. The less code we reserve, the lower the risk of our changes conflicting. As
such, determining the appropriate scope of our refactoring is a difficult and import-
ant balancing act.

To sum up, the three pillars of refactoring are

Improving readability by communicating intent
Improving maintainability by localizing invariants

Doing 1 and 2 without affecting any code outside our scope

2.2

221

Gaining speed, flexibility, and stability 17

Gaining speed, flexibility, and stability

I already mentioned the advantages of working in a clean codebase: we are more pro-
ductive, we make fewer mistakes, and it is more fun. Higher maintainability comes
with a few extra perks, which we discuss in this section.

There are several levels of refactoring patterns, from concrete and local (like vari-
able renaming) to abstract and global (like introducing design patterns). While I
agree that variable naming can add to or subtract from readability, I believe the most
significant impact on code quality comes from architectural changes. In this book, the
closest we come to intra-method-level refactoring is discussing good method naming.

Favoring composition over inheritance

The fact that nonlocal invariants are hard to maintain is not new. The endearingly
named Gang of Four (Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides)
published the book Design Patterns (Addison-Wesley) back in 1994, and all those
years ago, they recommended against a common way to accidentally introduce non-
local invariants: inheritance. Their most famous sentence even tells us how to avoid

it: “Favor object composition over inheritance.”

That advice is at the center of this book, and most of the refactoring patterns and
rules we describe exist specifically to help with object composition: that is, objects having
references to other objects. Here is a tiny library for birds (the ornithological details are
not important). On the left, it uses inheritance; and on the right, it uses composition.

Listing 2.4 Using inheritance Listing 2.5 Using composition
interface Bird { interface Bird {
hasBeak () : boolean; hasBeak () : boolean;
canFly () : boolean; canFly () : boolean;
} }
class CommonBird implements Bird { class CommonBird implements Bird {
hasBeak () { return true; } hasBeak () { return true; }
canFly() { return true; } canFly() { return true; } .
} } Composition
class Penguin extends CommonBird { class Penguin implements Bird
canFly() { return false; } private bird = new CommonBird() ;
} hasBeak () { return bird.hasBeak(); }
Inheritance canFly() { return false; }
} We have to

manually forward calls.

In this book, we talk a lot more about the advantages of the right side. But to give a bit
of foreshadowing, imagine adding a new method to Bird called canSwim. In both
cases, we add this method to CommonBird.

Listing 2.6 Using inheritance

class CommonBird implements Bird {
//

canSwim() { return false; }

}

18

222

CHAPTER 2 Looking under the hood of refactoring

In listing 2.5, the example with composition, we still have a compiler error in Penguin
because it does not implement the new canSwim method, so we have to manually
add it and decide whether a penguin can swim or not. In the case where we simply
want Penguin to behave like other birds, this is trivial to implement, like hasBeak.
Conversely, the inheritance example silently assumes that a Penguin cannot swim, so
we have to remember to override canSwim. Human memory has often proven to be a
fragile dependency, especially when our focus is consumed by the new feature we
are working on.

FLEXIBILITY

A system that is built around composition allows us to combine and reuse code in a
much more fine-grained manner than we could otherwise. Working with systems that
use composition heavily is like playing with LEGO blocks. When everything is built to
fit together, it is amazingly fast to swap out parts or build new things by combining
existing components. This flexibility becomes more important when we realize that
most systems end up being used in ways the original programmers didn’t imagine.

Changing code by addition rather than modification

Perhaps the greatest advantage of composition is that it enables change by addition.
This means it is possible to add or change functionality without affecting other exist-
ing functionality—in some cases, without even changing any existing code. We return
to how this is technically possible throughout the book; here, we consider some of the
implications of change by addition. This property is also sometimes referred to as the
open-closed principle, which means components should be open for extension (addi-
tion) but closed for modification.

PROGRAMMING SPEED

As described earlier, one of the first things we do when we need to implement some-
thing new or fix a bug is consider the surrounding code, to ensure that we do not
break anything. However, if we can make our changes without touching any of the
other code, we can save all that time.

Of course, if we just keep adding code, our codebase quickly grows, which can also
be a problem. We need to pay extra attention to which code is being used and which is
not. We should delete unused code as quickly as possible. We will return to this point
also throughout the book.

STABILITY

When we follow a change-by-addition mindset, it is always possible to preserve the
existing code. It is easy to implement functionality to fall back on the old functionality
if the new code fails. This way, we can ensure that we never introduce new errors in
existing functionality. Adding that on top of making fewer errors due to localizing
invariants leads to much more stable systems.

2.3

23.1

Refactoring and your daily work 19

Refactoring and your daily work

I said in the introduction that refactoring should be part of any programmer’s daily
routine. If we deliver unrefactored code, we are only borrowing time from the next
programmer. Even worse, due to the negative factors described up to this point, there
is an interest rate on poor software architecture. Therefore, we usually call it technical
debt; we discuss this concept in greater detail in chapter 9. I already stated the two vari-
ants of daily refactoring that I recommend:

In a legacy system, start by refactoring before making any changes. Then follow
the regular workflow.
After making any changes to the code, refactor.

Making sure you refactor before you deliver code is also sometimes referred to as

Always leave a place better than you found it.

—The Boy Scout rule

Refactoring as a method for learning

A final point about refactoring is that, like many things, it takes time to learn; but
eventually, it becomes automatic. Seeing and experiencing the advantages of better
code changes the way we write and think about code. Once we have a little more sta-
bility, we start thinking about how we can exploit this stability. One example is increas-
ing our deployment frequency, which usually gives even more stability. With flexibility,
it is possible to build configuration management or feature-toggling systems, the
maintenance of which would be infeasible without the flexibility.

Refactoring is a completely different way to study code. It gives us a unique per-
spective. Sometimes we’re given code that would take hours or days to understand.
The next chapter demonstrates that refactoring allows us to improve code even with-
out understanding it. This way, we can digest small portions while we are working on
the code until the final result is very easy to understand.

Refactoring as an intro task

Refactoring is often used as an introductory task for new team members, so they can
work with the code and learn in a safe environment without having to deal with cus-
tomers right away. While this is a nice practice, it is only possible if we have neglected
our daily due diligence—which I, of course, do not condone.

As I have said, there are many advantages to both learning and practicing refactoring.
I hope you are excited to go on this journey with me into the world of refactoring!

20

2.4

CHAPTER 2 Looking under the hood of refactoring

Defining the “domain” in a software context

Software is a model of specific aspects of real life, whether it is code to automate a pro-
cess, track or simulate real-world events, or do something else. There is always a real-
world counterpart to software. We call this real-world component the domain of soft-
ware. This domain typically comes with users and experts, its own language, and its
own culture.

In part 1 of the book, the domain is the 2D puzzle game. The users are players, and
the domain experts are the game or level designers. We have already seen how the
game uses its own language by introducing words such as “flux” that the player can
“eat.” Finally, video games come with a lot of culture in the form of expectations for
how we can interact with them. An example is that people familiar with video games
readily accept that some game objects are subject to gravity (stones and boxes) while
others are not (keys and the player).

When developing software, we often have to work closely with domain experts,
which means we must learn their language and culture. Programming languages do
not allow for any ambiguity; therefore, we sometimes have to explore new corner
cases unfamiliar even to the experts. As a result, programming is primarily about
learning and communicating.

Summary
Refactoring is about making the code communicate its intention and localizing
invariants without changing the functionality.
Favoring composition over inheritance leads to change by addition, by which
we gain developer speed, flexibility, and stability.
We should make refactoring part of our daily work to prevent accumulating
technical debt.
Practicing refactoring gives us a unique perspective on code, which leads us to
come up with better solutions.

Part 1

Learn by refactoring
a compuler game

In part 1, we go through a reasonable-looking codebase and improve it step
by step. While doing so, we introduce a set of rules and build a small catalog of

powerful refactoring patterns.
We improve the code in four phases, each with a dedicated chapter: shatter-

ing long functions, making type codes work, fusing similar code together, and,
finally, defending the data. Each chapter builds on the previous one, so some
transformations are temporary. If the code or an instruction feels weird or looks

ugly, be patient; it will probably change.

Don’t panic.
—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Shatter long functions

This chapter covers

Identifying overly long methods with FIVE LINES
Working with code without looking at the specifics
Breaking up long methods with EXTRACT METHOD

Balancing abstraction levels with EITHER CALL
OR PASS

Isolating if statements with i£ ONLY AT THE START

Code can easily get messy and confusing, even when following the Don’t Repeat
Yourself (DRY) and Keep It Simple, Stupid (KISS) guidelines. Some strong contrib-
utors to this messiness are as follows:

= Methods are doing multiple different things.
= We use low-level primitive operations (array accesses, arithmetic operations,
etc.).
= We lack human-readable text, like comments and good method and variable
naming.
Unfortunately, knowing these issues is not enough to determine exactly what is
wrong, let alone how to deal with it.

23

24

3.1

311

CHAPTER 3 Shatter long functions

In this chapter, we describe a concrete way to identify methods that likely have too
many responsibilities. As an example, we look at a specific method in our 2D puzzle
game that is doing too much: draw. We show a structured, safe way to improve the
method while eliminating comments. Then, we generalize this process to a reusable
refactoring pattern: EXTRACT METHOD (P3.2.1). Continuing with the same example
draw method, we learn how to identify another problem of mixing different levels of
abstraction and how EXTRACT METHOD can also alleviate this issue. In the process, we
learn about good method-naming habits.

After concluding our work with draw, we continue with another example—the
update method—and repeat the process, refining how we work with the code without
diving into the details of it. This example teaches us to identify a different symptom
that a method is doing too much; and through EXTRACT METHOD, we learn how to
improve readability by renaming variables.

We should also note that we often distinguish between methods (defined on
objects) and functions (static or outside classes). This can be a little confusing.
Luckily, TypeScript helps us because we have to put function when we define func-
tions and not when we define methods. If you still find this distinction distracting,
you can simply replace function with method, as all rules and refactorings apply
equally to both.

Assuming you have set up the tools and downloaded the code as described in the
appendix, let’s jump into the code in the file index.ts. Remember, you can always
check whether your code is up to date with any top-level section in the book by run-
ning, for instance, git diff section-3.1. If you get lost, you can use, for instance,
git reset --hard section-3.1 to get a clean copy of the code at a top-level section.
Once we have the code in front of us, we want to improve its quality. But where do
we begin?

Establishing our first rule: Why five lines?

To answer this question, we introduce the most fundamental rule in this book: FIVE
LINES. This is a simple rule stating that no method should have more than five lines. In
this book, FIVE LINES is the ultimate goal, because adhering to this rule is a huge
improvement all on its own.

Rule: FIVE LINES

STATEMENT
A method should not contain more than five lines, excluding { and }.

EXPLANATION

Aline, sometimes called a statement, refers to an if, a for, a while, or anything ending
with a semicolon: that is, assignments, method calls, return, and so on. We discount
whitespace and braces: { and }.

Establishing our first rule: Why five lines? 25

We can transform any method so it adheres to this rule. Here’s an easy way to see
how this is possible: if we have a method with 20 lines, we can create a helper method
with the first 10 lines and a method with the last 10 lines. The original method is now
2 lines: one calling the first helper and one calling the second. We can repeat this pro-
cess until we have as few as 2 lines in each method.

The specific limit is less important than having a limit. In my experience, it works
to set the limit to whatever value is required to implement a pass through your funda-
mental data structure.

In this book, we are working in a 2D setting, which means our fundamental data
structure is a 2D array. The following two functions do a pass through a 2D array: one
checks whether the array contains an even number, and the other finds the array’s
minimum element, each in exactly five lines.

Listing 3.1 Function to check whether a 2D array contains an even number

function containsEven (arr: number[] []1) {
for (let x = 0; x < arr.length; x++)
for (let y = 0; y < arr[x].length; y++) {
if (arr(x] [yl % 2 === 0) {
return true;
}
}
}

return false;

}

In TypeScript ...

We do not have different types for integers and floating points. We have only one type
to cover both: number.

Listing 3.2 Function to find the minimum element in a 2D array

function minimum(arr: number[] []) {
let result Number.POSITIVE INFINITY;
for (let x = 0; x < arr.length; x++)
for (let y = 0; y < arr[x].length; y++) {
result = Math.min(arr([x] [y], result);
1
1

return result;

}

CHAPTER 3 Shatter long functions

In TypeScript ...

We use let to declare variables. let tries to infer the type, but we can specify it with, for
example, let a: number = 5;. We never use var, due to its weird scoping rules: we can define
variables after their use. Here, the code on the left is valid, but probably not what we meant.
The code on the right gives an error, as we expect.

Bad | Good

a = 5p a = 5g
var a: number; let a: number;

To clarify how we count lines, here is the same example we saw at the beginning of chap-
ter 2. We count four lines: one for each if (including else) and one for each semicolon.

Listing 3.3 Four-line method from chapter 2

function isTrue (bool: boolean) ({
if (bool)
return true;
else return false;

SMELL

Having long methods is a smell in itself. This is because long methods are difficult to
work with; you have to keep all of a method’s logic in your head at once. But “long
methods” begs the question: what is long?

To answer this question, we draw from another smell: Methods should do one
thing. If FIVE LINES is exactly what is necessary to do one meaningful thing, then this
limit also prevents us from breaking that smell. We sometimes work in settings
where the fundamental data structure is different in different places in the code.
Once we are comfortable with this rule, we can start varying the number of lines to
fit specific examples. This is fine; but in practice, the number of lines often ends up
being around five.

INTENT

Left unchecked, methods tend to grow over time as we add more and more function-
ality to them. This makes them increasingly difficult to understand. Imposing a size
limit on our methods prevents us from sliding into this bad territory.

I argue that four methods, each with 5 lines of code, can be much more quickly
and easily understood than one method with 20 lines. This is because each method’s
name is an opportunity to communicate the intent of the code. Essentially, method
naming is equivalent to putting a comment at least every 5 lines. Plus, if small meth-
ods are properly named, finding a good name for a big function is easier, too.

3.2

Introducing a refactoring pattern to break up functions 27

REFERENCES

To help achieve this rule, see the refactoring EXTRACT METHOD. You can read more
about the smell “Methods should do one thing” in Robert C. Martin’s book Clean Code
(Pearson, 2008) and the “Long methods” smell in Martin Fowler’s book Refactoring
(Addison-Wesley Professional, 1999).

Introducing a refactoring pattern to break up functions

While the FIVE LINES rule is easy to understand, achieving it isn’t always. Therefore we
return to it many times, tackling increasingly difficult examples throughout this part
of the book.

With the rule in hand, we are ready to dive into the code. We start with a function
named draw. Our first stab at understanding the code should always be to consider the
function name. The danger is getting bogged down trying to understand every single
line—that would take a lot of time and be unproductive. Instead, we begin by looking
at the “shape” of the code.

We are trying to identify groups of lines related to the same thing. To make these
groups clear, we add blank lines where we think the group should be. Sometimes we add
comments to help us remember what the grouping is related to. In general, we strive to
avoid comments, as they tend to go out of date, or they are used like deodorant on bad
code; but in this case, the comments are temporary, as we’ll see in a moment.

Often, the original programmers had groupings in mind and inserted blank
lines. Sometimes they included comments. At this point, it is tempting to look at
what the code is doing—but since the code is not in a pristine state, that would be
counterproductive! You may have heard the saying “The best way to eat an ele-
phant is one bite at a time.” This is what we are doing now. Without digesting the
entire function, we cut it up and process each piece while it is small and easy to
understand.

In figure 3.1, to help avoid getting distracted by the details, we have blurred out all
the nonessential lines so we can focus on the structure. (We only do this here in the
beginning.) Even without being able to see any specifics, we notice the two groupings,
each starting with a comment: // Draw map and // Draw player.

We can take advantage of those comments by doing the following:

Create a new (empty) method, drawMap.

Where the comment is, put a call to drawMap.

Select all the lines in the group we identified, and then cut them and paste
them as the body of drawMap.

28 CHAPTER 3 Shatter long functions

function draw() {

// Draw map

| I {

// Draw player

Figure 3.1 Initial draw function

Repeating the same process for drawPlayer results in the transformation shown in fig-
ures 3.2 and 3.3.

Introducing a refactoring pattern to break up functions

29

Figure 3.2 Before Figure 3.3 After

function draw() {

function draw()

{

// Draw map

drawMap (g) ;

drawPlayer (g) ;

I { }

function drawMap(g: Canvas [| {

// Draw player

function drawPlayer(g: Canvas[________]) {

—— 1

}

Now let’s take a look at how that works with actual code. We begin with the code in
listing 3.4; notice that we can see the same structure, still without looking at what any
individual line does.

