
		
			[image: Cover.png]
		

	
		
			Refactoring with C#

			Safely improve .NET applications and pay down technical debt with Visual Studio, .NET 8, and C# 12

			Matt Eland

			[image:]

			BIRMINGHAM—MUMBAI

			Refactoring with C#

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Kunal Swant

			Associate Publishing Product Manager: Debadrita Chatterjee

			Senior Editor: Esha Banerjee

			Technical Editor: Jubit Pincy

			Copy Editor: Safis Editing

			Project Coordinator: Manisha Singh

			Proofreader: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Ponraj Dhandapani

			Marketing Co-ordinator: Sonia Chauhan

			First published: November 2023

			Production reference: 1271023

			Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

			ISBN 978-1-83508-998-9

			www.packtpub.com

			To my dear wife, Heather, who encouraged me to dream big and supported me while I did so.

			To our dads, who we wish could be here to see this.

			To all those I have had the privilege to teach, mentor, manage, and inspire – and to those I’ve yet to impact: may your learning journeys be amazing.

			Matt

			Foreword

			Matt Eland, aka Integerman, has, like me, been writing software for over three decades. Upon delving this book, it became clear to me that he has seen some things. It’s hard to have a lengthy career in software development and not encounter the grim effects of legacy code and technical debt. What separates Matt from many other developers, though, is that rather than shying away from the challenges these things pose, he’s developed a rich set of techniques to combat them. It is these techniques and skills that he shares with you in Refactoring with C#.

			Technical debt is a ubiquitous presence in virtually every codebase. It’s a metaphor for the small (and sometimes not so small) shortcuts, messes, and design mismatches left behind as the software evolves, often due to the software’s failure to adapt to changing external factors. Left unchecked, these problems can slow productivity to a crawl, and refactoring is the main tool developers have to deal with this problem. It’s a vital skill every developer should have.

			This book has a great conversational style. Reading it is like having Matt sitting next to you, walking you through the examples. Many of them start out with a fair bit of complexity, but Matt does a great job of breaking this complexity down into understandable chunks, which he then demonstrates how to break down further through refactoring techniques.

			Another technique Matt employs with great effectiveness is his use of tools and screenshots to demonstrate the effective usage of tools. Most of the book leverages Visual Studio, but there’s coverage for VS Code and other tools as well. Wherever a tool can be used to assist with a refactoring technique, Matt shows how to do so in a clear, concise manner, with effective use of screenshots. As they say, a picture is worth a thousand words!

			The breadth of the book you’re holding is also impressive. In addition to demonstrating refactoring techniques that involve rearranging a few lines of code, Matt provides invaluable tips for effectively communicating the concepts of technical debt and the importance of refactoring to your managers and business stakeholders. There’s content dedicated to keeping your code up-to-date with the latest software changes. He doesn’t just mention that refactoring benefits from having automated tests, he even dedicates a couple of chapters to testing techniques and tools!

			Whether you’re a novice developer or have been coding for decades, I’m confident you’ll find some useful tips and techniques in Refactoring with C#. I know I did, despite having taught refactoring to .NET developers for many years.

			Steve “ardalis” Smith Principal Architect, NimblePros. Pluralsight author. 20x Microsoft MVP.

			Contributors

			About the author

			Matt Eland is a Microsoft MVP in Artificial Intelligence (AI) who has been working with .NET since 2001. Matt has served as a senior engineer, software engineering manager, and .NET programming instructor. He is currently an AI specialist and senior consultant at Leading EDJE near Columbus, Ohio, where he helps companies with their software engineering and data science needs using C# and related technologies. Matt speaks and writes in his community and co-organizes the Central Ohio .NET Developers Group while pursuing a master’s degree in data analytics. You can find more of Matt’s work at MattEland.dev.

			Matthew, Brad, Calvin, Sam, Steve, and Esha: thank you for your hard work in refactoring this book. Debadrita, thank you for pitching this idea to me. To Heather, our families, Wren, Sadukie, Matt, Angelia, my fellow EDJErs, the Dads, and countless others: thank you for your encouragement and support. Microsoft, thank you for 20+ years of C# and giving us the tools we need to build great things. Finally, I am grateful to God for granting me the skills, knowledge, time, and health to write this.

			About the reviewers

			Brad Knowles is a Cloud Application Architect (CAA) with AWS Professional Services, specializing in migrating and optimizing .NET workloads running in the cloud. With over two decades of experience in the software industry, Brad has written applications for several industries, including supply chain and healthcare. During that time, he has deployed from single on-premises web servers all the way up to multiple containerized microservices. As an architect, his primary goal is to build resilient systems, minimize complexity, and balance the trade-offs between the two. He shares his knowledge at local meetups and conferences and blogs about .NET and architecture-related topics at https://bradknowles.com.

			Calvin A. Allen is highly involved in the tech community. He is a recognized Microsoft MVP for his contributions to the developer community, which include mentoring, writing technical articles/blog posts, and organizing tech events. Calvin is also a contributor to various open-source projects and is passionate about sharing his knowledge and expertise with others through his blog, Coding with Calvin, which can be found at https://www.codingwithcalvin.net.

			Matthew D. Groves is a guy who loves to code. It doesn’t matter whether it’s C#, jQuery, or PHP: he’ll submit pull requests for anything. He has been coding professionally ever since he wrote a QuickBASIC point-of-sale app for his parent’s pizza shop back in the 90s. He currently works for Couchbase, helping developers in any way he can. His free time is spent with his family, watching the Reds, and getting involved in the developer community. He is the author of AOP in .NET, co-author of Pro Microservices in .NET, a Pluralsight author, and a Microsoft MVP.

			Samuel Gomez has worked in software development for 15+ years (mostly Microsoft technologies) and he thoroughly enjoys the problem-solving aspect of the work. In recent years, he has become passionate about AI and machine learning technologies and how they can be applied to different aspects of our lives. When not coding, he enjoys spending time with his family, soccer (watching, playing, and coaching), video games, and watching movies.

		

	
		
			Table of Contents

			Preface

			Part 1: Refactoring with C# in Visual Studio

			1

			Technical Debt, Code Smells, and Refactoring

			Understanding technical debt and legacy code

			Where technical debt comes from

			Identifying code smells

			Introducing refactoring

			Refactoring tools in Visual Studio

			Case study – Cloudy Skies Airlines

			Summary

			Questions

			Further reading

			2

			Introduction to Refactoring

			Technical requirements

			Refactoring a baggage price calculator

			Converting properties to auto properties

			Introducing locals

			Introducing constants

			Introducing parameters

			Removing unreachable and unused code

			Extracting methods

			Refactoring manually

			Testing refactored code

			Refactoring in other editors

			Refactoring in Visual Studio Code with the C# Dev Kit

			Refactoring in JetBrains Rider

			Refactoring in Visual Studio with ReSharper

			Summary

			Questions

			Further reading

			3

			Refactoring Code Flow and Iteration

			Technical requirements

			Refactoring the boarding app

			Controlling program flow

			Inverting if statements

			Dropping else statements after return statements

			Restructuring if statements

			Using ternary operators

			Converting if statements into switch statements

			Converting to switch expressions

			Instantiating objects

			Replacing var with explicit Types

			Simplifying creation with target-typed new

			Using object initializers

			Iterating over collections

			Introducing foreach

			Converting to for loops

			Converting to LINQ

			Refactoring LINQ statements

			Choosing the correct LINQ method

			Combining LINQ methods

			Transforming with Select

			Reviewing and testing our refactored code

			Summary

			Questions

			Further reading

			4

			Refactoring at the Method Level

			Technical requirements

			Refactoring the flight tracker

			Refactoring methods

			Changing method access modifiers

			Renaming methods and parameters

			Overloading methods

			Chaining methods

			Refactoring constructors

			Generating constructors

			Chaining constructors

			Refactoring parameters

			Reordering parameters

			Adding parameters

			Introducing optional parameters

			Removing parameters

			Refactoring to functions

			Using expression-bodied members

			Passing functions as parameters with actions

			Returning data from Actions with Funcs

			Introducing static methods and extension methods

			Making methods static

			Moving static members to another type

			Creating extension methods

			Reviewing and testing our refactored code

			Summary

			Questions

			Further reading

			5

			Object-Oriented Refactoring

			Technical requirements

			Refactoring the flight search system

			Organizing classes via refactoring

			Moving classes to individual files

			Renaming files and classes

			Changing namespaces

			Avoiding partial classes and regions

			Refactoring and inheritance

			Overriding ToString

			Generating equality methods

			Extracting a base class

			Moving interface implementations up the inheritance tree

			Controlling inheritance with abstract

			Communicating intent with abstract

			Introducing abstract members

			Converting abstract methods to virtual methods

			Refactoring for better encapsulation

			Encapsulating fields

			Wrapping parameters into a class

			Wrapping properties into a class

			Favoring composition over inheritance

			Improving classes with interfaces and polymorphism

			Extracting interfaces

			Providing default interface implementations

			Introducing polymorphism

			Reviewing and testing our refactored code

			Summary

			Questions

			Further reading

			Part 2: Refactoring Safely

			6

			Unit Testing

			Technical requirements

			Understanding testing and unit tests

			Types of tests and the testing pyramid

			Unit tests

			Testing code with xUnit

			Creating an xUnit Test Project

			Connecting the xUnit Test Project to your main project

			Writing your first unit test

			Organizing tests with Arrange/Act/Assert

			Understanding tests and exceptions

			Adding additional test methods

			Refactoring unit tests

			Parameterizing tests with Theory and InlineData

			Initializing test code with constructors and fields

			Sharing test code with methods

			Exploring other testing frameworks

			Testing with NUnit

			Testing with MSTest

			Adopting a testing mindset

			Incorporating testing into your workflow

			Isolating dependencies

			Evaluating good and bad tests

			Thoughts on code coverage

			Summary

			Questions

			Further reading

			7

			Test-Driven Development

			Technical requirements

			What is Test-Driven Development?

			Test-Driven Development with Visual Studio

			Setting the starting balance

			Adding miles and generating methods

			Redeeming miles and refactoring tests

			When to use Test-Driven Development

			Summary

			Questions

			Further reading

			8

			Avoiding Code Anti-Patterns with SOLID

			Identifying anti-patterns in C# code

			Writing SOLID code

			Single Responsibility Principle

			Open-Closed Principle

			Liskov Substitution Principle

			Interface Segregation Principle

			Dependency Inversion Principle

			Considering other architectural principles

			Learning the DRY principle

			KISS principle

			Understanding high cohesion and low coupling

			Summary

			Questions

			Further reading

			9

			Advanced Unit Testing

			Technical requirements

			Creating readable tests with Shouldly

			Installing the Shouldly NuGet package

			Writing readable assertions with Shouldly

			Writing readable assertions with FluentAssertions

			Testing performance with Shouldly

			Generating test data with Bogus

			Mocking dependencies with Moq and NSubstitute

			Understanding the need for mocking libraries

			Creating mock objects with Moq

			Programming Moq return values

			Verifying Moq calls

			Mocking with NSubstitute

			Pinning tests with Snapper

			Experimenting with Scientist .NET

			Summary

			Questions

			Further reading

			10

			Defensive Coding Techniques

			Technical requirements

			Introducing the Cloudy Skies API

			Validating inputs

			Performing basic validation

			Using the nameof keyword

			Validation with guard clauses

			Guard clauses with the GuardClauses library

			Using CallerMemberInformation attributes

			Protecting against null

			Enabling nullability analysis in C#

			Using nullability operators

			Moving beyond classes

			Preferring immutable classes

			Using required and init-only properties

			Primary constructors

			Converting classes into record classes

			Cloning objects using with expressions

			Advanced type usage

			Exploring pattern matching

			Using generics to reduce duplication

			Introducing type aliases with the using directive

			Summary

			Questions

			Further reading

			Part 3: Advanced Refactoring with AI and Code Analysis

			11

			AI-Assisted Refactoring with GitHub Copilot

			Technical requirements

			Introducing GitHub Copilot

			Understanding GitHub’s predictive model

			Starting the conversation with GitHub Copilot Chat

			Getting started with GitHub Copilot in Visual Studio

			Installing and activating GitHub Copilot

			Getting access to GitHub Copilot

			Generating suggestions with GitHub Copilot

			Interacting with GitHub Copilot Chat

			Refactoring with GitHub Copilot Chat

			GitHub Copilot Chat as a code reviewer

			Targeted refactoring with GitHub Copilot Chat

			Drafting documentation with GitHub Copilot Chat

			Generating test stubs with GitHub Copilot Chat

			Understanding the limits of GitHub Copilot

			Data privacy and GitHub Copilot

			Concerns around GitHub Copilot and public code

			Case study: Cloudy Skies Airline

			Summary

			Questions

			Further reading

			12

			Code Analysis in Visual Studio

			Technical requirements

			Calculating code metrics in Visual Studio

			Performing code analysis in Visual Studio

			Analyzing your solution using the default ruleset

			Configuring code analysis rulesets

			Responding to code analysis rules

			Treating warnings as errors

			Exploring advanced code analysis tools

			Tracking code metrics with SonarCloud and SonarQube

			In-depth .NET analysis with NDepend

			Case study – Cloudy Skies Airline

			Summary

			Questions

			Further reading

			13

			Creating a Roslyn Analyzer

			Technical requirements

			Understanding Roslyn Analyzers

			Installing the extension development workload and DGML editor

			Introducing Syntax Visualizer

			Creating a Roslyn Analyzer

			Adding the analyzer project to our solution

			Defining a code analysis rule

			Analyzing symbols with our Roslyn Analyzer

			Tips for writing Roslyn Analyzers

			Testing Roslyn Analyzers with RoslynTestKit

			Adding a Roslyn Analyzer test project

			Creating AnalyzerTestFixture

			Verifying that our Roslyn Analyzer doesn’t flag good code

			Verifying that our Roslyn Analyzer flags bad code

			Debugging Roslyn Analyzers

			Sharing analyzers as Visual Studio extensions

			Creating a Visual Studio extension (VSIX) for your Roslyn Analyzer

			Summary

			Questions

			Further reading

			14

			Refactoring Code with Roslyn Analyzers

			Technical requirements

			Case study – Cloudy Skies Airlines

			Building a Roslyn Analyzer code fix

			Creating a CodeFixProvider

			Registering a code fix

			Modifying the document with a code fix

			Testing Code Fixes with RoslynTestKit

			Publishing Roslyn Analyzers as NuGet packages

			Understanding NuGet package deployment

			Building a NuGet package

			Deploying the NuGet package

			Referencing the NuGet package

			Packaging a CodeFixProvider as an extension

			Summary

			Questions

			Further reading

			Part 4: Refactoring in the Enterprise

			15

			Communicating Technical Debt

			Overcoming barriers to refactoring

			Urgent deadlines

			“Don’t touch high-risk code”

			“This code is going away, don’t spend time on it”

			End-of-life applications

			“Just do the minimum required”

			“Refactoring doesn’t provide business value”

			Communicating technical debt

			Technical debt as risk

			Creating a risk register

			Alternatives to a risk register

			Prioritizing technical debt

			Calculating risk priorities with a risk score

			The “gut feeling” approach

			Getting organizational buy-in

			Setting up the conversation

			Anticipating questions and objections

			Different approaches for different leaders

			The importance of communication

			Case study – Cloudy Skies Airlines

			Summary

			Questions

			Further reading

			16

			Adopting Code Standards

			Technical requirements

			Understanding code standards

			Establishing code standards

			Formatting and code cleanup in Visual Studio

			Applying code standards with EditorConfig

			Reviewing our starter code

			Adding an EditorConfig

			Customizing EditorConfigs

			Summary

			Questions

			Further reading

			17

			Agile Refactoring

			Refactoring in an agile environment

			Key elements of agile teams

			Understanding obstacles to refactoring

			Succeeding with agile refactoring strategies

			Dedicated work items for refactoring efforts

			Refactoring code as it changes

			Refactoring sprints

			Refactoring sabbaticals

			Accomplishing large-scale refactorings

			Why large refactorings are difficult

			The rewrite trap

			Lessons from the ship of Theseus

			Upgrading projects with.NET Upgrade Assistant

			Refactoring and the strangler fig pattern

			Recovering when refactoring goes wrong

			The impact of failed refactorings

			Establishing safety in agile environments

			Deploying large-scale refactorings

			Using feature flags

			Phased rollouts and blue/green deployments

			The value of continuous integration and continuous delivery

			Case study – Cloudy Skies Airlines

			Summary

			Toward more sustainable software

			Questions

			Further reading

			Index

			Other Books You May Enjoy

		

	
		
			Preface

			Software projects quickly go from greenfield paradises to brownfield wastelands filled with legacy code and technical debt. Every engineer will encounter projects that are more difficult than they should be due to existing technical debt. This book covers the process of refactoring existing code into more maintainable forms.

			In Refactoring with C#, we focus on using modern C# and Visual Studio features to safely pay down technical debt in a sustainable way – while continuing to deliver value to the business.

			Who this book is for

			This book is for two distinct types of readers.

			The first is junior and mid-level C# developers in the first few years of their careers. This book will teach you the programming techniques and mentalities needed to advance in your career. You’ll learn how to safely refactor your code and find new ways of improving the overall structure of your code.

			The second type of reader is the software engineer or engineering manager dealing with a particularly troublesome codebase or a project or organization resistant to refactoring. This book will help you make the case for refactoring, ensure you can do it safely, and give you alternatives to all-or-nothing approaches of complete rewrites.

			This book also features a number of libraries and language features you may not have encountered or thought about recently. I hope that this book gives you new perspectives, tools, and techniques that will aid you as you refactor your code and build a better codebase.

			What this book covers

			Chapter 1, Technical Debt, Code Smells, and Refactoring, introduces the reader to the concept of technical debt and the things that cause it. The chapter covers legacy code and its impact on the development process and code smells that help you find it. The chapter closes with the idea of refactoring, which is the focus of the rest of the book.

			Chapter 2, Introduction to Refactoring, illustrates the process of refactoring C# code in Visual Studio by taking a sample piece of code and progressively refining it with built-in refactorings and custom actions.

			Chapter 3, Refactoring Code Flow and Iteration, focuses on refactoring individual lines and blocks of code. We focus on program flow control, object instantiation, handling collections, and using LINQ appropriately.

			Chapter 4, Refactoring at the Method Level, expands the scope of the previous chapter by refactoring methods and constructors to more maintainable forms. Maintaining consistency within the class and building small, maintainable methods is a core focus.

			Chapter 5, Object-Oriented Refactoring, takes the ideas of the previous refactoring chapters and applies them at the entire class level. This shows how introducing interfaces, inheritance, polymorphism, and other classes in general can lead to better patterns of code and more maintainable software systems.

			Chapter 6, Unit Testing, serves as an introduction to unit testing in C#, moving quickly from the idea of a unit test to a tour of how to write one in xUnit, NUnit, and MSTest. We also cover parameterized tests and unit testing best practices.

			Chapter 7, Test-Driven Development, introduces the reader to test-driven development and red/green/refactor by following the TDD process to improve code and enact refactorings. Code generation quick actions are also discussed here.

			Chapter 8, Avoiding Code Anti-Patterns with SOLID, focuses on what makes code good or bad and how common patterns such as SOLID, DRY, and KISS can help make your code more resistant to technical debt.

			Chapter 9, Advanced Unit Testing, covers a variety of testing libraries for data generation, mocking, pinning existing behavior, and safely making changes with A/B tests. We cover Bogus, Fluent Assertions, Moq, NSubstitute, Scientist .NET, Shouldly, and Snapper.

			Chapter 10, Defensive Coding Techniques, shows off a wide range of C# language features that can make your code more reliable and resistant to defects. This chapter covers nullability, validation, immutability, record classes, pattern matching, and more.

			Chapter 11, AI-Assisted Refactoring with GitHub Copilot, introduces the reader to the latest AI tooling in Visual Studio with GitHub Copilot Chat. This chapter shows the reader how to use GitHub Copilot Chat to generate code, give refactoring suggestions, write draft documentation, and even help test your code. We also stress on data privacy concerns and ways of guarding your company’s intellectual property.

			Chapter 12, Code Analysis in Visual Studio, highlights the code analyzers built into modern .NET by showing how code analysis profiles can help detect issues in your code. We also explore code metrics and prioritize technical debt areas using those metrics. The chapter closes by looking at the SonarCloud and NDepend tools, which can help track technical debt over time.

			Chapter 13, Creating a Roslyn Analyzer, introduces the idea of custom Roslyn Analyzers that can detect issues in your code. The chapter guides the reader through writing their first analyzer, unit testing it with RoslynTestKit, and deploying it using a Visual Studio extension.

			Chapter 14, Refactoring Code with Roslyn Analyzers, shows how Roslyn Analyzers can also fix the issues they detect. The chapter picks up where the previous one left off by expanding the analyzer to provide a code fix. We then discuss packaging analyzers in NuGet packages and publishing them on NuGet.org or other NuGet feeds.

			Chapter 15, Communicating Technical Debt, covers the systematic process of tracking and reporting technical debt in a way that business leaders can understand. We cover many common obstacles to refactoring and building a culture of trust and transparency where business management can understand the risks that technical debt represents.

			Chapter 16, Adopting Code Standards, talks about the process of determining code standards that are appropriate for your development team and getting developer buy-in. The chapter covers code styling in Visual Studio, code cleanup profiles, and sharing EditorConfig files to promote consistent style choices across your team.

			Chapter 17, Agile Refactoring, closes the book with a discussion of refactoring in agile environments and the unique challenges agile can pose to refactoring. We talk about ways of prioritizing and paying down technical debt inside of agile sprints. The chapter also covers larger projects, such as upgrades and rewrites, and ways to help those larger projects succeed.

			To get the most out of this book

			The ideal reader should be familiar with the C# programming language and the Visual Studio IDE. Knowledge of object-oriented programming, classes, and LINQ will be particularly helpful.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Visual Studio 2022 v17.8 or higher

						
							
							Windows

						
					

					
							
							.NET 8 SDK

						
							
					

				
			

			This book works with any edition of Visual Studio from 2022 v17.8 onward, including Visual Studio Community. You can download Visual Studio from https://visualstudio.microsoft.com/downloads/.

			The latest version of the .NET 8 SDK can be downloaded from https://dotnet.microsoft.com/en-us/download/dotnet/8.0.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Many chapters feature step-by-step instructions that you can follow along with by using the beginning code for a chapter to produce the code featured in the chapter’s final code folder. You can also keep an eye on other code you work with as you read the book and think about how the topics apply to that code. However, you may want to refrain from applying your refactoring techniques to real-world codebases until you’ve read the chapters covering safely testing your code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Let’s look again at the IFlightUpdater interface from earlier.”

			A block of code is set as follows:

			
public interface IFlightRepository {
 FlightInfo AddFlight(FlightInfo flight);
 FlightInfo UpdateFlight(FlightInfo flight);
 void CancelFlight(FlightInfo flight);
 FlightInfo? FindFlight(string id);
 IEnumerable<FlightInfo> GetActiveFlights();
 IEnumerable<FlightInfo> GetPendingFlights();
 IEnumerable<FlightInfo> GetCompletedFlights();
}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
public interface IFlightUpdater {
 FlightInfo AddFlight(FlightInfo flight);
 FlightInfo UpdateFlight(FlightInfo flight);
 void CancelFlight(FlightInfo flight);
}

			Any command-line input or output is written as follows:

			
 Assert.Equal() Failure Expected: 60 Actual: 50

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Click Next, then give your test project a meaningful name and click Next again.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Refactoring with C#, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781835089989

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

		
			
			

		

	
		
			Part 1: Refactoring with C# in Visual Studio

			In the first part of the book, we’ll discuss the nature of technical debt, code smells, and refactoring. We’ll focus on the mechanical process of refactoring C# code in Visual Studio.

			Throughout this part, you’ll learn how to safely alter the form of your code without changing its functionality. We’ll cover high-level concepts and then walk through refactoring individual lines of code. After this, we’ll zoom out to refactor entire methods and see how they interact with each other. Finally, we’ll look at some object-oriented approaches to refactoring that can help truly reshape your code by altering how classes interact with each other.

			This part of the book can either be read as a traditional book or used as a step-by-step tutorial for refactoring the starting code found in each chapter.

			This part contains the following chapters:

			
					Chapter 1, Technical Debt, Code Smells, and Refactoring

					Chapter 2, Introduction to Refactoring

					Chapter 3, Refactoring Code Flow and Iteration

					Chapter 4, Refactoring at the Method Level

					Chapter 5, Object-Oriented Refactoring

			

		

		
			
			

		

		
			
			

		

	
		
			1

			Technical Debt, Code Smells, and Refactoring

			New software projects start out clean and optimistic, but quickly grow in complexity and difficulty to maintain until the code is difficult to understand, brittle to change, and impossible to test.

			If you’ve worked with code for any length of time, chances are you’ve come across code like this. In fact, if you’ve been in development for even a little bit of time, it’s likely you’ve written code you now regret.

			It could be that the code is hard to read or understand. Maybe the code is inefficient or prone to errors. Perhaps the code was built under a certain set of business assumptions that later changed. Maybe the code simply no longer conforms to the standards you and your team have agreed to. Whatever the reason, bad code feels like it is practically everywhere in codebases of any significant size or age.

			This code litters our software projects and reduces our development speed, causes us to introduce bugs, and generally makes us less happy and productive as software engineers.

			In this book, we’ll talk about how technical debt arises and what we can do about it through the process of refactoring, guided by tests and code analysis.

			In this chapter, we’re going to cover the following main topics:

			
					Understanding technical debt and legacy code

					Identifying code smells

					Introducing refactoring

			

			Understanding technical debt and legacy code

			While computer science education, books, tutorials, and online courses all focus on creating new projects from scratch, the reality is that almost all development jobs you’ll have will center around understanding, maintaining, and expanding pre-existing code that may not meet your current standards.

			This pre-existing code is referred to as legacy code. You almost always inherit some amount of legacy code when joining a new project. This can be a large amount of code for pre-existing projects or a smaller set of libraries your code must work with.

			There are many different definitions of the term legacy code. One that stands out to me from my readings is Michael C. Feather’s definition, in Working Effectively with Legacy Code, that legacy code is code without tests.

			While I like Michael’s definition and believe testing is critically important, as we’ll see in Part 2 of this book, I personally define legacy code as follows:

			Legacy code refers to any pre-existing code that would be implemented significantly differently were it rewritten today.

			One key factor in legacy code is that it is code you don’t currently fully understand and as a result, its presence causes some degree of anxiety and apprehension.

			This anxiety you feel when maintaining old systems is a prime symptom of something called technical debt.

			Simply put, technical debt is the negative effect of legacy code on future development efforts.

			In other words, legacy code has a certain amount of inherent risk that bad things will happen when the code is modified. These bad things could be bugs that are introduced due to the brittleness of the pre-existing code (or our lack of understanding of it), slower development speed, or even catastrophic issues such as critical bugs or security breaches from out-of-date security practices or deprecated dependencies.

			What’s worse is that technical debt will only grow over time – particularly if left unchecked.

			Where technical debt comes from

			Before we move on, I want to address a common point of confusion I see in organizations: technical debt is not the same thing as bad code.

			Certainly, some of the technical debt we have in our systems may be simply poor-quality code. It could be that an inexperienced developer wrote it and didn’t properly benefit from code review by other developers. Sometimes, projects are in a rush and the team didn’t have time to write the code properly to begin with, and never got to go back and clean it up.

			Sometimes, “quick and dirty” code written for prototypes makes it into production applications when “throwaway prototypes” get hastily promoted to actual production applications, as we’ll explore in Chapter 15: Communicating Technical Debt.

			Of course, there are other causes of technical debt as well.

			Sometimes, the development team is under the impression that they are building software to accomplish a specific task and then that task changes as business needs evolve and new information is discovered. In these cases, teams often don’t start over with the code they were writing. They simply evolve the old code to suit the new task at hand. The result is code that works but isn’t ideally suited for the new task.

			This change in requirements is normal and even expected in software development environments. Modern software development occurs in an agile manner where requirements and plans naturally evolve over time and understanding them up-front is virtually impossible.

			Even if development teams understood requirements perfectly and wrote perfect code, this code will eventually become a form of technical debt due to the changing nature of software engineering.

			In software development, tools and libraries change over time. At the time of writing, .NET 8 and C# 12 are the latest ways to run C# code, but these technologies will go out of support at some point in the future only to be replaced by newer versions.

			Even entire ways of thinking about software can change. Over the last twenty years, organizations have shifted from having their own on-premises servers to using cloud hosting on Azure, AWS, or Google Cloud. Even the very nature of what a server is has changed with technologies, including containerization technologies such as Docker, platform as a service (PaaS) offerings such as Azure App Services, and serverless computing offerings such as Azure Functions and AWS Lambda.

			Nowadays, newer AI technologies such as ChatGPT and GitHub Copilot Chat are poised to change what it even means to be a software developer, and this only underscores how much constant change is at the heart of the software engineering industry.

			Change in software projects

			In software development, change is a constant and can be unpredictable and sudden. All this change leads to code that was once considered perfect to later be considered a significant risk to the ongoing success of the business.

			In other words, technical debt is to some degree or another an unavoidable part of software development. Thankfully, you can take some steps to reduce the rate at which it accumulates (as we’ll discuss in Part 2 of this book). Fortunately, we can detect technical debt through its symptoms, or “smells.”

			Identifying code smells

			So, how do you know whether your code has issues?

			How do you know whether food has spoiled, clothing needs to be washed, or a diaper needs changing? It turns out that it just smells bad.

			There are some metrics about what constitutes “good” and “bad” code, and we’ll explore them in Chapter 12: Code Analysis in Visual Studio and Chapter 16: Adopting Code Standards. Smelly code can be subjective to some degree or another. A developer who wrote a section of code or frequently modifies that portion of code may find the code to be more tolerable than a developer encountering the code for the first time.

			While not all pieces of technical debt are identical, it turns out that many pieces of legacy code share a set of common symptoms.

			These symptoms are commonly referred to as “code smells” and can include the following:

			
					It’s difficult to understand what it does or why it does it

					You or people on your team avoid working with it

					It’s slower to modify than other areas or tends to break when modified

					It’s hard to test or debug

			

			New code starts out good and pristine, but real code that lives in a business setting evolves over time as more capabilities are required and additional features and fixes are introduced. As that happens, code that was once nice and neat starts to accumulate code smells.

			Not all code is created equal, and not all code lasts as long as other pieces of code. Certainly, there are things we can do to make our code more resilient (as we’ll see in Chapter 8: Avoiding Code Anti-Patterns with SOLID). However, at some point in time, your nice and shiny new code will start to get smelly and will need to be cleaned up through a process called refactoring.

			Introducing refactoring

			Refactoring is one of those words that doesn’t make a lot of sense to newer programmers, but here’s a simple definition:

			Refactoring is the act of changing the shape or form of code without changing its functionality or behavior.

			There are two key concepts here:

			
					The first concept is that refactoring is an effort to improve the maintainability of existing code. Sometimes, restructuring means introducing a new variable, method, or class. Other times, refactoring simply changes how individual lines of code are arranged or which language features are used. Even something as simple as renaming a variable could be considered a small act of refactoring.

					The second concept in this definition is that refactoring does not alter the behavior of the code in question. Refactoring is a structural change done to bring some piece of technical merit without altering the existing behavior of your code. If a method typically returned a certain value before you refactored it and now it returns a different value, that is a change and not a refactoring.

			

			Refactoring also should provide some benefit to the engineering team. The code resulting from refactoring should be easier to understand, less likely to break when changed, and have less technical debt and fewer code smells than the starting code did.

			Every line of code the development team produces should have a business value. Refactoring is no different, except the business value it produces should be more maintainable code with fewer issues and delays arising from its presence.

			Sometimes, we try to improve our code through refactoring and we accidentally introduce new behavior – typically in the form of new bugs. This makes our refactoring become an unintentional change in the software that can result in emergency fixes to restore code to a working state.

			Breaking code while refactoring can be a critical problem and a significant barrier to being allowed to perform refactored code in the future, which in turn can allow technical debt to thrive.

			In Part 2 of this book, we’ll explore ways of safely refactoring your code so that you don’t accidentally introduce bugs, while in Part 4, we’ll discuss getting organizational buy-in to refactor your code, and what to do when a defect does arise out of your refactoring efforts.

			Refactoring tools in Visual Studio

			Thankfully, all editions of Visual Studio now include refactoring tools built into the editor that allow you to quickly perform a set of common refactorings in a reliable and repeatable manner.

			In Chapter 2: Introduction to Refactoring and the remaining chapters in Part 1, we’ll see a number of refactorings in action. Here’s a preview of some of the refactoring options Visual Studio provides the user:

			
				
					[image: Figure 1.1 – Visual Studio Quick Actions context menu showing a set of refactoring operations]
				

			

			Figure 1.1 – Visual Studio Quick Actions context menu showing a set of refactoring operations

			Tool-assisted refactorings such as these are fantastic for a few reasons:

			
					They are fast and efficient

					They are reliable and repeatable

					They rarely introduce defects

			

			Caution

			Note that I use the word rarely when talking about bugs introduced by refactoring tools. There are a few rare scenarios where using the built-in refactoring tools without thinking about their actions may introduce bugs into your application. We’ll talk specifically about those areas as we encounter them in the following chapters.

			Over the rest of Part 1, we’ll explore using these tools to quickly and effectively refactor your C# applications and talk about the types of scenarios in which you might use each one of these.

			With all that our tools can do, it is important to remember that these tools are just one way of refactoring code. Often, the most effective ways of removing code smells involve a combination of writing code yourself and using the built-in refactoring tools.

			Refactoring’s key value is the long-term health of an organization, but many obstacles to refactoring can come from the organization itself. To help illustrate the practical aspects of refactoring in a real organization, each chapter will involve a case study from a fictitious organization. Some chapters will focus entirely on code from the case study while others, such as this chapter, will conclude with a dedicated case study section. These case study sections illustrate the concepts of the chapter applied to a fictitious organization.

			Let’s meet our first case study section and see how technical debt and legacy code affect a typical company.

			Case study – Cloudy Skies Airlines

			The rest of this book will follow code examples from an airline called Cloudy Skies Airlines, or Cloudy Skies for short. Through these examples, we should be able to see how technical debt and refactoring can apply to a “real” organization and its software.

			Note

			Cloudy Skies is a fictitious airline company created for this book for teaching purposes only. Any resemblance to any real company is purely coincidental. Additionally, I have never worked in aviation, so the code examples presented in the book are likely significantly different from actual software systems used in the industry.

			Cloudy Skies is an airline that’s been around for the past 50 years and currently operates a little over 500 jets in its fleet, serving around 70 cities in its region.

			Twenty years ago, the airline made a major move and started replacing its aging software systems with custom in-house applications built by its development team. Cloudy Skies chose to use .NET and C#. The initial systems performed well and resulted in increased developer productivity and high-performance software applications, so Cloudy Skies continued to migrate its applications to .NET.

			As time went by, the airline and its systems grew. The engineering team at Cloudy Skies was once held in high esteem as the pride and joy of the organization and a key to its future.

			However, management has been somewhat frustrated by its engineering team over the past few years. Some of its key complaints include the following:

			
					Product managers are frustrated by large estimates for seemingly simple changes to existing systems, and a growing amount of time between software releases due to long implementation times and numerous bugs.

					The Quality Assurance department has been overwhelmed by a growing number of bugs present in the software, a tendency for the same things to break repeatedly, and bugs appearing in seemingly unrelated areas when changes occur in other parts of the application.

			

			For its part, the engineering team feels overwhelmed by the code it’s working with. Strategic initiatives have been pushed aside for years while the organization has the team focus on urgent changes or tight deadlines for new releases. As a result, nobody has had time to address the growing amount of technical debt the team is facing.

			The Cloudy Skies codebase is constantly growing in complexity to account for each new feature or “special case” added to the system. This complexity in turn makes the application harder to test, understand, and modify, which has led to difficulties in onboarding new developers and some experienced developers leaving the organization.

			Out of frustration after several severe delays and high-profile bugs, Cloudy Skies brings in a new engineering manager and empowers the team to make changes to ensure the airline can stay efficient and effective in the years to come.

			This engineering manager determines that the primary cause of these problems is technical debt and that targeted refactoring of the most critical areas throughout the suite of applications could significantly reduce risk and improve the team’s effectiveness going forward.

			To its credit, management agrees and allows the team to allocate resources to pay down technical debt and improve the maintainability of the code through refactoring.

			Throughout the rest of this book, we’ll follow aspects of this fictitious team’s journey in paying down technical debt and paving the way to a better future through refactoring.

			Summary

			Legacy code is an unavoidable byproduct of the forces of time and constant change that are present in software development projects. This legacy code becomes a breeding ground for technical debt, which threatens our productivity as developers and the quality of our software.

			While technical debt can arise due to a number of reasons, refactoring is the cure. Refactoring reworks existing code into a more maintainable and less risky form, reducing our technical debt and helping us control our legacy code.

			The more you understand the causes and effects of technical debt in your code, the better you’ll find yourself equipped to explain technical debt to others in your organization, advocate for refactoring, and avoid things that cause your code to decline in effectiveness over time.

			In the next chapter, we’ll explore refactoring in more depth by walking through a set of targeted changes to improve a piece of sample code from the Cloudy Skies Airlines codebase.

			Questions

			
					What is the difference between technical debt and legacy code?

					What are some causes of technical debt?

					What are some of the effects of technical debt?

					Is it possible to avoid technical debt?

					Is it possible to get to a point where your code cannot be refactored further?

			

			Further reading

			You can find more information about technical debt, legacy code, and refactoring at the following URLs:

			
					Defining Technical Debt: https://killalldefects.com/2019/12/23/defining-technical-debt/

					Identify Technical Debt: https://learn.microsoft.com/en-us/training/modules/identify-technical-debt/

					The True Cost of Technical Debt: https://killalldefects.com/2019/11/09/the-true-cost-of-technical-debt/

					Code refactoring: https://en.wikipedia.org/wiki/Code_refactoring

			

		

	
		
			2

			Introduction to Refactoring

			The best way to learn refactoring is to look at an example. In this chapter, we’ll explore a sample refactoring scenario using C# and Visual Studio and see firsthand how refactoring can transform the maintainability of code without altering its functionality.

			In this chapter, we’re going to cover the following main areas:

			
					Refactoring a baggage price calculator

					Refactoring in other editors

			

			Along the way, we’ll cover refactorings around introducing locals, constants, and parameters, extracting methods, and removing unreachable/unused code, as well as touching upon the importance of testing in any refactoring endeavor.

			Technical requirements

			If you want to follow along with this chapter, you can clone this book’s code from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp.

			The starting code for this chapter can be found in the Chapter02/Ch2BeginningCode folder after cloning the repository.

			Refactoring a baggage price calculator

			We’ll start by examining a baggage price calculator used by the staff of Cloudy Skies Airline during baggage checks to determine the amount an individual customer must pay.

			The rules for baggage pricing are as follows:

			
					All carry-on baggage costs $30 per bag

					The first checked bag a passenger checks costs $40

					Each subsequent checked bag costs $50

					If the travel occurs during the holidays, a 10% surcharge is applied

			

			This code lives in a C# BaggageCalculator class that we’ll review in a few blocks of code, starting with the class definition, field, and full property:

			BaggageCalculator.cs:

			
public class BaggageCalculator {
 private decimal holidayFeePercent = 0.1M;
 public decimal HolidayFeePercent {
 get { return holidayFeePercent; }
 set { holidayFeePercent = value; }
 }

			This is a simple class with an older style of property definition setting holidayFeePercent to a decimal value (identified by the M suffix) of 0.1 or 10%.

			The class also has a CalculatePrice method that returns a decimal value indicating the total cost of baggage fees:

			
 public decimal CalculatePrice(int bags,
 int carryOn, int passengers, DateTime travelTime) {
 decimal total = 0;
 if (carryOn > 0) {
 Console.WriteLine($"Carry-on: {carryOn * 30M}");
 total += carryOn * 30M;
 }
 if (bags > 0) {
 if (bags <= passengers) {
 Console.WriteLine($"Checked: {bags * 40M}");
 total += bags * 40M;
 } else {
 decimal checkedFee = (passengers * 40M) +
 ((bags - passengers) * 50M);
 Console.WriteLine($"Checked: {checkedFee}");
 total += checkedFee;
 }
 }
 if (travelTime.Month >= 11 || travelTime.Month <= 2) {
 Console.WriteLine("Holiday Fee: " +
 (total * HolidayFeePercent));
 total += total * HolidayFeePercent;
 }
 return total;
 }

			That logic has some complexity to it, but it matches up with the business rules described earlier.

			Finally, the class ends with a CalculatePriceFlat method that was introduced in an earlier version of the application and is no longer used (which we’ll discuss later):

			
 private decimal CalculatePriceFlat(int numBags) {
 decimal total = 0;
 return 100M;
 return numBags * 50M;
 }
}

			While this code isn’t the worst in the world by any stretch, this is a class that is slowly growing in complexity and becoming harder to understand and maintain as new rules are added to the application.

			Fortunately, this class is supported by a series of passing unit tests and is generally agreed to calculate the correct amount by all users.

			Over the course of the chapter, we’ll apply a series of targeted refactorings to improve this code to prevent it from being an issue in the future.

			Converting properties to auto properties

			The class starts with the declaration of the HolidayFeePercent property as shown here:

			
private decimal holidayFeePercent = 0.1M;
public decimal HolidayFeePercent {
 get { return holidayFeePercent; }
 set { holidayFeePercent = value; }
}

			This code is fine and has no issues whatsoever. However, C# is a language that continues to evolve and developers generally prefer to write and maintain fewer lines of code when given the choice.

			Because of this, Microsoft gave us the ability to write automatically implemented properties (commonly called auto properties) that automatically generate their own field with a getter and setter when the code is compiled.

			While we could delete the property and its field and redeclare it, there’s a possibility that we could make a spelling or capitalization mistake when doing so. Instead, let’s take a look at how Visual Studio can do this for us automatically.

			In Visual Studio, if you move your typing cursor onto a property name, either by using the arrow keys or by clicking on the name of the property, you’ll see a light bulb appear in the margin as shown in Figure 2.1:

			
				
					[image: Figure 2.1 – The light bulb Quick Actions icon]
				

			

			Figure 2.1 – The light bulb Quick Actions icon

			If you click on this light bulb (or press Ctrl + . by default), the Quick Actions menu will appear and list several refactorings.

			The refactoring choices are context-sensitive, so only those that Visual Studio believes are relevant to the code you have currently selected will appear.

			In this case, the first option, Use auto property, is the refactoring action we want. See Figure 2.2:

			
				
					[image: Figure 2.2 – Previewing the Use auto property refactoring]
				

			

			Figure 2.2 – Previewing the Use auto property refactoring

			When this option is selected, the pane on the right will display a preview of the change this will make to your code. Here it lists the lines it will remove in red and the line it adds in green.

			Clicking Use auto property or pressing Enter on the keyboard will accept the suggestion and replace your code with the auto property version:

			
public decimal HolidayFeePercent { get; set; } = 0.1M;

			Admittedly this is a simple refactoring, but there are a couple of things I want to stress about the refactoring process:

			
					Visual Studio took care of making the change and did so in an automated way that was free of potential typos or other mistakes a human might make.

					If you didn’t know that you could move a full property to an auto property, this Quick Action helped you discover that. These Quick Actions can actually teach you a lot about the C# programming language as it continues to evolve and change every year.

			

			With the mechanics of refactoring in Visual Studio out of the way, let’s explore some additional refactorings.

			Introducing locals

			One of the problems the CalculatePrice method has is that there are a few expressions, such as carryOn * 30M and bags * 40M, that appear multiple times throughout the method.

			These are small issues but can lead to maintainability problems. If the nature of the expressions changed, we would need to modify multiple places within our code.

			In general, one of the reasons you may want to refactor code is if you find yourself modifying multiple places to make a single change on a regular basis. For example, if the pricing structure changed we should modify multiple lines of code to support the new pricing model. Each one of those lines we should modify is a place we might fail to make a change. Missing changes like this typically introduce bugs.

			Even if we didn’t miss any code that needed to be modified, most developers would prefer to have to make a change in one place instead of multiple.

			The Introduce local refactoring can help with this by introducing a local variable containing the result of the expression.

			To use this refactoring, select the expression that is repeated as shown in Figure 2.3, noting that Visual Studio helpfully highlights any places it is repeated:

			
				
					[image: Figure 2.3 – Selecting a repeated expression in Visual Studio]
				

			

			Figure 2.3 – Selecting a repeated expression in Visual Studio

			Next, use the Quick Action button by pressing Ctrl + . or clicking on the screwdriver icon.

			A note on the Quick Actions icon

			The Quick Action button sometimes appears as a light bulb and sometimes appears as a screwdriver, depending on your code analysis rules and the exact issues a line is facing. They are effectively the same option, but the light bulb tells you a suggested refactoring is present while a screwdriver indicates a less critical refactoring option to consider.

			Once the context menu is open, expand the right arrow next to Introduce local by using the arrow keys to navigate the menu. This will let you view more detailed options.

			
				
					[image: Figure 2.4 – Drilling into the specialized forms of the Introduce local refactoring]
				

			

			Figure 2.4 – Drilling into the specialized forms of the Introduce local refactoring

			Here it gives you the ability to introduce a local variable just for the expression you selected or to do so for all occurrences of this expression. I generally recommend using the for all occurrences option, but it will depend on the context of what you’re trying to improve.

			Once you select the Introduce local option, Visual Studio will prompt you for a name for your variable (see Figure 2.5):

			
				
					[image: Figure 2.5 – Naming your new local variable]
				

			

			Figure 2.5 – Naming your new local variable

			Type in the name you would like and then press Enter to make the box disappear.

			In my case, I called the variable fee and it replaced it in both lines as shown here:

			
if (carryOn > 0) {
 decimal fee = carryOn * 30M;
 Console.WriteLine($"Carry-on: {fee}");
 total += fee;
}

			While this is certainly cleaner for the carry-on baggage fee logic, there’s still a bags * 40M expression repeated in the checked baggage logic and a total * HolidayFeePercent expression that is also repeated.

			You can use the Introduce local refactoring to make complex lines more understandable by pulling some logic out of dense lines into their own smaller lines.

			Applying the Introduce local refactoring throughout this method results in a longer method, but one that’s easier to understand:

			
public decimal CalculatePrice(int bags,
 int carryOn, int passengers, DateTime travelTime) {
 decimal total = 0;
 if (carryOn > 0) {
 decimal fee = carryOn * 30M;
 Console.WriteLine($"Carry-on: {fee}");
 total += fee;
 }
 if (bags > 0) {
 if (bags <= passengers) {
 decimal firstBagFee = bags * 40M;
 Console.WriteLine($"Checked: {firstBagFee}");
 total += firstBagFee;
 } else {
 decimal firstBagFee = passengers * 40M;
 decimal extraBagFee = (bags - passengers) * 50M;
 decimal checkedFee = firstBagFee + extraBagFee;
 Console.WriteLine($"Checked: {checkedFee}");
 total += checkedFee;
 }
 }
 if (travelTime.Month >= 11 || travelTime.Month <= 2) {
 decimal holidayFee = total * HolidayFeePercent;
 Console.WriteLine("Holiday Fee: " + holidayFee);
 total += holidayFee;
 }
 return total;
}

			As a programming instructor, I saw many students under the mistaken assumption that the shortest way to implement something was always the best.

			Instead, the best code tends to be the code that’s easier to maintain over time, less likely to break, and easier to think about as you go about development tasks.

			Less code is often easier to think about, but when code gets too concise or too complex it can be hard to maintain. Find a happy medium between brevity and readability, keeping in mind that many times, programmers skim code looking for a specific section.

			Introducing constants

			The Introduce constant refactoring is very similar to Introduce local except it introduces a const value that will never change during the program’s runtime.

			However, Introduce constant is often used for a different purpose than Introduce local. While Introduce local tends to be used to reduce repetition or simplify complex lines of code, Introduce constant is often used to eliminate magic numbers or magic strings from code.

			In programming, a magic number is a number that exists in your code without any explanation of what that number means or why it is there. This is bad because the person maintaining your code later doesn’t understand why that number was chosen.

			The CalculatePrice method has three magic numbers: 30M, 40M, and 50M, representing the various baggage fee amounts.

			Introducing a constant for these is the same as introducing a local. Just highlight the number and open the Quick Actions menu, then select Introduce constant and then Introduce constant for all occurrences in the sub-menu as shown here:

			
				
					[image: Figure 2.6 – Introducing a constant for all occurrences of the 40M decimal literal]
				

			

			Figure 2.6 – Introducing a constant for all occurrences of the 40M decimal literal

			Doing this to the various magic numbers in our application and choosing appropriate names results in the following new constants at the top of the class:

			
private const decimal CarryOnFee = 30M;
private const decimal FirstBagFee = 40M;
private const decimal ExtraBagFee = 50M;

			Introducing these constants has the added benefit of putting our price rules in a centralized place, making them more discoverable by new developers joining the team.

			This also makes our code a lot easier to read:

			
if (carryOn > 0) {
 decimal fee = carryOn * CarryOnFee;
 Console.WriteLine($"Carry-on: {fee}");
 total += fee;
}

			Programmers spend disproportionally more time reading code rather than writing code. Optimizing your code for maintainability is a key habit that will help your application resist technical debt as time goes by.

			Introducing parameters

			One refactoring technique I wish I saw more people use is the Introduce parameter refactoring.

			This refactoring takes an expression or variable in a method and removes it from the method entirely, instead adding its value as a new parameter to the method.

			For example, right now the CalculatePrice method has logic inside of it for determining which travel dates should be considered for holiday travel:

			
if (travelTime.Month >= 11 || travelTime.Month <= 2) {
 decimal holidayFee = total * HolidayFeePercent;
 Console.WriteLine("Holiday Fee: " + holidayFee);
 total += holidayFee;
}

			This is logic that could become more complex as more holidays are added and holidays from different countries are considered. As the code is written now, the additional complexity would need to go into this if statement.

			Instead, introducing a parameter for isHoliday gives the callers of this method the responsibility of telling whether the method is holiday travel or not. This ultimately allows us to leave this method to focus on pricing the customer’s baggage and to be aware of holidays but it is not responsible for determining what is and what isn’t a holiday.

			Introducing a parameter can be done by selecting the variable or expression you wish to move to a parameter and then triggering the Quick Actions menu:

			
				
					[image: Figure 2.7 – Introducing a parameter using the Quick Actions menu]
				

			

			Figure 2.7 – Introducing a parameter using the Quick Actions menu

			There are multiple options to choose from when introducing a parameter. Choosing and update call sites directly is usually a good option – provided you review the code it generates.

			Once we introduce the parameter and name it appropriately, the holiday fee logic becomes much easier to read:

			
if (isHoliday) {
 decimal holidayFee = total * HolidayFeePercent;
 Console.WriteLine("Holiday Fee: " + holidayFee);
 total += holidayFee;
}

			Introducing a parameter also changed the method signature line to add a Boolean isHoliday parameter:

			
public decimal CalculatePrice(int bags, int carryOn,
 int passengers, DateTime travelTime, bool isHoliday) {

			As a result of this refactoring, any code that called the CalculatePrice method now calculates and passes a value for isHoliday to the method.

			I find that Introduce parameter is particularly helpful for letting a method focus on just a few key pieces of logic.

			It can also be very helpful in places where you have very similar methods of doing similar things but only differing by a few key details. It can sometimes be possible to merge many different methods into a single method that takes in a few details as parameters.

