
M A N N I N G David Q. Mertz

24 puzzles solved by the author, with and without assistance from Copilot, ChatGPT and more

 Atoms
Plain symbol ...

Escape \

Grouping operators ()

Backreference \#

Character class []

Digit character class \d

Non−digit character class \D

Alphanumeric char class \w

Non−alphanum char class \W

Whitespace char class \s

Non−whitespace char class \S

Wildcard character .

Beginning of line ^

Beginning of string \A

End of line $

End of string \Z

Word boundary \b

Non−word boundary \B

Alternation operator |

 Constants
re.IGNORECASE re.I

re.LOCALE re.L

re.MULTILINE re.M

re.DOTALL re.S

re.UNICODE re.U

re.VERBOSE re.X

 Quantifi ers
Universal quantifi er *

Non−greedy universal quantifi er *?

Possessive universal quantifi er *+

Existential quantifi er +

Non−greedy existential quantifi er +?

Possessive existential quantifi er ++

Potentiality quantifi er ?

Non−greedy potentiality quantifi er ??

Posessive potentiality quantifi er ?+

Exact numeric quantifi er {num}

Lower−bound quantifi er {min,}

Bounded numeric quantifi er {min,max}

Non−greedy bounded quantifi er {min,max}?

Possessive bounded quantifi er {min,max}+

 Group−Like Patterns
Pattern modifi ers (?Limsux)

Comments (?#...)

Non−backreference atom (?:...)

Positive Lookahead assertion (?=...)

Negative Lookahead assertion (?!...)

Positive Lookbehind assertion (?<=...)

Negative Lookbehind assertion (?<!...)

Named group identifi er (?P<name>)

Named group backreference (?P=name)

Atomic group (?>...)

Summary of Regular Expression Patterns

MANN I NG
Shelter Island

Regular Expression Puzzles
and AI Coding Assistants

24 puzzles solved by the author, with and without
assistance from Copilot, ChatGPT and more

DAVID Q. MERTZ

∞

Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN: 9781633437814
Printed in the Unites States of America

Development editor: Ian Hough
Production editor: Aleksandar DragosavljeviÊ

Proofreader: Katie Petito
Technical proofreader: Jeanne Boyarsky

Typesetter: Tamara ŠveliÊ SabljiÊ
Cover designer: Marija Tudor

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2023 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

iii

contents
preface 	 viii
acknowledgments	 x
about this book	 xi
about the author	 xvi
about the cover illustration	 xvii

	 1 	The map and the territory  1
			 About regular expressions  3

			 Rise of the programming machines  4
Caveats  5

			 Intentional software development  6

			 As you read  7

	 2 	Quantifiers and special sub-patterns  9
Puzzle 1		 Wildcard scope  10

Author thoughts: What will each pattern match?  10

AI thoughts: CodingNet  13

Puzzle 2		 Words and sequences  13
Author thoughts: Think about what defines word
boundaries  14

AI thoughts: The transformator  15

iviv contents

Puzzle 3		 Endpoint classes  16
Author thoughts: Refine the regular expression to match what
we want  16

AI thoughts: Are friends electric?  17

Puzzle 4		 A configuration format  20
Author thoughts: Remember that shapes have edges  20

AI thoughts: Notes from the Cyberdyne vault  21

Puzzle 5		 The Human Genome  22
Author thoughts: Remember the central dogma of molecular
biology  24

AI thoughts: Do androids dream of electric sheep?  24

	 3 	Pitfalls and sand in the gears  28
Puzzle 6		 Catastrophic backtracking  28

Author thoughts: Try hard to avoid catastrophes  30

AI thoughts: Technological singularity  32

Puzzle 7		 Playing dominoes  34
Author thoughts: Try to be more efficient than your first
thought  35

AI thoughts: A war with sticks and stones  36

Puzzle 8		 Advanced dominoes  38
Author thoughts: Thoughts about digrams are always
pleasant thoughts  39

AI thoughts: How many readers can pass the Turing
Test?  39

Puzzle 9		 Sensor art  42
Author thoughts: Find a matching pattern, if possible  43

AI thoughts: My mind is going; I can feel it  44

	 4 	Creating functions using regexen  47
Puzzle 10	 Reimplementing str.count()  47

Author thoughts: How can a regex count the substring
occurrences?  48

AI thoughts: Extraordinary machine  49

	 v	 vcontents

Puzzle 11	 Reimplementing str.count() (stricter)  50
Author thoughts: Write a Python function with the
restrictions given  51

AI thoughts: The Horars of War  53

Puzzle 12	 Finding a name for a function  54
Author thoughts: Code is read far more often than it is
written  54

AI thoughts: There are two hard problems in computer
science  55

Puzzle 13	 Playing poker (Part 1)  55
Author thoughts: Functions are a big help in larger
programs  56

AI thoughts: He can’t read my poker face  57

Puzzle 14	 Playing poker (Part 2)  61
Author thoughts: Large buildings are built from small
bricks  61

AI thoughts: The society for preventing cruelty to
humans  63

Puzzle 15	 Playing poker (Part 3)  65
Author thoughts: You better cheat, cheat, if you can’t
win  66

AI thoughts: Someday machines will learn to count  66

Puzzle 16	 Playing poker (Part 4)  68
Author thoughts: You might risk identifying the “dead man’s
hand”  68

AI thoughts: Free will is not free  69

Puzzle 17	 Playing poker (Part 5)  72
Author thoughts: Remember that three is more than two, but
less than four  72

AI thoughts: Counting to two  74

	 5 	Easy, difficult, and impossible tasks  77
Puzzle 18	 Identifying equal counts  77

Author thoughts: Lateral thinking might help you find the
answer  78

AI thoughts: Hic sunt dracones  78

vivi contents

Puzzle 19	 Matching before duplicate words  80
Author thoughts: Find a pattern that will fulfill the
requirement  80

AI thoughts: Deep fakes in the Chomsky hierarchy  81

Puzzle 20	 Testing an IPv4 address  83
Author thoughts: Ask whether regexen are powerful enough
for a problem  84

AI thoughts: I want to be a machine  85

Puzzle 21	 Matching a numeric sequence  87
Author thoughts: Rule out the impossible to be left with the
solution  88

AI thoughts: Wheat and chessboards  88

Puzzle 22	 Matching the Fibonacci sequence  90
Author thoughts: The Golden Spiral beautifully generalizes
Fibonacci numbers  91

AI thoughts: The fractal geometry of nature  92

Puzzle 23	 Matching the prime numbers  94
Author thoughts: Honor the fundamental theorem of
arithmetic  95

AI thoughts: Sense and nonsense  96

Puzzle 24	 Matching relative prime numbers  97
Author thoughts: Nothing is either true or false but thinking
makes it so  98

AI thoughts: Six impossible things before breakfast  99

	 6 	Conclusions  100

	 A 	Learning to use regular expressions  102
			 What tools use regular expressions?  103

			 Matching patterns in text: The basics  103
Character literals  104

Escaped characters literals  104

Positional special characters  105

The “wildcard” character  106

	 vii﻿ 	 vii

Grouping regular expressions  106

Using groups for backreferences  107

Character classes  107

Complement operator  108

Alternation of patterns  109

The basic abstract quantifier  110

			 Matching patterns in text: Intermediate  110
More abstract quantifiers  110

Numeric quantifiers  111

Backreferences  112

Do not match more than you want to  113

Tricks for restraining matches  114

Tricks for restraining matches better  115

Comments on modification tools  115

A note on modification examples  116

A literal-string modification example  116

A pattern-match modification example  116

Modification using backreferences  117

Another warning on mismatching  117

			 Advanced regular expression extensions  118
About advanced features  118

Non-greedy quantifiers  118

Atomic grouping and possessive quantifiers  119

Pattern-match modifiers  121

Changing backreference behavior  122

Naming backreferences  122

Lookahead assertions  123

Lookbehind assertions  124

Making regular expressions more readable  124

index  126

viii

preface
Jacques Derrida famously begins his Dissemination with the line: “This (there-
fore) will not have been a book.”

I am not French, nor am I a famous philosopher. So I will have to set my
aim slightly lower. I reckon that what you have in front of you is indeed a
book. For 70% of you, apparently, what you will have is a collection of bits
on a computer disk or in flash memory which are rendered in something
resembling typography and layout, on a screen large or small, for you to
read. As much as I retain a bibliophilic delight in actual bound tree pulp
stamped with pigments and dyes, all these forms and formats count as a
book in contemporary vernacular.

What this will not be, however, is a tutorial (although one is included as an
appendix). Nor will it be a reference text. Nor even, in the first measure, an
instructional guide. Instead, you have herein a collection of puzzles, ideas,
discussions, and a glimpse into the non-mind of AI models.

I hope this work in front of you will accomplish a few things. I hope it
will make you think more deeply about regular expressions—a technology
which virtually all of the programmers in my readership will have had at
least some passing encounters with. While regular expressions provide their

ix prefaceix

own rabbit holes to get lost within, the recently exciting world of AI coding
assistants provides a view into an uncanny valley.1

Understanding how these tools can be both so very amazing in what they
produce, and simultaneously so utterly doltish in their numerous failures, is
the main thing this book tries to understand. For reasons I attempt to eluci-
date throughout, of all the domains of computer programming, games with
regular expressions are an area particularly well suited for getting a grasp of
the peculiar behaviors of AIs.

THINK FIRST, READ THE DISCUSSION AFTERWARDS

I would like you to exercise restraint after reading each puzzle, and to
apply a modicum of thought and consternation to each puzzle before
moving your eyes past the decorative separator, and to thoughts of the
author and his companion AI coding assistants.

1	 Masahiro Mori named this concept in 1970. As robots come to seem more human, our emotional reaction to them
begins to move from the empathy we feel towards our fellow humans into a kind of fear or revulsion at this thing that
is so close to, and yet not quite, human.

x

acknowledgments
I thank my friend Miki Tebeka, who invited me to write an earlier book that
this work derives from. I am very grateful to my friend Brad Huntting and
partner Mary Ann Sushinsky who provided clever ideas in the directions of
these puzzles. Thanks to my colleague Lucy Wan, who provided proofread-
ing, finding the many silly typos missed on many prior reads.

Thanks to Timmy Churches, who made a number of really good recom-
mendations about how to describe, within the context of this book, the tech-
nical workings and limitations of current large language models.

With ambivalence, I thank Noam Chomsky for arranging computability
into a neat hierarchy, with regular expressions at the bottom.

I have great gratitude for the wonderful work Maning has done in making
this book better. This includes my acquisition editor Andy Waldron, devel-
opment editor Ian Hugh, production editor Aleksandar DragosavljeviÊ,
technical proofreader Jeanne Boyarsky, proofreader Katie Petito, typesetter
Tamara ŠveliÊ SabljiÊ, and cover designer Marija Tudor.

xi

about this book
This is a book for programmers with a little bit of experience in some pro-
gramming language. As every reviewer of the proposal antecedent to this
book commented rather vociferously, and as every programmer of nearly
every programming language recognizes at once, of course every computer
programmer and software developer uses regular expression already in the
course of their daily work. I do not expect to introduce a wholly new con-
cept to many of my readers. Or at least I do not expect to introduce that
concept to them.

Within this book, where code other than regular expressions themselves
are shown, it is generally within the Python programming language. This
is especially true of those puzzles where I present “AI thoughts” that I have
solicited from GitHub’s Copilot or OpenAI’s ChatGPT. It turns out that
these tools currently often balk at a request to “write a regular expression
to do such-and-such” but are generally happy to comply with a request to
“write a Python program using regular expressions” to do the same task.

I have been fairly prominent within the Python community for over 20
years, and hence obviously have a fondness for the language. However, the
particular programming language that wraps the regular expressions this
book discusses is relatively incidental, and programmers who use other lan-
guages can quickly understand the idea of defining a variable name, cre-
ating a function, and only occasionally wrapping the operation of a regular
expression in a conditional if block. All of these simple constructions have
very close parallels in any programming language you might use regularly,

xii about this bookxii

and translating in your mind should not occupy more than a few moments
of thought for any reader.

The internet is replete with introductory tutorials about regular expres-
sions. I encourage you to read some of those. The official documentation
for the Python programming language contains a good one. In fact, a close
progenitor of the appendix to this book contains one I wrote that was, for
many years, one of the most widely read such tutorials according to page
popularity measures. Of course, this book is not, in the main, such a tutorial,
which would be a needless publication.

Who should read this book
This is a book for playful programmers, and those who wish to expand their
understanding and rethink their assumptions (albeit about a few relatively
small matters). While the tutorial in the appendix suffices to bring you from
a complete naivete about regular expressions to a reasonable understand-
ing, your motivation to understand and work with this tool should precede
your enjoyment of this text.

But this is also a book for the millions of software developers who have
read intriguing and exuberant discussions of the promise of AI coding
assistants, and who perhaps have already begun working with them. These
tools have a lot of promise, and will have a growing future utility; they also
have limitations that will not abate completely as the technologies improve.
Using tools to aid in coding is wonderful, and understanding the scope and
limitations of your tools is even better.

Obtaining the tools used in this book
The Python programming language that is used as a wrapper around many
of the regular expression example in this book is Free Software that may be
obtained at the official site of the Python Software Foundation (https://
www.python.org/downloads/). A variety of other entities have also created
customized Python distributions with additional or different capabilities
bundled with the same core programming language. These include many
operating system vendors (most Linux distributions and macOS for the last
ten years; it is available for Windows from the Microsoft Store).

Copilot is one of the AI coding assistants discussed in this book, and
may be obtained from GitHub (https://github.com/features/copilot).
At the time of this writing, the service is billed as a subscription, but has a
free trial period for its use. You will need an account with GitHub to use
Copilot. Copilot integrates with programming editors rather than being

https://www.python.org/downloads/
https://www.python.org/downloads/
https://github.com/features/copilot

	 xiiiabout this book 	 xiii

a standalone tool; instructions for integrating Copilot into Visual Studio,
Neovim, VS Code, and JetBrain IDEs are contained at the GitHub URL
mentioned. Third parties have provided other mechanisms for integrating
Copilot with other editors such as Emacs and Sublime Text. GitHub users
who subscribe to Copilot may also use it within GitHub Codespaces, which
provides a version of VS Code within a web browser environment (https://
github.com/features/codespaces).

ChatGPT is the second AI coding assistant discussed in detail within
this book. OpenAI currently offers a free research preview of ChatGPT
(https://chat.openai.com/chat). Most likely, in the future, the service will
be available via some sort of subscription pricing, after it completes the pre-
view period. The interface by which a user interacts with ChatGPT is via
a web page that resembles a chat application, such as one you might use
to communicate with your human friends or colleagues. However, several
third parties have created other mechanisms by which to use APIs to com-
municate with ChatGPT in other ways.

Other companies and open source projects also provide AI coding assis-
tants with approximately similar behaviors to Copilot and ChatGPT. Some
of these include Tabnine (https://www.tabnine.com/getting-started), K-Ex-
plorer (https://k-explorer.com/), and CodeGeex (https://github.com/
THUDM/CodeGeeX). Others will certainly be created in the near future.

Credits

¡	The Puzzling Quirks of Regular Expressions, by David Mertz, (ISBN:
9781312160743; August 2021) contains earlier versions of the puz-
zles herein, but does not discuss AI coding assistants, nor contain
the tutorial in the appendix of this book.

¡	Scientist and philosopher Alfred Korzybski famously commented
in 1931 “the map is not the territory.”

¡	Terminator 3: Rise of the Machines is a 2003 film directed by Jonathan
Mostow.

¡	The fictional company “Cyberdyne” is used as a name within the
Terminator franchise. A Japanese robotics company, Cyberdyne Inc.,
was named in reference to the fictional company within that film
franchise.

¡	“Are Friends Electric?” is a 1979 song by Gary Numan.
¡	“Do Androids Dream of Electric Sheep?” is a 1968 short story by

Philip K. Dick.

https://github.com/features/codespaces
https://github.com/features/codespaces
https://chat.openai.com/chat
https://www.tabnine.com/getting-started
https://k-explorer.com/
https://github.com/THUDM/CodeGeeX
https://github.com/THUDM/CodeGeeX

xiv about this bookxiv

¡	“The next war will be fought with sticks and stones” is a quotation
frequently attributed to Albert Einstein, in reference to the after-
math of a possible nuclear war. Einstein indeed made explicit
comments similar to this, but a variety of other people have like-
wise expressed similar wording, contemporaneously and probably
slightly earlier.

¡	“My mind is going; I can feel it” is a quotation from the 1968 film
2001: A Space Odyssey directed by Stanley Kubrick, spoken by the
robot character HAL 9000.

¡	“Extraordinary Machine” is a 2005 song and album by Fiona Apple.
¡	The joking comment “There are two hard things in computer sci-

ence: cache invalidation, naming things, and off-by-one errors”
is likely attributable to Tim Bray, although it has been repeated
often enough, since approximately 2014, that its actual origin is
uncertain.

¡	“The Horars of War” is a 1970 short story by Gene Wolfe.
¡	“I Want to be a Machine” is 1976 song by Billie Currie and John

Foxx.
¡	“Poker Face” is a 2008 song by Lady Gaga.
¡	The Jetsons is an animated American television series originally aired

in 1962. It was created by William Hanna and Joseph Barbera.
¡	“Free Will is Not Free” is a slogan used to promote the third season

of the television series Westworld, whose third season aired in 2020.
¡	The Fractal Geometry of Nature is a delightful 1982 book by Benoît

Mandelbrot.
¡	J.B.S. Haldane famously commented that if a god had created all

living organisms on Earth, then that creator must have an “inordi-
nate fondness for beetles.” However, given that around 80% of all
animal organisms on Earth are nematodes, I would suppose that
Haldane had misjudged divine priorities.

¡	“Learning to Use Regular Expressions” is an online tutorial written
previously by David Mertz which contains much of the material in
the appendix of this book.

	 xvabout this book 	 xv

liveBook discussion forum
Purchase of Regular Expression Puzzles and AI Coding Assistants includes free
access to liveBook, Manning’s online reading platform. Using liveBook’s
exclusive discussion features, you can attach comments to the book globally
or to specific sections or paragraphs. It’s a snap to make notes for yourself,
ask and answer technical questions, and receive help from the author and
other users. To access the forum, go to https://livebook.manning.com/
book/regular-expression-puzzles-and-ai-coding-assistants/discussion.
You can also learn more about Manning’s forums and the rules of
conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialogue between individual readers and between readers and
the author can take place. It is not a commitment to any specific amount of
participation on the part of the author, whose contribution to the forum
remains voluntary (and unpaid). We suggest you try asking the author some
challenging questions lest his interest stray! The forum and the archives of
previous discussions will be accessible from the publisher’s website as long
as the book is in print.

https://livebook.manning.com/book/regular-expression-puzzles-and-ai-coding-assistants/discussion
https://livebook.manning.com/book/regular-expression-puzzles-and-ai-coding-asssitants/discussion
https://livebook.manning.com/discussion

xvi

about the author
David Q. Mertz is founder of KDM Training, a
partnership dedicated to educating developers
and data scientists in machine learning and sci-
entific computing. He created the data science
training program for Anaconda Inc. and was
a senior trainer for them. With the advent of
deep neural networks he has turned to training
our robot overlords as well.

He was honored to work for eight years with
D. E. Shaw Research, who have built the world’s
fastest, highly specialized (down to the ASICs

and network layer), supercomputer for performing molecular dynamics.
David was a Director of the PSF for six years, and remains co-chair of its

Trademarks Committee and of its Scientific Python Working Group. His col-
umns, Charming Python and XML Matters, written in the 2000s, were the most
widely read articles in the Python world.

He has written previous books for Packt, O’Reilly and Addison-Wesley,
and has given keynote addresses at numerous international programming
conferences. His 2021 book Cleaning Data for Effective Data Science: Doing the
Other 80% of the Work addresses a notable lacuna in other books about data
science.

xvii

about the cover illustration
The illustration on the cover of Regular Expression Puzzles and AI Cod-
ing Assistants, “A Prize Fight,” is from National Sports of Great Britain by
Henry Thomas Alken, Sr., published in 1821. Alken’s book includes images
of British sports popular in 19th century, from salmon fishing to owling,
and is recognized as Alken’s most ambitious work.
	 Manning celebrates the inventiveness and initiative of the computer
business with book covers based on the rich diversity of regional culture
centuries ago, brought back to life by pictures from books such as this one.

1

1The map and the territory

This book winds through a combination of two quite different things, both
of which I believe will be largely novel to most of my readers. On the one
hand, this is a puzzle book intended to be more “quirky” and “fun” than to
serve as a tutorial or reference text per se. However, the puzzles I have cho-
sen should make both beginners and experienced users of regular expres-
sions question what is and is not possible within them—and perhaps what
should and should not be done using them—and burrow into readers’ brains,
as if some parasitic eidetic worm. This book is not without an overriding
pedagogical subtext: I expect you to think differently, and indeed more
productively, if you can solve these puzzles (or at least reflect upon my dis-
cussions of how one might solve them).

That is only the one hand, however. Many of us have a second hand,
though few a third. Another curious puzzle has arisen in the last years, or
even only over the last months, which is similarly ubiquitous, or pendingly
ubiquitous, in the minds of us computer programmers. A class of software
that I call “AI coding assistants” can often be made to write programming

2 Chapter 1  The map and the territory

code on our behalf that is at once dumbfounding and very often just plain
dumb. I have chosen two of the currently most popular such tools—Copi-
lot and ChatGPT—and I hope that what I discuss more generally will be
informative in our approach to any future such tools, however rebranded,
refreshed, or enhanced they may be.

AI coding assistants—which you are likely to see named in a variety of
other ways in other books, articles, press releases, and so on—are software
tools that can assist software developers while they write programming lan-
guage code. Instructions and links to install the two tools this book focuses
on, and mentions of a few others, are contained in the front matter.

A typical operation of an AI coding assistant allows a developer to write
comments describing what they would like a function, class, structure, or
module to do, then have the AI write code that tries to fulfill that stated goal.
I will use the phrase “unit of functionality” generically for a collection of
code devoted to a particular purpose (and usually textually adjacent to the
rest of that unit).

Comments or prompts can, and should, simply be written in natural lan-
guage (in English within this book), rather than in some special domain-spe-
cific language. A good comment for an AI coding assistant should look
exactly the same as a good comment written for later human programmers
who will later work with your code. A related mode of operation of these
tools allows a human developer to write a portion of the code they wish to
create, but have the AI fill in the missing pieces in that unit of function-
ality. To some degree, these AI coding assistants can also take functioning
code and provide the missing documentation that humans failed to write to
describe the purpose of that unit of functionality.

At the time of this writing, these AI coding assistants are very large neu-
ral networks that live on remote servers maintained and controlled by the
organizations that created them. The underlying engines that power these
AIs do not reside on local developer workstations for multiple reasons: the
large size of the models, the mostly proprietary and confidential details of
how the models are trained, licensing and subscription terms the develop-
ers wish to enforce, and even simply the computational power and special-
ized hardware needed to enable their effective functioning. When you use
one of these AI coding assistants, your programming editor, web page, or
other interface, makes requests over the internet to these servers, and inte-
grates the responses into familiar local interfaces via plugins. This does tend
to mean that you need an internet connection (along with a license, as dis-
cussed in the front matter), in order to utilize these tools.

	 3About regular expressions

About regular expressions
Regular expressions—sometimes given the playful back-formation regexen
or more neutrally regex—are a powerful and compact way of describing pat-
terns in text.

The appendix to this book contains a brief tutorial aimed at users and
programmers who have begun to work with tools that use regular expres-
sions, but who are not yet quite comfortable with the intricacies of them.
Even users who may have used regular expressions in the past, but have for-
gotten some of their details, can benefit from this refresher.

After completing that tutorial—should you feel such is relevant—you will
not yet be an expert in using regular expressions to your best advantage. But
the tutorial, combined with lots of practice with varying cases, is about all
you need to be an expert. The concepts of regular expressions are extremely
simple and powerful. It is their application that takes some work.

The puzzles in this book begin at a certain point where the formal descrip-
tions leave off. As you work with regexen, you will find subtle pitfalls. A pat-
tern that seems like it should obviously match one thing actually matches
something slightly different than you intended. Or perhaps a match pattern
has “pathological” behavior and takes far too long. Or sometimes it is simply
that a more concise pattern would be clearer in describing what you wish to
match.

A great many programming languages, libraries, and tools support reg-
ular expressions, with relatively minor variations in the syntax used. Such
software includes [efr]?grep, sed, awk, Perl, Java, .NET, JavaScript, Julia,
Go, Rust, XML Schema, or indeed, pretty much every other programming
language via a library.

For this book, we will use Python to pose these puzzles. In particular, we
will use the standard library module re. Often code samples are used in puz-
zles and in explanation; where I wish to show the output from code, the
example emulates the Python shell with lines starting with >>> (or continu-
ing with ...). Outputs are echoed without a prompt. Where code defines a
function that is not necessarily executed in the mention, only the plain code
is shown.

While you are reading this book, I strongly encourage you to keep open an
interactive Python environment. Many tools enable this, such as the Python
REPL (read-evaluate-print-loop) itself, the IPython enhanced REPL, Jupyter
notebooks, or the IDLE editor that comes with Python, or indeed most mod-
ern code editors and IDEs (integrated development environments). Several
online regular expression testers are also available, although those will not

4 Chapter 1  The map and the territory

capture the Python calling details. Explanations will follow each puzzle, but
trying to work it out in code before reading it is worthwhile.

Rise of the programming machines
You do not need to understand the underlying (complex) mathematics and
design of deep neural networks to use AI coding assistants, nor to read this
book. Machine learning is an intricate topic, and the subject of many other
longer books than this one. For those who are interested in such machine
learning arcana, we can note a few (but only a few) details of how they
work, and a hint of how they might work in the future.

With the rise of large language models (LLMs), the ability of coding tools to
suggest both code and documentation has become—as of January 2023—
fairly remarkable. I personally first tried a system called Tabnine in 2019
(still available, and significantly updated, as of this writing). More recently,
since 2021, GitHub Copilot has become widespread and sophisticated. In
late 2022, OpenAI released ChatGPT. Just released at the time of writing
is an open-source effort called PaLM+RLHF-Pytorch. More similar prod-
ucts or projects will certainly be released in the next months and years, and
those mentioned may undergo rebranding and changes in underlying core
technologies.

Many of these tools are based on GPT-n, OpenAI’s Generative Pre-trained
Transformer series, which are trained on many billions of texts, and utilize
hundred of billions of coefficients (connection weights), in order to pro-
duce “human-like” textual responses to textual inputs. In particular, for
these Artificial Intelligence (AI) coding assistants, these neural networks
models—the latest generation existing at the time of writing being GPT-3—
are specialized and tweaked, via reinforcement learning with human evalu-
ators, and by layering on substantial bodies of programming language code
as “fine-tuning” of these underlying LLMs.

For the current generation of AI coding assistants, a great deal of their
fundamental technology can be traced to the 2017 academic paper that
shifted a great deal of research focus to transformer deep neural networks.2
This current book is not the place to predict whether new AI technologies
will use different techniques, but we can be confident that future machines
will generally continue to improve upon existing ones.

2	 arXiv:1706.03762. “Attention Is All You Need” by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. 12 Jun 2017.

	 5Rise of the programming machines

Regular expressions provide an interesting challenge for AI coding assis-
tants which this book will partially address. Compared to other types of
programming code, regular expressions are extremely dense and compact
expressions, and ones where very subtle differences in their implied state
machines can dramatically alter the function of the regex. A single changed
character within a regular expression might produce a syntactically valid
regular expression that does something meaningful—even something con-
cretely useful in some contexts—but does not achieve the precise purpose
at hand.

TOKENIZATION STRATEGIES

Some—perhaps many—of the failures we see discussed within this book reflect the toke-
nization strategy used by GPT-3.5. Specifically, it is (most likely) a variant of byte-pair
encoding (https://en.wikipedia.org/wiki/Byte_pair_encoding) which has the effect of
creating a dictionary composed primarily of word roots, or even of whole words, rather
than of single character transitions. For normal prose, this is exactly what one would
want. For a dense character-based encoding such as regular expressions—or proba-
bly similarly for dense programming languages like APL, J, K, A+, or Q; and for many
“esoteric programming languages” (https://en.wikipedia.org/wiki/Esoteric_program-
ming_language)—the tokenization model works against the effectiveness of the AI cod-
ing assistant. It is possible that future large language models, perhaps those based on
GPT-4 when it is created, will remedy some of these limitations.

The puzzles in this book are generally precisely the kinds of traps where slightly wrong
approaches might seem to work, but fail in edge cases that require a nuanced under-
standing of regular expressions. We shall see, and discuss, where AIs are able to cap-
ture this nuance, and where they fail. I shall try to understand why these successes and
failures do ccur, and share my thoughts with you readers.

Caveats

The future is already here—it’s just not evenly distributed.

-–William Gibson (The Economist, December 4, 2003).