Initial

Listing 3.4

function draw ()

let canvas = document.getElementById("GameCanvas")

let g = canvas.getContext ("2d") ;

g.clearRect (0,

// Draw map

0,

canvas.width, canvas.height);

for (let y = 0; y < map.length; y++) {

for (let x =

0;

x < maply] .length; x++)

{

Comments marking
the start of a logical
grouping of lines

as HTMLCanvasElement;

30

CHAPTER 3 Shatter long functions

if (maply] [x] === Tile.FLUX)
g.fillstyle = "#ccffcc";

else if (mapl[y] [x] === Tile.UNBREAKABLE)
g.fillStyle = "#999999";

else if (maplyl [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
g.fillstyle = "#0000cc";

else if (maply] [x] === Tile.BOX || maply] [x] === Tile.FALLING_BOX)
g.fillStyle = "#8b4513";

else if (maply] [x] === Tile.KEY1l || maply] [x] === Tile.LOCK1)
g.fillstyle = "#ffccoo";

else if (maplyl [x] === Tile.KEY2 || maply] [x] === Tile.LOCK2)
g.fillstyle = "#00ccff";

if (maply] [x] !== Tile.AIR && mapl[y] [x] !== Tile.PLAYER)

g.fillRect (x * TILE_SIZE, y * TILE SIZE, TILE SIZE, TILE SIZE);

}

} Comments marking
the start of a logical

// Draw player grouping of lines

g.fillstyle = "#££0000";
g.fillRect (playerx * TILE SIZE, playery * TILE SIZE, TILE SIZE, TILE_ SIZE);

In TypeScript ...

We use as to convert between types, like casts in other languages. It does not return
null when a conversion is invalid, like as in C#.

We follow the steps described earlier:

1 Create a new (empty) method drawMap.

2 Where the comment is, put a call to drawMap.

3 Select all the lines in the grouping we identified, and then cut them and paste
them as the body of drawMap.

When we try to compile now, we get quite a few errors. This is because the variable g is
no longer in scope. We can fix this by first hovering our cursor over g in the original
draw method. This lets us know its type, which we use to introduce a parameter g:
CanvasRenderingContext2D in drawMap.

Compiling again tells us that there is an error where we call drawMap because we
are missing the parameter g. Again, this is easy to fix: we pass g as an argument.

Now we repeat the same process for drawPlayer, and this is what we end up with—
exactly as we expected. Notice that there is still no need to examine what the code is
doing any deeper than the method names.

Listing 3.5 After EXTRACT METHOD

function draw()
let canvas = document.getElementById ("GameCanvas") as HTMLCanvasElement;
let g = canvas.getContext ("2d") ;

Introducing a refactoring pattern to break up functions 31

g.clearRect (0, 0, canvas.width, canvas.height) ;

drawMap (g) ; <
—> drawPlayer (g) ; New function and
} call corresponding to

the first comment
function drawMap (g: CanvasRenderingContext2D) {
for (let v = 0; v < map.length; y++) {
for (let x = 0; x < maplyl.length; x++) ({
if (maply] [x] === Tile.FLUX)

g.fillstyle = "#ccffcc";
else if (mapl[y] [x] === Tile.UNBREAKABLE)
g.fillstyle = "#999999";
. else if (maply] [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
New function g.fillstyle = "#0000cc";
and call else if (maply] [x] === Tile.BOX || maply] [x] === Tile.FALLING BOX)
corresponding g.fillStyle = "#8b4513"; B
to the second else if (maply] [x] === Tile.KEY1l || maply] [x] === Tile.LOCK1)
comment g.fillStyle = "#£fcc00";
else if (maplyl [x] === Tile.KEY2 || maply] [x] === Tile.LOCK2)
g.fillstyle = "#00ccff";
if (maply] [x] !== Tile.AIR && mapl[y] [x] !== Tile.PLAYER)

g.fillRect (x * TILE SIZE, y * TILE SIZE, TILE SIZE, TILE_SIZE);

}
}
}

L~ function drawPlayer (g: CanvasRenderingContext2D) {
g.fillstyle = "#££0000";
g.fillRect (playerx * TILE SIZE, playery * TILE SIZE, TILE SIZE, TILE SIZE);

}

We have completed our first two refactorings. Congratulations! The process we just
went through is a standard pattern—a refactoring pattern—that we call EXTRACT
METHOD.

NOTE Because we are only moving lines around, the risk of introducing errors
is minimal, especially since the compiler told us when we forgot parameters.

We use the comments as the method names; therefore, the functions’ names and the
comments convey the same information. Thus we eliminate the comments. We also
eliminate the now-obsolete blank lines that we used to group the lines.

3.2.1 Refactoring pattern: EXTRACT METHOD

DESCRIPTION

EXTRACT METHOD takes part of one method and extracts it into its own method. This
can be done mechanically, and indeed, many modern IDEs have this refactoring pat-
tern built right in. This alone probably makes it safe; computers rarely mess up such
things. But there is also a safe way to do it by hand.

CHAPTER 3 Shatter long functions

Doing so can get complicated if we assign to multiple parameters or return only in
some paths and not all. We do not consider these situations here as they are rare, and
we can usually simplify them by reordering or duplicating lines in the methods.

Pro tip

As returning in only some branches of an if can prevent us from extracting a
method, | recommend starting from the bottom of the method and working upward.
This has the effect of pushing the return upward, so we eventually return in all
branches.

PROCESS

1 Mark the lines to extract by placing blank lines around them, and possibly com-
ments as well.

2 Create a new (empty) method with the desired name.

2 At the top of the grouping, put a call to the new method.

4 Select all the lines in the group, and then cut them and paste them as the body
of the new method.

5 Compile.

6 Introduce parameters, thus causing errors.

7 If we assign to one of these parameters (let’s call it p):
a Put return p; as the last thing in the new method.
b Put the assignment p = newMethod (. . .) ; at the call site.

s Compile.

9 Pass arguments, thus fixing the errors.

10 Remove obsolete blank lines and comments.

EXAMPLE

Let’s see an example of how the full process works. Here we again have a function to
find the minimum element in a 2D array. We have determined that itis too long, so we
want to extract the part between the blank lines.

Listing 3.6 Function to find the minimum element of a 2D array

function minimum(arr: number[] [])
let result = Number.POSITIVE_INFINITY;
for (let x = 0; x < arr.length; x++)
for (let y = 0; y < arr[x].length; y++)
if (result > arr[x] [yl) Lines we want
result = arr[x] [y]; to extract

return result;

}

Introducing a refactoring pattern to break up functions 33

We follow the process:
1 Mark the lines to extract by placing blank lines around them, and possibly com-
ments as well.
2 Create a new method, min.
3 At the top of the grouping, put a call to min.
4 Cut and paste the lines in the group into the body of the new method.

Listing 3.7 Before Listing 3.8 After (1/3)

function minimum(arr: number[] []) function minimum(arr: number[] [])
let result = Number.POSITIVE INFINITY; let result = Number.POSITIVE INFINITY;
for (let x = 0; x < arr.length; x++) for (let x = 0; x < arr.length; x++)
for (let y = 0; y < arr[x].length; y++) for (let y = 0; y < arr(x].length; y++)
if (result > arr(x] [y]) min() ;

result = arr[x] [y];

return result; return result; New method
and call
} }
function min() {
if (result > arr[x] [yl) Extracted lines
result = arr[x] [y]; from before
}
5 Compile.
¢ Introduce parameters for result, arr, x, and y.
7 The extracted function assigns to result. So, we need to
a Put return result; as the last thing in min.
b Put the assignment result =min(...); at the call site.
Listing 3.9 Before Listing 3.10 After (2/3)
function minimum(arr: number[] []) { function minimum(arr: number[] []) {
let result = Number.POSITIVE INFINITY; let result = Number.POSITIVE INFINITY;
for (let x = 0; x < arr.length; x++) for (let x = 0; x < arr.length; x++)
for (let y = 0; y < arr[x].length; y++) for (let y = 0; y < arr(x].length; y++)
min() ; result = min(); Assignment
to result
return result; return result;
1 }
function min() { function min(
result: number, arr: number (][], Added
X: number, y: number) parameters
{
if (result > arr([x] [y]) if (result > arr[x] [y])
result = arr([x] [y]; result = arr([x] [y];

return result; Added return
J } statement

34 CHAPTER 3 Shatter long functions

s Compile.
9 We pass the arguments causing errors result, arr, x, and y.
10 Finally, we remove the obsolete blank lines.

Listing 3.11 Before Listing 3.12 After (3/3)

function minimum(arr: number[] []) function minimum(arr: number[] [])
let result = Number.POSITIVE INFINITY; let result = Number.POSITIVE INFINITY;
for (let x = 0; x < arr.length; x++) for (let x = 0; x < arr.length; x++)
for (let y = 0; y < arr[x].length; y++) for (let y = 0; y < arr([x].length; y++)
result = min() ; result = min(result, arr, x, y);
return result; return result;
} } Arguments added
and blank lines
function min (function min (removed
result: number, arr: number([] [], result: number, arr: number([] [],
x: number, y: number) x: number, y: number)
{ {
if (result > arr([x] [y]) if (result > arr([x] [y])
result = arr([x] [y]; result = arr[x] [y];
return result; return result;

} }

You may be thinking that it would be better to use the built-in Math.min or arr [x] [y]
as an argument instead of all three separately. If you can get there safely, that may be a
better approach for you. But the important lesson to take from this example is that
the transformation, although slightly cumbersome, is safe. We can easily get into trou-
ble trying to be clever, which often isn’t worth it.

We can trust that this process does not break anything. The confidence that we
have not broken anything is more valuable than perfect output, especially when we
have not yet studied what the code does. The more things we have to keep track of,
the more likely we are to forget something. The compiler does not forget, and this
process is specialized to exploit that fact. We would rather produce unusual-looking
code safely than pretty code with less confidence. (If we were feeling confident as a
result of something else, like lots of automated testing, we could take more risks; but
this isn’t the case here.)

FURTHER READING

If we want to get a pretty result, we can combine a few other refactoring patterns. We
do not go into depth about these, as we only consider inter-method refactoring pat-
terns in this book. But we outline the process here if you want to investigate it further
on your own:

1 Execute another small refactoring pattern, “Extract common subexpression,”
which in this case introduces a temporary variable let tmp = arr [x] [y] ; outside
the grouping and replaces the occurrences of arr [x] [y] inside the grouping
with tmp.

2 Use EXTRACT METHOD as described earlier.

3.3

3.3.1

Breaking up functions to balancing abstraction 35

3 Perform INLINE LOCAL VARIABLE, where we undo the work of “Extract common
subexpression” by replacing tmp with arr [x] [y], and delete the temporary vari-
able tmp.

You can read more about all of these patterns, including EXTRACT METHOD, in Martin
Fowler’s book, Refactoring.

Breaking up functions to balancing abstraction

We have achieved the goal of five lines for our seed function, draw. Of course, drawMap
conflicts with the rule; we return to fix this in chapter 4. But we are not quite done
with draw: it also conflicts with another rule.

Rule: EITHER CALL OR PASS

STATEMENT
A function should either call methods on an object or pass the object as an argument,
but not both.

EXPLANATION
Once we start introducing more methods and passing things around as parameters,
we can end up with uneven responsibilities. For example, a function might be both
performing low-level operations, such as setting an index in an array, and also passing
the same array as an argument to a more complicated function. This code would be
difficult to read because we would need to switch between low-level operations and
high-level method names. It is much easier to stay at one level of abstraction.
Consider this function, which finds the average of an array. Notice that it uses both
the high-level abstraction sum(arr) and the low-level arr.length.

Listing 3.13 Function to find the average of an array

function average (arr: number([]) ({
return sum(arr) / arr.length;
}

This code violates our rule. Here is a better implementation that abstracts away how to
find the length.

Listing 3.14 Before Listing 3.15 After

function average (arr: number[]) { function average (arr: number([])
return sum(arr) / arr.length; return sum(arr) / size(arr);

} }

SMELL

The statement “The content of a function should be on the same level of abstraction”
is so powerful that it is a smell in its own right. However, as with most other smells, it is

36

3.3.2

CHAPTER 3 Shatter long functions

hard to quantify what it means, let alone how to address it. It is trivial to spot whether
something is passed as an argument and just as easy to spot if it has a . next to it.

INTENT

When we introduce abstraction by extracting some details out of a method, this rule
forces us to also extract other details. This way, we make sure the level of abstraction
inside the method always stays the same.

REFERENCES

To help achieve this rule, see the refactoring EXTRACT METHOD. You can read more
about the smell “The content of a function should be on the same level of abstraction”
in Robert C. Martin’s book Clean Code.

Applying the rule

Again without looking at the specifics, if we examine our draw method as it currently
looks, in figure 3.4, we quickly spot that we violate this rule. The variable g is passed as
a parameter, and we also call a method on it.

function draw()

Figure 3.4 g being both passed and called

We fix violations of this rule by using EXTRACT METHOD. But what do we extract? Here
we need to look a bit at the specifics. There are blank lines in the code, but if we
extract the line with g.clearRect, we end up passing canvas as an argument and also
calling canvas.getContext—thus violating the rule again.

Listing 3.16 draw as it currently looks

function draw()
let canvas = document.getElementById("GameCanvas") as HTMLCanvasElement;
let g = canvas.getContext ("2d") ;

Calls a

g.clearRect (0, 0, canvas.width, canvas.height) ;
method on g

drawMap (g) ; g is passed as
drawPlayer (g) ; an argument.

Properties of a good function name 37

Instead, we decide to extract the first three lines together. Every time we perform
EXTRACT METHOD, it’s a great opportunity to make the code more readable by intro-
ducing a good method name. So, before we extract the lines, let’s discuss what a good
name actually is.

3.4 Properties of a good function name

I cannot supply universal rules for a good name, but I can provide a few properties that
a good name should have:

= It should be honest. It should describe the function’s intention.

= Itshould be complete. It should capture everything the function does.

= It should be understandable for someone working in the domain. Use words
from the domain you are working in. This also has the advantage of making
communication more efficient and making it easier to talk about the code with
teammates and customers.

For the first time, we need to consider what the code is doing, because we have no
comments to follow. Luckily, we have already significantly reduced the number of
lines we need to consider: only three.

The first line fetches the HTML element to draw onto, the second line instantiates
the graphics to draw on, and the third clears the canvas. In short, the code creates a
graphics object.

Listing 3.17 Before Listing 3.18 After

function draw() —+> function createGraphics() ({
let canvas = document let canvas = document
.getElementById ("GameCanvas") .getElementById ("GameCanvas")
as HTMLCanvasElement; as HTMLCanvasElement; Oﬁgnd
let g = canvas.getContext ("24") ; let g = canvas.getContext ("24d") ; lines
g.clearRect (0, O,
g.clearRect (0, O, canvas.width, canvas.height);
canvas.width, canvas.height) ; return g;
New }
drawMap (g) ; method
drawPlayer (g) ; andaall | gynction draw() {
} let g = createGraphics();
drawMap (g) ;

drawPlayer (g) ;

}

Notice that we no longer need any of the blank lines, as the code is easy to understand
even without them.

draw is finished, and we can move on. Let’s start over and go through the same
process with another long function: update. Again, even without reading any of the
code, we can identify two clear groups of lines separated by a blank line.

38 CHAPTER 3 Shatter long functions

Listing 3.19 Initial

function update() {
while (inputs.length > 0)
let current = inputs.pop();
if (current === Input.LEFT)
moveHorizontal (-1) ;
else if (current === Input.RIGHT)
moveHorizontal (1) ;
== Input.UP)

else if (current =
moveVertical (-1) ;
else if (current === Input.DOWN)
moveVertical (1) ; Blank line separating
} two groupings
for (let y = map.length - 1; y >= 0; y--) {
for (let x = 0; x < maplyl.length; x++) {
if ((maply] [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
&& maply + 1] [x] === Tile.AIR) {
map [y + 1] [x] = Tile.FALLING_STONE;
map [y] [x] = Tile.AIR;
} else if ((maply] [x] === Tile.BOX || maply] [x] === Tile.FALLING_ BOX)
&& maply + 11 [x] === Tile.AIR) {
maply + 1] [x] = Tile.FALLING BOX;
map [y] [x] = Tile.AIR;
} else if (maply] [x] === Tile.FALLING STONE) {
map [y] [x] = Tile.STONE;
} else if (maply] [x] === Tile.FALLING BOX) ({
map [y] [x] = Tile.BOX;

We can naturally split this code into two smaller functions. What should we call them?
Both groups are still pretty complex, so we want to postpone understanding them fur-
ther. We notice superficially that in the first group, the predominant word is input,
and in the second, the predominant word is map. We know we are splitting a function
called update, so as a first draft, we can combine these words to get the function
names updateInputs and updateMap. updateMap is fine; however, we probably do not
“update” the inputs. So, we decide to use another naming trick and use handle,
instead: handleInputs.

NOTE When choosing names like this, always come back later, when the func-
tions are smaller, to assess whether you can improve the names.