			For example, the following code might perform logging for different actions:

			Fee.cs

			
public void ChargeCarryOnBaggageFee(decimal fee) {
 Console.WriteLine($"Carry-on Fee: {fee}");
 Total += fee;
}
public void ChargeCheckedBaggageFee(decimal fee) {
 Console.WriteLine($"Checked Fee: {fee}");
 Total += fee;
}

			These two methods both take in a numeric fee and write the charge name and charged fee to the console. In fact, the only way they differ is the charge name.

			This code could be consolidated into a single method by introducing a parameter:

			
public void ChargeFee(decimal fee, string chargeName) {
 Console.WriteLine($"{chargeName}: {fee}");
 Total += fee;
}

			Never underestimate the value of making a method more generalized by having outside code provide additional details.

			With the charge logic largely improved, let’s move on to the final method in the code that has several warnings associated with it.

			Removing unreachable and unused code

			If you opened the beginning code from this chapter in Visual Studio, you would likely notice that CalculatePriceFlat and a few variables inside it appear in gray with a number of wavy underscore suggestions as shown in Figure 2.8.

			
				
					[image: Figure 2.8 – The CalculatePriceFlat method with gray text for many lines of code]
				

			

			Figure 2.8 – The CalculatePriceFlat method with gray text for many lines of code

			Visual Studio can sometimes detect when variables, parameters, and even methods are not being used. If it does so, Visual Studio usually renders these identifiers in more muted tones and often includes suggestions to investigate or remove these items.

			In this case, nothing is ever calling the CalculatePriceFlat method, and nothing is referencing the numBags parameter. The total variable is declared and given a value but is never read from after that, and the final return line is unreachable given the return line above it.

			Each one of these issues can be addressed with a remove unused member, remove unused variable, or remove unreachable code refactoring.

			All these refactorings do what you’d expect: they remove the offending code.

			Since nothing is calling the method at all, the entire method can be removed.

			Removing unused parameters

			There’s another piece of code from earlier that can be removed as well: the CalculatePrice method has a travelTime parameter that is no longer being used after we introduced the isHoliday parameter.

			There is no remove unused parameter in Visual Studio at the time of writing, but you can remove it safely using some of the method-level refactorings we’ll discuss in the next chapter.

			To perform this refactoring, select the travelTime parameter and then select Change signature... as shown here:

			
				
					[image: Figure 2.9 – Changing the signature of a method]
				

			

			Figure 2.9 – Changing the signature of a method

			Clicking Change signature… will show the Change Signature dialog.

			Select the travelTime parameter and click Remove. The parameter will appear crossed out in the dialog:

			
				
					[image: Figure 2.10 – The Change Signature dialog with travelTime removed]
				

			

			Figure 2.10 – The Change Signature dialog with travelTime removed

			Click OK and the dialog will close and the parameter will be removed.

			Any code that was referencing your method will also have their signatures updated to not pass anything for the travelTime parameter.

			Avoiding pitfalls when removing code

			One cautionary note on removing code: be particularly careful about removing public members from code. Sometimes Visual Studio is not aware of all the places using code. This is particularly true for serialization/deserialization logic, properties that exist for data binding, and members that are accessed using reflection.

			Additionally, if your code is being deployed as a NuGet package or otherwise being shared in other projects, it is possible that code outside of your solution may depend on a method or parameter, and your change could cause their code to no longer compile.

			Reminder on testing

			It is your responsibility to test any refactorings you make and ensure they do not bring about unintended changes in program behavior.

			That may sound scary, but don’t let these edge cases stop you from removing dead code.

			I’ve known a number of developers hesitant to remove code in case they need it later. Instead, these developers will either keep the code there untouched or comment the entire block of code out.

			The problem with commenting out dead code is that it increases the amount of distracting and unhelpful comments in a file. This reduces the amount of importance developers place on the comments that are present and also increases the amount of scrolling the developers must do.

			Delete dead code. Your code should be in source control anyway, so if you really need to find the code later, you can look at the history to recover it – assuming, of course, you checked the code into source control to begin with.

			Extracting methods

			Our code is now looking fairly clean, but the CalculatePrice method has a lot of logic in it for the checked baggage price calculation.

			This logic is complex enough for us to extract a method just for this logic and call that method from our existing code.

			To do this, select the lines of code that represent the method you want to extract. Be mindful of the various {} instances that you select, as your selection must make sense as a related block of code to Visual Studio. See the following screenshot.

			
				
					[image: Figure 2.11 – Extracting a method from a block of code]
				

			

			Figure 2.11 – Extracting a method from a block of code

			Once your block of code is selected, open the Quick Actions menu, choose Extract Method, and then name the method in the prompt before pressing Enter to confirm your name.

			
				
					[image: Figure 2.12 – Naming the extracted method]
				

			

			Figure 2.12 – Naming the extracted method

			This will result in a new method being added to your code:

			
private static decimal ApplyCheckedBagFee(int bags,
 int passengers, decimal total) {
 if (bags <= passengers) {
 decimal firstBagFee = bags * FirstBagFee;
 Console.WriteLine($"Checked: {firstBagFee}");
 total += firstBagFee;
 } else {
 decimal firstBagFee = passengers * FirstBagFee;
 decimal extraBagFee = (bags - passengers)* ExtraBagFee;
 decimal checkedFee = firstBagFee + extraBagFee;
 Console.WriteLine($"Checked: {checkedFee}");
 total += checkedFee;
 }
 return total;
}

			Note that Visual Studio will make the method private by default and will mark the method as static if it does not access instance members on the class.

			I generally prefer private methods, but your preferences on static may vary depending on what method you’re working with and whether it makes sense for the method to ultimately be static.

			The extract method refactoring also removes the code from the original method and replaces it with a call to the new method:

			
public decimal CalculatePrice(int bags, int carryOn,
 int passengers, DateTime travelTime, bool isHoliday) {
 decimal total = 0;
 if (carryOn > 0) {
 decimal fee = carryOn * CarryOnFee;
 Console.WriteLine($"Carry-on: {fee}");
 total += fee;
 }
 if (bags > 0) {
 total = ApplyCheckedBagFee(bags, passengers, total);
 }
 if (isHoliday) {
 decimal holidayFee = total * HolidayFeePercent;
 Console.WriteLine("Holiday Fee: " + holidayFee);
 total += holidayFee;
 }
 return total;
}

			This results in a much more concise and readable CalculatePrice method and makes it easier to think about everything the method is doing. This reduced complexity greatly improves the long-term quality of the method by helping developers fully understand the method and avoids costly mistakes that can occur when maintaining complex blocks of code.

			Refactoring manually

			Up until this point, we’ve performed a number of refactoring operations supported by Visual Studio. These have been fairly safe given the quality of the tools we’ve used, but there are some things the built-in tools just won’t do.

			Visual Studio is powerful, but it can’t think about code like a human can (despite the exciting new AI features we’ll talk about in Chapter 11, AI-Assisted Refactoring with GitHub Copilot Chat).

			Sometimes there will be opportunities to improve the code that no built-in refactoring can perform for you. At those points, you’ll have to make the changes manually.

			The ApplyCheckedBagFee method we extracted earlier is a good method, but a few things could be improved.

			First, the method takes in a total, increases it by a fee, and then returns that new total. It’d be easier for others to understand the method if the method returned the fee instead of the adjusted total.

			Secondly, the method is performing the same Console.WriteLine operation twice. Additionally, all other WriteLine statements in the class are in the CalculatePrice method, making the user interface slightly hard to fully trace.

			Let’s modify the method so that it returns only the fee, doesn’t require the total parameter, and doesn’t log anything:

			
private static decimal ApplyCheckedBagFee(int bags,
 int passengers) {
 if (bags <= passengers) {
 decimal firstBagFee = bags * FirstBagFee;
 return firstBagFee;
 } else {
 decimal firstBagFee = passengers * FirstBagFee;
 decimal extraBagFee = (bags-passengers) * ExtraBagFee;
 decimal checkedFee = firstBagFee + extraBagFee;
 return checkedFee;
 }
}

			Next, we’ll need to update the code that calls this method:

			
if (bags > 0) {
 decimal bagFee = ApplyCheckedBagFee(bags, passengers);
 Console.WriteLine($"Checked: {bagFee}");
 total += bagFee;
}

			Note that the result is stored in a bagFee variable, total is no longer passed to ApplyCheckedBagFee, and Console.WriteLine now appears here in this method.

			Additionally, the ApplyCheckedBagFee name might not apply anymore since the method no longer actually applies the fee, but rather calculates it. In this case, applying the rename method refactoring would help the final code have a more appropriate name.

			Testing refactored code

			As I mentioned earlier, it is your responsibility to ensure that your refactoring efforts have not altered how the system fundamentally behaves.

			In our case, this means that BaggageCalculator should still calculate the same prices it did before for any valid set of inputs.

			One of the many tools we have at our disposal for determining whether code still meets our needs is running unit tests.

			We’ll talk more about unit tests in Chapter 6, Unit Testing, but for now, know that unit tests are code that verifies that other code is working as expected.

			BaggageCalculator has five tests that can be run by clicking on the Test menu and then choosing Run All Tests.

			The Test Explorer window should show all tests as passing with green check marks:

			
				
					[image: Figure 2.13 – Five passing tests in Test Explorer]
				

			

			Figure 2.13 – Five passing tests in Test Explorer

			If a test is now failing and didn’t fail before, this is a good thing, since it means the test found an issue you caused in the code’s behavior. Investigate the failing test and then resolve the issue before continuing.

			We’ll explore testing in much more detail in Part 2 of this book, but as it stands, it appears that our refactorings have been successful.

			Final code

			The final refactored code from this chapter is available in the https://github.com/PacktPublishing/Refactoring-with-CSharp repository, inside the Chapter02/Ch2FinalCode folder.

			The code we produced in this chapter is simple, readable, and maintainable. Certainly, there are things that could still be improved, but the code is less likely to cause issues as it grows in complexity in the future.

			Refactoring in other editors

			Before we end the chapter, let’s talk about refactoring in editors other than Visual Studio.

			This book primarily focuses on refactoring in Visual Studio because that’s the current primary development environment for .NET developers. However, there are a few other editors and extensions that are frequently used for .NET development and offer refactoring support:

			
					Visual Studio Code

					JetBrains Rider

					JetBrains ReSharper (Visual Studio Extension)

			

			These tools will not be featured in examples throughout the remainder of the book since Visual Studio is the primary editing experience. However, most of what I’ll show you in the remainder of the book is also possible using these tools.

			Refactoring in Visual Studio Code with the C# Dev Kit

			Visual Studio Code (VS Code) is rapidly becoming a highly capable editing environment for .NET projects with its C# extension.

			Where VS Code really comes into its own is with the newer C# Dev Kit, which gives an editing experience almost identical to Visual Studio, including the solution explorer. The C# Dev Kit integrates with the other C# extensions to provide code suggestions and refactoring Quick Actions with the same style of light bulb icons you see in Visual Studio.

			
				
					[image: Figure 2.14 – Refactoring with the C# Dev Kit in VS Code]
				

			

			Figure 2.14 – Refactoring with the C# Dev Kit in VS Code

			VS Code won’t give you the full set of refactoring options Visual Studio currently does, but it is cross-platform and will work on Mac and Linux.

			Licensing note

			VS Code is free, but the C# Dev Kit extension requires a paid Visual Studio license key.

			I expect we’ll see VS Code featured much more prominently in .NET development with the improvements from the C# Dev Kit and VS Code’s cross-platform capabilities, along with its ability to run in-browser to some extent through GitHub Codespaces.

			Refactoring in JetBrains Rider

			JetBrains Rider is a separate editor developed on the same set of editing software used by the popular IntelliJ Java editor.

			Rider works with most .NET projects and has a fantastic set of refactoring capabilities built in. These capabilities will often be similar to those mentioned in this book, but the exact naming and user experience will be slightly different.

			
				
					[image: Figure 2.15 – Refactoring in JetBrains Rider]
				

			

			Figure 2.15 – Refactoring in JetBrains Rider

			Like VS Code, one major advantage Rider has over Visual Studio is that it is fully cross-platform and can run on macOS or Linux.

			Refactoring in Visual Studio with ReSharper

			If you love working with Visual Studio but want the same rich set of refactorings that Rider offers, JetBrains also offers a Visual Studio extension called ReSharper.

			ReSharper replaces many Visual Studio features with enhanced versions, including Visual Studio’s code analysis and refactoring tools.

			
				
					[image: Figure 2.16 – Refactoring with ReSharper in Visual Studio]
				

			

			Figure 2.16 – Refactoring with ReSharper in Visual Studio

			Nowadays, Visual Studio tends to have most of the refactoring capabilities ReSharper and Rider offer, but the capabilities of ReSharper and Rider can sometimes be a bit more advanced.

			Summary

			Throughout this chapter, we explored refactoring by taking a class with a bit of complexity and applied targeted refactorings to make it easier to read, maintain, and expand.

			We went from a modestly complex class to a relatively simple one by following a set of repeatable actions that transformed the code from one form to another without changing its overall behavior or result.

			Although Visual Studio supports very capable refactoring tools, it is up to you as an experienced developer to know when you might want to apply each individual refactoring, based on the current level of complexity of your code and the code smells you’re observing.

			Over the next three chapters, we’ll explore the built-in refactorings in more depth by exploring refactorings related to methods, classes, and individual lines of code.

			Questions

			
					What are some ways of triggering Quick Actions for a block of code?

					Does Visual Studio ever indicate that refactorings are possible or recommended?

					How can you know what a Quick Action will do before performing it?

					Are Visual Studio Quick Actions the only way to refactor code?

			

			Further reading

			You can find more information about refactoring in Visual Studio and other environments at these URLs:

			
					Quick Actions Overview: https://learn.microsoft.com/en-us/visualstudio/ide/quick-actions

					JetBrains Rider vs Visual Studio (with and without ReSharper): https://www.jetbrains.com/rider/compare/rider-vs-visual-studio/

					Announcing C# Dev Kit for Visual Studio Code: https://devblogs.microsoft.com/visualstudio/announcing-csharp-dev-kit-for-visual-studio-code/

			

		

	
		
			3

			Refactoring Code Flow and Iteration

			While other chapters in Part 1 focus on refactorings that can be applied to entire methods or classes, this chapter focuses on improving the readability and efficiency of individual lines of code.

			Developers spend the majority of their time reading over individual lines of code and only a fraction of that time modifying code. So, it is important to make our lines of code as maintainable as possible.

			In this chapter, we’ll explore the following topics related to improving small pieces of code:

			
					Controlling program flow

					Instantiating objects

					Iterating over collections

					Refactoring LINQ statements

					Reviewing and testing our refactored code

			

			Technical requirements

			The starting code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter03/Ch3BeginningCode folder.

			Refactoring the boarding app

			This chapter’s code focuses on a pair of applications for Cloudy Skies Airline:

			
					A Boarding Status Display app that tells the user if it’s time for them to board their flight based on the current boarding group and the person’s ticket, military status, and whether or not they need assistance getting down the jetway.

					A Boarding Kiosk app that allows airline employees to view the passengers scheduled to be on the flight and provides information regarding whether each passenger has boarded. Figure 3.1 shows the application in action:

			

			
				
					[image: Figure 3.1 – The Boarding Kiosk app]
				

			

			Figure 3.1 – The Boarding Kiosk app

			Since we’re exploring not one but two applications, we’ll meet the application code in small chunks as we progress through this chapter. However, feel free to peruse it yourself on GitHub if you’d like to orient yourself first.

			As we go through this chapter, we’ll take its existing functioning code and see how small refactoring steps can improve the maintainability of the code using various C# language features.

			We’ll start by looking at how refactoring can improve the overall flow of code.

			Controlling program flow

			One of the most basic things new developers learn is how programs execute lines of code in sequence and how if statements and other language features control what statements execute next.

			In this section, we’ll focus on the BoardingProcessor class's CanPassengerBoard method. The method starts simple enough:

			
public string CanPassengerBoard(Passenger passenger) {
 bool isMilitary = passenger.IsMilitary;
 bool needsHelp = passenger.NeedsHelp;
 int group = passenger.BoardingGroup;

			Here, CanPassengerBoard takes in a Passenger object and returns a string. The method also declares a few local variables holding pieces of data from the object passed in.

			These variables aren’t necessary and could be removed by performing an inline variable refactoring, which we’ll talk about later in this chapter. However, as they improve the readability of the code that follows, their existence is largely helpful. This is part of the reason why we sometimes introduce local variables, as we covered in Chapter 2.

			The logic that follows gets significantly harder to read, as seen here:

			
 if (Status != BoardingStatus.PlaneDeparted) {
 if (isMilitary && Status == BoardingStatus.Boarding) {
 return "Board Now via Priority Lane";
 } else if (needsHelp&&Status==BoardingStatus.Boarding) {
 return "Board Now via Priority Lane";
 } else if (Status == BoardingStatus.Boarding) {
 if (CurrentBoardingGroup >= group) {
 if (_priorityLaneGroups.Contains(group)) {
 return "Board Now via Priority Lane";
 } else {
 return "Board Now";
 }
 } else {
 return "Please Wait";
 }
 } else {
 return "Boarding Not Started";
 }
 } else {
 return "Flight Departed";
 }
}

			This method primarily uses if/else statements with a few scattered variable declarations and periodic return statements. These are fundamental structures of computer programming, and yet it takes a moment to understand what this code truly does.

			For those not wanting to sort through the logic, this code follows these rules:

			
					If the plane has departed, return "Flight Departed"

					If the plane is not yet boarding, return "Boarding Not Started"

					If the plane is boarding and the passenger needs help or is active military, return "Board Now via Priority Lane"

					If the plane is boarding and the passenger’s group is not boarding yet, return "Please Wait"

					If the passenger’s group can board, tell them to board either by the normal lane or via the priority lane if their boarding group is one of the priority groups

			

			However, the code is complex enough that puzzling out these rules can take a bit of time, and the complexity results in uncertainty, making it difficult for others to understand the rules in their entirety.

			Understanding these rules is important if you’re going to maintain the code. So, improving the readability of this code is important to the code’s long-term success.

			Inverting if statements

			One of the quickest tricks to simplifying complex logic involving nested if statements can be to invert the if statement and return early.

			Currently, our high-level logic looks like this:

			
if (Status != BoardingStatus.PlaneDeparted) {
 // 17 lines of additional if statements and conditions
} else {
 return "Flight Departed";
}

			By the time we get back to the else statement associated with the plane departed check, the reader has forgotten what the original if statement was to begin with!

			Here, since the else branch is so simple and easy to understand, it’s helpful to invert the if statement by taking the following actions:

			
					Swap the contents of the if block and the else block.

					Invert the boolean expression in the if statement. When inverting ==, it becomes != and vice versa. In cases where we do a > or < check, you flip the operand and toggle whether equality is included. Under these rules, >= becomes < and >= becomes >.

			

			In our case, we check that Status != BoardingStatus.PlaneDeparted. In this case, we’d change != to == and wind up with this:

			
Status == BoardingStatus.PlaneDeparted

			These steps preserve the program’s existing behavior but change the order of the statements in the code. This can increase the readability of our source code.

			If this sounds complicated, don’t worry, because Visual Studio has a Quick Action refactoring for it called Invert if, as shown in Figure 3.2:

			
				
					[image: Figure 3.2 – The Invert if Quick Action refactoring]
				

			

			Figure 3.2 – The Invert if Quick Action refactoring

			Performing the refactoring here effectively changes our logic to the following:

			
if (Status == BoardingStatus.PlaneDeparted) {
 return "Flight Departed";
} else {
 // 17 lines of additional if statements and conditions
}

			While this is easier to read since the reader no longer must remember what the if statement even pertains to 17 lines later, the code can be improved further.

			Dropping else statements after return statements

			Since the return statement always leaves the method immediately, you never explicitly need an else statement after a return statement because you know that if you get to the return statement, logic after the if block won’t execute.

			This lets us remove the else keyword and its curly braces. Then, we can outdent the code that was previously in the else block.

			The resulting code keeps the if statement:

			
if (Status == BoardingStatus.PlaneDeparted) {
 return "Flight Departed";
}

			After this statement, the code that follows is now at the same indentation level as the original if statement and is easier to read and understand:

			
if (isMilitary && Status == BoardingStatus.Boarding) {
 return "Board Now via Priority Lane";
} else if (needsHelp&&Status == BoardingStatus.Boarding) {
 return "Board Now via Priority Lane";
} else if (Status == BoardingStatus.Boarding) {
 if (CurrentBoardingGroup >= group) {
 if (_priorityLaneGroups.Contains(group)) {
 return "Board Now via Priority Lane";
 } else {
 return "Board Now";
 }
 } else {
 return "Please Wait";
 }
} else {
 return "Boarding Not Started";
}

			We can repeat this refactoring a few more times if we want to since the code has a few more if/return/else sequences.

			I’ll leave those for the moment since there’s another refactoring I want to show you that can help with what we’re seeing here.

			Restructuring if statements

			Looking at the previous code, some of the logic stands out as repetitive:

			
if (isMilitary && Status == BoardingStatus.Boarding) {
 return "Board Now via Priority Lane";
} else if (needsHelp&&Status == BoardingStatus.Boarding) {
 return "Board Now via Priority Lane";
} else if (Status == BoardingStatus.Boarding) {
 // Code omitted for brevity
} else {
 return "Boarding Not Started";
}

			Here, we have an if/else chain where three different things are checking whether the flight is currently boarding. Although each of these three if statements is different, there’s enough overlap between them that it makes me question if we could be less repetitive.

			The first option we could consider might be a simple introduce local variable refactoring, as we saw in Chapter 2:

			
bool isBoarding = Status == BoardingStatus.Boarding;
if (isMilitary && isBoarding) {
 return "Board Now via Priority Lane";
} else if (needsHelp && isBoarding) {
 return "Board Now via Priority Lane";
} else if (isBoarding) {
 // Code omitted for brevity
} else {
 return "Boarding Not Started";
}

			I find this code easier to read, even though we gained an extra line from the new local variable. However, let’s take a slightly different approach.

			Instead of introducing a variable, we can rearrange our if statements to have an additional layer of nesting:

			
if (Status == BoardingStatus.Boarding) {
 if (isMilitary) {
 return "Board Now via Priority Lane";
 } else if (needsHelp) {
 return "Board Now via Priority Lane";
 } else {
 // Code omitted for brevity
 }
} else {
 return "Boarding Not Started";
}

			Here, pulling a common condition from a set of if statements into an outer if statement helped clarify those if statements, although it did so at the expense of an additional degree of nesting.

			However, this simplification helps spot a few other refactoring opportunities, such as combining the isMilitary and needsHelp checks since they return the same value if either is true:

			
if (isMilitary || needsHelp) {
 return "Board Now via Priority Lane";
}

			We can also drop the else statement after the if/return code to outdent our code a bit more, leaving just the boarding group logic:

			
if (CurrentBoardingGroup >= group) {
 if (_priorityLaneGroups.Contains(group)) {
 return "Board Now via Priority Lane";
 } else {
 return "Board Now";
 }
} else {
 return "Please Wait";
}

			This looks like another place where we can invert if and drop the else statement to simplify the code even more. Remember that we must change >= to < to do this:

			
if (CurrentBoardingGroup < group) {
 return "Please Wait";
}
if (_priorityLaneGroups.Contains(group)) {
 return "Board Now via Priority Lane";
} else {
 return "Board Now";
}

			As you can see, the code is getting significantly easier to read as we simplify it.

			Let’s take a step back and look at our conditional logic after these refactorings:

			
if (Status == BoardingStatus.PlaneDeparted) {
 return "Flight Departed";
}
if (Status == BoardingStatus.Boarding) {
 if (isMilitary || needsHelp) {
 return "Board Now via Priority Lane";
 }
 if (CurrentBoardingGroup < group) {
 return "Please Wait";
 }
 if (_priorityLaneGroups.Contains(group)) {
 return "Board Now via Priority Lane";
 } else {
 return "Board Now";
 }
} else {
 return "Boarding Not Started";
}

			The code is now easier to read and harder to misinterpret. We could invert the Boarding status check to return early, but we'll do something else with here later.

			Let’s look at how we can reduce our line count even further through a more divisive language feature: the ternary operator.

			Using ternary operators

			If you’re a fan of the ternary operator, you may have noticed an opportunity to use one in the code as we’ve been refactoring.

			For those not familiar or not fully comfortable with the ternary conditional operator, think of it as a condensed if my condition is true use this value, otherwise use this other value type of an operator.

			The syntax for ternary is boolExpression ? trueValue : falseValue;.

			In other words, you could write code without a ternary like this:

			
int value;
if (someCondition) {
 value = 1;
} else {
 value = 2;
}

			However, the same code could be written using a ternary in a single line:

			
int value = someCondition ? 1 : 2;

			As you can see, the ternary operator lets us take six lines of code and condense it down to a single line. This conciseness is a key factor for those who like using ternaries in their code.

			Those who are less fond of ternary operators often point out that ternaries are difficult to read – particularly when trying to read through code quickly. In other words, while they make code more concise, this conciseness can slow you down in the long run by making the code less easy to maintain.

			Let’s look at a small part of our code and see how a ternary could be applied:

			
 if (CurrentBoardingGroup < group) {
 return "Please Wait";
 }
 if (_priorityLaneGroups.Contains(group)) {
 return "Board Now via Priority Lane";
 } else {
 return "Board Now";
 }

			Here, we are checking if the current boarding group is a priority group and then telling the user to board with the priority lane or to board normally based on the result of the Contains call.

			Since we’re returning a single value based on the result of a boolean expression, we could rewrite the code with a ternary as follows:

			
if (CurrentBoardingGroup < group) {
 return "Please Wait";
}
return _priorityLaneGroups.Contains(group)
 ? "Board Now via Priority Lane"
 : "Board Now";

			This chops five lines of code down to three lines of code or a single line of code if you want to put the ? and : segments on the same line as the boolean expression.

			You might have noticed that this refactoring now puts the whole block of code into a position where you could introduce another ternary based on the boarding group, return "Please Wait", if that expression is true, and return the result of the earlier ternary expression if the expression is false:

			
return (CurrentBoardingGroup < group)
 ? "Please Wait"
 : _priorityLaneGroups.Contains(group)
 ? "Board Now via Priority Lane"
 : "Board Now";

			While this is valid C#, I can attest that if a coworker showed this to me in code review, I would be tempted to utter some not-very-nice words!

			Tip

			Remember: fewer lines of code don’t always equate to greater maintainability.

			At a personal level, my preference is to avoid the ternary in many places and always avoid chaining ternaries together. However, I do sometimes use ternaries when I feel it is right for a piece of code.

			For example, sometimes, a method is very simple and can be condensed to a single line of code if you use a ternary expression. This particular change lets you use the expression-bodied members feature, which we’ll talk about in Chapter 4.

			When I use a ternary, I format my ternary expressions on three separate lines, as shown earlier, with the first line containing the boolean expression. The second line will feature the ? operator and the value to use if the expression was true, and the third line will feature the : operator and the value to use if the expression was false:

			
var myVar = booleanExpression
 ? valueIfTrue
 : valueIfFalse;

			I find that this approach strikes a happy medium between the benefits of more concise code from the ternary and the penalties of code becoming more difficult to read quickly and accurately when using a ternary.

			Converting if statements into switch statements

			The logic of this method is now a lot easier to understand, and simplifying it down to this level highlights that we’re doing one of three things, depending on the current boarding status:

			
					Notifying the user the flight has departed if its status is PlaneDeparted

					Checking military status, whether help boarding is needed, and the boarding group for Boarding status

					Notifying the user that boarding hasn’t started yet for other statuses (NotStarted is the only other status at the moment)

			

			When working with enumerated values, this kind of branching logic is common.

			In our case, our enum value only has three states:

			BoardingStatus.cs

			
public enum BoardingStatus {
 NotStarted = 0,
 Boarding = 1,
 PlaneDeparted = 2,
}

			In cases where you find yourself checking the same variable for different values, you can usually rewrite them to use a switch statement instead.

			switch statements are essentially a streamlined series of if/else if/else types of checks that all check the same value, as our code does with Status. We’ll see an example of a switch statement shortly, but if you’re not familiar with them, you can think of them as just a different way of writing a series of related if/else if statements.

			This can be done manually, or you can use a specific refactoring built into Visual Studio if your code is built in an if/else if/else type of structure, as the following code illustrates:

			
if (Status == BoardingStatus.PlaneDeparted) {
 return "Flight Departed";
} else if (Status == BoardingStatus.Boarding) {
 if (isMilitary || needsHelp) {
 return "Board Now via Priority Lane";
 }
 if (CurrentBoardingGroup < group) {
 return "Please Wait";
 }
 return _priorityLaneGroups.Contains(group)
 ? "Board Now via Priority Lane"
 : "Board Now";
} else {
 return "Boarding Not Started";
}

			Note here that I did add the else keyword (in bold in the previous snippet) to our earlier code to get into that if/else if/else structure, which lets Visual Studio identify the refactoring we’re about to use.

			Once we have the code in this pattern, the Convert to ‘switch’ statement refactoring option will appear in the Quick Actions menu when you have the if statement selected, as shown in Figure 3.3:

			
				
					[image: Figure 3.3 – The Convert to “switch” statement refactoring option]
				

			

			Figure 3.3 – The Convert to “switch” statement refactoring option

			This refactoring makes our status-based logic much more apparent:

			
switch (Status) {
 case BoardingStatus.PlaneDeparted:
 return "Flight Departed";
 case BoardingStatus.Boarding:
 if (isMilitary || needsHelp) {
 return "Board Now via Priority Lane";
 }
 if (CurrentBoardingGroup < group) {
 return "Please Wait";
 }
 return _priorityLaneGroups.Contains(group)
 ? "Board Now via Priority Lane"
 : "Board Now";
 default:
 return "Boarding Not Started";
}

			As someone reading this code, I find this a lot easier to scan and interpret compared to an if/else if/else chain, even though the logic functions identically. With an if/else if/else statement, I may notice that logic is comparing the same value several different times, while a switch statement makes it explicit.

			Another benefit you get with a switch statement is that it unlocks a built-in refactoring option when your switch compares an enum value (such as BoardingStatus) and you’re missing a case for one or more enum values.

			This option shows up in the Quick Actions menu for the switch statement as Add missing cases, as shown in Figure 3.4:

			
				
					[image: Figure 3.4 – The Add missing cases refactoring option in the Quick Actions menu]
				

			

			Figure 3.4 – The Add missing cases refactoring option in the Quick Actions menu

			Warning

			I want to point out that the Add missing cases refactoring option here potentially causes a change in behavior. The built-in implementation of that refactoring adds the NotStarted status and has it break out of the switch instead of returning a value as it previously would have through the default keyword.

			The C# compiler will flag this mistake for us in this case since the method won’t return a value for this path, but adding missing cases when a default case is present in a switch statement typically does introduce a change in behavior.

			In our case, we can merge the NotStarted status with the default case and get a more explicit list of options:

			
switch (Status) {
 case BoardingStatus.PlaneDeparted:
 return "Flight Departed";
 case BoardingStatus.Boarding:
 if (isMilitary || needsHelp) {
 return "Board Now via Priority Lane";
 }
 if (CurrentBoardingGroup < group) {
 return "Please Wait";
 }
 return _priorityLaneGroups.Contains(group)
 ? "Board Now via Priority Lane"
 : "Board Now";
 case BoardingStatus.NotStarted:
 default:
 return "Boarding Not Started";
}

			This code is now significantly easier to read than it was before, and the flow of logic by status is now readily apparent.

			In a real-world application, I might change the default case to throw an exception, explicitly telling me that a specific Status was not supported by this logic. This would look something like the following logic:

			
case BoardingStatus.NotStarted:
 return "Boarding Not Started";
default:
 throw new NotSupportedException($"Unsupported: {Status}");

			I might also be tempted to perform extract method refactoring – as we saw in Chapter 2 – to move the logic for handling the boarding status into its own method. However, I’ll hold off on doing that to showcase switch expressions instead.

			Converting to switch expressions

			Switch expressions are an evolution of switch statements that rely on pattern-matching expressions to simplify and expand what’s possible inside switch statements.

			switch expressions are a relatively new feature in C# that was released as part of C# 8 in 2019. While that’s more than a few years old at the time of writing, I still find switch expressions to be new enough that many C# developers are unfamiliar or unpracticed with them.

			A simple switch expression looks a lot like a switch statement:

			
return Status switch {
 BoardingStatus.PlaneDeparted => "Flight Departed",
 BoardingStatus.NotStarted => "Boarding Not Started",
 BoardingStatus.Boarding => "Board Now",
 _ => "Some other status",
};

			These switch expressions look very similar to switch statements except for the following aspects:

			
					They start with the value you want to evaluate followed by the switch keyword instead of starting with switch (value)

					We don’t use the case or break keywords

					Individual cases have some condition that might be true on the left, an arrow notation (=>), and then the value to use on the right if the condition on the left is true.

					Instead of the default keyword, we have _, indicating any other match

			

			One of the nice things about switch expressions is that they’re extremely concise while still being somewhat readable. However, there’s more power to switch expressions than what I’ve shown you so far.

			You may have noticed the sample switch expression I introduced a moment ago doesn’t adequately handle the logic for boarding. Specifically, we had rules for active military members, people who need assistance boarding, boarding groups, and priority lanes, and none of that is represented in the previous block of code.

			Let’s take a look at a switch expression that does handle these things:

			
return Status switch {
 BoardingStatus.PlaneDeparted => "Flight Departed",
 BoardingStatus.NotStarted => "Boarding Not Started",
 BoardingStatus.Boarding when isMilitary || needsHelp
 => "Board Now via Priority Lane",
 BoardingStatus.Boarding when CurrentBoardingGroup < group
 => "Please Wait",
 BoardingStatus.Boarding when
 _priorityLaneGroups.Contains(group)
 => "Board Now via Priority Lane",
 BoardingStatus.Boarding => "Board Now",
 _ => "Some other status",
};

			This code is a bit different than the last switch expression we saw. Here, the Boarding status is repeated four times and sometimes accompanied by the when keyword.

			What this code is doing is using pattern matching to check not just that Status is Boarding, but that other conditions are true as well. Effectively, we’re able to check the status and optionally another boolean expression after the when keyword.

			If both things are not true, the switch expression evaluates the next line in sequence. This makes switch expressions a set of matching rules that ensure the first rule evaluates to true.

			Pattern matching

			Pattern matching is a newer C# syntax that allows you to concisely check different properties and aspects of objects and variables. We’ll explore pattern-matching syntax more in Chapter 10, Defensive Coding Techniques, but this section serves as a good introduction to some of its capabilities.

			In other words, this switch expression checks the following rules and reacts to the first one that is true:

			
					The plane has departed.

					Boarding hasn’t started yet.

					Boarding has started and the passenger is active military or needs assistance.

					The passenger’s boarding group hasn’t been called yet.

					The passenger’s group is boarding and it’s a priority lane group.

					The passenger’s group is boarding but they’re not in the priority boarding lane.

					Any other status

			

			switch expressions are concise and allow you to mix the structured clarity of switch statements with the power of pattern matching and the when keyword to make very readable ordered logic apparent.

			As with any tool in your programming toolbelt, switch expressions won’t be the solution to every problem and you and your team may not be as fond of reading switch expressions as I am. However, they remain a valuable tool in your toolbox for simplifying code while keeping it easy to read, maintain, and expand.

			We’ll revisit some of the pattern-matching syntax in Chapter 10, but let’s move on to looking at what we can do to improve working with collections of objects.

			Instantiating objects

			Now that we’ve sufficiently improved our CanPassengerBoard method, let’s look at how we can create objects and see a few simple improvements you can make that will simplify object instantiation in your code.

			Terminology notes

			New developers are often tripped up by a handful of phrases that are commonly used by developers. For example, in this section, we will talk about instantiating objects. This is a common way of phrasing this for developers, but all it means is the process of creating a specific instance of a class using the new keyword. When you see the term instantiating, you can think of it simply as creating a specific instance of something.

			This section’s code could come from anywhere, but we’ll focus on code found in a pair of methods in the PassengerTests.cs file in the test project that accompanies this chapter.

			Replacing var with explicit Types

			The first line of code I want to focus on comes from one of our unit tests:

			PassengerTests.cs

			
var p = Build(first, last);

			Here, I’ve deliberately omitted the context of the code from the surrounding lines to reinforce a point, and the point is this: take a moment and try to determine what data type the p variable is.

			p stores the result of Build, which takes in a pair of parameters named first and last, but we can’t make a confident assertion about what type of data p holds from this line alone.

			This is because p was declared with the var keyword. The var keyword is a shorthand way of saying “Hey, compiler, when you’re compiling this code, I want you to determine what data type this is going to be and replace the var keyword in the compiled code with the actual type of the data.”

			In other words, var is usually a shortcut for not typing out the full name of the data type in question. However, it comes with a small penalty in that it makes it harder to read what data type the variable contains.

			This makes sense for when you have a complex data type such as IDictionary<Guid, HashSet<string>>, but it can get a little ridiculous for short type names such as int.

			Other uses of var

			The var keyword does have other uses beyond what I’ve described here. For example, it can easily store anonymous types and other difficult-to-represent type structures, but for this book, I’m focusing on the common applications of var in most codebases.

			Visual Studio does let you hover over the variable declaration and see the actual Type being used. In this case, p represents a Passenger object, but this still slows down your reading of the code.

			Instead, I recommend that you take advantage of the built-in Use explicit type instead of ‘var’ refactoring. See Figure 3.5:

			
				
					[image: Figure 3.5 – Using explicit types]
				

			

			Figure 3.5 – Using explicit types

			This makes your code significantly easier to read:

			
Passenger p = Build(first, last);

			Of course, var exists for a reason and it was introduced to solve certain problems, including redundancy in assignment statements. We’ll take a look at the target-typed new keyword next that offers a different solution to that problem.

			Simplifying creation with target-typed new

			One of the things the var keyword was built to help with was lines such as the following variable instantiation:

			
private Passenger Build(string firstName, string lastName){
 Passenger passenger = new Passenger();
 passenger.FirstName = firstName;
 passenger.LastName = lastName;
 return passenger;
}

			When we instantiate a new Passenger object and assign it to the new passenger variable, we repeat ourselves slightly on the left and right-hand sides of the assignment operator (=) by using the name of the Passenger class twice.

			The var keyword allowed us to simplify the creation of this object down to the still readable syntax of var passenger = new Passenger();. Here, var allows us to simplify the left-hand side of this assignment statement by abbreviating the type that’s used for the new variable.

			C# 9 introduced the target-typed new keyword, which lets us simplify the right-hand side of the assignment operator by effectively saying that the type of class we’re instantiating is the same as the variable that acts as the target of the assignment operator.

			In other words, target-typed new is a way of telling C# to create the same type as the variable we’ll store the value in. This allows us to avoid var and not repeat ourselves:

			
Passenger passenger = new();

			I love this syntax and tend to use it in all my code. It can cause small bits of confusion for other developers the first time they see the feature, but that’s a minor one-time penalty for something that keeps your code concise and readable at the same time.

			Tip

			Visual Studio gives you a Use ‘new(…)’ option in the Quick Action menu that will let you change a traditional object instantiation to the target-typed new syntax.

			While we’re talking about creating objects, let’s look at how object initializers can help set properties on objects as you create them.

			Using object initializers

			Let’s take another look at that Build method from the previous example while focusing on configuring the created passenger object:

			
private Passenger Build(string firstName, string lastName){
 Passenger passenger = new();
 passenger.FirstName = firstName;
 passenger.LastName = lastName;
 return passenger;
}

			This code isn’t bad at all, but it does repeat itself a little.

			Specifically, the code repeats the information of the object it configures each line by putting passenger. in front of each property before assigning a value to that property.

			This is very minimal with only two properties. But imagine a larger object with 10 or more properties you want to configure. This code would get very repetitive and might even distract from the names of the properties that are being configured.

			While using a constructor that takes in parameters representing property values is one solution (and one we’ll explore in the next chapter), another solution is to use an object initializer. As you’re likely guessing, Visual Studio provides a Quick Actions refactoring for this, though the name Object initialization can be simplified (shown in Figure 3.6) is a bit unusual:

			
				
					[image: Figure 3.6 – Simplifying object initialization]
				

			

			Figure 3.6 – Simplifying object initialization

			Using this refactoring transforms our code into a sparser format:

			
private Passenger Build(string firstName, string lastName){
 Passenger passenger = new() {
 FirstName = firstName,
 LastName = lastName
 };
 return passenger;
}

			I love this syntax and it plays very nicely with the init and required properties, which we’ll explore in Chapter 10, Defensive Coding Techniques. However, there is a downside to using object initializers: stack traces.

			When you have an object initializer that sets several different properties of an object and an exception occurs that calculates the value to store, the exception doesn’t indicate which line of code the error occurred on or which property was about to be updated, only that it occurred somewhere in the initializer.

			On the other hand, if you were using multiple lines setting individual properties, the exception details would identify the line in question. Of course, this might be an argument to avoid doing calculations in initializers that might produce exceptions.

			We’ll revisit initializers more in Chapter 10 when we discuss init, required, and with expressions, but for now, let’s move on to talking about collections.

			Iterating over collections

			To start exploring collections, let’s go back to the BoardingProcessor class and look at its DisplayPassengerBoardingStatus method. We’ll explore this method a bit at a time, starting with its method signature:

			
public void DisplayBoardingStatus(
 List<Passenger> passengers, bool? hasBoarded = null) {

			Here, we can see that the method takes in a list of Passenger objects and, optionally, a nullable boolean hasBoarded parameter that can store true, false, or null. This hasBoarded parameter is used to optionally filter down our list of passengers based on its value:

			
					true: Only include passengers who have boarded the plane

					false: Only include passengers who have not yet boarded

					null: Do not filter by boarded status (default option)

			

			This nullable filtering parameter is a common one I see while building search methods and we’ll explore it in more depth again in Chapter 5, Object-oriented Refactoring.

			The next portion of code in DisplayBoardingStatus deals with the filtering logic:

			
 List<Passenger> filteredPassengers = new();
 for (int i = 0; i < passengers.Count; i++) {
 Passenger p = passengers[i];
 if (!hasBoarded.HasValue || p.HasBoarded==hasBoarded) {
 filteredPassengers.Add(p);
 }
 }

			This is the portion of code we’ll be focusing on for the rest of this section. It builds a new list of passengers that matches the filtering option the user selected by iterating over the passengers in passengers. and conditionally adds it to our new list of passengers.

			Terminology note

			Iterating over something is another term that confuses new developers. It just means looping through each item in a collection.

			The remainder of the method focuses on displaying passengers to the agent at the boarding kiosk:

			
 DisplayBoardingHeader();
 foreach (Passenger passenger in filteredPassengers) {
 string statusMessage = passenger.HasBoarded
 ? "Onboard"
 : CanPassengerBoard(passenger);
 Console.WriteLine($"{passenger.FullName,-23} Group {passenger.BoardingGroup}: {statusMessage}");
 }
}

			Essentially, for every passenger that we want to display, we write out their name, boarding group, and the message they see on their boarding app or "Onboard" if they’ve already boarded the plane.

			Overall, this method is simple and comes in at less than 20 lines of code long, which tends to lead to easy-to-maintain code.

			That said, let’s look at a few ways we could improve this code.

			Introducing foreach

			Take another look at the code to filter the passenger list into a new list of passengers:

			
List<Passenger> filteredPassengers = new();
for (int i = 0; i < passengers.Count; i++) {
 Passenger p = passengers[i];
 if (!hasBoarded.HasValue || p.HasBoarded == hasBoarded) {
 filteredPassengers.Add(p);
 }
}

			While this code isn’t very involved, one of the things that jumps out to me is that we’re using a for loop to enumerate through the passengers. Inside this loop, we’re not doing anything with our index variable, i, aside from getting a passenger out of the list by its index.

			Whenever you have a for loop like this that isn’t doing anything complex (for example, starting anywhere but the beginning of the list, looping in reverse, or skipping every other item), you can usually replace the loop with a foreach loop.

			To convert a for loop into a foreach loop, you can select the for loop and then use the Convert to ‘foreach’ refactoring feature that’s built into Visual Studio (Figure 3.7):

			
				
					[image: Figure 3.7 – The Convert to ‘foreach’ refactoring option in the Quick Actions menu]
				

			

			Figure 3.7 – The Convert to ‘foreach’ refactoring option in the Quick Actions menu

			This moves to a foreach loop and gets rid of the variable declaration entirely:

			
List<Passenger> filteredPassengers = new();
foreach (Passenger p in passengers) {
 if (!hasBoarded.HasValue || p.HasBoarded == hasBoarded) {
 filteredPassengers.Add(p);
 }
}

			I use foreach wherever I can because not only does it remove a variable declaration and use of the indexer, but it makes the overall code easier to read.

			Almost all for loops start at 0 and loop up to the end of the collection one item at a time, but not every for loop does this. As a result, whenever I read a for loop, I need to check if it is a standard for loop or if there’s something special about it. With a foreach loop, I don’t need to do this because the syntax doesn’t support it. This increases reading comfort and speed and improves the maintainability of your code through simplicity.

			Additionally, a foreach loop can be used with anything that implements IEnumerable, while for loops require the collection they loop over to have an indexer. This means that foreach loops can loop over more types of collections than for loops can.

			Collection interfaces

			.NET provides several collection interfaces, including IEnumerable, ICollection, IList, IReadOnlyList, and IReadOnlyCollection. Knowledge of these collection types is helpful but not required to read this book. See the Further reading section at the end of this chapter for a link to more information on these interfaces, but for now, know that an IEnumerable interface is just a fancy way of referring to something that can be looped over in a foreach loop.

			Converting to for loops

			While foreach loops are fantastic and my default loop in most cases, sometimes, you want to have a for loop for a little bit of added control. If you ever need to loop over a collection in a non-standard way or need to use the index variable for something other than reading a variable out of the collection, you usually will want to use a for loop.

			Visual Studio gives us a Convert to ‘for’ refactoring that will transform foreach loops into for loops for you. See Figure 3.8:

			
				
					[image: Figure 3.8 – Converting a foreach loop back to a for loop]
				

			

			Figure 3.8 – Converting a foreach loop back to a for loop

			I don’t find myself using this refactoring very much, but it’s handy when you need it.

			For now, let’s leave the code in a foreach loop and look at how LINQ can help us make it better.

			Converting to LINQ

			You may have noticed that, in Figure 3.8, there were a pair of suggestions to convert the foreach loop into LINQ.

			LINQ stands for Language INtegrated Query and provides a set of extension methods that work on any collection that implements IEnumerable. This allows you to perform quick aggregation, transformation, and filtering operations on that collection using arrow functions.

			Arrow functions

			Arrow functions (also called Lambda expressions) use “fat arrow” (=>) syntax to represent small methods in an abbreviated format. This book assumes a basic understanding of arrow functions. See the Further reading section of this chapter if you need more information or want a refresher on how arrow functions work.

			Let’s look at what happens to our foreach loop when we use the Convert to LINQ (call form) refactoring in the foreach loop’s Quick Actions menu:

			
				
					[image: Figure 3.9 – Converting a foreach loop to use LINQ]
				

			

			Figure 3.9 – Converting a foreach loop to use LINQ

			This refactoring transforms our foreach loop into just a tiny portion of code:

			
List<Passenger> filteredPassengers = new();
filteredPassengers.AddRange(passengers.Where(p => !hasBoarded.HasValue || p.HasBoarded == hasBoarded));

			This code takes our passengers collection and calls the Where extension method. The Where method will create and return a new IEnumerable sequence of passengers and only includes passengers where the arrow function, p => !hasBoarded.HasValue || p.HasBoarded == hasBoarded, returns a value of true for that passenger.

			Extension methods

			Extension methods are static methods defined in static classes that allow you to build syntax that looks like it adds new methods to existing types. LINQ relies heavily on extension methods attached to various interfaces. We’ll explore creating extension methods in Chapter 4.

			This won’t modify our original collection, instead creating a new collection of Passenger objects that are then passed into the filteredPassengers.AddRange method.

			While this code is already very brief, we can improve it further by taking advantage of a constructor on the generic List class.

			The List<T> class has a constructor that takes in an IEnumerable<T> interface and allows you to efficiently create a new list around a sequence of elements. This will let us avoid needing the AddRange call and helps simplify our code down to a single statement:

			
List<Passenger> filteredPassengers =
 new(passengers.Where(p => !hasBoarded.HasValue ||
 p.HasBoarded == hasBoarded));

			If we wanted to, we could also get rid of the filteredPassengers variable entirely by filtering passengers down and reassigning it back into itself:

			
passengers = passengers.Where(p=>!hasBoarded.HasValue ||
 p.HasBoarded==hasBoarded).ToList();

			Here, we perform the Where call to generate an IEnumerable<Passenger> interface containing our passengers and then call the ToList method on that IEnumerable interface to convert it back into a List method so that it can be stored in the passengers parameter.

			Also, note that any place that was using filteredPassengers before will need to be updated to use passengers instead:

			
foreach (Passenger passenger in passengers) {
 string statusMessage = passenger.HasBoarded
 ? "Onboard"
 : CanPassengerBoard(passenger);
 Console.WriteLine($"{passenger.FullName,-23} Group
 {passenger.BoardingGroup}: {statusMessage}");
}

			I love LINQ and find it to be invaluable for creating simple and maintainable applications, but it does take some getting used to if you’re not familiar with LINQ or not used to reading arrow function (=>) notation.

			That said, I do see some common mistakes in LINQ code. So, let’s look at a few of those before we close out this chapter.

			Refactoring LINQ statements

			In this final section of this chapter, we’ll review a few of the more common optimizations with LINQ code by focusing on some common improvements most codebases that use LINQ will benefit from.

			Choosing the correct LINQ method

			LINQ has several different ways of finding a specific item in a collection.

			If you had an IEnumerable<Passenger> interface named people and wanted to find someone by their name, you might write code like this:

			LinqExamples.cs

			
PassengerGenerator generator = new();
List<Passenger> people = generator.GeneratePassengers(50);
Passenger me =
 people.FirstOrDefault(p => p.FullName == "Matt Eland");
Console.WriteLine($"Matt is in group {me.BoardingGroup}");

			This code uses the LINQ FirstOrDefault method, which searches the collection until it finds the first value that the arrow function evaluates as true. In this example, it’d find the first person with FullName set to "Matt Eland", return that value from the FirstOrDefault method, and store it in the Passenger variable named matt.

			However, if no items returned true from the arrow function, FirstOrDefault will use the default value of the Passenger type, which would be null for a reference type such as a class.

			Default values

			In .NET, the default value of bool is false, numeric types such as int and float default to 0, and reference types including string, List, and other classes default to null.

			In other words, this FirstOrDefault call will find Matt if he exists in passengers and return him or return null if he doesn’t.

			The problem with this is that the very next line attempts to read the value of matt.BoardingGroup. This is fine if we found the element, but if we didn’t, this code will get a NullReferenceException error upon trying to access BoardingGroup, which is likely not what its author intended.

			Note that how we fix this code depends on what our expectations are.

			With LINQ, when you are looking for an element in a collection, you need to decide on two things:

			
					Am I okay with more than one item matching my arrow function or do I need to make sure that at most one item returns true?

					Am I okay with the item I’m looking for not being present at all?

			

			The first decision governs whether you are making a call to First or Single. With First, the logic will find the first element that matches the query and return it. However, with Single, the logic will keep going past the first match to determine if any other element in the collection matches that expression as well. If one does match the expression, an InvalidOperationException error is thrown, telling you that the sequence contains more than one matching element.

			Most developers don’t like seeing exceptions when they’re running their code. However, sometimes, you need to know if there’s more than one match to your query. In general, it’s better to fail early than fail later in a more confusing spot that hides where the program first got off track.