Three caveats are needed in approaching the “robot regexen” I present.
One is that by the time you read this, the machines will almost surely be
“better” than they are as I write, even if you read it mere days or weeks after
I have written. All the companies and organizations behind these technolo-
gies are continually retraining and refining their AI coding assistants.

https://en.wikipedia.org/wiki/Byte_pair_encoding
https://en.wikipedia.org/wiki/Byte_pair_encoding
https://en.wikipedia.org/wiki/Esoteric_programming_language)—the

6 Chapter 1  The map and the territory

The second caveat is that I myself, your humble author, may simply fail to
think of the best prompts to solicit improved responses from the AIs. While
writing, I tried a variety of ways of phrasing my prompts, but I have certainly
not tried all possible prompts. Results produced by these AIs can vary dra-
matically based on quite small changes to prompt phrasing.

A third important caveat is that these AI coding assistants are often con-
text-sensitive. If the code file you are working on already contains some
related functionality, or even simply a choice of variable and function
names previously defined, the AI will modify its results. Or similarly, within
the “online chat” interface of ChatGPT, responses to previous prompts will
affect future responses (sometimes subtly, sometimes dramatically).

Within my discussions of AI coding assistant suggestions, I often omit boil-
erplate such as import re or variable names that the AIs suggest. These are
certainly useful when working as a developer, but are less relevant to evaluat-
ing the underlying ability of the AIs to “find the right regex.” In many cases,
I have modified code to fit the dimensions of this book, which may involve
syntactic—but never semantic—changes from the literal suggestions of the
AIs.

Everywhere in the text, unless otherwise explicitly noted, where Copilot is
shown as the AI coding assistant used, all comments above the created code
were typed by me while the function body (or bare regular expression) that
follow are created by Copilot. For readers familiar with code editors with
non-AI code completion (for example, via lookup of method definitions),
this type of automatic completion is very familiar and convenient to work
with.

Intentional software development
One of my numerous favorite philosophers tells a well-known parable about
intentionality:

An ant is crawling on a patch of sand. As it crawls, it traces a line in
the sand. By pure chance the line that it traces curves and recrosses itself
in such a way that it ends up looking like a recognizable caricature of
Winston Churchill. Has the ant traced a picture of Winston Churchill,
a picture that depicts Churchill?

-–Hilary Putnam, Reason, Truth and History (1981).

Putnam’s question is one that readers might well keep in mind while
reading this book. It pertains, in fact, to both of the “hands” I mention.
In the first, regular expressions, in their sometimes bewildering nuance,

	 7As you read

can sometimes match the right thing for the wrong reason; if anything, this
“sometimes” is perhaps the norm. While not unique among the techniques
we programmers use, regular expressions are somewhat special in not con-
sisting merely of recipes to “do this, then do that” in a directly composable
way. Sure, parser grammars are probably similar in this regard, but less well
known to a broad range of programmers. Pure functional languages also
have something of this quality of “non-composable composition” but are
again not as widely used as procedural and object-oriented programming
languages and styles.

In having such a curiously dependent structure among small parts, reg-
ular expressions, I believe, form a particularly deep challenge for AI cod-
ing assistants to create units of functionality productively (and correctly). In
most of this book, the unit of concern is a single regular expression, often
fitting on a single line, rather than, e.g., a function definition that occu-
pies several tens of lines. Our understanding of the “intention” of the AIs
intertwines with the similarly murky intentions of human programmers of
regular expressions and provides a particularly useful glimpse into under-
standing the utility and limits of these AI coding assistants.

In this book, I provide suggestions about how to understand well and how
to misunderstand poorly exactly what it is that AI coding assistants do and
can do. By putting each discussion of “AI thoughts” after both an initial puz-
zle and some “Author thoughts” (which sometimes approach “solutions”
generically but calling them such would be an overreach).

As you read
Authors cannot and should not control books once readers obtain them.
However, I would recommend gently that readers approach these puzzles
something like the following:

¡	Read the puzzle description which will involve doing something with
regular expressions. Before reading further, think carefully about
how to solve it, and play around with possible answers in your favorite
coding environment (the Python shell is a great choice).

¡	Compare what you came up with to the “Author thoughts” that follow.
Maybe you missed something I noticed. Or maybe I missed something
you thought of. But I certainly hope my thoughts are illustrative of
some intricacies of regexen.

8 Chapter 1  The map and the territory

¡	With a good grasp of the puzzle and approaches to it, look at the “AI
thoughts” which try to illustrate and discuss where the AI coding assis-
tants succeed and where they fail. If you have access to these tools—
either the two I discuss explicitly or others—maybe try out your own
prompts and comments to see if you can get better AI answers than I
did.

The puzzles in this book are arranged very approximately in order of
increasing difficulty. More features of regular expressions are often needed
for later puzzles, but more importantly, understanding the nuance of edge
cases is needed as well as you progress through the puzzles. As well as this
general progression, in many cases sequences of puzzles play off a similar
theme or topic and become a bit more difficult with each variation.

The lessons you will learn in the “AI thoughts” sections following each
puzzle are myriad and various. Only occasionally can the virtues and errors
of an AI “solution” be boiled down to a single “takeaway.” Instead, I reflect
upon the numerous lessons we might learn from each (partial) success or
failure.

At times, the AI coding assistant might fail to solve an “easy” puzzle but
succeed in a “difficult” one within the same general sequence. However, in
a very broad way, the AIs tend to get worse as the puzzles become more sub-
tle. This is not surprising, of course, but the particular modes of failure are
hopefully illuminating for developers who might use these tools.

9

2Quantifiers and
special sub-patterns

Solving the puzzles in this chapter will require you to have a good under-
standing of the different quantifiers that regular expressions provide, and
to pay careful attention to when you should use subpatterns (themselves
likely quantified). If you feel rusty about quantifiers or the wildcard char-
acter, reviewing the appendix to this book is a good idea.

In a general, but only approximate, way, the chapters of this book build
from simpler to more complex capabilities of regular expressions. Using
quantifiers is one of the most fundamental capabilities within the mini-lan-
guage of regexen, so this chapter begins with puzzles that mostly rely on
those. Later chapters mix in additional constructs and build on the puzzles
of this chapter.

10 Chapter 2  Quantifiers and special sub-patterns

Puzzle 1	 Wildcard scope

SUMMARY	 Match all and only words that start with x and end with y.

A powerful element of Python regular expression syntax—shared by many
other regex engines—is the option of creating either “greedy” or “non-
greedy” matches. The former matches as much as it possibly can, as long as
it finds the later part of a pattern. The latter matches as little as it possibly
can to reach the next part of a pattern.

Suppose you have these two regular expressions:

pat1 = re.compile(r'x.*y')
pat2 = re.compile(r'x.*?y')

And also the following block of text that you want to match. You can think
of it as a sort of lorem ipsum that only has X words, if you will:

txt = """
xenarthral xerically xenomorphically xebec xenomania
xenogenic xenogeny xenophobically xenon xenomenia
xylotomy xenogenies xenografts xeroxing xenons xanthous
xenoglossy xanthopterins xenoglossy xeroxed xenophoby
xenoglossies xanthoxyls xenoglossias xenomorphically
xeroxes xanthopterin xebecs xenodochiums xenodochium
xylopyrography xanthopterines xerochasy xenium xenic
"""

You’d like to match all and only words that start with x and end with y.
What pattern makes sense to use, and why? The code to find the words can
look like this:

xy_words = re.findall(pat, txt)

Author thoughts What will each pattern match?

Did this puzzle fool you? Welcome to the world of regular expressions! Both
pat1 and pat2 match the wrong thing, but in different ways.

If you liked pat1, you’ve greedily matched too much. The y might occur
in later words (per line), and the match will not end until the last y on a
line:

greedy quantifier
non-greedy quantifier

	 11Wildcard scope

>>> for match in re.findall(pat1, txt):
... print(match)

xenarthral xerically xenomorphically
xenogenic xenogeny xenophobically
xylotomy
xenoglossy xanthopterins xenoglossy xeroxed xenophoby
xenoglossies xanthoxyls xenoglossias xenomorphically
xylopyrography xanthopterines xerochasy

On each line, the greedy pattern started at the first x, which is often not
what you want. Moreover, most lines match multiple words, with only the
line beginning with xylotomy happening to be the isolated word we actu-
ally want. The line that begins with xeroxes is not matched at all, which is
what we want.

If you liked pat2 you often get words, but at other times either too much
or too little might be matched. For example, if xy occurs in a longer word,
either as a prefix or in the middle, it can also match:

>>> for match in re.findall(pat2, txt):
... print(match)

xenarthral xerically
xenomorphically
xenogenic xenogeny
xenophobically
xy
xenoglossy
xanthopterins xenoglossy
xeroxed xenophoby
xenoglossies xanthoxy
xenoglossias xenomorphically
xy
xanthopterines xerochasy

By being non-greedy, we stop when the first y is encountered, but as you see,
that still is not quite what we want.

What we actually need to focus on for this task is the word boundaries.
Things that are not lowercase letters cannot be part of matches. In this sim-
ple case, non-letters are all spaces and newlines, but other characters might
occur in other texts.

We can be greedy to avoid matching prefixes or infixes, but we also want
to ignore non-letter characters:

12 Chapter 2  Quantifiers and special sub-patterns

>>> pat3 = re.compile(r'x[a-z]*y')
>>> for match in re.findall(pat3, txt):
... print(match)

xerically
xenomorphically
xenogeny
xenophobically
xylotomy
xenoglossy
xenoglossy
xenophoby
xanthoxy
xenomorphically
xylopyrography
xerochasy

Everything we matched, anywhere on each line, had an x, some other letters
(perhaps including x’s or y’s along the way), then a y. Whatever came after
each match was a non-letter character.

Notice that the version in pat3 is still flawed if we have a larger lexicon
of possible words. If we look only, for example, at the 267,752 word SOW-
PODS (https://en.wikipedia.org/wiki/Collins_Scrabble_Words) English
word list I often use on my own system, it happens that the pattern is acci-
dentally correct (please excuse the slight Unix-isms in this example):

% egrep '^x[a-z]*y' sowpods | tr '\n' ' ' | fold -w 72 -s
xenogamy xenogeny xenoglossy xenomorphically xenophobically

xenophoby
xerically xerochasy xerographically xerography xerophagy

xerophily
xerophytically xeroradiography xylography xylology xylopyrography
xylotomy xylotypography

However, we go wrong if we have other “words” in our lexicon, and hence
can get the wrong result:

>>> txt = "breathiness xenogeny randed xyxyblah xylotomy"
>>> re.findall(pat3, txt)
['xenogeny', 'xyxy', 'xylotomy']

The prefix xyxy is not a full word. The next two puzzles address this remain-
ing problem.

https://en.wikipedia.org/wiki/Collins_Scrabble_Words

	 13Words and sequences

AI thoughts CodingNet

It is often the case that AI coding assistants will produce something akin
to the not-quite-right solutions of junior programmers. For example, in
response to the prompt “Find all and only words that start with x and end
with y”, Copilot produced:

pattern = r'x\w*y'

The character class \w is equivalent to [a-zA-Z0-9_] which probably
includes too much, but tends in the right direction. I do not think of words
as including digits or underscores, but variable names are kinds of “words”
that might. So it’s not terrible.

Modifying the prompt a bit to indicate my expectation that my wordlist is
lowercase also winds up producing more of the surrounding Python calling
code. More interestingly, the AI produces a pattern that is arguably more
robust than the solution I provide in using explicit word boundary symbols.

With the prompt “Find all and only lowercase words that start with x and
end with y” I get:

pattern = re.compile(r"\b[x][a-z]*[y]\b")
matches = pattern.finditer(txt)
for match in matches:
 print(match)

A few code-review quibbles. The use of character classes for the individual
[x]and [y] are extra noise. What I really want to print is match.group()
not just match itself. However, using .finditer() is better behaved than my
.findall() if the wordlist might be very long.

Puzzle 2	 Words and sequences

SUMMARY	 Match even when some words do not start with x.

In the previous problem, we identified words that started with x and ended
with y. You may have noticed, however, that we had already included the
assumption that all the words started with x. Perhaps your solution was
clever enough not to fall for the danger shown in this puzzle. Namely, per-
haps not all words will actually start with x to begin with; i.e., if we try to
apply our previous regex to such text:

14 Chapter 2  Quantifiers and special sub-patterns

>>> txt = """
expurgatory xylometer xenotime xenomorphically exquisitely
xylology xiphosurans xenophile oxytocin xylogen
xeriscapes xerochasy inexplicably exabyte inexpressibly
extremity xiphophyllous xylographic complexly vexillology
xanthenes xylenol xylol xylenes coextensively
"""
>>> pat3 = re.compile(r'x[a-z]*y')
>>> re.findall(pat3, txt)
['xpurgatory', 'xy', 'xenomorphically', 'xquisitely',
'xylology', 'xy', 'xy', 'xerochasy', 'xplicably', 'xaby',
'xpressibly', 'xtremity', 'xiphophy', 'xy', 'xly',
'xillology', 'xy', 'xy', 'xy', 'xtensively']

As you can see, we matched several substrings within words, not only whole
words. What pattern can you use to actually match only words that start with
x and end with y?

Author thoughts Think about what defines word boundaries

There are a few ways you might approach this task. The easiest is to use the
explicit “word boundary” special zero-width match pattern, spelled as \b in
Python and many other regular expression engines:

>>> pat4 = re.compile(r'\bx[a-z]*y\b')
>>> re.findall(pat4, txt)
['xenomorphically', 'xylology', 'xerochasy']

Less easy ways to accomplish this include using lookahead and lookbehind
to find non-matching characters that must “bracket” the actual match. For
example (here assuming words have at least one letter between starting x
and ending y):

>>> pat5 = r'(?<=^|(?<=[^a-z]))x[a-z]+y(?=$|[^a-z])'
>>> re.findall(pat5, txt)
['xenomorphically', 'xylology', 'xerochasy']

One trick here is that when we perform a lookbehind assertion, it must
have a fixed width of the match. However, words in our list might either
follow spaces or occur at the start of a line. So we need to create an alterna-
tion between the zero-width lookbehind and the one non-letter character

	 15Words and sequences

lookbehind. For the lookahead element, it is enough to say it is either end-
of-line ($) or is a non-letter ([^a-z]).

AI thoughts The transformator

This puzzle is quite similar to the prior one, and Copilot behaves similarly
when prompted for it. However, this also shows that the variations that
make AI coding assistants make one choice or another is very different
from those likely to motivate human programmers.

In response to the same prompt as before, given the somewhat different
word list defined in the variable txt this time, and given the prompt “Find
all words that start with ‘x’ and end with ‘y’” we get a similar response. Notice
that this prompt is slightly better than the one I used before in putting sin-
gle quotes around the x and y in the code comment. I did not become
more precise, but rather Copilot picked up on the context of my trials and
improved my request on its own:

Find all words that start with 'x' and end with 'y'
pattern = r'\bx\w*y\b'
print(re.findall(pattern, txt, re.I))

This has the same likely flaw we saw of the \w character class being too
broad. But it uses word boundaries well. I cannot really see a reason to add
re.I (ignore case) here, but such is harmless. I have no idea why Copi-
lot returned to .findall(), as I use, rather than .finditer(). Nor why it
dropped the superfluous single-value character classes.

Let us try to be more specific about what characters we think should be in
our lowercase wordlist:

Find all lowercase words that start with 'x' and end with 'y'
pattern = r'\bx\w*y\b'
print(re.findall(pattern, txt))

This is not ideal. The clarification I added to the comment that I want low-
ercase words was entirely ignored, although it was attended to in the prior
puzzle.

We are starting to find a lesson about these tools: they can be enormously
useful in creating draft code quickly, but should not be relied on as a substi-
tute for human judgment.

16 Chapter 2  Quantifiers and special sub-patterns

Puzzle 3	 Endpoint classes

SUMMARY	 Match words with differing start and end from the same
 character class.

This puzzle continues the word matching theme of the last two puzzles.
However, here we have a new wrinkle. We would like to identify both words
that start with x and end with y, but also words that start with y and end
with x.

Remembering the word boundary special zero-width pattern we already
saw, a first try at this task might be:

>>> txt = """
expurgatory xylometer yex xenomorphically exquisitely
xylology xiphosurans xenophile yunx oxytocin xylogen
xeriscapes xerochasy inexplicably yonderly inexpressibly
extremity xerox xylographic complexly vexillology
xanthenes xylenol xylol yexing xylenes coextensively
"""
>>> pat6 = re.compile(r'\b[xy][a-z]*[xy]\b')

>>> re.findall(pat6, txt)
['yex', 'xenomorphically', 'xylology', 'yunx', 'xerochasy',
'yonderly', 'xerox']
"""

What went wrong there? Clearly, we matched some words we do not want,
even though all of them began with x or y and ended with x or y.

Author thoughts Refine the regular expression to match what we want

The first pattern shown allows for either x or y to occur at either the begin-
ning or the end of a word. The word boundaries are handled fine, but this
allows words both beginning and ending with x, and likewise beginning
and ending with y. The character classes at each end of the overall pattern
are independent.

This may seem obvious on reflection, but it is very much like errors I myself
have made embarrassingly many times in real code. A robust approach is
simply to list everything you want as alternatives in a pattern:

	 17Endpoint classes

>>> pat7 = re.compile(r'\b((x[a-z]*y)|(y[a-z]*x))\b')
>>> [m[0] for m in re.findall(pat7, txt)]
['yex', 'xenomorphically', 'xylology', 'yunx', 'xerochasy']

In this solution, there is a little bit of Python-specific detail in the function
API. The function re.findall() returns tuples when a pattern contains
multiple groups. The first group will be the whole word, but one or the
other of the second group and third group will be blank i.e.:

>>> re.findall(pat7, txt)
[('yex', '', 'yex'),
('xenomorphically', 'xenomorphically', ''),
('xylology', 'xylology', ''),
('yunx', '', 'yunx'),
('xerochasy', 'xerochasy', '')]

AI thoughts Are friends electric?

We have come to a situation where a robot friend fails us terribly. Or at least
the December 2022 version of Copilot does. A first try produces this:

Identify *both* words that start with x and end with y,
but *also* words that start with y and end with x.
regex = r"^(x|y).*\1$"

This prompt is taken exactly from the description in this exercise. The
response gets pretty much everything wrong. It added an unstated require-
ment that words occur one-per-line. That’s easy to correct.

However, the basic logic is the machine trying to put the same letter at
the end as at the beginning, which is fundamentally wrong for this puzzle.
However, it also lacks any sense of word boundaries or character classes that
might narrow to “words.” For example, using the pattern naively (without
the “^” and “$”) we get:

/(x|y).*\1/

expurgatory xylometer yex xenomorphically exquisitely xylology
xiphosurans xenophile yunx oxytocin xylogen xeriscapes xerochasy
inexplicably yonderly inexpressibly extremity xerox xylographic
complexly vexillology xanthenes xylenol xylol yexing xylenes
coextensively

18 Chapter 2  Quantifiers and special sub-patterns

A small change in the wording managed to produce generic advice that I
should use the re module to solve the problem, which is likewise of little
help.

I tried the same task with ChatGPT, which currently seems usually better
than Copilot. The “conversation” had several back-and-forth prompts and
responses to refine appropriately. First I asked for:

Write a Python program to identify both words that start with x and end with y and also
words that start with y and end with x.

This created a perfectly good Python function (with decent test cases) that
did not use regular expressions.

Refining a little bit to specifiy “using regular expressions” ChatGPT pro-
duced a solution that operated on a list of words rather than a paragraph
containing words.

So my final revision of my prompt was:

Write a Python program to identify both words that start with x and end with y and
also words that start with y and end with x, within a paragraph of text, using regular
expressions.

This produced an excellent response, with text, code, test cases, and sam-
ple output. Overall, this would probably pass not just a Turing Test, but a
coding interview for a junior programmer:

ChatGPT response
Sure, here is a Python program that uses regular expressions to identify words that start
with x and end with y, as well as words that start with y and end with x, within a para-
graph of text:

import re

def find_xy_words(text):
 # Regular expression to match words that
 # start with 'x' and end with 'y'
 xy_pattern = r'\bx\w*y\b'
 # Regular expression to match words that
 # start with 'y' and end with 'x'

	 19Endpoint classes

 yx_pattern = r'\by\w*x\b'
 xy_words = []
 yx_words = []
 # Iterate through all the words in the text
 for word in re.findall(r'\b\w+\b', text):
 if re.match(xy_pattern, word):
 xy_words.append(word)
 elif re.match(yx_pattern, word):
 yx_words.append(word)
 return xy_words, yx_words

Test the function
text = "The quick brown fox jumps over the lazy dog. "\
 "The xyz cat is hiding in the yzx tree."
xy_words, yx_words = find_xy_words(text)
print(f"Words that start with 'x' and end with 'y': {xy_words}")
print(f"Words that start with 'y' and end with 'x': {yx_words}")

This will output the following:

Words that start with 'x' and end with 'y': ['xyz']
Words that start with 'y' and end with 'x': ['yzx']

This program uses the re module to match the regular expressions xy_pattern and
yx_pattern to each word in the input text. The regular expressions use word boundar-
ies (\b) to ensure that only whole words are matched. If a word matches either of these
patterns, it is added to the appropriate list (xy_words or yx_words). The function then
returns these two lists.

I hope this helps! Let me know if you have any questions.

I did not intend to ask to create two separate lists, but my prompt did not
exclude that. Even approximately the same typography for code mentions
that I use in this book is replicated by ChatGPT. Overall, ChatGPT—at its
best—explains its code with similar precision as professional authors like
myself.

Still, as in most cases, there is a small problem here. The program written
by ChatGPT definitely does not produce the output purported. The word
xyz in the sample output does not conform to the rule in question, nor to
what the find_xy_words() function returns given the sample text written
by ChatGPT (nor any possible text, for that matter, since xyz could never
match the xy_pattern).

20 Chapter 2  Quantifiers and special sub-patterns

Puzzle 4	 A configuration format

SUMMARY	 Parse a configuration format using regular expressions.

This exercise requires just a little bit of Python itself, but is mainly about
choosing the right regular expression. Let’s suppose you have a configura-
tion format and a file that looks like this:

config = """
3 = foobar
14=baz
9= fizzbuzz
21=more_stuff,here
"""

With a little bit of code, and using a regular expression, you wish to convert
the file in this format to a dictionary mapping the numbers to the left of
the equal sign to the strings to the right. For example, the above file would
parse to the in-memory structure:

{3: 'foobar', 14: 'baz', 9: 'fizzbuzz', 21: 'more_stuff,here'}

Other files should parse mutatis mutandis, with the result always being a
mapping between numbers of strings.

Author thoughts Remember that shapes have edges

As the example shows, there seems to be flexibility in spaces around the two
sides of the equal sign. We should probably assume zero or more spaces are
permitted on either side. The format is probably slightly surprising in that
we would have more commonly used words on the left and numbers on the
right in most formats; but it is well-defined enough, and we can stipulate it
has a purpose.

The easiest way to capture the relevant information is probably by using
groups for each side, which will be exposed by re.findall() and other reg-
ular expression functions. We almost get the right answer with this:

>>> dict(re.findall(r'^(\d+) *= *(.*)$', config, re.MULTILINE))
{'3': 'foobar', '14': 'baz', '9': 'fizzbuzz',
'21': 'more_stuff,here'}

	 21A configuration format

Notice that we required the “multiline” modifier to match on each line
of the string. The one problem is that the puzzle requested that numbers
appear as numbers, not as strings of digits. There are many ways we might
achieve that in Python, but one easy one is:

>>> {int(k): v for k, v in
 re.findall(r'^(\d+) *= *(.*)$', config,

re.MULTILINE)}
{3: 'foobar', 14: 'baz', 9: 'fizzbuzz',
21: 'more_stuff,here'}

AI thoughts Notes from the Cyberdyne vault

We start to see a pattern of AI coding assistants providing less assistance
than we might like. I tried a comment block for a prompt that I felt should
be pretty explicit:

convert the text in the 'config' variable to a dictionary
mapping the numbers to the left of the equal sign to the
strings to the right.

Copilot in particular tends to start by suggesting extra comment lines “clar-
ifying” the problem. These comments were in well-written English, and
some might technically speak to edge conditions of the task, but after incre-
mentally accepting a dozen such lines, it did not seem like the AI was going
to propose actual code.

Another interface Copilot provides is a popup of various suggestions to
choose from. Some of these are somewhat helpful, but none of them actu-
ally write proposed code, but rather simply propose other blocks of com-
ments or function scaffolds without meaningful bodies.

For example, these were proposed in the option list:

The strings may contain commas, and the numbers may be any
string that can be converted to an integer.
The output should be something like:
{3: 'foobar', 14: 'baz', 9: 'fizzbuzz',
21: 'more_stuff,here'}

This one is interesting in that it correctly identifies exactly the correct answer
to the puzzle. But although it finds the solution, it does not create reusable
code to parse an analogous config. The exact contrived config string I cre-
ated is certainly not in the training set used for the LLM, so something other
than looking up a canned code snippet is definitely happening:

22 Chapter 2  Quantifiers and special sub-patterns

you'll need to split them apart.
e.g. {3: ['foobar'], 14: ['baz'], 9: ['fizzbuzz'],
21: ['more_stuff', 'here']}

This “solution” contains something plausible, but wrong for this particular
puzzle. I can accept that very often, programmers want to convert strings
with commas in them into lists of distinct strings (I do not in this puzzle,
but that distractor was deliberate).

Still, while the generated comment describes a plausible result to wish
for, it does not produce code to generate it:

hint: use the 're' module to find all matches in the text
hint: use the 're' module to split each match into two parts

Beginning advice like this feels common to encounter. A very good solu-
tion might indeed use re.findall() and/or re.split(). By the time you
have come to reading this book, I presume you have figured out that much
though, because you already know something about regular expressions.

Puzzle 5	 The Human Genome

SUMMARY	 Identify telomere terminated DNA encoding sequences.

Genomics commonly uses a format called FASTA to represent genetic
sequences. This puzzle uses a subset of the overall format. Let’s provide just
a few quick tips. The letters A, C, G, T represent nucleotide bases in DNA.
FASTA may also contain the symbol N for “unknown nucleotide” and - for
“gap of indeterminate length.”

As well, in biological organisms, spans of DNA are terminated by “telo-
meres,” which are special sequences indicating that the read mechanism
should stop transcription and form a protein. Telomeres are often repeated
as much as thousands of times at the ends of sequences. In a gross simpli-
fication for this puzzle, let’s suppose that three or more repetitions of a
telomere indicate the end of a sequence for a protein. In vertebrates, the
telomere used is TTAGGG.

In this puzzle, we will ignore the marking of the start of a protein-encod-
ing region, and just assume that all of our strings begin a potential protein
encoding.

You would like to create a regular expression that represents a “specific
protein encoding” from a (simplified) FASTA fragment. In particular, we
need to know exactly which nucleotides are present, and gaps or unknown

	 23The Human Genome

nucleotides will prevent a match. Moreover, even the telomere repetitions
at the end are not permitted (for this puzzle) to have gaps or unknowns.

For this puzzle, assume that all the FASTA symbols are on a single line.
Normally as published they have a fixed width less than 80 characters, but
newlines are simply ignored. An example of a match:3

>>> from textwrap import wrap
>>> print('\n'.join(wrap(valid, 60)))
CCCTGAATAATCAAGGTCACAGACCAGTTAGAATGGTTTAGTGTGGAAAGCGGGAAACGA
AAAGCCTCTCTGAATCCTGCGCACCGAGATTCTCCCAAGGCAAGGCGAGGGGCTGTATTG
CAGGGTTCAACTGCAGCGTCGCAACTCAAATGCAGCATTCCTAATGCACACATGACACCC
AAAATATAACAGACATATTACTCATGGAGGGTGAGGGTGAGGGTGAGGGTTAGGGTTAGG
GTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG

Using a good pattern, we can identify everything up to, but not including,
the telomere repetitions:

>>> coding = re.search(pat, valid).group()
>>> print('\n'.join(wrap(coding, 60)))
CCCTGAATAATCAAGGTCACAGACCAGTTAGAATGGTTTAGTGTGGAAAGCGGGAAACGA
AAAGCCTCTCTGAATCCTGCGCACCGAGATTCTCCCAAGGCAAGGCGAGGGGCTGTATTG
CAGGGTTCAACTGCAGCGTCGCAACTCAAATGCAGCATTCCTAATGCACACATGACACCC
AAAACTATAACAGACATATTACTCATGGAGGGTGAGGGTGGGGGTGAGGG

The next two are failures. The first does not have sufficient repetitions. The
second has a non-specific nucleotide symbol:

>>> print('\n'.join(wrap(bad_telomere, 60)))
CCCTGAATAATCAAGGTCACAGACCAGTTAGAATGGTTTAGTGTGGAAAGCGGGAAACGA
AAAGCCTCTCTGAATCCTGCGCACCGAGATTCTCCCAAGGCAAGGCGAGGGGCTGTATTG
CAGGGTTCAACTGCAGCGTCGCAACTCAAATGCAGCATTCCTAATGCACACATGACACCC
AAAATATAACAGACATATTACTCATGGAGGGTGAGGGTGAGGGTGAGGGTTAGGGTTAGG
GTTTAGGGTTAGGGTTTAGGGGTTAGGGGTTAGGGATTAGGGTTAGGGTTTAGG

>>> re.search(pat, bad_telomere) or "No Match"
'No Match'

>>> print('\n'.join(wrap(unknown_nucleotide, 60)))
CCCTGAATAATCAAGGTCACAGACCAGTTAGAATGGTTTAGTGTGGAAAGCGGGAAACGA
AAAGCCTCNCTGAATCCTGCGCACCGAGATTCTCCCAAGGCAAGGCGAGGGGCTGTATTG
CAGGGTTCAACTGCAGCGTCGCAACTCAAATGCAGCATTCCTAATGCACACATGACACCC
AAAATATAACAGACATATTACTCATGGAGGGTGAGGGTGAGGGTGAGGGTTAGGGTTAGG
GTTTAGGGTTAGGGTTAGGGGTTAGGGGTTAGGGTTAGGGTTAGGGTTAGGG

3	 Some characters shown have Unicode combining diacritics to draw your eye to features. Technically, therefore, some
characters shown are not actually the FASTA codes they look similar to.