Breaking up functions that are doing too much 39

Listing 3.20 After EXTRACT METHOD

function update() {

handleInputs() ;
—> updateMap () ; Extracted
} first grouping
and call
function handleInputs () {

while (inputs.length > 0) {
let current = inputs.popl();

if (current === Input.LEFT)
Extracted moveHorizontal (-1) ;
second else if (current === Input.RIGHT)
grouping moveHorizontal (1) ;
and call else if (current === Input.UP)
moveVertical (-1

else if (current === Input.DOWN)

moveVertical (1) ;

}

L function updateMap ()
for (let y = map.length - 1; y >= 0; y--) {
for (let x = 0; x < map[].length; x++) {
ile.STONE || maply] [x] === Tile.FALLING STONE)

if ((map[y][x] ===
&& maply + 1] [x] === Tile.AIR) {
map [y + 1] [x] = Tile.FALLING STONE;
map [y] [x] = Tile.AIR;
} else if ((maply] [x] === Tile.BOX || maply] [x] === Tile.FALLING BOX)
&& maply + 1] [x] === Tile.AIR) ({
map [y + 1] [x] = Tile. FALLING_BOX;
map [y] [x] = Tile.AIR;
} else if (maply] [x] === Tile.FALLING STONE) {
map [y] [x] = Tile.STONE;
} else if (maply] [x] === Tile.FALLING BOX)
map [y] [x] = Tile.BOX;

Already, update is compliant with our rules. We are finished with it. This may not seem
like a big deal, but we are getting closer to the magic five lines we are going for.

3.5 Breaking up functions that are doing too much

We’re finished with update, so we can continue with, for instance, one of the func-
tions we just introduced: updateMap. In this function, it is not natural to add more
whitespace. Therefore, we need another rule: place if ONLY AT THE START of a function.

40

3.5.1

CHAPTER 3 Shatter long functions

Rule: IF ONLY AT THE START

STATEMENT
If you have an if, it should be the first thing in the function.

EXPLANATION

We have already discussed that functions should do only one thing. Checking some-
thing is one thing. So, if a function has an if, it should be the first thing in the func-
tion. It should also be the only thing, in the sense that we should not do anything after
it; but we can avoid having something after it by extracting that separately, as we have
seen multiple times.

When we say that if should be the only thing a method does, we do not need to
extract its body, and we also should not separate it from its else. Both the body and
the else are part of the code structure, and we rely on this structure to guide our
efforts so we do not have to understand the code. Behavior and structure are closely
tied, and as we are refactoring, we are not supposed to change the behavior—so we
shouldn’t change the structure, either.

The following example shows a function that prints the primes from 2 to n.

Listing 3.21 Function to print all primes from 2 to n

function reportPrimes (n: number) {
for (let i = 2; 1 < n; i++)
if (isPrime(i))
console.log(${i} is prime~);

We have at least two clear responsibilities:

= Loop over the numbers.
= Check whether a number is prime.

Therefore, we should have at least two functions.

Listing 3.22 Before Listing 3.23 After

function reportPrimes(n: number) { function reportPrimes(n: number) {
for (let i = 2; 1 < n; 1i++) for (let i = 2; 1 < n; 1i++)
if (isPrime(i)) reportIfPrime (1) ;
console.log(${i} is prime’); }

function reportIfPrime (n: number) {
if (isPrime (n))
console.log(“s${n} is prime~);

Every time we check something, it is a responsibility, and it should be handled by one
function. Therefore we have this rule.

3.5.2

Breaking up functions that are doing too much 41

SMELL
This rule—like FIVE LINES—exists to help prevent the smell of functions doing more
than one thing.

INTENT

This rule intends to isolate if statements because they have a single responsibility, and
a chain of else ifs represents an atomic unit that we cannot split up. This means the
fewest lines we can achieve with EXTRACT METHOD in the context of an if with else
ifs is to extract exactly only that if along with its else ifs.

REFERENCES
To help achieve this rule, see the refactoring EXTRACT METHOD. You can read more
about the smell “Methods should do one thing” in Robert C. Martin’s book Clean Code.

Applying the rule

It’s easy to spot violations of this rule without looking at the specifics of the code. In
figure 3.5, there is one big if group in the middle of the function.

function updateMap () {

|] |

}oelse if [
[|

}else if [{
1

Figure 3.5 if in the middle of a function

To figure out what to name the function that we want to extract, we need to take a
superficial look at the code we are extracting. There are two predominant words in

42 CHAPTER 3 Shatter long functions

this group of lines: map and tile. We already have updateMap, so we call the new func-
tion updateTile.

Listing 3.24 After EXTRACT METHOD

function updateMap () {
for (let y = map.length - 1; y >= 0; y--) {
for (let x = 0; x < maply].length; x++) {

updateTile (x, Vy);

} } Extracted

method
and call

}

function updateTile (x: number, y: number) {

(
if ((maply] [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
&& maply + 11 [x] === Tile.AIR) {
maply + 1] [x] = Tile.FALLING STONE;
map [y] [x] = Tile.AIR;
} else if ((maplyl [x] === Tile.BOX || maply] [x] === Tile.FALLING BOX)
&& maply + 11 [x] === Tile.AIR) {
map[y + 1] [x] = Tile.FALLING BOX;
map [y] [x] = Tile.AIR;
} else if (maply] [x] === Tile.FALLING STONE) {
map [y] [x] = Tile.STONE;
} else if (maply] [x] === Tile.FALLING BOX) ({
map [y] [x] = Tile.BOX;

Now updateMap is within our five-line limit, and we are content with it. We are starting
to feel the momentum, so let’s quickly perform the same transformation on handle-

Inputs.
function handleInputs() { function handleInputs() {
while (inputs.length > 0) { while (inputs.length > 0)
let current = inputs.pop(); let current = inputs.pop();
if (current === Input.RIGHT) handleInput (current) ;
moveHorizontal (1) ;
else if (current(=l= Input.LEFT) } } Extracted
; method
moveHorizontal (-1) ; and call
else if (current === Input.DOWN) function handleInput (input: Input) {
moveVertical (1) ; if (input === Input.RIGHT)
else if (current === Input.UP) moveHorizontal (1) ;
moveVertical (-1); else if (input === Input.LEFT)
} moveHorizontal (-1) ;
} else if (input === Input.DOWN)
moveVertical (1) ;
else if (input === Input.UP)

moveVertical (-1) ;

Summary 43

That completes handleInputs. Here we see another readability advantage of EXTRACT
METHOD: it lets us give parameters new names that are more informative in their new
context. current is a fine name for a variable in a loop, but in the new handleInput
function, input is a much better name.

We did introduce a function that seems problematic. handleInput is already com-
pact, and it is hard to see how we can make it compliant with the five-line rule. This
chapter has only considered EXTRACT METHOD and rules for when to apply it. But
since the body of each if is already a single line, and we cannot extract part of an
else if chain, we cannot apply EXTRACT METHOD to handleInput. However, as we will
see in the next chapter, there is an elegant solution.

Summary

The FIVE LINES rule states that methods should have five lines or fewer. It helps
identify methods that do more than one thing. We use the refactoring pattern
EXTRACT METHOD to break up these long methods, and we eliminate comments
by making them method names.

The EITHER CALL OR PASS rule states that a method should either call methods
on an object or pass the object as a parameter, but not both. It helps us identify
methods that mix multiple levels of abstraction. We again use EXTRACT METHOD
to separate different levels of abstraction.

Method names should be honest, complete, and understandable. EXTRACT
METHOD allows us to rename parameters to further improve readability.

The rule 1f ONLY AT THE START states that checking a condition using if does
one thing, so a method should not do anything else. This rule also helps us
identify methods that do more than one thing. We use EXTRACT METHOD to iso-
late these ifs.

Make type codes work

This chapter covers

Eliminating early binding with NEVER USE if WITH
else and NEVER USE switch

Removing if statements with REPLACE TYPE CODE
WITH CLASSES and PUSH CODE INTO CLASSES

Removing bad generalization with SPECIALIZE
METHOD

Preventing coupling with ONLY INHERIT FROM
INTERFACES

Removing methods with INLINE METHOD and TRY
DELETE THEN COMPILE

At the end of the last chapter, we had just introduced a handleInput function that
we could not use EXTRACT METHOD (P3.2.1) on because we did not want to break
up the else if chain. Unfortunately, handleInput is not compliant with our funda-
mental FIVE LINES (R3.1.1) rule, so we cannot leave it as is.

Here’s the function.

44

4.1

4.1.1

Refactoring a simple if statement 45

Listing 4.1 Initial

function handleInput (input: Input)

if (input === Input.LEFT) moveHorizontal (-1);

else if (input === Input.RIGHT) moveHorizontal (1) ;
else if (input === Input.UP) moveVertical(-1);
else if (input === Input.DOWN) moveVertical (1) ;

Refactoring a simple if statement

We are stuck. To show how we deal with else if chains like this, we start by introduc-
ing a new rule.

Rule: NEVER USE IF WITH ELSE

STATEMENT
Never use if with else, unless we are checking against a data type we do not control.

EXPLANATION

Making decisions is hard. In life, many people try to avoid and postpone making deci-
sions; but in code, we seem eager to use if-else statements. I won’t dictate what is
best in real life, but in code, waiting is definitely better. When we use an if-else, we
lock in the point at which a decision is made in the code. This makes the code less flexi-
ble, as it is not possible to introduce any variation any later than where the if-else
is located.

We can view if-elses as hardcoded decisions. Just as we do not like hardcoded
constants in our code, we also do not like hardcoded decisions.

We would prefer never to hardcode a decision—that is, never to use ifs with elses.
Unfortunately, we have to pay attention to what we are checking against. For example,
we use e.key to check which key is pressed, and it has type string. We cannot modify
the implementation of string, so we cannot avoid an else if chain.

This should not discourage us, though, because these cases typically occur at the
edges of a program, where we get input from outside the application: the user typ-
ing something, fetching values from a database, and so on. In these cases, the first
thing to do is map the third-party data types into the data types we have control over.
In our example game, one such else if chain reads the user’s input and maps it to
our types.

Listing 4.2 Mapping user input into a data type we control

window.addEventListener ("keydown", e => {

if (e.key === LEFT KEY || e.key === "a") inputs.push(Input.LEFT) ;
else if (e.key === UP KEY || e.key === "w") inputs.push(Input.UP);
else if (e.key === RIGHT KEY || e.key === "d") inputs.push(Input.RIGHT) ;

else if (e.key === DOWN KEY || e.key === "s") inputs.push (Input.DOWN) ;

I3

46 CHAPTER 4 Matke type codes work

We don’t have control over any of the two data types in the conditions: KeyboardEvent
and string. As mentioned, these else if chains should be directly connected to I/0,
which should be separated from the rest of the application.

Note that we consider standalone ifs to be checks and if-elses to be decisions. This
allows for simple validation at the start of methods where it would be difficult to
extract an early return, as in the next example. So, this rule specifically targets else.

Other than that, this rule is easy to validate: simply look for else. Let’s revisit an
earlier function that takes an array of numbers and gives the average. If we call the
previous implementation with an empty array, we get a “division by zero” error. This
makes sense because we know the implementation, but it is not helpful for the user;
so, we would like to throw a more informative error. Here are two ways to fix that.

Listing 4.3 Before Listing 4.4 After

function average (ar: number[]) { function assertNotEmpty (ar: number[]) {
if (size(ar) === 0) if (size(ar) === 0)
throw "Empty array not allowed"; throw "Empty array not allowed";
else }
return sum(ar) / size(ar); function average (ar: number([]) {
} assertNotEmpty (ar) ;

return sum(ar) / size(ar);

}

SMELL
This rule relates to early binding, which is a smell. When we compile our program, a
behavior—like if-else decisions—is resolved and locked into our application and
cannot be modified without recompiling. The opposite of this is late binding, where
the behavior is determined at the last possible moment when the code is run.

Early binding prevents change by addition because we can only change the if
statement by modifying it. The late-binding property allows us to use change by addi-
tion, which is desirable, as discussed in chapter 2.

INTENT

ifs are control-flow operators. This means they determine what code to run next.
However, object-oriented programming has much stronger controlflow operators:
objects. If we use an interface with two implementations, then we can determine what
code to run based on which class we instantiate. In essence, this rule forces us to look
for ways to use objects, which are stronger, more flexible tools.

REFERENCES

We discuss late binding in more detail when we look at the REPLACE TYPE CODE WITH
CLASSES (P4.1.3) and INTRODUCE STRATEGY PATTERN (P5.4.2) refactoring patterns.

Refactoring a simple if statement 47

4.1.2 Applying the rule
The first step to get rid of the if-else in handleInput is to replace the Input enum
with an Input inferface. The values are then replaced with classes. Finally—and this is
the brilliant part—because the values are now objects, we can move the code inside
the ifs to methods in each of the classes. It takes a few sections to get there, so be
patient. Let’s go through it step by step:

1 Introduce a new interface with the temporary name Input2, with methods for
the four values in our enum.

Listing 4.5 New interface

enum Input {
RIGHT, LEFT, UP, DOWN
}

interface Input2

isRight () : boolean;
isLeft () : boolean;
isUp(): boolean;
isDown () : boolean;

2 Create the four classes corresponding to the four enum values. All the methods
except the one corresponding to the class should return false. Note: These
methods are temporary, as we will see later.

Listing 4.6 New classes

class Right implements Input2 isREhtreﬂwnstruein
isRight () { return true; } the Right class.

isLeft () { return false; } The other methods

isUp () { return false; } return false

isDown() { return false; }
}
class Left implements Input2 { ... }
class Up implements Input2 { ... }
class Down implements Input2 { ... }

3 Rename the enum to something like RawInput. This causes the compiler to
report an error in all the places where we use the enum.

Listing 4.7 Before Listing 4.8 After (1/3)

enum Input { enum RawInput {
RIGHT, LEFT, UP, DOWN RIGHT, LEFT, UP, DOWN

}

-

4 Change the types from Input to Input2, and replace the equality checks with
the new methods.

48 CHAPTER 4 Matke type codes work

Listing 4.9 Before Listing 4.10 After (2/3)

function handleInput (input: Input) { function handleInput (input: Input2) {
if (input === Input.LEFT) if (input.isLeft()) <
moveHorizontal (-1) ; moveHorizontal (-1) ; Changes
else if (input === Input.RIGHT) else if (input.isRight()) <— tYPetouse
moveHorizontal (1) ; moveHorizontal (1) ; the interface
else if (input === Input.UP) else if (input.isUp()) <
moveVertical (-1); moveVertical (-1) ;
else if (input === Input.DOWN) else if (input.isDown()) <
moveVertical (1) ; moveVertical (1) ;
1 1 Uses the new

methods instead
of equality checks

5 Fix the last errors by changing.

Listing 4.11 Before Listing 4.12 After (3/3)

Input .RIGHT new Right ()
Input .LEFT new Left ()
Input.UP new Up ()
Input .DOWN new Down ()

¢ Finally, rename Input2 to Input everywhere.

At this point, here is what the code looks like.

Listing 4.13 Before Listing 4.14 After

window.addEventListener ("keydown", e => window.addEventListener ("keydown", e =>
{ {
if (e.key === LEFT KEY if (e.key === LEFT KEY
|| e.key === "a") || e.key === "a")
inputs.push (Input.LEFT) ; inputs.push(new Left());
else if (e.key === UP_KEY else if (e.key === UP_KEY
|| e.key === "w") || e.key === "w")
inputs.push (Input.UP) ; inputs.push(new Up()) ;
else if (e.key === RIGHT_KEY else if (e.key === RIGHT KEY
|| e.key === "a") || e.key === "a")
inputs.push (Input.RIGHT) ; inputs.push (new Right ()) ;
else if (e.key === DOWN_KEY else if (e.key === DOWN_KEY
|| e.key === "s") || e.key === "s")
inputs.push (Input.DOWN) ; inputs.push(new Down ()) ;
P i P i
function handleInput (input: Input) function handleInput (input: Input)
if (input === Input.LEFT) if (input.isLeft())
moveHorizontal (-1) ; moveHorizontal (-1) ;
else if (input === Input.RIGHT) else if (input.isRight())
moveHorizontal (1) ; moveHorizontal (1) ;
else if (input === Input.UP) else if (input.isUp())
moveVertical (-1) ; moveVertical (-1) ;
else if (input === Input.DOWN) else if (input.isDown())

moveVertical (1) ; moveVertical (1) ;

4.1.3

Refactoring a simple if statement 49

We capture this process of making enums into classes in the refactoring pattern
REPLACE TYPE CODE WITH CLASSES.

Refactoring pattern: REPLACE TYPE CODE WITH CLASSES

DESCRIPTION

This refactoring pattern transforms an enum into an interface, and the enums’ values
become classes. Doing so enables us to add properties to each value and localize func-
tionality concerning that specific value. This leads to change by addition in collabora-
tion with another refactoring pattern, discussed next: PUSH CODE INTO CLASSES
(P4.1.5). The reason is that we often use enums via switches or else if chains spread
throughout the application. A switch states how each possible value in an enum
should be handled at this location.

When we transform values into classes, we can instead group together functionality
concerning that value without having to consider any other enum values. This process
brings functionality and data together; it localizes the functionality to the data, i.e.,
the specific value. Adding a new value to an enum means verifying logic connected to
that enum across many files, whereas adding a new class that implements an interface
only asks us to implement methods in that file—no modification of any other code is
required (until we want to use the new class).

Note that type codes also come in flavors other than enums. Any integer type, or any
type that supports the exact equality check ===, can act as a type code. Most com-
monly, we use ints and enums. Here is an example of such a type code for t-shirt sizes.