			The second decision you make when finding an element in a collection involves being okay with objects not being present that match the query. If that’s fine, then you will generally want to make a call to FirstOrDefault or SingleOrDefault (depending on your decision earlier on whether multiple matches are permissible). However, if it is never acceptable to not have a match, then you’ll use First or Single instead of FirstOrDefault or SingleOrDefault.

			First and Single will both throw an InvalidOperationException error if the sequence contains no matching element. If you use First or Single and nothing in the collection returns true from the arrow function, the exception will be thrown. This makes it impossible to deal with null values with the result of First or Single, which can be very helpful for simplifying your code.

			Tip

			Having an InvalidOperationException error thrown at the exact position your code encounters a problem can be immensely more helpful than encountering a NullReferenceException error 30 lines later in your code and having to figure out how a value got where it was supposed to be.

			Null-state analysis is another feature that can help prevent a NullReferenceException error from occurring. We’ll explore this in more depth in Chapter 10.

			Let’s move on and discuss ways of combining LINQ methods.

			Combining LINQ methods

			One of the nice things about LINQ is that it lets you “chain together” different methods by calling a LINQ method on the result of another LINQ method. This lets you do things such as filter down to a subset of items using Where, reorder the results with OrderBy, and transform them into new objects via Select.

			However, as .NET has evolved, LINQ has grown a few more specialized overloads of its existing methods, which makes some of these chained-together methods unnecessary or even inefficient.

			Look at this block of code as an example:

			
bool anyBoarded =
 people.Where(p => p.HasBoarded).Any();
int numBoarded =
 people.Where(p => p.HasBoarded).Count();
Passenger firstBoarded =
 people.Where(p => p.HasBoarded).First();

			At first glance, this code looks fine. Each of these three variable assignments is filtering down and then looking at the results of that filtering option. Sure, there’s an opportunity to introduce a local variable for people.Where(p => p.HasBoarded), but otherwise, the code often looks fine at a glance.

			However, LINQ offers overloaded versions of Any, Count, First, and a few other methods that take in a predicate (which is just a fancy word for an arrow function).

			These overloaded versions allow you to combine Where methods and other methods into a more concise format:

			
bool anyBoarded = people.Any(p => p.HasBoarded);
int numBoarded = people.Count(p => p.HasBoarded);
Passenger firstBoarded = people.First(p => p.HasBoarded);

			Not only is this way of writing things more concise, but these overloads can be more efficient in some cases.

			For example, before, when we were doing people.Where(p => p.HasBoarded).Any(), this code evaluated left to right, filtering down a large list of items into a smaller list of items. Once the entire list had been filtered down, the Any method call occurred, which returned true if at least one item was found in that resulting list.

			Contrast this to the people.Any(p => p.HasBoarded) version. This method loops over the items and as soon as it sees any element that returns true from the arrow function, it knows it can stop evaluating because its ultimate result is going to be true.

			Always look for opportunities to use these specialized LINQ overloads as they can result in very concise and even more performant code.

			Transforming with Select

			Let’s say you wanted to create a list of strings for all the passengers who hadn’t boarded the plane yet. For each name, you want it formatted with the person’s name and then their boarding group. So, a sample entry might be "Priya Gupta-7".

			You could write this code as follows:

			
List<string> names = new();
foreach (Passenger p in people) {
 if (!p.HasBoarded) {
 names.Add($"{p.FullName}-{p.BoardingGroup}");
 }
}

			However, LINQ has a method named Select that allows you to transform items from one form into another, which would be perfect for this case.

			Tip

			For those of you with a JavaScript background, Select is similar to the Map function.

			The Select version of this looks like this:

			
List<string> names =
 people.Where(p => !p.HasBoarded)
 .Select(p => $"{p.FullName}-{p.BoardingGroup}")
 .ToList();

			Here, the Where call filtered the results down to non-boarded passengers and the Select call transformed those objects from Passenger objects into strings.

			Select isn’t limited to just strings. You can select whatever data type is relevant for you, including integers, other objects, lists, or even anonymous types or tuples.

			Ultimately, whenever you have a collection of objects in one shape and you need those same objects but in a different form, Select is a great method to consider.

			Reviewing and testing our refactored code

			While we didn’t modify a lot of code in this chapter, the code we did change shrunk in size, thus becoming easier to read, understand, and modify in the process.

			This is why we refactor. Refactoring should actively improve the maintainability of our applications and pay down strategic pieces of technical debt that threaten to introduce bugs and delays in the future.

			Refactored code

			The final refactored code from this chapter is available in the https://github.com/PacktPublishing/Refactoring-with-Csharp repository inside the Chapter03/Ch3RefactoredCode folder.

			Since the art of refactoring involves changing the form of code without changing its functionality, we must test the application before moving on.

			We’ll talk more about manual and automated tests in Chapter 6, but for now, run the tests by selecting the Test menu at the top of Visual Studio and then clicking Run All Tests.

			This will show Test Explorer and a sea of green check marks, as shown in Figure 3.10:

			
				
					[image: Figure 3.10 – Passing tests for this chapter’s code]
				

			

			Figure 3.10 – Passing tests for this chapter’s code

			Now, let’s summarize what we’ve learned in this chapter.

			Summary

			In this chapter, we explored refactoring techniques to help better control program flow, instantiate objects, iterate over collections, and write more efficient code through LINQ.

			Each refactoring technique we covered is one tool in your toolbelt that might improve the readability and maintainability of your code in the right circumstances. As you practice refactoring more, you’ll learn more about when to apply which refactoring to improve the code you’re working with.

			In the next chapter, we’ll move on from improving individual lines of code and focus on a slightly bigger picture as we work to refactor entire methods of C# code.

			Questions

			Answer the following questions to test your knowledge of this chapter:

			
					Is it more important to have concise code or readable code?

					Scroll through a file of code in a project you are working on. What do you notice about the if statements in your code?

					How frequently are nested if statements used?

					Is any logic repeated frequently in conditions of your if statements?

					Do you see any places where inverting the if statement or switching to a switch statement or switch expression could improve things?

					Do you think your team has been using LINQ to its fullest potential when working with collections? What opportunities for improvement do you see?

			

			Further reading

			You can find more information about the materials discussed in this chapter by reading the following resources:

			
					Switch Expressions: https://learn.microsoft.com/en-US/dotnet/csharp/language-reference/operators/switch-expression

					Differences between .NET Collection Interfaces: https://newdevsguide.com/2022/10/09/understanding-dotnet-collection-interfaces/

					Query Syntax and Method Syntax in LINQ: https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/query-syntax-and-method-syntax-in-linq

					Explore Ranges of Data: https://learn.microsoft.com/en-us/dotnet/csharp/tutorials/ranges-indexes

					Arrow Functions and the Lambda Operator: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-operator

			

		

	
		
			4

			Refactoring at the Method Level

			In the last chapter, we covered improving individual lines of code. We’ll expand on those lessons to cover refactoring entire methods and solving issues with how code comes together to form larger methods that then interact with each other.

			We saw a little of this in Chapter 2 when we covered the extract method refactoring. However, in this chapter, we’ll expand our set of tools covering the basics of refactoring methods and then move into more advanced areas as we cover the following main topics:

			
					Refactoring the flight tracker

					Refactoring methods

					Refactoring constructors

					Refactoring parameters

					Refactoring to functions

					Introducing static methods and extension methods

			

			Technical requirements

			The starting code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter04/Ch4BeginningCode folder.

			Refactoring the flight tracker

			This chapter’s code focuses largely on a single FlightTracker class intended to track and display the outgoing flights from a commercial airport for passengers in the terminal, as pictured in Figure 4.1:

			
				
					[image: Figure 4.1 – FlightTracker displaying outbound flight statuses]
				

			

			Figure 4.1 – FlightTracker displaying outbound flight statuses

			The FlightTracker class has a number of methods related to managing and displaying flights. It is supported by the Flight class which represents an individual flight in the system and the FlightStatus enum which represents all relevant statuses of a flight, as shown in the class diagram in Figure 4.2:

			
				
					[image: Figure 4.2 – A class diagram showing FlightTracker and supporting classes]
				

			

			Figure 4.2 – A class diagram showing FlightTracker and supporting classes

			We’ll explore these pieces of code throughout this chapter, but for now, we need to understand that the key responsibilities of FlightTracker include the following:

			
					Tracking a list of flights

					Scheduling new flights (adding them to the list)

					Marking flights as arrived, departed, or delayed

					Displaying all flights

					Finding a flight by its ID

			

			This is a fairly simple flight tracker class, but we’ll see a slightly more complicated version of one in the next chapter as we explore object-oriented refactoring.

			For now, let’s look at a few simple steps we can take to improve these methods.

			Refactoring methods

			In this section, we’ll explore a number of refactorings related to methods and their interactions. We’ll start by discussing the access modifier of a method.

			Changing method access modifiers

			During my time as a professional C# instructor, I noticed my students often tended to not think about the access modifiers they used in their code. Specifically, my students would usually do one of two things:

			
					They marked all methods as public by default unless someone (usually me) suggested they use a different access modifier

					They marked all methods as private by default (or omitted the access modifier entirely, defaulting to private anyway) until the compiler gave them an issue requiring them to make a method more accessible

			

			Both approaches are insufficient for a simple reason: we want to explicitly declare the visibility level of our methods. This way, whenever you read code, you are reminded explicitly by the access modifier what other code can access the code you’re working with. This is particularly useful when working with non-private methods that can be referenced outside of the class.

			Access modifiers

			C# has several access modifiers as of C# 12 that govern what other areas can refer to your code. The current access modifiers are public, private, protected, internal, protected internal, private internal, and the new file access modifier that restricts access to something within a single source file. While these access modifiers all have their uses, I’m going to focus primarily on public and private in this section for simplicity’s sake.

			If we mark a method as public, protected, or internal, there should be a good reason for that – typically related to the method being a primary way in which we intend for others to use our code.

			Our FlightTracker class has a public method called FindFlightById that is used by most of the other methods in the class but nothing outside of the class. This method looks up the flight by ID and returns it if one is found:

			
public Flight? FindFlightById(string id) {
 return _flights.Find(f => f.Id == id);
}

			Given these circumstances, you might make an explicit decision to mark the method as private, restricting its usage within this class, as shown in the following code:

			
private Flight? FindFlightById(string id) {
 return _flights.Find(f => f.Id == id);
}

			By marking this method as private, you have greater freedom in the future to rename it, change how it works, modify its parameters, or remove it entirely.

			Changing the access modifier is generally safe if nothing outside the class uses the method. Otherwise, this decision will cause compiler errors.

			Renaming methods and parameters

			Let’s take a look at three very similar methods for managing flights in FlightTracker:

			
public Flight? DelayFlight(string fId, DateTime newTime) {
 // Details omitted
}
public Flight? MarkFlightArrived(DateTime time, string id){
 // Details omitted
}
public Flight? MarkFlightDeparted(string id, DateTime t) {
 // Details omitted
}

			Each of these methods takes in a DateTime and a flight identifier string. However, the naming of these parameters and even these methods are not incredibly consistent.

			DelayFlight calls its flight ID variable fId and its new departure time newTime. MarkFlightArrived uses time for the arrival time and id for the flight identifier. MarkFlightDeparted uses id but chose t to denote the departure time.

			While some of these naming choices are better than others on their own, the lack of naming consistency in methods within the same class can hurt other people’s ability to work effectively with your code. This can lead them to feel less confident in your abilities and can even introduce bugs from misunderstandings of what parameters or methods represent – all due to a lack of consistency.

			To fix this, we can use the rename parameter refactoring to rename individual parameters to ensure consistency. This can be done by right-clicking on a parameter and selecting Rename… from the context menu, or pressing Ctrl + R twice with the parameter selected. See Figure 4.3:

			
				
					[image: Figure 4.3 – Activating the rename parameter refactoring via the context menu]
				

			

			Figure 4.3 – Activating the rename parameter refactoring via the context menu

			Next, type the new name you want to use for the parameter and press Enter to complete the change. See Figure 4.4:

			
				
					[image: Figure 4.4 – Renaming the parameter]
				

			

			Figure 4.4 – Renaming the parameter

			While choosing your names, you’ll want to pick something that is clear and consistent with the terminology and names you use in your class already. Avoid very short and single-letter parameters wherever possible (excluding some cases, such as x and y for coordinates or other established usages of short parameter names).

			In the case of this code, I chose to rename all the flight identifiers to id and chose to be more explicit about the names of the DateTime parameters to indicate what the parameter represented.

			I also chose to use the same rename tool to rename the entire method of DelayFlight to MarkFlightDelayed to be more consistent with the other methods in this class:

			
public Flight? MarkFlightDelayed(
 string id, DateTime newDepartureTime) {
 // Details omitted
}
public Flight? MarkFlightArrived(DateTime arrivalTime,
 string id) {
 // Details omitted
}
public Flight? MarkFlightDeparted(string id,
 DateTime departureTime) {
 // Details omitted
}

			Some of these names are perhaps a bit longer than I might like (particularly when trying to fit code onto a page in a book!), but clear parameter and method names can save a lot of confusion and even prevent certain bugs from occurring later.

			Note

			If the inconsistent ordering of parameters annoys you, don’t worry. We’ll fix parameter ordering later on in this chapter.

			Overloading methods

			Let’s shift gears and talk about how methods can work together in tandem. First, we’ll look at an example of overloading and then an example of chaining.

			Let’s start by looking at the ScheduleNewFlight method:

			
public Flight ScheduleNewFlight(string id, string dest,
 DateTime depart, string gate) {
 Flight flight = new() {
 Id = id,
 Destination = dest,
 DepartureTime = depart,
 Gate = gate,
 Status = FlightStatus.Inbound
 };
 _flights.Add(flight);
 return flight;
}

			This method takes in four parameters representing flight information. It uses them to instantiate a Flight object, adds the flight to the private list of flights, and then returns the newly-created Flight object.

			As the system grows, it’s reasonable to expect that someone might want to provide their own Flight object. To accommodate that, you can overload the ScheduleNewFlight method.

			Overloading

			Overloading is where you offer a method with the same name as another method but a different set of types of parameters that can be accepted by the method. For example, you can have a method that takes in an int and another method that takes in two strings, but you can’t have two methods that both take in only a single int, even if the parameter names are different. From the compiler’s perspective, overloaded methods are entirely separate methods that just happen to have the same name.

			The overloaded ScheduleNewFlight method that takes in a Flight object might look something like the following:

			
public Flight ScheduleNewFlight(Flight flight) {
 _flights.Add(flight);
 return flight;
}

			Overloading the ScheduleNewFlight method is helpful because it helps people discover the different options for scheduling a flight based on Visual Studio’s suggestions, as shown in Figure 4.5:

			
				
					[image: Figure 4.5 – Visual Studio suggestions showing available overloads for ScheduleNewFlight]
				

			

			Figure 4.5 – Visual Studio suggestions showing available overloads for ScheduleNewFlight

			By providing overloads, following standard conventions, and having consistent and predictable methods and parameters, you help others discover how to use your classes safely and effectively.

			Chaining methods

			You may have noticed a few lines of duplication between our two ScheduleNewFlight overloads. Let’s take a look at them side by side for reference:

			
public Flight ScheduleNewFlight(string id, string dest,
 DateTime depart, string gate) {
 Flight flight = new() {
 Id = id,
 Destination = dest,
 DepartureTime = depart,
 Gate = gate,
 Status = FlightStatus.Inbound
 };
 _flights.Add(flight);
 return flight;
}
public Flight ScheduleNewFlight(Flight flight) {
 _flights.Add(flight);
 return flight;
}

			While this duplication is very minimal, I could see new requirements come in that would necessitate changing both places. For example, the business might require that whenever a new flight is scheduled, a log entry should be written, or perhaps a new LastScheduleChange property needs to be set to the current time.

			When these types of changes occur, developers run the risk of introducing bugs unless they change all the affected areas. This means that code duplication, even minor code duplication such as this example, leads to additional work and additional sources of bugs if not every place with similar logic is updated.

			One thing that can help with this is method chaining. Method chaining is when one method calls another related method and has it accomplish its work for it.

			In this case, we can modify our first ScheduleNewFlight method to be responsible for creating a Flight object and then handing off that object to the other ScheduleNewFlight overload, as follows:

			
public Flight ScheduleNewFlight(string id, string dest,
 DateTime depart, string gate) {
 Flight flight = new() {
 Id = id,
 Destination = dest,
 DepartureTime = depart,
 Gate = gate,
 Status = FlightStatus.Inbound
 };
 return ScheduleNewFlight(flight);
}
public Flight ScheduleNewFlight(Flight flight) {
 _flights.Add(flight);
 return flight;
}

			Not only is this less code, but if we ever need to alter what happens when a new flight is scheduled, we now only have one place to modify.

			Now that we’ve covered some of the basics of refactoring methods, let’s look briefly at some parallels with constructors. After all, constructors are essentially a special type of method that gets called when an object is instantiated.

			Refactoring constructors

			When you think about the job of a constructor, its whole reason for being is to get the object into its correct initial position. Once the constructor completes, the object is generally considered ready for use by other code.

			This means that constructors can be very handy for ensuring that certain pieces of information are in place.

			Right now, our Flight class is defined fairly minimally and only has the default constructor that .NET provides in the absence of any explicit constructor:

			Flight.cs

			
public class Flight {
 public string Id { get; set; }
 public string Destination { get; set; }
 public DateTime DepartureTime { get; set; }
 public DateTime ArrivalTime { get; set; }
 public string Gate { get; set; }
 public FlightStatus Status { get; set; }
 public override string ToString() {
 return $"{Id} to {Destination} at {DepartureTime}";
 }
}

			The problem with our Flight class lacking any explicit constructor is that flights don’t make sense without some of these pieces of information.

			While more recent versions of C# have given us things such as the required keyword, which we’ll explore in Chapter 10, the classic approach to requiring some piece of information at object creation has been to make the constructor take it in as a parameter. To demonstrate this, let’s add a parameterized constructor next.

			Generating constructors

			While we could manually write a constructor, Visual Studio gives us some great code generation tools, including a generate constructor refactoring.

			To use this refactoring, select the class and open the Quick Actions menu. Then, select Generate constructor…, as shown in Figure 4.6:

			
				
					[image: Figure 4.6 – Generating a constructor]
				

			

			Figure 4.6 – Generating a constructor

			This will open a dialog that will allow you to select what members get initialized from the constructor when creating a Flight, as shown in Figure 4.7:

			
				
					[image: Figure 4.7 – Selecting required members for the constructor]
				

			

			Figure 4.7 – Selecting required members for the constructor

			In this case, I chose to make Id, Destination, and DepartureTime part of the constructor and left the others unchecked. I also unchecked the Add null checks checkbox to prevent the generated code from being too complex for this example.

			This generated the following constructor:

			
public Flight(string id, string destination,
 DateTime departureTime) {
 Id = id;
 Destination = destination;
 DepartureTime = departureTime;
}

			The resulting code correctly sets the required properties based on its parameters.

			If you wanted to, you could go back in and generate a new constructor with a different set of parameters, since classes can have any number of overloaded constructors.

			In fact, we’ll add another constructor in the next section to illustrate this. However, for now, we have a problem we need to resolve in the form of a build error:

			
				
					[image: Figure 4.8 – Build error trying to instantiate a Flight instance]
				

			

			Figure 4.8 – Build error trying to instantiate a Flight instance

			If you tried to build your project after adding the Flight constructor, you’ll see an error similar to that shown in Figure 4.8. This “no argument given that corresponds to the required parameter” error exists because the Flight flight = new() code in ScheduleNewFlight is trying to invoke the default constructor for Flight, but that constructor no longer exists.

			When we added our constructor a moment ago, this didn’t move the Flight class from having no constructors to one constructor. Instead, we went from having .NET’s default constructor with no parameters to one constructor with the new parameters we generated, removing the default constructor entirely.

			We can add the default constructor back manually by explicitly defining it:

			
public Flight() {
}

			This constructor does nothing aside from allowing others to instantiate the class by providing no parameters to the constructor. As soon as you declare your own constructor, .NET no longer provides the default constructor for you.

			To fix this compiler error, we can either add a new constructor that takes in no parameters or we can adjust the ScheduleNewFlight code to use our new constructor instead of the default one that no longer exists.

			Since part of the intent of adding a new constructor is to require certain pieces of information at the time of object creation, it makes more sense to change ScheduleNewFlight to use the new constructor, as follows:

			FlightTracker.cs

			
public Flight ScheduleNewFlight(string id, string dest,
 DateTime depart, string gate) {
 Flight flight = new(id, dest, depart) {
 Gate = gate,
 Status = FlightStatus.Inbound
 };
 return ScheduleNewFlight(flight);
}

			A nice side effect of doing this is that we no longer need to set those properties in the object initializer since the constructor does that for us.

			Chaining constructors

			Earlier, we saw how we can chain together overloaded methods to work together to reduce code duplication. I also hinted that constructors are really just special methods. When you have multiple constructors, they act exactly like overloaded methods.

			We can put all of these concepts together by chaining constructors together, so one constructor calls to the other.

			First, let’s look at an example of not doing this:

			Flight.cs

			
public Flight(string id, string destination,
 DateTime departureTime) {
 Id = id;
 Destination = destination;
 DepartureTime = departureTime;
}
public Flight(string id, string destination,
 DateTime departureTime, FlightStatus status) {
 Id = id;
 Destination = destination;
 DepartureTime = departureTime;
 Status = status;
}

			Here, we have two constructors for Flight that are nearly identical, except the second one also accepts a status parameter.

			While this isn’t an excessive amount of duplication, it can be avoided by chaining constructors together with : this() syntax, as follows:

			
public Flight(string id, string destination,
 DateTime departureTime) {
 Id = id;
 Destination = destination;
 DepartureTime = departureTime;
}
public Flight(string id, string destination,
 DateTime departureTime, FlightStatus status)
 : this(id, destination, departureTime) {
 Status = status;
}

			In this case, the second Flight constructor starts out by calling the first constructor through its use of : this. Once that call completes, control will move back to the second constructor and it will execute the Status = status; line.

			Chaining constructors together adds a little complexity to your code, but it also reduces duplicated code while making it such that you can add new initialization logic in one place and multiple constructors can take advantage of the addition.

			Refactoring parameters

			Now that we’ve explored the basics of methods and constructors, let’s talk about managing parameters. This is important because it is possible that poorly thought-out parameters can quickly reduce the maintainability of your code.

			Let’s look at a few common refactorings you’ll want to perform over the life of your methods.

			Reordering parameters

			Sometimes, you’ll realize that the order of parameters in a method doesn’t make as much sense as another arrangement might. At other times, you might notice that a few of your methods take in the same kinds of parameters, but with inconsistent ordering. In either case, you’ll find yourself wanting to reorder your method parameters.

			Let’s look at a practical example from the various MarkX methods we saw earlier:

			FlightTracker.cs

			
public Flight? MarkFlightDelayed(string id,
 DateTime newDepartureTime) {
 // Details omitted...
}
public Flight? MarkFlightArrived(DateTime arrivalTime,
 string id) {
 // Details omitted...
}
public Flight? MarkFlightDeparted(string id,
 DateTime departureTime) {
 // Details omitted...
}

			Here, we have three methods that all take in string and DateTime parameters, but their ordering is inconsistent.

			In this case, looking at these three methods, you decide that the most intuitive order is to put the flight ID first and then the time component as the second parameter. This means that MarkFlightDelayed and MarkFlightDeparted are correct but MarkFlightArrived needs to be adjusted.

			You can add, remove, and reorder parameters from the same refactoring dialog in Visual Studio by selecting the method you want to refactor and then choosing Change signature… from the Quick Actions menu, as shown in Figure 4.9:

			
				
					[image: Figure 4.9 – Triggering the Change signature… refactoring]
				

			

			Figure 4.9 – Triggering the Change signature… refactoring

			This will bring up the Change Signature dialog (see Figure 4.10) and allow you to use the up and down buttons in the upper right to reorder parameters until the order in the preview matches your expectations:

			
				
					[image: Figure 4.10 – Reordering parameters in the Change Signature dialog]
				

			

			Figure 4.10 – Reordering parameters in the Change Signature dialog

			Once you are done, click OK and Visual Studio will update your method as well as everything that was called out to that method to use the revised parameter order.

			Tip

			There are other ways of making which parameters a method requires more explicit using C#. One such way would be to use the named arguments feature of C# that allows you to specify method parameters by name followed by a colon, making the parameter usage explicit.

			An example of using this to call our MarkFlightArrived method would be MarkFlightArrived(arrivalTime:DateTime.Now, id:"MyId"). Note that when using named arguments, you can specify arguments in whatever order you prefer. See the Further reading section for more details.

			Adding parameters

			Occasionally, you’ll want to add a new parameter to your method. The most natural thing to do is generally to add the parameter to the end of the list of parameters. This, however, can have two downsides:

			
					The new parameter might not make the most sense when added to the end of the list instead of earlier on in the sequence of parameters

					Manually adding a parameter means you must now manually adjust anything that was calling your method and provide a new value for the parameter

			

			Let’s look at a practical example and see how the Change Signature dialog can help.

			The MarkFlightArrived method currently finds the flight by its Id and then updates its arrival time and status to match the parameters:

			
public Flight? MarkFlightArrived(string id,
 DateTime arrivalTime) {
 Flight? flight = FindFlightById(id);
 if (flight != null) {
 flight.ArrivalTime = arrivalTime;
 flight.Status = FlightStatus.OnTime;
 Console.WriteLine($"{id} arrived at {Format(arrivalTime)}.");
 } else {
 Console.WriteLine($"{id} could not be found");
 }
 return flight;
}

			Let’s say we need to update this method to take in the gate that the plane should taxi to. While we could manually add it to the end of the parameter list, this would break every method that calls out to this method.

			Right now, that’s not a lot of places, since only the tests are calling this method.

			FlightTrackerTests.cs

			
Flight? actual =
 _target.MarkFlightArrived(flightId, arrivalTime);

			However, the Change Signature refactoring tools in Visual Studio provide a safer option when you click the Add button:

			
				
					[image: Figure 4.11 – Adding a new gate parameter to MarkFlightArrived]
				

			

			Figure 4.11 – Adding a new gate parameter to MarkFlightArrived

			The Add Parameter dialog is one of the more complex ones in Visual Studio, but all it really needs is the following few things:

			
					The parameter name and type that is being added

					Whether this parameter is required or optional (more on this shortly)

					The value to use in places that are already calling the method

			

			In this case, our new parameter is going to be a string named gate. Callers must provide a value and any existing callers should use the "A4" string for now.

			This use of "A4" may seem like a random string because it is. The only place using this method right now is a unit test where the gate really doesn’t matter for that test. If more places were using this method, I’d likely choose Infer from context or Introduce undefined TODO variables.

			Clicking OK will display the Change Signature dialog again with your new parameter listed, allowing you to reorder it as needed. Clicking OK in this dialog will add the parameter to your method and update your code.

			This updates your method signature for MarkFlightArrived and the test calling your code:

			
Flight? actual =
 _target.MarkFlightArrived(flightId, arrivalTime, "A4");

			With the new parameter in place, you can update the MarkFlightArrived method to use it to set the flight’s Gate property:

			
public Flight? MarkFlightArrived(string id,
 DateTime arrivalTime, string gate) {
 Flight? flight = FindFlightById(id);
 if (flight != null) {
 flight.ArrivalTime = arrivalTime;
 flight.Gate = gate;
 flight.Status = FlightStatus.OnTime;
 Console.WriteLine($"{id} arrived at {Format(arrivalTime)}.");
 } else {
 Console.WriteLine($"{id} could not be found");
 }
 return flight;
}

			This workflow is a common one you’ll go through as you find yourself expanding methods to take in new parameters.

			Next, let’s see some ways to simplify method calls using optional parameters.

			Introducing optional parameters

			If you’re not a fan of the Change Signature dialog and would rather write the code yourself, you can always take advantage of optional parameters to safely add new parameters to the end of your parameter list.

			With an optional parameter, you specify a default value. Places that call your method can either specify the value for this parameter or not pass any value at all. In cases where no value is passed, the default value will be used instead.

			Note

			This only works with parameters at the end of your parameter list due to how optional parameters work in C#. Additionally, the compiler doesn’t allow certain types of default values such as new objects and certain literals.

			If you wanted to declare gate as optional and default to "TBD" (short for “to be determined”), your method would look like the following:

			
public Flight? MarkFlightArrived(string id,
 DateTime arrivalTime, string gate = "TBD") {
 // Details omitted...
}

			The code calling your method could then be left in its prior state:

			
Flight? actual =
 _target.MarkFlightArrived(flightId, arrivalTime);

			Here, the code would compile, but “TBD” would be used for the gate.

			Alternatively, you could specify the value for gate manually by providing a value for that parameter:

			
Flight? actual =
 _target.MarkFlightArrived(flightId, arrivalTime, "A4");

			Optional parameters can be particularly nice not just for expanding methods, but also for providing common defaults that callers can customize if they want.

			Removing parameters

			Currently, the code requires you to specify the gate whenever a new flight is scheduled:

			
public Flight ScheduleNewFlight(string id, string dest, DateTime depart, string gate) {
 Flight flight = new(id, dest, depart) {
 Gate = gate,
 Status = FlightStatus.Inbound
 };
 return ScheduleNewFlight(flight);
}

			Let’s say that you decide that since gates are now assigned at arrival, you shouldn’t need to specify the gate when you schedule a new flight.

			While you could go in and just remove the gate parameter from the code, this won’t update any methods that are calling that method and will result in compiler errors you must resolve.

			Instead, you can use the Change Signature dialog, select the parameter you want to remove, and click Remove, as shown in Figure 4.12:

			
				
					[image: Figure 4.12 – Removing the gate parameter from ScheduleNewFlight]
				

			

			Figure 4.12 – Removing the gate parameter from ScheduleNewFlight

			When you click OK, Visual Studio will update your method and any callers to simply not have the gate parameter.

			Of course, this isn’t magic, and it will leave behind code that relied on that gate parameter or code that was put in place to get the value ready to pass into ScheduleNewFlight. Still, the refactoring does a remarkable job of cleaning up the method definition and the direct calls of that method.

			Applying the refactoring to remove the gate parameter results in a simpler method:

			
public Flight ScheduleNewFlight(string id, string dest,
 DateTime depart) {
 Flight flight = new(id, dest, depart) {
 Status = FlightStatus.Inbound
 };
 return ScheduleNewFlight(flight);
}

			Now that we’ve covered the basics of methods, constructors, and parameters, let’s get into the more adventuresome aspects of refactoring methods: working with functions.

			Refactoring to functions

			In this section, we’ll explore some aspects of refactoring related to functional programming. Functional programming is an approach to programming that focuses on functions and their interactions instead of purely on objects and classes.

			Functional programming has become more popular over the last decade and that popularity has influenced the C# language with the addition of new forms of syntax.

			We’ll explore a few of the syntactical improvements related to functional programming and see how they can help make concise and flexible programs. While this is not a book about functional programming, we’ll still find ourselves exploring a few of these concepts in this section and Chapter 10, Defensive Coding Techniques.

			Using expression-bodied members

			To start dipping our toes into the waters of the more functional syntax, let’s take a look at the FindFlightById method in FlightTracker:

			
private Flight? FindFlightById(string id) {
 return _flights.FirstOrDefault(f => f.Id == id);
}

			Clearly, this is a very brief method with only a single statement. At the same time, this method takes up three lines of the screen. Since developers usually leave a blank line above and below each method, the existence of this simple method takes up five lines of the screen. These five lines can be a significant portion of the visible region of the screen, as shown in Figure 4.13:

			
				
					[image: Figure 4.13 – The visual footprint of a method with a single statement]
				

			

			Figure 4.13 – The visual footprint of a method with a single statement

			Instead, we can take advantage of expression-bodied members and convert our method to a single-line declaration using this new syntax by activating the Use expression body for method refactoring on the Quick Actions menu with the method selected, as shown in Figure 4.14:

			
				
					[image: Figure 4.14 – Triggering the Use expression body for method refactoring^]
				

			

			Figure 4.14 – Triggering the Use expression body for method refactoring^

			This converts our code to the following, more concise format:

			
FindFlightById(string id) =>
 _flights.FirstOrDefault(f => f.Id == id);

			This style only works for single-line implementations and it isn’t for everyone. However, if you use it for simple code, it helps reduce the “scrolling penalty” you face with many small methods in a larger file.

			Passing functions as parameters with actions

			While expression-bodied members are less functional programming and more functional syntax, let’s shift gears and get a taste of what’s possible by thinking about methods as actions that you can store in variables and pass around to other methods.

			Before we talk about how to do this, let’s explore why we’d want to do this by looking at our MarkFlightX methods in FlightTracker. We’ll start with the MarkFlightDelayed method:

			
public Flight? MarkFlightDelayed(string id,
 DateTime newDepartureTime) {
 Flight? flight = FindFlightById(id);
 if (flight != null) {
 flight.DepartureTime = newDepartureTime;
 flight.Status = FlightStatus.Delayed;
 Console.WriteLine($"{id} delayed until {Format(newDepartureTime)}");
 } else {
 Console.WriteLine($"{id} could not be found");
 }
 return flight;
}

			This method does a few discrete things:

			
					It searches for a flight by its ID

					If it finds the flight, it updates the properties on the flight and writes out the delay

					If the flight can’t be found, a warning is written to the console

			

			On its own, this method is fine. Let’s look at MarkFlightDeparted now:

			
public Flight? MarkFlightDeparted(string id,
 DateTime departureTime) {
 Flight? flight = FindFlightById(id);
 if (flight != null) {
 flight.DepartureTime = departureTime;
 flight.Status = FlightStatus.Departed;
 Console.WriteLine($"{id} departed at {Format(departureTime)}.");
 } else {
 Console.WriteLine($"{id} could not be found");
 }
 return flight;
}

			Compare this method to the last one and you’ll see that there are few differences between them. The method still must find a flight by its ID, check to see whether the flight was found or not, and update the flight. The only difference in this method is what updates occur to the flight and what message gets written to the console.

			Let’s round out our look at these methods with a look at MarkFlightArrived:

			
public Flight? MarkFlightArrived(string id,
 DateTime arrivalTime, string gate = "TBD") {
 Flight? flight = FindFlightById(id);
 if (flight != null) {
 flight.ArrivalTime = arrivalTime;
 flight.Gate = gate;
 flight.Status = FlightStatus.OnTime;
 Console.WriteLine($"{id} arrived at {Format(arrivalTime)}.");
 } else {
 Console.WriteLine($"{id} could not be found");
 }
 return flight;
}

			Here, the pattern repeats itself. The only major difference between these three methods is what happens if the flight is found.

			Thinking about it in that way, consider our logic with the following pseudocode:

			
Flight? flight = FindFlightById(id);
if (flight != null) {
 ApplyUpdateToFlight(flight);
} else {
 Console.WriteLine($"{id} could not be found");
}
return flight;

			Here, ApplyUpdateToFlight is a placeholder for some method or function we could apply to the flight object. This is because the action we take turns out to be the only thing that varies here.

			In fact, .NET has a class called an Action that can serve this very purpose:

			
private Flight? UpdateFlight(string id,
 Action<Flight> updateAction) {
 Flight? flight = FindFlightById(id);
 if (flight != null) {
 updateAction(flight);
 } else {
 Console.WriteLine($"{id} could not be found");
 }
 return flight;
}

			Here, the updateAction parameter represents a specific function that can be called. What function is it? We don’t know. The exact function will be provided by whoever called the UpdateFlight method – just like any other parameter.

			However, because updateAction is defined as Action<Flight>, we know that the function takes in a single parameter of the Flight type, which is why we can provide that parameter to the function when we invoke it inside this method.

			To help the idea of Action syntax sink in a little more, let’s see a few other signatures:

			
					Action<int> – A function taking in a single integer parameter

					Action<string, bool> – A function taking in a string and then a boolean

					Action – A function taking in no parameters at all

			

			Now that declaring the Action parameters makes a little more sense syntactically, let’s see how one of our old methods might be updated to use this new method:

			
public Flight? MarkFlightDelayed(string id,
 DateTime newDepartureTime) {
 return UpdateFlight(id, (flight) => {
 flight.DepartureTime = newDepartureTime;
 flight.Status = FlightStatus.Delayed;
 Console.WriteLine($"{id} delayed to {Format(newDepartureTime)}");
 });
}

			Here, the MarkFlightDelayed method calls directly into the UpdateFlight method and provides an Action<Flight> in the form of the (flight) => { } syntax.

			When the UpdateFlight method runs, it checks to see whether the flight exists and, if it does, the method calls the arrow function we provided to actually update the flight.

			If the syntax of this is difficult, here’s a different way of representing the same thing, by using a local variable to hold the Action<Flight>:

			
Action<Flight> updateAction = (flight) => {
 flight.DepartureTime = newDepartureTime;
 flight.Status = FlightStatus.Delayed;
 Console.WriteLine($"{id} delayed to {Format(newDepartureTime)}");
};
return UpdateFlight(id, updateAction);

			It’s undoubtedly possible to have a happy and productive career as a developer without declaring an Action variable. However, I’ve found that when I’m able to think in terms of discrete Actions, it can open some very interesting and flexible solutions to problems.

			Returning data from Actions with Funcs

			Before we move on to talking about static and extension methods, let’s take a brief look at Funcs.

			A Func is very similar to an Action in that it represents a function that can be invoked and potentially passed parameters. However, while Actions do not return any results, Funcs do.

			Let’s examine a simple C# method that adds two numbers together and displays their result in an equation string:

			
public void AddAction(int x, int y) {
 int sum = x + y;
 Console.WriteLine($"{x} + {y} is {sum}");
}

			This method has a void return type, meaning it doesn’t return any value. As a result, it could be stored in an Action and invoked in that way:

			
Action<int, int> myAction = AddAction;
myAction(2, 2);

			Now, let’s look at a slightly different version of the Add method:

			
public string AddFunc(int x, int y) {
 int sum = x + y;
 return $"{x} + {y} is {sum}";
}

			Here, AddFunc has a return type of string. Because the method no longer returns a void, it can no longer be considered an Action and is now considered a Func because it returns some value.

			As a result, if we wanted to store a reference to this method, we’d need to do so in a Func, as shown here:

			
Func<int, int, string> myFunc = AddFunc;
string equation = myFunc(2, 2);
Console.WriteLine(equation);

			Note that in addition to using a Func instead of an Action, we now have a third generic type parameter that we’re providing. The last parameter to a Func represents the return type of the Func. In the case of myFunc, the third generic type parameter indicates that AddFunc returns a string.

			Action and Func are very closely related with the only significant difference being that Func returns a value. In practice, I tend to use Action when I want to accomplish something, such as in the earlier example of updating flights. On the other hand, I tend to use Func to determine when to do something or how to get a specific value I need.

			For example, I might declare a method that takes in a Func<Flight, bool> that it uses to determine whether a flight from a list of flights should be displayed:

			
public void DisplayMatchingFlights(List<Flight> flights,
 Func<Flight, bool> shouldDisplay) {
 foreach (Flight flight in flights) {
 if (shouldDisplay(flight)) {
 Console.WriteLine(flight);
 }
 }
}

			This method calls the shouldDisplay Func for every flight in the list in order to determine whether it should be displayed. Flights only display if the shouldDisplay Func returns true for that flight.

			This structure allows the same method to be used for different scenarios, including the following:

			
					Listing upcoming flights

					Listing delayed flights

					Listing flights heading to a specific airport

			

			The only difference between these is what the shouldDisplay parameter holds.

			Introducing static methods and extension methods

			Now that we’ve explored some of the more functional aspects of method refactoring, let’s take a look at some of the features that helped revolutionize .NET: static methods and extension methods.

			Making methods static

			Sometimes, your classes will have methods that don’t work directly with instance members (fields, properties, or non-static methods) of that class. For example, FlightTracker has a Format method that converts a DateTime to a string resembling “Wed Jul 12 23:14 PM”:

			
private string Format(DateTime time) {
 return time.ToString("ddd MMM dd HH:mm tt");
}

			Here, Format doesn’t rely on anything other than the parameters it is provided to calculate a result. Because of this, we can make Format a static method.

			Static methods are methods associated with the class itself and not with an instance of the class. As a result, you don’t need to instantiate an instance of the class to call them. The C# compiler is also able to make occasional optimizations surrounding static code that can result in faster code.

			Typically, static methods can also be considered pure methods – that is to say, methods without direct side effects that always produce the same result when given the same input.

			As shown in Figure 4.14, you can mark a method as static by adding the static keyword after the access modifier or by choosing the Make static option on the Quick Actions menu:

			
				
					[image: Figure 4.15 – Moving a method to a static method]
				

			

			Figure 4.15 – Moving a method to a static method

			The static version of Format looks very similar and works almost identically:

			
private static string Format(DateTime time) {
 return time.ToString("ddd MMM dd HH:mm tt");
}

			The Format method can still be called simply with Format(DateTime.Now) as it could before, but adding static also allows you to call it from the class itself, such as FlightTracker.Format(DateTime.Now).

			Marking a method as static has a few advantages:

			
					The compiler can make optimizations resulting in faster runtime performance

					Code can call the static method without needing to instantiate the class

					The static method could be converted to an extension method, as we’ll see later

			

			The static keyword may seem like a great thing to use everywhere you can due to these added features. Unfortunately, static has some drawbacks as well. Marking a method as static also means it can no longer call non-static methods or access instance-level data.

			There are certainly many uses for static, but it’s still something that many developers find distasteful or consider an anti-pattern in excess.

			Personally, I find static is appropriate for “helper methods” and, in some cases, to simplify unit testing complex classes that can be complex to instantiate in testing scenarios. However, I draw the line at making fields static whenever possible, as static data can lead to many problems in developing and testing applications.

			Moving static members to another type

			Sometimes, it doesn’t make sense for a static method to remain in the class it started in.

			For example, our Format method takes any DateTime and returns a customized string appropriate to Cloudy Skies Airlines’ business needs. This logic is currently inside of the FlightTracker class, and yet is completely unrelated to tracking flights and could be useful to have in any number of places throughout their application.

			In this scenario, it makes sense to pull Format into a different class where other developers can more readily discover these formatting capabilities.

			Visual Studio provides a built-in refactoring for this. To use it, select a static method and open the Quick Actions menu, then click Move static members to another type..., as shown in Figure 4.16:

			
				
					[image: Figure 4.16 – Moving static members to another type]
				

			

			Figure 4.16 – Moving static members to another type

			Next, you will be prompted to select the Type your static methods should be moved to. This can be the name of a new class if you don’t currently have a class suitable for this. For Cloudy Skies, there is no existing Type that should own this, so creating one named DateHelpers makes sense.

			Additionally, you will be asked to check or uncheck the static methods you want to move with an option to Select Dependents (see Figure 4.17) and select any methods that your selected static methods call:

			
				
					[image: Figure 4.17 – Selecting the destination type and the members to move]
				

			

			Figure 4.17 – Selecting the destination type and the members to move

			Click OK to move your selected method and create a new class.

			Important note

			The current behavior of Visual Studio is to keep your method’s current access modifier and create the new static class as internal. This may introduce compiler errors if your method was private, as code at the old location will no longer be able to access your code. I recommend changing your static class and its methods to public to avoid issues.

			Here’s the resulting static class after adjusting its modifiers:

			
public static class DateHelpers {
 public static string Format(DateTime time) {
 return time.ToString("ddd MMM dd HH:mm tt");
 }
}

			Now we have a dedicated class just for “helper methods” associated with dates and times.

			Static classes

			If you’re not familiar with static classes, a static class can only have static methods in it and cannot be instantiated or inherited from. Static classes are required for extension methods.

			The refactoring we just performed also updated any code that was using the old Format method to point to DateTimeHelpers.Format. For example, in FlightTracker, the MarkFlightArrived method’s flight logging now says Console.WriteLine($"{id} arrived at {DateHelpers.Format(arrivalTime)}.");.

			By pulling static members into their own dedicated type, we’ve created a home where date-related logic can live and help a wide variety of classes, and we’ve made our FlightTracker class more focused on its core job instead of being focused on date formatting as well as flight tracking.

			Unfortunately, this change has somewhat hurt the readability of our code because callers must now specify DateHelpers.Format instead of just Format. An extension method can help with this, as we’ll see next.

			Creating extension methods

			Extension methods allow you to “extend” an existing Type by adding your own static methods that appear like they’re part of that Type.

			That might sound intimidating, but if you’ve used LINQ, you’ve seen extension methods in action. Let’s look at the FindFlightById method in FlightTracker as an example:

			
private Flight? FindFlightById(string id) =>
 _flights.FirstOrDefault(f => f.Id == id);

			Here, _flights is defined as a List<Flight>. Given that the code to find a flight by its ID, it’s understandable to suspect that List must have a method called FirstOrDefault; however, it does not.

			Instead, the FirstOrDefault method is not defined on the List<T> type in the System.Collections.Generic namespace, but rather is defined as an extension method in a static class called Enumerable in the System.Linq namespace.

			In other words, it is perfectly feasible to rewrite our code from earlier to explicitly use the Enumerable class, as follows:

			
private Flight? FindFlightById(string id) =>
 Enumerable.FirstOrDefault(_flights, f => f.Id == id);

			While this is perfectly valid code, nobody I’ve ever worked with writes code in this way because using FirstOrDefault as an extension method is far more intuitive and readable.

			This highlights the key point of extension methods: extension methods allow you to add new features to existing classes in a way that appears like those methods were present on the object to begin with, resulting in more intuitive code.

			To declare a method as an extension method, the following things must be true:

			
					The method must be static

					The method must be inside a static class

					The first parameter of the method must start with the this keyword

			

			Our DateHelpers class and its Format method are both static, which means we can convert the method to an extension method by adding the this keyword to the method signature:

			
public static class DateHelpers {
 public static string Format(this DateTime time) {
 return time.ToString("ddd MMM dd HH:mm tt");
 }
}

			Moving a static method to an extension method doesn’t mean you have to use it as an extension method and so our previous code will still compile. However, in order to get the most value out of our extension method, we should update prior code to take advantage of its new syntax.

			Let’s take another look at the MarkFlightArrived method in FlightTracker. This time, if you delete the DateFormatHelpers.Format(arrivalTime), instead write arrivalTime.For, and allow Visual Studio’s IntelliSense to suggest values, it will list your new extension method:

			
				
					[image: Figure 4.18 – IntelliSense suggesting the new extension method]
				

			

			Figure 4.18 – IntelliSense suggesting the new extension method

			Because arrivalTime is a DateTime and our extension method is built to work on any DateTime, the new Format method we wrote appears here on the DateTime type provided in .NET through the power of extension methods.

			Rewriting the call to arrivalTime.Format() has the correct effect of calling out to the extension method, resulting in a far more readable experience.

			If you’d prefer, you can still call out to the Format method via DateHelpers.Format(arrivalTime). Introducing an extension method just gives you another option for how your syntax is structured.

			The downsides of extension methods are, primarily, as follows:

			
					Extension methods require the use of static, which some teams avoid because it tends to spread throughout your code

					It can be confusing that you’re using an extension method

					It can be confusing where the new extension methods are defined

			

			Thankfully, Visual Studio allows you to go to the definition of any method, member, or type simply by holding Ctrl and clicking on the item you want to navigate to. Alternatively, you can select the identifier and press F12 on your keyboard or right-click on it and choose Go To Definition to navigate to where the extension method is declared.

			Reviewing and testing our refactored code

			Over the course of this chapter, we took a repetitive FlightTracker class and restructured it to ensure that its method signatures were more consistent and that common logic was reused wherever possible.

			Refactored code

			The final refactored code from this chapter is available in the https://github.com/PacktPublishing/Refactoring-with-CSharp repository inside of the Chapter04/Ch4RefactoredCode folder.

			Before we move on, we should ensure that all tests still pass by running the unit tests from the Test menu and then selecting the Run All Tests menu item.

			Summary

			In this chapter, we saw how various methods, constructors, and parameter refactorings can be applied to keep your code orderly. We saw how overloading and chaining together methods and constructors gives you more options, while renaming, adding, removing, and reordering parameters helps ensure consistency.

			Near the end of this chapter, we covered Actions, Funcs, static methods, and extension methods, and showed how thinking about your code in terms of small, reusable functions can help solve certain types of problems more effectively.

			In the next chapter, we’ll cover object-oriented refactoring techniques and revisit our parameter refactorings in this chapter by exploring how large sets of parameters can be brought under control by extracting classes.

			Questions

			
					Are there any areas of your code where you seem to be confused more frequently by the parameter ordering or naming?

					Can you think of any places in your code where slightly different actions are performed based on the same or similar conditions? If so, does moving to use an Action or a Func make sense?

					Does your code have a set of “helper methods” that might make sense to make static and put into a static class? If so, would switching to extension methods improve your code elsewhere?

			

			Further reading

			You can find more information about the materials discussed in this chapter at the following URLs:

			
					Refactor into pure functions: https://learn.microsoft.com/en-us/dotnet/standard/linq/refactor-pure-functions

					Action-Oriented C#: https://killalldefects.com/2019/09/15/action-oriented-c/

					Refactor using an extension method: https://learn.microsoft.com/en-us/dotnet/standard/linq/refactor-extension-method

					Named and Optional Arguments: https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/named-and-optional-arguments

			

		

	
		
			5

			Object-Oriented Refactoring

			In the last chapter, we saw how refactoring can help improve classes and their methods. In this chapter, we’ll explore the bigger picture with creative uses of object-oriented programming (OOP) to refactor a series of classes into more maintainable forms. These tools will help you perform larger and more impactful refactorings and make a bigger difference in improving your code.

			We’ll cover the following topics in this chapter:

			
					Organizing classes via refactoring

					Refactoring and inheritance

					Controlling inheritance with abstract

					Refactoring for better encapsulation

					Improving classes with interfaces and polymorphism

			

			Technical requirements

			The starting code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter05/Ch5BeginningCode folder.

			Refactoring the flight search system

			This chapter’s code focuses on a flight scheduling system for Cloudy Skies Airlines.

			The flight scheduling system is a simple one that tracks all active flights through a FlightScheduler class and allows external callers to search for flights of interest. This class in turn tracks flights through a collection of IFlightInfo instances, which may either be a PassengerFlightInfo or a FreightFlightInfo instance, depending on whether the flight carries passenger or freight.

			The high-level interactions of these classes can be seen in Figure 5.1:

			

			
				
					[image: Figure 5.1 – Classes involved in the Cloudy Skies Airline flight scheduling system]
				

			

			Figure 5.1 – Classes involved in the Cloudy Skies Airline flight scheduling system

			The code currently works and even uses polymorphism effectively to track a variety of different flights. That being said, there are some opportunities for improvement, as we’ll see. Throughout this chapter, we’ll make targeted improvements while demonstrating the breadth of refactoring possibilities present when using object-oriented programming.

			Organizing classes via refactoring

			It’s not uncommon for solutions to have organizational challenges such as misnamed files or types existing in the wrong file or namespace.

			These problems may seem small, but they can make it harder for developers to find the code they’re looking for – particularly when first joining the project.

			Let’s look at a few refactorings that help developers navigate code more easily.

			Moving classes to individual files

			One common mistake I’ve seen teams make is putting multiple types inside of the same file. Usually, a file starts with a single class or interface and then a developer decides to add a related type. Instead of putting the new type in a file of its own, the class gets added to the existing file. Once this happens for a few small classes, it tends to snowball after that with developers continuing to add new types to the file as time goes on.

			Types

			If you’re not familiar with the use of the word “type” in the .NET world, a type is a generic term that refers to anything supported by the common type system (CTS). Essentially, if you can use it to declare a variable, it’s probably a type. Some examples of types include classes, interfaces, structs, enums, and the various record type variants.