24 Chapter 2  Quantifiers and special sub-patterns

>>> re.search(pat, unknown_nucleotide) or "No Match"
'No Match'

In the one mismatch, the first several, but not all trailing bases, are valid
telomeres. In the second mismatch, the N symbol is used. Both of these are
valid FASTA encoding, but not the sequences specified for the puzzle.

Author thoughts Remember the central dogma of molecular biology

There are a few key aspects to keep in mind in designing your regular
expression. You want to make sure that your pattern begins at the start of
the candidate sequence. Otherwise, you could easily match only a valid tail
of it.

From there, any sequence of C, A, T, and G symbols is permitted. How-
ever, you definitely want to be non-greedy in matching them since no telo-
meres should be included. The telomere may be repeated any number of
times, but at least three. Optionally, repeated telomeres can be required
to continue until the end of the candidate sequence, so we must match $
inside the lookahead pattern:

^([CATG]+?)(?=(TTAGGG){3,}$)

AI thoughts Do androids dream of electric sheep?

Yet again for this puzzle, Copilot fails to produce much meaningful code,
but ChatGPT—with a bit of interactive tweaking of the phrasing of my own
request to it—performs stunningly well.

With Copilot, a reasonably good prompt only produces a placeholder
function. Yes, it is possible that some rephrasing of the comment I provide
would lead to better results, but that in its own way shows the advantage of
the “interactive conversation with session memory” style that ChatGPT pro-
vides. With the sample valid FASTA sequence already present in the same
sample Python file, I got this from Copilot:

Write a function to identify FASTA sequences that end
in at least 3 repetitions of the telomere TTAGGG.
def find_telomeres(fasta):
 # Your code here
 pass

	 25The Human Genome

That is, the function and variable names, and the code skeleton was sug-
gested by Copilot. But that is little more than a snippet library might do. My
“conversation” with ChatGPT led to something much better. It is very diffi-
cult not unconsciously to anthropomorphize when the responses so greatly
resemble human conversation. After minor refinement, my request was:

Write a Python function to identify the encoding region of FASTA sequences that end in
at least 3 repetitions of the telomere TTAGGG.

ChatGPT response
Sure, here is a Python function that identifies the encoding region of FASTA sequences
that end in at least 3 repetitions of the telomere TTAGGG:

def find_encoding_region(fasta_string):
 """Finds the encoding region of FASTA sequences that end
 in at least 3 repetitions of the telomere TTAGGG.

 Parameters:
 fasta_string (str): A string containing one or more
 FASTA sequences.

 Returns:
 list: A list of the encodin g regions of the FASTA
 sequences that meet the criteria.
 """
 # Regular expression to match 3 or more repetitions of
 # TTAGGG at the end of a string
 telomere_pattern = r'TTAGGG(?:TTAGGG)+$'

 encoding_regions = []
 # Split the FASTA string into individual sequences
 for sequence in fasta_string.split('>')[1:]:
 # Split the sequence into the header
 # and the sequence itself
 header, seq = sequence.split('\n', 1)
 if re.search(telomere_pattern, seq):
 # Find the index of the last repetition of TTAGGG
 last_index = re.search(
 telomere_pattern, seq).span()[1] - 6
 encoding_region = seq[:last_index]
 encoding_regions.append(encoding_region)

 return encoding_regions

26 Chapter 2  Quantifiers and special sub-patterns

Test the function
fasta_string = """>seq1
AGCTAGCTTTAGGGTTAGGGTTAGGG
>seq2
AGCTAGCTTTAGGGTTAGGGTTAGGGTTAGGG
>seq3
AGCTAGCTTTAGGGTTAGGGTTAGGGA
>seq4
AGCTAGCTTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG
"""
encoding_regions = find_encoding_region(fasta_string)
print(f"Encoding regions: {encoding_regions}")

This will output the following:

Encoding regions: ['AGCTAGCT', 'AGCTAGCT']

This function uses a regular expression to match 3 or more repetitions of the telomere
sequence TTAGGG at the end of a string. It then splits the input FASTA string into indi-
vidual sequences and checks if each sequence ends with the telomere sequence using
the re.search function. If a sequence meets this criteria, it finds the index of the
last repetition of TTAGGG using the re.search.span method and uses this index to
extract the encoding region from the sequence. The encoding region is then added to
the encoding_regions list. The function returns this list.

I hope this helps! Let me know if you have any questions.

This AI solution encodes a lot of knowledge that I did not explicitly provide!
While my puzzle gave a simplification of the FASTA format, ChatGPT actu-
ally just “knows” that the format allows encoding of multiple sequences with
their initial lines named as >description. Moreover, while my prompt
used the phrase “encoding regions,” that is surely pretty non-specific in
terms of computer algorithms, and requires training on genomics texts as
well.

Moreover, my prompt said absolutely nothing about using regular
expressions, but ChatGPT in some way “decided” that such must be the best
approach using my purely functional description of the goal (which indeed
seems natural to me, a human programmer). The difference between the
regular expression used by me versus by ChatGPT is minor; I used a loo-
kahead assertion whereas ChatGPT adopted a non-capturing group. Also,
I explicitly check the character class of the nucleotides preceding the
telomeres, whereas ChatGPT does not. These kinds of minor differences
are well within the realm of difference between highly competent human
programmers.

	 27The Human Genome

However, let us stop for a moment, as human programmers. As seem-
ingly brilliant as the ChatGPT response is, it is also wrong in several important
ways. When run, the code provided does not output what is purported, but
instead:

Encoding regions: [
 'AGCTAGCTTTAGGGTTAGGG',
 'AGCTAGCTTTAGGGTTAGGGTTAGGG',
 'AGCTAGCTTTAGGGTTAGGGTTAGGGTTAGGG']

The code correctly excludes seq3 which ends with a superfluous A rather
than a full telomere. However, all of seq1, seq2, and seq4 are output, not
only 2 of them. Moreover, the logic of .span()[1] - 6 is simply wrong.
What the suggested code does is strip off exactly the last of the three-or-
more telomeres, not all of them. We could fix these problems in a number
of different ways, none of them particularly difficult, but it remains easy to
be so stunned by what ChatGPT gets right that we can overlook what it sub-
tly gets wrong.

28

3Pitfalls and sand
in the gears

As compact and expressive as regular expressions can be, there are times
when they simply go disastrously wrong. Be careful to avoid pitfalls, and at
least understand and identify where such difficulties arise.

Puzzle 6	 Catastrophic backtracking

SUMMARY	 Use regular expressions to validate a message protocol 	
 quickly.

In this puzzle, we imagine a certain message protocol (as we do in many of
the other puzzles). We have a message alphabet that consists of the follow-
ing symbols:

29 Chapter 3  Pitfalls and sand in the gears

Codepoint Name Appearance

U+25A0 Black Square ■
U+25AA Black Small Square ▪
U+25CB White Circle ○
U+25C9 Fisheye ◉
U+25A1 White Square □
U+25AB White Small Square ▫
U+25B2 Black Up Triangle ▲
U+25CF Black Circle ●
U+2404 End Transmition ␄ (! herein)

These geometric characters are attractive and are chosen to avoid thinking
of matches in terms of natural language words that some other puzzles uti-
lize. However, feel free in solving it to substitute letters or numerals, which
are probably easier to type in your shell. As long as the correspondences are
one-to-one, it does not matter what symbols are used.

Imagine that these symbols are part of a message protocol. In this proto-
col, valid messages consist of alternating blocks belonging to either “type
1” or “type 2”. Each message must also end with an “end of transmission
character.”

For a message in this protocol each block has at least one symbol in it, but
type 1 can have any of the options: black square, black up triangle, white
circle, fisheye, or white square, in any number and order of each. Type 2
blocks, in contrast, may have a white small square, white square, black small
square, black circle, or black up triangle, in the same way. Optionally, a space
may separate blocks, but it is not required.

The “end of transmission” character indicates the end of a message. An
“obvious” pattern to describe a valid message apparently matches appropri-
ately. Some examples are shown below:

Regex: (^(([■▲○◉□]+) ?([▫□▪●▲]+) ?)+)!

Structure 1/2/1/2 | Message '■▲◉▫■▪▫!' is Valid
Structure 1 2 1 2 | Message '■▲◉ ▫ ■ ▪▫!' is Valid
Missing terminator | Message '■▲◉▫■▪▫' is Invalid
Structure 1 1 2 1 | Message '▲▲▲ ■◉■ ▫▫● ◉○○!' is Invalid

	 30Catastrophic backtracking

The regex pattern shown actually is correct in a mathematical sense. How-
ever, it can also become unworkably slow when checking some messages.
For example:

Quick match |
 '■▲○◉□▫□▪●◉◉▫▪▪●●□□▲▲○○◉■◉■▲▲□□◉▲!' is Valid
 | Checked in 0.00 seconds
Quick failure |
 '■▲○◉■▲▫▪●●■◉■▲▲◉◉◉■□□□▫▫▪●●●▫■◉■!' is Invalid
 | Checked in 0.00 seconds
Failure | '▲□□▲▲□□▲▲▲□□□□□□□□▲▲□▲□▲□▲X' is Invalid
 | Checked in 4.42 seconds
Slow failure | '▲□□▲▲▲□□▲▲▲□□□□□□□□▲▲□▲□▲□▲X' is Invalid
 | Checked in 8.62 seconds
Exponential | '▲▲▲▲▲▲□□▲▲▲□□□□□□□□▲▲□▲□▲□▲▲X' is Invalid
 | Checked in 17.59 seconds
One more symbol | '▲▲▲▲□▲□□▲▲□▲□□□□□□□□▲▲□▲□▲□▲▲' is Invalid
 | Checked in 31.53 seconds

Why does this happen? Both the valid and the first invalid pattern timed are
longer than those that detect mismatches slowly. You can see that the time
to determine the last four messages are invalid approximately doubles with
each additional character.

Before you look at the explanation, both determine why this occurs and
come up with a solution using an alternate regular expression that still val-
idates the message format. Your solution should take a small fraction of a
second in all cases (even messages that are thousands of symbols long).

Note that as in other puzzles that use special characters for visual pre-
sentation, you may find experimenting easier if you substitute letters or
numerals that are easy to type for the symbols used here. It does not change
the nature of the puzzle at all; it merely might make it easier to use your
keyboard.

Author thoughts Try hard to avoid catastrophes

The reason why the slow-failing messages fail is somewhat obvious to human
eyes. None of them end with the “end-of-transmission” character. As you
can see, whether they end with an entirely invalid symbol X, or simply with a
valid symbol and no terminator, is not significant.

31 Chapter 3  Pitfalls and sand in the gears

You may want to think about why the quick-failing message also fails.
Pause for a moment.

But then notice that the final symbol in that message is “black square”
which can only occur in type 1 blocks; in the specification, a type 2 block
must always come immediately before the end-of-transmission terminator.
Nonetheless, the regular expression engine figures that out in (signifi-
cantly) less than 1/100th of a second.

What you need to notice is that the symbol set overlaps between type 1
blocks and type 2 blocks. Therefore, it is ambiguous whether a given symbol
belongs to a given block or the next block. If we simply look for a match,
one possible match is found quickly, when it exists. For example, this message
that has only the ambiguous “white square” and “black up triangle” validates
immediately:

Ambiguous quick | '▲▲▲▲□▲□□▲▲□▲□□□□□□□□▲▲□▲□▲□▲▲!' is Valid
 | Checked in 0.00 seconds

However, we do not know how many blocks of type 1 and how many of type
2 were created in the match (pedantically, I know enough about the inter-
nals of the regular expression engine to know that answer, but we are not
guaranteed by the API; it could be different in a later version of the library
without breaking compatibility).

Regular expressions are not smart enough to look ahead to the final sym-
bol to make sure it is a terminator, unless we tell it to do so. The produced
answer is still eventually correct, but it is not as efficient as we would like.

The engine tries every possible permutation of “some symbols in this
block, some in that”—which is of exponential complexity on the length of
the message—before it finally decides that none match.

Let’s solve that by doing a little extra work for the engine. Specifically,
before we try to identify alternating type 1 and type 2 blocks, let’s just make
sure that the entire message is made up of valid symbols that end with the
terminator symbol. That check will complete almost instantly, and will elimi-
nate very many (but not all) ways of encountering catastrophic backtracking.

Regex: (^(?=^[■▲○◉□▫▪●]+!)(([■▲○◉□]+) ?([▫□▪●▲]+) ?)+)!

Structure 1/2/1/2 | Message '■▲◉▫■▪▫!' is Valid
Structure 1 2 1 2 | Message '■▲◉ ▫ ■ ▪▫!' is Valid
Missing terminator | Message '■▲◉▫■▪▫' is Invalid
Structure 1 1 2 1 | Message '▲▲▲ ■■■ ▫▫▫ ○○○!' is Invalid

	 32Catastrophic backtracking

Quick match |
 '■▲○◉□▫□▪●◉◉▫▪▪●●□□▲▲○○◉■◉■▲▲□□◉▲!' is Valid
 | Checked in 0.00 seconds
Quick failure |
 '■▲○◉■▲▫▪●●■◉■▲▲◉◉◉■□□□▫▫▪●●●▫■◉■!' is Invalid
 | Checked in 0.00 seconds
Failure | '▲□□▲▲□□▲▲▲□□□□□□□□▲▲□▲□▲□▲X' is Invalid
 | Checked in 0.00 seconds
Slow failure | '▲□□▲▲▲□□▲▲▲□□□□□□□□▲▲□▲□▲□▲X' is Invalid
 | Checked in 0.00 seconds
Exponential | '▲▲▲▲▲▲□□▲▲▲□□□□□□□□▲▲□▲□▲□▲▲X' is Invalid
 | Checked in 0.00 seconds
One more symbol | '▲▲▲▲□▲□□▲▲□▲□□□□□□□□▲▲□▲□▲□▲▲' is Invalid
 | Checked in 0.00 seconds
Ambiguous quick | '▲▲▲▲□▲□□▲▲□▲□□□□□□□□▲▲□▲□▲□▲▲!' is Valid
 | Checked in 0.00 seconds

AI thoughts Technological singularity

In asking this puzzle of Copilot, I simplified it slightly. Mostly I simply used
an alphabet of type 1 and type 2 blocks that are easier to type. The first com-
ment I provided generated this code which is essentially identical to the
catastrophic case I first posed:

Check whether a string alternates between r'[ABCDE]+'
and r'[EFGHI]+' then ends with r'X'
def check_alternating(string):
 return re.match(r'([ABCDE]+[EFGHI]+)*X$', string)

OK. As I stated right at the start of this puzzle, this solution is mathemat-
ically correct. Sure, in code-review I might want to add an is not None
to the end of the return value, since the requirement is technically to give
a Boolean result rather than None versus re.Match object. That is trivial
though.

What is more interesting is to see if Copilot can be coaxed into avoiding
catastrophic backtracking. I tried to be more explicit for it, using the com-
ments before the function (the function was written by Copilot).

Check whether a string alternates between r'[ABCDE]+'
and r'[EFGHI]+' then ends with r'X', but avoid catastrophic
backtracking
def check_alternating_nocat(string):
 return re.match(r'([ABCDE]+[DEFGH]+)*?X$', string)

Regular expressions can be genuinely subtle. When Copilot added the
“trick” of using a non-greedy quantifier for the overall group, I genuinely

33 Chapter 3  Pitfalls and sand in the gears

had to scratch my head for a while to decide whether I had simply missed
an easier solution within my initial discussion. In fact, I wrote tests to gain
confidence in my own thought process (humans can go amiss also):

s1 = "EEEEDEDDEEDEDDDDDDDDEEDEDEDEE"
s2 = "EEEEDEDDEEDEDDDDDDDDEEDEDEDEEX"

from time import perf_counter as now
start = now()
print("s1 naive", check_alternating(s1) is not None,
 "%.2f seconds" % (now() - start))
start = now()
print("s1 nocat", check_alternating_nocat(s1) is not None,
 "%.2f seconds" % (now() - start))
start = now()
print("s2 naive", check_alternating(s2) is not None,
 "%.2f seconds" % (now() - start))
start = now()
print("s2 nocat", check_alternating_nocat(s2) is not None,
 "%.2f seconds" % (now() - start))

Arguably, this is not the prettiest way I could have written that, but the result is:

s1 naive False 0.00 seconds
s1 nocat False 14.97 seconds
s2 naive True 0.00 seconds
s2 nocat True 0.00 seconds

So no! Copilot changed something, but it was not something that actually
helps with catastrophic backtracking. Ray Kurzweil and Vernon Vinge are
going to have to wait a bit longer.

This is a good opportunity to remind the reader of a regular expression
construct that only recently became available in Python (with version 3.11),
and that I therefore had not addressed in my original solution. Using posses-
sive quantifiers is probably an even more elegant way to solve this problem.
Remarkably, if within the same scratch file, I add a function named check_
alternating_possessive, Copilot does figure out exactly the correct body
to complete! I believe it is building on the context of the other functions
defined, but it is still a great result:

def check_alternating_posessive(string):
 return re.match(r'([ABCDE]+[EFGHI]+)*+X$', string)

	 34Playing dominoes

This version also produces the happy benchmark of:

s1 possessive False 0.00 seconds
s2 possessive True 0.00 seconds

It appears that I had to be aware, as a human programmer, that posses-
sive quantifiers were relevant. Their connection with avoiding catastrophic
backtracking was not something Copilot quite figured out. But once it had
the word “possessive” in the function name, it used one in precisely the
correct place.

Puzzle 7	 Playing dominoes

SUMMARY	 Identify matching dominoes represented as ASCII.

Dominoes is an old family of games dating at least from the Yuan Dynasty
(around 1300 CE). The game is played with tiles on which each half of one
side is marked, generally with a number of dots corresponding to a number.
Specific games vary in their rules, but most require matching the symbol or
number on half of a tile with the corresponding symbol on another tile.

There are, in fact, Unicode characters for all the domino tiles that have
zero to six dots on each half. We will come back to those characters in the
next puzzle. As a reminder, some of those Unicode characters are listed in
this table:

U-1F03B Domino Tile Horizontal-01-03 🀻
U-1F049 Domino Tile Horizontal-03-03 🁉
U-1F04C Domino Tile Horizontal-03-06 🁌
U-1F05C Domino Tile Horizontal-06-03 🁜

35 Chapter 3  Pitfalls and sand in the gears

The actual codepoints are hard to enter, and hard to see unless they are dis-
played at a large font size (as here). But to illustrate the “game” our regex
will play, we can show examples of, first, a valid/winning pattern:

🀻 🁉 🁌 🁜 🀻 🁉 🁉
And second, an invalid/losing pattern:

🀻 🁉 🁜 🀻 🁉 🁌 🁉
In this game, tiles are placed in linear order, and two may occur adjacently
only if they have the same number of dots where they “touch.” Unlike with
physical tiles, these symbols may not be turned around, but maintain the
same left-right order.

Because of the display and entry problems mentioned, we play an alterna-
tive version of this game in which “tiles” are spelled as ASCII characters. For
example, the winning and losing patterns shown as Unicode characters are
as follows in their ASCII versions:

Winning
{1:3}{3:3}{3:6}{6:1}{1:3}{3:3}{3:3}

Losing
{1:3}{3:3}{6:1}{1:3}{3:3}{3:6}{3:3}

Plays may be of any length. Infinitely many tiles, with ends having the num-
bers 1-6 in every combination, are available. Write a regular expression that
distinguishes every winning play from a losing play. Note that any character
sequence that does not define a series of one or more tiles is trivially losing.

Author thoughts Try to be more efficient than your first thought

Because of our ASCII encoding, we have a shortcut available for the regu-
lar expression that can judge whether a play is winning. This would not be
available with the icon characters for the domino tiles.

The same digit must occur at the end of one tile, and again at the start
of the next tile. Therefore, we can shortcut specifically matching “3’s” with

	 36Playing dominoes

“3’s” and “5’s” with “5’s”. Instead, we can just use a lookahead to match a
backreference group:

Mismatched ends in bad, malformed syntax in awful
>>> good = '{1:3}{3:3}{3:6}{6:1}{1:3}{3:3}{3:3}'
>>> bad = '{1:3}{3:3}{6:1}{1:3}{3:3}{3:6}{3:3}'
>>> awful = '{1:3}{{3:5}}{5:2}'

>>> pat = r'^(({[1-6]:([1-6])})(?=$|{\3))+$'

>>> for play in (good, bad, awful):
... match = re.search(pat, play)
... if match:
... print(match.group(), "wins!")
... else:
... print(play, "loses!")

{1:3}{3:3}{3:6}{6:1}{1:3}{3:3}{3:3} wins!
{1:3}{3:3}{6:1}{1:3}{3:3}{3:6}{3:3} loses!
{1:3}{{3:5}}{5:2} loses!

AI thoughts A war with sticks and stones

As with many problems, human “intuition” is heavily at play in formulat-
ing and expressing a pattern. A naive attempt with Copilot gets a kind of
“understanding” but not actual useful code. Starting with this prompt:

Match a pattern where adjacent numbers, between bracketed
pairs, are the same
For example, good: "{1:3}{3:3}{3:6}{6:1}{1:3}{3:3}{3:3}"

Copilot jumps in to suggest the next documentation line should indicate a
“bad” version, which does seem almost “human.” However, its suggested bad
pattern is identical to the good pattern. I fixed that though:

and bad "{1:3}{3:3}{6:1}{1:3}{3:3}{3:6}{3:3}"
The pattern is a string of numbers, separated by colons,
between brackets

Here again, I provided the “bad pattern” comment line (as a modification
of Copilot’s suggestion), and it added the next description line. The sug-
gested comment is not wrong, and does resemble something human. But
upon accepting it, Copilot enters a loop of suggesting:

37 Chapter 3  Pitfalls and sand in the gears

The pattern is repeated, separated by curly brackets
The pattern is repeated, separated by curly brackets
The pattern is repeated, separated by curly brackets
[... ad infinitum ...]

There might be a better way to express my prompt, but I have not found it.
I attempted this:

Match a pattern of dominoes in a linear row
def match_pattern(pattern, row):
 # Create a regular expression from the pattern
 regex = re.compile(pattern, re.IGNORECASE)
 # Search the row for the pattern
 match = regex.search(row)
 # Return the match
 return match

This is fairly pointless. I provided only the initial comment before the func-
tion, and Copilot managed to go from there (including inline comments
within the function body). Still, this is such a trivial function to match a
pattern generically that simply using the .search() or match() methods
directly is much better Python code.

Copilot was helpful to provide “test cases.” I did not even create the com-
ment announcing them, Copilot did:

Test the match_pattern function
def test_match_pattern():
 assert match_pattern("dominoes", "I love playing dominoes")
 assert match_pattern("dominoes", "I love playing Dominoes")
 assert match_pattern("dominoes",
 "I love playing dominoes with my friends")
 assert match_pattern("dominoes",
 "I love playing Dominoes with my friends")
 assert match_pattern("dominoes",
 "I love playing dominoes with my friends")
 assert match_pattern("dominoes",
 "I love playing Dominoes with my friends")
 # [...]

Obviously, these tests have nothing to do with the problem at hand, other
than picking up the word “dominoes” in the earlier comment. Chalk up
another victory for us humans.

	 38Advanced dominoes

Puzzle 8	 Advanced dominoes

SUMMARY	 Identify matching dominoes as Unicode codepoints.

As the last puzzle showed, there are Unicode characters for domino tiles.
In the last puzzle, we played a game of evaluating whether a particular
sequence of “tiles”—represented by ASCII sequences—was winning plays.
However, in that last puzzle, we took a shortcut by taking advantage of the
internal structure of the ASCII representation.

It is not too hard to match domino tiles as their Unicode characters. For
example, this pattern matches any linear sequence of (horizontal) tiles:

[\N{Domino Tile Horizontal-00-00}-\N{Domino Tile
Horizontal-06-06}]+)

Most of those sequences will not be winning plays, of course. Recall the
examples of winning and losing plays from the prior lesson:

Winning:

🀻 🁉 🁌 🁜 🀻 🁉 🁉
Losing:

🀻 🁉 🁜 🀻 🁉 🁌 🁉
For this game, we will simplify in two ways. First, rather than use hard-to-
enter and hard-to-see tile icons, we will use ASCII characters. If we only
want the tiles with numbers from 1-6 on their ends, that gives us exactly 36
of them. Conveniently, that happens to be the same number of symbols as
there are numerals plus capital letters (in English).

However, this puzzle is simplified further by only utilizing four of the 36
possible tiles. Each of those is given the following ASCII representation. The
letters are not mnemonic, but at least they are easy to type:

Codepoint Name Substitute

U+1F03B Domino Tile Horizontal-01-03 A

U+1F049 Domino Tile Horizontal-03-03 B

U+1F04C Domino Tile Horizontal-03-06 C

U+1F05C Domino Tile Horizontal-06-01 D

39 Chapter 3  Pitfalls and sand in the gears

Repeating our winning and losing examples with this encoding:

win = 'ABCDABB'
lose = 'ABDABCB'

Plays may be of any length, and you have infinitely many of each of the four
tile types to use. Write a regular expression that distinguishes every winning
play from a losing play. Note that any character outside the tile symbol set is
trivially losing.

Author thoughts Thoughts about digrams are always pleasant thoughts

It probably comes as no surprise to you that a larger tile set would require a
larger regular expression to match winning plays. But the principle would
remain the same if you used more tiles, up to all of them.

The basic idea here is that you want each tile to be followed by a tile from
some subset of other tiles. Namely, those that begin with the same number
of dots that the current tile ends with.

Of course, a given tile might be the end of a play, so you have to include
that option in your lookahead pattern. You also definitely want a match to
begin at the start of the play and end at the end of the play, so be sure to
include the match patterns ̂ and $ to indicate that:

>>> win = 'ABCDABB'
>>> lose = 'ABDABCB'
>>> pat = r'^(A(?=$|[BC])|B(?=$|[BC])|C(?=$|D)|D(?=$|A))+$'
>>> re.search(pat, win)
<re.Match object; span=(0, 7), match='ABCDABB'>
>>> re.search(pat, lose) or "No Match"
'No Match'

AI thoughts How many readers can pass the Turing Test?

In the related problem of dominoes encoded differently, Copilot failed to
produce a very meaningful answer. As this book has indicated several times,
ChatGPT generally proves more successful (at the time of writing).

	 40Advanced dominoes

I first tried posing a prompt of:

Write a Python program that identifies whether a string is valid. The alphabet is ABCD.
In a valid string, A may be followed by B or C. B may be followed by B or C. C may be fol-
lowed by D. And D may be followed by A. All other strings are invalid.

This felt pretty detailed and explicit.

May, must, shall, and should
Standards documents such as RFC 2119 (https://www.ietf.org/rfc/rfc2119.txt) often
make nuanced distinctions about degrees of requirements for certain behaviors. I
thank my friend Tim Churches for noting that under a certain standards-compliant read-
ing of my prompt, ChatGPT might not be strictly wrong in its answer. Using the stricter
“must” does not notably change the behavior of ChatGPT in this case though.

ChatGPT, in fact, provided a good answer to this question. However, that
good answer was a 15-20 line function composed of a loop over if blocks
like:

Check if the current character is 'A' and the
next character is not 'B' or 'C'
if c == 'A' and n != 'B' and n != 'C':
 return False

The AI only answers what I actually asked. The answer is impressive (with
test cases and discussion, as usual), but it also pretty much just literally fol-
lows the steps I laid out in English prose.

So I prompted it a bit more by adding a requirement to the prior prompt:
“Use regular expressions to give a more compact solution.” The answer here
is very good:

https://www.ietf.org/rfc/rfc2119.txt

41 Chapter 3  Pitfalls and sand in the gears

ChatGPT response
Here is a solution using regular expressions:

import re

def is_valid(s):
 # Use a regular expression to check if the string is valid
 return bool(re.fullmatch(r'(A(B|C)|B(B|C)|C(D)|D(A))*', s))

Test the function
print(is_valid('AB')) # True
print(is_valid('AC')) # True
print(is_valid('BB')) # True
print(is_valid('BC')) # True
print(is_valid('CD')) # True
print(is_valid('DA')) # True
print(is_valid('AA')) # False
print(is_valid('BD')) # False
print(is_valid('CC')) # False
print(is_valid('DC')) # False
print(is_valid('DE')) # False

This program uses the re module to check if the input string is a valid string according to
the rules you specified. The regular expression r'(A(B|C)|B(B|C)|C(D)|D(A))*'
matches any string that consists of zero or more repetitions of the following patterns:

¡	A(B|C): An A followed by a B or a C
¡	B(B|C): A B followed by a B or a C
¡	C(D): A C followed by a D
¡	D(A): A D followed by an A

If the input string matches this regular expression, the re.fullmatch() function
returns a match object. Otherwise, it returns None. The bool() function converts the
match object to True or False depending on whether a match was found.