Listing 4.15 Initial

const SMALL = 33;
const MEDIUM = 37;
const LARGE = 42;

It is trickier to track down uses of a type code when it is an int, because someone
might have used the number without reference to a central constant. So we always
immediately transform type codes to enums when we see them. Only then can we
apply this refactoring pattern safely.

Listing 4.16 Before Listing 4.17 After

const SMALL = 33; enum TShirtSizes {
const MEDIUM = 37; SMALL = 33,
const LARGE = 42; MEDIUM = 37,

LARGE = 42
PROCESS

1 Introduce a new interface with a temporary name. The interface should con-
tain methods for each of the values in our enum.

50

CHAPTER 4 Matke type codes work

2 Create classes corresponding to each of the enum values; all the methods from
the interface except the one corresponding to the class should return false.

32 Rename the enum to something else. Doing so causes the compiler to report an
error in all the places where we use the enum.

4 Change types from the old name to the temporary name, and replace equality
checks with the new methods.

5 Replace the remaining references to the enum values with instantiating the new
classes, instead.

& When there are no more errors, rename the interface to its permanent name
everywhere.

EXAMPLE
Consider this tiny example with a traffic light enum and a function to determine
whether we can drive.

Listing 4.18 Initial

enum TrafficLight {
RED, YELLOW, GREEN

}

const CYCLE = [TrafficLight.RED, TrafficLight.GREEN, TrafficLight.YELLOW] ;
function updateCarForLight (current: TrafficLight)
if (current === TrafficLight.RED)
car.stop() ;
else

car.drive () ;

}

We follow the process:

1 Introduce a new interface with a temporary name. The interface should con-
tain methods for each of the values in our enum.

Listing 4.19 New interface

interface TrafficLight2 {

isRed () : boolean;
isYellow() : boolean;
isGreen() : boolean;

}

2 Create classes corresponding to each of the enum values; all the methods from
the interface except the one corresponding to the class should return false.

Listing 4.20 New classes

class Red implements TrafficLight2 {
isRed() { return true; }
isYellow() { return false; }
isGreen() { return false; }

}

Refactoring a simple if statement 51

class Yellow implements TrafficLight2 {
isRed() { return false; }
isYellow() { return true; }
isGreen() { return false; }

}

class Green implements TrafficLight2
isRed() { return false; }
isYellow() { return false; }
isGreen() { return true; }

}

3 Rename the enum to something else. This causes the compiler to error all the
places where we use the enum.

Listing 4.21 Before Listing 4.22 After (1/4)

enum TrafficLight {
RED, YELLOW, GREEN

} }

enum RawTrafficLight {
RED, YELLOW, GREEN

4 Change types from the old name to the temporary name, and replace equality
checks with the new methods.

Listing 4.23 Before Listing 4.24 After (2/4)

function updateCarForLight (
current: TrafficLight)
{ {
if (current === TrafficLight.RED) if (current.isRed())
car.stop () ; car.stop () ;
else else
car.drive () ; car.drive () ;

function updateCarForLight (
current: TrafficLight2)

5 Replace the remaining references to the enum values with instantiating the new
classes, instead.

Listing 4.25 Before Listing 4.26 After (3/4)

const CYCLE = [const CYCLE =
TrafficLight .RED, new Red(),
TrafficLight.GREEN, new Green (),
TrafficLight.YELLOW new Yellow ()

1; 1

6 Finally, when there are no more errors, rename the interface to its permanent
name everywhere.

Listing 4.27 Before Listing 4.28 After (4/4)

interface TrafficLight2 {
!/
}

interface TrafficLight {
/7
}

52

4.1.4

CHAPTER 4 Make type codes work

This refactoring pattern in itself does not add much value, but it enables fantastic
improvements later. Having is methods for all the values is a smell, too, so we have
replaced one smell with another. But we can handle these methods one by one,
whereas the enum values were tightly connected. It is important to note that most of
the is methods are temporary and do not exist for long—in this case, we get rid of
some of them in this chapter and many more in chapter 5.

FURTHER READING
This refactoring pattern can also be found in Martin Fowler’s book Refactoring.

Pushing code into classes

Now the magic is about to happen. All conditions in handleInput have to do with the
input parameter, which means the code should be in that class. Luckily, there is a sim-
ple way to do this:

1 Copy handleInput, and paste it into all the classes. Remove function, because
it is now a method, and replace the input parameter with this. It still has the
wrong name, so we still get errors.

Listing 4.29 After

class Right implements Input { Remove “function”

/.. and the parameter.
handleInput () {

if (this.isLeft())
moveHorizontal (-1) ;

else if (this.isRight()) Change
moveHorizontal (1) ; input to
else if (this.isUp()) “this.”

moveVertical (-1);
else if (this.isDown())
moveVertical (1) ;

2 Copy the method signature into the Input interface, and give it a slightly differ-
ent name than the source method handleInput. In this case, we are already in
Input, so there is no point in writing it twice.

Listing 4.30 New interface

interface Input

/]
handle() : void;
1

2 Go through the handleInput methods in all four classes. The process is identi-
cal, so we show only one:

Refactoring a simple if statement 53

a Inline the return values of the methods isLeft, isRight, isUp, and isDown.

Listing 4.31 Before Listing 4.32 After (1/4)

class Right implements Input {
/] ...
handleInput () {
if (this.isLeft())
moveHorizontal (-1) ;
else if (this.isRight())
moveHorizontal (1) ;
else if (this.isUp())
moveVertical (-1) ;
else if (this.isDown())
moveVertical (1) ;

b Remove all the if (false) { ...

class Right implements Input {
/] ..
handleInput () {
if (false)
moveHorizontal (-1) ;
else if (true) After
moveHorizontal (1) ; inlining the
else if (false) is methods
moveVertical (-1) ;
else if (false)
moveVertical (1) ;

} and the if partof if (true).

Listing 4.33 Before Listing 4.34 After (2/4)

class Right implements Input {
/] ...
handleInput () {
if (false)
moveHorizontal (-1) ;
else if (true)
moveHorizontal (1) ;
else if (false)
moveVertical (-1) ;
else if (false)
moveVertical (1) ;

class Right implements Input {

/] ...
handleInput () {

moveHorizontal (1) ;

¢ Change the name to handle to signal that we are finished with this method.
The compiler should accept the method at this point.

Listing 4.35 Before Listing 4.36 After (3/4)

class Right implements Input { class Right implements Input {

/] /...

handleInput () { moveHorizontal(1l); } handle() { moveHorizontal(1l); }

} }

4 Replace the body of handleInput with a call to our new method.

54 CHAPTER 4 Matke type codes work

Listing 4.37 Before Listing 4.38 After (4/4)

function handleInput (input: Input) { function handleInput (input: Input)
if (input.isLeft()) input.handle () ;
moveHorizontal (-1) ; }

else if (input.isRight())
moveHorizontal (1) ;

else if (input.isUp())
moveVertical (-1);

else if (input.isDown())
moveVertical (1) ;

After going through this process, we arrive at this nice improvement. All the ifs are
gone, and these methods easily fit in five lines.

Listing 4.39 Before Listing 4.40 After

function handleInput (input: Input) { function handleInput (input: Input)
if (input.isLeft()) input.handle() ;
moveHorizontal (-1) ; }
else if (input.isRight())
moveHorizontal (1) ; interface Input ({
else if (input.isUp()) //
moveVertical (-1) ; handle () : void;
else if (input.isDown()) }
moveVertical (1) ; class Left implements Input {
} //
handle () { moveHorizontal(-1); }
}
class Right implements Input {
//
handle() { moveHorizontal (1l); }

}

class Up implements Input

!/

handle() { moveVertical(-1); }

}

class Down implements Input {

//

handle() { movevertical(1l); }

}

This is my favorite refactoring pattern: it is so structured that we can perform it with lit-
tle cognitive load, but we end up with very nice code. I call it PUSH CODE INTO CLASSES.

4.1.5 Refactoring pattern: PUSH CODE INTO CLASSES

DESCRIPTION

This refactoring pattern is a natural continuation of REPLACE TYPE CODE WITH CLASSES,
as it moves functionality into classes. As a result, if statements are often eliminated,
and functionality is moved closer to the data. As discussed earlier, this helps localize

Refactoring a simple if statement 55

the invariants because functionality connected with a specific value is moved into the
class corresponding to that value.

In its simplest form, we always assume that we move an entire method into the
classes. This is not a problem because, as we have seen, we usually start by extracting
methods. It is possible to move code without extracting it first, but doing so requires
more care to verify that we have not broken anything.

PROCESS

1 Copy the source function, and paste it into all the classes. Remove function, as
it is now a method; replace the context with this; and remove the unused
parameters. The method still has the wrong name, so we still get errors.

2 Copy the method signature into the target interface. Give it a slightly different
name than the source method.

3 Go through the new method in all the classes:

a Inline the methods that return a constant expression.

b Perform all the computations we can up front, which usually amounts to
removing if (true) and if (false) { ... } but may also require simplifying
the conditions first (for example, false || true becomes true).

¢ Change the name to its proper name, to signal that we are finished with this
method. The compiler should accept it.

4 Replace the body of the original function with a call to our new method.

EXAMPLE
As this refactoring pattern is so closely related to REPLACE TYPE CODE WITH CLASSES, we
continue with the traffic light example.

Listing 4.41 Initial

interface TrafficLight (

isRed () : boolean;
isYellow () : boolean;
isGreen () : boolean;

}

class Red implements TrafficLight ({

isRed () { return true; }
isYellow() { return false; }
isGreen() { return false; }

}

class Yellow implements TrafficLight

isRed() { return false; }
isYellow() { return true; }
isGreen() { return false; }

}

class Green implements TrafficLight {
isRed() { return false; }
isYellow() { return false; }
isGreen() { return true; }
}
function updateCarForLight (current: TrafficLight)
if (current.isRed())

56

CHAPTER 4 Matke type codes work

car.stop () ;
else
car.drive () ;

}

We follow the process:

1 Make a new method in the target interface. Give it a slightly different name
than the source method.

Listing 4.42 New method

interface TrafficLight ({
//
updateCar () : void;

}

2 Copy the source function, and paste it into all the classes. Remove function, as
it is now a method; replace the context with this; and remove the unused
parameters. It still has the wrong name, so we still get errors.

Listing 4.43 Duplicating the method into the classes

class Red implements TrafficLight {
//
updateCarForLight () {
if (this.isRed())
car.stop() ;
else
car.drive () ;
}
}
class Yellow implements TrafficLight ({
//
updateCarForLight () {
if (this.isRed())
car.stop() ;
else
car.drive () ;
1
1
class Green implements TrafficLight ({
//
updateCarForLight () {
if (this.isRed())
car.stop() ;
else
car.drive () ;

—

2 Go through the new method in all the classes:
a Inline the methods that return a constant expression.
b Perform all the computations we can up front.

Refactoring a simple if statement 57

Listing 4.44 Before Listing 4.45 After (1/4)

class Red implements TrafficLight {
//
updateCarForLight () {
if (this.isRed())
car.stop () ;
else
car.drive() ;
}
1

class Yellow implements TrafficLight
/] ...
updateCarForLight () {
if (this.isRed())
car.stop() ;
else
car.drive () ;
}

}
class Green implements TrafficLight {
//
updateCarForLight () {
if (this.isRed())
car.stop() ;
else
car.drive() ;

class Red implements TrafficLight {
//
updateCarForLight () {
if (true)
car.stop () ;
else
car.drive () ;
1
1

class Yellow implements TrafficLight
/] ..
updateCarForLight () {
if (false)
car.stop() ;
else
car.drive () ;
}

}

class Green implements TrafficLight {
//
updateCarForLight () {
if (false)
car.stop () ;
else
car.drive () ;

Listing 4.46 Before Listing 4.47 After (2/4)

class Red implements TrafficLight {
//
updateCarForLight () {
if (true)
car.stop () ;
else
car.drive() ;
1
1

class Yellow implements TrafficLight
/] ...
updateCarForLight () {
if (false)
car.stop () ;
else
car.drive () ;
1
}
class Green implements TrafficLight
//
updateCarForLight () {
if (false)
car.stop () ;
else

class Red implements TrafficLight {

//
updateCarForLight () {

car.stop() ;

1
}
class Yellow implements TrafficLight

/] ...
updateCarForLight () {

car.drive () ;

}
1

class Green implements TrafficLight {

!/
updateCarForLight () {

58 CHAPTER 4 Make type codes work

car.drive() ;

car.drive() ;

}
}

¢ Change the name to its proper name, to signal that we are finished with this

method.

Listing 4.48 Before Listing 4.49 After (3/4)

class Red implements TrafficLight
//
updateCarForLight () { car.stop(); }

}

class Yellow implements TrafficLight {
//
updateCarForLight () { car.drive(); }

}

class Green implements TrafficLight ({
//
updateCarForLight () { car.drive(); }

}

class Red implements TrafficLight
//
updateCar () { car.stop(); }

}

class Yellow implements TrafficLight
//
updateCar () { car.drive(); }

ilass Green implements TrafficLight ({
//
updateCar () { car.drive(); }

}

4 Replace the body of the original function with a call to our new method.

Listing 4.50 Before Listing 4.51 After (4/4)

function updateCarForLight (
current: TrafficLight)
{
if (current.isRed())
car.stop () ;
else car.drive () ;

}

function updateCarForLight (
current: TrafficLight)
{

}

current .updateCar () ;

We mentioned earlier that the is methods become a smell if they remain, so it is
worth noting that at this point, we do not need any of them in this tiny example. This
is an extension of the advantages of this refactoring pattern.

FURTHER READING
In this simple form, this refactoring is essentially the same as Martin Fowler’s “Move

method.” However, I think this rebranding better conveys the intention and force
behind it.

4.1.6 Inlining a superfluous method

At this point, we can see another amusing effect of refactoring. Even though we just
introduced the handleInput function, that does not necessarily mean it should stay.
Refactoring is often circular, adding things that enable further refactoring and then
removing them again. So, never be afraid of adding code.

Refactoring a simple if statement 59

When we introduced handleInput, it had a clear purpose. Now, however, it does
not add any readability to our program, and it takes up space, so we can remove it:

1 Change the method name to handleInput2. This makes the compiler error
wherever we use the function.

2 Copy the body input.handle () ;, and note that input is the parameter.

2 We use this function in only one place, where we replace the call with the body.

Listing 4.52 Before Listing 4.53 After

handleInput (current) ; current .handle () ;

After this, and after a quick renaming of current to input, handleInputs looks
like this.

Listing 4.54 Before Listing 4.55 After

function handleInputs() { function handleInputs() {
while (inputs.length > 0) { while (inputs.length > 0) {
let current = inputs.pop() ; let input = inputs.pop();
handleInput (current) ; input.handle () ; -
} } Inlining
method
} }
function handleInput (input: Input) handlelnput
. deleted
input.handle () ;

}

4.1.7

This refactoring pattern, INLINE METHOD, is the exact inverse of EXTRACT METHOD
(P3.2.1) from chapter 3.

Refactoring pattern: INLINE METHOD

DESCRIPTION
Two great themes of this book are adding code (usually to support classes) and remov-
ing code. This refactoring pattern supports the latter: it removes methods that no lon-
ger add readability to our program. It does so by moving code from a method to all
call sites. This makes the method unused, at which point we can safely delete it.
Notice that we differentiate between inlining methods and the refactoring pat-
tern INLINE METHOD. In the previous sections, we inlined the is methods while we
were pushing code into classes, and then we used INLINE METHOD to eliminate the
original function. When we inline methods (without the emphasis), we don’t do it at
every call site, so we preserve the original method. This is usually to simplify the call
site. When we INLINE METHOD (emphasized), we do it at every call site and then
delete the method.

60

CHAPTER 4 Matke type codes work

In this book, we often do this when methods have only a single line. This is because
of our strict five-line limit; inlining a method with a single line cannot break this rule.
We can also apply this refactoring pattern to methods with more than one line.

Another consideration is whether the method is too complex to be inlined. The
following method gives the absolute value of a number; we have optimized it for per-
formance, so it is branch-free. It is a single line. It relies on low-level operations to
achieve its purpose, so having the method adds readability, and we should not inline
it. In this case, inlining it would also go against the smell “Operations should be on the
same level of abstraction,” which motivated our EITHER CALL OR PASS (R3.1.1) rule.

Listing 4.56 Method that should not be inlined

const NUMBER BITS = 32;
function absolute (x: number) {
return (x * x >> NUMBER_BITS-1) - (x >> NUMBER_BITS-1);

}

PROCESS

1 Change the method name to something temporary. This makes the compiler
error wherever we use the function.

2 Copy the body of the method, and note its parameters.

3 Wherever the compiler gives errors, replace the call with the copied body, and
map the arguments to the parameters.

4 Once we can compile without errors, we know the original method is unused.
Delete the original method.

EXAMPLE

As we have already seen an example on the game code, let’s examine an example
from a different domain. In this example, we discover that we have split the two
parts of a bank transaction: withdrawing money from one account and depositing it
into another. This means we can accidentally deposit money without withdrawing
it if we call the wrong method. To remedy the situation, we decide to join the two
methods.