			The IFlightInfo.cs file from the Flight Scheduling System has a few different types defined in it:

			
public interface IFlightInfo {
 // Details omitted....
}
public class PassengerFlightInfo : IFlightInfo {
 // Details omitted...
}
public class FreightFlightInfo : IFlightInfo {
 // Details omitted...
}

			While this example might not seem so bad, having multiple types in a single file does cause a few problems:

			
					New developers who are looking for a specific type have trouble finding which file contains that type without using search features.

					Version control systems, such as git, track changes to each file. This can increase confusion when teams must merge code or even determine what changed in any given software release.

			

			The fix for this is to move each type to its own dedicated file. This can be done by going to the Quick Actions menu on a type whose name doesn’t match the file name. Next, select the Move type to [new file name].cs option as shown in Figure 5.2:

			
				
					[image: Figure 5.2 – Moving a type to its own file]
				

			

			Figure 5.2 – Moving a type to its own file

			Selecting this option removes the type from the original file and creates a new file containing only the type you selected.

			You’ll need to repeat this for every type that doesn’t match the name of the file in Visual Studio. One of the extra refactoring tools that ReSharper and Rider provide allows you to perform this refactoring for every type in the file, folder, or solution. This can be particularly handy if you encounter a single file with hundreds of types in it.

			Renaming files and classes

			Occasionally, you’ll find cases where a file and the type that it contains don’t match. This often happens when developers create a new class and then decide to rename it later without using the rename refactoring built into Visual Studio.

			The AirportInfo.cs file and its Airport class are an example of this:

			
namespace Packt.CloudySkiesAir.Chapter5.AirTravel;
public class Airport {
 public string Country { get; set; }
 public string Code { get; set; }
 public string Name { get; set; }
}

			Usually, the fix for this is to rename the file to match the name of the type (though occasionally you’ll determine the file was named correctly) and the class should be renamed to match the name of the file.

			With either option, open the Quick Actions menu on the type in question and select either Rename file or Rename type to ensure the file and type name match. See the following figure:

			
				
					[image: Figure 5.3 – Options to rename the file or rename the type]
				

			

			Figure 5.3 – Options to rename the file or rename the type

			I chose to rename the file to Airport.cs, as either option will ensure that the file and type have the same name. This naming consistency is a small improvement, but it helps developers navigate your project more easily over time.

			Changing namespaces

			.NET uses namespaces to organize types into a hierarchical structure. By convention, these namespaces should match the folders inside the project in Solution Explorer.

			The project will start with a namespace such as Packt.CloudySkiesAir.Chapter5, and each folder nested inside of a project adds to this namespace. For example, a Filters folder in that project should use a Packt.CloudySkiesAir.Chapter5.Filters namespace.

			When classes don’t use the expected namespace, it can lead to confusion.

			As a practical example, let’s look at the Airport.cs file in the root of the Chapter5 project as shown in Figure 5.4:

			
				
					[image: Figure 5.4 – A project with the Airport class directly nested inside of the project]
				

			

			Figure 5.4 – A project with the Airport class directly nested inside of the project

			In this scenario, you would expect the Airport class to live in the Packt.CloudySkiesAir.Chapter5 namespace. However, the file uses a different namespace, as shown in the following code:

			
namespace Packt.CloudySkiesAir.Chapter5.AirTravel;
public class Airport {
 public string Country { get; set; }
 public string Code { get; set; }
 public string Name { get; set; }
}

			This discrepancy can be fixed through manual editing of the namespace declaration or by using the Change namespace to match folder structure under Quick Action refactoring, as shown in Figure 5.5:

			
				
					[image: Figure 5.5 – Changing the namespace to match the folder structure]
				

			

			Figure 5.5 – Changing the namespace to match the folder structure

			I personally recommend using the Quick Actions refactoring instead of typing the new namespace name manually. When you do this, you’re less likely to make a typo. Additionally, the refactoring will add using statements to other files as needed to support the namespace change.

			Avoiding partial classes and regions

			Before we move on to refactoring and inheritance, I want to cover two related anti-patterns I’ve seen in C# code when dealing with large classes.

			When developers have large classes with many different blocks of related code, there’s a temptation to use several language features to make organizing the file easier.

			Many developers use the #region preprocessor directive to create regions of code that can expand and collapse.

			For example, you could use a statement such as #region Stuff I don't want to look at right now with a matching #endregion statement on its own line. This would create a collapsible region of code in the editor, as the collapsed region from lines 33–84 in Figure 5.6 illustrates:

			
				
					[image: Figure 5.6 – A collapsed region of code]
				

			

			Figure 5.6 – A collapsed region of code

			#region is viewed as a bad thing to rely on for code organization; it leads to extremely large classes instead of refactoring code into more maintainable patterns.

			So, why does it exist at all?

			The #region directive was introduced to help hide auto-generated code commonly built into older versions of .NET applications. This is code that developers were not expected to work with and often encouraged not to modify for fear of breaking things.

			Eventually, .NET got partial classes to help in scenarios that regions were previously used in.

			Partial classes are classes that are defined in multiple files within the same project. This will allow you to have FlightScheduler.ItemManagement.cs and FlightScheduler.Search.cs files that each contain parts of the larger class. This lets you define a large class over multiple files:

			
public partial class FlightScheduler {
 // Details omitted...
}

			Like region directives, partial classes are intended to support automatically generated code. While I personally prefer partial classes to #region directives, I view both as anti-patterns when they are applied to reducing pains caused by large classes.

			Usually, when your classes are big enough for you to want to consider #region or partial classes, you are violating the single responsibility principle and your class should be broken up into multiple smaller classes that are distinctly different from one another.

			We’ll discuss the single responsibility principle and other design principles in Chapter 8, Avoiding Code Anti-patterns with SOLID.

			Refactoring and inheritance

			Now that we’ve covered some of the ways refactoring can help organize your code, let’s dive into refactorings related to inheritance. This is a collection of refactorings that involve either overriding methods, introducing inheritance, or altering in-place inheritance relationships to improve the maintainability of code.

			Overriding ToString

			ToString is one of the four methods that any .NET object is guaranteed to have due to the virtual definition of ToString on System.Object. This method is used whenever an object is converted to a string and can be particularly handy for logging and debugging purposes.

			Sometimes overriding ToString can simplify your code in unexpected ways.

			Let’s look at the BuildFlightIdentifier method in FreightFlightInfo.cs. This method relies on the DepartureLocation and ArrivalLocation properties of type Airport to produce a string:

			FreightFlightInfo.cs

			
public string BuildFlightIdentifier() =>
 $"{Id} {DepartureLocation.Code}-" +
 $"{ArrivalLocation.Code} carrying " +
 $"{Cargo} for {CharterCompany}";

			It’s annoying to have to drill into these location properties to reach their Code property.

			If Airport overrides the ToString method and returns the airport code, we would be able to simplify the readability of our code:

			
public string BuildFlightIdentifier() =>
 $"{Id} {DepartureLocation}-{ArrivalLocation} " +
 $"carrying {Cargo} for {CharterCompany}";

			To do this, you can either go to Airport.cs and add the override manually or use the built-in refactoring option through the Generate overrides... refactoring (see Figure 5.7):

			
				
					[image: Figure 5.7 – Generating overrides on a class]
				

			

			Figure 5.7 – Generating overrides on a class

			From there, you’ll need to specify which methods or properties you want to override. As shown in the following image, any abstract or virtual member of a class you’re inheriting from will be available:

			
				
					[image: Figure 5.8 – Selecting the members to override]
				

			

			Figure 5.8 – Selecting the members to override

			Selecting ToString() and clicking OK generates a stubbed-out method that can be quickly replaced with an actual implementation.

			In this class, the ToString method should return the airport code:

			
public class Airport {
 public string Country { get; set; }
 public string Code { get; set; }
 public string Name { get; set; }
 public override string? ToString() => Code;
}

			With this override in place, existing code can still use the Code property without issues. However, any code that previously tried to write an Airport object to the console now will see its code instead of the namespace and name of the class.

			Note

			The default implementation of ToString in .NET is to return a string with the namespace and the name of the type. In this case that would have been Packt.CloudySkiesAir.Chapter5.AirTravel.Airport.

			Next, we should look at everywhere the Code property is currently being read from and see if it would be more readable to rely on the ToString override instead.

			You can do this in any edition of Visual Studio 2022 by right-clicking on the Code property declaration and choosing Find All References, as shown in Figure 5.9:

			
				
					[image: Figure 5.9 – The Find All References context menu option]
				

			

			Figure 5.9 – The Find All References context menu option

			This opens a new pane with all references of that property highlighted:

			
				
					[image: Figure 5.10 – Find All References results]
				

			

			Figure 5.10 – Find All References results

			You can then modify these areas to use ToString where appropriate, such as in this modification to PassengerFlightInfo:

			
public string BuildFlightIdentifier() =>
 $"{Id} {DepartureLocation}-{ArrivalLocation} " +
 $"carrying {_passengers} people";

			One added benefit of overriding ToString in your objects is an improved display of the class when viewing the Visual Studio debugger:

			
				
					[image: Figure 5.11 – ToString override displaying in debugging tools]
				

			

			Figure 5.11 – ToString override displaying in debugging tools

			We’ll explore debugging more in Chapter 10: Defensive Coding Techniques.

			Generating equality methods

			In C#, equality for reference types (such as classes) is done using reference equality –determining whether the two objects are located at the same location in the heap.

			Sometimes it’s more convenient to compare different properties on two objects to see if their values are equivalent, even if the two objects represent two separate locations on the heap.

			The following code from the FlightScheduler class shows how its Search method checks to make sure the airport you’re searching for has the same airport code and country. Note the repeated logic when determining if two airports are equivalent:

			
if (depart != null) {
 results = results.Where(f =>
 f.DepartureLocation.Code == depart.Code &&
 f.DepartureLocation.Country == depart.Country
);
}
if (arrive != null) {
 results = results.Where(f =>
 f.ArrivalLocation.Code == arrive.Code &&
 f.ArrivalLocation.Country == arrive.Country
);
}

			This code could be simplified by overriding equality members with our own customized implementation.

			Equality members

			.NET provides two methods to determine equality: Equals and GetHashCode. The Equals method determines whether two objects are equivalent while GetHashCode is used to determine which major “bucket” an object is sorted into for hashing algorithms, such as those used in Dictionary and HashSet.

			You should never override only one of these two methods; whenever you override Equals, you will need to override GetHashCode as well. Furthermore, you want to make sure you use a good implementation of GetHashCode that evenly and consistently distributes objects in your class into different hash values.

			.NET also provides an IEquatable<T> interface that you can implement for strongly typed equality comparisons, which can improve performance. Implementing IEquatable<T> is generally recommended when overriding equality members but is not detailed in this book. See the Further reading section for more information.

			Equality and hash codes can get complex very quickly, but thankfully we have some very good tooling for generating equality members in Visual Studio. Just select your class and then choose Generate Equals and GetHashCode… from the Quick Actions menu, as shown in Figure 5.12:

			
				
					[image: Figure 5.12 – Generating equality member overrides]
				

			

			Figure 5.12 – Generating equality member overrides

			Once you select this, Visual Studio will ask you what members should contribute to equality and hash code checks, as shown in Figure 5.13:

			
				
					[image: Figure 5.13 – Selecting equality members]
				

			

			Figure 5.13 – Selecting equality members

			Select the members that must be equal and click OK to generate your overrides:

			Airport.cs

			
public class Airport {
 public string Country { get; set; }
 public string Code { get; set; }
 public string Name { get; set; }
 public override bool Equals(object? obj) {
 return obj is Airport airport &&
 Country == airport.Country &&
 Code == airport.Code;
 }
 public override int GetHashCode() {
 return HashCode.Combine(Country, Code);
 }
 public override string? ToString() => Code;
}

			Here, Visual Studio generated a pattern matching the Equals implementation that compares the relevant properties. Additionally, the GetHashCode implementation uses the newer HashCode.Combine method to safely simplify the process of hash code generation for you.

			Updating equality members

			If you ever add new properties to your class that should factor into equality checks, be sure to update Equals and GetHashCode to include these properties.

			With custom equality members in place, code that previously checked both the airport Code and Country can be simplified to use the equality operator (==) instead:

			FlightScheduler.cs – Search

			
if (depart != null) {
 results=results.Where(f=> f.DepartureLocation == depart);
}
if (arrive != null) {
 results=results.Where(f=> f.ArrivalLocation == arrive);
}

			Overriding equality members can be handy when you have many similar objects on the heap that contain identical values. This can happen when working with web services or other places where deserialization occurs.

			Equality and records

			You don’t always need to override equality members to get value-based equality. In Chapter 10: Defensive Coding Techniques, we’ll explore strategic uses of the record keyword for controlling equality. In fact, whenever I find myself thinking about overriding equality members, I usually decide to make my class a record instead.

			Extracting a base class

			Sometimes you’ll encounter cases with a high degree of duplication between classes. These classes are conceptually related and share not just similar member signatures, but identical implementations of those members.

			In these cases, it often makes sense to introduce a base class that defines the common shared code. Inheritance then allows us to remove the common code from multiple classes in the system and maintain it in a centralized place.

			In our flight scheduler example (see Figure 5.14), the passenger and freight flight classes have several shared properties:

			
				
					[image: Figure 5.14 – Shared members between freight and passenger flights]
				

			

			Figure 5.14 – Shared members between freight and passenger flights

			To address this, go to either of the two classes and choose Extract base class... from the Quick Actions menu:

			
				
					[image: Figure 5.15 – Extracting a base class]
				

			

			Figure 5.15 – Extracting a base class

			Next, name the new class and select which members you want to move into it, as shown in Figure 5.16. You can also decide whether you want any of those members to be declared as abstract, but note that this will mark your class as abstract as well.

			
				
					[image: Figure 5.16 – Configuring the new base class]
				

			

			Figure 5.16 – Configuring the new base class

			Once you click OK, the new class will be created:

			FlightInfoBase.cs

			
public class FlightInfoBase {
 public Airport ArrivalLocation { get; set; }
 public DateTime ArrivalTime { get; set; }
 public Airport DepartureLocation { get; set; }
 public DateTime DepartureTime { get; set; }
 public TimeSpan Duration => DepartureTime - ArrivalTime;
 public string Id { get; set; }
}

			The class you started with now inherits from this new class and the non-abstract members you selected have been removed from the file:

			PassengerFlightInfo.cs

			
public class PassengerFlightInfo : FlightInfoBase,
 IFlightInfo {
 private int _passengers;
 public void Load(int passengers) =>
 _passengers = passengers;
 public void Unload() =>
 _passengers = 0;
 public string BuildFlightIdentifier() =>
 $"{Id} {DepartureLocation}-{ArrivalLocation} carrying"
 + $" {_passengers} people";
 public override string ToString() =>
 BuildFlightIdentifier();
}

			Extracting a base class can be very helpful for promoting code reuse, but it’s only half of the refactoring work; extracting a base class did not modify your other class.

			If you want the related flight class to also inherit from the new class, you’ll have to make that change manually by specifying the base class and removing any members that were “pulled up” to that class:

			FreightFlightInfo.cs

			
public class FreightFlightInfo : FlightInfoBase,
 IFlightInfo {
 public string CharterCompany { get; set; }
 public string Cargo { get; set; }
 public string BuildFlightIdentifier() =>
 $"{Id} {DepartureLocation}-{ArrivalLocation} " +
 $"carrying {Cargo} for {CharterCompany}";
 public override string ToString() =>
 BuildFlightIdentifier();
}

			The result of this is that our two flight classes are now focused on the things that are distinct to them. Additionally, if new logic needs to be added for every flight, it can now be added to the base class and all inheriting classes will receive it.

			Moving interface implementations up the inheritance tree

			One oddity you might have noticed in the last two code listings is that even though FreightFlightInfo and PassengerFlightInfo both now inherit from FlightInfoBase, they both separately implement the IFlightInfo interface, as shown in Figure 5.17:

			
				
					[image: Figure 5.17 – Passenger and Freight flights separately implementing IFlightInfo]
				

			

			Figure 5.17 – Passenger and Freight flights separately implementing IFlightInfo

			When every class inheriting from a base class implements an interface, there’s usually a good chance that you can pull the interface implementation up into the base class itself.

			In this case, FlightInfoBase has all required members defined by the IFlightInfo interface. So, it makes sense to implement the interface, as shown here:

			FlightInfoBase.cs

			
public class FlightInfoBase : IFlightInfo {
 public Airport ArrivalLocation { get; set; }
 public DateTime ArrivalTime { get; set; }
 public Airport DepartureLocation { get; set; }
 public DateTime DepartureTime { get; set; }
 public TimeSpan Duration => DepartureTime – ArrivalTime;
 public string Id { get; set; }
}

			With the change in place, we can remove the IFlightInfo implementation from both PassengerFlightInfo and FreightFlightInfo. This simplifies the class definitions while still inheriting the interface implementation, as pictured here:

			
				
					[image: Figure 5.18 – The IFlightInfo interface implementation “pulled up” into FlightInfoBase]
				

			

			Figure 5.18 – The IFlightInfo interface implementation “pulled up” into FlightInfoBase

			By pulling the interface up into the base class, we now guarantee that any class inheriting from this class will also implement the IFlightInfo interface.

			Controlling inheritance with abstract

			Now that we’ve covered some refactoring patterns around inheritance, let’s look at using abstract classes and other C# features to restrict our classes and ensure they’re used appropriately.

			Communicating intent with abstract

			One quirk about our current design is that it is possible to instantiate a new instance of FlightInfoBase simply by writing the following code:

			
FlightInfoBase flight = new FlightInfoBase();

			While it might not make sense to you – for a new flight to exist that isn’t explicitly a passenger or freight flight, because the FlightInfoBase class is not marked as abstract – there’s nothing preventing anyone from instantiating it.

			To mark a class as abstract, add the abstract keyword to its signature:

			FlightInfoBase.cs

			
public abstract class FlightInfoBase : IFlightInfo {
 public Airport ArrivalLocation { get; set; }
 public DateTime ArrivalTime { get; set; }
 public Airport DepartureLocation { get; set; }
 public DateTime DepartureTime { get; set; }
 public TimeSpan Duration => DepartureTime - ArrivalTime;
 public string Id { get; set; }
}

			Marking classes as abstract when you do not intend for anyone to instantiate them accomplishes a few things:

			
					It communicates that the class is not intended to be instantiated

					The compiler now prevents others from instantiating your class

					As we’ll see next, it allows you to add abstract members to your class

			

			Introducing abstract members

			Now that FlightInfoBase is abstract, it opens new possibilities for refactoring.

			For example, both FreightFlightInfo and PassengerFlightInfo have BuildFlightIdentifier methods and ToString overrides.

			
				
					[image: Figure 5.19 – Repeated members in flight info classes]
				

			

			Figure 5.19 – Repeated members in flight info classes

			While the implementation details of the BuildFlightIdentifier method differ, ToString overrides the return of the result of BuildFlightIdentifier.

			We can take advantage of these commonalities by pulling both methods into the base class using Pull [Member name] up..., as shown in Figure 5.20:

			
				
					[image: Figure 5.20 – Pulling members up to the base type]
				

			

			Figure 5.20 – Pulling members up to the base type

			Next, select the members you want to pull up into the parent class, making sure to check the Mark abstract checkbox for any member you want the definition of to be pulled up without also having its implementation pulled up.

			
				
					[image: Figure 5.21 – Selecting destination and making members abstract]
				

			

			Figure 5.21 – Selecting destination and making members abstract

			The result of this is that FlightInfoBase now has the ToString override as well as an abstract definition for the BuildFlightIdentifier:

			FlightInfoBase.cs

			
public abstract class FlightInfoBase : IFlightInfo {
 // Other members omitted...
 public abstract string BuildFlightIdentifier();
 public override string ToString() =>
 BuildFlightIdentifier();
}

			With BuildFlightIdentifier abstract, our original method call remains in place, but it is now marked as an override:

			PassengerFlightInfo.cs

			
public class PassengerFlightInfo : FlightInfoBase {
 // Other members omitted...
 public override string BuildFlightIdentifier() =>
 $"{Id} {DepartureLocation}-{ArrivalLocation} carrying"
 + $" {_passengers} people";
}

			Unfortunately, the Pull Members Up refactoring does not modify other classes that also inherit from the same base class, so you now must add the override manually in the other flight class:

			
public class FreightFlightInfo : FlightInfoBase {
 // Other members omitted...
 public override string BuildFlightIdentifier() =>
 $"{Id} {DepartureLocation}-{ArrivalLocation} " +
 $"carrying {Cargo} for {CharterCompany}";
}

			Making this refactoring has simplified our code: the individual flight classes no longer need to override ToString. More importantly, if we ever add a new type of flight, the compiler will force it to provide a valid flight identifier through a BuildFlightIdentifier override.

			Sealed methods and classes

			While we’re talking about abstract, virtual, and overriding methods, we should touch on sealed. The sealed keyword can be applied to a class or any overridden method in a syntax similar to abstract syntax. The sealed keyword has almost the opposite effect. When a class is marked with sealed, it cannot be inherited from. When a method is marked with sealed, that method may not be overridden further in inheriting classes. Both uses of the sealed keyword exist to protect what a class does from external modification. Additionally, there can be some performance benefits to marking members as sealed.

			Converting abstract methods to virtual methods

			Occasionally, you’ll mark a method as abstract and later realize that many overrides of this method have similar implementations. When this occurs, it can make sense to move the method from abstract to virtual in order to provide a base implementation that others can optionally override.

			Our FlightInfoBase class defines BuildFlightIdentifier as abstract:

			
public abstract string BuildFlightIdentifier();

			This would imply that each implementation of this method should be different from the others. However, let’s take a look at the actual implementations of this:

			
					PassengerFlightInfo.cs
public override string BuildFlightIdentifier() =>

 $"{Id} {DepartureLocation}-{ArrivalLocation}

 carrying " +

 $"{_passengers} people";

					FreightFlightInfo.cs
public override string BuildFlightIdentifier() =>

 $"{Id} {DepartureLocation}-{ArrivalLocation}

 carrying " +

 $"{Cargo} for {CharterCompany}";

			

			While the strings for both methods are built, they both start with the flight identifier, the departure airport, and the arrival airport.

			If we ever wanted to change the way all flights display this basic information, we’d need to change every class inheriting from FlightInfoBase.

			Instead, we can modify FlightInfoBase to provide a good starting point with this shared information:

			
public virtual string BuildFlightIdentifier() =>
 $"{Id} {DepartureLocation}-{ArrivalLocation}";

			With this change, two things have happened:

			
					New flight classes no longer need to override BuildFlightIdentifier

					Existing overrides can call base.BuildFlightIdentifier() to get the common format of the basic flight information

			

			In our case, it makes sense to continue to override the method, but we can now change the code to take advantage of common formatting at the base level:

			
					PassengerFlightInfo.cs
public override string BuildFlightIdentifier() =>

 base.BuildFlightIdentifier() +

 $" carrying {_passengers} people";

					FreightFlightInfo.cs
public override string BuildFlightIdentifier() =>

 base.BuildFlightIdentifier() +

 $" carrying {Cargo} for {CharterCompany}";

			

			Combining our abstract class with a virtual method lets us keep flight formatting logic in one centralized place while still giving us the freedom to extend the class and modify its behavior.

			Refactoring for better encapsulation

			Another core tenet of object-oriented programming is encapsulation. With encapsulation, you assert control of the data in your classes and ensure others work with data in ways that make sense both immediately and as the code grows over time.

			The following refactorings deal with the various pieces of data composing classes along with the data passed along to methods as parameters.

			Encapsulating fields

			The simplest encapsulation refactoring allows you to wrap all uses of a field into a property.

			In the following code example, the PassengerFlightInfo class has a _passengers field storing the count of passengers on the flight, and this field is used throughout the class when referring to the passenger count:

			
public class PassengerFlightInfo : FlightInfoBase {
 private int _passengers;
 public void Load(int passengers) =>
 _passengers = passengers;
 public void Unload() =>
 _passengers = 0;
 public override string BuildFlightIdentifier() =>
 base.BuildFlightIdentifier() +
 $" carrying {_passengers} people";
}

			This code isn’t bad, and I’d be fine with this logic in a production application. However, it does have a few potential drawbacks:

			
					Nothing outside of the class can read the count of passengers on the flight.

					Several places modify the _passengers field. If we wanted to add validation or do something every time the value changes, we’d have to modify several different methods.

			

			Wrapping all uses of the _passengers field into a property can help with this by giving us a centralized place to perform validation and a property for things outside of the class to read.

			You can use the Encapsulate field refactoring in the Quick Action menu to quickly wrap an existing field into a property:

			
				
					[image: Figure 5.22 – Encapsulating the passengers field into a property]
				

			

			Figure 5.22 – Encapsulating the passengers field into a property

			This adds a property that your class can use to read and modify the value in a centralized location:

			
public sealed class PassengerFlightInfo : FlightInfoBase {
 private int _passengers;
 public int Passengers {
 get => _passengers;
 set => _passengers = value;
 }
 public void Load(int passengers) =>
 Passengers = passengers;
 public void Unload() =>
 Passengers = 0;
 public override string BuildFlightIdentifier() =>
 base.BuildFlightIdentifier() +
 $" carrying {Passengers} people";
}

			Keep in mind that this refactoring does make the setter public by default, which would allow code outside of the class to modify the passengers value. If you don’t want this, you can mark the property as having a private or protected set instead.

			Wrapping parameters into a class

			As software systems grow, more features get added along with the code needed to support them. This can cause methods that were once simple to grow significantly in complexity and the information they require to operate.

			It’s not unusual for a method that took three parameters in the early days of a project to suddenly find itself needing seven or eight parameters to function after a significant amount of development occurs.

			FlightScheduler’s search method is an example of this since there are so many things that can factor into a flight search:

			FlightScheduler.cs

			
public IEnumerable<IFlightInfo> Search(
 Airport? depart, Airport? arrive,
 DateTime? minDepartTime, DateTime? maxDepartTime,
 DateTime? minArriveTime, DateTime? maxArriveTime,
 TimeSpan? minLength, TimeSpan? maxLength) {

			This method currently takes in eight different pieces of information, which makes calls to the method extremely hard to read:

			
IEnumerable<IflightInfo> flights = scheduler.Search(cmh,
 dfw, new DateTime(2024,3,1), new DateTime(2024,3,5),
 new DateTime(2024,3,10), new DateTime(2024,3,13),
 TimeSpan.FromHours(2.5), TimeSpan.FromHours(4.5));

			While I made that example a little hard to read on purpose, in my experience, complex method signatures exist in the real world. These complex methods can lead to subtle bugs due to confusion over which value you’re passing to which parameter as you read a long list of parameters.

			Looking at this code, it’s easy to imagine new things that someone might want to search for with regard to flights, including low and high prices, in-flight beverage service, free Wi-Fi, and the type of aircraft being flown. Each one of these new search features would further expand both the method definition and every caller to the method.

			One common solution to this problem is to encapsulate related pieces of information into a new class. In our case, we can define a new FlightSearch class to wrap everything related to searching for a flight:

			FlightSearch.cs

			
public class FlightSearch {
 public Airport? Depart { get; set; }
 public Airport? Arrive { get; set; }
 public DateTime? MinArrive { get; set; }
 public DateTime? MaxArrive { get; set; }
 public DateTime? MinDepart { get; set; }
 public DateTime? MaxDepart { get; set; }
 public TimeSpan? MinLength { get; set; }
 public TimeSpan? MaxLength { get; set; }
}

			This new class allows us to track information on searches in a centralized place and significantly improves the signature of the search method:

			FlightScheduler.cs

			
public IEnumerable<IFlightInfo> Search(FlightSearch s) {
 IEnumerable<IFlightInfo> results = _flights;
 if (s.Depart != null) {
 results =
 results.Where(f => f.DepartureLocation == s.Depart);
 }
 // Other filters omitted for brevity...
 return results;
}

			Adding the FlightSearch class shrunk the method signature from eight parameters to just one. Additionally, if new search logic needs to be added in the future, these pieces of information can be added to the FlightSearch object without needing to further modify the Search method’s signature.

			Unfortunately, changing the signature of the search method breaks callers to the method until they are updated to use the new search object. To fix this, you have a few options:

			
					Update all usages of the Search method to pass a FlightSearch object

					Create a temporary overload of the Search method that passes a FlightSearch object to the new method.

			

			The first option is somewhat self-explanatory, so let’s take a look at the second option.

			Here, we’ll create an overload of the Search method that takes in the eight old parameters, creates a FlightSearch object, and passes it to the new method:

			
[Obsolete("Use the overload that takes a FlightSearch")]
public IEnumerable<IFlightInfo> Search(
 Airport? depart, Airport? arrive,
 DateTime? minDepartTime, DateTime? maxDepartTime,
 DateTime? minArriveTime, DateTime? maxArriveTime,
 TimeSpan? minLength, TimeSpan? maxLength) {
 FlightSearch searchParams = new() {
 Arrive = arrive,
 MinArrive = minArriveTime,
 MaxArrive = maxArriveTime,
 Depart = depart,
 MinDepart = minDepartTime,
 MaxDepart = maxDepartTime,
 MinLength = minLength,
 MaxLength = maxLength
 };
 return Search(searchParams);
}

			Note that we marked this method as obsolete. This will warn programmers trying to use it and tell them what method to use instead (see Figure 5.23). Marking things with the Obsolete attribute helps guide developers towards the more recent version. Typically, a method will be marked as obsolete and then removed from the project later.

			
				
					[image: Figure 5.23 – An obsolete warning telling the developer which method to use instead]
				

			

			Figure 5.23 – An obsolete warning telling the developer which method to use instead

			The result of this is that we were able to simplify our method and provide a safe place for the data that the method needs to grow over time by introducing a class.

			Introducing classes for common sets of parameters significantly speeds up development time for teams, particularly when these same objects are passed around throughout the system.

			Wrapping properties into a class

			Sometimes you’ll find classes with sets of properties that are related to each other. For example, the FlightInfoBase class needs to track both the airport a plane departs from or arrives at and the time and date of that event:

			FlightInfoBase.cs

			
public abstract class FlightInfoBase : IFlightInfo {
 public Airport ArrivalLocation { get; set; }
 public DateTime ArrivalTime { get; set; }
 public Airport DepartureLocation { get; set; }
 public DateTime DepartureTime { get; set; }
 // Other members omitted ...
}

			In this scenario, information about the arrival and departure need both their Airport and the associated DateTime to make sense. If we needed to track the terminal, gate, or runway in the future, we’d need to add in properties for both arrival and departure.

			Because these sets of properties grow together, it makes sense to wrap them together in their own AirportEvent class:

			
public class AirportEvent {
 public Airport Location { get; set; }
 public DateTime Time { get; set; }
}

			Now, if we need to expand the information we track on each leg of a flight, we can add it to this class and it will be available to both arrivals and departures.

			Of course, for this to fully work we’ll need to modify FlightInfoBase to use the new class instead of tracking its properties separately:

			FlightInfoBase.cs

			
public abstract class FlightInfoBase : IFlightInfo {
 public AirportEvent Arrival { get; set; }
 public AirportEvent Departure { get; set; }
 public TimeSpan Duration => Departure.Time-Arrival.Time;
 public string Id { get; set; }
 public virtual string BuildFlightIdentifier() =>
 $"{Id} {Departure.Location}-{Arrival.Location}";
 public sealed override string ToString() =>
 BuildFlightIdentifier();
}

			However, this change on its own won’t be enough until we update the IFlightInfo interface to match our new signature:

			IFlightInfo.cs

			
public interface IFlightInfo {
 string Id { get; }
 AirportEvent Arrival { get; set; }
 AirportEvent Departure { get; set; }
 TimeSpan Duration { get; }
}

			With this change, the compiler is now satisfied with our flight classes, but there are now compiler errors in FlightScheduler’s ScheduleFlight method:

			FlightScheduler.cs

			
PassengerFlightInfo flight = new() {
 Id = id,
 ArrivalLocation = arrive,
 ArrivalTime = arriveTime,
 DepartureLocation = depart,
 DepartureTime = departTime,
};

			This method is still trying to set the old properties, so it will need to be updated to use AirportEvent objects instead:

			
PassengerFlightInfo flight = new() {
 Id = id,
 Arrival = new AirportEvent {
 Location = arrive,
 Time = arriveTime,
 },
 Departure = new AirportEvent {
 Location = depart,
 Time = departTime,
 },
};

			FlightScheduler also has a few more compiler errors in the search method due to uses of the old properties:

			
if (s.Depart != null) {
 results =
 results.Where(f => f.DepartureLocation == s.Depart);
}

			These pieces of code will need to reference the new properties instead:

			
if (s.Depart != null) {
 results =
 results.Where(f => f.Departure.Location == s.Depart);
}

			You may have noticed that for this simple change of wrapping properties together into a new object we had to make a number of changes just to get the code to compile again.

			This can be normal when making structural changes like this, but the compiler supports you on your refactoring journey here by ensuring your code makes structural sense as you make your changes. In fact, I wouldn’t be brave enough to make some of these changes without being able to lean a little on the compiler to help me find places where I missed using the old way of doing things. I would encourage you to view the compiler as an ally on your refactoring journey.

			Favoring composition over inheritance

			Let’s close our discussion on encapsulation by exploring the directive to favor composition over inheritance. This was a phrase I heard a lot in the early days of my career, though it took me a while to grasp its meaning and implications.

			By favoring composition over inheritance, we make a conscious decision that classes should have something instead of being something. If a class has another object it can hand off a responsibility instead of relying on inheritance to make the class more special and able to handle a specific scenario.

			Let’s look at the flight scheduling system, for example.

			Cloudy Skies Airlines has decided it wants to offer charter flights. These are small flights that carry both passengers and cargo paid for by various companies. In this case, a charter flight is neither a passenger flight nor a freight flight, but in fact a bit of both.

			A direct implementation of this using inheritance would look something like this:

			
public class CharterFlightInfo : FlightInfoBase {
 public string CharterCompany { get; set; }
 public string Cargo { get; set; }
 public int Passengers { get; set; }
 public override string BuildFlightIdentifier() =>
 base.BuildFlightIdentifier() +
 $" carrying {Cargo} for {CharterCompany}" +
 $" and {Passengers} passengers";
}

			Note here that a single class has both cargo and passengers.

			On its own, this isn’t so bad, but what if we wanted our charter flight to hold multiple pieces of cargo? We’d now need to have a collection of cargo strings with their charter companies (which might be different from one another).

			Any customizations to this cargo or how it would be displayed would require either additional customization of this class or a separate but related class also inheriting from FlightInfoBase. It’s not too hard to imagine this system spawning a swarm of related classes such as BulkCargoFlightInfo, ExpressFlightInfo, MedicalFlightInfo, HazardousCargoFlightInfo, and more.

			While this inheritance-based approach would work, using composition will result in more maintainable code and fewer classes.

			Composition lets us say that an individual flight is composed of cargo items. Cargo items can be defined using a simple CargoItem class:

			
public class CargoItem {
 public string ItemType { get; set; }
 public int Quantity { get; set; }
 public override string ToString() =>
 $"{Quantity} {ItemType}";
}

			This simple approach stores the item type and its quantity and provides a string representation of the two.

			We can then incorporate this into an alternative version of CharterFlightInfo:

			
public class CharterFlightInfo : FlightInfoBase {
 public List<CargoItem> Cargo { get; } = new();
 public override string BuildFlightIdentifier() {
 StringBuilder sb = new(base.BuildFlightIdentifier());
 if (Cargo.Count != 0) {
 sb.Append(" carrying ");
 foreach (var cargo in Cargo) {
 sb.Append($"{cargo}, ");
 }
 }
 return sb.ToString();
 }
}

			This approach allows a charter flight to be composed of different cargo items. Each item is then displayed in the BuildFlightIdentifier method using its ToString method. See the following diagram:

			
				
					[image: Figure 5.24 – CharterFlightInfo is composed of CargoItems]
				

			

			Figure 5.24 – CharterFlightInfo is composed of CargoItems

			Composing our charter flight with CargoItems gives us additional flexibility. Not only does this arrangement pattern allow a charter flight to have multiple cargo items, but it also allows it to do so without you having to declare different classes for different cargo loads.

			Improving classes with interfaces and polymorphism

			We’re nearly at the close of this chapter on object-oriented refactoring. However, before we close the chapter, let’s discuss a few places where introducing interfaces and polymorphism can help further improve our code.

			Extracting interfaces

			At the moment, our CharterFlightInfo class stores a list of CargoItems representing its cargo:

			
public class CharterFlightInfo : FlightInfoBase {
 public List<CargoItem> Cargo { get; } = new();
 // Other members omitted...
}

			Each cargo item the charter flight includes must be a CargoItem or something that inherits from it. For example, if we were to create the HazardousCargoItem we discussed in the last section and try to store it in the cargo collection, it must inherit from CargoItem to compile.

			In many systems, you don’t want to force people to inherit from your classes if they want to customize the system’s behavior. In these places, it can be helpful to introduce an interface.

			Let’s do that with our CargoItem class by selecting the class and then choosing Extract interface… from the Quick Actions menu.

			
				
					[image: Figure 5.25 – Extracting an interface]
				

			

			Figure 5.25 – Extracting an interface

			Once you’ve done this, as shown in Figure 5.25, you now need to specify which members of the class should be included in the interface as well as what the interface should be called:

			
				
					[image: Figure 5.26 – Customizing the extracted interface]
				

			

			Figure 5.26 – Customizing the extracted interface

			Name your interface ICargoItem, select both ItemType and Quantity, and then click OK. This will generate a new ICargoItem interface in a new file:

			
public interface ICargoItem {
 string ItemType { get; set; }
 int Quantity { get; set; }
}

			This will also modify CargoItem to implement this interface:

			
public class CargoItem : ICargoItem {
 public string ItemType { get; set; }
 public int Quantity { get; set; }
 public override string ToString() =>
 $"{Quantity} {ItemType}";
}

			Note that by default, extracting an interface will introduce both getters and setters on properties. If you do not need your interface to expose a way of modifying a property, you can remove the set from the property definition in the interface:

			
public interface ICargoItem {
 string ItemType { get; }
 int Quantity { get; }
}

			Removing the set does not prevent you from having a setter on your property in CargoItem; it just means you’re not required to have a setter on the property.

			With our new interface in hand, let’s go in and modify CharterFlightInfo to store ICargoItems instead of CargoItems:

			
public class CharterFlightInfo : FlightInfoBase {
 public List<ICargoItem> Cargo { get; } = new();
 // Other members omitted...
}

			This change allows us to store anything that implements the interface and improves the flexibility of what CharterFlightInfo can store. However, this does introduce another interface to your code, which slightly increases the complexity and can slow down development time in the long run.

			Be careful when introducing interfaces. Interfaces that exist for the sake of added abstraction will ultimately do more harm than good in your application. However, interfaces that are implemented by more than one class or designed to give another set of developers greater freedom or flexibility can ultimately do a lot of good in a software system.

			We’ll talk more about the appropriate place for interfaces in Chapter 10 when we explore SOLID. For now, let’s move on to a newer feature in C# interfaces.

			Providing default interface implementations

			While we’re exploring interfaces, let’s see how default interface implementations can simplify the experience of implementing an interface.

			Default interface implementations allow you to provide a default implementation inside the interface. When a class chooses to implement this interface, it is not forced to provide implementations of methods with default implementations.

			Let’s see what this means by adding a ManifestText property with a default getter and a LogManifest method with a default implementation to ICargoItem:

			
public interface ICargoItem {
 string ItemType { get; }
 int Quantity { get; }
 string ManifestText => $"{ItemType} {Quantity}";
 void LogManifest() {
 Console.WriteLine(ManifestText);
 }
}

			By adding these new members to the interface, we’d normally break anything that implemented the interface, such as the CargoItem class, unless it had those members. However, because we provided a default implementation of both properties, CargoItem no longer must provide implementations. Instead, it effectively inherits these default implementations.

			We can still provide a version of these new members. If we did, that version would be used instead of the default implementation:

			CargoItem.cs

			
public class CargoItem : ICargoItem {
 public string ItemType { get; set; }
 public int Quantity { get; set; }
 public void LogManifest() {
 Console.WriteLine($"Customized: {ToString()}");
 }
 public override string ToString() =>
 $"{Quantity} {ItemType}";
}

			I don’t like default interface implementations very much because they confuse the concept of an interface with a contract to provide certain members.

			However, I must concede that when adding a simple member to an interface, it sometimes makes sense to add a default implementation so that you don’t need to change existing implementations of the interface. This can save you from having to add the same code to many different implementations of your interface throughout your solution. Additionally, default interface implementations reduce the work needed for classes trying to implement the interface by providing a default implementation.

			Introducing polymorphism

			Whenever you are working with an interface, you are intentionally supporting polymorphism in your application. This is the ability to treat different objects based on their similarities instead of on their differences.

			The ICargoItem approach introduced earlier with charter flights is an example of polymorphism. A charter flight doesn’t care about what type of cargo it has as long as the cargo implements the interface. This means that we can load a charter flight full of different types of cargo and the class works fine with them.

			The chapter’s code has another place that could strongly benefit from polymorphism: the FlightScheduler Search method:

			
public IEnumerable<IFlightInfo> Search(FlightSearch s) {
 IEnumerable<IFlightInfo> results = _flights;
 if (s.Depart != null) {
 results =
 results.Where(f => f.Departure.Location == s.Depart);
 }
 // Many filters omitted...
 if (s.MaxLength != null) {
 results =
 results.Where(f => f.Duration <= s.MaxLength);
 }
 return results;
}

			This method has some very repetitive code (much of it omitted) that checks to see if the search object specifies a property. If the property was specified, the potential results are filtered down to only include those that match the filter.

			The search method uses this approach to filter based on:

			
					Departure and arrival locations

					Minimum/maximum departure time

					Minimum/maximum arrival time

					Minimum/maximum flight length

			

			It’s not too hard to imagine new things we might filter for, such as the price of the flight, whether the flight has a beverage service or even the type of aircraft.

			An alternative approach would be to take in a collection of filter objects. These filter objects would determine whether each flight should be included in the results through a common FlightFilterBase class and a ShouldInclude method:

			
public abstract class FlightFilterBase {
 public abstract bool ShouldInclude(IFlightInfo flight);
}

			With this change, Search could be modified to loop over all filters and only include results that pass through all the provided filters:

			
List<IFlightInfo> Search(List<FlightFilterBase> rules) =>
 _flights.Where(f => rules.All(r => r.ShouldInclude(f)))
 .ToList();

			This cuts our Search method down from over 40 lines long to only 3 lines of code through polymorphism.

			Alternative implementation

			An interface would also work fine instead of an abstract base class.

			By following this design, we can create a series of classes that inherit from FlightFilterBase to provide specific filtering capabilities:

			
				
					[image: Figure 5.27 – Distinct filter classes to help simplify our search code]
				

			

			Figure 5.27 – Distinct filter classes to help simplify our search code

			We now have dedicated filters that filter out flights that don’t match their specific criterion. For example, the AirportFilter would filter out flights that don’t specify an airport:

			
public class AirportFilter : FlightFilterBase {
 public bool IsDeparture { get; set; }
 public Airport Airport { get; set; }
 public override bool ShouldInclude(IFlightInfo flight) {
 if (IsDeparture) {
 return flight.Departure.Location == Airport;
 }
 return flight.Arrival.Location == Airport;
 }
}

			Each individual filter class is small and easy to understand, maintain, and test.

			Additionally, if we want to add a new way of filtering flights in the future, all we need to do is add a new class inheriting from FlightFilterBase. No modifications would be needed for the Search method to support this because all the method needs is a collection of individual filters. The Search method doesn’t need to know which filters are involved – it just needs to call the ShouldInclude method and interpret the result.

			I find a lot of beauty in polymorphic solutions and have found my programming style changing over the years in search of more opportunities to take advantage of polymorphism through inheritance or interfaces.

			Reviewing and testing our refactored code

			With these changes made, let’s take a step back and look at the result.

			We took a flight search system and used object-oriented programming techniques to improve its flexibility and maintainability by doing the following:

			
					Reorganizing the code into appropriate files and namespaces

					Introducing a base class and improving code reuse in flight information

					Controlling a large number of parameters by moving them into a new class

					Introducing another new class to manage common information about airport events including both an airport and a time component

					Adding a charter flight class with a flexible cargo tracking system

					Introducing a polymorphic way of searching flights that will be more flexible and maintainable over time

			

			Refactored code

			The final refactored code from this chapter is available in the https://github.com/PacktPublishing/Refactoring-with-CSharp repository inside of the Chapter05/Ch5RefactoredCode folder.

			As always, refactoring should never be done without testing the code to make sure that no new defects were introduced in the refactoring process. Running the tests (see Figure 5.28) provided in the solution shows a full slate of passing tests, which will suffice for now until we get to Part 2 and explore testing in more depth.

			

			
				
					[image: Figure 5.28 – Test Explorer showing that all tests pass]
				

			

			Figure 5.28 – Test Explorer showing that all tests pass

			Summary

			In this chapter, we explored the various ways that object-oriented programming techniques such as inheritance, encapsulation, and polymorphism can be used to refactor code toward more maintainable forms.

			Refactoring can be a complex endeavor, and yet so many of the fundamental concepts of object-oriented programming can come together to build elegant, flexible, and maintainable solutions.

			This concludes Part 1 of the book. In the next part of the book, we’ll look at how testing can give you the safety and freedom needed to safely refactor your code and move forward with confidence that your changes have improved the application without breaking anything.

			Questions

			
					Does your code follow a well-structured and consistent namespace hierarchy with not too many or too few classes in each namespace?

					Is there any part of your code that might be improved by using inheritance to promote code reuse?

					Can you think of any repetitive rules or other structures in your code that might benefit from polymorphism?

			

			Further reading

			You can find more information about materials discussed in this chapter at these URLs:

			
					Inheritance in C#: https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/tutorials/inheritance

					Sealed Modifier: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed

					IEquatable<T>: https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1

			

		

	
		
			Part 2: Refactoring Safely

			In the second part of the book, we’ll cover coding techniques such as unit tests that help ensure your refactoring efforts don’t result in unintentional changes.

			This chapter focuses on various testing frameworks and standard testing practices before moving on to discussions about programming best practices and writing SOLID code.

			The final two chapters in this part focus on more advanced testing strategies and ways the C# language can help you detect and prevent errors from reaching your users.

			This part contains the following chapters:

			
					Chapter 6, Unit Testing

					Chapter 7, Test-Driven Development

					Chapter 8, Avoiding Code Anti-Patterns with SOLID

					Chapter 9, Advanced Unit Testing

					Chapter 10, Defensive Coding Techniques

			

		

		
			
			

		

		
			
			

		

	
		
			6

			Unit Testing

			In the first part of this book, we covered the process of refactoring and some of the more common refactoring techniques. Now, it’s time for us to take a step back and remind ourselves of what refactoring is: refactoring is the process of changing the form or shape of the code without changing how it behaves.

			In other words, we can make our code as clean and easy to maintain as we can, but if those changes introduce bugs, that’s not refactoring since refactoring is about changing the form of code without changing its behavior. To improve our code without introducing bugs, we need a safety net: unit testing.

			In this chapter, we’ll explore unit tests and cover the following main topics:

			
					Understanding testing and unit tests

					Testing code with xUnit

					Refactoring unit tests

					Exploring other testing frameworks

					Adopting a testing mindset

			

			Technical requirements

			The starting code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter06/Ch6BeginningCode folder.

			Understanding testing and unit tests

			Whenever I was managing or mentoring another developer and they wanted to make a change to a system I’d ask them a question: “How can you be sure your change won’t break things?”

			This simple question can be deceptively hard to answer, but every answer I’ve ever heard boils down to a single concept: testing.

			I define testing as the process of verifying software functionality and detecting unwanted changes to program behavior.

			This testing could be done by a human, such as a developer or a quality assurance analyst, or it could be done via software, depending on the type of test involved.

			Types of tests and the testing pyramid

			Testing is a broad field that encompasses many different types of activities, including the following:

			
					Manual testing, which involves a person performing some activity manually and verifying the outcome.

					Exploratory testing, a subset of manual testing that focuses on exploring how the system reacts to things to find new types of bugs.

					Unit tests, in which small parts of the software system are tested in isolation.

					Component tests, where larger components of the system are tested.

					Integration tests, which involve two components, such as an API and a database, that are tested together.

					End-to-end tests, in which entire paths through the system are tested. This usually involves multiple sets of components interacting in sequence.

			

			Most of these activities are automated tests where computer code interacts with the system to verify its behavior. We’ll talk more about what factors make up good tests at the end of this chapter.

			Automated tests do have some drawbacks. First, automated tests take time to create. Typically, a human must write code or use some tool to script out the test. Secondly, these tests often require ongoing maintenance as the software system changes to stay relevant. Finally, these tests can offer a false sense of security. For example, let’s say a developer wrote a test to navigate to the “book a flight” web page and verify that open seats display as available. This test may pass even if the web page has obvious errors and misalignments on it, simply because the test was only coded to check a small part of the web page.

			On the other hand, human testers are intelligent. They have free agency and initiative and can make objective judgments about software that machines cannot. They can find issues that nobody ever thought of writing a test for, and they can provide valuable feedback about the functionality of your products. However, people are usually a lot slower than automated tests and it may take some time for a quality assurance analyst to test a feature once it is ready for testing.

			There are strengths and weaknesses when it comes to both automated and manual tests. One is not better than the other; instead, they combine to make for an effective solution to quality issues in software projects.

			A popular concept in software quality is the idea of a testing pyramid. A testing pyramid shows the various types of tests an organization might perform. Additionally, as shown in Figure 6.1, the width of each segment of the pyramid indicates the quantity of that type of test:

			
				
					[image: Figure 6.1 – An example of a testing pyramid]
				

			

			Figure 6.1 – An example of a testing pyramid

			In a testing pyramid, such as this one, the items at the base should be the most numerous and the items at the top of the pyramid should be the rarest. Almost every diagram of a testing pyramid is different in the exact types of tests listed in the pyramid, but all of them agree that the most common form of testing should be the unit test and the least common should be manual testing.

			Many organizations get this wrong early in their software development maturity. When that happens, they have a lot of manual tests, few unit tests, and typically no end-to-end, integration, or component tests. As a result, the pyramid would look a little like Figure 6.2:

			
				
					[image: Figure 6.2 – Testing pyramid with many manual tests, few unit tests, and no other tests]
				

			

			Figure 6.2 – Testing pyramid with many manual tests, few unit tests, and no other tests

			This pyramid should look ridiculous because having very little test automation is almost always a recipe for slow processes, delayed releases, and software bugs reaching production environments!

			The larger your system becomes, the less feasible manual testing will be and the longer it will take to discover bugs manually.

			The solution to this is automated testing, particularly automated unit testing.

			Unit tests

			Unit tests are small methods of code that test other methods in your system to verify those methods perform correctly given a specific scenario.

			More succinctly, unit tests are code that tests other code.

			Already familiar with tests?

			You may already be familiar with unit tests if you work with unit tests regularly. If that’s true, you may want to skim the rest of this chapter and resume with the next one.

			To illustrate the idea of unit testing, let’s look at a simple method that generates a flight status message:

			
public class Flight {
 public string BuildMessage(string id, string status){
 return $"Flight {id} is {status}";
 }
}

			While this method is very simple, let’s think about the steps we’d need to take to verify it works correctly:

			
					Instantiate the Flight class and store that object in a variable.

					Declare a pair of string variables representing id and status.

					Invoke the BuildMessage method on our flight object from Step 1.

					Store the result of Step 3 in a new string variable.

					Verify the string we just stored matched what we expected.