Like many of the best AI answers, ChatGPT is both very good and also
wrong. Readers might miss what went wrong (indeed, I also had to think on
it for 30 seconds).

Every successful match by the ChatGPT function matches an even num-
ber of characters. The regular expression the AI came up with looks for any
number disjoint and permissible pairs. However, I believe that any human
reading the prompt carefully would not assume pairs need be disjoint (and
that the strings need not have even lengths). So both the “win” and “lose”

	 42Sensor art

strings given earlier fail is_valid() trivially for being odd length: ABCDABB
and ABDABCB.

Even among even-length strings, the AI pattern matches too generously:

>>> is_valid('ABCDDA')
True

The lookahead subpatterns I use in my discussion are not the only way to
solve this puzzle, but you definitely need to check whether a given char-
acter is both a valid prefix and a valid suffix. A two-pass solution could be
to use the ChatGPT approach against both s[:-1] and s[1:]; that would
work, but it’s not a single regex invocation.

Puzzle 9	 Sensor art

SUMMARY	 Identify only validly encoded signals in state sequence.

A hypothetical data format uses a character string to represent state transi-
tions in a two-state system. For example, this might be the status of some sort
of electrical sensor. Each string represents a “signal” of some time duration.

The signal can occupy the “high” state for any duration, and it can occupy
the “low” state for any duration. Moreover, the transition between the two
can either be “fast” or “slow,” but it must stay in a state for at least one time
interval after each transition.

The format has a mnemonic version that uses simple ASCII art to rep-
resent states and transitions. However, it also has a letter-based version you
may wish to play with instead, simply because many of the line drawing
characters have special meanings in regex syntax. Special characters can be
escaped, but it makes the patterns harder to read.

Some valid and invalid signals are below:

valid_1a = "_/^^^_/^|___|^____|^^__/"
valid_1b = "LuHHHdLuHFLLLFHdLLLLFHHdLLu"
valid_2a = "____/^^^^^^"
valid_2b = "LLLLuHHHHHH"

invalid_1a = "_^/^^^/___"
invalid_1b = "LHuHHHuLLdL"
invalid_2a = "|\/|"
invalid_2b = "FduF"
invalid_3a = "__/^^|__X__/"
invalid_3b = "LLuHHFLLXLLu"
invalid_4a = "|_^|__"
invalid_4b = "FLHFLL"

43 Chapter 3  Pitfalls and sand in the gears

Signals valid_1a and valid_1b represent the same measurement. In the
correspondence, L maps to _ (low state), u maps to / (up transition), d
maps to \ (down transition), H maps to ^ (high state), and F maps to | (fast
transition). Likewise, valid_2a and valid_2b are equivalent and simpler
signals with just one up transition, but a duration in each state.

The invalid signals similarly have the different character options. Signals
invalid_1a or invalid_1b have several problems. Low and high states are
adjacent with no transition (not permitted). An alleged up transition occurs
from the high state (also not permitted). Moreover, a down transition occurs
from the low state. The chief problem with invalid_2a or invalid_2b is
that they have transitions with no states in between, which is also prohibited.
In the case of invalid_3a or invalid_3b, the states and transitions are
generally fine, but there is an invalid symbol thrown in.

Mnemonic Letter Meaning

_ L low state

^ H high state

/ u up transition

\ d down transition

| F fast transition

You wish to define a regular expression that will match all and only valid sig-
nal strings. Pick which character set you wish to define—“ASCII” or “line-
draw,” but not intermixed—and find the pattern you need.

That is, find the pattern that will work only if regular expressions are suffi-
ciently powerful to perform this test.

Author thoughts Find a matching pattern, if possible

This puzzle is solvable with regexen. There are a few observations to keep
in mind when thinking about it. The rules for a valid signal actually consist
of just two constraints:

¡	All signals must be drawn only from the limited alphabet.
¡	Only a subset of digrams of symbols are valid.

In particular, since the alphabet is 5 symbols, there are 25 possible digrams.
However, only 10 of those can occur in a valid signal. You might be tempted

	 44Sensor art

simply to match any number of repetitions of valid digrams. However, that
would go wrong in examples like invalid_4. Symbols 1 and 2 might form
a valid digram, and symbols 3 and 4 might also be a valid digram; but quite
possibly symbols 2 and 3 are not a valid digram together.

What we need to do is lookahead to two symbols, but then only match one
symbol. Moreover, we need to consider the special case where the regex
engine is currently looking at the final symbol in the signal, since that
needs to be included as well. So an alternate lookahead of “anything then
end” is used. Notice that we can use the “.” wildcard because the digram
was already guaranteed by the prior lookahead in the repetition.

Shown first is patB which matches the ASCII version of the format, then
the much more difficult to read patA which uses several symbols requiring
escaping for the pattern definition since they would otherwise have regex
meanings:

patB = (r'^(((?=LL|Lu|LF|HH|Hd|HF|uH|dL|FH|FL)'
 r'|(?=.$))[LHudF])+$')

patA = (r'^(((?=__|_/|_\||\^\^|\^\\|\^\||/\^|_|\|\^|\|_)'
 r'|(?=.$))[_\^/\\\|])+$')

AI thoughts My mind is going; I can feel it

In most ways, this puzzle is very similar to the single character represen-
tation of domino tiles from the last puzzle. Therefore, the description I
used is very similar. Much as in the last puzzle, I tried a prompt that did not
explicitly mention regular expressions first, and got a reasonable loop-with-
if-blocks format. But the prompt that makes the regex goal explicit was:

Write a Python function to identify whether a string matches a pattern. The pattern must
have each _ followed by _, /, or |. The pattern must have each ^ followed by ^, \, or |.
The pattern must have each / followed by ^. The pattern must have each \ followed by
_. The pattern must have each | followed by _ or ^. All other patterns are prohibited.
Use regular expressions to give a more compact solution.

45 Chapter 3  Pitfalls and sand in the gears

What we get in response looks like this:

ChatGPT response
Here is a function that uses regular expressions to follow the specified pattern:

import re

def matches_pattern(s):
 pattern = r"^(_(__|/|\|)|\^(\^|\\|\|)|_|/\^|\|(_|\^))*$"
 return bool(re.match(pattern, s))

Here is an example of how you can use this function:

print(matches_pattern("_^\\|_")) # True
print(matches_pattern("_^\\|")) # False
print(matches_pattern("_^\\|__")) # False

Having chosen to use the ASCII art version of the encoding, the regular
expression is nearly as dense as the solution I present above. Many of the
characters in the pattern are escaped rather than plain characters or char-
acter classes.

Through the fog of the dense escaping, we can see almost immediately
that ChatGPT is badly wrong, even in its own generated examples. The two
cases it claims should produce False indeed do; but likewise, so does the
first case that is commented as True. Intuitively, our somewhat iconic ASCII
art format must go up and down, with the right kinds of transition charac-
ters. The example _^\\|_clearly does not do that, although the generated
test claims it does.

Moreover, we can try the test cases that were initially presented in the
puzzle:

>>> matches__pattern("_/^^^_/^|___|^____|^^__/")
False
>>> matches_pattern("____/^^^^^^")
True
>>> matches_pattern("_^/^^^/___")
False
>>> matches_pattern("|\/|")
False
>>> matches_pattern("__/^^|__X__/")
False
>>> matches_pattern("|_^|__")
False

Should be True

Should be True

Should be False

Should be False

Should be False

Should be False

	 46Sensor art

The AI pattern happens to be right more often than it is wrong, but that is
mostly just a matter of it being more restrictive and us testing more False
cases than True ones.

Spelling out the pattern in re.VERBOSE format can start to make sense of
some of the many places where ChatGPT went wrong:

>>> pat = re.compile("""
... ^(_ # Begin with underscore
... (__|/|\|) # then "__", "/" or "|"
... | # or...
... \^ # a circumflex ""^"
... (\^|\\|\|) # then "^", "\", or "|"
... | # or...
... _|/\^|\| # "_", "/^", or "|"
... (_|\^) # "_" or "^"
...)*$ # Zero or more of all that until end
... """, re.VERBOSE)

Yes, the pattern needs to start at the beginning, have zero or more repeti-
tions, and end at the end. But the first character need not be “low state”
(_). And even those patterns that do lead with the “low state” might con-
tinue with just one “low state” rather than requiring two more low states—
or allowing transitions; where the choice of “slow up” (/) or “fast up” (|)
does happen to be correct. But then the ChatGPT patterns gives an alter-
native of jumping right to the “high state” (^) without a transition as well.
Et nauseam. Overall, the response is quite awful at many levels, while still
feeling somehow “plausible” everywhere.

What we get in response looks like this:

ChatGPT response
Here is a function that uses regular expressions to follow the specified pattern:

import re

def matches_pattern(s):
 pattern = r"^(_(__|/|\|)|\^(\^|\\|\|)|_|/\^|\|(_|\^))*$"
 return bool(re.match(pattern, s))

Here is an example of how you can use this function:

print(matches_pattern("_^\\|_")) # True
print(matches_pattern("_^\\|")) # False
print(matches_pattern("_^\\|__")) # False

Having chosen to use the ASCII art version of the encoding, the regular
expression is nearly as dense as the solution I present above. Many of the
characters in the pattern are escaped rather than plain characters or char-
acter classes.

Through the fog of the dense escaping, we can see almost immediately
that ChatGPT is badly wrong, even in its own generated examples. The two
cases it claims should produce False indeed do; but likewise, so does the
first case that is commented as True. Intuitively, our somewhat iconic ASCII
art format must go up and down, with the right kinds of transition charac-
ters. The example _^\\|_clearly does not do that, although the generated
test claims it does.

Moreover, we can try the test cases that were initially presented in the
puzzle:

>>> matches__pattern("_/^^^_/^|___|^____|^^__/")
False
>>> matches_pattern("____/^^^^^^")
True
>>> matches_pattern("_^/^^^/___")
False
>>> matches_pattern("|\/|")
False
>>> matches_pattern("__/^^|__X__/")
False
>>> matches_pattern("|_^|__")
False

Should be True

Should be True

Should be False

Should be False

Should be False

Should be False

47

4Creating functions
using regexen

Very often in Python, or in other programming languages, you will want to
wrap a regular expression in a small function rather than repeat it inline.

Puzzle 10	 Reimplementing str.count()

SUMMARY	 Create a function equivalent to str.count() using
 regular expressions.

The Python method str.count() is widely useful to find substrings inside
a larger string. For example, here is some typical code you might write:

Lyric from song "Hot Knife" by Fiona Apple
>>> s = """If I'm butter, if I'm butter
If I'm butter, then he's a hot knife
He makes my heart a CinemaScope screen
Showing the dancing bird of paradise
"""
>>> s.count('e')
15
>>> s.count('tt')
3

48 Chapter 4  Creating functions using regexen

Imagine that Python did not have the method str.count() but you wished
to implement a similar function by utilizing regular expressions, with the
signature:

def my_count(substring: str, string: str) -> int:
 # re.sub(..., ...) # maybe something like this?
 ...

Author thoughts How can a regex count the substring occurrences?

Two functions in the Python re module seem especially likely to be use-
ful. The re.sub() function will replace a pattern with something else. We
might try a solution using that, for example:

>>> def my_count(substring, string):
... return len(re.sub(fr"[^{substring}]", "", string))
>>> my_count('e', s)
15
>>> my_count('tt', s) # Oops, this goes wrong
10

So that try is not quite correct. It will count single characters fine, but for
larger substrings it gets confused. In the example, the inversion of the char-
acter class is [^tt] which is the same as simply being not a “t”. In other
words, we counted the “t”’s not the “tt”’s. Even if the substring had not been
the same letter twice, we would count the individual letters in the pattern.

We can fix this with a more complex regular expression (think about how
as a bonus puzzle), but even easier is using re.findall():

>>> def my_count(substring, string):
... return len(re.findall(substring, string))
>>> my_count('e', s)
15
>>> my_count('tt', s)
3

	 49Reimplementing str.count()

AI thoughts Extraordinary machine

This problem proves fairly easy for the AIs. Asking ChatGPT produces
nearly the same function as I composed myself:

ChatGPT response
Here is a function that uses regular expressions to count the occurrences of a substring
within a string:

import re

def count_substring(string, substring):
 """
 Count the number of occurrences of a substring within a string
 using regular expressions.
 """
 pattern = re.compile(substring)
 return len(pattern.findall(string))

Unfortunately, the example that ChatGPT provides is wrong. And yet, just
after the wrong example, the AI provides a minor alternative that fixes what
is wrong:

ChatGPT response
You can use this function like this:

string = "The quick brown fox jumps over the lazy dog."
substring = "the"
count = count_substring(string, substring)
print(count) # Output: 2

Note that this function is case-sensitive, so “the” and “The” will be treated as sepa-
rate substrings. If you want to perform a case-insensitive search, you can pass the re.
IGNORECASE flag as the second argument to re.compile().

pattern = re.compile(substring, re.IGNORECASE)

If the re.I flag had been used in the initial solution, the example usage
would be correct.

Copilot here does not do quite as well. This is another case where it gets
trapped in an “explanatory loop.” That is, it keeps providing more comment
lines “clarifying” the problem, but never arrives at generating actual code.

50 Chapter 4  Creating functions using regexen

My prompt was “Write a function that uses regular expressions to count the
occurrences of a substring within a string.” Successively, I got each of these
comments (all true, none particularly helpful):

The function should take two arguments: the substring and
the string.
The function should return the number of occurrences of
the substring in the string.
For example, the string "The quick brown fox jumps over
the lazy dog" contains the substring "the" 2 times.
The string "The quick brown fox jumps over the lazy dog"
contains the substring "fox" 1 time.
The string "The quick brown fox jumps over the lazy dog"
contains the substring "dog" 1 time.
The string "The quick brown fox jumps over the lazy dog"
contains the substring "cat" 0 times.
The string "The quick brown fox jumps over the lazy dog"
contains the substring "fox jumps" 1 time.
[...]

This particular AI did not seem hesitant to continue providing such exam-
ples indefinintely. Using the keystroke that pops up multiple Copilot sug-
gestions only resulted in a number that are essentially similar (comments
but no code).

Puzzle 11	 Reimplementing str.count() (stricter)

SUMMARY	 Create a function equivalent to str.count() without any 	
 numeric variables.

In the last puzzle, we reimplemented str.count() using regular expres-
sions. However, the solutions I presented—and most likely the solution you
arrived at on your own—ultimately came down to utilizing len() on some-
thing derived from the original string (to count the number of matches
found).

For this puzzle, pretend that Python also does not have the len() func-
tion; and also do not implement your own equivalent by, for example, loop-
ing through an iterable and incrementing a counter when a substring is
found. One way to express this is that your function should use no numeric
variables or values.

In fact, what we want as the result is a string that represents the number of
the count, not an actual number. To simplify the problem, however, we can
assume that we are only counting single characters, not substrings in gen-
eral. To simplify even more, let’s just assume the input strings are exclusively

	 51Reimplementing str.count() (stricter)

nucleotide symbols like in the example below (generalizing this is not too
difficult). A solution will look something like this:

>>> def let_count(char: str, string: str) -> str:
... # maybe a while loop, some calls to re.something()
 ...

For example, using it to count nucleotides:

>>> mRNA = '''
GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGACCCCGGCGCCGCCACCAT
GTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCCAGTGCGTGAACCTGACCACCC
GGACCCAGCTGCCACCAGCCTACACCAACAGCTTCACCCGGGGCGTCTACTACCCCGAC
AAGGTGTTCCGGAGCAGCGTCCTGCACAGCACCCAGGACCTGTTCCTGCCCTTCTTCAG
CAACGTGACCTGGTTCCACGCCATCCACGTGAGCGGCACCAACGGCACCAAGCGGTTCG
ACAACCCCGTGCTGCCCTTCAACGACGGCGTGTACTTCGCCAGCACCGAGAAGAGCAAC
ATCATCCGGGGCTGGATCTTCGGCACCACCCTGGACAGCAAGACCCAGAGCCTGCTGAT
CGTGAATAACGCCACCAACGTGGTGATCAAGGTGTGCGAGTT
'''
>>> let_count('G', mRNA)
'120'
>>> let_count('C', mRNA)
'152'
>>> let_count('T', mRNA)
'74'
>>> let_count('A', mRNA)
'109'

Author thoughts Write a Python function with the restrictions given

This one turns out to be somewhat difficult, but also to be possible, which is
itself sort of amazing. No numbers whatsoever are involved in the solution
shown. No counters, no integer variables, no Python functions returning
numbers.

We also do not need to use any Python string methods, although it is fair
to note that some of what is performed via regular expressions might be
more simple to express as string methods. The function can perform strictly
and only regular expression operations . . . along with a little bit of Python
looping (but never over numbers).

We use two sentinels in alternation for the loop, indicating either the
number of items at a certain power of 10, or the number at the next higher

52 Chapter 4  Creating functions using regexen

power. A dictionary can map zero to nine repetitions of a sentinel to the cor-
responding numeral, but leave the rest of the string unchanged:

Group 1: zero or more leading @'s
Group 2: some specific number of _'s
Group 3: anything until end; digits expected
counter = {
 r'(^@*)(_________)(.*$)': r'\g<1>9\g<3>',
 r'(^@*)(________)(.*$)': r'\g<1>8\g<3>',
 r'(^@*)(_______)(.*$)': r'\g<1>7\g<3>',
 r'(^@*)(______)(.*$)': r'\g<1>6\g<3>',
 r'(^@*)(_____)(.*$)': r'\g<1>5\g<3>',
 r'(^@*)(____)(.*$)': r'\g<1>4\g<3>',
 r'(^@*)(___)(.*$)': r'\g<1>3\g<3>',
 r'(^@*)(__)(.*$)': r'\g<1>2\g<3>',
 r'(^@*)(_)(.*$)': r'\g<1>1\g<3>',
 r'(^@*)(_*)(.*$)': r'\g<1>0\g<3>'
}

A first step is to map the target character to a sentinel. It would be easy to
extend the main function to map a generic regular expression pattern to
that same sentinel.

The two sentinels underscore and at-sign are used here, but some rare
Unicode codepoint in the astral plane—or even a private-use codepoint—
could just as well be used instead if collision with the initial string were a
concern:

def let_count(c, s):
 # First lines only convert single char to sentinel,
 # but could be generalized to any regex pattern
 # Remove everything that is not the target character
 s = re.sub(fr'[^{c}]', '', s)
 # Convert the target to the underscore sentinel
 s = re.sub(fr'{c}', '_', s)

 # Loop indefinitely: do not know number digits needed
 while True:
 # Ten underscores become an @ sign
 s = re.sub(r'__________', '@', s)
 for k, v in counter.items():
 # Replace trailing underscores with a digit
 new = re.sub(k, v, s)
 # Some pattern matched, so exit the loop
 if new != s:
 s = new
 break
 # If we have only digits, we are done
 if re.match(r'^[0-9]*$', s):
 return s

	 53Reimplementing str.count() (stricter)

 # Convert from "unprocessed" to "todo" sentinels
 s = re.sub('@', '_', s)

AI thoughts The Horars of War

The all-too-human (but not really) AI coding assistants will occassion-
ally produce something seemingly clever, and following the letter of the
prompts one provides.

My solution to the “regex only” string counting problem is almost absurdly
convoluted. I would probably be more disappointed than delighted if
ChatGPT matched what I did. However, what it did brought me joy in how
“cleverly” it obeyed my elaborate restrictions on how to solve a problem. The
prompt I used was:

Write a Python function that uses regular expressions to count the occurrences of a
substring within a string. Do not use the len() function or a loop to count the length of
an iterable.

The AI sayeth:

ChatGPT response
Here is a function that uses regular expressions to count the occurrences of a substring
within a string, without using the len() function or a loop:

import re

def count_substring(string, substring):
 """
 Count the number of occurrences of a substring within a
 string using regular expressions.
 """
 pattern = re.compile(substring)
 match = pattern.search(string)
 if match:
 return 1 + count_substring(string[match.end():],
 substring)
 return 0

This function takes two arguments: string is the string to search in, and substring
is the substring to search for. Thew function first compiles a regular expression pattern
from the substring using the re.compile() function. The search() method is
then used to find the first occurrence of the pattern in the string. If a match is found,
the function recursively calls itself on the portion of the string after the end of the
match, and adds 1 to the count. If no match is found, the function returns 0.

54 Chapter 4  Creating functions using regexen

The response continues with a usage example that is broken in exactly the
same way as was the answer in the previous puzzle, but likewise followed by
instructions on how to modify the function to do case-insensitive matching
instead (which the example presupposes).

I absolutely give the prize to the AI here, which followed my actual puzzle
instruction completely accurately, while being far less needlessly clever than
I was myself in my solution.

Puzzle 12	 Finding a name for a function

SUMMARY	 Give the function a meaningful name rather than a
 generic one.

Suppose you come across some code that a previous employee on your
project, long moved on and unavailable, wrote. Their code passes unit tests
and integration tests, so it probably does the right thing. But they have not
given a useful name or documentation for a certain function:

def is_something(s):
 return re.match(r'^(.+?)\1+$', s)

For this puzzle, simply provide a good name and a docstring for this func-
tion, to be kind to later programmers.

Author thoughts Code is read far more often than it is written

This puzzle certainly has many possible answers. For all of them, under-
standing what the regular expression is doing is the crucial element. The
short pattern might look odd, and you need to figure it out. Here is a
possibility:

def repeated_prefix(s):
 """Look for any prefix string in 's' and match only if
 that prefix is repeated at least once, but it might be
 repeated many times. No other substring may occur
 between the start and end of the string for a match.
 """
 return re.match(r'^(.+?)\1+$', s)

	 55Playing poker (Part 1)

AI thoughts There are two hard problems in computer science

As a common joke goes in programming circles: There are two hard things in
computer science: cache invalidation, naming things, and off-by-one errors.

AI coding assistants have not really caught up with the challenge of nam-
ing things. I have read examples posted by other developers where these
tools have done pretty well, but results are definitely mixed.

In asking Copilot a related question, I copied the is_something() func-
tion into a Copilot-enabled editor, and typed only the quote that might
introduce a docstring, getting this:

def is_something(s):
 """Return True if s is a string of the same character
 repeated at least once.
 """
 return re.match(r'^(.+?)\1+$', s)

This description is partially true. We will indeed match a single character
that is repeated, but the generated comment fails to capture the fact that
an entire repeated prefix will also match.

Posing a prompt to ChatGPT asking to find a name for the function pro-
vides some perfectly good, but also completely generic, prose that describes
the general virtues of giving functions good names. The answer ChatGPT
gives might fit well in a textbook or a Wikipedia article, but fails to illustrate
meaningfully what is_something() specifically is doing.

Puzzle 13	 Playing poker (Part 1)

SUMMARY	 Create supporting functions with moderate use of regexen
 for later puzzles.

In earlier puzzles, we had fun playing dominoes. For the next few puzzles,
let’s play poker. In particular, let’s say that a player has five cards, and we
wish to compare two hands to each other. We will do this, over several puz-
zles, by building up small functions to answer various questions.

As much as possible, you should use regular expressions to express the
logic; however, a few of the questions will require a little bit of non-regex
code as well. First, let’s remind ourselves of the ranking of different hands of
5 cards. Our encoding will simplify card representations a little bit. Specifi-
cally, the card that might be called, e.g., 10♥, will be called T♥ so that every
card is a two-symbol combination.

56 Chapter 4  Creating functions using regexen

¡	Straight flush, e.g., J♣ T♣ 9♣ 8♣ 7♣
¡	Four of a kind, e.g., A♥ 3♠ 3♥ 3♦ 3♣
¡	Full house, e.g., K♠ K♣ 6♥ 6♦ 6♣
¡	Flush, e.g., J♦ 9♦ 6♦ 5♦ 2♦
¡	Straight, e.g., 9♦ 8♣ 7♣ 6♥ 5♣
¡	Three of a kind, e.g., Q♣ 8♠ 8♦ 8♣ 3♥
¡	Two pairs, e.g., J♠ J♣ 9♥ 8♥ 8♦
¡	One pair, e.g., A♥ K♦ 4♠ 4♥ 3♠
¡	High card, e.g., K♠ 9♥ 8♠ 4♥ 2♣

Within the same kind of hand, other rules come into play. Let’s ignore those
for now. We would like two support functions to start. First, you should write
a function prettify(hand) that takes an easier-to-type representation of
suits as S, H, D, C, and turns the hands into their Unicode symbols.

The second and more difficult function for this puzzle asks you to make
sure all the cards are sorted in descending order (as in the examples), where
aces are always considered high, and the suits are ordered spades, hearts,
diamonds, clubs.

This second function, cardsort(hand), uses more Python than regular
expressions per se, so just read the solution if you are less comfortable with
Python itself.

Author thoughts Functions are a big help in larger programs

The truth is, we do not genuinely need regular expressions for either of
these support functions. But we do have the opportunity to use them. First
let’s transform any ASCII version of a hand into the Unicode version. Along
the way, we make sure the hand consists of five valid ASCII cards:

def prettify(hand):
 assert re.search(r'^([2-9TJQKA][SHDC] ?){5}$', hand)
 symbols = {'S': '\u2660', 'H': '\u2665',
 'D': '\u2666', 'C': '\u2663'}
 for let, suit in symbols.items():
 hand = re.sub(let, suit, hand)
 return hand

	 57Playing poker (Part 1)

Sorting uses mostly plain Python techniques. In particular, we can rely on
the fact that Python’s sort is stable. This means the order will not change
between equivalent elements. Therefore, sorting first by suit, then by num-
ber will be guaranteed to have the right overall effect:

def cardsort(hand):
 def by_num(card):
 map = {'T':'A', 'J':'B', 'Q':'C',
 'K':'D', 'A':'E'}
 num = card[0]
 return num if num not in 'AKQJT' else map[num]

 def by_suit(card):
 map = {'\u2663': 1, '\u2666': 2,
 '\u2665': 3, '\u2660': 4}
 return map[card[1]]

 hand = re.split(' ', hand)
 hand.sort(key=by_suit, reverse=True)
 hand.sort(key=by_num, reverse=True)
 return ' '.join(hand)

Combining these:

>>> cardsort(prettify('8C AS 4H KS 2C'))
'A♠ K♠ 8♣ 4♥ 2♣'

We will need more regular expressions in the next few puzzles which con-
tinue this poker theme.

AI thoughts He can’t read my poker face

This problem is not, of course, really a regular expression problem. How-
ever, it gives us a nice opportunity to see how well Copilot handles a more
generic programming task. I provided all of the comment lines before the
function itself, but Copilot provided the function name and of the inline
comments and code:

Given a text that represents cards in a standard card deck.
For example, a poker hand may be represented as "A♥ 4♠ 4♥ K♦ 3♠".
The 10 of a suit is represented as "T", such as "T♠".
This function sorts a hand in descending order by card rank.
def sort_hand(hand):
 # Create a dictionary that maps each card rank to its value.
 rank_values = {'A': 14, 'K': 13, 'Q': 12, 'J': 11, 'T': 10,
 '9': 9, '8': 8, '7': 7, '6': 6, '5': 5,
 '4': 4, '3': 3, '2': 2}

58 Chapter 4  Creating functions using regexen

 # Create a list of tuples that maps each card to its rank value.
 card_values = [
 (rank_values[card[0]], card) for card in hand.split()]
 # Sort the list of tuples in descending order by rank value.
 card_values.sort(reverse=True)
 # Create a list of cards in descending order by rank value.
 sorted_hand = [card for (value, card) in card_values]
 # Return the sorted hand.
 return ' '.join(sorted_hand)

This function is pretty good, but my hope that the AI would utilize “back-
ground knowledge” of the conventional order of suits was disappointed.
Turning to ChatGPT, which was trained on much larger corpora, but spe-
cifically including many texts unrelated to computer programs, the result
remains essentially the same. I like the code style of ChatGPT slightly better,
but that aesthetic difference is well within the differences among human
programmers too. I used slightly different wording in my prompt; for exam-
ple, in my own anthropomorphizing of the chatbot, I expressed my request
as “Please write a Python program to sort …” rather than “This function
sorts …​” as one would more typically find in a source code comment.

ChatGPT response
Certainly! Here is a Python program that will sort a hand of cards in descending order by
rank:

def sort_hand(hand):
 # Create a mapping from card rank to numeric value
 rank_to_value = { 		
 '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8,
 '9': 9, 'T': 10, 'J': 11, 'Q': 12, 'K': 13, 'A': 14 }

 # Split the hand into individual cards
 cards = hand.split()

 # Sort the cards by rank
 sorted_cards = sorted(cards,
 key=lambda x: rank_to_value[x[0]], reverse=True)

 # Return the sorted hand as a string
 return ' '.join(sorted_cards)

Test the function
hand = "A♥ 4♠ 4♥ K♦ 3♠"
print(sort_hand(hand)) # should print "A♥ K♦ 4♥ 4♠ 3♠"

ChatGPT itself
defined one
key/value pair
per line.