Listing 4.57 Initial

function deposit (to: string, amount: number) {
let accountId = database.find(to) ;
database.updateOne (accountId, { $inc: { balance: amount } });

}

function transfer (from: string, to: string, amount: number) {
deposit (from, -amount) ;
deposit (to, amount) ;

}

Refactoring a simple if statement 61

In TypeScript ...

The symbol s is treated like any other character, similar to . Thus it can be part of
a name and has no special meaning. $inc could just as well be do_inc.

We follow the process:

1 Change the method name to something temporary. This makes the compiler
error wherever we use the function.

Listing 4.58 Before Listing 4.59 After (1/2)

function deposit (to: string, function deposit2(to: string,
amount : number) { amount : number) {
VA //
} }

2 Copy the body of the method, and note its parameters.
3 Wherever the compiler gives errors, replace the call with the copied body, and
map the arguments to the parameters.

Listing 4.60 Before Listing 4.61 After (2/2)

function transfer(function transfer(
from: string, from: string,
to: string, to: string,
amount : number) amount : number)
{ {
deposit (from, -amount) ; let fromAccountId = database.find(from) ;

database.updateOne (fromAccountId,
{ $inc: { balance: -amount } });
deposit (to, amount) ; let toAccountId = database.find(to) ;
database.updateOne (toAccountId,
{ $inc: { balance: amount } });

4 Once we can compile without errors, we know the original method is unused.
Delete the original method.

At this point, money cannot be created from nothing in the code. It is debatable
whether having this code duplication is a bad idea; in chapter 6, we see another solu-
tion that uses encapsulation.

FURTHER READING
This refactoring pattern can be found in Martin Fowler’s book Refactoring.

62 CHAPTER 4 Make type codes work

4.2 Refactoring a large if statement
Let’s go through the same process, but with a bigger method: drawMap.

Listing 4.62 Initial

function drawMap (g: CanvasRenderingContext2D) {
for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply].length; x++) {

if (maply] [x] === Tile.FLUX)
g.fillstyle = "#ccffcc";

else if (maply] [x] === Tile.UNBREAKABLE)
g.fillStyle = "#999999";

else if (maply] [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
g.fillstyle = "#0000cc";

else if (maplyl [x] === Tile.BOX || maply] [x] === Tile.FALLING BOX)
g.fillstyle = "#8b4513";

else if (maply] [x] === Tile.KEY1l || maply] [x] === Tile.LOCK1)
g.fillstyle = "#ffccoO0";

else if (maply] [x] === Tile.KEY2 || maply] [x] === Tile.LOCK2)
g.fillstyle = "#00ccff";

if (maply] [x] !== Tile.AIR && mapl[y] [x] !== Tile.PLAYER)
g.fillRect (x * TILE_SIZE, y * TILE SIZE, TILE SIZE, TILE SIZE);

Immediately we notice a major violation of our if ONLY AT THE START (R3.5.1) rule
from the last chapter: there is a long else if chain right in the middle of the code. So,
the first thing we do is extract the else if chain to its own method.

Listing 4.63 After EXTRACT METHOD (P3.2.1)

function drawMap (g: CanvasRenderingContext2D) {
for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply].length; x++) {
colorOfTile (g, x, y);

if (maply] [x] !== Tile.AIR && mapl[y] [x] !== Tile.PLAYER)
Extracted g.fillRect (x * TILE_SIZE, y * TILE_SIZE, TILE SIZE, TILE_SIZE);
method 1
and call 1

}

function colorOfTile(g: CanvasRenderingContext2D, x: number, y: number) {

if (maply] [x] === Tile.FLUX)
g.fillstyle = "#ccffcc";

else if (mapl[y] [x] === Tile.UNBREAKABLE)
g.fillStyle = "#999999";

else if (maply] [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
g.fillstyle = "#0000cc";

else if (maply] [x] === Tile.BOX || maply] [x] === Tile.FALLING_BOX)

g.fillStyle = "#8b4513";
else if (maply] [x] === Tile.KEY1l || maply] [x] === Tile.LOCK1)

Refactoring a large if statement 63

g.fillstyle = "#ffccoo0";
else if (maplyl [x] === Tile.KEY2 || maplyl [x] === Tile.LOCK2)
g.fillStyle = "#00ccff";
}

For now, drawMap complies with our FIVE LINES rule, so we continue with color0Of-
Tile. colorOfTile violates NEVER USE if WITH else. As we did earlier, to solve this
issue, we replace the Tile enum with a Tile interface:

1 Introduce a new interface with the temporary name Tile2, with methods for all
the values in our enum.

Listing 4.64 New interface

interface Tile2 {

isFlux () : boolean;

isUnbreakable () : boolean; Methods for all
isStone () : boolean; the values of
/) the enum

2 Create classes corresponding to each of the enum values.

Listing 4.65 New classes

class Flux implements Tile2 {
isFlux() { return true; }
isUnbreakable () { return false; }

isStone() { return false; }

//
/ Similar cla for
class Unbreakable implements Tile2 { ... } sses fo
class Stone implements Tile2 { ... } the rest of the values
/// of the enum

3 Rename the enum to RawTile, making the compiler show us wherever it is used.

Listing 4.66 Before Listing 4.67 After (1/2)

enum Tile enum RawTile {

Changing the
AIR, AIR, name to get
FLUX, FLUX, compile errors
UNBREAKABLE, UNBREAKABLE,
PLAYER, PLAYER,
STONE, FALLING STONE, STONE, FALLING STONE,
BOX, FALLING BOX, BOX, FALLING BOX,
KEY1l, LOCKI, KEY1l, LOCKI,
KEY2, LOCK2 KEY2, LOCK2

4 Replace equality checks with the new methods. We have to make this change in
a lot of places throughout the application; here, we show only colorOfTile.

64 CHAPTER 4

Listing 4.68 Before

function colorOfTile (
g: CanvasRenderingContext2D,

Make type codes work

Listing 4.69 After (2/2)

function colorOfTile(
g: CanvasRenderingContext2D,

x: number, y: number) x: number, y: number)
{ {
if (maply] [x] === Tile.FLUX) if (maply] [x] .isFlux())
g.fillStyle = "#ccffce"; g.fillstyle = "#ccffcc";
else if (maply] [x] === Tile.UNBREAKABLE) else if (mapl[y] [x] .isUnbreakable())
g.fillStyle = "#999999"; g.fillStyle = "#999999";
else if (maply] [x] === Tile.STONE else if (maply] [x].isStone()
|| maply] [x] === Tile.FALLING STONE) || maply] [x].isFallingStone())
g.fillStyle = "#0000cc"; g.fillstyle = "#0000cc";
else if (maply] [x] === Tile.BOX else if (mapl[y] [x].isBox()
|| maply] [x] === Tile.FALLING BOX) || maply] [x].isFallingBox())
g.fillStyle = "#8b4513"; g.fillstyle = "#8b4513";
else if (maply] [x] === Tile.KEY1l else if (mapl(y] [x].isKeyl()
|| maply] [x] === Tile.LOCK1) || maply] [x].isLockl())
g.fillstyle = "#ffccoO0"; g.fillstyle = "#ffccO0";
else if (maply] [x] === Tile.KEY2 else if (maply] [x].isKey2 ()
|| maply] [x] === Tile.LOCK2) || maply] [x].isLock2())
g.fillStyle = "#00ccff"; g.fillstyle = "#00ccff";

WARNING Take care that map[y] [x]

=== Tile.FLUX becomes map [y] [x]

.isFlux(), and map[y] [x] !== Tile.AIR becomes !map[y] [x].isAir (). Pay

T T T T T T

attention to the !.

5 Replace uses of Tile.FLUX with new Flux (), Tile.AIR with new Air (), and so

forth.

At this point last time, we had no errors and could rename the temporary Tile2 to the

permanent Tile. But now the situation is different: we still have two places with errors
showing that we are using Tile. This is why we use a temporary name; otherwise, we
probably would not have spotted the issue in remove and would have assumed it was

working—which it is not.

Listing 4.70 Last two errors

let map: Tile[]l[] = [<
[2, 2, 2, 2, 2, 2, 2, 21,
[2, 3, 0, 1, 1, 2, 0, 21,
[2, 4, 2, 6, 1, 2, 0, 2],
[2, 8, 4, 1, 1, 2, 0, 21, Errors
(2, 4,1, 1, 1, 9, 0, 21, becausevye
2. 2. 2. 2, 2, 2, 2, 2], refer to Tile
1;
function remove (tile: Tile) { <!

(
0; v

for (let y = < map.length; y++)
for (let x = 0; x < maply]
if (maply] [x] === tile) {

{

.length; x++) {

Use new
methods
instead of
equality
checks.

4.2.1

Refactoring a large if statement 65

map [y] [x] = new Air();

Both of these errors require special treatment, so we go through them in turn.

Removing generality

The problem with remove is that it takes a tile type and removes it from everywhere on
the map. That is, it does not check against a specific instance of Tile; instead, it
checks that the instances are similar.

Listing 4.71 Initial

function remove (tile: Tile) {
for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply].length; x++) {
if (maplyl [x] === tile) {
map [y] [x] = new Air();
}
}
}
}

In other words, the problem is that remove is too general. It can remove any type of
tile. This generality makes it less flexible and more difficult to change. Therefore,
we prefer specialization: we make a less general version and switch to using that,
instead.

Before we can make a general version, we need to investigate how it is used. We
want to make the parameter less general, so we look for what arguments are passed to
it in practice. We use our familiar process and rename remove to a temporary name,
remove2. We find that remove is used in four places.

Listing 4.72 Before

/17

remove (new Lockl()) ;

/17

remove (new Lock2()) ;

/77

remove (new Lockl()) ;

/17

remove (new Lock2()) ;

/17

We can see that even though remove supports removing any type of tile, in practice it
is only removing Lock1l or Lock2. We can take advantage of this:

66 CHAPTER 4 Matke type codes work

1 Duplicate remove2.

Listing 4.73 Before Listing 4.74 After (1/4)

function remove2 (tile: Tile) { function remove2 (tile: Tile) {
/] 7
1 } They have
function remove2 (tile: Tile) { the same

. body.

}

2 Rename one of them to removeLockl, remove its parameter, and replace ===
tile with === Tile.LOCKl temporarily. We do this even though we have
renamed Tile to RawTile because it makes the code identical to the code we
handled earlier.

Listing 4.75 Before Listing 4.76 After (2/4)

function remove2(tile: Tile) { function removeLockl () {
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maply].length; x++)
if (maply] [x] === tile) if (maply] [x] === Tile.LOCK1)
map [y] [x] = new Air(); Replace map [yl [x] = new Air();
} tile with } R
Tile.LOCK1. ename and remove

the parameter.

s This is exactly the type of equality we know how to eliminate. So, as we did
before, we replace it with the method call.

Listing 4.77 Before Listing 4.78 After (3/4)

function removeLockl () { function removeLockl () {
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maply].length; x++)
if (maply] [x] === Tile.LOCK1) if (maply] [x] .isLockl())
map [y] [x] = new Air(); map [y] [x] = new Air();

Uses a method instead
of an equality check

4 This function has no more errors, so we can switch the old calls to use the new

ones.
Listing 4.79 Before Listing 4.80 After (4/4)
remove (new Lockl()) ; removeLockl () ;

We do the same thing for removeLock2. After that, we have removeLockl and remove-
Lock2 with no errors. remove2 still has an error, but it is no longer called, so we simply
delete it. In total, we performed the following change.

Refactoring a large if statement 67

Listing 4.81 Before Listing 4.82 After

function remove(tile: Tile) ({ function removeLockl () {
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maply].length; x++)
if (maply] [x] === tile) if (maply] [x].isLockl())
map [y] [x] = new Air(); map [y] [x] = new Air();

4.2.2

}

function removeLock2 () {
for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++)
if (maply] [x] .isLock2())
map [y] [x] = new Air();

Original remove

is deleted
We call the process of introducing less-general versions of a function SPECIALIZE
METHOD.

Refactoring pattern: SPECIALIZE METHOD

DESCRIPTION

This refactoring is more esoteric because it goes against the instincts of many pro-
grammers. We have a natural desire to generalize and reuse, but doing so can be prob-
lematic because it blurs responsibilities and means our code can be called from a
variety of places. This refactoring pattern reverses these effects. More specialized
methods are called from fewer places, which means they become unused sooner, so
we can remove them.

PROCESS

1 Duplicate the method we want to specialize.

2 Rename one of the methods to a new permanent name, and remove (or replace)
the parameter we are using as the basis of our specialization.

3 Correct the method accordingly so it has no errors.

4 Switch the old calls over to use the new ones.

EXAMPLE
Imagine that we are implementing a chess game. As part of our move-checker, we
have come up with a brilliantly general expression to test whether a move fits a piece’s
pattern.

Listing 4.83 Initial

function canMove (start: Tile, end: Tile, dx: number, dy: number) {
return dx * abs(start.x - end.x) === dy * abs(start.y - end.y)
|| dy * abs(start.x - end.x) === dx * abs(start.y - end.y);

68 CHAPTER 4 Matke type codes work

/17
if
/17
if
/17
if
/17

(canMove (start, end, 1, 0)) // Rook

(canMove (start, end, 1, 1)) // Bishop

(canMove (start, end, 1, 2)) // Knight

We follow the process:

1 Duplicate the method we want to specialize.

Listing 4.84 Before Listing 4.85 After (1/4)

function canMove (start: Tile, end: Tile, function canMove (start: Tile, end: Tile,
dx: number, dy: number) dx: number, dy: number)
{ {
return dx * abs(start.x - end.x) return dx * abs(start.x end.x)
=== dy * abs(start.y - end.y) === dy * abs(start.y end.y)
|| dy * abs(start.x - end.x) || dy * abs(start.x - end.x)
=== dx * abs(start.y - end.y); === dx * abs(start.y end.y) ;
} }
function canMove (start: Tile, end: Tile,
dx: number, dy: number)
{
return dx * abs(start.x end.x)
=== dy * abs(start.y end.y)
|| dy * abs(start.x - end.x)
=== dx * abs(start.y - end.y);

2 Rename one of the methods to a new permanent name, and remove (or
replace) the parameter(s) we are using as the basis of our specialization.

Listing 4.86 Before Listing 4.87 After (2/4)

function canMove (start: Tile, end: Tile, function rookCanMove (
dx: number, dy: number) start: Tile, end: Tile)
{ {
return dx * abs(start.x - end.x) return 1 * abs(start.x - end.x)
=== dy * abs(start.y - end.y) === 0 * abs(start.y - end.y)
|| dy * abs(start.x - end.x) || 0 * abs(start.x - end.x)
=== dx * abs(start.y - end.y); === 1 * abs(start.y - end.y);

s Correct the method accordingly, so it has no errors. Since there are no errors
here, we merely simplify.

Refactoring a large if statement 69

Listing 4.88 Before Listing 4.89 After (3/4)

function rookCanMove (function rookCanMove (
start: Tile, end: Tile) start: Tile, end: Tile)
{ {
return 1 * abs(start.x - end.x) return abs (start.x - end.x)
=== 0 * abs(start.y - end.y) === 0
|| 0 * abs(start.x - end.x) || o
=== 1 * abs(start.y - end.y); === abs(start.y - end.y);

4 Switch the old calls over to use the new ones.

Listing 4.90 Before Listing 4.91 After (4/4)

if

4.2.3

(canMove (start, end, 1, 0)) // Rook if (rookCanMove (start, end))

Notice that we no longer need the comment. rookCanMove is also much easier to
understand: a rook can make a move if the change on either x or y is zero. We could
even remove the abs part to simplify further.

I leave it to you to perform the same refactoring for the other pieces in the initial
code. Are their methods as easy to understand?

FURTHER READING

To my knowledge, the preceding description is the first of this as a refactoring pattern,
although Jonathan Blow discussed the advantages of specialized methods versus gen-
eral ones in his speech “How to program independent games” at UC Berkeley’s Com-
puter Science Undergraduate Association 2011.

The only switch allowed

Only one error remains: we create our map using the enum indices, which no longer
works. Indices like these are commonly used to store things in databases or files. In
the case of a game, it would be logical to store levels in files using indices, as they are
easier to serialize than objects. In practice, it is often not possible to change existing
external data to accommodate refactoring. So instead of changing the entire map, it is
better to make a new function to take us from enum indices to the new classes. Luck-
ily, this is straightforward to implement.