			

			This is essentially what a unit test would do. It would instantiate your class, arrange the variables it needs, act on the method the unit test is trying to verify, and finally assert that the result of the method matched what we expected. We call this pattern the arrange/act/assert pattern and we’ll discuss it more later in this chapter.

			To help illustrate this concept, here’s a sample test for the BuildMessage method:

			
public class FlightTests {
 [Fact]
 public void GeneratedMessageShouldBeCorrect() {
 // Arrange
 Flight flight = new();
 string id = "CSA1234";
 string status = "On Time";
 // Act
 string message = flight.BuildMessage(id, status);
 // Assert
 Assert.Equal("Flight CSA1234 is On Time", message);
 }
}

			Don’t worry about the specific syntax here as we’ll get into this shortly. For now, understand that the GeneratedMessageShouldBeCorrect method is an example of a unit test that tests a small unit of code to verify a specific piece of functionality.

			Specifically, this method verifies that the Flight class’s BuildMessage method calculates and returns an accurate status message given the id and status parameters it receives.

			This test can be run quickly alongside all the other tests in the solution and will either pass if the BuildMessage method is acting as expected or will fail if the result of BuildMessage ever changes, as shown in Figure 6.3:

			
				
					[image: Figure 6.3 – A failing unit test]
				

			

			Figure 6.3 – A failing unit test

			Test failures such as this are helpful because they highlight bugs that developers might otherwise release into production without the failing test flagging the potential issue.

			In the next section, we’ll explore unit tests more by introducing the most popular unit testing framework: xUnit.

			Testing code with xUnit

			xUnit.net, commonly referred to as xUnit, is currently the most popular unit testing library in .NET, followed by NUnit and MSTest. All three libraries provide Attributes that you can use to identify your test code, as we’ll see shortly. Using these attributes lets a test runner, such as Visual Studio’s Test Explorer, recognize your methods as unit tests and run them.

			This chapter’s code starts with most of the classes from the chapters up to this point, organized into various namespaces inside of the Chapter6 project within the Chapter6BeginningCode solution.

			Solutions and projects

			In .NET, a project represents a distinct assembly of .NET code that accomplishes some purpose. Different projects have different types, from desktop applications to web servers to class libraries and test projects. Solutions, on the other hand, group all of these projects together into a collection of interrelated projects.

			In the remainder of this chapter, we’ll write tests for a number of the classes from the previous chapters. Since xUnit is currently the most popular testing library, let’s start by adding a new xUnit test project to the solution.

			Creating an xUnit Test Project

			To add a new project to a solution, right-click on the solution’s name at the top of Solution Explorer, just below the search bar, and then choose Add, followed by New Project…

			Next, search for xUnit and select the xUnit Test Project result with the C# label attached to it, as shown in Figure 6.4. Note that there are also versions of this test project that use other languages, such as VB or F#:

			
				
					[image: Figure 6.4 – Selecting the xUnit Test Project option]
				

			

			Figure 6.4 – Selecting the xUnit Test Project option

			Click Next, then give your test project a meaningful name, such as Chapter6XUnitTests, and click Next again.

			After this, you'll need to select the version of .NET to use. Since the code in this book uses .NET 8, you can select that option and click Create.

			This should open a new file in your editor that contains some basic test code:

			UnitTest1.cs

			
namespace Chapter6XUnitTests {
 public class UnitTest1 {
 [Fact]
 public void Test1() {
 }
 }
}

			Additionally, a new project was added to your solution that now appears in Solution Explorer, as shown in Figure 6.5:

			
				
					[image: Figure 6.5 – The test project in Solution Explorer]
				

			

			Figure 6.5 – The test project in Solution Explorer

			There are still a few more steps that we’ll need to do to test our code in the other project. But before we do that, it may surprise you that the code xUnit created is already a runnable unit test.

			Click on the Test menu at the top of Visual Studio and then select Run All Tests. Test Explorer should now show your Test1 unit test, which will turn into a green check mark once the test runs, as shown in Figure 6.6:

			
				
					[image: Figure 6.6 – Test Explorer with tests expanded to the point where Test1 is visible]
				

			

			Figure 6.6 – Test Explorer with tests expanded to the point where Test1 is visible

			Troubleshooting

			If you do not see Test Explorer after running your tests, click on the View menu and then select Test Explorer. You may also need to build your solution before running tests becomes an option.

			Note that our current test isn’t much of a test and we still haven’t covered the code or how it works. We’ll get there shortly, but first, let’s take the final step in setting up our tests and connect our test project to our Chapter6 project.

			Connecting the xUnit Test Project to your main project

			In .NET, projects can depend on code in other projects. This allows you to have a class defined in one project and another project uses that class. This is something we’ll need to be able to do to test code from our unit test project. So, we’ll need to set up a project dependency from the test project to the Chapter6 project.

			Right-click on the Dependencies node inside of the test project in Solution Explorer and choose Add Project Reference…, as shown in Figure 6.7:

			
				
					[image: Figure 6.7 – Adding a project reference to our test project]
				

			

			Figure 6.7 – Adding a project reference to our test project

			After this, click the checkmark next to Chapter6 and click OK. This will add a reference from your test project to the Chapter6 project so that the test project can now reference classes defined in the other project.

			With all this in place, we’re ready to write our first real test.

			Writing your first unit test

			Our first tests will test the BaggageCalculator class we built in Chapter 2.

			BaggageCalculator has a CalculatePrice method with the following method signature:

			
public decimal CalculatePrice(int bags, int carryOn,
 int passengers, bool isHoliday)

			We also know the following rules for this method:

			
					All carry-on baggage costs $30 per bag

					The first checked bag a passenger checks in costs $40

					Each subsequent checked bag costs $50

					If the travel occurs during the holidays, a 10% surcharge is applied

			

			We won’t be able to test all this logic in a single test, and we shouldn’t try. Unit tests should be small and related to one specific piece of logic. If a test fails, that failure should tell you a lot about what is wrong in your system. If unit tests try to do too much, they become harder to understand and a failure tells you less about what is wrong.

			Let’s start by taking our UnitTest1 class and renaming it using the rename refactoring we covered in Chapter 2. Tests are generally named after the class they test. Since our class tests BaggageCalculator, let’s rename it BaggageCalculatorTests.

			Next, we’ll rename the Test1 method to reflect what we’re trying to verify. The name of this test will show up in a test failure. So, my general rule of thumb is that if I get a notification that a test failed, its name alone should tell me what went wrong.

			In our case, we’re trying to verify that carry-on baggage is priced correctly. So, let’s rename Test1 to something like CarryOnBaggageIsPricedCorrectly.

			Our code now reads as follows:

			
namespace Chapter6XUnitTests {
 public class BaggageCalculatorTests {
 [Fact]
 public void CarryOnBaggageIsPricedCorrectly() {
 }
 }
}

			Before we move on to writing our test code, let’s highlight a few key things:

			
					First, our method has a Fact attribute applied to it. This lets xUnit tell the test runner about our test and effectively registers the test for potential execution.

					Next, CarryOnBaggageIsPricedCorrectly returns void and accepts no parameters. Test methods using the Fact attribute cannot accept parameters and must either return void or Task for asynchronous tests. We’ll discuss Theory and InlineData later in this chapter as they allow you to pass in parameters to unit tests.

					Finally, both the class and the method are public. Both must be public for the unit test to appear in the test runner.

			

			Now that we’ve covered some of the basic mechanics of unit tests, let’s follow the arrange/act/assert pattern to build our test.

			Organizing tests with Arrange/Act/Assert

			The arrange/act/assert pattern is a structural pattern that’s used when writing tests. When following arrange/act/assert, you perform the following steps:

			
					Arrange the things that you need for your tests by declaring variables.

					Act on the specific thing you’re trying to test.

					Assert that the result of your action produced the desired outcome.

			

			Let’s start by arranging the code. Since we’re testing the CalculatePrice method on the BaggageCalculator class, we’ll need to instantiate an instance of the baggage calculator.

			We also know we’ll need to pass in the number of checked and carry-on bags, as well as the number of passengers and whether the travel is during a holiday season. These values should be whatever we think will make the most relevant or representative test, so they’re up to our discretion.

			Filling out our arrange section with variable declarations results in the following code:

			
[Fact]
public void CarryOnBaggageIsPricedCorrectly() {
 // Arrange
 BaggageCalculator calculator = new();
 int carryOnBags = 2;
 int checkedBags = 0;
 int passengers = 1;
 bool isHoliday = false;

			Here, we’re setting up everything we need to carry out the act phase. Also, note that I included an // Arrange comment to group related code together. This is something I and many other developers I know do in our test code to help organize tests.

			Now that we have our variables in place, we can act upon the code we’re testing: the CalculatePrice method. To do this, we must call the method and store the decimal value it returns:

			
// Act
decimal result = calculator.CalculatePrice(checkedBags,
 carryOnBags, passengers, isHoliday);

			Unlike the arrange section, the act section is very brief, usually only a single line long. This is because the act section focuses on the thing you’re trying to test. We call the method we’re testing on the calculator object that was instantiated earlier and pass it the parameters it needs to do its job.

			The system under test

			In our example, the calculator variable stores the instance of the class we’re testing. This is commonly referred to as the system under test (SUT). Some teams use the sut variable name for the object they’re about to test.

			Here’s the cool thing: from our test’s perspective, we don’t care how it does its job. All we care about is that we give the method a set of inputs and we expect a specific output.

			We verify this behavior in our assert section by asserting that one or more things are true. If these things turn out not to be true, our test will fail. If all of them turn out to be true, the test will pass.

			Assertions typically use the Assert class to verify that values match their expected value. In our case, the scenario has 2 carry-on bags and no other bags. At $30 per carry-on bag, this should work out to $60, so our test code becomes as follows:

			
// Assert
Assert.Equal(60m, result);

			The first parameter of the Equal method is the expected value. That’s the value you expect your result to be. You should not be calculating this value in code; otherwise, you risk repeating the same potentially bad logic in the code you’re testing to begin with!

			The second parameter is the actual value, which is almost always the result of calling your method in the act section.

			Often, developers new to testing expect the first parameter to be the actual value and the second value to be the expected value. However, this is incorrect and will lead to confusing test failures with swapped values.

			For example, if the result was 50 and we verified it correctly with Assert.Equal(60m, result); as we did earlier, you’d see a failure like this:

			
 Assert.Equal() Failure
 Expected: 60
 Actual: 50

			This is helpful and tells the developer what went wrong.

			If you confused the two parameters and wrote Assert.Equal(result, 60m); you’d get this much more confusing message:

			
 Assert.Equal() Failure
 Expected: 50
 Actual: 60

			This mistake has caused a lot of confusion and hair loss for me in the past. Do yourself a favor and remember that the first parameter is always the value you expect the result to be.

			In Chapter 9, Advanced Unit Testing, we’ll introduce a cleaner way of writing assertions with the Shouldly and FluentAssertions libraries. For now, remember that the expected value goes first and the actual value goes second.

			Other Assert methods

			The Assert class has more methods than just Assert.Equal. You can also use Assert.True and Assert.False to verify whether a boolean condition is true or false. Assert.Null and Assert.NotNull can help verify if something is or isn’t null. Assert.Contains and Assert.DoesNotContain will verify the presence or absence of an element in a collection. These are just a few of the methods available through the Assert class. For each of these messages, you can also provide a custom failure message to use when an assertion causes your test to fail.

			Now that we’ve added our first unit test, let’s talk specifically about what makes a test pass and what makes a test fail.

			Understanding tests and exceptions

			Every unit test that runs will pass – unless it encounters something that makes it fail.

			That failure could be an Assert statement not matching the expected value, or it could be your program or test throwing an exception without catching it.

			When you investigate how Assert methods are implemented, you’ll see that they all throw exceptions when their conditions aren’t met. When these exceptions are thrown, the test runner catches them and fails the test, displaying the failure message and stack trace appropriately.

			This is why an empty test will pass even without any Assert statements, and this is why you generally never write a try/catch block in your unit tests unless you are explicitly trying to verify some form of exception-handling logic.

			Armed with this understanding of what makes a test fail, let’s write a second test.

			Adding additional test methods

			Just like classes can have multiple methods inside of them, test classes can have multiple test methods inside of them. This is because unit tests are just code in every sense of the word. Unit tests live in classes that are ordinary in every regard, except they live in a special project type and individual unit test methods have [Fact] just before the method is declared.

			Let’s illustrate this by adding a test for the next scenario: The first checked bag costs $40. Here’s what that test would look like:

			
[Fact]
public void FirstCheckedBagShouldCostExpectedAmount() {
 // Arrange
 BaggageCalculator calculator = new();
 int carryOnBags = 0;
 int checkedBags = 1;
 int passengers = 1;
 bool isHoliday = false;
 // Act
 decimal result = calculator.CalculatePrice(checkedBags,
carryOnBags, passengers, isHoliday);
 // Assert
 Assert.Equal(40m, result);
}

			There are a lot of similarities between this test and the prior one, but the key differences are that the number of carry-on and checked bags has changed to match the new scenario we’re testing, and the expected total is now $40 instead of $60.

			Each test you write should be different. However, if you start to notice a lot of commonalities between tests, it’s probably time to refactor your unit tests.

			Refactoring unit tests

			Unit tests are code, and like other types of code, they can degrade in quality over time when not given proper respect and proactive refactoring.

			Hence, when you see code smells such as duplicated code that appears in most of your tests, it’s a sign that your tests need to be refactored.

			In this section, we’ll explore several ways of refactoring your test code.

			Parameterizing tests with Theory and InlineData

			When we think about the similarities between our two tests, they only vary based on the values being passed into the method we’re testing and the value we expect the result to be.

			Thinking about our test method, this is a clear case where it’d be wonderful to have parameters that could go into one test method that could represent multiple unit tests, each testing something slightly different, but with similar code.

			As you may recall from earlier, unit tests that use Fact cannot have any parameters to them. However, xUnit gives us another attribute called Theory that allows us to pass data into the unit test as parameters.

			There are multiple different ways of providing data to these parameters, but the most common way is to use an InlineData attribute to provide the test parameter data next to the method.

			Here’s an example of using Theory and InlineData to test four different scenarios around baggage pricing using the same test code:

			
[Theory]
[InlineData(0, 0, 1, false, 0)]
[InlineData(2, 3, 2, false, 190)]
[InlineData(2, 1, 1, false, 100)]
[InlineData(2, 3, 2, true, 209)]
public void BaggageCalculatorCalculatesCorrectPrice(
 int carryOnBags, int checkedBags, int passengers,
 bool isHoliday, decimal expected) {
 // Arrange
 BaggageCalculator calculator = new();
 // Act
 decimal result = calculator.CalculatePrice (checkedBags, carryOnBags, passengers, isHoliday);
 // Assert
 Assert.Equal(expected, result);
}

			While this is only a single method, each InlineData line represents a unique unit test and, as shown in Figure 6.8, it will show up as an individual test in the test runner:

			
				
					[image: Figure 6.8 – The four theory-based tests in Test Explorer grouped under a single test]
				

			

			Figure 6.8 – The four theory-based tests in Test Explorer grouped under a single test

			Although using Theory instead of Fact can initially be harder to read, the maintainability advantage is huge. First, parameterized tests have less code duplication. Secondly, if you need to update your tests later, you only need to update a single method instead of the many separate methods if you wrote the same tests using Fact.

			Initializing test code with constructors and fields

			Theory isn’t the only way to improve your test code. If you find that your tests do a lot of work that is potentially sharable, you can introduce private methods to help organize your test code.

			For example, let’s say you wanted to test the FlightScheduler class from Chapter 5 and you wanted to start with testing that adding a flight to the schedule via ScheduleFlight results in that flight showing up when GetAllFlights is called.

			To do this, you’ve created a FlightSchedulerTests class and are working on a ScheduleFlightShouldAddFlight unit test.

			As you begin to write the test, you notice the ScheduleFlight method requires an IFlightInfo instance, which, in turn, needs several AirportEvent objects. These AirportEvent objects require their own Airport instances.

			These dependencies result in you writing a lot of arrange code to set up for your test:

			
[Fact]
public void ScheduleFlightShouldAddFlight() {
 // Arrange
 Airport airport1 = new() {
 Code = "DNA",
 Country = "United States",
 Name = "Dotnet Airport"
 };
 Airport airport2 = new() {
 Code = "CSI",
 Country = "United Kingdom",
 Name = "C# International Airport"
 };
 FlightScheduler scheduler = new();
 PassengerFlightInfo flight = new() {
 Id = "CS2024",
 Status = FlightStatus.OnTime,
 Departure = new AirportEvent() {
 Location = airport1,
 Time = DateTime.Now,
 },
 Arrival = new AirportEvent() {
 Location = airport2,
 Time = DateTime.Now.AddHours(2)
 }
 };

			This large volume of code isn’t necessarily bad, but it does distract from the rest of the test method, which performs the scheduling and verifies that the flight was added:

			
 // Act
 scheduler.ScheduleFlight(flight);
 // Assert
 IEnumerable<IFlightInfo> result =
 scheduler.GetAllFlights();
 Assert.NotNull(result);
 Assert.Contains(flight, result);
}

			While a lengthy arrange section isn’t the end of the world, other tests may likely want to create their own PassengerFlightInfo, Airport, or AirportEvent, which would lead to very similar code showing up between tests.

			To help improve the readability of our arrange method, we can introduce fields for the two airports and set them up in the constructor:

			
public class FlightSchedulerTests {
 private readonly Airport _airport1;
 private readonly Airport _airport2;
 public FlightSchedulerTests() {
 _airport1 = new() {
 Code = "DNA",
 Country = "United States",
 Name = "Dotnet Airport"
 };
 _airport2 = new() {
 Code = "CSI",
 Country = "United Kingdom",
 Name = "C# International Airport"
 };
 }

			When xUnit runs your test code, it will instantiate the FlightSchedulerTests class once for every unit test in that class. This means that any logic in the constructor or field initializers will run whenever any test in that class is run.

			This lets us simplify the arrange section of our test considerably:

			
// Arrange
FlightScheduler scheduler = new();
PassengerFlightInfo flight = new() {
 Id = "CS2024",
 Status = FlightStatus.OnTime,
 Departure = new AirportEvent() {
 Location = _airport1,
 Time = DateTime.Now
 },
 Arrival = new AirportEvent() {
 Location = _airport2,
 Time = DateTime.Now.AddHours(2)
 }
};

			This process can be repeated as needed. For example, if you wanted to reuse the same PassengerFlightInfo between tests, you could add a _flight field and initialize it in the constructor as well.

			The refactoring process isn’t about minimizing the size of the arrange section; it’s about keeping code duplication low while keeping the important aspects of your test visible to other developers reading your code.

			Sharing test code with methods

			Another technique you can use to keep your code focused is to extract reusable methods from your test code to help accomplish common arrange tasks.

			For example, if you wanted to test that removing a flight correctly removes the flight from the scheduler, you’d need a test that looks a lot like the test we just covered.

			When you think about it, both tests don’t care much about the specifics of the flight being added – they care that when a flight is scheduled, it appears in the list of flights and that when a flight is removed, it should no longer be included.

			To accomplish this, we can extract a method to create our Flight object. This method could take in a flight identifier and return the created flight, as shown here:

			
private PassengerFlightInfo CreateFlight(string id)
 => new() {
 Status = FlightStatus.OnTime,
 Id = id,
 Departure = new AirportEvent() {
 Location = _airport1,
 Time = DateTime.Now
 },
 Arrival = new AirportEvent() {
 Location = _airport2,
 Time = DateTime.Now.AddHours(2)
 }
 };

			Our prior test can now call this method to create its flight:

			
[Fact]
public void ScheduleFlightShouldAddFlight() {
 // Arrange
 FlightScheduler scheduler = new();
 PassengerFlightInfo flight = CreateFlight("CS2024");
 // Act
 scheduler.ScheduleFlight(flight);
 // Assert
 IEnumerable<IFlightInfo> result =
 scheduler.GetAllFlights();
 Assert.NotNull(result);
 Assert.Contains(flight, result);
}

			See how much more focused this method is? You can quickly read it and get the intent of the test without having to focus on all the mechanics needed to create the flight.

			Testing void methods

			One question I often encounter is “How do you test void methods since they don’t return anything?” Most of the time, when you write tests, you test the return value of a method, but with void methods, you test the side effects of that method. This ScheduleFlight test is an example of how a void method can be tested. In our case, the side effect of scheduling a flight should be that the flight is present later when we’re getting all the flights from the scheduler.

			Now, let’s look at the flight removal test, which uses the same method:

			
[Fact]
public void RemoveShouldRemoveFlight() {
 // Arrange
 FlightScheduler scheduler = new();
 PassengerFlightInfo flight = CreateFlight("CS2024");
 scheduler.ScheduleFlight(flight);
 // Act
 scheduler.RemoveFlight(flight);
 // Assert
 IEnumerable<IFlightInfo> result =
 scheduler.GetAllFlights();
 Assert.NotNull(result);
 Assert.DoesNotContain(flight, result);
}

			This method is focused on the task of scheduling a flight and then removing it, and then verifying that the flight is no longer on the list of flights. If adding and removing a flight doesn’t remove it from the list of flights, that would be a bug and the test would fail.

			Sharing methods between test classes

			If you find that many of your test classes would benefit from the same “helper” methods, such as CreateFlight, you may want to consider moving these helpers to a static class in your test project. This pattern is sometimes referred to as the ObjectMother or Builder pattern and is described further in the Further reading section.

			Alternatively, you could introduce a base testing class, move your shared methods to that class, and then have your tests inherit from that class. Test classes and test projects are just like normal code and many of the refactoring tricks we used in part 1 of this book will help improve your tests as well.

			Before we close out this chapter with a discussion on adopting a testing mindset, let’s briefly look at a pair of other popular C# testing frameworks.

			Exploring other testing frameworks

			Beyond xUnit, the next most popular testing frameworks are NUnit and MSTest.

			These two frameworks operate in very similar ways to xUnit but with slight differences in the syntax you use to declare a unit test.

			I’ve had the opportunity to program professionally and recreationally in all three major testing frameworks and I can tell you that these differences are largely cosmetic. That said, you will find that certain frameworks have specific features that might not be present in the others.

			Testing with NUnit

			Of the three testing frameworks, NUnit’s syntax is my favorite because it uses the Test name for both unit tests that require no parameters (equivalent to an xUnit Fact) and those that do (equivalent to an xUnit Theory).

			Here’s a parameterized test that verifies the Load method on PassengerFlightInfo:

			
public class PassengerFlightTests {
 [TestCase(6)]
 public void AddPassengerShouldAdd(int passengers) {
 // Arrange
 PassengerFlightInfo flight = new();
 // Act
 flight.Load(passengers);
 // Assert
 int actual = flight.Passengers;
 Assert.AreEqual(passengers, actual);
 Assert.That(actual, Is.EqualTo(passengers));
 }
}

			In NUnit, Test and TestCase replace Theory and InlineData. If this test were not parameterized, TestCase would become Test.

			The assert section of this test is a little different. The first thing to note is that NUnit’s assertion method is Assert.AreEqual instead of Assert.Equal. While this is a minor difference, I find that the code reads a bit better.

			Below the Assert.AreEqual line is the Assert.That line. This is NUnit’s newer constraint model of unit tests; it reads a bit more fluently and reduces your chances of confusing parameters like the expected and actual values on an assertion. Both ways of writing NUnit tests are valid and work fine.

			One final note: in NUnit, all tests in a test class share the same class instance. This means that values stored in fields or properties on your tests will be shared by all tests in that test class. This is different from xUnit which creates a new test class instance for each test that runs.

			With NUnit explored, let's look at MSTest.

			Testing with MSTest

			MSTest’s official name was Visual Studio Unit Testing Framework, but the framework has come to be known as MSTest throughout the community and even throughout Microsoft’s internal documentation.

			MSTest V2

			While MSTest had a poor reputation for nearly a decade due to a lack of feature parity between it and NUnit and xUnit, Microsoft revised MSTest in 2016, calling it MSTest V2 and bringing many improvements to the framework to the point where it is now on par with its competitors.

			Like NUnit, MSTest uses a single TestMethod attribute to mark both parameterized and unparameterized unit tests. However, unlike both NUnit and xUnit, MSTest also requires a TestClass attribute on the class itself to make the individual tests discoverable. This is something to watch out for when writing tests in MSTest as it’s another thing you can miss to make your tests not show up in the test runner.

			Let’s look at a sample parameterized test in MSTest that verifies the FullName property of the Passenger class from our BoardingProcessor class from Chapter 3:

			
[TestClass]
public class PassengerTests {
 [TestMethod]
 [DataRow("Calvin", "Allen", "Calvin Allen")]
 [DataRow("Matthew", "Groves", "Matthew Groves")]
 [DataRow("Sam", "Gomez", "Sam Gomez")]
 [DataRow("Brad", "Knowles", "Brad Knowles")]
 public void PassengerNameShouldBeCorrect(string first,
 string last, string expected) {
 // Arrange
 Passenger passenger = new() {
 FirstName = first,
 LastName = last,
 };
 // Act
 string fullName = passenger.FullName;
 // Assert
 Assert.AreEqual(expected, fullName);
 }
}

			Here, this parameterized test evaluates the name of each of this book’s technical reviewers from DataRow, just like InlineData does in xUnit or TestCase does in NUnit.

			While the MSTest syntax is different, there are many similarities between it and the other test frameworks.

			The major differences between MSTest and NUnit are the inclusion of the TestClass attribute and the names TestMethod and DataRow instead of Test and TestCase, respectively. Even the naming of the Assert.AreEqual methods are identical between the two frameworks.

			Ultimately, these three testing frameworks are all very similar and serve a powerful role in your goal of high-quality software. I’ve found that I can work effectively in any of the three frameworks. While I tend to prefer NUnit’s syntax, I use xUnit in new projects because xUnit has largely become the community standard.

			My recommendation is to pick the library whose syntax you like the most and use that for your projects and focus your efforts on writing good tests and adopting a testing mindset.

			Adopting a testing mindset

			Let’s take a step back and talk about why a book on refactoring features an entire series of chapters around testing. The reason is that code that needs to be refactored is often a bit more volatile and tends to break more easily when changed. Since the art of refactoring is about changing the form of the software without changing its behavior, introducing bugs when refactoring is undesirable and unacceptable.

			This is where tests come in. Tests give you the confidence you and your team need to be able to improve your code. Your legacy code may or may not have tests around it already, so the responsibility and necessity of ensuring good tests are present falls to you before you perform any testing work.

			This requires you to adopt a testing mindset. This phrase refers to thinking about tests at the beginning of the development process as a vital component of software development and refactoring, not as an afterthought.

			While we’ll explore this concept at length in the next chapter as we discuss test-driven development, let’s touch on a few considerations that will help you be successful with tests in your organization and adopt a testing mindset.

			Incorporating testing into your workflow

			Testing should be a standard part of your everyday life as a software engineer.

			This means that you should think about testing whenever you make any change to a system, whether the change is a new feature, fixing a bug, or paying down technical debt through refactoring.

			This requires a shift of mentality from seeing tests as tedious or something you ought to do to thinking of tests as things that have intrinsic value to the codebase and even to the larger organization. This is because tests provide value through their role as a sort of “living documentation” of your codebase, their ability to provide a safety net against certain types of bugs in the future, and their ability to give you and the business confidence in the code you’re writing.

			You will, of course, bump into pieces of software that are significantly harder to test. These might be pieces of code working with the user interface or they might be pieces of code with very strong dependencies to other systems.

			We’ll touch more on dependencies later in this section and again in Chapters 8 and 9, but testing the user interface is typically done with specialized tools and libraries and varies based on whether you are testing a web, desktop, or mobile application. As a result, user interface testing is outside the scope of this book. However, isolating dependencies is usually a strong part of that process.

			Isolating dependencies

			When we talk about isolating dependencies, this means that when we test a piece of code, testing it shouldn’t alter anything else.

			For example, when we’re trying to verify that scheduling a flight adds the flight to the list of flights in the system, we don’t want the system to send an email with a flight confirmation every time we run our unit test!

			Such an example might look like this:

			
public class FlightScheduler {
 private readonly EmailClient _email = new();
 public void ScheduleFlight(Flight flight) {
 // other logic omitted...
 _email.SendMessage($"Flight {flight.Id} confirmed");
 }
}

			Here, FlightScheduler has an EmailClient class and calls SendMessage on the client every time a flight is scheduled. This is a strong dependency from FlightScheduler to the EmailClient class and will result in an undesirable side effect of sending emails when this code is tested.

			Side effects such as sending emails or interacting with the filesystem or a database are often undesirable in unit tests, as we’ll discuss shortly.

			While it’s good for systems to be able to do these things, we want to test our units of code in isolation without them having side effects we don’t like. We can work around this via a process called dependency injection, where a class is no longer responsible for creating the dependencies it needs but gets them from others.

			A more testable version of FlightScheduler would look like this:

			
public class FlightScheduler {
 private readonly IEmailClient _email;
 public FlightScheduler(IEmailClient email) {
 _email = email;
 }
 public void ScheduleFlight(Flight flight) {
 // other logic omitted...
 _email.SendMessage($"Flight {flight.Id} confirmed");
 }
}

			Here, the dependency on the EmailClient class is injected into this class in its constructor and a new IEmailClient interface is used so that we can use a different implementation of this interface for testing. This test-specific version wouldn’t have the negative side effect of sending emails, making it more acceptable.

			Dependency injection and its related terms, inversion of control and dependency inversion, are complex topics that take some time to grasp. So, we’ll revisit them in Chapter 8, Avoiding Code Anti-Patterns with SOLID. Additionally, experienced testers may be crying out that a mocking framework such as Moq or NSubstitute can help with some of these concerns. We’ll cover these libraries in Chapter 7.

			For now, let’s move on to talking about other factors that constitute good and bad tests.

			Evaluating good and bad tests

			Good unit tests should be as follows:

			
					Fast to run: If tests take minutes to run, developers won’t run them.

					Reliable and repeatable: Tests shouldn’t randomly fail or pass or fail based on the day of the week, time of day, or which other tests were run earlier.

					Independent from one another: One test should never impact another test passing or failing and tests shouldn’t need to be run in a certain order.

					Isolated: They should be kept independent of dependencies such as databases, files on disk, cloud resources, or external APIs. Not only do these things slow down your tests but if we’re testing these interactions, that’s an integration test, not a unit test.

					Readable: Tests serve as examples of how to interact with your classes. Additionally, when a test fails, its failure should be easy to understand.

					Portable: Tests shouldn’t require significant machine setup and should be runnable on any developer’s machine or another machine as part of a continuous integration/continuous delivery (CI/CD) pipeline.

			

			In contrast, bad tests take time to run, are “flaky” and randomly fail, cannot be run in parallel or out of order, are difficult to understand regarding what they’re testing or why, and require a lot of manual configuration to run reliably.

			In general, you want to favor many small unit tests that are fast to run, easy to understand, and reliable over more ambitious tests that test too many things at once, leading to slow tests that lead to unclear and unreliable test failures.

			Thoughts on code coverage

			I can’t talk about unit testing without introducing code coverage. Code coverage is the lines of code that run as part of any unit test. If a test causes the line of code to run, it is considered covered; otherwise, it is considered not covered.

			Several tools calculate code coverage, including Visual Studio Enterprise and JetBrains ReSharper, which we talked about briefly in Chapter 2. If you have Visual Studio Enterprise, you can calculate code coverage by selecting the Test menu and then Analyze Code Coverage for All Tests. This will show the lines of code that are covered and not covered by unit tests, as shown in Figure 6.9:

			
				
					[image: Figure 6.9 – Overview of Code Coverage Results in Visual Studio Enterprise]
				

			

			Figure 6.9 – Overview of Code Coverage Results in Visual Studio Enterprise

			These coverage results will highlight any lines that are not covered by unit tests, such as the code of the Unload method in PassengerFlightInfo, as shown in Figure 6.10:

			
				
					[image: Figure 6.10 – Covered lines are highlighted in blue, while lines without tests are highlighted in red (line 14)]
				

			

			Figure 6.10 – Covered lines are highlighted in blue, while lines without tests are highlighted in red (line 14)

			Code coverage is one of those topics that can be divisive. On the one hand, code coverage gives you a metric that shows how much of your code is executed by any test. This gives you a meaningful way of measuring the extent of your unit testing safety net.

			However, code coverage can be deceptive. Just running a line of code does not mean that the effects of that line are verified by a unit test. This can lead to a false sense of security around your unit tests.

			Additionally, when organizations prioritize work that increases the code coverage percentage or requires a certain minimum percentage of code coverage for new work, this can lead to tests that focus on the less risky aspects of your software system. For example, do you need to write a unit test to verify code that throws an ArgumentNullException error when a null value is passed to a method, or is your time better spent elsewhere?

			Often, the most critical areas of your application may already appear to be covered by your code coverage metrics, but no tests verify that these lines work correctly.

			My personal feeling is that code coverage is one of many useful metrics to monitor but should not be used to significantly drive the behavior of your development teams.

			See the Further reading section for more information on code coverage and how to get started calculating it.

			We’ll explore other metrics in Chapter 12, Code Analysis in Visual Studio, but for now, let’s conclude this chapter with some closing thoughts on unit testing.

			Summary

			Unit testing is a powerful way to verify that refactoring code does not introduce bugs, document your classes, and prevent bugs from occurring in the future.

			Unit tests are code that tests other code. In .NET, project unit tests are usually performed with xUnit, NUnit, or MSTest. Each testing framework provides assertions that verify that code behaves correctly or fails a test if the actual value doesn’t match the expected value.

			When we write unit tests, we typically structure our tests in the arrange/act/assert pattern, which sets up the thing being tested in the arrange step, does a single action in the act step, and verifies the correctness of the action’s result in the assert step.

			In the next chapter, we’ll explore testing more with test-driven development.

			Questions

			Answer the following questions to test your knowledge of this chapter:

			
					Which unit testing framework syntax do you like the most?

					What are the most complex parts of your application? Are they tested?

					How would you test a method that calculates the credit score of an applicant?

					How do you test a void method?

					What things can you do to help test code stay clean and readable?

			

			Further reading

			You can find more information about the materials discussed in this chapter by checking out the following resources:

			
					Types of Tests: https://learn.microsoft.com/en-us/dotnet/core/testing/

					Visual Studio Test Explorer: https://learn.microsoft.com/en-us/visualstudio/test/run-unit-tests-with-test-explorer

					xUnit: https://xunit.net/

					NUnit: https://nunit.org/

					MSTest: https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-with-mstest

					The ObjectMother Pattern: https://www.martinfowler.com/bliki/ObjectMother.html

					Code Coverage: https://learn.microsoft.com/en-us/visualstudio/test/using-code-coverage-to-determine-how-much-code-is-being-tested

			

		

	
		
			7

			Test-Driven Development

			Let’s continue our discussion of testing and ensuring the quality of our software processes by going in-depth with Test-Driven Development.

			While this is a book about refactoring and Test-Driven Development is primarily intended for future development and bug fixing, it has some key lessons to teach us in software quality and the same tools Visual Studio provides to support Test-Driven Development can help immensely in the refactoring process.

			In this chapter, we’ll cover the following main topics:

			
					What is Test-Driven Development?

					Test-Driven Development with Visual Studio

					When to use Test-Driven Development

			

			Technical requirements

			The starting code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter07/Ch7BeginningCode folder.

			What is Test-Driven Development?

			Test-driven Development (TDD) is the process of writing your tests before you write your code for a new feature or to implement a new fix.

			Under TDD, you first write a test for the feature you’re trying to implement or a test to reproduce the bug you’re about to fix. You do this in the most ideal way possible, which may even involve classes or methods that don’t exist at the start of your test.

			Next, you do the minimum amount of work needed to make your code successfully compile. This isn’t to say that it runs perfectly or does the thing it is trying to do, in fact, you’re trying to start out with a red failing test that indicates your feature or fix doesn’t work.

			This makes sense when you consider that at this point you haven’t implemented the new feature or made the fix to the code. So, the test should be a failing test.

			Next, you write the minimum amount of code required to make your test pass. In this step, you are doing what you need to do to meet the specific requirement you are trying to address. Once you are finished, your test should turn into a green passing test.

			After that, you refactor the code you added to implement your feature or fix and you refactor your test code as well; taking care to continue to run your unit tests to ensure you haven’t broken anything.

			Once you’re satisfied with the state of your new code and your test, you look at the next requirement on the current work item you’re working on, write a test for that, and repeat the process until you have met all requirements. This process is illustrated in Figure 7.1:

			
				
					[image: Figure 7.1 – The Test-Driven Development Cycle]
				

			

			Figure 7.1 – The Test-Driven Development Cycle

			Because you start with a failing red test, move on to a green passing test, and then refactor your code before starting again with a new requirement, TDD is sometimes referred to as Red / Green / Refactor.

			This process has a few key benefits:

			
					You can be confident your code addresses the problem by starting with a test.

					Code written in this way is guaranteed to be covered by your tests.

					When you start with how your code should be called by others, it tends to lead to more intuitive class designs for others to use later.

			

			This process, and its results, make a lot more sense with a practical example. So, let’s jump into some code and implement a new feature for Cloudy Skies Airlines.

			Test-Driven Development with Visual Studio

			We’re starting this chapter with a nearly empty console project and a supporting xUnit test project that has already been linked to the main project as shown in Chapter 6. The structure of this project can be seen in Figure 7.2:

			
				
					[image: Figure 7.2 – Solution Explorer showing only a few files]
				

			

			Figure 7.2 – Solution Explorer showing only a few files

			Over the course of the rest of this section, we’re going to add a new class to track frequent flier miles for Cloudy Skies Airlines.

			The requirements we’ll be addressing (in order) are:

			
					When a new Frequent Flier Account is created it should start with a starting balance of 100 miles.

					You should be able to add miles to the frequent flier account.

					You should be able to mark miles as redeemed as long as this wouldn’t result in a negative balance.

			

			These are not complex requirements, but they should serve as a starting point for briefly exploring TDD.

			We’ll start with the starting balance requirement.

			Setting the starting balance

			Our first requirement involves the account starting with 100 miles already registered.

			Under the guidance of TDD, we should start with a failing test. Thankfully, we already have a MilesTrackerTests.cs file, so that gives us a good place to start.

			However, we have no classes in the Chapter7 project to represent the mileage tracker, which poses a problem for us in writing the arrange section of our first test.

			While there’s a temptation to “cheat” a bit by creating the class now, let’s follow a strictly TDD approach and write the test code in the way we’d prefer to interact with the class, knowing that the class doesn’t exist yet and this will cause some compiler errors for us in a moment.

			Such a test might look like this:

			
[Fact]
public void NewAccountShouldHaveStartingBalance() {
 // Arrange
 int expectedMiles = 100;
 // Act
 MileageTracker tracker = new();
 // Assert
 Assert.Equal(expectedMiles, tracker.Balance);
}

			This test sets an expected starting mileage variable, tries to instantiate a MileageTracker, and then asserts that the Balance property on this new tracker should be the expected amount.

			This is a simple, concise, and readable test with a couple of tiny problems: MileageTracker and its Balance property don’t exist in our code yet, meaning our code won’t compile.

			Generating classes

			These compiler issues when creating new classes and new properties are normal and to be expected when coding under TDD. Thankfully Visual Studio has a Quick Actions refactoring available for us.

			Select the MileageTracker in your act section and open the Quick Actions menu. From there note the various options to generate this Type as shown in Figure 7.2:

			
				
					[image: Figure 7.3 – Quick Actions to generate a new Type]
				

			

			Figure 7.3 – Quick Actions to generate a new Type

			These options, as shown here, are great, but most of them would create the new class inside the test project which is not what we want. Since we want to customize the new type being created, select Generate new type…

			This will open the Generate Type dialog allowing you to select the type, name, and location of the new type being generated. Change the Project to Chapter7 and choose to create a new file as shown in Figure 7.4:

			
				
					[image: Figure 7.4 – Generating a new class in the Chapter7 project]
				

			

			Figure 7.4 – Generating a new class in the Chapter7 project

			Next, click OK and Visual Studio will generate this class and add a MileageTracker.cs file to the main project.

			This class is boring at present with nothing in it, but we’ll add to it in a moment as we work on the next compiler error.

			Generating members

			Going back to our test, the act section now has no issues, but we still have a compiler error on the reference to Balance in the Assert section as shown in Figure 7.5:

			
				
					[image: Figure 7.5 – The C# Compiler pointing out that MileageTracker has Balance property]
				

			

			Figure 7.5 – The C# Compiler pointing out that MileageTracker has Balance property

			Thankfully, Visual Studio gives us tools to generate properties. Let’s do that now so our code will at least compile.

			Select Balance and then open the Quick Actions menu and choose Generate property ‘Balance’ as shown in Figure 7.6:

			
				
					[image: Figure 7.6 – Generating a new property]
				

			

			Figure 7.6 – Generating a new property

			Doing so causes Balance to be defined. If you hold down Ctrl and click on Balance, it will navigate you to MileageTracker.cs and we’ll see how the class is defined:

			
public class MileageTracker {
 public IEnumerable<object> Balance { get; set; }
}

			Here, Visual Studio had to guess what property type Balance was and it guessed horribly wrong. Since this will otherwise cause compiler errors, change Balance to an int:

			
public class MileageTracker {
 public int Balance { get; set; }
}

			With that change, the code should now compile, but let’s make one more change before we run our tests.

			Remember that TDD requires us to write the minimum amount of code to do what we’re trying to do? Technically, Visual Studio has violated this principle by generating both a getter and a setter for our Balance property. In this test, we only need to get the Balance and not set it via this property. So, let’s protect that Balance by removing the setter:

			
public class MileageTracker {
 public int Balance { get; }
}

			With this bit of added encapsulation in hand and our code compiling, let’s run our test. When you do so, you should see the test fail stating that it expected Balance to be 100 but it actually was 0 as shown in Figure 7.7:

			
				
					[image: Figure 7.7 – Our first failing test]
				

			

			Figure 7.7 – Our first failing test

			Under TDD, this is exactly what we’d want. We did the minimum amount of work to get an ideal test to compile, and that test failed because we hadn’t fully implemented the feature.

			Moving from red to green and onto refactoring

			Let’s implement the feature now.

			While we know that our MileageTracker will need some additional things later, let’s implement this feature by writing the minimum amount of code possible:

			
public class MileageTracker {
 public int Balance { get; } = 100;
}

			This now defaults new MileageTracker instances to have a starting balance of 100, which meets our needs and causes our test to turn green and pass when re-run.

			With a green test, we now look for opportunities to refactor. While our test code is minimal, the MileageTracker does have a magic number in it. Magic numbers are code smells that represent some sort of undocumented business or technical requirement.

			Let’s fix it by introducing a constant:

			
public class MileageTracker {
 private const int SignUpBonus = 100;
 public int Balance { get; } = SignUpBonus;
}

			This code is now easier for others to understand, removing the code smell.

			Naming

			Naming things in software engineering is hard. It’s possible the name that occurred to you for this class or the SignUpBonus const I introduced was different than the names I picked. That’s fine. What’s most important about a name is that it communicates intent to other developers and is not confused with something else in the system. While the name StartingBalance would have been fine for my const, I chose SignUpBonus because I thought it more clearly documented the business case for the starting balance.

			Running the tests again results in a green passing test once more and there are no other obvious targets for refactoring, so we move on to the next requirement.

			Adding miles and generating methods

			Our next requirement is You should be able to add miles to the frequent flier account.

			Let’s go back to our tests and add a new test for this requirement. Here we’ll again choose the most intuitive syntax and then make the code compile and test pass later:

			
[Fact]
public void AddMileageShouldIncreaseBalance() {
 // Arrange
 MileageTracker tracker = new();
 // Act
 tracker.AddMiles(50);
 // Assert
 Assert.Equal(150, tracker.Balance);
}

			This test instantiates a MileageTracker, then tries to add 50 miles using a not-yet-created AddMiles method before verifying that the balance is 150 (100 starting miles plus the 50 we just added).

			Of course, there is no AddMiles method in MileageTracker. Let’s add one by selecting AddMiles and then choosing Generate method ‘AddMiles’ from the Quick Actions menu as shown in Figure 7.8:

			
				
					[image: Figure 7.8 – Adding a new method]
				

			

			Figure 7.8 – Adding a new method

			Adding this method causes it to be created with the following implementation:

			
public void AddMiles(int v) {
 throw new NotImplementedException();
}

			Obviously, this is not what the method should do. However, let’s follow strict TDD and move through the motions one step at a time.

			Since our code now compiles, we can run the test and verify that it fails as expected.

			Once we’re confident we have a test that can detect failing code we write only the minimum amount of code required to get the test to pass. This ensures that our tests are sufficient for finding actual problems with the code later.

			A passing implementation of AddMiles might look like this:

			
public class MileageTracker {
 private const int SignUpBonus = 100;
 public int Balance { get; set; } = SignUpBonus;
 public void AddMiles(int miles) {
 Balance += miles;
 }
 }
}

			As you can see, the code now compiles and results in green tests. This means we should move on to refactoring our code as needed.

			The test code is still clean and the only refactoring I can see to apply here might be to use the expression-bodied members that we covered in Chapter 4. However, I’m going to leave the code in its current form as the class is still very minimal.

			With that requirement complete, let’s move on to our final requirement around redeeming miles.

			Redeeming miles and refactoring tests

			Our final requirement is You should be able to mark miles as redeemed if this wouldn’t cause a negative balance. This is a bit more complex than the last requirement as it has a condition attached to it.

			As we did before, let’s start by writing a test:

			
[Fact]
public void RedeemMileageShouldDecreaseBalance() {
 // Arrange
 MileageTracker tracker = new();
 tracker.AddMiles(900);
 // Act
 tracker.RedeemMiles(250);
 // Assert
 Assert.Equal(750, tracker.Balance);
}

			This test should look very similar to our AddMiles test earlier, except it calls out to a new RedeemMiles method.

			Let’s use the generate method refactoring shown earlier to generate that empty RedeemMiles method and allow the code to compile.

			This should result in a red failing test as shown in Figure 7.9 due to the default throw new NotImplementedException line in that method:

			
				
					[image: Figure 7.9 – The remove mileage test failing due to an Exception being thrown]
				

			

			Figure 7.9 – The remove mileage test failing due to an Exception being thrown

			However, moving from red to green is again trivial here by mirroring what we did for AddMiles:

			
public class MileageTracker {
 private const int SignUpBonus = 100;
 public int Balance { get; set; } = SignUpBonus;
 public void AddMiles(int miles) {
 Balance += miles;
 }
 public void RedeemMiles(int miles) {
 Balance -= miles;
 }
 }
}

			This gets our test to pass and so we move on to looking for refactoring options. This code isn’t bad, so we continue to look for the next requirement.

			In this case, we haven’t fully met the requirement we were trying to solve because we don’t cover trying to redeem more miles than are in an account. Let’s write a new test for that scenario:

			
[Fact]
public void RedeemMileageShouldPreventNegativeBalance() {
 // Arrange
 MileageTracker tracker = new();
 int startingBalance = tracker.Balance;
 // Act
 tracker.RedeemMiles(2500);
 // Assert
 Assert.Equal(startingBalance, tracker.Balance);
}

			This test creates an account and takes note of its starting balance. The test then attempts to withdraw more miles than accounts start with and verifies that the ending balance is equal to the starting balance.

			This doesn’t rely on any new methods in the tracker. As a result, our code compiles without changes. However, running this test results in a failure stating that balance was expected to be 100 but was -2400 instead.

			With a red test in hand, let’s modify the RedeemMiles method to make the test green:

			
public void RedeemMiles(int miles) {
 if (Balance >= miles) {
 Balance -= miles;
 }
}

			Now, we check to make sure we have enough miles to fulfill the request and only reduce the mileage if that condition is met.

			Running the tests again results in a full set of passing tests as shown in Figure 7.10:

			
				
					[image: Figure 7.10 – Four passing tests around mileage]
				

			

			Figure 7.10 – Four passing tests around mileage

			With a passing test in hand, we now look at refactoring. Since the MileageTracker is succinct and clear, we’ll move on to looking at our tests.

			What about exceptions?

			Right now RedeemMiles will silently fail if you request more miles than desired, which might raise some alarm bells for you as a developer. In a real-world application, you’d probably want this method to either return a bool indicating if the redemption was successful or to throw an exception if the redemption was not possible. Both of these scenarios could be handled in TDD as additional requirements to implement, such as “If we try to redeem more miles than possible, an InvalidOperationException should be thrown”.

			Looking at our tests, we do see that our RemoveMileageShouldDecreaseBalance and RemoveMileageShouldPreventNegativeBalance do similar things.

			Due to the duplication between tests, we should combine these into a Theory with InlineData lines representing individual test cases. This would look something like the following:

			
[Theory]
[InlineData(900, 250, 750)]
[InlineData(0, 2500, 100)]
public void RedeemMileageShouldResultInCorrectBalance(
 int addAmount, int redeemAmount, int expectedBalance) {
 // Arrange
 MileageTracker tracker = new();
 tracker.AddMiles(addAmount);
 // Act
 tracker.RedeemMiles(redeemAmount);
 // Assert
 Assert.Equal(expectedBalance, tracker.Balance);
}

			This form allows many tests to add an initial amount to the balance, redeem some number of miles, and then verify the result matches the expected balance. This also lets us easily add new scenarios as we identify them.

			However, the name of the method is less meaningful than the more specific names we could use with individual Fact tests.

			With passing tests and refactoring complete, we now move on to either the next requirement in this feature or the next work item in our queue. Let’s close the chapter by talking about TDD at a high level and when it’s right to use in your projects.

			When to use Test-Driven Development

			TDD is not always a good match for every task. Some tasks, such as highly visual user interface design may not fit into the TDD workflow very well, while others such as fixing an error observed in production or adding a new special case to a calculation are almost ideal for TDD.

			Using TDD results in code that is generally easier to understand, has perfect or near-perfect code coverage on tests, and encourages refactoring along the way.

			Many developers follow TDD but don’t follow it as strictly as outlined in this chapter. For example, instead of just generating a method, they may go ahead and implement the method and write additional argument validation code not required by their specific test.

			Such deviations from TDD are common and often acceptable, though they usually result in a few pieces of code being added that don’t have supporting tests.

			Ultimately, it’s up to you and your team to determine what works best for you and the work that you do, but I can tell you that projects I work on where TDD is possible tend to rapidly reach better quality levels, encourage more refactoring, and have better long-term success.

			Summary

			In this chapter, we covered Test-Driven Development (TDD) and showed how its process involves writing only the minimum possible amount of code to get to a failing test – make that test pass with the minimum amount of code needed – then, refactor all code as needed before moving on to the next requirement or work item.

			We also saw how Visual Studio has Quick Actions that allow you to generate types, properties, and methods and support your efforts in following TDD.

			In the next chapter, we’ll talk about anti-patterns that can lead to unmaintainable code and SOLID principles that help your code be robust and maintainable.

			Questions

			
					What areas of your code would be a good fit for using TDD?

					What areas might be harder to apply TDD to?

			

			Further reading

			You can find more information about materials discussed in this chapter at this URL:

			
					Test-Driven Development Walkthrough: https://learn.microsoft.com/en-us/visualstudio/test/quick-start-test-driven-development-with-test-explorer

					Is TDD Dead?: https://martinfowler.com/articles/is-tdd-dead/

			

		

	
		
			8

			Avoiding Code Anti-Patterns with SOLID

			The right design principles can keep your code from quickly going stale. While there are many right ways of writing code, there are anti-patterns and code smells that constitute the wrong way of writing code.

			Additionally, the community has identified several principles to keep in mind when building software that can help your code resist accumulating technical debt for as long as possible. In this chapter, we’ll cover a number of these principles, including the famous SOLID acronym, and see how they can help you build software that actively resists the gradual decline toward legacy code.