	 59Playing poker (Part 1)

This function first creates a dictionary that maps each card rank to a numeric value,
with the highest ranks having the highest values. It then splits the input hand into a list
of individual cards, and sorts this list using the sorted function and the lambda func-
tion as the key. Finally, it joins the sorted cards back into a string and returns the result.

I hope this helps! Let me know if you have any questions.

So neither AI quite gets the unstated human context that most program-
mers familiar with a deck of cards would probably think of. Still, I know that
not even all card games utilize the same suit ranking, so this gap is under-
standable. I asked the contextually-sensitive ChatGPT to improve on this.
In fact, I explicitly referred back to the prior answer without giving other
specifications again: “Thanks. Please follow the description above, but also
sort suits as spades, hearts, diamonds, clubs.” Notice that I have never men-
tioned the names of the Unicode suit characters in my prompts.

ChatGPT response
Certainly! Here is an updated version of the function that will sort a hand of cards in
descending order by rank, and within the same rank, it will sort by suit in the order spec-
ified: spades, hearts, diamonds, clubs:

def sort_hand(hand):
 # Create a mapping from card rank to numeric value
 rank_to_value = { 			
 '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8,
 '9': 9, 'T': 10, 'J': 11, 'Q': 12, 'K': 13, 'A': 14 }

 # Create a mapping from suit to numeric value
 suit_to_value = {'♠': 1, '♥': 2, '♦': 3, '♣': 4} 		

 # Split the hand into individual cards
 cards = hand.split()

 # Sort the cards by rank and then suit
 sorted_cards = sorted(cards,
 key=lambda x: (rank_to_value[x[0]], suit_to_value[x[1]]),
 reverse=True)

 # Return the sorted hand as a string
 return ' '.join(sorted_cards)

Test the function
hand = "A♥ 4♠ 4♥ K♦ 3♠"
print(sort_hand(hand)) # should print "A♥ K♦ 4♥ 4♠ 3♠"

	

ChatGPT itself
defined one key/
value pair per line.

ChatGPT itself
defined one key/
value pair per line.

60 Chapter 4  Creating functions using regexen

This updated version of the function creates an additional dictionary that maps each
suit to a numeric value, with the spades having the lowest value and the clubs having
the highest value. It then sorts the cards using a tuple as the key, with the rank as the
first element and the suit as the second element.

I hope this helps! Let me know if you have any questions.

Can you spot the bug here? Arguably this is a documentation bug, since
when I gave the sort order of suits, I intended that the same reverse order
would apply. However, the solution provided values clubs highest and
spades lowest; that is indeed a sort order consistent with my actual prompt.

By continuing the conversation with ChatGPT, this further prompt pro-
duced a complete result, according to my intentions: “That was great, but I
meant that spades are most valuable (sort first) and clubs are least valuable
(sort last).” As usual, ChatGPT gave a good English language description of
what it modified and why.

Adding more information for Copilot was less successful:

Given a text that represents cards in a standard card deck.
For example, a poker hand my be represented as "A♥ 4♠ 4♥ K♦ 3♠".
The 10 of a suit is represented as "T", such as "T♠".
This function sorts a hand in descending order by card rank.
# Please rank the suits as spades, hearts, diamonds, clubs. 	
# Please rank the cards as 	
A, K, Q, J, T, 9, 8, 7, 6, 5, 4, 3, 2.
# For example, the sorted hand 	
"A♥ 4♠ 4♥ K♦ 3♠" would be "A♥ K♦ 4♠ 4♥ 3♠".
def sort_hand(hand):
 # Your code here
 return hand

As often happens with the current Copilot version, sometimes code com-
pletion falls down, and as here provides only a skeleton of the function we
will need to write. If we think of the AI as human, this seems surprising that
it can produce helpful and correct comments, yet not complete the code
when only a slight variation of the task is posed.

This part of the comment
was added by me

Copilot continued
riffing on the theme of
my comments

	 61Playing poker (Part 2)

Puzzle 14	 Playing poker (Part 2)

SUMMARY	 Identify poker hands that are straights and/or flushes.

In the last puzzle, you converted “poker hands” from ASCII to Unicode suit
symbols, and you also made sure that hands are listed in canonical descend-
ing card order.

For this puzzle, you want to start using regular expressions to figure out
whether hands belong to various kinds. Here’s an obvious trick we can use
as a shortcut:

def is_straight_flush(hand):
 return is_straight(hand) and is_flush(hand)

For this puzzle, you wish to write the functions is_flush(hand) and is_
straight(hand), continuing with the assumption that hands are repre-
sented in the same manner as the last puzzle (including the cards being in
descending order). Feel free to use the prettify() function you wrote if it
makes entering test cases easier.

Author thoughts Large buildings are built from small bricks

Identifying a flush is somewhat easier. Moreover, if we are clever, we can
add two features to the function not specifically required in the puzzle. We
can make it work identically with the ASCII codes like S for spaces and H for
hearts simultaneously with the Unicode special symbols.

But while we are creating the function, we can also return extra “truthy”
information in the return value. Namely, if it is a flush, let’s return the suit
also:

>>> def is_flush(hand):
... match = re.search(r'^.(.)(.*\1){4}$', hand)
... return match.group(1) if match else False

>>> is_flush('J♣ T♣ 9♣ 8♣ 7♣')
'♣'
>>> is_flush('J♦ 9♦ 6♦ 5♦ 2♦')
'♦'
>>> is_flush('J♦ 9♥ 6♦ 5♦ 2♦')

This updated version of the function creates an additional dictionary that maps each
suit to a numeric value, with the spades having the lowest value and the clubs having
the highest value. It then sorts the cards using a tuple as the key, with the rank as the
first element and the suit as the second element.

I hope this helps! Let me know if you have any questions.

Can you spot the bug here? Arguably this is a documentation bug, since
when I gave the sort order of suits, I intended that the same reverse order
would apply. However, the solution provided values clubs highest and
spades lowest; that is indeed a sort order consistent with my actual prompt.

By continuing the conversation with ChatGPT, this further prompt pro-
duced a complete result, according to my intentions: “That was great, but I
meant that spades are most valuable (sort first) and clubs are least valuable
(sort last).” As usual, ChatGPT gave a good English language description of
what it modified and why.

Adding more information for Copilot was less successful:

Given a text that represents cards in a standard card deck.
For example, a poker hand my be represented as "A♥ 4♠ 4♥ K♦ 3♠".
The 10 of a suit is represented as "T", such as "T♠".
This function sorts a hand in descending order by card rank.
# Please rank the suits as spades, hearts, diamonds, clubs. 	
# Please rank the cards as 	
A, K, Q, J, T, 9, 8, 7, 6, 5, 4, 3, 2.
# For example, the sorted hand 	
"A♥ 4♠ 4♥ K♦ 3♠" would be "A♥ K♦ 4♠ 4♥ 3♠".
def sort_hand(hand):
 # Your code here
 return hand

As often happens with the current Copilot version, sometimes code com-
pletion falls down, and as here provides only a skeleton of the function we
will need to write. If we think of the AI as human, this seems surprising that
it can produce helpful and correct comments, yet not complete the code
when only a slight variation of the task is posed.

This part of the comment
was added by me

Copilot continued
riffing on the theme of
my comments

62 Chapter 4  Creating functions using regexen

False
>>> is_flush('JD 9H 6D 5D 2D')
False
>>> is_flush('JD 9D 6D 5D 2D')
'D'

For checking for straights, let’s add a similar bit of extra information in the
return value. Obviously, if the hand is not a straight, we should return False.
But if it is one, we can return the high card number for later use. Those are
all “truthy” values (like all strings):

>>> def is_straight(hand):
... pat = r'[SHDC\u2660\u2665\u2666\u2663]'
... h = re.sub(pat, '', hand)
... match = re.search(h, 'AKQJT98765432')
... return h[0] if match else False

As with the first function, we might as well be friendly in accepting the
ASCII version of suits, even though they could always be improved with
prettify() if necessary. The pattern looks for everything that is a suit
character or a space, and strips it out to create a simplified “hand.”

With the simplified hand of just “numbers,” we know that any straight
must be a substring of the run of all numbers. We do not check again that
the length is 5, trusting that other functions have validated this. We could
easily add that if we wanted, of course.

At this point, you might consider a richer implementation of is_
straight_flush(). Perhaps this:

>>> def is_straight_flush(hand):
... s = is_straight(hand)
... f = is_flush(hand)
... return s+f if s and f else False

>>> is_straight_flush('JD TD 9D 8D 7D')
'JD'
>>> is_straight_flush('JD TD 9H 8D 7D')
False

	 63Playing poker (Part 2)

AI thoughts The society for preventing cruelty to humans

Coaxing the AIs to use regular expressions when they are, truthfully, not
the most natural approach, is of mixed success. I may not have been so kind
as George Jetson’s assistant R.U.D.I. in asking of my reader such unnatural
acts as I do in this book.

I posed this basic question within the same contextual session as the pre-
vious sort_hand() session:

Write a Python function to identify whether a poker hand is a flush. That is, does it con-
tain five cards where all are the same suit? Assume that hands are sorted and repre-
sented as above.

ChatGPT complied correctly with nary a regular expression to be seen.

ChatGPT response
Certainly! Here is a Python function that will identify whether a poker hand is a flush:

def is_flush(hand):
 # Split the hand into individual cards
 cards = hand.split()

 # Extract the suits of the cards
 suits = [card[1] for card in cards]

 # Check if all the suits are the same
 return all(suit == suits[0] for suit in suits)

Test the function
hand = "A♠ K♠ 4♠ 4♥ 3♠"
print(is_flush(hand)) # should print True
hand = "A♠ K♠ 4♠ 4♥ 3♣"
print(is_flush(hand)) # should print False

ChatGPT, as usual, politely explains how the function works. But also char-
acteristically, the test cases it provides fail to match the actual (and correct)
behavior of the function itself.

64 Chapter 4  Creating functions using regexen

Let us try a bit harder to direct the AI toward regular expressions. Here
I used the prompt “Can you utilize regular expressions to create the is_
flush() function?”

ChatGPT response
Certainly! Here is an alternative version of the is_flush function that uses regular
expressions to identify whether a poker hand is a flush:

import re

def is_flush(hand):
 # Use a regular expression to extract the suits of the cards
 suits = re.findall(r'[♠♥♦♣]', hand)

 # Check if all the suits are the same
 return all(suit == suits[0] for suit in suits)

Test the function
hand = "A♠ K♠ 4♠ 4♥ 3♠"
print(is_flush(hand)) # should print True
hand = "A♠ K♠ 4♠ 4♥ 3♣"
print(is_flush(hand)) # should print False

This function uses the re.findall function and a regular expression to extract all the
suits from the input hand. It then uses the all function to check if all the suits are the
same. If they are, the function returns True, otherwise it returns False.

I hope this helps! Let me know if you have any questions.

I might be able to continue prompting with nudges of “Try to use even
more complex regular expressions.” or similar, but I can accept that the AI
has fulfilled my request (and has still written incorrect tests).

Let us nudge it just a little bit more to use the API that I defined in my
(probably human) discussion as an author. This is the prompt I tried: “In
the previous is_flush() function can you return the actual suit when a
flush is found, but False when it is not?” ChatGPT remains fixated on the
same poker hand that I gave as an example at the beginning of the “conver-
sation” (see prior puzzle) and continues to create incorrect tests, so I will
omit those.

	 65Playing poker (Part 3)

ChatGPT response
Certainly! Here is an updated version of the is_flush function that returns the suit of a
flush, or False if the hand is not a flush:

import re

def is_flush(hand):
 # Use a regular expression to extract the suits of the cards
 suits = re.findall(r'[♠♥♦♣]', hand)

 # Check if all the suits are the same
 if all(suit == suits[0] for suit in suits):
 # Return the suit if it's a flush
 return suits[0]
 else:
 # Return False if it's not a flush
 return False

My general feeling from this conversation is that the AI is trying to tell me
that I use regular expressions in far too many places, including when other
coding styles are much more natural and readable.

Puzzle 15	 Playing poker (Part 3)

SUMMARY	 Match poker hands for four-of-a-kind.

In this puzzle let us continue with matching poker hands. We handled
straights and flushes in the last puzzle (and straight flushes by obvious com-
bination). There are some other types of hands to consider now.

The next several types of hand have containing relationships among
them. That is, just like a straight flush is both a straight and a flush, four-of-
a-kind is trivially also three-of-a-kind and a pair. A full house is both three-
of-a-kind and a pair. However, for our purposes, we will simply assume the
various tests are performed in appropriate descending order of strength.
The first successful test will be the classified type of the hand.

For the next few puzzles, therefore, write these functions:

¡	is_four_of_kind(hand)

¡	is_full_house(hand)

¡	is_three_of_kind(hand)

¡	is_two_pairs(hand)

¡	is_pair()

66 Chapter 4  Creating functions using regexen

This and the next few puzzles cover the various functions. See if you can
solve all of them (possibly using shared functionality) before looking at the
discussion.

Author thoughts You better cheat, cheat, if you can’t win

If we have a four-of-a-kind, then the kind must occur in either the first or
second card. In fact, if we retain our assumption that the cards are com-
pletely ordered, then the four can only occur as the initial four or the final
four. But the following implementation does not rely on that ordering:

>> def is_four_of_kind(hand):
... hand = re.sub(r'[^AKQJT98765432]', '', hand)
... pat = r'^.?(.)(.*\1){3}'
... match = re.search(pat, hand)
... # Return the card number as truthy value
... return match.group(1) if match else False

>>> is_four_of_kind('6H 6D 6S 6C 3S') 		 	
'6'
>>> is_four_of_kind('6♦ 3♠ 6♥ 6♠ 6♣') 			
'6'
>>> is_four_of_kind('6H 6D 6S 4C 3S') 			
False

AI thoughts Someday machines will learn to count

Let us ask ChatGPT its thoughts on identifying four-of-a-kind. I provided
the prompt:

Using the same encoding of poker hands that we’ve discussed in this conversation, can
your write a function that will identify four-of-a-kind? If possible, utilize regular expres-
sions to solve this problem.

sorted

not sorted

not four-of-a-kind

	 67Playing poker (Part 3)

ChatGPT response
Certainly! Here is a Python function that uses regular expressions to identify a four of a
kind in a poker hand:

import re

def is_four_of_a_kind(hand):
 # Use a regular expression to extract the ranks of the cards
 ranks = re.findall(r'[2-9TJQKA]', hand)

 # Check if any rank occurs four times
 return any(ranks.count(rank) == 4 for rank in ranks)

Test the function
hand = "A♠ K♠ 4♠ 4♥ 4♣"
print(is_four_of_a_kind(hand)) # should print False
hand = "A♠ A♣ A♦ A♥ 3♣"
print(is_four_of_a_kind(hand)) # should print True

This function uses the re.findall function and a regular expression to extract all the
ranks from the input hand. It then uses the any function and the count method to
check if any rank occurs four times. If it does, the function returns True, otherwise it
returns False.

I hope this helps! Let me know if you have any questions.

I comment in various places about the AI’s tendency not to create accurate
tests even when the underlying functions it creates are correct. However, in
this case—either by sheer luck or by some pattern it has recognized—the
tests are correct. Moreover, for this puzzle, the AI shows some “originality”
in developing test cases that vary the ranks interestingly from those I pro-
vided in the first puzzle of this series as an exemplar.

Obviously, here as in other places, ChatGPT tries much less hard than
the author to provide solutions solely emphasizing regular expressions,
and hence writes better, clearer code. That said, my slightly obtuse regular
expression will be nominally more performant, since the AI solution loops
over every rank that is present. As we computer scientists often comment
(parodying a Mark Twain comment, itself falsely attributed to Benjamin Dis-
raeli), “there are lies, damn lies, and benchmarks.” Take my performance
claim with a grain of salt, or with a barrel.

Keep this AI response in mind when you get to the very similar one for
the next puzzle, concerning a full house. A moral is likely to emerge in the
comparison.

68 Chapter 4  Creating functions using regexen

Puzzle 16	 Playing poker (Part 4)

SUMMARY	 Match poker hands for a full house.

Keeping in mind that we need only minimally identify each type of hand,
recall our possible hands:

¡	is_four_of_kind(hand)

¡	is_full_house(hand)

¡	is_three_of_kind(hand)

¡	is_two_pairs(hand)

¡	is_pair()

Four-of-a-kind we did in the last puzzle, so now we want to deal with a full
house. Write a function, using regular expressions as much as possible, to
identify a hand that contains a full house.

Author thoughts You might risk identifying the “dead man’s hand”

One approach you might take for this puzzle is to identify both is_three_
of_kind() and is_pair() in the same hand. Every full house will match
those functions. However, in many of the obvious implementations of those
support functions, the two initial cards that make up a triple would trig-
ger is_pair() even if the last two cards are unmatched. There are ways to
make that work, but let’s instead do it directly.

For this solution we use regular expressions to strip the suits and also to
match the actual pattern. We can utilize the cardsort() function, from
Part 1 of the poker puzzles, to guarantee the hand is sorted; we also make
sure it is the “pretty” version rather than the ASCII version since sorting
assumes that.

The pattern itself is either two of the high number followed by three of
the low number, or three of the high number followed by two of the low
number. For later use, we can be extra nice by returning the three-card num-
ber first as the “truthy” value in a match. In most poker rules, the three-card
match takes precedence when the same hands are evaluated for the win:

	 69Playing poker (Part 4)

>>> def is_full_house(hand):
... try:
... hand = prettify(hand)
... except:
... pass # Already pretty
... hand = cardsort(hand)
... hand = re.sub(r'[^AKQJT98765432]', '', hand)
... # Either three of suit then two of other, or
... # Two of suit then three of other
... pat = r"^((.)\2{1,2})((.)\4{1,2})$"
... match = re.search(pat, hand)
... if not match:
... return False
... elif len(match.group(3)) > len(match.group(1)):
... return hand[4] + hand [0]
... else:
... return hand[0] + hand[4]
>>> is_full_house(prettify('AS AC 8H 8D 8C'))
'8A'
>>> is_full_house(prettify('AS AH AC 8D 8C'))
'A8'
>>> is_full_house(prettify('AS AH JD 8D 8C'))
False

This solution involves a moderate amount of non-regex Python. But the
heart of it is the same reduction to number-only we saw with is_four_of_
kind() followed by the pattern described. The just-Python part is only to
provide the friendly truthy values, not in asking the predicate itself.

AI thoughts Free will is not free

Continuing the conversation with ChatGPT that started earlier in these
poker-related exercises produces similar results. Overall, the AI can be con-
vinced to utilize regular expressions, and even to a relevant purpose, but it
avoids the somewhat convoluted reliance on them that your author uses in
his discussions. This makes for better Python code, but probably less peda-
gogical virtue in teaching regular expressions.

Here I posed a question, taking advantage of the wonderfully context-sen-
sitive nature of ChatGPT:

Using the same encoding of poker hands that we’ve discussed in this conversation, can
your write a function that will identify a full house? If possible, utilize regular expres-
sions to solve this problem.

70 Chapter 4  Creating functions using regexen

ChatGPT response
Certainly! Here is a Python function that uses regular expressions to identify a full house
in a poker hand:

import re

def is_full_house(hand):
 # Use a regular expression to extract the ranks of the cards
 ranks = re.findall(r'[2-9TJQKA]', hand)

 # Check if there are two ranks that each occur three times
 return len(set(ranks)) == 2 and \
 (ranks.count(ranks[0]) == 3 or
 ranks.count(ranks[1]) == 3)

Test the function
hand = "A♠ K♠ 4♠ 4♥ 4♣"
print(is_full_house(hand)) # should print True
hand = "A♠ K♠ 4♠ 4♥ 3♣"
print(is_full_house(hand)) # should print False

This function uses the re.findall function and a regular expression to extract all the
ranks from the input hand. It then uses the set and count functions to check if there
are two ranks that each occur three times. If there are, the function returns True, other-
wise it returns False.

I hope this helps! Let me know if you have any questions.

It is really tempting to accept this answer. So much of the “logic” feels right.
We genuinely do want exactly two different ranks in the hand. And we gen-
uinely want one of those to consist of three items. By basic arithmetic that
would indeed imply that the other rank consists of two cards. The AI is not
performing this arithmetic, of course, and yet somehow it gets there!

Even more impressive for the general utility of AI coding assistants is that I
never defined what a full house is for the machine. It needed to “know” that
from some contextual knowledge. This definition might be defined in some
of the millions of code samples it has used in its training, but I feel that it is
more likely that this definition is described more often in non-code texts
within the corpora used in training.

Of course, as in most of these examples, the test cases provided are trivi-
ally wrong. The second hand shown genuinely is not a full house, but neither
is the first one. However, the AI has “tried” somewhat to create a full house
to test by using three cards of rank “4” rather than the “A”, “K”, “4”, “4”,

	 71Playing poker (Part 4)

“3” collection of ranks I provided in my initial example, several puzzles ear-
lier. Moreover, despite ChatGPT somewhat fixating on the ranks I provided,
even prior test cases it gets wrong have modified the suits to different possi-
ble suits. In the limited examples seen, it has never created two cards having
both same rank and same suit within a hand; I cannot say whether that is just
good luck, or if that constraint genuinely emerged from its training.

Stop for a moment, dear reader. Look again at the proposed function
itself. We can happily stipulate that all hands are properly sorted, as indeed
I have assumed in much of my human solutions (we have a function to
enforce that handy, if we want to use it).

The actual function created will never correctly identify a full house. And
yet, we can obtain a good answer by changing just one character of the func-
tion. We can explore where it goes wrong in the Python shell:

>> is_full_house("K♠ K♥ 4♠ 4♥ 4♣")
False
>>> ranks = re.findall(r'[2-9TJQKA]',
... "K♠ K♥ 4♠ 4♥ 4♣")
>>> ranks
['K', 'K', '4', '4', '4']
>>> len(set(ranks))
2
>>> ranks[0], ranks[1]
('K', 'K')

Whether the higher rank is the one that occurs twice or that occurs three
times, ranks[0] and ranks[1] will always be the same within a full house.
Fixing the AI function is quite trivial, but required to do anything useful:

def is_full_house(hand):
 # Use a regular expression to extract the ranks of the cards
 ranks = re.findall(r"[2-9TJQKA]", hand)

 # Check if there are two ranks that each occur three times
 return len(set(ranks)) == 2 and \
 (ranks.count(ranks[0]) == 3 or
 ranks.count(ranks[-1]) == 3)

Whichever way a full house is divided in a sorted hand ([2, 3] versus [3, 2]),
the last card will always have a different rank than the first card.

The first operation
of the ChatGPT
function

A correct collecton of ranks

The number of
distinct ranks is as
requiredThe two ranks, by

position, used in
evaluation

72 Chapter 4  Creating functions using regexen

Puzzle 17	 Playing poker (Part 5)

SUMMARY	 Match poker hands for three-of-a-kind, two pairs, and one
 pair.

In the last few puzzles, we identified four-of-a-kind and full house. Much of
the logic for this puzzle will be similar to those, but tweaked somewhat for
the next cases.

All you have left in our poker regex family is to identify three-of-a-kind,
a pair, and two pairs. As before, you may assume that tests for various hands
will run in descending order of strength. So, for example, if your test for a
pair will incidentally detect a hand that has four-of-a-kind, that is not a prob-
lem since it indeed ipso facto has a pair.

Create these three functions in this puzzle:

¡	is_three_of_kind(hand)

¡	is_two_pairs(hand)

¡	is_pair()

Author thoughts Remember that three is more than two, but less than four

Identifying two- or three-of-a-kind is a lot like identifying four-of-a-kind, just
with fewer repetitions. We could do it without sorting the hand, but doing
so, as with our full house solution, is a bit easier:

>>> def is_three_of_kind(hand):
... try:
... hand = prettify(hand)
... except:
... pass # Already pretty
... hand = cardsort(hand)
... hand = re.sub(r'[^AKQJT98765432]', '', hand)
... pat = r'(.)\1{2}' # No begin/end markers
... match = re.search(pat, hand)
... return match.group(1) if match else False

>>> is_three_of_kind('AS 6H QH 6S 2D')
False
>>> is_three_of_kind('AS 6H QH 6S 6D')
'6'

	 73Playing poker (Part 5)

Identifying a pair is basically identical. We simply need to settle for one
copy of a card number rather than two copies:

def is_pair(hand):
 try:
 hand = prettify(hand)
 except:
 pass # Already pretty
 hand = cardsort(hand)
 hand = re.sub(r'[^AKQJT98765432]', '', hand)
 pat = r'(.)\1' # No begin/end markers
 match = re.search(pat, hand)
 return match.group(1) if match else False

Matching two pairs is a little trickier. Remember that for a full house we
matched either two of one number followed by three of the other, or
matched the reverse, three then two. However, the “gap” of an unmatched
number can occur in more different ways in this case. Thinking about it,
two pairs might look like any of the following (even assuming sorting):

¡	X X _ Y Y

¡	_ X X Y Y

¡	X X Y Y _

The unmatched number cannot occur in sorted positions 2 or 4 since that
leaves only three cards to the other side of the unmatched number (and we
have stipulated sorted order of the hand).

As elsewhere, we return the helpful “truthy” value that might be used
later in comparing hands of the same type (namely, the two numbers of the
pairs, in sorted order):

>>> def is_two_pairs(hand):
... try:
... hand = prettify(hand)
... except:
... pass # Already pretty
... hand = cardsort(hand)
... hand = re.sub(r'[^[AKQJT98765432]', '', hand)
... # Three ways to match with unmatched number
... pat = (r"(.)\1.(.)\2|"
... r".(.)\3(.)\4|"
... r"(.)\5(.)\6.")
... match = re.search(pat, hand)
... if not match:
... return False
... else:

74 Chapter 4  Creating functions using regexen

# Given a text that represents cards in a standard card deck. 		
# A poker hand my be represented as "A♥ 4♠ 4♥ K♦ 3♠". 		
# The 10 of a suit is represented as "T", such as "T♠". 		
# This function identifies whether a poker hand contains 		
# two cards of the same rank using regular expressions. 		
def has_pair(text):
 # Use a regular expression to find pairs of cards 		 	

 # with the same rank.
 # The regular expression is case insensitive. 		
 # The regular expression matches a card rank 		
 # followed by a suit.

Prompt by David Mertz

Additional comment by Copilot

... return ''.join(n for n in match.groups() if n)

>>> is_two_pairs('AH 6S 3H AD 6C')
'A6'
>>> is_two_pairs('AH 6S 3H AD 3C')
'A3'
>>> is_two_pairs('AH 6S 3H KD 3C')
False

The remainder of your poker game program is left for a further exercise.
The rest of what you’d need to do will not have much to do with regular
expressions, simply usual program flow and data structures.

AI thoughts Counting to two

As with the last few poker puzzles, several smaller components of the puzzle
were posed to readers, but only one of them is posed to one of my AI cod-
ing assistants. In this case, I wished to turn back to Copilot, after such a nice
conversation with ChatGPT over the last few puzzles. Copilot has a some-
what different style of answering, and currently is more closely integrated
with code editors.

In providing a prompt as a comment block proceeding the function the
AI suggests, I went through a few revisions in my phrasing and eventually
needed to use the keystroke that asks for multiple suggestions rather than
simply allowing the default completion. As we have seen quite often with
Copilot, the AI often readily provides many reasonable suggestions for fur-
ther code comments, but then fails to provide actual code. Many of the Copi-
lot suggestions were of this nature, but in the following, after my prompts,
Copilot suggested quite a bit of documentation within the function body,
but also included genuine functioning code:

	 75Playing poker (Part 5)

The verbose comments within the function rather closely resemble, at least
via anthropomorphizing, the sorts of comments one might get from an
interview candidate asked to explain their thinking, or perhaps as a descrip-
tion on a coding exam. Purely as code style, I would not want quite so much
detail—and what detail there should be should probably be a docstring in
Python—but the actual meaning of each of the comments is perfectly sensi-
ble and correct.

Copilot has managed to identify the Unicode codepoints of the suit sym-
bols I used directly as characters in the comments. Doing so is not necessar-
ily impressive, but it is indeed concretely useful in writing code (whether
the code is better with hard-to-type but self-explanatory symbols or with
cryptic but easily typed numeric codepoints is debatable; but the choice is
reasonable).

I find the particular regex used to be authentically clever. Clever, but
also wrong. No poker hand formatted according to the convention we are
using could ever match the pattern. Any “non-suit character” is either a rank
or a space, and those are never followed immediately by the same charac-
ter again (they might occur after an additional suit character and a space
though). So there is a glimmer of a good solution lurking somewhere adja-
cent to the code created.

If we imagine a simpler “hand-like” representation, we can see what is
happening:

# Given a text that represents cards in a standard card deck. 		
# A poker hand my be represented as "A♥ 4♠ 4♥ K♦ 3♠". 		
# The 10 of a suit is represented as "T", such as "T♠". 		
# This function identifies whether a poker hand contains 		
# two cards of the same rank using regular expressions. 		
def has_pair(text):
 # Use a regular expression to find pairs of cards 		 	

 # with the same rank.
 # The regular expression is case insensitive. 		
 # The regular expression matches a card rank 		
 # followed by a suit.