Listing 4.92 Introducing transformTile

let rawMap: RawTile[]

[1 =
[2, 2, 2, 2, 2, 2, 2, 2],
[2, 3, 0, 1, 1, 2, 0, 2],
[2, 4, 2, 6, 1, 2, 0, 2],
[2, 8, 4, 1, 1, 2, 0, 2],
[2, 4, 1, 1, 1, 9, 0, 2]

] ’ ’

70 CHAPTER 4 Make type codes work

let map: Tile2[] [];
—> function assertExhausted(x: never): never {

throw new Error ("Unexpected object: " + Xx);
} New method for

transforming a
RawTile enum
into a Tile2 object

function transformTile(tile: RawTile) {
switch (tile) {
case RawTile.AIR: return new Air();
case RawTile.PLAYER: return new Player();

TypeScﬁpt case RawTile.UNBREAKABLE: return new Unbreakable() ;
trick, case RawTile.STONE: return new Stone () ;
explained case RawTile.FALLING STONE: return new FallingStone () ;
shortly case RawTile.BOX: return new Box () ;

case RawTile.FALLING BOX: return new FallingBox() ;
case RawTile.FLUX: return new Flux() ;

case RawTile.KEY1l: return new Keyl();

case RawTile.LOCKl: return new Lockl () ;

case RawTile.KEY2: return new Key2 () ;

case RawTile.LOCK2: return new Lock2() ;

L default: assertExhausted(tile) ;
} / New method
function transformMap () { for mapping
map = new Array (rawMap.length) ; the entire map
for (let y = 0; y < rawMap.length; y++) {
map [y] = new Array(rawMap[y] .length) ;
for (let x = 0; x < rawMaply].length; x++) {
map [y] [x] = transformTile (rawMap [y] [x]) ;
1
}
}
window.onload = () => {

transformMap () ; Remember to call
gameLoop () ; the new method.

J

In TypeScript ...

An enum is a name for a number, as in C#, not a class, as in Java. So, we do not
need any conversion between numbers and enums, and we can simply use the enum
indices as in the previous code.

transformMap exactly fits within our five-line limit. With that, our application com-
piles without error. Now we can check that the game still works, rename Tile2 to Tile
everywhere, and commit our changes.

transformTile violates our five-line rule. It also almost violates another rule,
NEVER USE switch, but we narrowly fall into the exception.

4.2.4

Refactoring a large if statement 71

Rule: NEVER USE SWITCH

STATEMENT
Never use switch unless you have no default and return in every case.

EXPLANATION

Switches are evil, as they allow for two “conveniences,” each of which leads to bugs.
First, when we do case analysis with switch, we don’t always have to do something for
every value; switch supports default for this purpose. With default, we can address
many values without duplication. What we handle and what we don’t is now invariant.
However, like any default value, this stops the compiler from asking us to revalidate
the invariant when we add a new value. To the compiler, there is no difference between
us forgetting to handle a new value and us wanting it to fall under default.

The other unfortunate convenience of switch is fall-through logic, where our pro-
gram continues executing cases until it hits a break. It is easy to forget to include it
and to not notice break is missing.

In general, I strongly recommend staying away from switch. But as specified in the
detailed statement of the rule, we can remedy these maladies. The first way is easy:
don’t put functionality in default. In most languages, we should not have a default.
Not all languages allow omitting default, and if the language we are using doesn’t, we
should not use switch at all.

We address the fall-through concern by returning in every case. As a result, there is
no fall-through, so there is no break to overlook.

In TypeScript ...

Switches are particularly helpful, as we can make the compiler check that we have
mapped all the enum values. We do need to introduce a “magic function” to make
this work, but it is TypeScript-specific, so why it works is out of scope for this book.
Luckily, the function never changes, and this pattern always works in TypeScript.

Listing 4.93 assertExhausted trick

function assertExhausted(x: never): never {

throw new Error ("Unexpected object: " + x);
1
/17
switch (t) {
case ...: return ...;
//

default: assertExhausted(t) ;

}

This type of function is also one of the few that we cannot transform to fit in five lines
if we want the compiler to check that we have mapped all the values.

72

4.2.5

CHAPTER 4 Matke type codes work

SMELL

In Martin Fowler’s book Refactoring, switch is the name of a smell. Switch focuses on
context: how to handle value X here. In contrast, pushing functionality into classes
focuses on data: how this value (object) handles situation X. Focusing on context
means moving invariants further from their data, thereby globalizing the invariants.

INTENT

An elegant side effect of this rule is that we transform switches to else if chains,
which we then make into classes. We push code eliminating the ifs, and in the end,
they disappear while preserving the functionality and making it easier and safer to add
new values.

REFERENCES
As mentioned earlier, you can read more about the smell in Martin Fowler’s book
Refactoring.

Eliminating the if

Where were we? We are working on the colorOfTile function, and here is how it cur-
rently looks.

Listing 4.94 Initial

function colorOfTile(g: CanvasRenderingContext2D, x: number, y: number) {
if (maply] [x].isFlux())

g.fillstyle = "#ccffcc";
else if (mapl[y] [x].isUnbreakable())
g.fillStyle = "#999999";
else if (map([y] [x].isStone()
|| maply] [x].isFallingStone())
g.fillstyle = "#0000cc";
else if (mapl[y] [x].isBox()
|| map(y] [x].isFallingBox())
g.fillstyle = "#8b4513";
else if (mapl[y] [x].isKeyl ()
|| maply] [x].isLockl())
g.fillstyle = "#ffcco0";
else if (mapl[y] [x].isKey2 ()
|| maply] [x].isLock2())
g.fillstyle = "#00ccff";

colorOfTile violates the rule NEVER USE if WITH else. We see that all the conditions
in colorOfTile look at map[y] [x]. This is the same condition we had earlier, so as
before, we apply PUSH CODE INTO CLASSES:

1 Copy colorOfTile, and paste it into all the classes. Remove function; in this
case, remove the parameters y and x, and replace map [y] [x] with this.

2 Copy the method signature into the Tile interface. Let’s also rename it to
color.

Refactoring a large if statement 73

3 Go through the new method in all classes:

a Inline all the is methods.
b Remove if (true) and if (false) { ..

. }. Most of the new methods are left

with a single line, and Air and Player are empty.

¢ Change the name to color to signal that we are finished with this method.

4 Replace the body of color0fTile with a call to map [y] [x] . color.

At this point, the if is gone, and we are no longer violating any rules.

Listing 4.95 Before Listing 4.96 After

function colorOfTile(
g: CanvasRenderingContext2D,
x: number, y: number)

{

if (maply] [x] .isFlux())
g.fillstyle = "#ccffcec";
else if (map(y] [x].isUnbreakable())
g.fillStyle = "#999999";
else if (mapl[y] [x] .isStone ()
| | maplyl [x].isFallingStone())
g.fillstyle = "#0000cc";
else if (maply] [x].isBox ()
| | maplyl [x].isFallingBox())
g.fillStyle = "#8b4513";

else if (maply] [x].isKeyl ()
|| maplyl [x].isLockl())
g.fillstyle = "#ffcc00";
else if (maply] [x].isKey2()
|| maplyl [x].isLock2())
g.fillstyle = "#00ccff";

function colorOfTile (
g: CanvasRenderingContext2D,
x: number, y: number)

{

map [y] [x] .color(g) ;

}

interface Tile {

/] ...

color (g: CanvasRenderingContext2D) : void;

}

class Air implements Tile

/..

color(g: CanvasRenderingContext2D) {

} color is empty in Air and Player
} because all the ifs were false.
class Flux implements Tile {

/...

color(g: CanvasRenderingContext2D) {
g.fillstyle = "#ccffcec";

}

} All other classes have only
their specific color.

colorOfTile has only a single line, so we decide to INLINE METHOD:

1 Change the method name to colorOfTile2.

2 Copy the body map [y] [x] .color (g) ;, and note that the parameters are x, v,

and g.

3 We use this function in only one place, where we replace the call with the body.

Listing 4.97 Before Listing 4.98 After

colorOfTile(g, x, Vy);

map [y] [x] .color(g) ;

74 CHAPTER 4 Make type codes work

In the end, we have the following.

Listing 4.99 Before

function drawMap (
g: CanvasRenderingContext2D)
{
for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply].length; x++){
colorOfTile(g, %, Y);
if (maply] [x] !== Tile.AIR
&& map [y] [x] !== Tile.PLAYER)
g.fillRect (
x * TILE SIZE,
y * TILE_SIZE,
TILE SIZE,
TILE SIZE);

1
1
1
function colorOfTile (
g: CanvasRenderingContext2D,
x: number, y: number)
{
map [y] [x] .color(g) ;

}

Listing 4.100 After

function drawMap (

g: CanvasRenderingContext2D)
{
for (let y = 0; y < map.length; y++) {
for (let x = 0; X < maply].length; x++){

map [y] [x] .color(g) ; QT
))

Inlined

if (lmap(ly] [X].isBAir () body

&& !map [y] [x] .isPlayer (
g.fillRect (
x * TILE SIZE,
y * TILE_SIZE,
TILE SIZE,
TILE SIZE);

ﬁ

colorOfTile
is deleted.

We have eliminated the large if from drawMap. But drawMap still does not comply with

our rules, so we continue.

4.3 Addressing code duplication

drawMap is in violation because it has an if in the middle. We can solve this by extract-
ing the if as we have done many times. But this is the chapter of PUSH CODE INTO
CLASSES, so we can also be adventurous and try that. Doing so makes sense because

both the if and the line before it concern map [y] [x].

TIP If you want to be a bit daring, you can skip extracting the method and
inlining it in the following process, and push it directly into the classes. Make
sure you have committed first so you can return to this point if something

breaks.

The procedure is the same as for handleInput and colorOfTile, except that we are
not just extracting an if. We start with EXTRACT METHOD (P3.2.1) on the body of

the fors.

Addressing code duplication

Listing 4.101 Before

function drawMap (
g: CanvasRenderingContext2D)
{

for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply].length; x++){

map [y] [x] .color(qg) ;
if (lmaply] [x].isAir()
&& !map [y] [x] .isPlayer())
g.fillRect (
x * TILE SIZE, y * TILE SIZE,
TILE SIZE, TILE SIZE);

We can now use PUSH CODE INTO CLASSES to move this method into the Tile classes.

Listing 4.103 Before Listing 4.104 After

function drawTile (
g: CanvasRenderingContext2D,
x: number, y: number)
{
map [y] [x] .color (g) ;
if (!maply] [x].isAir ()
&& !map [y] [x] .isPlayer())
g.fillRect (
x * TILE SIZE,
y * TILE SIZE,
TILE SIZE,
TILE_SIZE) ;

Listing 4.102 After

function drawMap (
g: CanvasRenderingContext2D)

{

for (let y = 0; y < map.length; y++) {

for (let x = 0; x < maply].length; x++){

drawTile(g, x, y);
}
1
1

function drawTile (
g: CanvasRenderingContext2D,
x: number, y: number)
{
map [y] [x] .color(g) ;
if (!mapl[y] [x].isAir()
&& !map[y] [x] .isPlayer ()
g.fillRect (
x * TILE SIZE, y * TILE SIZE,
TILE SIZE, TILE_SIZE);

function drawTile (
g: CanvasRenderingContext2D,
x: number, y: number)

{
map [y] [x] .draw(g, %X, y);
1
interface Tile {
//
draw (g: CanvasRenderingContext2D,
x: number, y: number): void;
}

class Air implements Tile {
!/
draw(g: CanvasRenderingContext2D,
x: number, y: number)

{ draw ends up being
} empty in Air and Player.

}
class Flux implements Tile {
//
draw (g: CanvasRenderingContext2D,
x: number, y: number)

{

76 CHAPTER 4 Make type codes work

All other classes g.fillstyle = "#ccffce";
end up with two g.fillRect (
lines after inlining x * TILE SIZE,
color and isAir y * TILE_SIZE,
and deleting TILE SIZE,
the if (true). TILE SIZE) ;

As usual, after we PUSH CODE INTO CLASSES, we have a function with only one line:
drawTile. So, we use INLINE METHOD.

Listing 4.105 Before Listing 4.106 After

function drawMap (function drawMap (
g: CanvasRenderingContext2D) g: CanvasRenderingContext2D)
{ {
for (let y = 0; y < map.length; y++) { for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply].length; x++){ for (let x = 0; x < maply].length; x++){
drawTile(g, x, ¥); map [y] [x] .draw(g, x, V¥);
} }
} } } } Inlined body
function drawTile (drawTileis
g: CanvasRenderingContext2D, deleted

x: number, y: number)

{

map [y] [x] .draw(g) ;

}

At this point, you may be wondering: What is up with all the code duplication in the
classes? Couldn’t we use an abstract class instead of the interface and put all the com-
mon code there? Let’s answer each question in turn.

4.3.1 Couldn’t we use an abstract class instead of the interface?

First of all, yes. Yes, we could do that, and it would avoid code duplication. However,
that approach also has some significant drawbacks. First, using an interface forces us
to actively do something for each new class we introduce. Therefore, we cannot acci-
dentally forget a property or override something we shouldn’t. This is especially prob-
lematic six months from now when we have forgotten how this works and we return to
add a new tile type.

This concept is so strong that it is also formalized in a rule that prevents us from
using abstract classes: ONLY INHERIT FROM INTERFACES.

4.3.2

Addressing code duplication 77

Rule: ONLY INHERIT FROM INTERFACES

STATEMENT
Only inherit from interfaces.

EXPLANATION

This rule simply states that we can only inherit from interfaces, as opposed to classes
or abstract classes. The most common reason people use abstract classes is to provide
a default implementation for some methods while having others be abstract. This
reduces duplication and is convenient if we are lazy.

Unfortunately, the disadvantages are much more significant. Shared code causes
coupling. In this case, the coupling is the code in the abstract class. Imagine that two
methods are implemented in the abstract class: methodA and methodB. We find out
that one subclass needs only methodA and another needs only methodB. Our only
option, in this case, is to override one of the methods with an empty version.

When we have a method with a default implementation, there are two scenarios:
either every possible subclass needs the method, in which case we can easily move the
method out of the class; or some subclasses need to override the method, but because
it has an implementation, the compiler does not remind us of the method when we
add a new subclass.

This is another instance of the issues with defaults, discussed earlier. In this case, it
is better to leave methods entirely abstract because then we need to explicitly handle
these cases.

When multiple classes need to share code, we can put that code in another
shared class. We return to this in chapter 5, when we discuss INTRODUCE STRATEGY
PATTERN (P5.4.2).

SMELL

I derived this rule from the principle “Favor object composition over inheritance” from
the book Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides (often referred to as the Gang of Four, as mentioned previously). This book also
introduced the concept of design patterns to object-oriented programming.

INTENT

The smell states plainly that we should share code by referring other objects in favor
of inheriting from them. This rule takes it to the extreme, as it is extremely rare for a
problem to require inheritance; and when a problem doesn’t, composition gives us a
more flexible and stable solution.

REFERENCES

As mentioned, the rule comes from the book Design Patterns. We explore a better solu-
tion to get the desired code sharing in chapter 5 when we discuss the INTRODUCE
STRATEGY PATTERN (P5.4.2) refactoring.

78

4.3.3

44

CHAPTER 4 Matke type codes work

What is up with all this code duplication?

In many cases, code duplication is bad. Everybody knows this, but let’s think about
why it is. Code duplication is bad when we need to maintain the code because we have
to change something in a way that propagates throughout the program.

If we have duplicated code, and we change it in one place, we now have two differ-
ent functions. Another way to say this is that code duplication is bad because it
encourages divergence.

In most cases, that is not what we want; but in our example case, it would be bet-
ter. We expect that the graphics for different tiles should change over time and
should be different. To make a point of this, consider how easy it would be to make
the keys round.

If the code should have converged, how should we have dealt with it, when we can-
not use inheritance? We return to this exact situation in the next chapter.

Refactoring a pair of complex if statements

The next two functions that remain in violation of our rules are moveHorizontal and
moveVertical. They are almost identical, so I present only the more complicated of
the two, leaving the other as an exercise for you. moveHorizontal currently looks com-
plicated; luckily, we can ignore most of it for now.

Listing 4.107 Initial

function moveHorizontal (dx: number) {
if (map([playery] [playerx + dx].isFlux()

|| maplplayery] [playerx + dx].isAir()) {
moveToTile (playerx + dx, playery); ”sthatwewant
} else if ((map[playery] [playerx + dx].isStone/() to preserve

|| maplplayery] [playerx + dx].isBox())

&& map [playery] [playerx + dx + dx].isAir()

&& !map [playery + 1] [playerx + dx].isAir()) {
map [playery] [playerx + dx + dx] = map([playery] [playerx + dx];
moveToTile (playerx + dx, playery);

} else if (mapl[playery] [playerx + dx].isKeyl()) {
removeLockl () ;
moveToTile (playerx + dx, playery);

} else if (maplplayery] [playerx + dx].isKey2()) {
removeLock2 () ;

moveToTile (playerx + dx, playery);

First, notice that we have two | |s. These express something about the underlying
domain. So, we would like to not only preserve this structure but emphasize it. We do
so by pushing only that part into the classes.

This approach is a little different from what we have done before, as we are not
pushing an entire method; however, the process stays the same. The most difficult

Refactoring a pair of complex if statements 79

part is coming up with a good name. Now is the time to look at what the code is doing
and be careful. We want to state that there is a relation between flux and air; it relates
to the game and not something general, so we will not dwell on it but will simply say
that they are edible:

Introduce an isEdible method in the Tile interface.

In each class, add a method with a slightly wrong name: isEdible2.
As the body, put return this.isFlux() || this.isAir();.

Inline the values of isFlux and isAir.

Remove the temporary 2 in the name.

o a ~ W N B

Replace map [playery] [playerx + dx].isFlux() || map[playery] [playerx +
dx] .1isAir () only here. We cannot replace it everywhere because we do not know
if other | |s refer to the same property (i.e., being edible).