			In this chapter, we’ll cover the following topics:

			
					Identifying anti-patterns in C# code

					Writing SOLID code

					Considering other architectural principles

			

			Identifying anti-patterns in C# code

			I’ve often found myself telling new programmers that to build good software, you have to first build a lot of really bad software and learn from it.

			While this statement is somewhat in jest, there is some truth to it: almost every developer can recognize code that’s written the wrong way and discover things that make it difficult to work with, and doing so helps you write better code the next time.

			When your code is bad, there’s usually a part of you that knows it. You see little things that you don’t love: duplicated pieces of code, inconsistencies in naming or parameter ordering, passing too many parameters around, methods, or even classes that are just too big to manage effectively.

			These symptoms are what we commonly refer to as code smells, and we’ll revisit them later in this section.

			Beyond code smells are something called anti-patterns, which is code that significantly deviates from community recommendations. Unfortunately, not all anti-patterns are easy to notice or discover on your own, and some even seem like good ideas to individuals or teams until they’re fully explored.

			A few common C# anti-patterns I see include throwing and catching an Exception error instead of a specific type of Exception error, not disposing of resources that implement IDisposable, and inefficient Language-Integrated Query (LINQ) statements. See the Further reading section of this chapter for more details on these anti-patterns.

			There are far too many anti-patterns to cover in this book, and the established practices of .NET development evolve over time. Because of this constant change, Visual Studio offers code analysis tools to help spot and fix violations of community standards. These tools include code analysis rulesets and built-in Roslyn Analyzers, which we’ll cover at more length in Chapter 12, Code Analysis in Visual Studio.

			Not all issues in code are specific to C# code. Many issues in code stem from how classes interact, pass data around to one another, manage variables, and are generally structured. These issues emerge even in code that you intended to be “well structured” as you start to see your systems scale up in size as new capabilities are added.

			Thankfully, even new developers have an innate ability to spot code that is difficult to follow, requires more work to maintain and expand than it should, or involves excessive duplication. These types of issues in code are commonly referred to as code smells.

			What are code smells?

			Code smells are prime indicators that your current architecture has some drawbacks and refactoring might be in order. Pay attention to these symptoms when you encounter them in systems, including the code you write yourself. Learning what makes code difficult to work with will help you write better code and refactor existing code into better forms.

			For now, let’s move on to talk about writing SOLID code, which can help you avoid some common code smells and build robust, maintainable, and testable code.

			Writing SOLID code

			SOLID is an acronym introduced by Michael Feathers summarizing the words of Robert C. Martin. The intent of SOLID is to provide developers with a set of principles that will guide them toward more maintainable code that resists becoming technical debt.

			The five principles of SOLID code are:

			
					Single Responsibility Principle (SRP)

					Open-Closed Principle (OCP)

					Liskov Substitution Principle (LSP)

					Interface Segregation Principle (ISP)

					Dependency Inversion Principle (DIP)

			

			In this section, we’ll cover all five of these principles.

			Single Responsibility Principle

			The Single Responsibility Principle (SRP) says that a class should be responsible for one thing and one thing only. Here are a few examples of classes that follow the SRP:

			
					A class responsible for saving application data to a specific file format

					A database access class dedicated to executing queries against a database table or set of tables

					An API controller providing REST methods to interact with flight data

					A class representing the user interface in a specific part of your application

			

			Classes violate the SRP by trying to do more than one type of thing in the same class. More formally, if there’s ever more than one reason to modify a class, the class violates the SRP.

			For example, if a class is responsible for tracking a set of items in a user interface, responding to button presses, parsing user input, and asynchronously fetching data, that class very likely violates the SRP.

			Classes that violate the SRP tend to be frequently modified, grow in complexity over time, and be very large classes compared to other classes in the system. These classes can be hard to fully understand or adequately test and can become brittle and buggy as they grow in complexity.

			One of the things that I do to help detect violations of the SRP is to have a class-level comment talking about what the class is responsible for. For example, the following XML comment describes the FlightScheduler class from Part 1 of this book:

			
/// <summary>
/// This class is responsible for tracking information
/// about current and pending flights
/// </summary>
public class FlightScheduler {
 // Details omitted
}

			Here, the responsibility of FlightScheduler is clear: it exists to track active and pending flights within the system. Reasons for modifying this class should be related to the tracking of these flights and not related to other topics.

			For this reason, I tend to put class-level comments in all classes whenever I define a new class to help that class stay focused on its mission over the course of its life.

			But what if you have a class that already exists and violates the SRP?

			When you have a class that’s responsible for multiple things, I like to look at everything the class is currently responsible for and group them into related groups of members. For example, if a class has 10 fields, 25 methods, and 6 properties, I might go through them and try to find common topics that those things address.

			For example, if the FlightScheduler class violated the SRP, it might have members for the following:

			
					Scheduling and canceling flights

					Assigning crew to flights

					Booking flights for passengers

					Changing seat assignments for passengers

					Moving passengers to different flights

					Generating flight-scheduling documentation for management

			

			This class, clearly, is responsible for more than one type of thing. In a production system, this class might be 2,000 lines long or more and be difficult to fully understand and adequately test. Additionally, changes to one area of the class might impact other areas in unexpected ways.

			By looking at the groups of things a class addresses, you can usually identify a few key groups. I like to do this and then focus on the largest group of related responsibilities that are not clearly related to the core goal of the class. Once you identify these groupings, you can extract a new class to manage these aspects. Your original class can reference this class or store it as a field if needed, or the new class could operate completely independently of the old class.

			In the case of FlightScheduler, I would say that scheduling and canceling flights is the core part of the class, and other aspects currently in the class might belong more elsewhere. Looking at those other areas, there are several things related to managing flight reservations for passengers, so in this case, a FlightBookingManager class might be introduced to contain these related pieces of logic.

			By iteratively introducing new classes from functionality not related to the core responsibility of a class, you can shrink large classes down to manageable sizes and resist the complexity, quality, and testability issues found in classes that ignore the SRP.

			The SRP doesn’t apply just to classes but can apply to methods as well. A method should have a single core task it is responsible for, and that purpose should be communicated by the name of the method. When a method is responsible for multiple things or starts getting too large, it’s a good sign that you might need to extract a method and pull some logic out of the original method to keep the size of the method maintainable.

			Personally, if there were one programming principle I could impart to my younger self –or most early/intermediate developers out there, it would be the importance of the SRP in keeping your code easy to understand, test, expand, and maintain.

			My personal guideline is to strive for classes under 200 lines of code long and methods under 20 lines of code long, but both can be challenging, and there are certainly exceptions to be made to these guidelines depending on the nature of the code you’re maintaining – remember that these are principles and guidelines, not firm rules or commandments.

			If you only remember one part of SOLID, remember the SRP; it’s that important to the health of your application. However, there are four more principles to explore.

			Open-Closed Principle

			Classes are said to follow the Open-Closed Principle (OCP) when they are open to extension but closed to modification.

			This principle was originally written for C++ modules, and it doesn’t translate as cleanly to C# as some of the other SOLID principles, but this is essentially a principle about following object-oriented programming (OOP) principles when designing your classes.

			If you build something to follow the OCP, you are designing a class to have its behavior extended through other classes inheriting it, through customizable properties or parameters, or through composition where you compose your class of other objects that change how it behaves.

			An example of using composition was covered in Chapter 5: Object-oriented Refactoring and involved providing different cargo items for a flight.

			The rest of this section will focus on using inheritance to fulfill the OCP.

			In C#, methods do not allow overriding by default. This means you’ll need to explicitly opt-in to allow others to override your methods by declaring them as virtual.

			Counterpoint

			I’ve heard some developers argue that declaring methods as virtual without any classes overriding them is confusing, adds unnecessary keywords to your code, and even slightly harms the performance of your code at runtime. All these things can be true, but if you are in a scenario where you cannot predict how others will use your code and you know they won’t be able to modify your source code, marking key methods as virtual is usually a good idea. In these scenarios, virtual adds extra flexibility.

			Remember that SOLID principles are guidelines to keep in mind while building software, not firm rules you need to always follow.

			As a specific example of the OCP, let’s look at a sample ItineraryManager class representing information about a passenger’s flight itinerary as they travel via Cloudy Skies Airlines:

			
public class ItineraryManager {
 public int MilesAccumulated {get; private set;}
 public FlightInfo? Flight {get; private set;}
 public virtual void FlightCompleted(FlightInfo? next) {
 if (Flight != null) {
 AccumulateMiles(Flight.Miles);
 }
 Flight = next;
 }
 public virtual void ChangeFlight(FlightInfo newFlight,
 bool isInvoluntary) =>
 Flight = newFlight;
 public void AccumulateMiles(int miles) =>
 MilesAccumulated += miles;
}

			Here, we have a class that tracks the total miles a passenger has accrued, as well as the next flight the passenger is scheduled to fly (which may be null when their trip is completed). The class has two virtual methods related to handling completed flights as well as canceled flights. Additionally, the class has a non-virtual method called AccumulateMiles that updates the miles the passenger has accumulated on this trip.

			While this class meets the needs of the airline, let’s say that the airline wants to introduce a new logic for reward customers that gives them 100 extra miles for every flight they complete and rewards the scheduled mileage for a flight when the passenger is involuntarily moved to a new flight.

			Under the OCP, we should be able to do this without having to modify our base class, assuming that the class is open to modification. It turns out we can do this with the following RewardsItineraryManager class:

			
public class RewardsItineraryManager : ItineraryManager {
 private const int BonusMilesPerFlight = 100;
 public override void FlightCompleted(FlightInfo? next) {
 base.FlightCompleted(next);
 AccumulateMiles(BonusMilesPerFlight);
 }
 public override void ChangeFlight(FlightInfo newFlight, bool isInvoluntary) {
 if (isInvoluntary && Flight != null) {
 AccumulateMiles(Flight.Miles);
 }
 base.ChangeFlight(newFlight, isInvoluntary);
 }
}

			Without modifying our base class, we can extend the implementation of ItineraryManager with our new class that follows a slightly different logic. Thanks to the magic of polymorphism, we can use a RewardsItineraryManager class anywhere an ItineraryManager class is accepted, further supporting the closed-to-modification aspect of the OCP.

			Liskov Substitution Principle

			The Liskov Substitution Principle (LSP) says that polymorphic code should not need to be aware of what specific types of objects it is working with.

			That’s still a somewhat vague description, so let’s take another look at the FlightCompleted method from earlier:

			
public virtual void FlightCompleted(FlightInfo? next) {
 if (Flight != null) {
 AccumulateMiles(Flight.Miles);
 }
 Flight = next;
}

			This method takes in a flight that it stores in the Flight property. If a prior flight was stored in that Flight property, the code will call the AccumulateMiles method with that flight’s Miles property.

			The application has several classes that inherit from FlightInfo: PassengerFlightInfo and CargoFlightInfo. That means our next parameter may be any one of these three classes – or some other class that inherits from them.

			The LSP says that any valid instance of FlightInfo should not error when you call its Miles property (or any other method). For example, this version of CargoFlightInfo would be a violation of the LSP because its Miles property errors when called:

			
public class CargoFlightInfo : FlightInfo {
 public decimal TonsOfCargo { get; set; }
 public override int RewardMiles =>
 throw new NotSupportedException();
}

			Essentially, when following the LSP, the method should not have any reason to need to know which subclass of FlightInfo it’s dealing with.

			Because the LSP is focused on polymorphism, it applies to both class inheritance and interface implementations in .NET code.

			Speaking of interfaces, let’s move on to the ISP.

			Interface Segregation Principle

			The Interface Segregation Principle (ISP) is a fancy way of saying that you should prefer many smaller specialized interfaces focused on related capabilities over one large interface that encompasses everything your class does.

			For example, imagine we had a FlightRepository class that managed database access to individual flights. In many systems, this class might implement an IFlightRepository interface that could be defined as follows with all public members of the class as part of the interface:

			
public interface IFlightRepository {
 FlightInfo AddFlight(FlightInfo flight);
 FlightInfo UpdateFlight(FlightInfo flight);
 void CancelFlight(FlightInfo flight);
 FlightInfo? FindFlight(string id);
 IEnumerable<FlightInfo> GetActiveFlights();
 IEnumerable<FlightInfo> GetPendingFlights();
 IEnumerable<FlightInfo> GetCompletedFlights();
}

			As you can see, this manages common operations related to flights and provides some means of finding information about many flights. In a more real-world example, there would likely be many additional methods that would need to be added over the years to support new features.

			In my experience with .NET code, it is very common to have a large interface per major class that includes all public methods in this class. This interface is usually named after the class it was based on and exists mostly to support testability through dependency injection (DI), as we’ll touch on in the next chapter.

			However, this approach is usually a violation of the ISP. Because our interfaces are designed around classes instead of discrete sets of capabilities, it becomes harder to introduce a new class that meets some of those capabilities but not all.

			For example, let’s say that Cloudy Skies Airlines wants to integrate with another subsidiary airline’s systems. It doesn’t need to add, update, or delete flights, but it does want a way of searching for flights. Under the IFlightRepository interface, the AddFlight, UpdateFlight, and CancelFlight methods would either need to do nothing or throw a NotSupportedException error when called. By the way, throwing the exception on a not-supported method call as part of a larger interface would be a violation of the LSP mentioned earlier.

			Instead of having one large interface per major type, the ISP advocates for small interfaces for tightly related capabilities. In the case of FlightRepository, it’s essentially doing two things:

			
					Adding, editing, and deleting flights

					Searching for existing flights

			

			If we wanted to introduce interfaces, we could introduce interfaces for these separate sets of related capabilities, as shown here:

			
public interface IFlightUpdater {
 FlightInfo AddFlight(FlightInfo flight);
 FlightInfo UpdateFlight(FlightInfo flight);
 void CancelFlight(FlightInfo flight);
}
public interface IFlightProvider {
 FlightInfo? FindFlight(string id);
 IEnumerable<FlightInfo> GetActiveFlights();
 IEnumerable<FlightInfo> GetPendingFlights();
 IEnumerable<FlightInfo> GetCompletedFlights();
}

			In this example, our FlightRepository class would implement both the IFlightUpdater interface and the IFlightProvider interface. If we wanted to integrate with another airline’s systems but didn’t have the ability to modify their flights, the IFlightProvider interface could be implemented without the IFlightUpdater interface.

			By segmenting our interfaces into small interfaces that denote distinct sets of capabilities, we make it easier to provide alternative implementations of those capabilities as well as test our code later.

			We’ve touched on DI a few times now; let’s explore that topic in more detail by covering the DIP and rounding out our SOLID principles.

			Dependency Inversion Principle

			The Dependency Inversion Principle (DIP) states that your code should generally depend on abstractions instead of on specific implementations.

			To illustrate this, let’s look at a FlightBookingManager class that helps passengers book flights. This class needs to register booking requests and send confirmation messages for the booking. Here’s its current code:

			
public class FlightBookingManager {
 private readonly SpecificMailClient _email;
 public FlightBookingManager(string connectionString) {
 _email = new SpecificMailClient(connectionString);
 }
 public bool BookFlight(Passenger passenger,
 PassengerFlightInfo flight, string seat) {
 if (!flight.IsSeatAvailable(seat)) {
 return false;
 }
 flight.AssignSeat(passenger, seat);
 string message = "Your seat is confirmed";
 _email.SendMessage(passenger.Email, message);
 return true;
 }
}

			This code allows passengers to book a flight by checking if a seat is available, then reserving that seat and sending a message using the _email field. This field is set in the constructor to a new instance of SpecificMailClient, which is a made-up class representing some very specific implementation of an email client. The constructor needs to get a connection string to instantiate this class.

			This code violates the DIP because our FlightBookingManager class is tightly coupled with a specific email client. If we ever wanted to write unit tests against this class, the class would always try to send messages to that email client, which usually isn’t what you want when testing.

			Additionally, if the organization wanted to change email providers and you needed to switch to a different email client, the FlightBookingManager class would need to change along with anywhere else in the system where we were tightly coupled to use the SpecificMailClient class.

			Dependency inversion flips this on its head by having our classes instead depend on abstractions of the specific things they depend on. This is usually done by depending on a base class such as EmailClientBase that is then inherited or through taking in an interface such as IEmailClient that specific clients can implement.

			We typically take in these dependencies in the constructor as a constructor parameter. This version of our FlightBookingManager class would look like this:

			
public class FlightBookingManager {
 private readonly IEmailClient _email;
 public FlightBookingManager(IEmailClient email) {
 _email = email;
 }
 public bool BookFlight(Passenger passenger,
 PassengerFlightInfo flight, string seat) {
 if (!flight.IsSeatAvailable(seat)) {
 return false;
 }
 flight.AssignSeat(passenger, seat);
 string message = "Your seat is confirmed";
 _email.SendMessage(passenger.Email, message);
 return true;
 }
}

			Here, instead of taking in a connection string, we now take in an IEmailClient class. This means our class doesn’t need to know which implementation it is dealing with or how to instantiate an instance of that class, doesn’t need a connection string, doesn’t need to change if the specific email provider ever changes, and can be tested easier by passing in a fake email client instead of a real one (we’ll talk more about this in the next chapter when discussing Moq).

			This process of taking in a dependency from something else is called Dependency Inversion and is often an intimidating topic for new and intermediate developers, but at its core, Dependency Inversion is all about classes getting their dependencies passed into them instead of having to create specific instances themselves.

			Following the DIP leads to more maintainable, flexible, and testable code.

			This concludes the five principles in SOLID, but we still have a few more design principles to cover before closing out the chapter.

			Considering other architectural principles

			Before we close out the chapter, let me share three brief principles that have helped me in my own journey toward good software.

			Learning the DRY principle

			Don’t Repeat Yourself (DRY) is an important tenant in software development. The DRY principle is oriented around making sure you don’t repeat the same patterns in code throughout your application. Code takes a while to write, read, and maintain, and bugs inevitably do occur at a certain rate per line of code. As a result, you want to strive to solve problems once in a centralized place and then reuse that solution.

			Let’s look at some sample code that violates the DRY principle. This code takes in a comma-separated value (CSV) string such as "CSA1234,CMH,ORD" and translates it into a FlightInfo object:

			
public FlightInfo ReadFlightFromCsv(string csvLine) {
 string[] parts = csvLine.Split(',');
 const string fallback = "Unknown";
 FlightInfo flight = new();
 if (parts.Length > 0) {
 flight.Id = parts[0]?.Trim() ?? fallback;
 } else {
 flight.Id = fallback;
 }
 if (parts.Length > 1) {
 flight.DepartureAirport = parts[1]?.Trim() ?? fallback;
 } else {
 flight.DepartureAirport = fallback;
 }
 if (parts.Length > 2) {
 flight.ArrivalAirport = parts[2]?.Trim() ?? fallback;
 } else {
 flight.ArrivalAirport = fallback;
 }
 // Other parsing logic omitted
 return flight;
}

			Notice how the logic for parsing in each part of the CSV string is wrapped in checks against null values and the array of parts is empty. This code is very repetitive, and it’s easy to imagine that if a new field got added to the CSV data, the developer making the change would just copy and paste those five lines of code.

			There are a few problems with repeating code patterns such as this:

			
					It encourages copying and pasting, which tends to produce poor code or results in bugs due to things that should have been changed on paste not being changed

					If the logic for parsing an individual field needs to change (for example, to protect against empty strings), it now needs to be changed in many places

			

			We can fix this by extracting a method containing the logic for parsing fields:

			
private string ReadFromCsv(string[] parts, int index,
 string fallback = "Unknown") {
 if (parts.Length > index) {
 return parts[index]?.Trim() ?? fallback;
 } else {
 return fallback;
 }
}
public FlightInfo ReadFlightFromCsv(string csvLine) {
 string[] parts = csvLine.Split(',');
 FlightInfo flight = new();
 flight.Id = ReadFromCsv(parts, 0);
 flight.DepartureAirport = ReadFromCsv(parts, 1);
 flight.ArrivalAirport = ReadFromCsv(parts, 2);
 // Other parsing logic omitted
 return flight;
}

			Not only is this new version easier to maintain, but it also results in less code overall and helps focus your attention on parts of the logic that are different from section to section. This improves the readability of your code while also reducing your likelihood of making mistakes.

			KISS principle

			“Keep it simple, stupid” (abbreviated as KISS and sometimes called “Keep it simple, silly”) is a principle focused on the complexity of software systems. As software engineers, we sometimes overthink things and make things incredibly complex when they don’t need to be. KISS encourages you to keep your code and classes as simple as possible and expand the complexity only when truly necessary.

			Typically, the more complexity you have in your systems, the longer it takes you to add new features, diagnose problems, onboard new team members, and resolve customer-facing issues. With more moving parts to your application, there are also more things that can break, meaning that complexity has a real chance of creating customer-facing issues—all for potential solutions to problems your organization won’t have for a few years.

			Complexity tends to grow over time and rarely ever decreases (particularly in database schemas). Keep it simple until you see a pressing and compelling reason to add more complexity.

			Understanding high cohesion and low coupling

			Finally, let’s close the chapter out by reviewing two terms you’ll hear occasionally in software engineering: cohesion and coupling.

			Cohesion has to do with how related different parts of the class are to the same thing. In a high-cohesion class, almost all parts of the class are oriented on the same types of capabilities. Let’s look again at the IFlightUpdater interface from earlier for an example:

			
public interface IFlightUpdater {
 FlightInfo AddFlight(FlightInfo flight);
 FlightInfo UpdateFlight(FlightInfo flight);
 void CancelFlight(FlightInfo flight);
}

			A class that implemented everything in this interface and added no other members would be a good example of high cohesion because all members in this interface are related to working with the same type of item. A low-cohesion class would start with these methods but also add many methods related to booking flights, generating reports, searching data, or other capabilities.

			Classes that have low cohesion usually also violate the SRP.

			Coupling refers to how tightly paired together with other classes a single class is. The more classes an individual class needs to know about to do its job, the more tightly coupled it is. Classes with higher coupling are harder to test due to a larger number of dependencies and need to be modified more frequently as their related classes evolve over time.

			The DIP provides a great way for classes to reduce their coupling.

			So, when you hear people talk about wanting high cohesion and low coupling, they’re advocating for classes that are very tightly focused on a specific area and rely on as few other classes as possible to achieve that objective. When this combination is met, classes tend to be very focused and easy to maintain.

			Summary

			In this chapter, we discussed code smells and anti-patterns. The right design principles can help keep your code focused and minimal and slow the rate at which it naturally accumulates complexity. This helps keep your code in good form and resist accumulating technical debt.

			The most common maxim for quality programming is SOLID, following the Single Responsibility Principle (SRP), making code open for extension while being closed to modification, the Liskov Substitution Principle (LSP) advocating for low coupling with polymorphic code, the interface segregation principle focused on several smaller interfaces over one larger interface, and the Dependency Inversion Principle (DIP) which talks about reducing coupling by having classes take in the things they need from outside of the class.

			Now that we’ve established how to write SOLID code, we’ll explore some advanced testing techniques that can help test code built using these principles.

			Questions

			
					How does the SRP affect cohesion?

					Which areas of your code violate the SRP or DRY?

					What are the advantages of DI? How does it affect coupling?

			

			Further reading

			You can find more information about materials discussed in this chapter at these URLs:

			
					SOLID Principles in C# with Examples: https://www.c-sharpcorner.com/UploadFile/damubetha/solid-principles-in-C-Sharp/

					15 of the Worst C# Anti-Patterns Developers Keep Using (And How to Avoid Them): https://methodpoet.com/worst-anti-patterns/

					Top 10 Dotnet Exception Anti-Patterns in C#: https://newdevsguide.com/2022/11/06/exception-anti-patterns-in-csharp/

					Using objects that implement IDisposable: https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/using-objects

					LINQ: Caveats and pitfalls: https://dev.to/samfieldscc/linq-37k3

			

		

	
		
			9

			Advanced Unit Testing

			As we’ve seen, testing is incredible and can give you the freedom to effectively refactor your code in relative safety. Sometimes, code is written in a way that makes testing difficult and you need a few more tools. In this chapter, we’ll explore a handful of popular .NET libraries that can improve the readability of your tests and give you more options for testing code – including those tricky classes with complex data or dependencies.

			We’ll cover the following topics in this chapter:

			
					Creating readable tests with Shouldly

					Generating test data with Bogus

					Mocking dependencies with Moq and NSubstitute

					Pinning tests with Snapper

					Experimenting with Scientist .NET

			

			Technical requirements

			The code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter09 folder.

			Libraries change with new releases and some of these changes may cause issues with code in this chapter. Because of this, here are the exact names and versions of the libraries that are used in this chapter at the time of writing:

			
					Bogus 34.0.2

					FluentAssertions 6.11.0

					Moq 4.20.2

					NSubstitute 5.0.0

					Scientist 2.0.0

					Shouldly 4.2.1

					Snapper 2.4.0

			

			Creating readable tests with Shouldly

			In Chapter 6, we saw how the Assert class is used to verify the behavior of existing classes through code such as the following:

			
Assert.Equal(35, passengerCount);

			This code verifies that passengerCount is equal to 35 and fails the test if it is a different number.

			Unfortunately, this code has two problems:

			
					Assert methods take in the expected value first and the actual value second. This is different than how most people think about things and can lead to confusing test failure messages, as we saw in Chapter 6.

					The code doesn’t read incredibly well in English, which can slow you down as you are reading tests.

			

			Several open-source libraries address this issue by providing an alternative syntax for writing assertions in unit tests through sets of extension methods they introduce.

			The most popular of these libraries are FluentAssertions and Shouldly. While FluentAssertions is by far the more popular library, I find Shouldly to read more naturally, so we’ll start with that.

			Let’s look at installing Shouldly and getting started with its syntax before looking at a similar example with FluentAssertions.

			Installing the Shouldly NuGet package

			Shouldly is not a library that is included by default in any project template built into Visual Studio. Because of this, we need to add it to our project.

			In Visual Studio, we use a package manager called NuGet Package Manager to install external dependencies from package sources such as the one at nuget.org.

			If you’ve programmed in JavaScript, this concept is very similar to JavaScript package managers such as Yarn or NPM. While other package managers download the code and have you compile it, NuGet downloads compiled versions of external code and allows your code to reference things defined in those projects without slowing your build process.

			To install a package, right-click on the Chapter9Tests project in Solution Explorer and choose Manage NuGet Packages.

			Next, click on the Browse navigation link in the top-left corner and type Shouldly in the search bar. Your search results should look something like those in Figure 9.1:

			
				
					[image: Figure 9.1 – NuGet Package Manager showing results for Shouldly]
				

			

			Figure 9.1 – NuGet Package Manager showing results for Shouldly

			You should see an entry named Shouldly by Jake Ginnivan et al. in the list on the left. Select it by clicking on it. The details on the right will then list information about this package, including its license terms and dependencies.

			Tip

			Always check the author and the exact name of the package you are looking for as many have similar names.

			Using the Version dropdown in the details area on the right, you can choose the specific version of the library to install. Usually, it’s fine to leave this as the latest stable version, but occasionally, you may need to select a prior version for compatibility purposes.

			When you click Install, Shouldly and anything it depends on will automatically be downloaded and installed into your project. When installing packages, a window may open showing you various license terms or dependencies, such as those shown in Figure 9.2. Read these carefully, especially if you are using a library in your workplace:

			
				
					[image: Figure 9.2 – Dependencies needed to install Shouldly]
				

			

			Figure 9.2 – Dependencies needed to install Shouldly

			Now that we have Shouldly installed, let’s learn how to work with it.

			Writing readable assertions with Shouldly

			In PassengerTests.cs, there’s an existing PassengerFullNameShouldBeAccurate test that instantiates a Passenger object, grabs the value out of the object’s FullName field, and makes sure the resulting name matches the expected value, as shown in the following code:

			
[Fact]
public void PassengerFullNameShouldBeAccurate() {
 // Arrange
 Passenger passenger = new() {
 FirstName = "Dot",
 LastName = "Nette",
 };
 // Act
 string name = passenger.FullName;
 // Assert
 Assert.Equal("Dot Nette", name);
}

			Using Shouldly, we can make this assertion a lot more readable.

			First, let’s add a global using to the Usings.cs file by adding a using for Shouldly at the end of that file:

			
global using Xunit;
global using Shouldly;

			This global using directive allows you to work with things in the Shouldly namespace anywhere in the Chapter9Tests project. Put another way, it is the equivalent of if every file in the project had a using Shouldly; statement at the top of the file.

			Now that we have Shouldly installed and its namespace imported, we can rewrite the assertion from earlier by using one of the many extension methods provided by Shouldly, as shown here:

			
[Fact]
public void PassengerFullNameShouldBeAccurate() {
 // Arrange
 Passenger passenger = new() {
 FirstName = "Dot",
 LastName = "Nette",
 };
 // Act
 string name = passenger.FullName;
 // Assert
 name.ShouldBe("Dot Nette");
}

			Here, Shouldly adds a ShouldBe extension method to the string, allowing us to call this method in a very readable way. This code is functionally equivalent to Assert.Equal, but it is significantly more readable. Additionally, you are far less likely to confuse which parameter is the expected value versus the actual value under this way of working with things.

			Shouldly has a wide variety of extension methods, including ShouldBe, ShouldNotBe, ShouldBeGreaterThan/ShouldBeLessThan, ShouldContain, ShouldNotBeNull/ShouldBeNull, ShouldStartWith/ShouldEndWith, and more.

			To illustrate this, let’s look at a more complex test written without Shouldly:

			
[Fact]
public void ScheduleFlightShouldAddFlight() {
 // Arrange
 FlightScheduler scheduler = new();
 PassengerFlightInfo flight = _flightFaker.Generate();
 // Act
 scheduler.ScheduleFlight(flight);
 // Assert
 var result = scheduler.GetAllFlights();
 Assert.NotNull(result);
 Assert.Equal(1, result.Count());
 Assert.Contains(flight, result);
}

			This code uses FlightScheduler to schedule a flight using the Bogus library, which we’ll discuss later in this chapter. Once a flight has been scheduled, the code gets all the flights and asserts that the resulting collection is not null, has only one item, and the flight we scheduled is in that collection.

			This code isn’t too bad, but I still prefer the Shouldly version:

			
[Fact]
public void ScheduleFlightShouldAddFlight() {
 // Arrange
 FlightScheduler scheduler = new();
 PassengerFlightInfo flight = _flightFaker.Generate();
 // Act
 scheduler.ScheduleFlight(flight);
 // Assert
 var result = scheduler.GetAllFlights();
 result.ShouldNotBeNull();
 result.Count().ShouldBe(1);
 result.ShouldContain(flight);
}

			In general, I find the Shouldly library to have more consistent parameter ordering and result in more readable tests. Because of this, I find myself more productive and use Shouldly wherever I can.

			Practice exercise

			As an exercise, I’d encourage you to take the starting code for this chapter and convert the various tests so that they use Shouldly instead of standard assertions. Feel free to experiment with other assertions as you go. This chapter’s final code uses Shouldly if you want to check your answers.

			Before we see what else Shouldly can do, let’s look at FluentAssertions, a popular library fulfilling a similar role as Shouldly.

			Writing readable assertions with FluentAssertions

			FluentAssertions does the same thing that Shouldly does, but the approach of its syntax is less oriented on calling single methods like Shouldly’s ShouldContain. Instead, FluentAssertions prefers chaining together several method calls to produce a similar result.

			Let’s look at a test of the baggage pricing system as an illustration:

			
[Fact]
public void CarryOnBaggageIsPricedCorrectly() {
 // Arrange
 BaggageCalculator calculator = new();
 int carryOnBags = 2;
 int checkedBags = 0;
 int passengers = 1;
 bool isHoliday = false;
 // Act
 decimal result = calculator.CalculatePrice(checkedBags,
 carryOnBags, passengers, isHoliday);
 // Assert
 result.Should().Be(60m);
}

			This code creates BaggageCalculator and then sends a series of factors to that calculator’s CalculatePrice method before performing its assertions via the Should().Be(60m) syntax.

			Before we explore this in more depth, I should point out that, like Shouldly, FluentAssertions does not come pre-installed. You’ll need to install FluentAssertions with NuGet Package Manager, the same way you did earlier for Shouldly. You’ll also need to add a using FluentAssertions; statement to your code file to see the FluentAssertions extension methods.

			Now that we’ve established how to get started with FluentAssertions, let’s take a closer look at that result.Should().Be(60m) syntax.

			Most actions in FluentAssertions flow out of the Should methods. Notice that there are multiple Should methods in FluentAssertions, with each one related to a specific type of data you might work with.

			These Should methods return a strongly-typed object such as NumericAssertions<decimal>
in the case of the calculator assertions. These assertion objects contain various constraint methods, allowing you to do targeted assertions such as Be, NotBe, BeLessThan, BePositive, BeOneOf, and others.

			There are a few advantages to the FluentAssertions approach:

			
					It’s easier to find assertion methods since they all go through Should()

					The constraint methods allow you to combine assertions such as result.Should().BePositive().And.BeInRange(50, 70)

			

			Unfortunately, FluentAssertions has a slightly higher learning curve and is a little more verbose than Shouldly, which might result in slightly less readable tests.

			Ultimately, it’s up to you and your team as to what style you prefer, but both Shouldly and FluentAssertions can significantly improve the readability of your tests and your enjoyment of the test writing experience.

			Before we introduce our next new library, let’s talk about one more thing Shouldly can do that might be helpful.

			Testing performance with Shouldly

			One of the reasons people find themselves refactoring code is to look for ways of improving the performance of code that is known to be slow.

			Imagine you are following Test-Driven Development (TDD) and are investigating code that takes an unacceptably long time to iterate through a list of items.

			The first step in TDD is to write a failing test, so you now need to write a test that fails if the performance of a method is too slow.

			We’ll talk about reasons why you might not want to write a test around performance in a bit, but let’s explore how you would go about testing performance first.

			In order to fail tests involving code that performs too slowly, you’d need to be able to measure how long that code took to run. To do that, you could create a Stopwatch object, start it, stop it, and then verify the duration of that watch, as shown here:

			
[Fact]
public void ScheduleFlightShouldNotBeSlow() {
 // Arrange
 FlightScheduler scheduler = new();
 PassengerFlightInfo flight = _flightFaker.Generate();
 int maxTime = 100;
 Stopwatch stopwatch = new();
 // Act
 stopwatch.Start();
 scheduler.ScheduleFlight(flight);
 stopwatch.Stop();
 long milliSeconds = stopwatch.ElapsedMilliseconds;
 // Assert
 milliSeconds.ShouldBeLessThanOrEqualTo(maxTime);
}

			This code will fail if it takes more than 100 milliseconds (0.1 seconds) to run ScheduleFlight, but this approach has a couple of disadvantages:

			
					There’s a lot of setup code required for this approach. In this case, over half of the test method is devoted to Stopwatch.

					The test waits for the method to complete before the test is failed. If it takes 10 seconds to complete the method, the test waits the full time. This is inefficient because once the 100-millisecond threshold is crossed, the test will never pass.

			

			Shouldly gives us a more compact Should.CompleteIn method that solves both problems:

			
[Fact]
public void ScheduleFlightShouldNotBeSlow() {
 // Arrange
 FlightScheduler scheduler = new();
 PassengerFlightInfo flight = _flightFaker.Generate();
 TimeSpan maxTime = TimeSpan.FromMilliseconds(100);
 // Act
 Action testAction = () => scheduler.ScheduleFlight(flight);
 // Assert
 Should.CompleteIn(testAction, maxTime);
}

			This code creates an action to schedule the flight that Shouldly will invoke as part of the test. This action isn’t invoked until it is passed into the Should.CompleteIn method, which also requires a maximum amount of time to allow the method to run.

			When Shouldly runs your action, it tracks the elapsed time internally and will cancel your action and fail the test once that threshold is reached. This results in more compact test code that won’t take longer than the maximum allowable amount of time.

			So, now that we know how to write simple performance tests using Shouldly or plain old .NET with Stopwatch, let’s talk about why you might not want to do this.

			Good tests should be fast and result in a repeatable result. Tests will be run by a variety of machines in a variety of different circumstances, such as when the processor has relatively little work to do or when the processor is completely overloaded. Tests may also be run in isolation or parallel, alongside, other tests. Additionally, with .NET, it is normal to see variations in performance from run to run.

			All these things mean that performance testing is going to be more chaotic than you like and the maximum allowable duration is something you should consider carefully. If your tests are run in a continuous integration/continuous delivery (CI/CD) pipeline (which they should be, as we’ll talk about in Part 4 of this book), it’s likely that the build machine’s CPU and memory characteristics look nothing like a developer workstation. To combat this, you may need to pick a significantly higher number than you normally would to avoid random failures due to a slow test environment. On the other hand, if you make your timeout too long, you won’t detect legitimate performance issues.

			My general stance is that performance testing is something that should rarely ever be codified into unit tests due to the chaotic nature of performance metrics and the wide variety of machines that might run tests. Instead, I tend to prefer periodic profiling using a dedicated tool such as Visual Studio Enterprise or JetBrains dotTrace for those areas that are truly critical to performance.

			That said, there is value in performance tests, but you may spend more time than you’d expect finding a good maximum test duration number.

			Let’s move on to another library that makes your life easier when testing: Bogus.

			Generating test data with Bogus

			In Chapter 6, I mentioned that tests are a form of documentation that explains how your system should work.

			Keeping that in mind, look at the following test, which tests the interaction of the Passenger and BoardingProcessor classes:

			
[Fact]
public void BoardingMessageShouldBeAccurate() {
 // Arrange
 Passenger passenger = new() {
 BoardingGroup = 7,
 FirstName = "Dot",
 LastName = "Nette",
 MailingCity = "Columbus",
 MailingStateOrProvince = "Ohio",
 MailingCountry = "United States",
 MailingPostalCode = "43081",
 Email = "noreply@packt.com",
 RewardsId = "CSA88121",
 RewardMiles = 360,
 IsMilitary = false,
 NeedsHelp = false,
 };
 BoardingProcessor boarding =
 new(BoardingStatus.Boarding, group:3);
 // Act
 string message = boarding.BuildMessage(passenger);
 // Assert
 message.ShouldBe("Please Wait");
}

			A lot of setup is needed in the Arrange phase before BuildMessage can be called. But what aspects of that setup are important? Which parts of the Passenger object contribute to that person being allowed to board versus being told to wait?

			While it’s important to create test objects that look accurate, mixing irrelevant properties with vital properties can lead to difficulties interpreting what’s important about test data or why a test should pass instead of fail.

			Bogus is a library that generates realistic random data of different types. Bogus helps solve this problem by giving you a good way of generating random data for those less critical parts of your objects.

			This has the simultaneous benefit of focusing your attention on the more critical portions of your tests while also generating random data to test your assertion that the values in the other properties truly don’t matter.

			Like the other libraries in this chapter, Bogus must be installed via NuGet and then referenced in a using Bogus; statement.

			Let’s look at the Arrange section of the earlier test using Bogus:

			
// Arrange
Faker<Passenger> faker = new();
faker.RuleFor(p => p.FirstName, f => f.Person.FirstName)
 .RuleFor(p => p.LastName, f => f.Person.LastName)
 .RuleFor(p => p.Email, f => f.Person.Email)
 .RuleFor(p => p.MailingCity, f => f.Address.City())
 .RuleFor(p => p.MailingCountry, f => f.Address.Country())
 .RuleFor(p => p.MailingState, f =>f.Address.State())
 .RuleFor(p => p.MailingPostalCode, f=>f.Address.ZipCode())
 .RuleFor(p => p.RewardsId, f => f.Random.String2(8))
 .RuleFor(p => p.RewardMiles,
 f => f.Random.Number(int.MaxValue));
Passenger passenger = faker.Generate();
passenger.BoardingGroup = 7;
passenger.NeedsHelp = false;
passenger.IsMilitary = false;

			As you’ve likely noticed, this code is significantly different than the earlier code. It uses a Faker<Passenger> object from Bogus that will generate a different random Passenger object every time the Generate() method is called.

			These Passenger objects will use Bogus’ library of random data to generate reasonable test data, as shown in Figure 9.3:

			
				
					[image: Figure 9.3 – A randomized passenger with somewhat realistic values]
				

			

			Figure 9.3 – A randomized passenger with somewhat realistic values

			The way this works is that you can set rules that Faker will follow when it sees a given property using the RuleFor method.

			Using RuleFor, you can specify the property you want to program a response to in the first argument and then specify a function to get a value in the second parameter.

			As an example, the RuleFor(p => p.Email, f => f.Person.Email) line has two function parameters. The first one uses p to represent the Passenger object and focuses on that object’s Email property. The second parameter takes in a Faker instance as f and the function may choose to use it to generate a value that Faker will use when generating a person.

			Faker contains many different types of data, from fake company names to ZIP codes to product names, IP addresses, and even absurd things such as hacker speak and “rants” such as reviews.

			Now, if you look closely at the data Faker generates, it doesn’t always make sense. For example, Figure 9.3 listed the person as living in Larsonland, Minnesota with a postal code of 78950 and a country of “Cocos (Keeling) Islands.” Individually, these things are fine, but these different properties conflict wildly with one another.

			If you need your data to make sense, you’ll need to write more nuanced rules for how these properties interact. Despite these limitations, Bogus gives you a great way of adding randomness to your code for the inconsequential data.

			Often, when using Bogus, you’ll create your Faker instance in a separate method or the test constructor, which simplifies your code significantly:

			
[Fact]
public void BoardingMessageShouldBeAccurate() {
 Faker<Passenger> faker = BuildPersonFaker();
 Passenger passenger = faker.Generate();
 passenger.BoardingGroup = 7;
 passenger.NeedsHelp = false;
 passenger.IsMilitary = false;
 BoardingProcessor boarding =
 new(BoardingStatus.Boarding, group: 3);
 // Act
 string message = boarding.BuildMessage(passenger);
 // Assert
 message.ShouldBe("Please Wait");
}

			Notice how this approach minimizes Bogus’ role in things and focuses your attention on how the randomly generated person is further configured. This helps you see that the important factors for someone not boarding the plane yet are as follows:

			
					They are in a higher boarding group than the current group

					They are not military

					They do not need help boarding the plane

			

			Bogus isn’t just for tests. For example, I’ve used Bogus successfully for prototyping user interfaces and generating data for small game projects. However, Bogus is a valuable addition to your testing toolbox.

			Let’s move on to look at ways of isolating dependencies with a pair of mocking libraries.

			Mocking dependencies with Moq and NSubstitute

			So far, we’ve looked at a few libraries that improve the readability of your tests. In this section, we’ll look at mocking frameworks and see how libraries can help you more effectively test your code.

			Understanding the need for mocking libraries

			Let’s discuss why mocking frameworks are necessary by revisiting the FlightBookingManager example we introduced in the previous chapter while discussing dependency injection:

			
public class FlightBookingManager {
 private readonly IEmailClient _email;
 public FlightBookingManager(IEmailClient email) {
 _email = email;
 }
 public bool BookFlight(Passenger passenger,
 FlightInfo flight, string seat) {
 if (!flight.IsSeatAvailable(seat)) {
 return false;
 }
 flight.AssignSeat(passenger, seat);
 string message = "Your seat is confirmed";
 return _email.SendMessage(passenger.Email, message);
 }
}

			Here, this class requires IEmailClient when FlightBookingManager is created. The client is then stored in the _email field and this is later used to send a message when a flight is booked. Passing in IEmailClient as a parameter to the constructor is an example of dependency injection and allows our class to work with anything that implements the IEmailClient interface.

			Unfortunately, it also means that to test the class, we must provide an implementation of IEmailClient, even if we’re not explicitly testing something email-related.

			Since we generally don’t want to send emails when unit testing our code, that means we’d need a separate implementation of IEmailClient. We could make one by declaring a class and implementing the IEmailClient interface with a minimal implementation.

			Let’s say that IEmailClient was defined as follows:

			
public interface IEmailClient {
 bool SendMessage(string email, string message);
}

			You could create a TestEmailClient that meets this requirement:

			
public class TestEmailClient : IEmailClient {
 public bool SendMessage(string email, string message)
 => true;
}

			Here, the implementation of the test client is very simple and does the minimum possible needed to compile the code, which in this case is returning true, indicating a message was successfully sent. This type of class is sometimes called a test double, a test stub, or simply a mock object. These names are due to these classes looking like real implementations for testing purposes without having all their functionality. In this chapter, I will refer to these as mock objects since that will help mocking frameworks make more sense later.

			This lets us write a test using the TestEmailClient mock object we created:

			
[Fact]
public void BookingFlightShouldSucceedForEmptyFlight() {
 // Arrange
 TestEmailClient emailClient = new();
 FlightBookingManager manager = new(emailClient);
 Passenger passenger = GenerateTestPassenger();
 FlightInfo flight = GenerateEmptyFlight("Paris",
 "Toronto");
 // Act
 bool booked = manager.BookFlight(passenger, flight,"2B");
 // Assert
 booked.ShouldBeTrue();
}

			Here, we can safely test a flight without sending an email by providing TestEmailClient instead of a real email client.

			Unfortunately, mock objects have their drawbacks. Let’s say we wanted to write another test that verifies that trying to book a seat that’s already occupied doesn’t send an email. In that case, we’d need to create another mock object with a different implementation.

			In this case, we’d want to fail the test if the SendMessage method was called, so that method should throw an exception or use the Assert.Fail method to cause the test to fail, as shown here:

			
public class SendingNotAllowedEmailClient : IEmailClient {
 public bool SendMessage(string email, string message) {
 Assert.Fail("You should not have sent an email");
 return false;
 }
}

			Let’s consider a more nuanced example. Let’s say you want to verify that the BookFlight method calls the SendMessage method on its IEmailClient one time and one time only.

			We could test this by building a specialized mock object that had a counter of all the times it was called, but that’s yet more complexity in our test code that we don’t necessarily need. If the definition of what’s in IEmailClient ever changes, all our mock objects that implement that interface will also need to be updated.

			Because so many tests need mock objects and each test tests something slightly different, writing and maintaining mock objects manually can be a lot of work. This is the core problem that mocking libraries exist to solve.

			While there are several popular mocking libraries in .NET, the most popular for many years has been Moq. We’ll explore Moq next before looking at an alternative.

			Creating mock objects with Moq

			Moq, pronounced either “Mock” or “Mock-you” in the words of its creator, is a mocking library built around using LINQ to create, configure, and verify the behavior of mock objects.

			Just like the other libraries in this chapter, you’ll need to install Moq from NuGet Package Manager and import it into your file via a using Moq; statement.

			With Moq, you don’t create mock objects on your own; instead, you tell Moq the interface you want to implement or the class you want to inherit and Moq automatically creates an object that meets these requirements.

			Let’s revisit our flight booking test from earlier in this chapter using Moq:

			
[Fact]
public void BookingFlightShouldSucceedForEmptyFlight() {
 // Arrange
 Mock<IEmailClient> clientMock = new();
 IEmailClient emailClient = clientMock.Object;
 FlightBookingManager manager = new(emailClient);
 Passenger passenger = GenerateTestPassenger();
 FlightInfo flight = GenerateEmptyFlight("Hamburg",
 "Cairo");
 // Act
 bool booked = manager.BookFlight(passenger, flight,"2B");
 // Assert
 booked.ShouldBeTrue();
}

			Here, we instantiate a Mock instance named clientMock that will create a new mock object in the form of IEmailClient. We then call the Object property on clientMock and the Moq library automatically generates an object that implements IEmailClient in the simplest way possible.

			Since we don’t care how the email client works in this example, this is all we need to do to generate a simple mock object that we can pass to FlightBookingManager. Not only is this less code, but we can stay in the test method while defining our mock object, and if the definition for IEmailClient ever changes, we don’t need to update the mock object since Moq takes care of that for us.

			Of course, there’s a lot more that Moq can do, so let’s see how you can use it to configure how your mock objects behave.

			Programming Moq return values

			By default, methods on Moq’s mock objects will return the default value for that type. For example, a method returning a bool object would return false, and a method returning an int object would return 0.

			Sometimes, you need Moq to return something different. In these cases, you can set up your mock object by calling Moq’s Setup method. For example, if you needed the SendMessage method to return true instead of false for any value that was passed in, you could write the following code:

			
Mock<IEmailClient> mockClient = new();
mockClient.Setup(c => c.SendMessage(It.IsAny<string>(),
 It.IsAny<string>())
).Returns(true);
IEmailClient emailClient = mockClient.Object;

			Here, the Setup method requires you to tell it what method or property you are configuring. Since we’re configuring the SendMessage method, we specify it in the arrow function.

			Next, Moq needs to know when it should apply this rule. You can program your mock objects to reply differently based on different parameters, so you could have a Setup call for different parameter values to the same method.

			In our case, we want the method to always return true, regardless of what is passed in, so we specify that with Moq’s It.IsAny syntax.

			Before we finish our discussion of Moq, we’ll look at a final example and teach you how to verify how many times a given method was called on your mock objects.

			Verifying Moq calls

			Sometimes, you want to test the behavior of a method and verify that calling one method causes it to call something on another object. Moq lets you do this by verifying that a method has been called a specific number of times.

			This can include verifying that a method wasn’t called, which can be helpful for cases like the example we discussed earlier involving making sure emails aren’t sent out in cases where a seat couldn’t be reserved.

			To accomplish this, we can call Moq’s Verify methods, as shown in the following case, which verifies that an email was sent once and only once when booking a flight:

			
[Fact]
public void BookingFlightShouldSendEmails() {
 // Arrange
 Mock<IEmailClient> mockClient = new();
 mockClient.Setup(c => c.SendMessage(It.IsAny<string>(),
 It.IsAny<string>())).Returns(true);
 IEmailClient emailClient = mockClient.Object;
 FlightBookingManager manager = new(emailClient);
 Passenger passenger = GenerateTestPassenger();
 FlightInfo flight = GenerateEmptyFlight("Sydney","LA");
 // Act
 bool result= manager.BookFlight(passenger,flight,"2C");
 // Assert
 result.ShouldBeTrue();
 mockClient.Verify(c => c.SendMessage(passenger.Email,
 It.IsAny<string>()), Times.Once);
 mockClient.VerifyNoOtherCalls();
}

			Here, we call Verify on our Mock instance to verify that the SendMessage method was called exactly one time with the passenger’s email address and any email body. If the method wasn’t called or was called multiple times, this will fail our test.

			In other words, this one Verify line protects us from cases where the system didn’t email the user when it should have, as well as cases where it might have sent too many emails.

			Next, the code calls VerifyNoOtherCalls. This method will cause the test to fail if some other method on our IEmailClient was called that was not verified by a previous Verify statement. This can be handy for ensuring that the code is not doing unexpected things with the objects you provide it.

			A note on verifying behavior

			The developer community has historically been divided on whether it is good practice to verify that calling code calls some other piece of code in your unit tests. The argument against verifying the behavior of your tests is that it shouldn’t matter how a method implements something if it produces the right results. The counter-argument is that sometimes, the desired result of your method is the callout to the external code, such as our code here, which calls the SendMessage call. You and your team will need to decide when it is appropriate to use Verify in your tests.

			Moq can seem complex to work with initially, but you don’t need to use all its features to benefit from it. As we saw earlier, just using Moq to generate simple mock objects can save you significant work in maintaining a growing number of manually created mock objects over time.

			You won’t always need to use Moq’s Setup or Verify methods, but they’re very helpful when you want them.

			For years, Moq has been the dominant mocking library in .NET, but recently, NSubstitute has been gaining popularity. This results in a higher likelihood that you may encounter it in the workplace as a substitute for Moq. Let’s explore NSubstitute briefly and see how it accomplishes similar things to Moq using a different syntax.