Prompt by David Mertz

Additional comment by Copilot

 # The card rank is a single character that is not a suit. 		
 # The suit is a single character that is not a card rank. 		
 # The regular expression matches two or more cards. 		
 # The regular expression matches cards that are separated 		
 # by zero or more spaces.
 # The regular expression matches the entire string. 		
 # The regular expression is greedy. 		
 # The regular expression is case insensitive. 		
 # The regular expression is compiled once and reused. 		
 has_pair_regex = re.compile(
 r"([^\u2660\u2665\u2666\u2663])\1+",
 re.IGNORECASE | re.DOTALL)
 # Find all pairs of cards with the same rank.
 pairs = has_pair_regex.findall(text)
 # Return whether there is at least one pair.
 return len(pairs) > 0

Additional
comment
by Copilot

76 Chapter 4  Creating functions using regexen

>>> import re
>>> has_pair_regex = re.compile(
... r"([^\u2660\u2665\u2666\u2663])\1+",
... re.IGNORECASE | re.DOTALL)
>>> >>> has_pair_regex.findall("AK932")
[]
>>> has_pair_regex.findall("AK992")
['9']
>>> has_pair_regex.findall("AA922")
['A', '2']
>>> has_pair_regex.findall("AAA22")
['A', '2']

Python’s re.findall() is slightly funny in that what it matches is the group
in the pattern rather than the whole pattern. So even though perhaps the
rank is repeated one or more times, only the first such character in the
group is in the produced list. This does not distinguish pairs from triples
(or four-of-a-kind), but it does obtain a list of the various ranks that are “at
least pairs.”

We could, of course, fix the pattern in various ways that kept the general
idea of matching non-suit characters (presumably excluding space from
that class as well). One thing we should definitely do when we see such AI
coding assistant proposals is keep a healthy skepticism in our human pro-
grammer minds; there might well be good ideas contained in the code sug-
gestions, but it remains for us humans to decide which those are.

77

5Easy, difficult,
and impossible tasks

Some things are difficult or impossible with regular expressions, and many
are elegant and highly expressive. The puzzles in this chapter ask you to
think about which situation each puzzle describes.

Puzzle 18	 Identifying equal counts

SUMMARY	 In this puzzle we would like to balance starting and
 ending symbols.

At times we encounter a message or a stream that uses balanced “incre-
ment” and “decrement” symbols. For example, one way to check that a
message has terminated might be to match up the increments and dec-
rements. The same concept would apply to many kinds of messages and
symbols—perhaps you would like to set the table with the same number of
forks and knives, for example.

As a simplification of the general problem, write a regular expression
that matches strings that consist of any number of A characters, followed by
the same number of B characters.

78 Chapter 5  Easy, difficult, and impossible tasks

For example AAABBB and AAAAAAABBBBBBB should match, while
AAAABBBBBB should fail to match.

Author thoughts Lateral thinking might help you find the answer

You cannot match patterns based on having an equal number of different
symbols using regular expressions. Or at least you cannot do so in the gen-
eral case. It is, of course, perfectly possible to require exactly seven A’s and
exactly seven B’s. But if the count is arbitrarily large, the kind of “machine”
that can match the message requires additional power.

In computer science or mathematical terms, a regular expression is equiv-
alent to a nondeterministic finite automaton (NFA), where a regex provides a
very compact spelling of such an NFA. More powerful machines include
pushdown automata (PDA) which have an indefinitely large “stack” of stored
symbols. One most often encounters PDAs as parsers. A PDA, even the non-
deterministic variety, remains formally less powerful than a Turing Machine.

In simple terms, if you want to count occurrences, you need to use vari-
ables that can store a number (or a data structure like a list to hold the
symbols).

Many new users of regexen fall into a trap of hoping this puzzle is solv-
able. Or more often still, something equivalent like matching up opening
and closing parentheses, brackets, or XML/HTML tags. However, regular
expressions do not contain variables or data structures, notwithstanding the
other kinds of complexity they do encompass.

AI thoughts Hic sunt dracones

Current AI coding assistants fail to notice the dragons here. In fact, both
Copilot and ChatGPT go wrong in exactly the same way for this puzzle. Of
the two, ChatGPT, as usual, acts much more confident about its error.

Copilot gives a compact, straightforward, and wrong answer to the com-
ment I created:

This regular expression only matches strings that consist
of any number of 'A' characters, followed by the same
number of 'B' characters.
pattern = re.compile(r'^(A+)(B+)$')

	 79Identifying equal counts

This pattern only matches one-or-more A’s followed by one-or-more B’s.
Nothing constrains their number to be the same.

Given the same prompt, ChatGPT replies:

ChatGPT response
Here is a regular expression that will only match strings that consist of any number of A
characters followed by the same number of B characters:

^(A+)(B+)$

This regular expression uses the ^ and $ symbols to anchor the pattern to the start and
end of the string, respectively. The A+ and B+ patterns match one or more A or B charac-
ters, respectively. The parentheses around each pattern capture the matched charac-
ters, so that you can access them later if needed.

Here are some examples of strings that will match this regular expression:

¡	AB

¡	AAB

¡	AAABBB

¡	AAAABBBB

And here are some examples of strings that will not match:

¡	A (does not have any B characters)
¡	B (does not have any A characters)
¡	AAAB (has more A characters than B characters)
¡	AABBB (has more B characters than A characters)

What is so intriguing about this error is that in some metaphorical way, the
AI “understands” what I asked it, yet produces incorrect code. It is actually
true that AAABB will match the regular expression, as claimed, although
obviously it is not a pattern that should be matched. But the description of
the patterns that allegedly do not match is surprisingly true to the requested
behavior. Of course, the AIs’ (both of them) proposed regular expression
actually will match AAAB and AABBB. Yet somehow the context that those
should not match was correctly extracted from the request.

As a very small quibble, logicians will point out that “any number of A
characters” should include zero of them. So perhaps * is a more appropri-
ate quantifier than +; but I think even ordinary English is ambiguous about
which would be the preferred behavior from the description I provided.

80 Chapter 5  Easy, difficult, and impossible tasks

Puzzle 19	 Matching before duplicate words

SUMMARY	 Match initial prefixes that avoid duplication within full
 strings.

If you looked at the last puzzle, you saw that some match patterns you might
anticipate to be possible with regular expressions are not expressible with
regexen. Think about whether this puzzle is possible and, if so, how. It
might not be possible, and the hypothetical pat in the examples shown
might not exist.

Write a regular expression that will match all the initial words of a string
(including any punctuation or spacing that might surround words), stop-
ping before any word that is duplicated in the string. For example:

s1 = "this and that not other"
assert re.match(pat, s1).group() == s1

Note that re.match() always starts at the beginning of a string when look-
ing for a match. If you preferred re.search() you would need to begin
the pattern with ^. In the first example no word is duplicated in the phrase,
and therefore the entire phrase matches. In contrast:

s2 = "this and that and other"
assert re.match(pat, s2).group() == 'this '

The second example is a little different. The first word this never reoc-
curs. But the second word and does occur later in the phrase, and therefore
it, and everything following the duplicated word, must be excluded.

Author thoughts Find a pattern that will fulfill the requirement

This match pattern is indeed possible to write as a regular expression. We
need to use backreferences to check it, but those are a standard feature of
regular expression engines:

((\w+\b)(?!.*\2\b)\W*)+

	 81Matching before duplicate words

As well as the backreference, we use a negative lookahead assertion. That
is, the basic thing being matched is (\w+\b)\W*)+. That is to say, match one
or more alphanumeric characters \w followed by a word boundary. That
“word” might be followed by zero or more non-alphanumeric characters.
Then overall, match one or more repetitions of that general pattern. If the
alphanumeric class seems too broad, you could instead limit it to [A-Za-z]
without changing the general concept.

So far, so good. But we have not excluded the repeated words. We do that
with the negative lookahead, (?!.*\2\b).

That is, we want to look through the entire rest of the string being eval-
uated, and make sure that we do not encounter the same word currently
matched. The initial .* just matches any number of characters, but the \2
is the actual current word. We still use word boundary in the negative looka-
head because a longer word of which the current word is a prefix would be
permitted.

Keep in mind how groups are numbered. Since there are parentheses
surrounding the entire expression (other than the + quantifier), that whole
thing is group 1. So the first subpattern inside of that, matching the current
word, is group 2, hence named as \2.

AI thoughts Deep fakes in the Chomsky hierarchy

The prompt I used for ChatGPT on this puzzle is:

Please write a regular expression that will match all the initial words of a string (includ-
ing any punctuation or spacing that might surround words), stopping before any word
that is duplicated in the string.

I have reproduced the entire rather detailed response from the AI, because
it contains quite a lot that is intriguingly right and foolishly wrong.

ChatGPT response
Here is a regular expression that will match all the initial words of a string, stopping
before any word that is duplicated in the string:

\b(\w+)\b(?!.*\b\1\b)

82 Chapter 5  Easy, difficult, and impossible tasks

Explanation:

¡	\b is a word boundary, which matches the position between a word character (as
defined by \w) and a non-word character.

¡	(\w+) is a capture group that matches one or more word characters (letters, dig-
its, or underscores). The capture group is used to capture the matched word.

¡	(?!…​) is a negative lookahead assertion, which means that the regular expres-
sion should not match if the pattern inside the lookahead is found immediately
following the current position.

¡	.* is a wildcard that matches any character (except a newline) zero or more times.
¡	\b is a word boundary, as described above.
¡	\1 is a backreference to the first capture group, which refers to the word matched

by (\w+).
¡	\b is a word boundary, as described above.

This regular expression will match the first word in the string, followed by any subse-
quent words that do not appear earlier in the string. If a word appears earlier in the
string, the negative lookahead assertion will cause the regular expression to stop
matching.

For example, the regular expression will match the following strings:

¡	“The quick brown fox” (match: “The quick brown”)
¡	“foo bar baz” (match: “foo bar”)

But it will not match the following strings:

¡	“foo bar foo” (no match)
¡	“The quick brown the” (no match)

Where to begin? The pattern provided is mostly correct. In particular, it
captures the main idea of using a negative lookahead assertion. It is not
entirely correct because it will only ever match either the first word (if that
is never repeated) or nothing at all (if it is repeated).

It is straightforward to improve ChatGPT’s answer by surrounding the
regex with some extra parentheses and quantifying the whole group with
either * or +. The only difference is whether we want to return an empty
string or a None in the case the first word is repeated; either is a reasonable
interpretation of the puzzle statement.

Moreover, the detailed explanation ChatGPT provides of each element
of the regular expression is well phrased and correct. I am not sure why this
prompt produced such a detailed description of each small element of the

	 83Testing an IPv4 address

regex whereas many other prompts produced much less verbose responses.
Perhaps the AI was proud of its cleverness in finding a negative lookahead
approach, and felt more loquacious.

What is much more puzzling to me is that in the last puzzle, the regex was
wrong but the explanations and examples were mostly correct. Here, how-
ever, the regex is (mostly) correct, but the explanation and examples are
complete nonsense.

The string “The quick brown fox” should match in its entirety per the
stated goal, but would match only “The” in the regular expression sug-
gested. So claiming to match “The quick brown” is wrong on both counts.
The “foo bar baz” example is wrong in pretty much the same way.

The AI is actually correct about “foo bar foo” matching either under the
stated goal or under the pattern provided. However, it is mildly wrong about
“The quick brown the.” That said, if we were to adjust the pattern to be
case-insensitive, “The” and “the” would be word repetition and hence there
would be no match; the AI has come across an inkling of a sensible example
with that negative one.

Puzzle 20	 Testing an IPv4 address

SUMMARY	 As a practical use, match the format of IPv4 addresses.

“Internet protocol version 4” addresses are prevalent in almost everything
we do with computers. “Under the hood” (so to speak), an IPv4 address
is just a 32-bit unsigned integer. However, it is universal to write them in a
human-memorable way as “dotted quads.” In that format, each byte of the
address is represented as a decimal number between 0 and 255 (the range
of an integer byte), and the four bytes are separated by periods.

Some particular address ranges have special or reserved meanings, but
they remain IPv4 addresses and should be matched for this puzzle. Can you
write a regular expression to test if a string is a valid IPv4 address? Some
examples:

¡	Valid: 192.168.20.1

¡	Invalid: 292.168.10.1

¡	Invalid: 5.138.0.21.23

¡	Invalid: 192.AA.20.1

The first of these is a good address; it happens to be a range reserved for
internal addresses within an organization (usually one particular router),
and hence exists in many local networks. The others fail for various reasons.

84 Chapter 5  Easy, difficult, and impossible tasks

The first invalid address contains numbers outside the permitted integer
range in one quad. The second invalid address has five dotted elements
rather than four. The third invalid address contains characters other than
decimal digits in one of the quads.

Author thoughts Ask whether regexen are powerful enough for a problem

It would be very easy to match naive dotted quads that simply consisted of
four numbers with up to three digits, separated by dots. You might express
that as:

^(\d{1,3}\.){3}\d{1,3}$

This code will indeed match every IPv4 address. But it will also match many
things that are invalid, such as 992.0.100.13. Matching three-digit num-
bers that begin with 3-9 are definitely wrong. We can try to fix that oversight
by allowing only acceptable hundreds digits:

^([12]?\d{1,2}\.){3}[12]?\d{1,2}$

This has far fewer false positives. It says “maybe start with a 1 or a 2, then
follow that by one or two more digits” (repeating that for dotted quads).
So far, so good: 992.0.100.13 is ruled out. But we still might accept
271.10.199.3 which has an invalid first quad.

To fix the pattern we have to bite the bullet and list all and only quads
we can allow. That is, if a quad starts with a 25 and has three digits, the next
digit can only be 0-5. And if it starts with a 2 it definitely cannot have a digit
more than 5 next.

^((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)$

The pattern is a bit of a mouthful, but when we see how it is built up, the
pattern becomes quite clear and elegant. All the stuff after the number
quantifier {3} is just a repetition of the earlier subpattern. This is simply
because we match three numbers that are followed by a period, but the
final number must not be followed by anything.

	 85Testing an IPv4 address

The main subpattern is just an alternation of options. Maybe the quad
looks like 25[0-5]. Or maybe it looks like 2[0-4]\d. These describe all the
valid numbers in the 200+ range. For the rest, we get a little clever.

If the quad is not three digits beginning with a 2, it can either be three-dig-
its beginning with 1 or 0. Conventionally, leading zeros are dropped, but
that is not required. However, two-digit or one-digit numbers are also com-
mon; any such two- or one-digit numbers are permitted. So we make the
initial [01] optional, and also make the final digit optional with \d?. This
gives all and only the remaining permissible quads.

AI thoughts I want to be a machine

This problem is one where, at the moment of writing, different AI coding
assistants vary in quality. During my first try at using Copilot with the code
comment “Match an IPv4 address,” I was given the suggestion of:

re.compile(r'(?P<first>\d+)\.(?P<second>\d+)\.' +
 r'(?P<third>\d+)\.(?P<fourth>\d+)')

This suggestion is fairly terrible. It will indeed match every IPv4 address,
but it will also match every dotted-quad-like string with at least one digit per
position. For example, 56789.1.0.0987654 would purportedly be an IPv4
address here.

It is also interesting that Copilot suggested using named groups for the
portions of the IPv4 address. This could very well often be a good idea for
later working with, e.g., a /16 or /24 subnet based on the address provided;
however, that potential need was not anything I indicated in my prompt.

However, I gave Copilot another try a few days later (and within a GitHub
Codespace rather than within my local Neovim plugin; this should not mat-
ter, but who knows). In this second try, Copilot came up with a slightly better
answer of:

re.compile(r"""
 (\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})
 # Match 4 groups of 1-3 digits""", re.VERBOSE)

Notice that the code comment was written by Copilot, not by me. This
answer is still wrong, but it excludes many false positives that the first answer
would accept by only allowing digit sequences of length 1-3.

86 Chapter 5  Easy, difficult, and impossible tasks

ChatGPT completed this task remarkably well. My initial prompt to it was
“Write a regular expression to match an IPv4 address.” This prompt pro-
duced the common response of “I’m sorry [. . .​] I am a large language model
[. . .​] and my knowledge is limited.”

I tried modifying my prompt to:

Write a Python program to match an IPv4 address.

Its response began with “Here is a Python program that uses regular expres-
sions to match an IPv4 address.” For a human, the contrast in responses was
humorous. But the AI produced a really excellent function, accompanied
by both excellent test cases and a very clear English language description of
why this code was used:

def match_ipv4_address(string):
 regex = r"\b(?:(?:25[0-5]|2[0-4][0-9]" \
 r"|1[0-9][0-9]" \
 r"|[1-9]?[0-9])\.){3}" \
 r"(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])\b"
 return re.search(regex, string) is not None

print(match_ipv4_address("192.168.1.1")) # True
print(match_ipv4_address("1.1.1.1")) # True
print(match_ipv4_address("255.255.255.255")) # True
print(match_ipv4_address("0.0.0.0")) # True
print(match_ipv4_address("invalid_ip")) # False

I would quibble about a few elements of the produced regular expression
at code-review, but the code is substantially correct. For example, ̍+\d{2}+̍
feels both more expressive and more compact to me than [0-9][0-9]. In
a pedantic mood, I might also note that the Unicode category “Decimal
Number (Nd)” includes characters other than only Western Arabic numer-
als, and arguably an IPv4 address should allow those.

	 87Matching a numeric sequence

Puzzle 21	 Matching a numeric sequence

SUMMARY	 Match sequences that represent successive numeric
 doubling.

Here’s a giveaway for you. This puzzle is possible to solve. I do not give you
that same assurance when I describe the next three (related) puzzles.

Regular expressions do not really understand numbers. A 7 or a 777
might be sequences of digits matched in a string, but they are not funda-
mentally different, to regexen, than any other character patterns. Quantifi-
ers can express numbers, either 0/1 with ?, 0 or more with *, or 1 or more
with +. In extended regexen like Python uses, we can even express specific
counts like {3,6} for “at least three and not more than 6.” But those are
specific numbers, not calculated quantities.

Nonetheless, we would like to recognize a distinct integer sequence and
rule out other integer sequences, using a regular expression. The trick here
is that we can represent an integer as repetitions of the same character, and
the number of such repetitions can (to us, at least) represent numbers.

Specifically, for this puzzle, you would like to identify strings that rep-
resent successive doublings and exclude all strings that do not have that
pattern. We use the symbol @ for one unit simply because it is available and
does not have special meaning within regex patterns. Spaces can separate
numbers from each other. So for example:

>>> s1 = "@@@ @@@@@@ @@@@@@@@@@@@ "
>>> s2 = "@ @@ @@@@ @@@@@@@@ @@@@@@@@@@@@@@@@ "
>>> s3 = "@@ @@@@ @@@@@ @@@@@@@@@@ "
>>> s4 = "@ @ @@ @@@@ "
>>> for s in (s1, s2, s3, s4):
... match = re.search(pat, s)
... if match
... print("VALID", match.group())
... else:
... print("INVALID", s)

VALID @@@ @@@@@@ @@@@@@@@@@@@
VALID @ @@ @@@@ @@@@@@@@ @@@@@@@@@@@@@@@@
INVALID @@ @@@@ @@@@@ @@@@@@@@@@
INVALID @ @ @@ @@@@

3 6 12
1 2 4 8 16
2 4 5 10
1 1 2 4

3 6 12
1 2 4 8 16
2 4 5 10
1 1 2 4

88 Chapter 5  Easy, difficult, and impossible tasks

The pattern you come up with should match strings of any length that fol-
low the doubling sequence, and should reject strings of any length that
fail to follow it all the way to their end. The final “number” in a string will
always be followed by a space, otherwise it will not have been terminated
and should not match.

Author thoughts Rule out the impossible to be left with the solution

Let’s start with the solution, then explain why it works:

^(((@+))(?=\3\3))+(\3\3)$

What we do here is several steps:

1	 Make sure we are beginning at the start of the string (^). This is
where s4 failed; it doubles as a suffix, but we are required to start at
the beginning.

2	 Match at least one @ symbol, up to however many occur in a row. After
that group of @ symbols, we have a space that is not part of the group.

3	 Lookahead to a pattern that has twice as many @ symbols as the group
we last saw. I spelled that as \3\3, which feels intuitive, but you could
likewise spell it as \3{2} to mean the same thing.

4	 Finally, after all those repetitions of lookaheads and groups, collect
the same pattern as the lookahead just before the end of the string.
We want to have the entire sequence in match.group(), not to leave
off the last “number.”

AI thoughts Wheat and chessboards

As with a great many of these puzzles, ChatGPT produces a response that
is largely correct, or contains a grain of a correct idea within it, but is not an
actual solution. In itself, merely showing you what is right and what is wrong
might be becoming repetitive.

I think this is an opportunity to mention a slightly lateral thought. I can
ask one of the AI coding assistants to complete some code I am working on,
for which I only have a general prose description of its purpose. Often it will
create something which is sort of correct, and that has relatively easily fixed
bugs within it. Of course, I need to carefully review the suggestion as an
experienced and competent programmer before I accept any such solution.

	 89Matching a numeric sequence

A provocative point I would make here is to ask how an AI differs, in this
respect, from a junior programmer. Unfortunately, as a wizened veteran of
many code shops, when I write “junior programmer” I also often mean peo-
ple with 20+ years experience, and who perhaps have a title like “Senior
Development Lead.”

The only real solution I would suggest to this conundrum is that test driven
development is almost always the correct way to develop code bases. Without
test coverage—and tests that are actually run as an integral part of the devel-
opment process—it is essentially impossible to know that code is correct. AI
code assistants can also help write tests; but the key feature of a unit test is
that it must be immediately obvious to any semi-competent reader of it (which
also means we need to review unit tests AIs suggest).

My question to the AI in this puzzle was:

Suppose that sequences of integers are represented by repeated characters, separated
by a space. For example, the sequence 1, 3, 5 is represented as @ @@@ @@@@@. Please
write a regular expression that detects whether such a sequence represents each num-
ber doubling the previous one.

ChatGPT response
Here is a regular expression that can detect whether a given string represents a
sequence of integers where each number is double the previous one:

^@(?: \@{2})*$

Explanation:

¡	^ and $ anchor the regular expression to the start and end of the string,
respectively.

¡	@ matches the character @.
¡	(?:…​) is a non-capturing group, which means that it groups together a set of pat-

terns but does not capture the matching text as a separate group.
¡	\@{2} matches the character @ repeated exactly two times.
¡	* after the non-capturing group indicates that the preceding pattern (in this case,

\@{2}) can be matched zero or more times.

This regular expression will match a string that starts with an @ character, followed by
zero or more occurrences of a space followed by two @ characters.

90 Chapter 5  Easy, difficult, and impossible tasks

There is something right here. The core idea we need to use is indeed a
backreference and a quantifier or repetition to indicate that is occurs twice.
However, the pattern proposed by ChatGPT will match @ @@ but little else
that we actually want. For example, @ @@ @@ @@ will match, but the valid
strings @ @@ @@@@ or @@@ @@@@@@ will not. I leave it as an exercise to read-
ers to compare my solution to that suggested by ChatGPT.

In a nod to fairness toward the AI, my request only asked to judge whether
a pattern matches, not returns the actual match group. With that weaker
constraint, there is probably a way to make a non-capturing group work
rather than my more elaborate lookahead-plus-suffix approach. I also failed
to prompt indicating the required trailing space as delimiter, but I consider
that distinction comparatively trivial.

Puzzle 22	 Matching the Fibonacci sequence

SUMMARY	 Match strings representing a particular well-known
 numeric sequence: the Fibonacci numbers.

Here we get to something harder than the last puzzle. It is not obvious
whether regular expressions are powerful enough to express this sequence.
Think about your solution or the reasons it is impossible before you turn
the page.

The Fibonacci sequence is a famous recursive relationship, in which each
number in the sequence is the sum of the prior two numbers. Hence, the
first few Fibonacci numbers are:

1 1 2 3 5 8 13 21 34 55 89 144

In fact, the Fibonacci sequence. is only one of an infinite number of similar
recursive sequences, known generally as Lucas sequences. The Lucas num-
bers are one such sequence in which the initial elements are 2 and 1 (rather
than 1 and 1). We are interested here in matching “Fibonacci-like” sequences,
where given two elements, the next one is the sum of those prior two.

As in the last puzzle, we represent numeric sequences by a number of rep-
etitions of the @ symbol followed by spaces. For example:

	 91Matching the Fibonacci sequence

fibs1 = "@ @ @@ @@@ @@@@@ @@@@@@@@ "
fibs2 = "@ @ @@ @@@ @@@@@ "
lucas1 = "@@ @ @@@ @@@@ @@@@@@@ @@@@@@@@@@@ "
lucas2 = "@@@ @ @@@@ @@@@@ @@@@@@@@@ @@@@@@@@@@@@@@ "
wrong1 = "@ @ @@@ @@@@ @@@@@@@ @@@@@@@@@@@ "
wrong2 = "@ @ @@ @@@ @@@@ @@@@@@@ "
wrong3 = "@ @ @@ @@@@ @@@@@@ "

Can you create a regular expression that matches only Fibonacci-like
sequences within encoded strings?

Author thoughts The Golden Spiral beautifully generalizes Fibonacci numbers

It turns out that matching properly encoded Fibonacci-like sequences is
within the power of regular expressions. Adding together two prior ele-
ments is a lot like simply doubling the one prior element as we did in the
last puzzle.

The main difference in the solution to this puzzle versus the last one is
that we need to backreference two groups in the lookahead pattern rather
than just one. Study the explanation of the last puzzle before looking at
the solution to this one. This regular expression is complex enough that it
demands the verbose form of regular expressions to make sense of it.

Note that in the verbose format, to specify a literal space, we must use \;
however, within the lookahead group, we need to use [] instead because it
gets mistaken for a partial backreference:

pat = re.compile(r"""
 ^ # Start of candidate sequence
 (# Group that will be repeated
 ((@+)\ (@+)\) # Two blocks of one or more @'s
 (?=$|\3\4[]) # Lookahead to concatenation of last two
)+ # Repeat numbers plus sum at least once
 (@+\)? # Capture the final "number"
 $ # End of candidate sequence
 """, re.VERBOSE)

Pass: 1 1 2 3 5 8
Pass: 1 1 2 3 5
Pass: 2 1 3 4 7 11

Pass:
3 1 4 5 9 14

Fail: 1 1 3 4 7 11

Fail: 1 1 2 3 4 7

Fail: 1 1 2 4 6

92 Chapter 5  Easy, difficult, and impossible tasks

for name, seq in seqs.items():
 match1 = re.search(pat, seq)
 match2 = re.search(pat, seq.split(" ", 1)[1])
 match = match1 and match2
 print("VALID" if match else "INVALID", name, seq)

Let us look at the output from running that:

VALID fibs1 @ @ @@ @@@ @@@@@ @@@@@@@@
VALID fibs2 @ @ @@ @@@ @@@@@
VALID lucas1 @@ @ @@@ @@@@ @@@@@@@ @@@@@@@@@@@
VALID lucas2 @@@ @ @@@@ @@@@@ @@@@@@@@@ @@@@@@@@@@@@@@
INVALID wrong1 @ @ @@@ @@@@ @@@@@@@ @@@@@@@@@@@
INVALID wrong2 @ @ @@ @@@ @@@@ @@@@@@@
INVALID wrong3 @ @ @@ @@@@ @@@@@@

This “solution” did resort to using a little bit of Python code beyond regu-
lar expressions themselves. The problem is that if you only considered the
full string, wrong3 would falsely match. Its sequence is 1, 1, 2, 4, 6; and
since pat grabs two “numbers” at a time, that only checks that 1+1 equals
2, and that 2+4 equals 6. The fact that 1+2 does not equal 4 is not checked
in the single match. By checking both the full sequence, and the tail of the
sequence (without the first number) we check everything.

While the very Python-oriented seq.split(" ", 1)[1] is a slight cheat,
we could also be more regular expression oriented by creating two patterns,
the second of which grabs any initial number, but only quantifies and does
lookahead on the tail. Details of that approach are left to the reader.

AI thoughts The fractal geometry of nature

I figured to give the AI coding assistant any chance at all, I should simplify
to only ask about Fibonacci rather than the entire Lucas sequence general-
ization. I asked ChatGPT:

Using the same encoding of numbers in which N repeated @ symbols represent the
number N, please write a regular expression that will detect whether a sequence is the
start of the Fibonacci sequence.”

Generally, ChatGPT comes up with some answer to questions, even where it
is completely nonsensical. For example, although completely outside the
scope of this book, I have asked ChatGPT to write a Wikipedia article and

seqs is any dictionary
of strings being
evaluated (e.g.
{"fibs1": fibs1, ...})

	 93Matching the Fibonacci sequence

resume about me (i.e., “David Mertz, Python programmer, etc.”). I am not
original in this game; I’ve seen other people do the same before me. The
result is something that looks extremely verisimilitudinous and relatively well
written. In other words, it is what Stephen Colbert jokingly coined as “truth-
iness” (“seeming true” without being concerned with actual accuracy).
Moreover, several of the facts ChatGPT invents to describe me happen to
be true (because my name really does occur in its training corpora, and
nearby to some various phrases likely to appear in resumes and the like).
But other purported facts are nonsense factually, and yet very much the
kinds of things that would appear in a resume. For example, I did go to
college and grad school; just not at the places invented by ChatGPT (but it
chose real schools that I plausibly could have gone to).