The same situation is true for the other | |s. Here, boxes and stones share the prop-
erty of being pushable in this context. Following the same pattern, we end up with the
following code.

Listing 4.108 Before

function moveHorizontal (dx: number) {
if (map[playeryl] [playerx + dx].isFlux()
|| maplplayery] [playerx + dx].isAir()) ({
moveToTile (playerx + dx, playery);
} else if ((map[playeryl] [playerx + dx].isStone ()
|| maplplayery] [playerx + dx].isBox())
&& map [playery] [playerx + dx + dx].isAir()
&& !map[playery + 1] [playerx + dx].isAir()) {
map [playery] [playerx + dx + dx] = mapl[playeryl] [playerx + dx];
moveToTile (playerx + dx, playery);

| |s to be
extracted

} else if (maplplayery] [playerx + dx].isKeyl()) {
removeLockl () ;
moveToTile (playerx + dx, playery);

} else if (map[playery] [playerx + dx].isKey2()) {
removeLock2 () ;

moveToTile (playerx + dx, playery);

Listing 4.109 After

function moveHorizontal (dx: number) {
if (map[playery] [playerx + dx].isEdible()) {
moveToTile (playerx + dx, playery); New helper
} else if (mapl[playery] [playerx + dx].isPushable () methods
&& map [playery] [playerx + dx + dx].isAir()
&& !map[playery + 1] [playerx + dx].isAir()) {
map [playery] [playerx + dx + dx] = map[playeryl] [playerx + dx];
moveToTile (playerx + dx, playery);
} else if (map[playery] [playerx + dx].isKeyl()) {

80

CHAPTER 4 Matke type codes work

removeLockl () ;
moveToTile (playerx + dx, playery);

} else if (maplplayery] [playerx + dx].isKey2()) {
removeLock2 () ;

moveToTile (playerx + dx, playery);
}
}

interface Tile {

/]
isEdible() : boolean;
isPushable () : boolean;
} Box and Stone
class Box implements Tile are similar.
//

isEdible () { return false; }
isPushable () { return true; }

}

class Air implements Tile Air and Flux
(/ T are similar.
isEdible() { return true; }

isPushable () { return false; }

}

Having preserved the behavior of the | |s, we move on as normal and look at the con-
text. The context of this code is map [playery] [playerx + dx], asitis used in every if.
Here we see that PUSH CODE INTO CLASSES applies not only when we start with a series
of equality checks but also to anything with a clear context—that is, a lot of method
invocations on the same instance ([.]s with the same thing on the left).

So, we push the code into map [playery] [playerx + dx]; Tile again. After PUSH
CODE INTO CLASSES, the code looks like this.

Listing 4.110 After PusH CODE INTO CLASSES

function moveHorizontal (dx: number) {
map [playery] [playerx + dx] .moveHorizontal (dx) ;

}

interface Tile ({

//
moveHorizontal (dx: number) : void;
} Box and Stone
class Box implements Tile { are similar.
//

moveHorizontal (dx: number) {
if (map[playery] [playerx + dx + dx].isAir()
&& !'map[playery + 1] [playerx + dx].isAir()) {
map [playery] [playerx + dx + dx] = this;
moveToTile (playerx + dx, playery);

}
} } Key1 and Key2
class Keyl implements Tile { are similar.

//

moveHorizontal (dx: number) {

4.5

Removing dead code 81

removeLockl () ;
moveToTile (playerx + dx, playery);
} } The rest are
class Lockl implements Tile { empty.
!/
moveHorizontal (dx: number) X
} Air and Flux
class Air implements Tile { are similar.
!/

moveHorizontal (dx: number) {
moveToTile (playerx + dx, playery);

}
}

As usual, the original moveHorizontal method is only a single line, so we inline it.
Notice that because this if was more complex, there are artifacts from it in Box and
Stone. Luckily, they still comply with our rules. Now you can do the same thing for the
moveVertical method.

The only method that remains in conflict with our new rule NEVER USE if WITH
elseis updateTile. But that method has a hidden structure, which we explore further
in the next chapter.

Removing dead code

We end this chapter with some cleanup. We introduced a lot of new methods, and we
deleted some after inlining them, but we can go further.

Many IDEs—including Visual Studio Code—indicate if a function is unused.
Whenever we see such an indication and we are not in the middle of something, we
should delete the function immediately. Deleting code saves us time because we don’t
have to deal with it in the future.

Unfortunately, because interfaces are public, no IDE can tell you whether the
methods in an interface are unused. We may intend to use them in the future, or they
may be used by something outside of our scope. In general, we cannot easily delete
methods from interfaces.

But the interfaces we have considered in this chapter were all introduced by us;
therefore, we know the entire scope. We are free to do with them as we please: in par-
ticular, we can delete unused methods from them. Here is a technique for discovering
whether methods are unused:

Compile. There should be no errors.

Delete a method from the interface.

Compile.
If the compiler errors, undo, and move on.
Otherwise, go through each class and check whether you can delete the
same method from it without getting errors.

82

4.5.1

CHAPTER 4 Matke type codes work

This is a simple but useful technique. After cleaning our interfaces, they have only 1
method in one interface and 10 methods in the other interface, respectively. I am
such a big fan of deleting code that I have made a refactoring pattern out of this pro-
cess: TRY DELETE THEN COMPILE.

Refactoring pattern: TRY DELETE THEN COMPILE

DESCRIPTION

This refactoring pattern’s primary use is to remove unused methods from interfaces
when we know the interfaces’ entire scope. We can also use this pattern to find and
remove any unused methods. Performing TRY DELETE THEN COMPILE is as simple as
the name describes: try deleting a method, and see if the compiler allows us to do so.
This refactoring pattern is interesting not for its sophistication but for its purpose.
Note that we should not perform this refactoring while implementing new features, as
we might delete methods that are not used yet.

Having expired code in a codebase drags it down. The code takes time to read or
ignore, and it makes compilation and analyses slower and testing more difficult. The
quicker we can remove irrelevant code, the cheaper the process in terms of cost and
effort.

To help identify unused methods, lots of editors highlight them in some way. But
the analyses in these editors can be cheated. One of the things that can cheat the anal-
yses is an interface. If a method is in an interface, it may be because the method needs
to be available for code outside of our scope or because we need the method for code
inside our scope. Editors cannot tell the difference. The only safe option is to assume
that all interface methods are meant to be used outside our scope.

When we know an interface is used only in our scope, we need to clean it up man-
ually. This is the purpose of this refactoring pattern.

PROCESS

1 Compile. There should be no errors.
2 Delete a method from the interface.
s Compile.
a If the compiler errors, undo, and move on.
b Otherwise, go through each class and check whether you can delete the
same method from it without getting errors.

EXAMPLE
There are three unused methods in this artificial piece of code, but they are not all
highlighted by the editor. In some editors, none are highlighted.

Listing 4.111 Initial

interface A {
ml(): void;
m2 () : void;

}

Summary

class B implements A {

ml() { console.log("ml"); }
m2() { this.m3(); }
m3 () { console.log("m3"); }

1
let a = new B();
a.ml();

Following the process, can you discover and eliminate the three unused methods?

Summary

83

The rules NEVER USE if WITH else (R4.1.1) and NEVER USE switch (R4.2.4)
state that we should have elses or switches only at the edges of our program.
Both elses and switches are low-level control-flow operators. In the core of our
applications, we should use the refactoring patterns REPLACE TYPE CODE WITH
CLASSES (P4.1.3) and PUSH CODE INTO CLASSES (P4.1.5) to replace switches and
else if chains with high-level classes and methods.

Overly general methods can prevent us from refactoring. In these cases, we can
use the refactoring pattern SPECIALIZE METHOD (P4.2.2) to remove unnecessary
generality.

The rule ONLY INHERIT FROM INTERFACES (P4.3.2) prevents us from reusing
code by using abstract classes and class inheritance because these types of inher-
itance impose unnecessarily tight coupling.

We added two refactoring patterns for cleaning up after refactoring. INLINE
METHOD (P4.1.7) and TRY DELETE THEN COMPILE (P4.5.1) can both remove
methods that no longer add readability.

Fuse stmilar code together

This chapter covers

Unifying similar classes with UNIFY SIMILAR CLASSES
Exposing structure with conditional arithmetic
Understanding simple UML class diagrams

Unifying similar code with INTRODUCE STRATEGY-
PATTERN (P5.4.2)

Removing clutter with NO INTERFACE WITH ONLY ONE
IMPLEMENTATION (R5.4.3)

In the previous chapter, I mentioned that we are not finished with updateTile. It
violates several rules, most notably NEVER USE if WITH else (R4.1.1). We also
worked to preserve the ||s in the code because they expressed structure. In this
chapter, we explore how to expose more such structures in the code.

This is updateTile at the moment.

Listing 5.1 Initial

function updateTile (x: number, y: number) {

if ((maply] [x].isStone() || maply] [x].isFallingStone())
&& maply + 1] [x].isAir()) {
map [y + 1] [x] = new FallingStone() ;

84

5.1

Unifying similar classes 85

map [y] [x] = new Air();
} else if ((maply] [x].isBox() || maply] [x].isFallingBox())
&& maply + 1] [x].isAir()) {
map [y + 1] [x] = new FallingBox() ;
map [y] [x] = new Air();
} else if (maply] [x].isFallingStone()) {
map [y] [x] = new Stone() ;
} else if (maply] [x].isFallingBox()) {
map [y] [x] = new Box() ;

}

Unifying similar classes

The first thing we spot is that, as was the case earlier, we have parenthesized expres-
sions (that is, (maply] [x].isStone() || maply] [x].isFallingStone())) that
express a relation we want to not only preserve but also emphasize. Therefore, our
first step is to introduce one function for each of the two parenthesized | |s. We say
that stony and boxy should be understood as “behaves like a stone” and “behaves like
a box,” respectively.

Listing 5.2 Before Listing 5.3 After

function updateTile (x: number, y: number) { function updateTile (x: number, y: number) {
if ((maply] [x].isStone () if (maply] [x] .isStony () B
|| maply] [x].isFallingStone())
&& maply + 1] [x].isAir()) { && maply + 1] [x].isAir()) {
map [y + 1] [x] = new FallingStone() ; map [y + 1] [x] = new FallingStone() ;
map [y] [X] = new Air(); map [y] [x] = new Air();
} else if ((maply] [x].isBox() } else if (maply] [x].isBoxy () P
|| maplyl [x]. 1sFa111ngBox())
&& maply + 1] [x].isAir()) { && maply + 11 [x].isAir()) {
map [y + 1] [x] = new FalllngBox() i map [y + 1] [x] = new FalllngBox() ;
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isFallingStone()) ({ } else if (maply] [x].isFallingStone()) ({
map [y] [x] = new Stone() ; map [y] [x] = new Stone() ;
} else if (maply] [x].isFallingBox()) ({ } else if (maply] [x].isFallingBox()) ({
map [yl [x] = new Box(); map [y] [x] = new Box() ;
} 1
1 1 New helper

methods
interface Tile {

/] ...
isStony () : boolean;
isBoxy () : boolean;

}

class Air implements Tile

/] ...
isStony () { return false; }
isBoxy() { return false; }

}

86

CHAPTER 5 Fuse similar code together

Having dealt with the | |s, we can push the code into classes, but we can also wait and
first take a look at the classes and the many methods we introduced in the last chapter.
At this point, TRY DELETE THEN COMPILE (P4.5.1) lets us delete isStone and isBox.

We notice that the only difference between Stone and FallingStone is the result
of the isFallingStone and moveHorizontal methods.

Listing 5.4 Stone Listing 5.5 FallingStone

class Stone implements Tile { class FallingStone implements Tile {
isAir() { return false; } isAir() { return false; }
isFallingStone () { return false; } <> isFallingStone() { return true; }
isFallingBox () { return false; } isFallingBox () { return false; }
isLockl () { return false; } isLockl () { return false; }
isLock2() { return false; } isLock2() { return false; }
draw(g: CanvasRenderingContext2D, draw(g: CanvasRenderingContext2D,
x: number, y: number) x: number, y: number)
{ Only {
// differences //
} }
moveVertical (dy: number) { } moveVertical (dy: number) { }
isStony () { return true; } isStony() { return true; }
isBoxy () { return false; } isBoxy () { return false; }
moveHorizontal (dx: number) { moveHorizontal (dx: number) {

!/
}

<+

}

When a method returns a constant, we call it a constant method. We can join these two
classes because they share a constant method that returns a different value in each
case. Joining two classes like this happens in two phases, and the process is reminis-
cent of the algorithm for adding fractions. The first step in adding fractions is mak-
ing the denominators equal, and in the same way, the first phase in joining classes is
to make the classes equal in all but the constant methods. The second phase for
fractions is the actual addition; for classes, it’s the actual joining. Let’s see how it
looks in practice:

1 The first phase makes the two moveHorizontals equal:
a In the body of each moveHorizontal, add an enclosing if (true) { } around
the existing code.

Unifying similar classes 87

Listing 5.6 Before

class Stone implements Tile {

/.

moveHorizontal (dx: number) {

if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir ())
{
map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery) ;

}

}
}

class FallingStone implements Tile {

/...

moveHorizontal (dx: number) {

}
}

Listing 5.7 After (1/8)

class Stone implements Tile {

!/
moveHorizontal (dx: number) {
if (true) { <
if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir ())
{
map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery) ;
}
} New if
} (true)s

}

class FallingStone implements Tile {

/] ...

moveHorizontal (dx: number) {

if (true) { } <
1
1

b Replace true with isFallingStone() === true and isFallingStone() ===

false, respectively.

Listing 5.8 Before

class Stone implements Tile {
//
moveHorizontal (dx: number) {
if (true) {
if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())
{
map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery) ;
}
}
}
}
class FallingStone implements Tile {
/] ...
moveHorizontal (dx: number) {
if (true) { }
}
}

Listing 5.9 After (2/8)

class Stone implements Tile {

//
moveHorizontal (dx: number) {
if (this.isFallingStone() === false) ({ <
if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())
{
map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery) ;
1
} Specialized
} conditions
}
class FallingStone implements Tile {
/...
moveHorizontal (dx: number) {
if (this.isFallingStone() === true) { } <

}
}

88

CHAPTER 5 Fuse similar code together

< Copy the body of each moveHorizontal, and paste it with an else into the

other moveHorizontal.

Listing 5.10 Before Listing 5.11 After (3/8)

class Stone implements Tile {
//
moveHorizontal (dx: number) {
if (this.isFallingStone ()
if

false) {

{
map [playery] [playerx+dx + dx] =
moveToTile (playerx+dx, playery) ;
}
}

Body from
the other
} method

}

class FallingStone implements Tile {

//

moveHorizontal (dx: number) {

if (this.isFallingStone() ===
{
1
1
1

(map [playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())

this;

class Stone implements Tile {
/]
moveHorizontal (dx: number) {
if (this.isFallingStone () false) {
if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())

{

map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery) ;
}
}
—i> else if (this.isFallingStone() === true)
{
}
}
}
class FallingStone implements Tile {
/...
moveHorizontal (dx: number) {
L if (this.isFallingStone() === false) ({

if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())

{

map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery);
}
}
else if (this.isFallingStone() === true)

{
}
}
}

2 Now that only the isFallingStone constant methods are different, the second
phase begins by introducing a falling field and assigning its value in the con-

structor.

Unifying similar classes 89

Listing 5.12 Before Listing 5.13 After (4/8)

class Stone implements Tile { class Stone implements Tile {
private falling: boolean; R —
constructor () {
—> this.falling = false;
} New
/) 7/ field
isFallingStone() { return false; } isFallingStone () { return false; }
} }
class FallingStone implements Tile { class FallingStone implements Tile {
private falling: boolean; <
Assigns a constructor () {
default value to this.falling = true;
the new field }
/... /7
isFallingStone() { return true; } isFallingStone() { return true; }
} }

3 Change isFallingStone to return the new falling field.

Listing 5.14 Before Listing 5.15 After (5/8)

class Stone implements Tile { class Stone implements Tile {

VY !/

isFallingStone() { return false; } isFallingStone() { return this.falling; } <—
} }
class FallingStone implements Tile { class FallingStone implements Tile {

/... //

isFallingStone () { return true; } isFallingStone () { return this.falling; } <
} }

Returns a field instead
of a constant

4 Compile to ensure that we have not broken anything yet.
5 For each of the classes:

a Copy the default value of falling, and then make the default value a

parameter.
Listing 5.16 Before Listing 5.17 After (6/8)
class Stone implements Tile { class Stone implements Tile {
private falling: boolean; private falling: boolean;
constructor () ({ constructor (falling: boolean)
this.falling = false; this.falling = falling;
} }
/] ... /] ... Makes falling a
} } parameter

b Go through the compiler errors, and insert the default value as an argument.

90 CHAPTER 5 Fuse similar code together

Listing 5.18 Before Listing 5.19 After (7/8)

/1] ... /17 .
new Stone () ; new Stone (false) ; .
’ i< Calls with the
AT I default value

6 Delete all but one of the classes we are unifying, and fix all of the compile
errors by switching to the class that is still there.