			Mocking with NSubstitute

			NSubstitute is a similar mocking library to Moq, but its approach is to avoid arrow functions where possible and prefer code that looks more like standard method calls.

			Like other libraries in this chapter, you’ll need to install NSubstitute via NuGet Package Manager and then import it via a using NSubstitute; statement.

			Once you have NSubstitute installed and imported, you can use it in code, as follows:

			
[Fact]
public void BookingFlightShouldSendEmailsNSubstitute() {
 // Arrange
 IEmailClient emailClient= Substitute.For<IEmailClient>();
 emailClient.SendMessage(Arg.Any<string>(),
 Arg.Any<string>()
).Returns(true);
 FlightBookingManager manager = new(emailClient);
 Passenger passenger = GenerateTestPassenger();
 FlightInfo flight = GenerateEmptyFlight("Sydney","LA");
 // Act
 bool result = manager.BookFlight(passenger, flight,"2C");
 // Assert
 result.ShouldBeTrue();
 emailClient.Received()
 .SendMessage(passenger.Email,
 Arg.Any<string>());
}

			Note how NSubstitute’s Substitute.For returns the object you’re creating instead of creating an object like Mock<IEmailClient> did with Moq. This change makes your code a little simpler to work with but also means you now need to call methods like Received() and DidNotReceive() to get access to the method to verify.

			In general, NSubsitute is very similar to Moq but with a simpler syntax. This simplicity has its advantages, particularly in code readability and a lowered learning curve for new developers. Unfortunately, this sometimes comes at the price of NSubstitute not having the full range of features you’re used to with Moq.

			Now that we’ve explored mocking libraries, let’s move on to completely different types of unit tests.

			Pinning tests with Snapper

			Let’s say you’ve inherited some complex legacy code that returns an object with a lot of properties. Some of these properties may, in turn, contain other complex objects with their own nest of properties. You’re just starting to work with this code and need to make a change, but there aren’t any tests in place and you’re not even sure what properties are important to verify.

			I’ve seen this scenario a few times now and can attest that a special testing library called Snapper is a fantastic solution to this problem.

			What Snapper does is it creates a snapshot of an object and stores it to disk in a JSON file. When Snapper next runs, it generates another snapshot and then compares it to the snapshot it stored previously. If the snapshots differ at all, Snapper will fail the test and alert you to that problem.

			Snapper and Jest

			For those of you with a JavaScript background, Snapper was inspired by the snapshot testing capabilities found in JavaScript’s Jest testing library.

			Let’s see what a sample test looks like with Snapper.

			As usual, first, we install Snapper via NuGet and add a using Snapper; statement.

			After that, we’ll write a test against a complex object, FlightManifest:

			
[Fact]
public void FlightManifestShouldMatchExpectations() {
 // Arrange
 FlightInfo flight = GenerateEmptyFlight("Alta", "Laos");
 Passenger p1 = new("Dot", "Netta");
 Passenger p2 = new("See", "Sharp");
 flight.AssignSeat(p1, "1A");
 flight.AssignSeat(p2, "1B");
 LegacyManifestGenerator generator = new();
 // Act
 FlightManifest manifest = generator.Build(flight);
 // Assert
 manifest.ShouldMatchSnapshot();
}

			Here, we call ShouldMatchSnapshot to verify that the object matches the current snapshot.

			This will generate the snapshot the first time, but subsequent runs will compare the object’s snapshot to the stored snapshot. If the resulting snapshot is different, you’ll see a test failure with details about the difference, such as the one that occurs when a passenger’s name is changed, as shown in Figure 9.4:

			
				
					[image: Figure 9.4 – A failing snapshot test showing the difference between two properties]
				

			

			Figure 9.4 – A failing snapshot test showing the difference between two properties

			Sometimes, you’ll add new properties or realize that the stored snapshot was based on buggy data and you’ll want to update your snapshots. You can do this by temporarily adding an UpdateSnapshots attribute to your test method, as shown here:

			
[Fact]
[UpdateSnapshots]
public void FlightManifestShouldMatchExpectations() {

			After this, re-run your test to update the stored snapshot, then remove the UpdateSnapshots attribute. This final step is important because the test with UpdateSnapshots included will never fail a snapshot test but rather replace the snapshot every time.

			Snapshot testing is not for every project and not for every team. It is a very useful broad safety net that you can include as the first test for complex return values, but it is far less useful as a test that documents the behavior of a system. Additionally, snapshot tests can be very brittle and cause tests to fail for trivial things such as modified dates being different between two otherwise identical sets of data.

			Still, I find that Snapper and snapshot testing can be an appropriate opening move while trying to bring tests to particularly complex areas of legacy systems.

			Now, let’s close this chapter out with a similar library that helps you compare several different implementations with each other.

			Experimenting with Scientist .NET

			Scientist .NET is a library built by GitHub for scientifically refactoring the critical parts of your application.

			Let’s say you have a portion of your application that is vital to what the business does but has a significant amount of technical debt. You want to refactor it, but you’re afraid of breaking anything and your existing tests are not sufficient to address those fears, but you’re not sure what tests you need to add. In your estimation, the only thing that will let you feel good about your new code is to see how it does in production.

			This is what Scientist .NET helps with. Scientist .NET lets you deploy your new code alongside the legacy code it hopes to replace and compares the results of the two pieces of code. Alternatively, Scientist .NET can be used in unit tests to verify that the old version of a component and the new version of the component achieves the same results.

			This concept will hopefully be a bit clearer in a moment. Let’s jump into a specific example that looks at replacing LegacyManifestGenerator with RewrittenManifestGenerator.

			Like before, we’ll need to install the Scientist package from NuGet and then add a using GitHub; statement to the top of our file.

			Next, let’s look at the science experiment comparing the two manifest generators:

			
[Fact]
public void FlightManifestExperimentWithScientist() {
 FlightInfo flight = GenerateEmptyFlight("Alta", "Laos");
 Passenger p1 = new("Dot", "Netta");
 Passenger p2 = new("See", "Sharp");
 Scientist.Science<FlightManifest>("Manifest", exp => {
 exp.Use(() => {
 LegacyManifestGenerator generator = new();
 return generator.Build(flight);
 });
 exp.Try(() => {
 RewrittenManifestGenerator generator = new();
 return generator.Build(flight);
 });
 exp.Compare((a, b)=> a.Arrival == b.Arrival &&
 a.Departure == b.Departure &&
 a.PassengerCount==b.PassengerCount
);
 exp.ThrowOnMismatches = true;
 });
}

			That’s a lot of code, so let’s unpack everything here bit by bit.

			First, the Scientist.Science<FlightManifest> line tells Scientist you’re starting a new experiment that will return FlightManifest. In this example, we’re ignoring this result value, but in a production scenario, you might assign the result to a variable and work with it after the call to the Scientist.

			Scientist requires you to name every experiment in the first parameter to the Science call because you may be performing multiple experiments. This experiment is simply named “Manifest.”

			Next, the Scientist requires an action to configure the experiment you’re about to perform. You might configure a few things, but here, we’re specifying four different things that we’ll talk about in sequence.

			First, we call the Use method to tell the experiment what to use as the result of the call to the Scientist.Science. This should be the legacy implementation of the system you’re looking at replacing.

			Next, we need to give Scientist one or more alternative implementations to consider and compare against the “control” version in the legacy system. We do this via a Try method that looks very similar to the Use method, but it represents the experimental version.

			What Scientist does with these two versions is it makes the call to both implementations, compares the two results, and sends metrics on to something called a result publisher. This process is illustrated in Figure 9.5:

			
				
					[image: Figure 9.5 – Scientist .NET performing an experiment]
				

			

			Figure 9.5 – Scientist .NET performing an experiment

			Scientist always returns the result of the legacy version defined during Use, so your new implementation will not impact the existing logic and you’ll be able to identify cases where the new and old implementations do not match. This allows you to verify your new logic’s behavior without risking any logic bugs impacting end users.

			Once you are satisfied that your new implementation is without issues, you can remove Scientist and the legacy implementation from your code and use the new implementation in their place.

			For Scientist to tell if two results are equivalent, it needs to know how to compare them. You can configure this with the Compare method, which takes in a function that will return a bool object indicating if the two objects should be considered equivalent.

			Finally, our code sets ThrowOnMismatches to true. You can set this property in Scientist to have it throw an exception when the experiment and the control do not match for a given input. This is only intended for use in unit tests like our code here and is not intended for use if you’re using Scientist in a production application.

			Instead, you would implement Scientist’s IResultPublisher interface and set Scientist.ResultPublisher equal to your custom result publisher. This would allow you to report mismatches to a database, App Insights on Azure, or some other mechanism you might consider using to capture these mismatches. Getting into result publishers is outside the scope of this book, but see the Further reading section in this chapter for more resources.

			Scientist .NET is a complex solution you won’t use frequently, but it allows you to compare how two different implementations of an algorithm perform against a variety of inputs, either in a unit testing scenario or in a production application. I’ve personally seen Scientist .NET enable teams to collect the data they needed to successfully refactor highly complex code without impacting end users.

			Warning

			It’s important to note that when you run an experiment in Scientist, both the original version in your Use statement and any experiments you defined in the Try calls will be called. This means that if your code has any side effects such as inserting into a database or sending an email, these things will occur twice. This might result in duplicate rows being inserted into a database or duplicate emails being sent.

			You can potentially avoid this downside by providing the experimental versions of mock objects as their dependencies instead of real versions of a database client or an email provider.

			Summary

			In this chapter, we saw several different open-source libraries that can improve the readability and capabilities of your tests.

			
					Shouldly and FluentAssertions give you the readable syntax for writing assertions.

					Bogus allows you to generate randomized test data for values that don’t matter.

					Moq and NSubstitute help you isolate dependencies and provide alternative implementations for testing.

					Snapper and Scientist .NET help catch issues where complex objects change in subtle ways.

			

			Not every project will benefit from each of these libraries. However, knowing the tools at your disposal will help you as you refactor and maintain your code and expand your tests.

			While it’s possible to do all the things in this chapter without using these libraries, all of these libraries represent established community projects dedicated to solving specific technical concerns.

			In the next chapter, we’ll close out this section of this book with a discussion of defensive coding practices using modern C#.

			Questions

			
					What areas of your test code could be more readable? Are there any libraries in this chapter that might help?

					How do mocking libraries such as Moq and NSubstitute help in testing?

					Do you see any areas of your code where the complexity is high enough that Snapper or Scientist .NET might be able to help?

			

			Further reading

			You can find more information about the libraries discussed in this chapter at these URLs:

			
					Shouldly: https://github.com/shouldly/shouldly

					FluentAssertions: https://fluentassertions.com/

					Bogus: https://github.com/bchavez/Bogus

					Moq: https://github.com/moq/moq

					NSubstitute: https://nsubstitute.github.io/

					Snapper: https://github.com/theramis/Snapper

					Scientist .NET: https://github.com/scientistproject/Scientist.net

			

		

	
		
			10

			Defensive Coding Techniques

			Code is almost organic and evolves over its lifetime as new features are added, fixes are implemented, and refactorings occur at regular intervals. As code changes and developers enter and leave the project, there’s a chance that some of these changes may introduce bugs.

			In Part 2 of this book, we discussed testing strategies for detecting these bugs before they reach production. In this chapter, we’ll talk about a few additional techniques that help developers catch and resolve bugs during development. Along the way, we’ll also explore a few newer features in C# and their roles in keeping your code stable and healthy.

			We’ll cover the following topics in this chapter:

			
					Validating inputs

					Protecting against null

					Moving beyond classes

					Advanced type usage

			

			Technical requirements

			The starting code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter10/Ch10BeginningCode folder.

			The code in this chapter talks to a REST API, which will require an active internet connection.

			Introducing the Cloudy Skies API

			Our fictitious sample organization, Cloudy Skies, has a pre-existing set of web services in the form of a public REST API. This API intends to allow interested organizations to pull information about Cloudy Skies flights through the API. However, a steady amount of support tickets has proven that organizations are having a hard time adopting the API and using it in approved ways.

			In response, Cloudy Skies has built a .NET library to help others more easily use the API.

			Early testing of this library is promising, but some developers are still encountering confusing errors that ultimately appear to be related to the data they’re passing the library.

			The development team decided that validating parameters to public methods would help improve the adoption of their library by finding issues sooner. We’ll explore this change in the next section.

			Validating inputs

			Input validation is the act of verifying that any inputs to your code, such as parameters or current property values, are correct before performing the requested work. We validate inputs to public methods to detect potential issues early on.

			To illustrate the importance of this, let’s look at a method that doesn’t validate its inputs:

			
public FlightInfo? GetFlight(string id, string apiKey) {
 RestRequest request = new($"/flights/{id.ToLower()}");
 request.AddHeader("x-api-key", apiKey);
 LogApiCall(request.Resource);
 return _client.Get<FlightInfo?>(request);
}

			The GetFlight method takes in an id parameter indicating a flight number, such as “CSA1234,” whereas the apiKey parameter represents a token that must be supplied to interact with the API and get a response. Think of the token as something like a digital keycard that Cloudy Skies issues to interested organizations that want to interact with its APIs. Every request that goes to the Cloudy Skies API must include a token to authenticate and get a result.

			The id parameter is important because it is used to identify the flight that we’re interested in. This parameter gets added to the URL that the code makes an HTTP GET request to using the RestSharp library, which is one of many ways of interacting with web services in modern .NET.

			Don’t panic!

			If any of the web services code or handling of authentication tokens is beyond your comfort zone, don’t worry. While these are concepts you should learn as you grow, the actual mechanics of the web API are not important for this chapter. Instead, we’re focusing on parameter validation.

			Now that we’ve established what this method is doing, let’s talk about how it could be better.

			First of all, any value for a string is valid here for both id and apiKey. This includes values such as null and empty or whitespace strings. While you might not think that a developer might try those values for those parameters, I can think of compelling reasons someone might try either one:

			
					Someone might try to pass null for the id parameter, thinking that it would get the next flight, all flights, or possibly even a random flight

					A developer without an API key may think that API keys are only required for requests that modify data on the server or that you can interact with the API in low volumes without an API key

			

			While both assumptions are incorrect for this API, I could see someone without knowledge of the system trying either one. In the case of Cloudy Skies, not providing a valid API key will result in a 401 unauthorized error coming back from the server.

			On the other hand, not providing an id parameter results in a NullReferenceException error when the code tries to convert id into lowercase, as shown in Figure 10.1:

			
				
					[image: Figure 10.1 – A NullReferenceException error due to id being null when ToLower was called]
				

			

			Figure 10.1 – A NullReferenceException error due to id being null when ToLower was called

			Both of these errors are things that a developer trying to interact with this code could encounter, and neither one of these errors adequately tells the developer that they made a mistake in the parameters they passed in. Let’s fix this with validation.

			Performing basic validation

			The goal of validation is to detect bad inputs early on and explicitly point out these issues before bad data gets deeper into our system. In building a library, this means that we want to validate parameters sent to our code as early as possible, preferably in the public methods other developers will interact with.

			Here’s a version of GetFlight that performs some additional validation steps:

			
public FlightInfo? GetFlight(string id, string apiKey) {
 if (string.IsNullOrEmpty(apiKey)) {
 throw new ArgumentNullException("apiKey");
 }
 if (string.IsNullOrEmpty(id)) {
 throw new ArgumentNullException("id");
 }
 if (!id.StartsWith("CSA",
 StringComparison.OrdinalIgnoreCase)) {
 throw new ArgumentOutOfRangeException("id", "Cannot
 lookup non-CSA flights");
 }
 RestRequest request = new($"/flights/{id.ToLower()}");
 request.AddHeader("x-api-key", apiKey);
 LogApiCall(request.Resource);
 return _client.Get<FlightInfo?>(request);
}

			Here, we check if apiKey or id are either null or empty strings. If that’s true, we throw an ArgumentNullException error to tell whoever called this method that they are not providing a valid value for a specific parameter.

			We also perform a check on id to determine whether it refers to a flight with a Cloudy Skies Airline prefix. If it doesn’t, this flight will never be found since it isn’t tracked by the system. In this case, it makes sense to alert the caller with an ArgumentOutOfRangeException error. This exception type is also commonly used with numbers or dates that are outside of acceptable ranges for a method.

			Should we really throw exceptions here?

			Many new developers think that exceptions are bad. Most developers hate encountering exceptions, and throwing exceptions can indeed be relatively slow. Keeping these things in mind, when you get invalid values, sometimes, the best option is to throw a specific exception that highlights the issue. This helps catch mistakes quickly and prevents errors that can occur from letting invalid values deeper into a system.

			You may have noticed that the revised code has a lot of validation relative to the other logic in the method. There are a few ways of improving this, as we’ll see in the upcoming sections, but let’s work toward that goal incrementally. We’ll start by looking at a better way of referring to bad parameter values.

			Using the nameof keyword

			Right now, the code validates parameters and throws exceptions with code like this:

			
throw new ArgumentNullException("apiKey");

			In this example, "apiKey" refers to the name of the parameter, which helps developers identify which parameter the exception is complaining about.

			Now, what happens if someone renames that parameter later to apiToken? This change wouldn’t cause any compiler errors and the exception could still be thrown. Unfortunately, the exception would reference the old apiKey parameter name that was no longer present, which would confuse the developer encountering the error.

			To help with this, C# gives us the nameof keyword, which looks like this:

			
public FlightInfo? GetFlight(string id, string apiKey) {
 if (string.IsNullOrEmpty(apiKey)) {
 throw new ArgumentNullException(nameof(apiKey));
 }

			When your code is compiled, the nameof keyword evaluates the name of the parameter, method, or class it is used on. A string with the result of that nameof evaluation is then included in the compiled code. In other words, it’s identical to the code we had before – except that if the parameter is ever renamed, our code no longer compiles until the nameof keyword is updated to refer to the renamed parameter.

			This allows us to rely on the compiler to help ensure our parameter validation uses the correct parameter names, even if those parameters are renamed in the future.

			Let’s introduce a more concise way of throwing exceptions.

			Validation with guard clauses

			Right now, our validation logic consists of an if statement followed by a conditional throw statement. This validation is so common and can take up many lines of code when validation is complex that .NET now gives us a more concise way of interacting with it in the form of guard clauses.

			We can take our validation down to a single line of code by calling ArgumentException.ThrowIfNullOrEmpty, as shown here:

			
public FlightInfo? GetFlight(string id, string apiKey) {
 ArgumentException.ThrowIfNullOrEmpty(id, nameof(id));

			This method will check the value of the parameter it is passed in and will throw either an ArgumentNullException error if the value is null or an ArgumentException error if the value is an empty string.

			There aren’t a lot of these validations built into .NET right now, but if you like the idea and want validations for things such as negative values or numeric or date ranges, you’ll love Steve Smith’s excellent GuardClauses library.

			Guard clauses with the GuardClauses library

			To help augment the built-in guard clauses, Steve Smith created the Ardalis.GuardClauses library.

			To use the GuardClauses library, install the latest version of Ardallis.GuardClauses via NuGet Package Manager, as we’ve done in prior chapters.

			Next, add using Ardalis.GuardClauses; to the top of your .cs file.

			Once that’s been installed and referenced, you’ll be able to use guard syntax, as shown in the following code:

			
public Flights GetFlightsByMiles(int maxMiles,
 string apiKey) {
 Guard.Against.NegativeOrZero(maxMiles);
 Guard.Against.NullOrWhiteSpace(apiKey);
 // Other logic omitted…
}

			Here, the GuardClauses library provides various static methods inside Guard.Against syntax that allow you to validate a great many things.

			If a validation condition is met – for example, if maxMiles is 4 when NegativeOrZero is called – the program continues as normal. However, if the condition is not met, an ArgumentException error will be thrown containing the name of the parameter that violated the condition.

			I’ve found this library to be intuitive to write and read, and it also leads to efficient and effective guard clauses that require a minimal amount of effort.

			The full extent of the GuardClauses library is well beyond the scope of this book, but you can install it and see the methods available or check out the documentation referenced in the Further reading section at the end of this chapter.

			But wait – there’s more!

			This book’s wonderful technical reviewers rightly pointed out the popular FluentValidation library, which offers a rich set of validation rules that can be applied to your classes. You can learn more about this library in the Further reading section.

			Before we move on, I want to point out one aspect of the Ardalis.GuardClauses library that you might not have noticed.

			Let’s say you call a guard clause with Guard.Against.Null(apiKey);.

			If this validation rule fails it will throw an ArgumentException error. This exception will have a ParamName property with a value of apiKey. Additionally, the resulting message will mention the apiKey parameter by name, even though you didn’t provide the name when you called the guard clause.

			This works due to the library’s use of the CallerArgumentExpression attribute, which we’ll explore next.

			Using CallerMemberInformation attributes

			The nameof keyword proved so successful in eliminating strings referring to things that were later renamed that C# grew to accompany four separate attributes that can tell you things about any given method.

			Each of these attributes is applied to a method parameter. Like the nameof keyword, these attributes are evaluated at compile time and result in a string or int type being used in the final compiled code in their place.

			The four available caller member attributes are as follows:

			
					CallerFilePath contains a string with the name and path of the file of the code calling to the method on the machine compiling the code

					CallerLineNumber contains an int type with the line number for the method call

					CallerMemberName contains the name of the method or property where the method call occurred

					CallerArgumentExpression converts the expression passed into the method into a string, before evaluating the expression

			

			Let’s look at LogApiCall for an example of this:

			
public static void LogApiCall(string url,
 [CallerFilePath] string file = "",
 [CallerLineNumber] int line = 0,
 [CallerMemberName] string name = "",
 [CallerArgumentExpression(nameof(url))] string expr = "")
{
 Console.WriteLine($"Making API Call to {url}");
 Console.WriteLine("Called in:");
 Console.WriteLine($"{file}:{line} at {name}");
 Console.WriteLine($"Url expression: {expr}");
}

			This method takes in five parameters, where the first is a standard string parameter and the other four use the various caller member information attributes. Notice how these attributes all have a default value specified. When values are not specified for these parameters, the compiler will replace each parameter with values it detected during compilation.

			Let’s look at an example call:

			
public IEnumerable<FlightInfo> GetFlightsByMiles(
 int maxMiles, string apiKey) {
 // Validation omitted...
 string url = $"/flights/uptodistance/{maxMiles}";
 RestRequest request = new(url);
 request.AddHeader("x-api-key", apiKey);
 LogApiCall(request.Resource);
 IEnumerable<FlightInfo>? response =
 _client.Get<IEnumerable<FlightInfo>>(request);
 return response ?? Enumerable.Empty<FlightInfo>();
}

			Notice how when LogApiCall is invoked, only the string parameter is specified. The remaining parameters are provided values during compilation due to the attributes on each parameter.

			Also, note that the expression that was used to get that string is request.Resource. This expression is what CallerArgumentExpression uses to generate its string because the CallerArgumentExpression attribute requires the name of another parameter. In this case, we specified [CallerArgumentExpression(nameof(url))] to have it look at the expression that was passed into the url parameter – the first parameter the method takes in.

			When this code runs, we will see the following message logged in the console:

			
Making API Call to /flights/uptodistance/500
Called in:
C:\RefactorBook\Chapter10\CloudySkiesFlightProvider.cs:51
 at GetFlightsByMiles
Url expression: request.Resource

			As you can see, it logged the full path to the file on my hard drive, as well as the line number of the LogApiCall method call.

			The expression of request.Resource is the exact string of code that’s used to call that method, as shown here:

			
LogApiCall(request.Resource);

			Caller member information attributes are very handy for certain types of things, such as logging and validation, or certain specialized scenarios such as raising INotifyProperty changed in Windows Presentation Foundation (WPF) applications.

			Now that we’ve sufficiently explored working with parameters for our methods, let’s look at how modern C# lets us work safely with null values.

			Protecting against null

			British computer scientist, Tony Hoare, is generally credited as the inventor of the null reference in programming. In 2008, he famously apologized for it, calling it his “billion-dollar mistake.” This was due to the countless bugs and crashes that have occurred in various programming languages when code attempted to interact with variables currently holding null values. While I can’t fault Tony Hoare, nulls can certainly be dangerous.

			In .NET, this comes in the form of a NullReferenceException error, as we saw earlier in this chapter. You get a NullReferenceException error any time you attempt to invoke a method or evaluate a property on a variable that currently holds a null value.

			Before C# 8, developers needed to be explicitly aware that any reference type could hold a null value and write conditional logic, such as the following code:

			
if (flight != null) {
 Console.WriteLine($"Flight {flight.Id}: {flight.Status}");
}

			This pattern of checking for nullability and then conditionally acting became prevalent in C# because when it didn’t, developers encountered NullReferenceException errors. Unfortunately, this led to null checks occurring throughout the code, including in many places where nulls would never be encountered.

			In C# 8, nullable reference types were introduced, which helped developers understand when and where they were likely to encounter null values so that they would have active reminders to guard against null values in those places. Additionally, these improvements made it easier to remove unnecessary null checks in places where nulls were not expected.

			In C# 8 and beyond, when nullability analysis is enabled, you can indicate that any reference type may be null by adding ? after the type indicator, as shown here for FlightInfo:

			
public FlightInfo? GetFlight(string id, string apiKey) {
 ArgumentException.ThrowIfNullOrEmpty(id);
 ArgumentException.ThrowIfNullOrEmpty(apiKey);
 RestRequest request = new($"/flights/{id.ToLower()}");
 request.AddHeader("x-Api-key", apiKey);
 LogApiCall(request.Resource);
 return client.Get<FlightInfo?>(request);
}

			In this case, this indicates that the GetFlight method will return either a FlightInfo instance or a null value. Additionally, this indicates that the id and apiKey parameters will always have a string that is not null. If these accepted null values, they would be declared as string? Id, string? apiKey instead.

			Important note

			Nullability analysis in C# does not prevent you from passing null to things that say they do not accept null values, nor does it prevent you from returning null values from methods that claim to return a non-null return type. Instead, nullability analysis flags these cases as warnings, which will help you address these issues. We’ll talk more about code analysis warnings in Chapter 12.

			If we wanted to say that GetFlight could never return null, we would remove ? from the FlightInfo return type and validate that the result from the API was not null:

			
public FlightInfo GetFlight(string id, string apiKey) {
 ArgumentException.ThrowIfNullOrEmpty(id);
 ArgumentException.ThrowIfNullOrEmpty(apiKey);
 RestRequest request = new($"/flights/{id.ToLower()}");
 request.AddHeader("x-api-key", apiKey);
 LogApiCall(request.Resource);
 FlightInfo? flightInfo=_client.Get<FlightInfo?>(request);
 if (flightInfo == null) {
 string message = $"Could not find flight {id}";
 throw new InvalidOperationException(message);
 }
 return flightInfo;
}

			The request to the API via _client.Get still might return a nullable value, so the code must now check for null and conditionally throw an exception if a null value is encountered. However, this guarantees that the code returns only a non-null value, which is what the return type of FlightInfo indicates with nullability analysis active.

			Let’s look at how to enable and disable nullability analysis in Visual Studio.

			Enabling nullability analysis in C#

			Since .NET 6, nullable reference types are enabled by default in new projects going forward.

			However, you can enable nullable reference types in any project using C# 8 or above by adding a <Nullable>enable</Nullable> node to your project’s .csproj file:

			
<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Library</OutputType>
 <TargetFramework>net8.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <RootNamespace>Packt.CloudySkiesAir</RootNamespace>
 </PropertyGroup>
</Project>

			You can edit this file either in a text editor such as Notepad, or you can double-click on the project node in Solution Explorer to edit the file inside Visual Studio.

			If you don’t want nullability analysis enabled for your entire project, you can enable and disable nullability analysis with preprocessor statements such as #nullable enable and #nullable disable. For example, the following code temporarily disables nullability analysis for a class definition:

			
#nullable disable
public class FlightInfo {
 public string Id { get; set; }
 public FlightStatus Status { get; set; }
 public string Origin { get; set; }
 public string Destination { get; set; }
 public DateTime DepartureTime { get; set; }
 public DateTime ArrivalTime { get; set; }
 public int Miles { get; set; }
 public override string ToString() =>
 $"{Id} from {Origin} to {Destination} " +
 $"on {DepartureTime}. Status: {Status}";
}
#nullable restore

			I’d encourage you to use project-level nullability analysis and avoid using #nullable when possible. I’ve known many developers who get nauseated every time they see a preprocessor statement. My opinion is that #nullable should be reserved for when you are moving a larger project to use nullability analysis but are not yet ready to enable it for the entire project.

			Using nullability operators

			Earlier, we talked about how ? indicates that a type may contain a null value, but there are several other operators related to nullability you should be aware of in C#.

			First of all, the non-null assertion operator of ! tells C# that something is not going to be null and to ignore nullability warnings on that value.

			One common place I use this is when working with Console.ReadLine(). This method indicates it may return a null value, but in practice, it never does in normal operation. This can be suppressed using !, as shown here:

			
Console.WriteLine("Enter a flight #: ");
string id = Console.ReadLine()!;

			Here, we are taking ReadLine, which is defined as having a string? result and storing it in string. The ! operator says that the string? result should be treated as if it was string.

			Other nullability operators include the following:

			
					The null-conditional operator (?), which conditionally calls methods only if the object they’re being invoked on is not null. For example, _conn?.Dispose() calls the Dispose method only if _conn is not null.

					The null coalescing operator (??), which uses a backup value in case something is null. For example, int miles = flight?.Miles ?? 0; uses null-conditional and null coalescing operators to safely get Miles out of a flight or use 0 when no flight is present.

					The null coalescing assignment operator (??=) assigns a value to a variable only if the variable is null already. For example, message ??= "An unexpected error has occurred"; will only set the new error message in message if message is null. This allows us to effectively replace null values with backup values.

			

			The combination of nullability analysis and nullability operators helps us make intelligent decisions around null values in concise ways. This keeps our code efficient and focused while guiding us toward having a cohesive strategy around handling null values in code.

			Let’s take a broader look at changes we can make at the class level to help design more robust applications.

			Moving beyond classes

			In C# 9 and beyond, Microsoft has made concerted efforts to give developers new options for working with classes through things such as record types, init-only properties, primary constructors, and more.

			In this section, we’ll explore how these newer C# constructs can improve the design of your classes.

			Preferring immutable classes

			In recent years, immutable classes have become more and more popular. This immutability refers to the inability to change an object after it has been created.

			What this means is that once an object exists, you cannot modify its state and instead are limited to creating new objects that are like the original. If you’re familiar with working with string and DateTime objects in .NET, you’ve seen this concept with methods such as ToLower on string and AddDays on DateTime returning a new object instead of modifying the original object.

			Let’s look at a small class representing a boarding pass that is currently mutable (changeable) and then convert it into an immutable class:

			
public class BoardingPass {
 public FlightInfo Flight { get; set; }
 public string Passenger { get; set; }
 public int Group { get; set; }
 public string Seat { get; set; }
}

			This is a “plain old C# object” with properties with getters and setters. Thinking about the class logically, there are several problems:

			
					There’s nothing preventing Flight, Passenger, or Seat from having a null value.

					Once a pass is created, properties such as passenger, boarding group, seat, and even flight can be changed. This doesn’t make sense in the context of an airline business where a new boarding pass would need to be issued to change these.

			

			We can change this object so that it’s immutable and requires valid values for these parameters by removing their setters and adding a constructor with validation:

			
public BoardingPass(FlightInfo flight, string passenger,
 string seat, int group) {
 ArgumentNullException.ThrowIfNull(flight);
 ArgumentException.ThrowIfNullOrEmpty(passenger);
 ArgumentException.ThrowIfNullOrEmpty(seat);
 if (group < 1 || group > 8) {
 throw new ArgumentOutOfRangeException(nameof(group));
 }
 Flight = flight;
 Passenger = passenger;
 Seat = seat;
 Group = group;
}

			This constructor now requires that valid values are present for all properties on the object in object creation. Meanwhile, the removal of setters for the properties ensures that the class stays valid and cannot be changed.

			If we needed to, we could add new methods to the BoardingPass class that create and return a new BoardingPass object with similar characteristics to the original in a similar manner to how various string and DateTime methods work. However, with expressions give us a more interesting way of doing this, as we’ll see later in this chapter.

			While using immutability may seem more inconvenient than beneficial at first, there are a few key advantages of using immutable classes:

			
					Immutable classes can be validated during creation and ensured that they are in a valid state. Once created, this valid state cannot change.

					When objects can be modified anywhere in your code, this makes it harder to track down what changed an object when multiple other classes may have a reference to it. Immutable objects prevent this from occurring.

					Some concepts just make more sense as immutable objects, such as a prior version of a document or a boarding pass for a passenger at an airport.

					Since immutable objects don’t change, they can be reliably worked with in multi-threaded applications. Without immutability, you’d need to rely on using Interlocked, the lock keyword, or thread-safe collections to avoid bugs.

			

			Of course, having to specify all the properties of an object in its constructor can be cumbersome for classes with many properties. Additionally, not every class in your project needs to be immutable. For those classes that would benefit from immutability, C#’s required keyword and init-only properties help alleviate this burden.

			Using required and init-only properties

			The downside of adding every property as a parameter to class constructors is that your constructors can start to become larger than you’d like. Additionally, creating objects that require many constructor parameters is tedious and error-prone and the creation of individual objects can be tedious and confusing, particularly when many constructor parameters are needed.

			On the other hand, object initializers can be more readable, but until recently, they lacked a way of ensuring properties are present.

			Look at the two ways of creating a BoardingPass object and see which appears more readable to you:

			
BoardingPass p1 = new(myFlight, "Amleth Hamlet", "2B", 1);
BoardingPass p2 = {
 Flight = myFlight,
 Passenger = "Amleth Hamlet",
 Seat = "2B",
 Group = 1
};

			The object initializer version used in p2 is more readable and maintainable, particularly as the number of properties you might want to set in the class grows over time.

			The traditional downside of this approach was that a developer using the object initializer might forget to set important required properties. C# 11 introduced the required keyword, which will fail to compile if a required property is not explicitly initialized during object initialization or in the constructor when the Passenger property is omitted, as shown in Figure 10.2:

			
				
					[image: Figure 10.2 – A compiler error due to Passenger not being set]
				

			

			Figure 10.2 – A compiler error due to Passenger not being set

			To achieve this, we can add required to any property definitions on the class that we want to make sure they are explicitly set by the time the object-initializer completes. The following version of BoardingPass features required properties:

			
public class BoardingPass {
 public required FlightInfo Flight { get; init; }
 public required string Passenger { get; init; }
 public required int Group { get; init; }
 public required string Seat { get; init; }
}

			You may have also noticed that this class definition defines these properties as {get; init;} instead of {get;} or {get; set;}. While the traditional get; set; combination allows a property to be changed at any time, this violates immutability. The get; version removes the ability to set the property anywhere but the constructor, which means properties defined as get; cannot be set in object initializers.

			The newer get; init; combination that was added in C# 9 allows the property to be set in the constructor or initializer, but no longer allows setting after the object is initialized. This helps us support our immutable class design while not restricting the user to using constructors.

			I believe that object initializers are the future of .NET and nowadays tend to favor required properties with get; init; when designing classes for immutability.

			Speaking of the future, let’s look at a brand-new feature in C# 12: primary constructors for reference types.

			Primary constructors

			Primary constructors are constructors that must be called to initialize the class and provide a way of automatically creating fields in your class. We’ll talk more about what that “must be called” phrase entails in a moment, but let’s start by looking at a simple example:

			
public class BoardingPass(string Passenger) {
 public required FlightInfo Flight { get; init; }
 public required int Group { get; init; }
 public required string Seat { get; init; }
 public override string ToString() =>
 $"{Passenger} in group {Group} " +
 $"for seat {Seat} of {Flight.Id}";
}

			This version of BoardingPass has parentheses and a parameter list immediately following the class declaration. This is the primary constructor for the class.

			Any parameters declared in the primary constructor are available as if they were init-only properties. This makes a primary constructor roughly equivalent to the following C# code:

			
public class BoardingPass {
 public BoardingPass(string passenger) {
 this.Passenger = passenger;
 }
 public string Passenger {get; init; }
 // Other members omitted for brevity...
}

			The advantage of primary constructors is that they are very concise and do not require you to define a constructor or field definitions.

			Primary constructors can work with other constructors, though any other constructor you declare must call the primary constructor using the this keyword, as shown here:

			
public class BoardingPass(string Passenger) {
 public BoardingPass(FlightInfo flight, string passenger)
 : this(passenger) {
 Flight = flight;
 }
 // other members omitted for brevity...
}

			Essentially, your primary constructor must always be called – either on its own or from another constructor via the this keyword.

			Primary constructors are not unique to classes and exist for records starting in C# 9.

			Converting classes into record classes

			Throughout this book, I’ve alluded to record classes several times without defining them or going into detail on why you’d want to use one.

			To understand record classes, let’s talk briefly about equality in classes. By default, two objects are considered equal if they both live in the same memory address in the heap.

			This means that, by default, two separate objects with identical properties are not equal. For example, the following code would evaluate these two boarding passes as different from each other:

			
BoardingPass pass1 = new("Amleth Hamlet") {
 Flight = nextFlight,
 Seat = "2B",
 Group = 2
};
BoardingPass pass2 = new("Amleth Hamlet") {
 Flight = nextFlight,
 Seat = "2B",
 Group = 2
};
Console.WriteLine(pass1 == pass2); // false

			You can change this behavior by overriding Equals and GetHashCode on the BoardingPass class, as we did in Chapter 5. However, record types give us an easier way of managing this.

			Record classes are like normal C# classes except equality works by comparing all properties to each other. In other words, record classes are like normal C# classes that have overridden Equals and GetHashCode.

			Let’s redeclare our boarding pass as a record class:

			
public record class BoardingPass(string Passenger) {
 public required FlightInfo Flight { get; init; }
 public required int Group { get; init; }
 public required string Seat { get; init; }
 public override string ToString() =>
 $"{Passenger} in group {Group} " +
 $"for seat {Seat} of {Flight.Id}";
}

			Now, we can successfully compare two boarding passes using just their values:

			
BoardingPass pass1 = new("Amleth Hamlet") {
 Flight = nextFlight,
 Seat = "2B",
 Group = 2
};
BoardingPass pass2 = new("Amleth Hamlet") {
 Flight = nextFlight,
 Seat = "2B",
 Group = 2
};
Console.WriteLine(pass1 == pass2); // true

			These two classes are considered equal because they carry the same values. Note that the Flight property refers to a FlightInfo object, which is still a standard C# class and uses traditional reference equality. This means that boarding passes must point to the same FlightInfo object in memory; otherwise, they will not be considered equal. This can be changed by making FlightInfo a record class as well.

			I recommend using record classes for small objects that you might want to compare to each other. They also might be helpful for classes that might be frequently instantiated, such as objects coming from the database or an external API call.

			Let’s move on to talk about my favorite new way of creating objects: with expressions.

			Cloning objects using with expressions

			with expressions are a shorthand way of creating an object that’s like another object but with a few differences. with expressions work very well with immutable records by allowing you to clone and slightly tweak the source record without making any modifications to the original record.

			Let’s say that Hamlet’s boarding pass for seat 2B on the flight needed to be changed. The system could instantiate a new boarding pass that was just like the original one except for seat 2C using the following code:

			
BoardingPass pass = new("Amleth Hamlet") {
 Flight = nextFlight,
 Seat = "2B",
 Group = 2
};
BoardingPass newPass = pass with { Seat = "3B" };

			This creates a new boarding pass based on the original one but with one property slightly different.

			If we wanted to move Hamlet to have a new seat but an earlier boarding group, we could do that as well by listing an additional property, as shown here:

			
BoardingPass newPass2 = pass with {Seat = "3B", Group = 1};

			I find with expressions to be one of the most exciting things about working with record classes in C# and I love the direction the language is going in to streamline the creation of objects.

			This style of referring to property values is not unique to the with expression, as we’ll see in the next section with pattern matching.

			Advanced type usage

			In this final section of this chapter, we’ll see how new and old language features help you build better types.

			Exploring pattern matching

			It turns out that we can use the same style of syntax we used with expressions earlier to conditionally match different objects through pattern matching.

			To explain what I mean, let’s start with an example that loops over different boarding passes:

			
List<BoardingPass> passes = PassGenerator.Generate();
foreach (BoardingPass pass in passes) {
 if (pass is { Group: 1 or 2 or 3,
 Flight.Status: FlightStatus.Pending
 }) {
 Console.WriteLine($"{pass.Passenger} board now");
 } else if (pass is { Flight.Status: FlightStatus.Active
 or FlightStatus.Completed
 }) {
 Console.WriteLine($"{pass.Passenger} flight missed");
 } else {
 Console.WriteLine($"{pass.Passenger} please wait");
 }
}

			This code loops over a collection of boarding passes and does one of three things:

			
					If the flight is Pending and the passenger is in group 1, 2, or 3, we tell them to board

			

			If the flight is Active or Completed, we tell the passenger they missed their flight

			If neither of these cases is true, the flight must be Pending, but the passenger’s group is not boarding, so we tell them to wait

			The code is a little arbitrary, particularly in how it deals with the boarding group, but it illustrates some of the capabilities of pattern matching.

			Using pattern matching, you can evaluate one or more properties on an object in an if statement to concisely check multiple things at once.

			While you can use pattern matching in if statements, they are also commonly used in switch expressions, as we saw in Chapter 3. We could rewrite our code from earlier into a switch expression, as follows:

			
List<BoardingPass> passes = PassGenerator.Generate();
foreach (BoardingPass pass in passes) {
 string message = pass switch {
 { Flight.Status: FlightStatus.Pending,
 Group: 1 or 2 or 3 }
 => $"{pass.passenger} board now",
 { Flight.Status: not FlightStatus.Pending }
 => $"{pass.passenger} flight missed",
 _ => $"{pass.passenger} please wait",
 };
 Console.WriteLine(message);
}

			Here, we can see the switch expressions concept combined with the power of pattern matching to set a string in the message variable. Note that the code uses not FlightStatus.Pending instead of FlightStatus.Active or FlightStatus.Completed for brevity and to illustrate the usage of the not keyword in negating or inverting pattern matching expressions.

			While this code takes some adjustment to learn to read, there’s also very little “waste” in this syntax. Almost the entirety of every line of code is centered around either the conditions that must be true or the value to use when they are true. Additionally, this syntax can handle more complex scenarios such as or and not statements more easily than normal C# logic can.

			Of course, as with any new C# language feature, if the readability cost is too high for you and your team, you are free to avoid switch expressions and pattern matching entirely.

			Now that we’ve seen how pattern matching and switch expressions work together in the latest versions of C#, let’s look at one of C#’s earliest enhancements: generics.

			Using generics to reduce duplication

			Generics are a concept that every .NET developer encounters and works with daily.

			When you work with List<string> (pronounced “list of strings”), you are working with a generic List object that can hold something of a specific type – in this case, strings.

			Generics work by specifying at least one type parameter that goes into either a class or a method and allows the class or method to be structured around that type.

			To illustrate the advantage of generics, let’s look at a very simple FlightDictionary class that stores FlightInfo objects by their identifiers using a dictionary and incorporates some light console logging:

			
public class FlightDictionary {
 private readonly Dictionary<string, FlightInfo> _items =
 new();
 public bool Contains(string identifier)
 => _items.ContainsKey(identifier);
 public void AddItem(string id, FlightInfo item) {
 Console.WriteLine($"Adding {id}");
 _items[id] = item;
 }
 public FlightInfo? GetItem(string id) {
 if (Contains(id)) {
 Console.WriteLine($"Found {id}");
 return _items[id];
 }
 Console.WriteLine($"Could not find {id}");
 return null;
 }
}

			This class is the beginning of a new collection class, like the Dictionary class provided by .NET. It allows external callers to add, retrieve, and check for FlightInfo by a string identifier.

			While this code is very simple and missing several features I’d expect from a real collection class, it should serve to illustrate the need for generics by asking the following question: What happens if we like this class so much for FlightInfo objects that we want to use something like it for BoardingPass objects?

			Often, this would result in someone copying and pasting the FlightDictionary class to create a new BoardingPassDictionary, as shown here:

			
public class BoardingPassDictionary {
 private readonly Dictionary<string, BoardingPass> _items
 = new();
 public bool Contains(string identifier)
 => _items.ContainsKey(identifier);
 public void AddItem(string id, BoardingPass item) {
 Console.WriteLine($"Adding {id}");
 _items[id] = item;
 }
 public BoardingPass? GetItem(string id) {
 if (Contains(id)) {
 Console.WriteLine($"Found {id}");
 return _items[id];
 }
 Console.WriteLine($"Could not find {id}");
 return null;
 }
}

			The only difference between these two classes is the type of item being stored.

			What generics let us do is declare a class that takes in parameters of the types it should use for different operations.

			Now, let’s look at a more reusable version of this class that accepts generic type parameters for the type used as a key for each item, as well as the type used as a value:

			
public class LoggingDictionary<TKey, TValue> {
 private readonly Dictionary<TKey, TValue> _items
 = new();
 public bool Contains(TKey identifier)
 => _items.ContainsKey(identifier);
 public void AddItem(TKey id, TValue item) {
 Console.WriteLine($"Adding {id}");
 _items[id] = item;
 }
 public TValue? GetItem(TKey id) {
 if (Contains(id)) {
 Console.WriteLine($"Found {id}");
 return _items[id];
 }
 Console.WriteLine($"Could not find {id}");
 return default(TValue);
 }
}

			This implementation of the class depends on two generic type arguments: TKey and TValue. These parameters can be whatever names you want them to be, but the convention is to use PascalCasing and start each type parameter with the letter T.

			With this class, a new LoggingDictionary can be created for any types you might want to support using the following syntax:

			
LoggingDictionary<string, BoardingPass> passDict = new();
LoggingDictionary<string, FlightInfo> flightDict = new();

			Generics are something that has been around since .NET Framework 2.0 but still offers value today in adding reusability to classes.

			Let’s close this chapter out with a brief look into a new C# 12 feature: type aliases.

			Introducing type aliases with the using directive

			Let’s say you’re developing a system and you need to work with a set of data types you’re not certain about and may need to change in the future. Alternatively, you might have a routine need for some hideous-looking types, such as needing to deal with List<string, Dictionary<Passenger, List<FlightInfo>>> throughout a class.

			While one approach for the latter problem might be to introduce your class to hide away some of this complexity, a new option in C# 12 is to use type aliases via the using statement.

			Let’s look at simplifying some of the code in CloudySkiesFlightProvider.cs to reduce the places where IEnumerable<FlightInfo> appears. We’ll use the GetFlightsByMiles method as an example:

			
public IEnumerable<FlightInfo> GetFlightsByMiles(
 int maxMiles, string apiKey) {
 RestRequest request =
 new($"/flights/uptodistance/{maxMiles}");
 request.AddHeader("x-api-key", apiKey);
 LogApiCall(request.Resource);
 IEnumerable<FlightInfo>? response =
 _client.Get<IEnumerable<FlightInfo>>(request);
 return response ?? Enumerable.Empty<FlightInfo>();
}

			This code isn’t bad, but imagine that you felt very strongly that you didn’t like looking at IEnumerable<FlightInfo> everywhere and you’d rather have a custom type defined for this.

			Using C# 12, you could add the following line to the using statements in the file:

			
using Flights = System.Collections.Generic.IEnumerable<
Packt.CloudySkiesAir.Chapter10.FlightInfo>;

			With this one change, you can now change your method to use your new type alias:

			
public Flights GetFlightsByMiles(int maxMiles,
 string apiKey) {
 RestRequest request =
 new($"/flights/uptodistance/{maxMiles}");
 request.AddHeader("x-api-key", apiKey);
 LogApiCall(request.Resource);
 Flights? response = _client.Get<Flights>(request);
 return response ?? Enumerable.Empty<FlightInfo>();
}

			This code doesn’t change that you’re dealing with IEnumerable<FlightInfo> in this method, but it does reduce the amount of code you have to type and simplifies the code for reading.

			Additionally, if you ever wanted to change to a different type in these places, you now just need to modify the using statement to use a different type instead.

			I’m not sure if obscuring the underlying type offers more benefit than potential confusion, but I could see some places where it might be helpful, particularly in dealing with complex generic types or working with tuples (collections of multiple values).

			Time will tell on the effectiveness of type aliases and the best places to use them, but I’m glad we now have the option.

			Summary

			In this chapter, we looked at a variety of ways of ensuring your classes are safe and reusable through means such as argument validation, caller member information, nullability analysis, and using modern C# features such as record classes, primary constructors, pattern matching, and enhanced properties with the required and init keywords.

			These language features help you detect issues earlier in development, work with objects more effectively, and write fewer lines of code overall.

			This concludes Part 2 of this book. In Part 3, we’ll look at how AI and code analysis tools can help you and your team sustainably build better software.

			Questions

			Answers the following questions to test your knowledge of this chapter:

			
					How can throwing exceptions be beneficial to your code?

					What are the various ways you can declare a property in C#?

					What are the various ways you can instantiate an object in C#?

					What are the differences between classes and record classes?

			

			Further reading

			You can find more information about features discussed in this chapter at these URLs:

			
					Guard Clauses library: https://github.com/ardalis/GuardClauses

					Fluent Validation library: https://github.com/FluentValidation/FluentValidation

					Caller Member Information: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/attributes/caller-information

					Primary constructors and using aliases: https://devblogs.microsoft.com/dotnet/check-out-csharp-12-preview/

					Safer Nullability in Modern C#: https://newdevsguide.com/2023/02/25/csharp-nullability/

					Classes, structs, and records in C#: https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/object-oriented/

					Choosing Between Exceptions or Validation: https://ardalis.com/guard-clauses-and-exceptions-or-validation/

			

		

	
		
			Part 3: Advanced Refactoring with AI and Code Analysis

			The third part of this book focuses on advanced refactoring techniques using artificial intelligence and modern code analysis capabilities built into Visual Studio.

			This chapter introduces GitHub Copilot Chat as a way to refactor, generate, inspect, document, and test code.

			We then extensively cover the code analysis capabilities of Visual Studio by introducing the code analysis tooling and rulesets as well as some third-party tools that can help catch additional issues. Finally, we explore how Visual Studio’s code analysis is based on Roslyn Analyzers by building and deploying our own Roslyn Analyzer as both a Visual Studio extension and as a NuGet package.

			This chapter will give you a deep understanding of code analysis issues as well as new productivity tools to help detect and resolve issues in their code.

			This part contains the following chapters:

			
					Chapter 11, AI-Assisted Refactoring with GitHub Copilot

					Chapter 12, Code Analysis in Visual Studio

					Chapter 13, Creating a Roslyn Analyzer

					Chapter 14, Refactoring Code with Roslyn Analyzers

			

		

		
			
			

		

		
			
			

		

	
		
			11

			AI-Assisted Refactoring with GitHub Copilot

			Change is a constant in technology, and that’s certainly true in the .NET ecosystem. Every year, Microsoft releases a new version of .NET and C# packed with new features to keep the language exciting, useful, and relevant as technology changes. But perhaps the most significant changes to .NET development in the last two years have come not from the major language releases, but in the field of artificial intelligence through AI agents such as GitHub Copilot and ChatGPT.

			In this chapter, we’ll explore how GitHub Copilot integrates into Visual Studio and brings ChatGPT-like conversational AI into your editor. We’ll also explore some of the interesting possibilities this opens and some of the things we must keep in mind when considering whether this new technology has a place in our toolset.

			We’ll cover the following topics in this chapter:

			
					Introducing GitHub Copilot

					Getting started with GitHub Copilot in Visual Studio

					Refactoring with GitHub Copilot Chat

					Drafting documentation with GitHub Copilot Chat

					Generating test ideas with GitHub Copilot Chat

					Understanding the limits of GitHub Copilot

			

			Technical requirements

			The starting code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter11/Ch11BeginningCode folder.