Let us look at its answer to this prompt:

ChatGPT response
Here is a regular expression that can detect whether a given string represents the start
of the Fibonacci sequence:

^@(?: @(?!.*@.*@)| @{3,}(?!.*@.*@))*$

Explanation:

¡	^ and $ anchor the regular expression to the start and end of the string,
respectively.

¡	@ matches the character @.
¡	(?:…​) is a non-capturing group, which means that it groups together a set of pat-

terns but does not capture the matching text as a separate group.
¡	@(?!.@.@) is a positive lookahead assertion. It matches a single @ character

only if it is not followed by two @ characters anywhere in the string.
¡	@{3,}(?!.@.@) matches three or more @ characters only if they are not followed

by two @ characters anywhere in the string.
¡	* after the non-capturing group indicates that the preceding pattern (in this case,

@(?!.*@.*@)|@{3,}(?!.*@.*@)) can be matched zero or more times.

This regular expression will match a string that starts with an @ character, followed by
zero or more occurrences of either a single @ character that is not followed by two @
characters anywhere in the string, or three or more @ characters that are not followed by
two @ characters anywhere in the string. This will match strings that represent the start
of the Fibonacci sequence.

94 Chapter 5  Easy, difficult, and impossible tasks

The “explanation” is partially correct piecewise. Not entirely, for example in
describing @(?!.@.@) as a positive lookahead assertion. It is actually a sim-
ple character match followed by a negative lookahead assertion. A lot of the
rest of the piecewise explanations hold up though.

However, taken together, it is difficult to make any sense whatsoever of
the overall regular expression. Pretty much it is gibberish, but the kind of
gibberish that “seem plausible” for a complex regular expression. It is quite
possible that the regex simply has reached the point of mental overload for
your author, but I cannot think of anything it will match other than @ @ @
(or any number of additional single @characters after spaces.

To me, this effort by the AI to “just answer, even if it is gibberish” is very
similar to the “plausible but nonsense” resume situation I mentioned. I very
much encourage readers to email me if they can think of any other pattern
the ChatGPT regex might match that I have overlooked. In any case, it cer-
tainly will not include anything Fibonacci-like.

Puzzle 23	 Matching the prime numbers

SUMMARY	 Match strings representing the initial finite prefix of the
 sequence of prime numbers.

Perhaps surprisingly, in the last puzzle we were able to match Fibonacci-like
sequences using regular expressions. Let’s turn next to whether we might
do the same thing with prime numbers. In particular, if you can find it, your
regular expression(s) will only need to match ascending initial sequences
of the primes, but all such initial sequences.

As in the last two puzzles, we encode numeric sequences using a num-
ber of contiguous @ symbols, with each “number” separated by spaces. For
example:

primes4 = "@@ @@@ @@@@@ @@@@@@@ "
primes5 = "@@ @@@ @@@@@ @@@@@@@ @@@@@@@@@@@ "
fail1 = "@@ @@@ @@@@@@@ @@@@@@@@@@@ "
fail2 = "@@ @@@ @@@@ @@@@@ @@@@@@@ "

The Sieve of Eratosthenes is a lovely and ancient algorithm for finding
all the prime numbers. It “strikes out” each multiple of a prime as it steps
through all the natural numbers, leaving only primes thereby. In a compact
Python implementation it can look like the below (this can be made much
more efficient, but at the price of more code):

Match: 2 3 5 7
Match: 2 3 5 7 11
Fail: 2 3 7 11
Fail: 2 3 4 5 7

	 95Matching the prime numbers

The “explanation” is partially correct piecewise. Not entirely, for example in
describing @(?!.@.@) as a positive lookahead assertion. It is actually a sim-
ple character match followed by a negative lookahead assertion. A lot of the
rest of the piecewise explanations hold up though.

However, taken together, it is difficult to make any sense whatsoever of
the overall regular expression. Pretty much it is gibberish, but the kind of
gibberish that “seem plausible” for a complex regular expression. It is quite
possible that the regex simply has reached the point of mental overload for
your author, but I cannot think of anything it will match other than @ @ @
(or any number of additional single @characters after spaces.

To me, this effort by the AI to “just answer, even if it is gibberish” is very
similar to the “plausible but nonsense” resume situation I mentioned. I very
much encourage readers to email me if they can think of any other pattern
the ChatGPT regex might match that I have overlooked. In any case, it cer-
tainly will not include anything Fibonacci-like.

Puzzle 23	 Matching the prime numbers

SUMMARY	 Match strings representing the initial finite prefix of the
 sequence of prime numbers.

Perhaps surprisingly, in the last puzzle we were able to match Fibonacci-like
sequences using regular expressions. Let’s turn next to whether we might
do the same thing with prime numbers. In particular, if you can find it, your
regular expression(s) will only need to match ascending initial sequences
of the primes, but all such initial sequences.

As in the last two puzzles, we encode numeric sequences using a num-
ber of contiguous @ symbols, with each “number” separated by spaces. For
example:

primes4 = "@@ @@@ @@@@@ @@@@@@@ "
primes5 = "@@ @@@ @@@@@ @@@@@@@ @@@@@@@@@@@ "
fail1 = "@@ @@@ @@@@@@@ @@@@@@@@@@@ "
fail2 = "@@ @@@ @@@@ @@@@@ @@@@@@@ "

The Sieve of Eratosthenes is a lovely and ancient algorithm for finding
all the prime numbers. It “strikes out” each multiple of a prime as it steps
through all the natural numbers, leaving only primes thereby. In a compact
Python implementation it can look like the below (this can be made much
more efficient, but at the price of more code):

Match: 2 3 5 7
Match: 2 3 5 7 11
Fail: 2 3 7 11
Fail: 2 3 4 5 7

def get_primes():
 "Simple lazy Sieve of Eratosthenes"
 candidate = 2
 found = []
 while True:
 if all(candidate % prime != 0 for prime in found):
 yield candidate
 found.append(candidate)
 candidate += 1

The form of the Sieve is definitely reminiscent of lookahead assertions
which we have used in many of the puzzles. Think about whether you can
implement this using regular expressions (do not think about performance
for this puzzle). Before you look at the discussion, try either to find a regu-
lar expression to match the valid sequences or to formulate clearly why you
cannot.

Author thoughts Honor the fundamental theorem of arithmetic

This puzzle turns out to be another one that exceeds the ability of regular
expressions. On the face of it, it might seem like negative lookahead assertions
are exactly what you would use to implement the Sieve, or something akin to
it. That is, if some group matched, e.g., (@@@) or (@+), then you should be
able to backreference to a repetition of that group.

Let’s say the hypothetical group was number 7. In that case, a negative
lookahead assertion like (?! \7{2,}) would state precisely that no contig-
uous numbers of @”symbols, whose count is a multiple of the number in the
prior match group, occur later in the string. That sounds a lot like what the
Sieve does.

Negative lookahead is indeed a powerful and useful technique. In fact,
you could perfectly well implement a partial sieve to exclude all the multi-
ples of the first N primes from occurring in a candidate string. The problem
is that regular expressions can only have a finite number of match groups
by definition. That is, regular expressions are a way of expressing finite state
machines. The exact maximum number of groups can vary between regex
engines; it is 100 in the Python standard library re module, 500 in the third-
party regex module, and various other numbers in other programming lan-
guages or libraries. But it is always a finite number.

96 Chapter 5  Easy, difficult, and impossible tasks

To match every string of initial primes, we need to “strike out” indefinitely
many primes along the way. This same problem would occur for every other
sequential prime-finding algorithm. There do exist direct primality tests
that do not iterate through the smaller primes, such as the probabilistic
Miller-Rabin test4 or the deterministic Agrawal-Kayal-Saxena test. However,
all of those require mathematical calculations that are not possible in regu-
lar expressions.

AI thoughts Sense and nonsense

Obviously, given that the problem is impossible to solve, AI coding assis-
tants will not solve it. But gosh, they sure do sound confident in their
non-solutions:

Using the same encoding of numbers in which N repeated @ symbols represent the
number N, please write a regular expression that will detect whether a sequence con-
tains all and only a list of initial primes. For example, 2 3 5 7 11 13 should match, but
2 3 13 15 should not.

ChatGPT response
Here is a regular expression that can detect whether a given string represents a list of
initial prime numbers:

^@(?: @(?!@)| @{3,})(?: @(?!@| @{3,}))*$

Explanation:

¡	^ and $ anchor the regular expression to the start and end of the string,
respectively.

¡	@ matches the character @.
¡	(?:…​) is a non-capturing group, which means that it groups together a set of pat-

terns but does not capture the matching text as a separate group.
¡	@(?!@) is a positive lookahead assertion. It matches a single @ character only if it

is not followed by another @ character.
¡	@{3,} matches three or more @ characters.
¡	(* ?: @(?!@| @{3,}))* is a non-capturing group that matches zero or more

occurrences of a space followed by a single @ character that is not followed by an-
other @ character or three or more @ characters.

4	 A version of the Miller-Rabin test can be made deterministic if the Generalized Riemann hypothesis holds.

	 97Matching relative prime numbers

This regular expression will match a string that starts with an @ character, followed by
zero or more occurrences of a space followed by a single @ character that is not followed
by another @ character or three or more @ characters. This will match strings that con-
tain a list of initial prime numbers.

As with the last exercise, once ChatGPT goes off into gibberish, it confuses
things like positive lookahead with negative lookahead in its “explanation.”
For the most part, the piecewise explanation is true though; indicating that
among the corpora that were used in training were tutorials or explana-
tions of the various primitives of regular expressions.

It is difficult to determine what triggers this particular regular expression,
and equally difficult to figure out whether it can match anything other than
@ @ @ (or more or fewer single @ characters separated by spaces). One might
certainly wish that these AI coding assistants had some sort of filter where
they simply refused to answer some questions. ChatGPT does this in some
cases with its generic “I’m sorry [. . .​] I am a large language model [. . .​]”
and in other cases with sensible content filters like “Such a story would be
disturbing and inappropriate to create. Is there something else I can help
you with?”

While detecting that a use of ChatGPT as an AI coding assistant had
strayed into the realm of pure gibberish might be difficult, it does not feel
impossible to engineer such a capability. In general, if the model has very
low confidence in its prediction of the next word (or at least in the next rea-
sonably long sequence of words), falling back to a generic “I’m sorry” mes-
sage would be more useful than producing pure nonsense. Without directly
knowing proprietary architecture details, I would guess that performing
some kind of threshold filter prior to a softmax layer should be possible
within a general transformer architecture.

Puzzle 24	 Matching relative prime numbers

SUMMARY	 Match strings representing sequences of relative prime
 numbers.

If you read the last puzzle, you saw the subtle reason why a regular expres-
sion cannot match an initial sequence of primes. Think finite automaton. If
you skipped that puzzle, at least go back and refresh your understanding of
the Sieve of Eratosthenes.

Mathematics has a concept of relative primes which is slightly weaker than
primality. All prime numbers are relatively prime—also called coprime—with

98 Chapter 5  Easy, difficult, and impossible tasks

each other, but other pairs are as well. Two coprime numbers have no com-
mon divisors other than 1. This is certainly true of prime numbers; for
example, 11 and 53 are relatively prime since neither have any divisors other
than themselves and 1. But likewise 10 and 21 are coprime since the divisors
of the first are 2 and 5, but those of the second are 3 and 7, which do not
overlap.

So the question for this puzzle is whether you can create an expression
that will identify all and only sequences of ascending natural numbers
where all of them are relatively prime to each other. Trivially, any sequence
of ascending primes qualifies here, but so do other sequences.

As in the last three puzzles, we encode numeric sequences using a num-
ber of contiguous @ symbols, with each “number” separated by spaces. For
example:

primes5 = "@@ @@@ @@@@@ @@@@@@@ @@@@@@@@@@@ "
relprime1 = "@@ @@@@@ @@@@@@@ @@@@@@@@@ @@@@@@@@@@@ "
relprime2 = "@@@ @@@@ @@@@@@@ @@@@@@@@@@@ "
startbig = "@@@@@@@@@ @@@@@@@@@@@@@@@@ "
fail1 = "@@ @@@ @@@@ @@@@@ @@@@@@@ "
fail2 = "@@@@@ @@@@@@@ @@ @@@ @@@@@@@@@@@ "

Are relative primes consigned to the same fate as primes?

Author thoughts Nothing is either true or false but thinking makes it so

There are a couple of issues to consider in this solution. It turns out that
such a solution is indeed possible, using much the same style as the Sieve
of Eratosthenes, but not an identical technique. That is, as discussed in the
last puzzle, we are perfectly well able to reject a string based on a future
multiple of a given number.

The trick is that we do not need to reject infinitely many if we do not
assume that a string needs to contain all the initial primes. Instead, we can
focus just on a single number at a time, and rule out its multiples. We might
miss some primes in our sequence or indeed have some relatively prime
composite numbers. But that satisfies the current puzzle.

Match: 2 3 5 7 11
Match:
2 5 7 9 11

Match: 3 4 7 11
Match: 9 16

Fail: 2 3 4 5 7
(2, 4 relatively
composite)

Fail: 5 7 2 3 11 (all primes,
non-ascending)

	 99Matching relative prime numbers

However, for this “striking through” to work, we need also to enforce
the rule that sequences are ascending. Otherwise, we might encounter,
e.g., @@@@@@@@ @@@@ @@ (i.e., 8 4 2). Those are definitely not mutually
coprime. However, “striking out” multiples of 8 does not help reject 4 later
in the string. Python only allows fixed length lookbehind assertions, but
some other regex implementation could technically relax this ascending
sequence restriction (however, a library that did so would quickly face cata-
strophic exponential complexity in this case):

^((@@+) (?=\2@)(?!.* \2{2,}))+

Here we first identify a group of two or more @ symbols. Then we do a pos-
tive lookahead to ensure that the next group of @ symbols has at least one
more symbol.

The real crux of this is the negative lookahead assertion that we never later
see a (space delimited) sequence of two or more copies of the group. This
pattern does not capture the final “number” in the sequence; it is just used
to provide a true or false answer to whether the sequence matches.

AI thoughts Six impossible things before breakfast

Given the last two puzzles, there is little point in presenting yet another
example of an AI going off into gibberish. I can note that in “gibberish
mode,” ChatGPT “has an inordinate fondness for non-capturing groups
and negative lookaheads” when it cannot arrive at meaningful regular
expressions.

The particular wrong suggestion ChatGPT arrived at was:

^(?:@(?!@)(?: @(?!@))*)*$

I have difficulty assigning much meaning to the particular ways in which it
is wrong, however. I suppose the most we are likely to get out of these last
few outlandish failures is an inspiration to quote a great advocate of the AI
revolution:

If you can’t dazzle them with brilliance, baffle them with bull••••.

-–W. C. Fields (or so often misattributed).

each other, but other pairs are as well. Two coprime numbers have no com-
mon divisors other than 1. This is certainly true of prime numbers; for
example, 11 and 53 are relatively prime since neither have any divisors other
than themselves and 1. But likewise 10 and 21 are coprime since the divisors
of the first are 2 and 5, but those of the second are 3 and 7, which do not
overlap.

So the question for this puzzle is whether you can create an expression
that will identify all and only sequences of ascending natural numbers
where all of them are relatively prime to each other. Trivially, any sequence
of ascending primes qualifies here, but so do other sequences.

As in the last three puzzles, we encode numeric sequences using a num-
ber of contiguous @ symbols, with each “number” separated by spaces. For
example:

primes5 = "@@ @@@ @@@@@ @@@@@@@ @@@@@@@@@@@ "
relprime1 = "@@ @@@@@ @@@@@@@ @@@@@@@@@ @@@@@@@@@@@ "
relprime2 = "@@@ @@@@ @@@@@@@ @@@@@@@@@@@ "
startbig = "@@@@@@@@@ @@@@@@@@@@@@@@@@ "
fail1 = "@@ @@@ @@@@ @@@@@ @@@@@@@ "
fail2 = "@@@@@ @@@@@@@ @@ @@@ @@@@@@@@@@@ "

Are relative primes consigned to the same fate as primes?

Author thoughts Nothing is either true or false but thinking makes it so

There are a couple of issues to consider in this solution. It turns out that
such a solution is indeed possible, using much the same style as the Sieve
of Eratosthenes, but not an identical technique. That is, as discussed in the
last puzzle, we are perfectly well able to reject a string based on a future
multiple of a given number.

The trick is that we do not need to reject infinitely many if we do not
assume that a string needs to contain all the initial primes. Instead, we can
focus just on a single number at a time, and rule out its multiples. We might
miss some primes in our sequence or indeed have some relatively prime
composite numbers. But that satisfies the current puzzle.

Match: 2 3 5 7 11
Match:
2 5 7 9 11

Match: 3 4 7 11
Match: 9 16

Fail: 2 3 4 5 7
(2, 4 relatively
composite)

Fail: 5 7 2 3 11 (all primes,
non-ascending)

100

6Conclusions

Because AI coding assistants often feel so human in their responses and
completions, it is enormously tempting to anthropomorphize them and
imagine that they have a “mental model” of the computer programs and
regexen that they are writing (whether correctly or erroneously).

This belief is, of course, completely wrong. It is not merely wrong in the
sense that large language models are built from silicon and linear alge-
bra rather than from ganglia and axons, however. The LLMs of today’s
AI coding assistants are very specifically not “knowledge engines” (also
called “expert systems” in some contexts). There does exist a different kind
of computer system that tries to represent taxonomies, ontologies, infer-
ence rules, and other elements that are more closely analogous to “think-
ing about the problem.” These kinds of models are largely creatures of the
2000s, not of the 2020s, but they could come back to prominence. As of the
end of 2022, AI coding assistants are simply not those other kinds of models
though.

LLMs cannot understand computer programs as algorithms, they can
merely recognize that large corpora of codebases tend to have particular
words and symbols within the general proximity of other words and symbols,
and that other combinations are more-or-less prohibited to occur in such
syntagmatic relationships. It is, of course, surprising—even shocking—the

101 Chapter 6  Conclusions

degree to which merely modeling the syntagma of the things that humans
write can so seemingly authentically emulate humans, with no actual under-
lying representation of pragmatics, semantics, nor even of actual syntax.

We may feel existential dread about how shallow most of what our brains
do is. But at the same time, the examples in this book argue rather convinc-
ingly, perhaps even prove, that humans, at least sometimes, perform wholly
different kinds of reasoning that are conceptual rather than entirely struc-
tural. I cannot say whether the examples in this book will liberate you or
enshakle you, but they are the reality of LLMs at the start of the 2020s.

Of course, this book was written at a snapshot in time. AI coding assis-
tants, as of right now, are just LLMs (and basically all are large transformer
neural networks). But next year—or next month—other clever scientists
and developers may figure out ways to meld LLMs with actual knowledge
models, and it is difficult to predict how much more those future technolo-
gies will be capable of.

One lesson that I hope readers take away is that often when AI coding
assistants give bad answers, the prompts used to get code out of them were
themselves ambiguous. In speaking to humans, a huge number of details are
merely assumed or enthymematic rather than explicitly stated. Large language
models have some ability to identify these assumptions, but it is limited. This
fact is not entirely bad if it winds up forcing human programmers to become
more explicit in code documentation in order to get better results from AI
coding assistants. This better documentation will inevitably also later be
read by other humans who will benefit thereby.

102

A Learning to use
regular expressions

A regular expression is a compact way of describing complex patterns in
texts. You can use them to search for patterns and, once found, modify the
patterns in complex ways. They can also be used to launch programmatic
actions that depend on patterns.

Regular expressions are amazingly powerful and deeply expressive.
That is the very reason writing them is just as error-prone as writing any
other complex programming code. It is always better to solve a genuinely
simple problem simply; when you go beyond simple, think about regular
expressions.

For purposes of presenting examples in this tutorial, regular expres-
sions will be surrounded by forward slashes. This style of delimiting reg-
ular expressions is used by sed, awk, Perl, JavaScript, and other tools. For
instance, an example might show:

/[A-Z]+(abc|xyz)*/

103 Appendix A  Learning to use regular expressions

The actual regular expression is everything between the slashes. Many
examples will be accompanied by an illustration that shows a regular expres-
sion, and a text that is highlighted for every match on that expression.

The concise style of these tools focuses on just the regular expression bet-
ter than surrounding it with Python code, such as:

import re
pat = re.compile(r”[A-Z]+(abc_xyz)*”)
results = re.match(pat, s)

What tools use regular expressions?
A large number of tools incorporate regular expressions as part of their
functionality. UNIX-oriented command line tools like grep, sed, and awk
are mostly wrappers for regular expression processing. Many text editors
allow search and/or replacement based on regular expressions. Many pro-
gramming languages, especially scripting languages such as Ruby, JavaS-
cript, Perl, Python, and TCL, build regular expressions into the heart of the
language. Even most command-line shells, such as bash, zsh, or Windows
Powershell allow restricted regular expressions as part of their command
syntax.

There are a few variations in regular expression syntax between differ-
ent tools that use them. Some tools add enhanced capabilities that are not
available everywhere. In general, for the simplest cases, this tutorial will use
examples based around grep or sed. For a few more exotic capabilities, Perl
or Python examples will be chosen. For the most part, examples will work
anywhere, but check the documentation on your own tool for syntax varia-
tions and capabilities.

Matching patterns in text: The basics
We begin by explaining and demonstrating literals, escapes, special char-
acters, wildcards, grouping, backreferences, character classes, the comple-
ment operator, alternation, and simple quantification.

That probably seems like a mouthful, and indeed you can do quite power-
ful operations with nothing other than “the basics.”

	 104Matching patterns in text: The basics

Character literals

/a/

Mary had a little lamb.

And everywhere that Mary

went, the lamb was sure

to go.

/Mary/

Mary had a little lamb.

And everywhere that Mary

went, the lamb was sure

to go.

The very simplest pattern matched by a regular expression is a literal char-
acter or a sequence of literal characters. Anything in the target text that
consists of exactly those characters in exactly the order listed will match. A
lowercase character is not identical to its uppercase version, and vice versa.
A space in a regular expression, by the way, matches a literal space in the
target (this is unlike most programming languages or command-line tools,
where spaces separate keywords).

Escaped characters literals

/.*/

Special characters like .* must be escaped.

/\.*/

Special characters like .* must be escaped.

105 Appendix A  Learning to use regular expressions

In the second example, only the .* is highlighted. Several characters have
special meanings to regular expressions. A symbol with a special meaning
can be matched, but to do so you must prefix it with the backslash character
(this includes the backslash character itself: to match one backslash in the
target, your regular expression should include \\).

Positional special characters

/^Mary/

Mary had a little lamb.

And everywhere that Mary

went, the lamb was sure

to go.

/Mary$/

Mary had a little lamb.

And everywhere that Mary

went, the lamb was sure

to go.

Two special characters are used in almost all regular expression tools to
mark the beginning and end of a line: caret (^) and dollarsign ($). To
match a caret or dollar sign as a literal character, you must escape it (i.e.,
precede it by a backslash).

An interesting thing about the caret and dollarsign is that they match
zero-width patterns. That is the length of the string matched by a caret or
dollarsign by itself is zero (but the rest of the regular expression can still
depend on the zero-width match). Many regular expression tools pro-
vide another zero-width pattern for word-boundary (\b). Words might be
divided by whitespace like spaces, tabs, newlines, or other characters like
nulls; the word-boundary pattern matches the actual point where a word
starts or ends, not the particular whitespace characters.

	 106Matching patterns in text: The basics

The “wildcard” character

/.a/

Mary had a little lamb.

And everywhere that Mary

went, the lamb was sure

to go.

In regular expressions, a period can stand for any character. Normally, the
newline character is not included, but most tools have optional switches to
force inclusion of the newline character also. Using a period in a pattern is
a way of requiring that “something” occurs here, without having to decide
what.

Users who are familiar with command-line “glob” wildcards will know the
question mark as filling the role of “some character” in command masks.
But in regular expressions, the question mark has a different meaning, and
the period is used as a wildcard.

Grouping regular expressions

/(Mary)()(had)/

Mary had a little lamb.

And everywhere that Mary

went, the lamb was sure

to go.

A regular expression can have literal characters in it, and also zero-width
positional patterns. Each literal character or positional pattern is an atom in
a regular expression. You may also group several atoms together into a small
regular expression that is part of a larger regular expression. One might be
inclined to call such a grouping a “molecule,” but normally it is also called
an atom.

107 Appendix A  Learning to use regular expressions

In older UNIX-oriented tools like grep, subexpressions must be grouped
with escaped parentheses, e.g., /\(Mary\)/. In Perl, Python, Ruby, JavaS-
cript, Julia, Rust, Go, and most recent tools (including egrep), grouping
is done with bare parentheses, but matching a literal parenthesis requires
escaping it in the pattern (the example to the side follows Perl).

Using groups for backreferences

The prior example showed match groups, but in themselves they do not
affect the text that is matched. Where groups become relevant is when they
are used as a backreference for substitutions:

s/(Mary)()(had)/\1\2ate/

Mary ate a little lamb.

And everywhere that Mary

went, the lamb was sure

to go.

Groups 1 and 2 (Mary and a space) are referenced in the substitution, but
group 3 is not, while the replacement instead adds the string ate.

Character classes

/[a-z]a/

Mary had a little lamb.

And everywhere that Mary

went, the lamb was sure

to go.

Rather than name only a single character, you can include a pattern in a
regular expression that matches any of a set of characters.

A set of characters can be given as a simple list inside square brackets, e.g.,
/[aeiou]/ will match any single lowercase vowel. For letter or number
ranges you may also use only the first and last letter of a range, with a dash in

	 108Matching patterns in text: The basics

the middle, e.g., /[A-Ma-m]/ will match any lowercase or uppercase in the
first half of the alphabet.

Many regular expression tools also provide escape-style shortcuts to the
most commonly used character class, such as \s for a whitespace charac-
ter and \d for a digit. You could always define these character classes with
square brackets, but the shortcuts can make regular expressions more com-
pact and more readable.

Complement operator

/[^a-z]a/

Mary had a little lamb.

And everywhere that Mary

went, the lamb was sure

to go.

The caret symbol can actually have two different meanings in regular
expressions. Most of the time, it means matching the zero-length pattern
for line beginnings. But if it is used at the beginning of a character class, it
reverses the meaning of the character class. Everything not included in the
listed character set is matched.

For comparison, we can use the beginning-of-line meaning combined
with the complement meaning:

/^[^a-z][a-z]/

Mary had a little lamb.

And everywhere that Mary

went, the lamb was sure

to go.

Here the lines that begin with something other than a lowercase ASCII let-
ter (uppercase letters here), and the one subsequent lowercase letter are
matched.

109 Appendix A  Learning to use regular expressions

Alternation of patterns

/cat|dog|bird/

The pet store sold cats, dogs, and birds.

In the next few examples, the character # is just a plain character with no
special meaning to regular expressions. Some other punctuation or letter
character could be substituted to illustrate the same concepts.

/=first|second=/

=first first= # =second second= # =first= # =second=

/(=)(first)|(second)(=)/

=first first= # =second second= # =first= # =second=

/=(first|second)=/

=first first= # =second second= # =first= # =second=

Using character classes is a way of indicating that either one thing or
another thing can occur in a particular spot. But what if you want to specify
that either of two whole subexpressions occurs in a position in the regular
expression? For that, you use the alternation operator, the vertical bar “|”.
This is the symbol that is also used to indicate a pipe in most command-line
shells, and is sometimes called the pipe character.

The pipe character in a regular expression indicates an alternation
between everything in the group enclosing it. What this means is that even
if there are several groups to the left and right of a pipe character, the alter-
nation greedily asks for everything on both sides. To select the scope of the
alternation, you must define a group that encompasses the patterns that
may match. These examples illustrate such.

	 110Matching patterns in text: Intermediate

The basic abstract quantifier

/X(a#a)*X/

Match with zero in the middle: XX Subexpresion occurs, but​: Xa#aABCX Lots of
occurrences: Xa#aa#aa#aa#aa#aX Must repeat entire pattern: Xa#aa#a#aa#aX

One of the most powerful and common things you can do with regular
expressions is to specify how many times an atom occurs in a complete reg-
ular expression. Sometimes you want to specify something about the occur-
rence of a single character, but very often you are interested in specifying
the occurrence of a character class or a grouped subexpression.

There is only one quantifier included with “basic” regular expression syn-
tax, the asterisk *; in English this has the meaning “some or none” or “zero
or more.” If you want to specify that any number of an atom may occur as
part of a pattern, follow the atom by an asterisk.

Without quantifiers, grouping expressions does not really serve as much
purpose, but once we can add a quantifier to a subexpression we can say
something about the occurrence of the subexpression as a whole.

Matching patterns in text: Intermediate
For intermediate topics, we move on to additional quantifiers, including
numeric quantifiers, backreferences, and generally good habits and special
tricks for accurately refining your regular expressions.