Listing 5.20 Before Listing 5.21 After (8/8)

/117 - /117 - Replaces the
new FallingStone (true) ; new Stone (true) ; deleted class with
/17 .. /1 the unified one

This unification amounts to the following transformation.

Listing 5.22 Before Listing 5.23 After

function updateTile (x: number, y: number) { function updateTile (x: number, y: number) {

if (mapl[y] [x] .isStony () if (mapl[y] [x] .isStony ()
&& maply + 1] [x].isAir()) { && maply + 1] [x].isAir()) ({
map [y + 1] [x] = new FallingStone() ; map [y + 1] [x] = new Stone(true); <G
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isBoxy () } else if (maply] [x] .isBoxy ()
&& maply + 1] [x].isAir()) { && map [y + 1] [x].isAir()) {
map [y + 1] [x] = new FallingBox() ; map [y + 1] [x] = new FallingBox() ;
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isFallingStone()) ({ } else if (maply] [x].isFallingStone()) {
map [y] [x] = new Stone() ; map [y] [x] = new Stone (false) ; <+
} else if (maply] [x].isFallingBox()) { } else if (maply] [x].isFallingBox()) {
map [y] [x] = new Box() ; map [y] [x] = new Box() ;
} } Private field, set
} } in the constructor
class Stone implements Tile { class Stone implements Tile {
// ... constructor (private falling: boolean) { } <—
isFallingStone() { return false; } /] ...
moveHorizontal (dx: number) { —> isFallingStone() { return this.falling; }
if (map[playery] [playerx+dx+dx] .isAir () moveHorizontal (dx: number) { <
&& !map [playery+1] [playerx+dx] .isAir()) if (this.isFallingStone() === false) {
{ if (map[playery] [playerx+dx+dx] .isAir ()
map [playery] [playerx+dx + dx] = this; && !map [playery+1] [playerx+dx] .isAir())
moveToTile (playerx+dx, playery) ; {
} isFallingStone map [playery] [playerx+dx + dx] = this;
} } returns this field. } moveToTile (playerx+dx, playery) ;
class FallingStone implements Tile { } else if (this.isFallingStone() === true)
/- { moveHorizontal
isFallingStone() { return true; } } has the combined
moveHorizontal (dx: number) { } }

/ } FallingStone bodies.

is removed.

Unifying similar classes 91

In TypeScript ...

Constructors behave a little differently than in most languages. First, we can have only one
constructor, and it is always called constructor.

Second, putting public or private in front of a parameter to the constructor automatically
makes an instance variable and assigns it the value of the argument. So the following are
equivalent.

class Stone implements Tile { class Stone implements Tile ({
private falling: boolean;
constructor (falling: boolean) { constructor (
this.falling = falling; private falling: boolean) { }
} }
}

We generally prefer the version on the right in this book.

Looking at the resulting moveHorizontal, we spot multiple interesting points. The
most obvious is that it contains an empty if. Even more significant, it now contains
an else, which means it violates NEVER USE if WITH else. A common effect of join-
ing classes the way we just did is that it exposes potentially hidden type codes. In this
case, the Boolean falling is a type code. We can expose this type code by making it
into an enum.

Listing 5.24 Before Listing 5.25 After

enum FallingState {
FALLING, RESTING

}

/1] ... /1] ...

new Stone (true) ; new Stone (FallingState.FALLING) ;
/1] ... /1] ...

new Stone (false) ; new Stone (FallingState.RESTING) ;
/] ... /17
class Stone implements Tile { class Stone implements Tile {

constructor (private falling: boolean) constructor (private falling: FallingState)

{1} {1}

/] ... /...

isFallingStone () { isFallingStone () {

return this.falling; return this.falling

=== FallingState.FALLING;

92 CHAPTER 5 Fuse similar code together

This change has already made the code more readable because we get away with the
unnamed Boolean arguments to Stone. But even better, we know how to deal with
enums: REPLACE TYPE CODE WITH CLASSES (P4.1.3).

Listing 5.26 Before Listing 5.27 After

enum FallingState { interface FallingState
FALLING, RESTING isFalling () : boolean;
isResting(): boolean;

} }

class Falling implements FallingState ({
isFalling() { return true; }
isResting() { return false; }

1

class Resting implements FallingState {
isFalling() { return false; }
isResting() { return true; }

}

new Stone (FallingState.FALLING) ; new Stone (new Falling()) ;

new Stone (FallingState.RESTING) ; new Stone (new Resting()) ;
class Stone implements Tile { class Stone implements Tile {

constructor (private falling: constructor (private falling:
FallingState) FallingState)

{1} {1}

/] ... /] ...

isFallingStone () { isFallingStone () {

return this.falling return this.falling.isFalling() ;

=== FallingState.FALLING;

If we are bothered that the news are slightly slower, we can extract them to constants;
but remember, performance optimization should be guided by profiling tools. If we
inline isFallingStone in the method moveHorizontal, we see that we should proba-
bly use PUSH CODE INTO CLASSES (P4.1.5).

Listing 5.28 Before Listing 5.29 After

interface FallingState { interface FallingState {
/] ... //
moveHorizontal (

tile: Tile, dx: number): void;
} }
class Falling implements FallingState { class Falling implements FallingState {
/] ... /] ...
moveHorizontal (tile: Tile, dx: number) {
1
} }

Unifying similar classes 93

class Resting implements FallingState { class Resting implements FallingState {
/... /] ...
} moveHorizontal (tile: Tile, dx: number) {
class Stone implements Tile { if (map[playery] [playerx+dx+dx] .isAir ()
/] ... && !map [playery+1] [playerx+dx] .isAir ())
moveHorizontal (dx: number) { {
if (!this.falling.isFalling()) { map [playery] [playerx+dx + dx] = tile;
if (mapl[playery] [playerx+dx+dx] .isAir () moveToTile (playerx+dx, playery) ;
&& !map [playery+1] [playerx+dx] .isAir()) }

{

}

map [playery] [playerx+dx + dx] = this; }

moveToTile (playerx+dx, playery); class Stone implements Tile {
} /e
} else if (this.falling.isFalling()) ({ moveHorizontal (dx: number) {

}
}
}

511

this.falling.moveHorizontal (this, dx);

1
}

Finally, since we introduced a new interface, we can use TRY DELETE THEN COMPILE to
remove isResting. I leave it to you to do the same for Box and FallingBox; notice
that you can reuse FallingState. We call unifying two similar classes like this UNIFY
SIMILAR CLASSES.

Refactoring pattern: UNIFY SIMILAR CLASSES

DESCRIPTION

Whenever we have two or more classes that differ from each other in a set of constant
methods, we can use this refactoring pattern to unify them. A set of constant methods
is called a basis. A basis with two methods is called a two-point basis. We want our basis to
have as few methods as possible. When we want to unify X classes, we need at most an
(X — I)—point basis. Unifying classes is great because having fewer classes usually
means we uncover more structure.

PROCESS

The first phase is to make all the non-basis methods equal. For each of these

methods, perform these steps:
In the body of each version of the method, add an enclosing if (true) { }
around the existing code.
Replace true with an expression calling all the basis methods and comparing
their result to their constant values.
Copy the body of each version, and paste it with an else into all the other
versions.

Now that only the basis methods are different, the second phase begins by

introducing a field for each method in the basis and assigning its constant in
the constructor.

Change the methods to return the new fields instead of the constants.

94

CHAPTER 5 Fuse similar code together

4 Compile to ensure that we have not broken anything yet.
5 For each class, one field at a time:
a Copy the default value of the field, and then make the default value a
parameter.
b Go through the compiler errors, and insert the default value as an argument.
6 After all the classes are identical, delete all but one of the unified classes, and
fix all the compile errors by switching to the remaining class.

EXAMPLE
In this example, we have a traffic light with three classes that are pretty similar, so we
have decided to unify them.

Listing 5.30 Initial

function nextColor (t: TrafficColor) {
if (t.color() === "red") return new Green|() ;
else if (t.color
else if (t.color

() === "green") return new Yellow() ;
() === "yellow") return new Red() ;
}
interface TrafficColor ({
color(): string;
check (car: Car): void;
}
class Red implements TrafficColor ({
color() { return "red"; }
check (car: Car) { car.stop(); }
}
class Yellow implements TrafficColor {
color() { return "yellow"; }
check (car: Car) { car.stop(); }
}
class Green implements TrafficColor ({
color() { return "green"; }
check (car: Car) { car.drive(); }

}

We follow the process:

1 The basis method is color as it returns a different constant in each class, so we
need to make the check methods equal. For each of these methods, perform
these steps:

a In the body of each version of check, add an enclosing if (true) { } around
the existing code.

Unifying similar classes 95

Listing 5.31 Before Listing 5.32 After (1/8)

class Red implements TrafficColor {

!/

check (car: Car)

car.stop () ;

}
}

class Yellow implements TrafficColor

//

check (car: Car) {

car.stop () ;

}
}

class Green implements TrafficColor

//

check (car: Car) {

car.drive () ;

class Red implements TrafficColor {
//
check (car: Car)
if (true) {
car.stop() ;
}
}
}
class Yellow implements TrafficColor
//
check (car: Car) {
if (true) {
car.stop () ;

} Added if
) (true) { }
)

class Green implements TrafficColor
//
check (car: Car)
if (true) ({
car.drive () ;

}

G

!
1

b Replace true with an expression calling the basis method and comparing

the result to the constant values.

Listing 5.33 Before Listing 5.34 After (2/8)

class Red implements TrafficColor {
color() { return "red"; }
check (car: Car)
if (true) {
car.stop () ;
}
}
}

class Yellow implements TrafficColor
color() { return "yellow"; }
check (car: Car) {
if (true) ({
car.stop() ;
}

}
}

class Green implements TrafficColor {
color() { return "green"; }
check (car: Car) {
if (true) {
car.drive () ;
1

}
}

class Red implements TrafficColor {
color() { return "red"; }
check (car: Car)
if (this.color() === "red") { <
car.stop () ;
}
}
}
class Yellow implements TrafficColor
color() { return "yellow"; }
check (car: Car) {

if (this.color() === "yellow") { <
car.stop() ;
} Checking the
} basis method

}

class Green implements TrafficColor {
color() { return "green"; }
check (car: Car) {
if (this.color() === "green") { <
car.drive () ;

}

1
1

96 CHAPTER 5 Fuse similar code together

< Now we copy the body of each version and paste it with an else into all the

other versions.

Listing 5.35 Before Listing 5.36 After (3/8)

class Red implements TrafficColor ({
//
check (car: Car)
if (this.color() === "red") {
car.stop () ;

}

}
}

class Yellow implements TrafficColor ({
//

check (car: Car) {

if (this.color() === "yellow") {
car.stop() ;
}

}
}

class Green implements TrafficColor
//

check (car: Car)

if (this.color() === "green") {
car.drive () ;
}

}
}

class Red implements TrafficColor {
//

check (car: Car) {

if (this.color() === "red") {
car.stop () ;

} else if (this.color() === "yellow") {
car.stop() ;

} else if (this.color() === "green") {

car.drive() ;

}
}
}

class Yellow implements TrafficColor {
//

check (car: Car) {

if (this.color() === "red") ({
car.stop() ; }7
} else if (this.color() === "yellow") {
car.stop () ;
} else if (this.color() === "green") {
car.drive () ; }_
}) Copying the methods
} into each other

class Green implements TrafficColor {

/] ...

check (car: Car) {

if (this.color() === "red") ({
car.stop () ;

} else if (this.color() === "yellow") {
car.stop() ;

} else if (this.color() === "green") {

car.drive() ;

2 Now the check methods are equal, and only the basis methods are different.
The second phase begins by introducing a field for the color method and
assigning its constant in the constructor.

Unifying similar classes 97

Listing 5.37 Before Listing 5.38 After (4/8)

class Red implements TrafficColor ({ class Red implements TrafficColor {
constructor (
private col: string = "red") { } <
color() { return "red"; } color() { return "red"; }
/] ... /7
} }
class Yellow implements TrafficColor class Yellow implements TrafficColor
constructor (
private col: string = "yellow") { } <
color() { return "yellow"; } color() { return "yellow"; }
/] ... !/
} }
class Green implements TrafficColor { class Green implements TrafficColor {
constructor (
private col: string = "green") { } <
color() { return "green"; } color() { return "green"; }
/... /... Added
} } constructors

3 Change the methods to return the new fields instead of the constants.

Listing 5.39 Before Listing 5.40 After (5/8)

class Red implements TrafficColor { class Red implements TrafficColor {
/... //
color() { return "red"; } color() { return this.col; } <G
} }
class Yellow implements TrafficColor class Yellow implements TrafficColor ({
/.. /7
color() { return "yellow"; } color() { return this.col; } <+
1 1
class Green implements TrafficColor { class Green implements TrafficColor {
/... !/
color() { return "green"; } color() { return this.col; } S
} }
Returns a field
instead of a constant

4 Compile to ensure that we have not broken anything yet.
5 For each class, one field at a time:
a Copy the default value of the field, and then make the default value a

parameter.
Listing 5.41 Before Listing 5.42 After (6/8)
class Red implements TrafficColor { class Red implements TrafficColor {
constructor (constructor (
private col: string = "red") { } private col: string) { } Cut
}//“‘ }//“‘ default

value

98 CHAPTER 5 Fuse similar code together

b Go through the compiler errors, and insert the default value as an argument.

Listing 5.43 Before Listing 5.44 After (7/8)

function nextColor (t: TrafficColor) {
if (t.color() === "red")

else if (t.color() === "green")
return new Yellow() ;
else if (t.color() === "yellow")

)
return new Red() ;

function nextColor (t: TrafficColor) {
if (t.color() === "red")
return new Green() ;
else if (t.color() === "green")
return new Yellow() ;
else if (t.color() === "yellow")

return new Red("red"); Fix
} error by
pasting

6 After all the classes are identical, delete all but one of the unified classes, and
fix all the compile errors by switching to the remaining class.

Listing 5.45 Before Listing 5.46 After (8/8)

function nextColor (t: TrafficColor) {
if (t.color() === "red")
return new Green() ;

else if (t.color() === "green")
return new Yellow() ;
else if (t.color() === "yellow")

)
return new Red() ;
}

class Yellow implements TrafficColor {
class Green implements TrafficColor {

function nextColo
if (t.coloxr() =

r(t: TrafficColor) {
== "red")
return new Red("green"); <
else if (t.color() === "green")
return new Red("yellow") ; <+—
else if (t.colox(
return new Red(

=== "yellow")
"y dn) ;

Deleting the classes
Yellow and Green

At this point, we don’t need the interface, and we should rename Red. We should also
work toward removing the if with the elses—maybe using an upcoming refactoring

pattern. However, we have successfully unified the three classes.

Listing 5.47 Before Listing 5.48 After

function nextColor (t: TrafficColor)
if (t.color() === "red")
return new Green() ;
else if (t.color() =
(

== "green")
return new Yellow() ;
else if (t.color() === "yellow")

)
return new Red() ;
}
interface TrafficColor ({
color () : string;
check (car: Car): void;

}

function nextColor

t: TrafficColor) {
= "red")
return new Red("green") ;

(
if (t.color() ===
(
else if (t.color(
(
(
(

) === "green")
return new Red("yellow");
else if (t.color() === "yellow")
return new Red("red") ;

}

interface TrafficColor {

color(): string;
check (car: Car): void;

}

Unifying simple conditions 99

class Red implements TrafficColor { class Red implements TrafficColor {
color() { return "red"; } constructor (private col: string) { }
check (car: Car) { car.stop(); } color() { return this.col; }
} check (car: Car) {
class Yellow implements TrafficColor { if (this.color() === "red")
color() { return "yellow"; } car.stop () ;
check (car: Car) { car.stop(); } } else if (this.color() === "yellow") {
} car.stop() ;
class Green implements TrafficColor ({ } else if (this.color() === "green") {
color() { return "green"; } car.drive() ;
check(car: Car) { car.drive(); } }
} }
}

At this point, it might make sense to extract the three colors into constants to avoid
having to instantiate them over and over again. Luckily, this is trivial to do.

FURTHER READING
To my knowledge, this is the first description of this process as a refactoring pattern.

5.2 Unifying simple conditions

To proceed with updateTile, we would like to make the bodies of some of the ifs
more similar. Let’s look at the code.

Listing 5.49 Initial

function updateTile (x: number, y: number) {
if (maply] [x] .isStony ()
&& maply + 1] [x].isAir())

map [y + 1] [x] = new Stone (new Falling()) ;
map [y] [x] = new Air();

} else if (maply] [x].isBoxy ()

&& maply + 1] [x].isAir()) {

map [y + 1] [x] = new Box(new Falling()) ;
map [y] [x] = new Air();

} else if (maply] [x].isFallingStone())
map [y] [x] = new Stone (new Resting()) ;

} else if (maply] [x].isFallingBox()) {
map [y] [x] = new Box(new Resting());

We decide to introduce methods for setting and unsetting the new falling field.

Listing 5.50 After introducing drop and rest

interface Tile { NEV\(method for
/] ... setting the new field;
drop () : void; empty in most classes

rest(): void; New method for unsetting