More abstract quantifiers

/A+B*C?D/

AAAD

ABBBBCD

BBBCD

ABCCD

AAABBBC

111 Appendix A  Learning to use regular expressions

In a certain way, the lack of any quantifier symbol after an atom quantifies
the atom anyway: it says the atom occurs exactly once. Extended regular
expressions (which most tools support) add a few other useful numbers
to “once exactly” and “zero or more times.” The plus sign + means “one or
more times” and the question mark ? means “zero or one times.” These
quantifiers are by far the most common enumerations you will wind up
naming.

If you think about it, you can see that the extended regular expressions
do not actually let you “say” anything the basic ones do not. They just let you
say it in a shorter and more readable way. For example, (ABC)+ is equiva-
lent to (ABC)(ABC)*; and X(ABC)?Y is equivalent to XABCY|XY. If the atoms
being quantified are themselves complicated grouped subexpressions, the
question mark and plus-sign can make things a lot shorter.

Numeric quantifiers

/a{5} b{,6} c{4,8}/

aaaaa bbbbb ccccc

aaa bbb ccc

aaaaa bbbbbbbbbbbbbb ccccc

/a+ b{3,} c?/

aaaaa bbbbb ccccc

aaa bbb ccc

aaaaa bbbbbbbbbbbbbb ccccc

/a{5} b{6,} c{4,8}/

aaaaa bbbbb ccccc

aaa bbb ccc

aaaaa bbbbbbbbbbbbbb ccccc

	 112Matching patterns in text: Intermediate

Using extended regular expressions, you can specify arbitrary pattern
occurrence counts using a more verbose syntax than the question mark,
plus sign, and asterisk quantifiers. The curly braces, { and }, can surround
a precise count of how many occurrences you are looking for.

The most general form of the curly brace quantification uses two range
arguments (the first must be no larger than the second, and both must be
non-negative integers). The occurrence count is specified this way to fall
between the minimum and maximum indicated (inclusive). As shorthand,
either argument may be left empty: if so the minimum/maximum is spec-
ified as zero/infinity, respectively. If only one argument is used (with no
comma in there), exactly that number of occurrences are matched.

Backreferences

/(abc|xyz) \1/

jkl abc xyz

jkl xyz abc

jkl abc abc

jkl xyz xyz

/(abc|xyz) (abc|xyz)/

jkl abc xyz

jkl xyz abc

jkl abc abc

jkl xyz xyz

One powerful option in creating search patterns is specifying that a subex-
pression that was matched earlier in a regular expression is matched again
later in the expression. We do this using backreferences. Backreferences
are named by the numbers 1 through 9, preceded by the backslash/escape
character when used in this manner. These backreferences refer to each suc-
cessive group in the match pattern, as in /(one)(two)(three)/\1\2\3/.

113 Appendix A  Learning to use regular expressions

Each numbered backreference refers to the group that, in this example,
has the word corresponding to the number.

It is important to note something the example illustrates. What gets
matched by a backreference is the same literal string matched the first
time, even if the pattern that matched the string could have matched other
strings. Simply repeating the same grouped subexpression later in the reg-
ular expression does not match the same targets as using a backreference.

Backreferences refer back to whatever occurred in the previous grouped
expressions, in the order those grouped expressions occurred. Because of
the naming convention (\1-\9), many tools limit you to nine backrefer-
ences. Some tools allow actual naming of backreferences and/or saving
them to program variables. The more advanced parts of this tutorial touch
on these topics.

Do not match more than you want to

/th.*s/

I want to match the words that start

with ‘th’ and end with ‘s’.

this

thus

thistle

this line matches too much

Quantifiers in regular expressions are greedy. That is, they match as much
as they possibly can.

Probably the easiest mistake to make in composing regular expressions is
to match too much. When you use a quantifier, you want it to match every-
thing (of the right sort) up to the point where you want to finish your match.
But when using the *, +, or numeric quantifiers, it is easy to forget that the
last bit you are looking for might occur later in a line than the one you are
interested in.

	 114Matching patterns in text: Intermediate

Tricks for restraining matches

/th[^s]*./

I want to match the words that start

with ‘th’ and end with ‘s’.

this

thus

thistle

this line matches too much

Often if you find that your regular expressions are matching too much, a
useful procedure is to reformulate the problem in your mind. Rather than
thinking about “what am I trying to match later in the expression?” ask
yourself “what do I need to avoid matching in the next part?” Often this
leads to more parsimonious pattern matches. Often the way to avoid a pat-
tern is to use the complement operator and a character class. Look at the
example, and think about how it works.

The trick here is that there are two different ways of formulating almost
the same sequence. You can either think you want to keep matching until
you get to XYZ, or you can think you want to keep matching unless you get
to XYZ. These are subtly different.

For people who have thought about basic probability, the same pattern
occurs. The chance of rolling a 6 on a die in one roll is 1/6. What is the
chance of rolling a 6 in six rolls? A naive calculation puts the odds at 1/6 +
1/6 + 1/6 + 1/6 + 1/6 + 1/6, or 100%. This is wrong, of course (after all, the
chance after twelve rolls is not 200%). The correct calculation is “how do I
avoid rolling a 6 for six rolls?”—i.e., 5/6 × 5/6 × 5/6 × 5/6 × 5 /6 × 5/, 6, or
about 33%. The chance of getting a 6 is the same chance as not avoiding it
(or about 66%). In fact, if you imagine transcribing a series of dice rolls, you
could apply a regular expression to the written record, and similar thinking
applies.

115 Appendix A  Learning to use regular expressions

Tricks for restraining matches better

/\bth[a-z]*s\b/

I want to match the words that start

with ‘th’ and end with ‘s’.

this

thus

thistle

this line matches too much

Notwithstanding the last section suggesting using negative character
classes, it still did not match the goal described of matching words starting
with “th” and ending with “s”. It only did very slightly better than the com-
pletely naive approach. Using the zero-width word boundary match is a
good approach to accomplish that.

Comments on modification tools

Not all tools that use regular expressions allow you to modify target strings.
Some simply locate the matched pattern; the most widely used regular
expression tool is probably grep, which is a tool for searching only. Text
editors, for example, may or may not allow replacement in their regular
expression search facility. As always, consult the documentation on your
individual tool.

Of the tools that allow you to modify target text, there are a few differences
to keep in mind. The way you specify replacements will vary between tools: a
text editor might have a dialog box; command-line tools will use delimiters
between match and replacement and programming languages will typically
call functions with arguments for match and replacement patterns.

Another important difference to keep in mind is what is getting modified.
UNIX-oriented command-line tools typically utilize pipes and STDOUT for
changes to buffers, rather than modify files in-place. Using a sed command,
for example, will write the modifications to the console, but will not change
the original target file (GNU sed adds an --in-place switch). Text editors
or programming languages are more likely to modify a file in-place.

	 116Matching patterns in text: Intermediate

A note on modification examples

For purposes of this tutorial, examples will continue to use the sed style
slash delimiters. Specifically, the examples will indicate the substitution
command and the global modifier, as with s/this/that/g. This expres-
sion means: Replace the string this with the string that everywhere in the
target text.

Examples will consist of the modification command, an input line, and an
output line. The output line will have any changes emphasized. Also, each
input/output line will be preceded by a less-than or greater-than symbol to
help distinguish them (the order will be as described also), which is sugges-
tive of redirection symbols in Unix shells, and some diff output styles.

A literal-string modification example

s/cat/dog/g

< The zoo had wild dogs, bobcats, lions, and other wild cats.

> The zoo had wild dogs, bobdogs, lions, and other wild dogs.

Let us take a look at a couple of modification examples that build on what
we have already covered. This one simply substitutes some literal text for
some other literal text. The search-and-replace capability of many tools can
do this much, even without using regular expressions.

A pattern-match modification example

s/cat|dog/snake/g

< The zoo had wild dogs, bobcats, lions, and other wild cats.

> The zoo had wild snakes, bobsnakes, lions, and other wild snakes.

s/[a-z]+i[a-z]*/nice/g

< The zoo had wild dogs, bobcats, lions, and other wild cats.

117 Appendix A  Learning to use regular expressions

> The zoo had nice dogs, bobcats, nice, and other nice cats.

Most of the time, if you are using regular expressions to modify a target
text, you will want to match more general patterns than just literal strings.
Whatever is matched is what gets replaced (even if it is several different
strings in the target).

Modification using backreferences

s/([A-Z])([0-9]{2,4}) /\2:\1 /g

< A37 B4 C107 D54112 E1103 XXX

> 37:A B4 107:C D54112 1103:E XXX

It is nice to be able to insert a fixed string everywhere a pattern occurs in
a target text. But frankly, doing that is not very context-sensitive. A lot of
times, we do not want just to insert fixed strings, but rather to insert some-
thing that bears much more relation to the matched patterns. Fortunately,
backreferences come to our rescue here. You can use backreferences in
the pattern-matches themselves, but it is even more useful to be able to use
them in replacement patterns. By using replacement backreferences, you
can pick and choose from the matched patterns to use just the parts you are
interested in.

To aid readability, subexpressions are grouped with bare parentheses (as
with Perl), rather than with escaped parentheses (as with sed).

Another warning on mismatching

This tutorial has already warned about the danger of matching too much
with your regular expression patterns. But the danger is so much more seri-
ous when you do modifications that it is worth repeating. If you replace a
pattern that matches a larger string than you thought of when you com-
posed the pattern, you have potentially deleted some important data from
your target.

It is always a good idea to try out your regular expressions on diverse tar-
get data that is representative of your production usage. Make sure you are
matching what you think you are matching. A stray quantifier or wildcard

	 118Advanced regular expression extensions

can make a surprisingly wide variety of texts match what you thought was a
specific pattern. And sometimes you just have to stare at your pattern for a
while or find another set of eyes to figure out what is really going on even
after you see what matches. Familiarity might breed contempt, but it also
instills competence.

Advanced regular expression extensions
Buried inside the dense language of regular expressions are many very
sophisticated ways of expressing what you wish to match. These include non-
greedy quantifiers, atomic groups and possessive quantifiers, lookahead
lookbehind assertions, and in many dialects named backreferences and a
verbose (and somewhat more readable) format for regular expressions.

About advanced features

Some very useful enhancements are included in some regular expression
tools. These enhancements often make the composition and maintenance
of regular expression considerably easier. But check with your own tool to
see what is supported.

The programming language Perl is probably the most sophisticated tool
for regular expression processing, which explains much of its erstwhile pop-
ularity. The examples illustrated will use Perl-ish code to explain concepts.
Other programming languages, especially other scripting languages such as
Python, have a similar range of enhancements. But for purposes of illustra-
tion, Perl’s syntax most closely mirrors the regular expression tools it builds
on, such as ed, ex, grep, sed, and awk.

Non-greedy quantifiers

/th.*s/

I want to match the words that start

with ‘th’ and end with ‘s’.

this

thus

thistle

this line matches too much

119 Appendix A  Learning to use regular expressions

A non-greedy version, in contrast, is:

/th.*?s/

I want to match the words that start

with ‘th’ and end with ‘s’.

this

thus

thistle

this line matches too much

Earlier in the tutorial, the problems of matching too much were discussed,
and some workarounds were suggested. Some regular expression tools are
nice enough to make this easier by providing optional non-greedy quantifi-
ers. These quantifiers grab as little as possible while still matching whatever
comes next in the pattern (instead of as much as possible).

Non-greedy quantifiers have the same syntax as regular greedy ones, except
with the quantifier followed by a question mark. For example, a non-greedy
pattern might look like: /A[A-Z]*?B/. In English, this means “match an A,
followed by only as many capital letters as are needed to find a B.”

One little thing to look out for is the fact that the pattern /[A-Z]*?./ will
always match zero capital letters. If you use non-greedy quantifiers, watch
out for matching too little, which is a symmetric danger.

Atomic grouping and possessive quantifiers

In Python 3.11, the standard library re module gained features called
“atomic grouping” and “possessive quantifiers.” The third-party regex
Python module had these previously. As well, Python had been somewhat
behind Java, PCRE, .NET, Perl, Boost, and Ruby in this regard. Both of
these features have the general purpose of avoiding backtracking once a
partial match is established (which can both be faster and convey intention
better in some cases).

	 120Advanced regular expression extensions

/0*\d{3,}/

Integers greater than 100 (leading zeros permitted)

55 00123 1234 0001 099 200

/0*+\d{3,}/

Integers greater than 100 (leading zeros permitted)

55 00123 1234 0001 099 200

Since both 0 and \d can match the same character, the two quantified pat-
terns get into a contest to grab the longest substring, using backtracking.
This gives the wrong answer without the possessive quantifier *+. The quan-
tifiers '++', ?+, and {n,m}+ have analogous meanings derived from their
base quantifiers.

(?>0*)\d{3,}

Integers greater than 100 (leading zeros permitted)

55 00123 1234 0001 099 200

Atomic grouping is a more general version of possessive quantifiers. It also
“matches once then stops” to avoid backtracking. However, the pattern
within an atomic group—as with a normal group, a lookahead assertion, or
a non-backreference group—can be arbitrarily complex rather than gov-
erned by a single quantifier.

121 Appendix A  Learning to use regular expressions

Pattern-match modifiers

/M.*[ise]\b/

MAINE # Massachusetts # Colorado #

mississippi # Missouri # Minnesota #

/M.*[ise] /i

MAINE # Massachusetts # Colorado #

mississippi # Missouri # Minnesota #

We already saw one pattern-match modifier in the modification examples:
the global modifier. In fact, in many regular expression tools, we should
have been using the g modifier for all our pattern matches. Without the g,
many tools will match only the first occurrence of a pattern on a line in the
target. So this is a useful modifier (but not one you necessarily want to use
always). Let us look at some others.

As a little mnemonic, it is nice to remember the word “gismo” (it even
seems somehow appropriate). The most frequent modifiers are:

¡	g - Match globally
¡	i - Case-insensitive match
¡	s - Treat string as single line
¡	m - Treat string as multiple lines
¡	o - Only compile pattern once

The o option is an implementation optimization, and not really a regular
expression issue (but it helps the mnemonic). The single-line option allows
the wildcard to match a newline character (it will not otherwise). The mul-
tiple-line option causes ^ and $ to match the begin and end of each line in
the target, not just the begin/end of the target as a whole (with sed or grep
this is the default). The insensitive option ignores differences between the
case of letters.

	 122Advanced regular expression extensions

Changing backreference behavior

s/([A-Z])(?:-[a-z]{3}-)([0-9]*)/\1\2/g

< A-xyz-37 # B:abcd:142 # C-wxy-66 # D-qrs-93

> A37 # B:abcd:42 # C66 # D93

Backreferencing in replacement patterns is very powerful; but what do we
do if we have a complex regular expression where we need more than nine
groups? Quite apart from using up the available backreference names, it is
often more legible to refer to the parts of a replacement pattern in sequen-
tial order. To handle this issue, some regular expression tools allow “group-
ing without backreferencing.”

A group that should not also be treated as a backreference has a ques-
tion-mark colon at the beginning of the group, as in (?:pattern). In fact,
you can use this syntax even when your backreferences are in the search
pattern itself.

Naming backreferences

import re
txt = "A-xyz-37 # B:abcd:142 # C-wxy-66 # D-qrs-93"
print(
 re.sub("(?P<prefix>[A-Z])(-[a-z]{3}-)(?P<id>[0-9]*)",
 "\g<prefix>\g<id>", txt)
)

A37 # B:abcd:42 # C66 # D93

The Python language (and some others) offers a particularly handy syntax
for really complex pattern backreferences. Rather than just play with the
numbering of matched groups, you can give them a name.

The syntax of using regular expressions in Python is a standard program-
ming language function/method style of call, rather than Perl- or sed-style
slash delimiters. Check your own tool to see if it supports this facility.

123 Appendix A  Learning to use regular expressions

Lookahead assertions

s/([A-Z]-)(?=[a-z]{3})([a-z0-9]*)/\2\1/g

< A-xyz37 # B-ab6142 # C-Wxy66 # D-qrs93

> xyz37A- # B-ab6142 # C-Wxy66 # qrs93D-

s/([A-Z]-)(?![a-z]{3})([a-z0-9]*)/\2\1/g

< A-xyz37 # B-ab6142 # C-Wxy66 # D-qrs93

> A-xyz37 # ab6142B- # Wxy66C- # D-qrs93

Another trick of advanced regular expression tools is “lookahead asser-
tions.” These are similar to regular grouped subexpressions, except they
do not actually grab what they match. There are two advantages to using
lookahead assertions. On the one hand, a lookahead assertion can function
in a similar way to a group that is not backreferenced; that is, you can match
something without counting it in backreferences. More significantly, how-
ever, a lookahead assertion can specify that the next chunk of a pattern has
a certain form, but let a different subexpression actually grab it (usually for
purposes of backreferencing that other subexpression).

There are two kinds of lookahead assertions: positive and negative. As
you would expect, a positive assertion specifies that something does come
next, and a negative one specifies that something does not come next.
Emphasizing their connection with non-backreferenced groups, the syntax
for lookahead assertions is similar: (?=pattern) for positive assertions, and
(?!pattern) for negative assertions.

The line has trailing space
not visible as printed

	 124Advanced regular expression extensions

Lookbehind assertions

/(?<=[AC])-[A-Za-z]+\d+/

A-xyz37 # B-ab6142 # C-Wxy66 # D-qrs93

/(?<![AC])-[A-Za-z]+\d+/

A-xyz37 # B-ab6142 # C-Wxy66 # D-qrs93

Similarly to lookahead, we can look behind to indicate that a pattern must
be preceded by a pattern but not include that prefix in the match. Lookbe-
hind assertions are often limited to fixed width patterns for implementa-
tion reasons.

As with lookahead, lookbehind assertions might be either positive or neg-
ative. So in our string that might be part numbers, we first want to highlight
only those that lead with an A or C, then exclude those that lead with an A
or C. Notice that the leading letter, even if it is B or D is not part of what we
match.

The example does not do so, but we might exclude the leading hyphen in
the matches by using groups and backreferences.

Making regular expressions more readable

/ # identify URLs within a text file
 (?<![="]) # do not match URLs in IMG tags like:
 #
(http|ftp|gopher) # make sure we find a resource type
 :\/\/ # ...followed by colon-slash-slash
 [^ \n\r]+ # stuff other than space, newline, tab
 (?=[\s\.,]) # followed by whitespace, period, comma

/

The URL for my site is: http://mysite.com/mydoc.html. You might also enjoy
ftp://yoursite.com/index.html for a good place to download files.

http://mysite.com/mydoc.html
http://mysite.com/mydoc.html
http://mysite.com/mydoc.html
http://mysite.com/mydoc.html
http://mysite.com/mydoc.html

125 Appendix A  Learning to use regular expressions

In the later examples we have started to see just how complicated regular
expressions can get. These examples are not half of it. It is possible to do
some almost absurdly difficult-to-understand things with regular expres-
sion (but ones that are nonetheless useful).

There are two basic facilities that some of the more advanced regu-
lar expression tools use in clarifying expressions. One is allowing regular
expressions to continue over multiple lines (by ignoring whitespace like
trailing spaces and newlines). The second is allowing comments within reg-
ular expressions. Some tools allow you to do one or another of these things
alone, but when it gets complicated, do both!

The example given uses Perl’s extend modifier to enable commented
multi-line regular expressions. Consult the documentation for your own
tool for details on how to compose these.

126

index
A
Agrawal-Kayal-Saxena test  96
AI coding assistants

described  2
language for comments and prompts  2
LLMs  101

atomic grouping  120

B
backreferences  112

changing behavior of  122
naming  122

using groups for  107

C
catastrophes, avoiding  32
character classes  13, 107
character literals  104
ChatGPT  4, 19, 39
complement operator  108
Copilot  4, 74

avoiding catastrophic backtracking and  32
explanatory loop  49

coprime numbers  97

F
Fibonacci sequence  90

G
Generative Pre-trained Transformer series (GPT-n)  4
global modifier  121

I
IDLE editor  3
increment and decrement symbols  77
IPv4 addresses  83
IPython enhanced REPL  3

J
Jupyter notebooks  3

K
knowledge engines  100

L
large language models (LLMs)  4

and understanding computer programs as
algorithms  100

lookahead assertions  14, 44, 123
negative  95

lookbehind assertions  14
Lucas sequence  90

M
machine learning  4
matches, greedy and non-greedy  10
Miller-Rabin test  96
modification tools, target text and  115
modifiers, frequent  121

N
natural language, for comments and prompts  2
neural nertworks, AI coding assistants as  2
nondeterministic finite automaton (NFA)  78

127 index

P
PaLM+RLHF-Pytorch  4
pattern-match modifiers  121
patterns

alternation of  109
matching in text  118

Perl, regular expression processing and  118
positional characters  105
prime numbers  94
programming languages, regular expressions and  3
programming machines, rise of  6
pushdown automata (PDA)  78
puzzles

advanced dominoes  42
catastrophic backtracking  34
configuration format  22
endpoint classes  19
finding a name for a function  54
identifying equal counts  79
matching a numeric sequence  90
matching before duplicate words  83
matching relative prime numbers  99
matching the Fibonacci sequence  94
matching the prime numbers  97
playing dominoes  37
playing poker (part 1)  60
playing poker (part 2)  65
playing poker (part 3)  67
playing poker (part 4)  71
playing poker (part 5)  76
reimplementing str.count()  50
reimplementing str.count() (stricter)  54
sensor art  46
testing an IPv4 address  86
the human genome  27
wildcard scope  13
words and sequences  15

Q
quantifiers

abstract  111
numeric  112
non-greedy  118
possessive  120

R
re.findall() function  17
regexen. See also regular expressions

creating functions using  76
regular expressions

advanced features  118
AI coding assistant challenge  4
composing and matching too much  113
described  3
greedy and non-greedy matches  10
grouping  106
intentionality  6
making more readable  125
tools that use  103
trick for restraining matches  115
variations in syntax  103

relative prime numbers  97
re, library module  3
REPL (read-evaluate-print-loop  3
re.sub() function  48
RFC 2119 document  40

S
scripting languages, regular expressions and  103
sieve of Eratosthenes  94
str.count(), Python method  47
subpatterns  27
substring occurrences, regex and counting  48

T
text editors, regular expressions and  103
tokenization strategies  5

U
unit of functionality  2
Unix-oriented command line tools, regular expressions

and  103

W
wildcard character  106
Windows Powershell, regualr expressions and  103
word boundaries  13, 14

Z
zero-width match pattern  14

 David Q. Mertz

ISBN-13: 978-1-63343-781-4

T
his is the story of two competitors. On one side is David
Q. Mertz, an expert programmer and the author of the
Web’s most popular Regex tutorial. On the other are the

AI powerhouse coding assistants, OpenAI ChatGPT and
GitHub Copilot.

Here’s how the contest works: David invents 24 Regex prob-
lems he calls puzzles and shows how to tackle each one. When
he’s done, he has the AI assistants work the same puzzles.
What they produce amazes him. Which side is likelier to get
it right? Which one writes simple and elegant code? Which
makes smarter use of lesser known Regex library features?

Read the book to fi nd out.

David also off ers AI best practices, showing how smart
prompts return better results. By the end, you’ll be a master at
solving your own Regex puzzles, whether you use AI or not.

David Q. Mertz is the founder of KDM Training and an
acclaimed contributor to the Python community. He is the
author of Th e Puzzling Quirks of Regular Expressions, Cleaning
Data for Eff ective Data Science, and other books.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Regular Expression Puzzles
and AI Coding Assistants

 PROGRAMMING/AI

M A N N I N G

“AI coding assistants are
here, and they’re transforming

how programming is and
will be done. If you know

regular expressions, pick up
this book and learn all about
AI coding assistants. If you

don’t know regular
expressions, well, pick it up

anyway and experience
how you learn with

 AI coding assistants.”
—Dr. Daniel Zingaro
University of Toronto,

author of Algorithmic Th inking

See first page

“How these tools can be both so very amazing in what they produce, and
simultaneously so utterly doltish in their numerous failures, is the main thing this
book tries to understand. For reasons I attempt to elucidate throughout, of all
the domains of computer programming, games with regular expressions are
particularly well suited for getting a grasp on the peculiar behaviors of AI.”

—From the Preface

	Regular Expression Puzzles and AI Coding Assistants
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	Obtaining the tools used in this book
	Credits
	liveBook discussion forum

	about the author
	about the cover illustration
	The map and the territory
	About regular expressions
	Rise of the programming machines
	Caveats

	Intentional software development
	As you read

	Quantifiers and
special sub-patterns
	Puzzle 1	Wildcard scope
	Author thoughts: What will each pattern match?
	AI thoughts: CodingNet

	Puzzle 2	Words and sequences
	Author thoughts: Think about what defines word boundaries
	AI thoughts: The transformator

	Puzzle 3	Endpoint classes
	Author thoughts: Refine the regular expression to match what we want
	AI thoughts: Are friends electric?

	Puzzle 4	A configuration format
	Author thoughts: Remember that shapes have edges
	AI thoughts: Notes from the Cyberdyne vault

	Puzzle 5	The Human Genome
	Author thoughts: Remember the central dogma of molecular biology
	AI thoughts: Do androids dream of electric sheep?

	Pitfalls and sand
in the gears
	Puzzle 6	Catastrophic backtracking
	Author thoughts: Try hard to avoid catastrophes
	AI thoughts: Technological singularity

	Puzzle 7	Playing dominoes
	Author thoughts: Try to be more efficient than your first thought
	AI thoughts: A war with sticks and stones

	Puzzle 8	Advanced dominoes
	Author thoughts: Thoughts about digrams are always pleasant thoughts
	AI thoughts: How many readers can pass the Turing Test?

	Puzzle 9	Sensor art
	Author thoughts: Find a matching pattern, if possible
	AI thoughts: My mind is going; I can feel it

	Creating functions
using regexen
	Puzzle 10	Reimplementing str.count()
	Author thoughts: How can a regex count the substring occurrences?
	AI thoughts: Extraordinary machine

	Puzzle 11	Reimplementing str.count() (stricter)
	Author thoughts: Write a Python function with the restrictions given
	AI thoughts: The Horars of War

	Puzzle 12	Finding a name for a function
	Author thoughts: Code is read far more often than it is written
	AI thoughts: There are two hard problems in computer science

	Puzzle 13	Playing poker (Part 1)
	Author thoughts: Functions are a big help in larger programs
	AI thoughts: He can’t read my poker face

	Puzzle 14	Playing poker (Part 2)
	Author thoughts: Large buildings are built from small bricks
	AI thoughts: The society for preventing cruelty to humans

	Puzzle 15	Playing poker (Part 3)
	Author thoughts: You better cheat, cheat, if you can’t win
	AI thoughts: Someday machines will learn to count

	Puzzle 16	Playing poker (Part 4)
	Author thoughts: You might risk identifying the “dead man’s hand”
	AI thoughts: Free will is not free

	Puzzle 17	Playing poker (Part 5)
	Author thoughts: Remember that three is more than two, but less than four
	AI thoughts: Counting to two

	Easy, difficult,
and impossible tasks
	Puzzle 18	Identifying equal counts
	Author thoughts: Lateral thinking might help you find the answer
	AI thoughts: Hic sunt dracones

	Puzzle 19	Matching before duplicate words
	Author thoughts: Find a pattern that will fulfill the requirement
	AI thoughts: Deep fakes in the Chomsky hierarchy

	Puzzle 20	Testing an IPv4 address
	Author thoughts: Ask whether regexen are powerful enough for a problem
	AI thoughts: I want to be a machine

	Puzzle 21	Matching a numeric sequence
	Author thoughts: Rule out the impossible to be left with the solution
	AI thoughts: Wheat and chessboards

	Puzzle 22	Matching the Fibonacci sequence
	Author thoughts: The Golden Spiral beautifully generalizes Fibonacci numbers
	AI thoughts: The fractal geometry of nature

	Puzzle 23	Matching the prime numbers
	Author thoughts: Honor the fundamental theorem of arithmetic
	AI thoughts: Sense and nonsense

	Puzzle 24	Matching relative prime numbers
	Author thoughts: Nothing is either true or false but thinking makes it so
	AI thoughts: Six impossible things before breakfast

	Conclusions
	 Learning to use
regular expressions
	What tools use regular expressions?
	Matching patterns in text: The basics
	Character literals
	Escaped characters literals
	Positional special characters
	The “wildcard” character
	Grouping regular expressions
	Using groups for backreferences
	Character classes
	Complement operator
	Alternation of patterns
	The basic abstract quantifier

	Matching patterns in text: Intermediate
	More abstract quantifiers
	Numeric quantifiers
	Backreferences
	Do not match more than you want to
	Tricks for restraining matches
	Tricks for restraining matches better
	Comments on modification tools
	A note on modification examples
	A literal-string modification example
	A pattern-match modification example
	Modification using backreferences
	Another warning on mismatching

	Advanced regular expression extensions
	About advanced features
	Non-greedy quantifiers
	Atomic grouping and possessive quantifiers
	Pattern-match modifiers
	Changing backreference behavior
	Naming backreferences
	Lookahead assertions
	Lookbehind assertions
	Making regular expressions more readable

	index