			Introducing GitHub Copilot

			In 2021, GitHub announced a new artificial intelligence tool called GitHub Copilot. GitHub Copilot is an editor extension that integrates into different editors including JetBrains Rider, VS Code, and all editions of Visual Studio 2022.

			What GitHub Copilot does is it looks at the code you just typed and generates predictions for the code it thinks you’re about to type. If it has a prediction and you are not currently typing, GitHub Copilot displays the prediction in grey text in front of your cursor for you to evaluate and possibly add to your code, as shown in Figure 11.1:

			
				
					[image: Figure 11.1 – GitHub Copilot suggesting code to add as the developer types]
				

			

			Figure 11.1 – GitHub Copilot suggesting code to add as the developer types

			Copilot does this by using a predictive machine learning model that has been trained on various pieces of code in many different programming languages, including C#, F#, JavaScript, and SQL.

			Understanding GitHub’s predictive model

			If this sounds familiar, it’s because GitHub Copilot’s model is a specialized machine learning model built around a promising new model training technique called transformers.

			Transformers, introduced in 2017 in a paper called Attention is All You Need (https://research.google/pubs/pub46201/), allow machine learning models to be trained on larger bodies of text while still retaining the context of how different pieces of text related to each other.

			This innovation has led to technologies such as Google BERT (which powered Google search predictions), MidJourney, and DALL-E (which can generate art from textual prompts), and the extremely popular ChatGPT by OpenAI that can mimic conversations with humans.

			Transformer-based models are now commonly referred to as large language models (LLMs). Their superpower is their ability to memorize patterns in text and generate new text that mimics patterns it has internalized in its model.

			Ever wondered what GPT stood for?

			The GPT acronym (found in ChatGPT, GPT-4, and similar) stands for generative pre-trained transformer. In other words, this is a transformer-based model used to generate new content, and the model has been trained on a large volume of data.

			These LLMs take in a textual prompt and generate some form of output. With chat LLMs, the prompt might be a question such as “What is .NET?” and the output might be a short description of .NET, as pictured in this interaction with Bing Chat (https://www.bing.com/) in Figure 11.2:

			
				
					[image: Figure 11.2 – Bing Chat describing .NET in response to a short prompt]
				

			

			Figure 11.2 – Bing Chat describing .NET in response to a short prompt

			There is no intelligent understanding built into an LLM. These models do not think or have thoughts of their own, but rather use mathematics to identify similarities between the text they receive and the large volumes of text the model was trained on.

			While LLM systems may seem eerily intelligent at times, this is because they are emulating the intelligence of the authors of the various books, blog posts, tweets, and other materials they’ve been trained on.

			GitHub Copilot uses an LLM called Codex. The Codex model is produced by OpenAI and was trained not on blog posts or tweets but on open-source software repositories.

			This means that when you type something into your editor, the text you type can be used as a prompt to predict the next line of code you might type. This is very similar to how Google search predicts the next few words in a search term or how ChatGPT generates textual replies.

			We’ll talk more about the use of open-source code in GitHub Copilot and whether it is appropriate to use GitHub Copilot in a workplace project near the end of this chapter. For now, let’s move on to some of the newer aspects of GitHub Copilot.

			Starting the conversation with GitHub Copilot Chat

			GitHub extended Copilot’s code generation capabilities by introducing GitHub Copilot Chat. GitHub Copilot Chat gives you the ability to interact with a conversational AI agent like ChatGPT directly in your editor.

			This means that you can chat with an LLM in Visual Studio and do things such as the following:

			
					Ask it to explain a block of code

					Generate new code using textual prompts

					Ask Copilot for ways to improve the quality of your code

					Have Copilot draft unit tests or documentation for methods

			

			I’ve even used Copilot to generate intentionally messy code just to practice refactoring.

			A typical interaction with GitHub Copilot Chat involves the user selecting some code and then pressing Alt + / to start a conversation. For example, Figure 11.3 shows the user typing a text prompt to GitHub Copilot Chat with a small block of code selected:

			
				
					[image: Figure 11.3 – Asking GitHub Copilot Chat a question]
				

			

			Figure 11.3 – Asking GitHub Copilot Chat a question

			From there, GitHub Copilot Chat generates a textual response that is shown to the user, as seen in Figure 11.4:

			
				
					[image: Figure 11.4 – GitHub Copilot generating an explanation of the block of code]
				

			

			Figure 11.4 – GitHub Copilot generating an explanation of the block of code

			If you feel you’re too experienced with C# to fully benefit from this feature, I want to assure you that it has value beyond basic programming. Sometimes when maintaining code, you’ll encounter strange method calls that don’t make sense and you don’t have any documentation to tell you what the developer was trying to do. When this happens, having Chat’s opinion can be very valuable in understanding the intent of the developer who wrote the code.

			Of course, Chat can be used to generate code, as we’ll see in the next section.

			The bottom line for me is that programming with GitHub Copilot Chat is something that not only amplifies my capabilities as a developer but also helps keep me focused since I have fewer reasons to go check the documentation or leave my editor. Between the automation capabilities built into the Chat LLM and this added extra focus, GitHub Copilot Chat is a significant boost to my productivity and capabilities.

			I suspect you’ll like GitHub Copilot Chat too, so let’s see how to get started.

			Getting started with GitHub Copilot in Visual Studio

			In order to work with GitHub Copilot, you’ll need to have a GitHub account. If you don’t have one, you can sign up for a free GitHub account at https://github.com/signup.

			GitHub Copilot also requires that you work with Visual Studio 2022 version 17.4.4 or later. If you haven’t installed Visual Studio, you can download a copy at https://visualstudio.microsoft.com/downloads/.

			If you need to update or check your Visual Studio version, a quick way of doing either task is to launch the Visual Studio Installer from the Windows menu. This will let you see your current version and optionally update your edition of Visual Studio, as shown in Figure 11.5:

			
				
					[image: Figure 11.5 – Updating Visual Studio from the Visual Studio Installer]
				

			

			Figure 11.5 – Updating Visual Studio from the Visual Studio Installer

			Once you have a GitHub account and an up-to-date edition of Visual Studio, you can install the GitHub Copilot extension.

			Installing and activating GitHub Copilot

			To install GitHub Copilot, launch Visual Studio, choose the Extensions menu, and then select Manage Extensions. Next, search for GitHub Copilot and download and install the extension, as shown in Figure 11.6:

			
				
					[image: Figure 11.6 – Installing GitHub Copilot in Visual Studio]
				

			

			Figure 11.6 – Installing GitHub Copilot in Visual Studio

			Next, you will need to log in to GitHub within Visual Studio to link the extension to your GitHub account. Follow the instructions at https://docs.github.com/en/copilot/getting-started-with-github-copilot?tool=visualstudio for the most up-to-date instructions on how to do this.

			GitHub Copilot Chat is currently a separate extension from GitHub Copilot. If you want to try Chat, I recommend you install Copilot on its own and ensure it works first. Once you’ve done this, repeat the installation process for the Chat extension.

			Some GitHub Copilot features, such as Chat, may need to be enabled or require additional configuration. You can do so by going to the Tools menu and then selecting Options… and finding the GitHub node in the list.

			Getting access to GitHub Copilot

			While GitHub itself is free, GitHub Copilot is a premium feature that requires you to have a GitHub Premium license or be part of GitHub Copilot for Business account. We’ll talk more about the benefits of Copilot for Business near the end of this chapter.

			At the time of this writing, GitHub charges $10 USD/month for individuals or $19/month per user for a Copilot for Business account. As with any emerging technology, pricing and availability may change over time.

			Now that we’ve covered how to install and get access to Copilot, let’s see it in action.

			Generating suggestions with GitHub Copilot

			In your Program.cs file for this chapter’s code, type a comment such as // Populate a list of random numbers, then move down to the next line.

			Next, type the letters Ra and wait a moment before continuing. If everything is configured right, you should hopefully see a suggestion similar to the one I encountered in Figure 11.7:

			
				
					[image: Figure 11.7 – GitHub Copilot helping at Random]
				

			

			Figure 11.7 – GitHub Copilot helping at Random

			Here, GitHub Copilot has suggested some code based on the context it has observed in the area. In my case, its suggestion was Random rand = new Random();, which is a valid C# code.

			In your case, it may suggest something different, including something that potentially doesn’t even make sense or compile.

			Keep in mind that LLMs such as GitHub Copilot are not intelligent, but they memorize patterns and trends in their training data. Sometimes those trends work, while other times they look plausible but reference properties or capabilities that simply don’t exist.

			Because GitHub Copilot and systems like it are trained on older code, you’ll sometimes notice Copilot generating out-of-date code or code using obsolete APIs. It’s also entirely possible that Copilot generates code with bugs, security vulnerabilities, performance issues, or other bad things. It’s your responsibility as a programmer to identify good and bad code.

			Now that we’ve covered the basics of working with Copilot, let’s see what this has to do with refactoring by working with GitHub Copilot Chat.

			Interacting with GitHub Copilot Chat

			With GitHub Copilot Chat installed and configured, let’s try our experiment again with a list of random numbers.

			Remove any code you added after the comment on populating a list of random numbers. Next, move your typing cursor to the line below the comment as if you were about to start typing a line of code there.

			From here, let’s show the GitHub Copilot Chat window by selecting View and then choosing GitHub Copilot Chat. You should see the GitHub Copilot Chat pane, shown in Figure 11.8:

			
				
					[image: Figure 11.8 – The GitHub Copilot Chat pane]
				

			

			Figure 11.8 – The GitHub Copilot Chat pane

			In the text box, type in Generate a list of 10 random numbers and press Enter. With any luck, you should see something like Figure 11.9:

			
				
					[image: Figure 11.9 – A code suggestion from GitHub Copilot Chat]
				

			

			Figure 11.9 – A code suggestion from GitHub Copilot Chat

			If you’ve ever interacted with ChatGPT or similar conversational AI agents, this should look very similar to that experience. In this case, Copilot Chat generated some code that we can accept either by clicking on the first button to copy the code or the Insert button to add it to the editor directly.

			After clicking Insert, you should see a preview of code appear in your Main method. Click Accept and the code will be inserted.

			Tip

			If you don’t like working with the GitHub Copilot Chat pane, you can bring up GitHub Copilot Chat suggestions at any time with the Alt + / keyboard shortcut.

			If GitHub Copilot Chat doesn’t seem like it’s working, open the Output view and choose Show output from: GitHub Copilot Chat, as shown in Figure 11.10:

			
				
					[image: Figure 11.10 – Diagnostic information from GitHub Copilot Chat]
				

			

			Figure 11.10 – Diagnostic information from GitHub Copilot Chat

			This diagnostic information has helped me track down a few issues, but equally often the solution is simply to re-open Visual Studio. Thankfully, this diagnostic information is rarely ever needed, but it’s nice to know where to find it if you need it.

			Now that we’ve seen Copilot at work, let’s use it to refactor some code.

			Refactoring with GitHub Copilot Chat

			Because GitHub Copilot Chat was trained on open-source repositories, it has had a lot of exposure to people writing about code. Because of this, its likelihood of being able to provide helpful insight is high.

			To see this, we’ll refactor the aptly-named RefactorMe.cs file, which looks like this:

			
namespace Packt.CloudySkiesAir.Chapter11;
public class RefactorMe {
 public void DisplayRandomNumbers() {
 List<int> numbers = new List<int>();
 for (int i = 1; i <= 10; i++) {
 Random rand = new Random();
 int n = rand.Next(1, 101);
 numbers.Add(n);
 }
 String output = string.Join(", ", numbers.ToArray());
 Console.WriteLine(output);
 }
}

			This code has some deliberate inefficiencies, and there’s even a potentially dangerous bug I sometimes see with Random. I’ll give you a few paragraphs to see if you can spot the issue, but let’s see if GitHub Copilot Chat can spot it.

			Select the DisplayRandomNumbers method and then press Alt + / to open the chat prompt. Next, ask Copilot How would you improve this code?

			When I asked Copilot, I got several suggestions, as shown in Figure 11.11:

			
				
					[image: Figure 11.11 – GitHub Copilot Chat acting as a code reviewer]
				

			

			Figure 11.11 – GitHub Copilot Chat acting as a code reviewer

			Looking over the suggestions I encountered (which might be different from the ones you see following this same experiment), I can summarize them into a few bullet points:

			
					Declare the Random outside of the loop for performance reasons

					Since you know the size of the list, declare it as new List<int>(10)

					Use a foreach and an Enumerable.Range instead of a for loop

			

			Not only did GitHub Copilot Chat generate ideas for improvement, but it even suggested the following code to fulfill its suggestions:

			
public void DisplayRandomNumbers() {
 List<int> numbers = new List<int>(10);
 Random rand = new Random();
 foreach (int i in Enumerable.Range(0, 10)) {
 int n = rand.Next(1, 101);
 numbers.Add(n);
 }
 string output = string.Join(", ", numbers);
 Console.WriteLine(output);
}

			Here, Copilot suggested some improvements I was considering, such as moving Random outside of the loop, and a few I wasn’t, such as using Enumerable.Range.

			What was the bug?

			If you’re curious about the potential bug I mentioned, it had to do with Random being instantiated in the loop. Every time you run new Random(), it uses the current system time as a random seed to generate new numbers. If you do this in a fast loop, the clock stays the same, resulting in the same sequence of “random” numbers every iteration.

			Looking at the recommended code, I notice a few opportunities for improvement, such as renaming the n variable to something more meaningful, using target-typed new to instantiate the objects, and discarding the unused i variable with the _ operator.

			Between GitHub and myself, our final code for this method is as follows:

			
 public void DisplayRandomNumbers() {
 List<int> numbers = new(10);
 Random rand = new();
 foreach (int _ in Enumerable.Range(0, 10)) {
 int number = rand.Next(1, 101);
 numbers.Add(number);
 }
 string output = string.Join(", ", numbers);
 Console.WriteLine(output);
 }

			The resulting code is more concise, slightly more performant in its list allocation, and ultimately represents a slightly better result for a small piece of code.

			The purpose of this section wasn’t to show you how to generate random numbers, but instead for you to see the potential value chat offers as a “brainless” programming buddy who can review your code and generate suggestions. These suggestions won’t always make sense or even compile, but they can give you a quick external perspective when your coworkers are unavailable.

			GitHub Copilot Chat as a code reviewer

			GitHub Copilot Chat’s value for refactoring isn’t just limited to code generation. You can also ask GitHub Copilot Chat questions such as the following:

			
					Can you review this code as if you were a senior engineer in a code review?

					What performance optimizations can be made to this method?

					How can I make this method more readable?

					Where would this method encounter errors?

					Are there any ways of reducing or combining lines that don’t hurt the overall readability?

			

			Of course, it’s important to remember that you’re effectively getting advice from an LLM that is essentially a glorified autocompletion/sentence prediction engine and not a being with intelligent or original thought.

			Amusingly, I’ve noticed that asking GitHub Copilot Chat for its opinion on methods several times can yield different results. These results can even reverse the opinion of the original recommendations that Copilot provided! Still, this can be valuable in getting a variety of perspectives.

			Before we move on, let’s look at another example of refactoring code.

			Targeted refactoring with GitHub Copilot Chat

			This refactoring example focuses on the BaggageCalculator.cs file. This file holds the final version of the BaggageCalculator class from the end of Chapter 2.

			As a quick reminder, this class has a CalculatePrice method that calculates and displays the baggage fee for a customer based on the number of checked-in and carry-on bags and whether they’re traveling on a holiday.

			Supporting the public CalculatePrice method is a private static ApplyCheckedBagFee method that calculates the fee of a checked bag.

			We’ll focus largely on the CalculatePrice method, which looks a little repetitive:

			
public decimal CalculatePrice(int bags, int carryOn,
 int passengers, bool isHoliday) {
 decimal total = 0;
 if (carryOn > 0) {
 decimal fee = carryOn * CarryOnFee;
 Console.WriteLine($"Carry-on: {fee}");
 total += fee;
 }
 if (bags > 0) {
 decimal bagFee = ApplyCheckedBagFee(bags, passengers);
 Console.WriteLine($"Checked: {bagFee}");
 total += bagFee;
 }
 if (isHoliday) {
 decimal holidayFee = total * HolidayFeePercent;
 Console.WriteLine("Holiday Fee: " + holidayFee);
 total += holidayFee;
 }
 return total;
}

			Looking at this code, we see three similar blocks that check a condition, calculate a fee, display that fee, and then add it to total.

			This repetitive nature of the code strikes me as a code smell that could potentially be improved. One solution would be to extract a method for each of these three blocks, but these methods would still be very similar to each other.

			Instead, I naturally wonder if there’s a solution that might involve an Action or a Func, but I’m not immediately certain of what such a solution might look like.

			Thankfully, we can ask Copilot about this by selecting the entire method and telling GitHub Copilot Chat Refactor this method to use an Action that writes the fee out and adds it to total so the three blocks are less repetitive.

			For me, this resulted in the following method:

			
public decimal CalculatePrice(int bags, int carryOn,
 int passengers, bool isHoliday) {
 decimal total = 0;
 Action<decimal> addFeeToTotal = fee => {
 Console.WriteLine($"Fee: {fee}");
 total += fee;
 };
 if (carryOn > 0) {
 decimal fee = carryOn * CarryOnFee;
 addFeeToTotal(fee);
 }
 if (bags > 0) {
 decimal bagFee = ApplyCheckedBagFee(bags, passengers);
 addFeeToTotal(bagFee);
 }
 if (isHoliday) {
 decimal holidayFee = total * HolidayFeePercent;
 Console.WriteLine("Holiday Fee: " + holidayFee);
 addFeeToTotal(holidayFee);
 }
 return total;
}

			Here, Copilot introduced a local addFeeToTotal variable storing an Action that writes the fee to the console and increments total. It then calls this Action from each of the three branches.

			However, this refactoring was incorrect in a few regards. First, the messages being displayed now start with Fee instead of the appropriate fee name. Second, the refactoring didn’t remove the WriteLine for the holiday fee, so that fee would be displayed twice.

			Still, the refactoring does give us an idea of how the code could be improved. With a little clean-up, you end up with a more correct method:

			
public decimal CalculatePrice(int bags, int carryOn,
 int passengers, bool isHoliday) {
 decimal total = 0;
 Action<string, decimal> addFeeToTotal = (name, fee) => {
 Console.WriteLine($"{name}: {fee}");
 total += fee;
 };
 if (carryOn > 0) {
 decimal fee = carryOn * CarryOnFee;
 addFeeToTotal("Carry-on", fee);
 }
 if (bags > 0) {
 decimal bagFee = ApplyCheckedBagFee(bags, passengers);
 addFeeToTotal("Checked", bagFee);
 }
 if (isHoliday) {
 decimal holidayFee = total * HolidayFeePercent;
 addFeeToTotal("Holiday Fee", holidayFee);
 }
 return total;
}

			This code now works properly and reduces duplication. In this particular case, Copilot was able to suggest a path forward, but accurately implementing it without introducing bugs was beyond its current abilities.

			This limit underscores both the need for tests and the role of Copilot as the partner of the human programmer and not a replacement for the human.

			Reminder

			Remember that GitHub Copilot Chat, ChatGPT, and other generative AI systems based on large language models are just prediction machines that generate text that follows patterns from their training data. There is nothing guaranteeing that these generated values are correct, optimal, or free of bugs.

			Now that we’ve covered a few refactoring scenarios, let’s see what else we can do with GitHub Copilot Chat.

			Drafting documentation with GitHub Copilot Chat

			Over the years, I’ve learned that developers don’t always like to document their code. While some code truly is self-documenting as developers claim, other areas require proper documentation.

			In C#, we document public methods with XML documentation, such as the sample comment for the DisplayRandomNumbers method:

			
/// <summary>
/// Displays a sequence of 10 random numbers.
/// </summary>
public void DisplayRandomNumbers() {

			This specially formatted comment is interpreted by Visual Studio to display additional help in the editor. This extra information appears in the editor when you are trying to invoke your method, as shown in Figure 11.12:

			
				
					[image: Figure 11.12 – Visual Studio showing a tooltip containing the method comment]
				

			

			Figure 11.12 – Visual Studio showing a tooltip containing the method comment

			Although the sample documentation we saw a moment ago was relatively straightforward, documentation gets a bit more complex when you have return values and parameters.

			Let’s use GitHub Copilot Chat to document a method. We’ll start with the AddEvenNumbers method in DocumentMe.cs:

			
public int AddEvenNumbers(int[]? numbers, int total = 0) {
 if (numbers == null || numbers.Length == 0) {
 string message = "There must be at least 1 element";
 throw new ArgumentException(message, nameof(numbers));
 }
 return total + numbers.Where(n => n % 2 == 0).Sum();
}

			This method takes in an array of numbers and, optionally, a number to add to the resulting sum. If at least one number was provided, the method returns the sum of all even numbers in that array added to the optional total parameter. If no elements were provided, an ArgumentException will be thrown instead.

			Now that you’ve read my description of this, let’s see how GitHub Copilot describes it. Press Alt + / to open the chat interface and then tell Copilot to Document AddEvenNumbers. Copilot should suggest documentation changes such as the ones shown in the preview in Figure 11.12:

			
				
					[image: Figure 11.13 – GitHub Copilot suggesting documentation]
				

			

			Figure 11.13 – GitHub Copilot suggesting documentation

			Click Accept and the comments will be added to your method.

			For me, the documentation generated was reasonably good:

			
/// <summary>
/// Adds up even numbers in an array. Throws an
/// ArgumentException if the array is null or empty.
/// </summary>
/// <param name="numbers">
/// The array of numbers to add.
/// </param>
/// <param name="total">
/// The starting total to add to. Defaults to 0.
/// </param>
/// <returns>
/// The total of all even numbers in the array.
/// </returns>

			This is a very accurate piece of documentation. The one change I would make is to add the following line of XML documenting the potential exception:

			
/// <exception cref="ArgumentException">Thrown when the array is null or empty.</exception>

			This adds the exception to the list shown in the method tooltip, as seen in Figure 11.13:

			
				
					[image: Figure 11.14 – Exception documentation in Visual Studio]
				

			

			Figure 11.14 – Exception documentation in Visual Studio

			Communicating exceptions allows other code to catch them in an appropriate manner.

			Human-generated documentation will usually be better than AI documentation, but when humans and AI can work together, it can be a huge productivity boost.

			In the next section, we’ll see how these productivity boosts apply to testing as well.

			Generating test stubs with GitHub Copilot Chat

			For our final technical section of this chapter, let’s look at a method that finds the largest number in a sequence of numbers, provided that the number doesn’t have a “7” in it somewhere, such as a 71 or 17. This method is located inside of TestMe.cs:

			
public static class TestMe {
 public static int CalculateLargestNumberWithoutASeven(
 INumberProvider provider) {
 IEnumerable<int> numbers = provider.GenerateNumbers();
 return numbers.Where(x => !x.ToString().Contains("7"))
 .Max();
 }
}

			This CalculateLargestNumberWithoutASeven method takes in an INumberProvider that allows us to call GenerateNumbers and get a sequence of integers.

			Next, the method looks at the resulting sequence, finds the numbers that don’t have a seven somewhere in their string representation, and then returns the largest number.

			Dependency injection

			As a brief refresher, our method is effectively getting its dependency on an INumberProvider injected into it as an external parameter. This means the code works with anything that implements that interface without having to know the details.

			While this method seems utterly useless as something you might write in the real world, think for a moment about how you would test this method. Specifically, how would you call this method? What would you give it as an INumberProvider? What value would you expect it to return?

			While you’re thinking that over, let’s see how GitHub Copilot would handle this by opening the GitHub Copilot Chat pane and typing in Generate tests for CalculateLargestNumberWithoutASeven.

			Note

			While I usually prefer to use the Alt + / method of interacting with Copilot, if you want Copilot to generate a new file you should use the GitHub Copilot Chat pane for best results.

			For me, Copilot generated a C# code for a new test class. I’ll share that code shortly, but what’s most interesting to me about the code generation are the three buttons at the bottom of the recommendation, shown in Figure 11.14:

			
				
					[image: Figure 11.15 – GitHub Copilot offering to create a new file]
				

			

			Figure 11.15 – GitHub Copilot offering to create a new file

			These three buttons allow you to copy the new code to your clipboard, create a new file, and insert the code in the current editor, respectively.

			Since we want the tests to live in the test project, click Create new file.

			This will create a new file in your test project with any test(s) generated by Copilot. For me, it generated two tests, as shown at a high level in Figure 11.16:

			
				
					[image: Figure 11.16 – A pair of XUnit tests generated by GitHub Copilot Chat]
				

			

			Figure 11.16 – A pair of XUnit tests generated by GitHub Copilot Chat

			The tests aren’t the most important thing here, so I don’t want to focus on the code other than to make a few observations on Copilot’s strategy when I asked it for tests:

			
					Copilot generated a pair of tests using xUnit and Moq, which were both installed in the test project already. These tests compile and pass.

					The first test ensured the method threw an exception when given a null input.

					The second test provided a series of numbers at random and asserted that the method returned the largest number without a seven.

					Both tests used Moq to create a fake INumberProvider that is programmed to generate the desired sequence of numbers.

			

			So, have we discovered the silver bullet that allows us to forget about writing tests going forward? Probably not.

			While both tests verify something legitimate, their readability could be better. Additionally, the tests don’t consider all the paths that should be tested. For example, it didn’t test with an empty sequence of elements, with only a single number, with a single number with a seven in it, with only negative numbers, or with the largest number having a seven in it. These are all legitimate cases that a human tester would likely consider.

			So, GitHub Copilot won’t absolve you of your responsibility to test your code (and think about your tests), but it’s not completely worthless either.

			GitHub Copilot has a lot of value for identifying test cases and considering new ways of testing particularly hard-to-test classes. I’ve come to view it as a catalyst – or copilot –that helps get your momentum going when writing tests of your own.

			Now that we’ve seen the value GitHub Copilot provides, let’s talk about its limits.

			Understanding the limits of GitHub Copilot

			By this point in the chapter, many readers are probably thinking “This is great, but can I actually use this in my job?” That’s a valid question, so let’s talk about the two common objections: privacy of source code and license concerns with public code.

			Data privacy and GitHub Copilot

			Many organizations considering GitHub Copilot are concerned that integrating an AI tool into their code editor means exposing their code to GitHub. Some also raise the potential that GitHub might even use the organization’s private code to generate new large language models in the future where these new models might generate code based on the organization’s proprietary logic.

			These are valid concerns, and depending on which edition of GitHub Copilot you are using, there may be some basis for them.

			With GitHub Copilot for Individuals, the prompts you send to GitHub Copilot, including surrounding code and Copilot’s suggested code, may be retained for analysis unless you have disabled the code snippet collection in your settings.

			This setting can be disabled at https://github.com/settings/copilot by unchecking the Allow GitHub to use my code snippets for product improvements checkbox, as shown in Figure 11.17:

			
				
					[image: Figure 11.17 – GitHub Copilot settings]
				

			

			Figure 11.17 – GitHub Copilot settings

			While GitHub Copilot for Individuals has some data privacy concerns by default, these can be easily opted out if you are working with sensitive code.

			It should also be noted that GitHub Copilot for Individuals also collects telemetry on GitHub Copilot usage to detect how frequently the service is used and detect and resolve errors.

			On the other hand, GitHub Copilot for Business is private by default and also offers additional organization-wide policy settings that businesses can configure to globally enable or disable Copilot. These features can also be used to prevent Copilot from generating code matching known public code for everyone in your organization.

			According to the GitHub Copilot Trust Center, “GitHub Copilot [for business] does not use Prompts or Suggestions to train AI models. These inputs are not retained or utilized in the training process of AI models for GitHub Copilot”. This means that the code you send to GitHub Copilot and the suggestions it generates for you are private from human consumption and will not be used to give others insight into your codebase.

			Disclaimer

			This book is intended to help you understand the basics of GitHub Copilot and was written with the best understanding available of an early technology. As with any technology, GitHub Copilot continues to evolve and grow. As it does so, the privacy policy, data retention policy, and pricing model will likely change over time. Readers are encouraged to verify the information in this chapter against current information provided by GitHub before making any usage decisions.

			Glory Francke, head of privacy at GitHub, states “We only process your code to provide the service. It is not retained, human eyes don’t see it, and it is not being used for any AI model improvements” (GitHub Copilot Trust Center – https://resources.github.com/copilot-trust-center/).

			In general, I find the GitHub Copilot Trust Center to be a very useful tool in addressing enterprise concerns around the security, privacy, and accessibility of the tool. You can read more about the trust center in the Further reading section of this chapter, but for now, let’s talk more about GitHub Copilot and public code.

			Concerns around GitHub Copilot and public code

			Most open-source code is accompanied by a license dictating the terms developers must follow when using the source code. There are several common licenses that developers choose, such as the MIT License, Apache License, GNU General Public License, and so on.

			While many of these licenses are very permissive, some include clauses requiring additional actions such as attributing the source code, making your organization’s code open source, or not being able to use the code in commercial software projects.

			Because of restrictions like this, and because GitHub Copilot was trained on open-source software code, there’s a small chance that GitHub Copilot might accidentally generate code identical to code from a public repository.

			Because of this concern, GitHub Copilot now allows individuals and businesses to block the generation of code that is identical to known public code. Additionally, GitHub is currently rolling out a new feature called GitHub Copilot code referencing, which allows you to detect whether Copilot has suggested public code. This feature lets you unleash Copilot’s full creativity while allowing you to see what repositories the code was found and the licenses for those repositories.

			At the time of writing this chapter, this feature was not yet available for GitHub Copilot for Visual Studio, but it’s likely that this capability will make it to Visual Studio sometime after the publication of this book.

			Let’s close the chapter with a case study on GitHub Copilot Chat at our fictitious airline.

			Case study: Cloudy Skies Airline

			The use of AI at Cloudy Skies Airlines started first with individual developers, as often happens with productivity tools and new technologies. James, an eager young developer on the team, shared with his coworkers how he’s been trying GitHub Copilot, feeling more capable and empowered, and even learning new things. His coworkers were excited, but his manager, Mya, had a few concerns.

			Looping in the chief technology officer (CTO), Mya and James demonstrated the capabilities of the tool and talked about how it worked. The CTO was worried about legal compliance and the safety of the company’s intellectual property. As a result, the use of Copilot and other AI tools was temporarily suspended while the team investigated the implications of the technology.

			After some research, and with the help of the GitHub Copilot Trust Center, the Cloudy Skies Airlines team agreed to a multi-stage plan:

			
					Pilot the program: A small group of developers, including James, will try GitHub Copilot with code snippet collection disabled for two weeks

					Review: The team will evaluate any impacts on productivity, code quality, and general developer feedback from the pilot program and decide whether the tool should be adopted

					Rollout: If GitHub Copilot is found to be beneficial, it will either be allowed for individuals organizational-wide with guidelines or be managed through a GitHub Copilot for Business account, depending on the results of the technology review

			

			The developers in the pilot program reported having an easier time focusing on code, employing helpful practices for speeding up “boring” aspects of coding, and learning some new practices and concepts from the code that Copilot generated.

			As a result, Cloudy Skies Airlines embraced GitHub Copilot and adopted a GitHub Copilot for Business account to ensure snippet collection was disabled and that appropriate policies on things such as public code sources were set at an organizational level.

			Summary

			In this chapter, we saw how GitHub Copilot and GitHub Copilot Chat can help developers understand, refactor, document, and even test their code.

			We talked about how GitHub Copilot is not an intelligent AI overlord, but instead a predictive model built around patterns in text found in open-source repositories. As a result, the code it generates may not even compile and may contain security vulnerabilities, bugs, performance issues, or other undesirable effects.

			We closed this chapter with a discussion of privacy and open-source licensing that organizations must care about for security and compliance purposes and how GitHub Copilot helps organizations meet those needs.

			In the next chapter, we’ll explore code analysis in Visual Studio and see how code analysis can help you detect potential issues and targets for refactoring in your code.

			Questions

			
					How do GitHub Copilot and GitHub Copilot Chat work?

					How can you address data privacy and compliance concerns with Copilot?

			

			Further reading

			You can find more information about GitHub Copilot at these URLs:

			
					About the GitHub Copilot extension for Visual Studio: https://learn.microsoft.com/en-us/visualstudio/ide/visual-studio-github-copilot-extension

					GitHub Copilot Trust Center: https://resources.github.com/copilot-trust-center/

					GitHub Copilot Chat: https://docs.github.com/en/copilot/github-copilot-chat/about-github-copilot-chat

			

		

	
		
			12

			Code Analysis in Visual Studio

			Thus far, we’ve covered how to refactor our code in a safe, effective, reliable, and productive manner.

			In this chapter, we’ll determine areas of code that might need refactoring using code metrics and code analysis tools. Along the way, we’ll cover the following topics:

			
					Calculating code metrics in Visual Studio

					Performing code analysis in Visual Studio

					Exploring advanced code analysis tools

			

			Technical requirements

			The starting code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter12/Ch12BeginningCode folder.

			Calculating code metrics in Visual Studio

			Every codebase I’ve ever worked with has had a few maintainability hot spots. These are areas that are frequently changed, have a higher degree of complexity than other areas of code, and represent serious quality risks to the software project.

			These areas are usually some of the most critical to refactor and they tend to be easily discoverable using code metrics.

			Code metrics calculate a handful of useful statistics about every file, class, method, and property in your C# code. This lets you spot hot spots in your code that have significantly higher complexity or lower maintainability. Code metrics can even help you find classes that are too large and likely violate the Single Responsibility Principle (SRP) as we discussed in Chapter 8.

			To calculate code metrics, open your solution in Visual Studio and then click the Analyze menu, followed by Calculate Code Metrics, and then For Solution, as shown in Figure 12.1:

			
				
					[image: Figure 12.1 – Calculating code metrics]
				

			

			Figure 12.1 – Calculating code metrics

			This will open the Code Metrics Results pane, as shown in Figure 12.2:

			

			
				
					[image: Figure 12.2 – Code Metrics Results]
				

			

			Figure 12.2 – Code Metrics Results

			This pane displays a hierarchical view of your solution, along with the following six metrics:

			
					Lines of Source Code: The number of lines of code for the class or method.

					Lines of Executable Code: The lines of source code that ignore blank lines and comments.

					Cyclomatic Complexity: A metric that specifies the unique number of paths that exist through your code. Each if statement, loop, switch case, and similar type of branching instruction increases this by 1.

					Maintainability Index: A calculated value based on cyclomatic complexity, lines of code, and the number of operations performed in a method. This value ranges from 0 to 100, indicating how maintainable your code is. Values from 0 to 9 are bad, 10 to 20 are warning areas, and 21 and above are areas to watch.

					Depth of Inheritance: The number of classes this class inherits from before it reaches System.Object, which all classes ultimately inherit from.

					Class Coupling: The number of other classes your code depends on.

			

			Each of these metrics is useful individually, but together, they tell a broader picture.

			The maintainability index gives you a quick metric for an area of code. Unlike other columns, which sum up values for all code in a class, namespace, or project, the maintainability index acts as an average, which can help you quickly drill into problem areas.

			Cyclomatic complexity can identify areas that are hard to test or hard to understand since it identifies the number of distinct paths through a method. Figure 12.3 illustrates a cyclomatic complexity of the CalculatePrice method:

			
				
					[image: Figure 12.3 – Calculating cyclomatic complexity]
				

			

			Figure 12.3 – Calculating cyclomatic complexity

			Here, the CalculatePrice method has a cyclomatic complexity of 4. All methods start with a cyclomatic complexity of 1, representing a single path through the method. Each branching statement, such as the if statements here, increments the cyclomatic complexity by 1, resulting in a total of 4.

			I find cyclomatic complexity to be generally useful and try to keep this as low as possible. Keep in mind that cyclomatic complexity is biased against methods that use switch statements since each case statement adds to the complexity. Simple switch statements with only a line or two of code are generally not hard to maintain, so treat cyclomatic complexity as only one indicator of code quality. Microsoft recommends a maximum cyclomatic complexity of 10 for each method, but in my experience, I tend to be happiest with a cyclomatic complexity of 7 or less.

			Depth of inheritance and class coupling can help you identify places where you may be over-using inheritance or have too high of coupling to other classes, as we covered in Chapter 8. Microsoft encourages a maximum depth of inheritance of 6 and a maximum class coupling of 9.

			The lines of code metrics are quite useful. I find that having many lines of code in a class is frequently one of the greatest signs that a class violates the SRP and needs to be refactored. Similarly, if a method is too large, it’s usually hard to understand, maintain, and test.

			I try to keep classes under 200 lines of code and methods to 20 lines or less. In both cases, I look for things I can pull out of the method or class and am hesitant to expand an already large class or method with new logic unless I can pull logic out of the code first.

			Keep in mind that these are general guidelines I’ve found generally effective. These are not concrete rules that you must always follow.

			I encourage you to spend some time looking over code metrics for the sample code for this chapter or some code you maintain. In the case of the code for this chapter, I’m most concerned about the following methods:

			
					BaggageCalculator.CalculatePrice in the Flight.Baggage namespace has a maintainability index of 58, cyclomatic complexity of 4, and 26 lines of source code

					FlightScheduler.Search, which takes in a FlightSearch object in the Flight.Scheduling namespace, has a maintainability index of 48, a cyclomatic complexity of 9, a class coupling of 11, and 37 lines of source code

			

			Both methods are flagged by the metrics because they have several if statements that they need to run. Neither method is very complex, but at the same time, if either needs to grow significantly more, I’d like to see refactorings like the ones we applied in Chapter 5 to move complexity out of these methods and into other objects.

			Now that we’ve covered code metrics, let’s see how code analysis can give us another way of looking at our code.

			Performing code analysis in Visual Studio

			Microsoft knows that as C# and .NET changes, it can be very difficult to keep up with evolving standards in a broad and changing language.

			To address this, Microsoft gave us tools beyond code metrics in the form of analyzers that inspect our C# code for issues. These analyzers look at our code and flag potential issues and optimizations. This helps ensure our code complies with standards and is secure, reliable, and maintainable.

			Analyzing your solution using the default ruleset

			To see an analyzer in action, build this chapter’s solution in Visual Studio and notice the three warnings that appear in the Output pane, as shown in Figure 12.4:

			
				
					[image: Figure 12.4 – An overview of the build results showing warnings]
				

			

			Figure 12.4 – An overview of the build results showing warnings

			These three lines represent separate compiler warnings for the CS8618 code analysis rule, which we’ll look at shortly.

			Before we do that, click on the View menu and then select Error List. You should see the same warnings formatted in an easier-to-read manner, as shown in Figure 12.5:

			
				
					[image: Figure 12.5 – An overview of the compiler warnings in Error List]
				

			

			Figure 12.5 – An overview of the compiler warnings in Error List

			If these warnings don’t show up, make sure the Errors, Warnings, and Messages buttons are checked, as shown in Figure 12.5.

			Since these warnings are all associated with Airport.cs, let’s review its code:

			
public class Airport {
 public string Country { get; set; }
 public string Code { get; set; }
 public string Name { get; set; }
 // Non-relevant code omitted...
}

			When looking at this code in Visual Studio, you’ll see a “green squiggly” underneath each of these three properties. As shown in Figure 12.6, hovering the mouse cursor over any of these “squigglies” shows details about the warning or suggestion:

			
				
					[image: Figure 12.6 – The CS8618 compiler warning associated with the Name property]
				

			

			Figure 12.6 – The CS8618 compiler warning associated with the Name property

			In this case, the warning tells us that these three properties are non-nullable, meaning that they are declared as string instead of string?, as we discussed in Chapter 10 when discussing nullability analysis.

			Since the default value for any string property in .NET is null and the Airport class doesn’t have any logic to initialize these three properties, the compiler warning is telling us that when Airport instances are created, they’ll have null values in properties we told it couldn’t be null!

			Nullability analysis in .NET

			Remember that although strings are reference types and can be null, nullability analysis in C# indicates if a property is expected to have a null value at any point in time. Here, the string type indicator means that we never expect these properties to have a null value. On the other hand, a string? type indicator would indicate that we might expect null values. See Chapter 10 for more information on nullability analysis in C#.

			There are a few ways to address this compiler warning:

			
					Default these properties to an empty string

					Change these properties to string? instead of string

					Add a constructor that sets these properties to non-null values

					Mark these properties as required so that they must be set on creation

			

			As shown here, the simplest fix is to mark these properties as required:

			
public class Airport {
 public required string Country { get; set; }
 public required string Code { get; set; }
 public required string Name { get; set; }
 // Non-relevant code omitted...
}

			This resolves the three code analysis warnings, leaving two less severe suggestions for us to investigate, both dealing with the Equals method of Airport:

			
public override bool Equals(object? obj) {
 Airport? otherAirport = obj as Airport;
 if (otherAirport == null)
 return false;
 string otherName = otherAirport.Name;
 string otherCountry = otherAirport.Country;
 string otherCode = otherAirport.Code;
 return Country == otherCountry &&
 Code == otherCode;
}

			The first warning is IDE0019, which suggests using pattern matching when declaring otherAirport. Thankfully, this analyzer provides a Quick Action to resolve the suggestion. Hovering over the three dots underneath the Airport? type reveals the Use pattern matching Quick Action, as shown in Figure 12.7:

			
				
					[image: Figure 12.7 – Applying the Use pattern matching refactoring]
				

			

			Figure 12.7 – Applying the Use pattern matching refactoring

			Applying this refactoring resolves the suggestion and makes our code more concise:

			
if (obj is not Airport otherAirport)
 return false;

			The last remaining warning is IDE0059: Unnecessary assignment of a value to ‘otherName’. This highlights that we’ve declared a variable and assigned a value to that variable but never used the variable after that point, as shown here with otherName:

			
string otherName = otherAirport.Name;
string otherCountry = otherAirport.Country;
string otherCode = otherAirport.Code;
return Country == otherCountry &&
 Code == otherCode;

			Looking at this code, it’s a toss-up as to whether otherName should be included in the equality check or if the variable is simply not needed. In this case, you might ask a business stakeholder if an airport could ever have multiple names but be the same airport. If you get a “yes,” then the fix would be to remove the otherName variable, while a “no” would indicate that a Name check should be added to the return statement.

			The correct fix for code issues is not always obvious without gathering more information about the business domain you’re modeling.

			Configuring code analysis rulesets

			There are a large and growing number of analyzers in .NET and not every analyzer shares the same levels of importance. Because of this, Microsoft provides different sets of analyzers so that you can start with a small subset of the most useful ones and gradually expand into additional sets of analyzers as your maturity grows.

			Let’s look at our code analysis settings for the Chapter12 project by right-clicking on the Chapter12 project in Solution Explorer and then selecting Properties.

			This will open the properties view of the project. This view lists all configurable properties associated with the project and can be scrolled through from top to bottom or navigated using the navigation pane on the left-hand side.

			Click on Code Analysis in the navigation pane; you should see the project’s code analysis settings, as shown in Figure 12.8:

			
				
					[image: Figure 12.8 – Code Analysis settings for the project]
				

			

			Figure 12.8 – Code Analysis settings for the project

			As you can see from the Run on build setting, the compiler will analyze code every time the project is built.

			The exact set of analyzers used is controlled by the Analysis level setting, which defaults to Latest for new projects.

			There is a wide variety of analysis rulesets supported by Visual Studio, but let’s focus on the four rulesets that start with “Latest” as these are the most recent rulesets available, and the patterns in these rules will help you understand the other rules options. These options are as follows:

			
					Latest: The default set of rules. This is a set of rules that is intended to be broadly applicable to any type of project.

					Latest Minimum: Everything in Latest plus additional rules. This represents the minimum set of rules that Microsoft recommends using in a project.

					Latest Recommended: Everything in Latest Minimum plus some additional rules. This contains a robust set of rules designed to help you maintain a business application that can run in any locale securely and reliably.

					Latest All: All available rules are enabled. Not every rule may be relevant for the application you’re trying to build, but it maximizes your chances of building a robust and reliable application.

			

			Let’s see what happens when we change our project from Latest to Latest Recommended and then build.

			Responding to code analysis rules

			After changing the project to use the Latest Recommended ruleset, three new warnings will appear, as shown in Figure 12.9:

			
				
					[image: Figure 12.9 – New compiler warnings after moving to a stricter ruleset]
				

			

			Figure 12.9 – New compiler warnings after moving to a stricter ruleset

			Let’s start with the first warning. This corresponds to the Flight class, which is currently defined in only a few lines of code:

			
public class Flight {
 public string BuildMessage(string id, string status) {
 return $"Flight {id} is {status}";
 }
}

			The CA1822 warning tells us Member ‘BuildMessage’ does not access instance data and can be marked as static.

			This analyzer is suggesting we make the BuildMessage method static because it doesn’t deal with any specific information from the overall Flight class.

			In this case, making the method static could make it easier to test and allow the compiler to make a few performance optimizations as well.

			We could resolve this warning by performing the Make method static refactoring we covered in Chapter 4, but instead, let’s explore suppressing specific warnings.

			In this case, let’s say that we intend BuildMessage to deal with instance-specific properties at some point in the future, but haven’t gotten there yet. Because of this, we want the warning to go away without making the method static.

			Use the Quick Action menu on the BuildMessage method and then select the Suppress or configure issues submenu. From there, choose Suppress CA1822. This will reveal three different options for suppressing the issue, as shown in Figure 12.10:

			
				
					[image: Figure 12.10 – Options for suppressing the code analysis warnings]
				

			

			Figure 12.10 – Options for suppressing the code analysis warnings

			These options are as follows:

			
					in Source: This adds several #pragma statements above and below your code to disable the code analysis warning temporarily

					in Suppression File: This creates a separate file with code telling code analysis not to care about this specific issue for this specific method

					in Source (attribute): This adds SuppressMessageAttribute above the method, suppressing the code analysis issue

			

			All three of these approaches will suppress the issue, but all do so in different styles. I generally prefer to avoid preprocessor directives such as #pragma to have cleaner and more maintainable code. This leaves the suppression file and attribute approaches.

			The advantage of a suppression file is that code analysis suppressions do not clutter your source code and instead live in a separate file. However, that’s also their disadvantage. By hiding away suppressions in another file, you reduce the odds of resolving them in the future since they’re “out of sight, out of mind.”

			Using the in Source (attribute) approach and then adding a using statement for System.Diagnostic.CodeAnalysis results in the following file:

			
using System.Diagnostics.CodeAnalysis;
namespace Packt.CloudySkiesAir.Chapter12.Flight;
public class Flight {
 [SuppressMessage("Performance",
 "CA1822:Mark members as static",
 Justification = "Intend to work with instance data in future release")]
 public string BuildMessage(string id, string status) {
 return $"Flight {id} is {status}";
 }
}

			The SuppressMessage attribute above the method marks the category of the code analysis issue as “Performance.” Next, it names the individual analysis rule being suppressed before providing a justification.

			This justification is a string explaining to your coworkers (and future you) why you believe the code analysis rule should not be addressed at this time and should be excluded from the list of code analysis results.

			I will never suppress a code analysis warning without providing a valid justification for the suppression. If a rule was important enough for someone to provide an analyzer for, it should either be resolved or I should have a valid justification for why I am choosing to ignore it. In case you were wondering, “I don’t feel like addressing it” is not a valid justification.

			With the first warning out of the way, let’s look at the other two warnings together as they’re related.

			The first warning is CA1305, which is associated with the DateHelpers class, as shown here:

			
public static class DateHelpers {
 public static string Format(this DateTime time) {
 return time.ToString("ddd MMM dd HH:mm tt");
 }
}

			This warning states that the ToString call might result in a different result, depending on the user’s locale and language settings. My settings, as someone speaking English in the United States, may be different than someone running the same code with French as their primary locale.

			The next warning is on BuildFlightIdentifier in CharterFlightInfo:

			
public class CharterFlightInfo : FlightInfoBase {
 public List<ICargoItem> Cargo { get; } = new();
 public override string BuildFlightIdentifier() {
 StringBuilder sb = new(base.BuildFlightIdentifier());
 if (Cargo.Count != 0) {
 sb.Append(" carrying ");
 foreach (var cargo in Cargo) {
 sb.Append($"{cargo}, ");
 }
 }
 return sb.ToString();
 }
}

			This warning is complaining about a similar localization issue stating that the behavior of StringBuilder.Append could differ based on the user’s locale.

			Recommended rules versus minimum and default rules

			These formatting rules are examples of rules that are not relevant to all projects. These rules are not enabled in the default or minimum rulesets for a reason: not all applications you create will need to behave consistently, regardless of where they’re running. If you’re building a hobby application or an application that runs only on a single server or in your office, this rule probably isn’t important for you. However, if you’re building something that is distributed throughout the globe to customers of all cultures, this is going to be a rule you care about.

			The fix for these two warnings is to provide an explicit culture that you want to be used when formatting strings. This changes our append code to the following line:

			
sb.Append(CultureInfo.InvariantCulture, $"{cargo}, ");

			Our date formatting code changes in a similar manner:

			
CultureInfo culture = CultureInfo.InvariantCulture;
return time.ToString("ddd MMM dd HH:mm tt", culture);

			With these changes made, we are now free of code analysis warnings. Let’s finish this section by looking at a way of making sure we stay free of warnings.

			Treating warnings as errors

			I’ve met many developers who treat warnings like they treat speed limits while driving: they ignore them and cruise by at unsafe speeds.

			There are a few ways of making sure developers ensure their code is free of warnings. Perhaps the easiest way of doing so is to tell the C# compiler to treat any warning as if it were a compiler error.

			You can have the C# compiler treat all warnings as errors by right-clicking on the project and then selecting Properties, as we did before. From there, expand Build in the navigation pane and then click Errors and warnings. Once you do so, you should see something like Figure 12.11:

			
				
					[image: Figure 12.11 – Configuring errors and warnings for a project]
				

			

			Figure 12.11 – Configuring errors and warnings for a project

			You can check Treat warnings as errors to have all warnings result in errors.

			Since developers pay attention to things that stop their code from running at all, causing any warning to stop them from building their code will certainly get their attention! Be careful when using this as they may not be very happy about the severity of the interruption.

			A less extreme option is to configure the Treat specific warnings as errors setting and include the identifiers of specific warnings you believe should always be addressed.

			For example, if we wanted to force developers to respond to suggestions of making methods static (CA1822), you could set the Suppress specific warnings value to $(WarningsAsErrors);NU1605;CA1822; by doing so, any place where the warning occurred and was not suppressed would result in a compiler error.

			Now that we’ve covered the code analysis features of Visual Studio, let’s take a look at a pair of additional options in the form of third-party tools that work well with C# code.

			Exploring advanced code analysis tools

			The built-in code analysis and code metrics tools are very good for engineers wanting to pinpoint bad code and ensure code follows best practices for .NET projects, but they lack some enterprise-level features.

			In this section, we’ll look at two different commercial analysis tools that I’ve found to provide additional value for .NET projects: SonarCloud and NDepend.

			I won’t be covering how to set up these tools as both tools have comprehensive documentation that I’ve provided links to in the Further reading section at the end of this chapter. Instead, we’ll focus on the types of insights that dedicated code analysis tools can give you beyond what’s available in Visual Studio.

			Tracking code metrics with SonarCloud and SonarQube

			SonarCloud and SonarQube are a pair of commercial code analysis tools offered by SonarSource. Both products look at Git repositories containing code in a variety of popular programming languages and generate a series of recommendations.

			The primary difference between SonarCloud and SonarQube is that SonarCloud is hosted on and analyzed by servers maintained by SonarSource while SonarQube is software you can install on your servers.

			Both pieces of software can analyze code in Git repositories and provide heat maps of problem areas in your code in the areas of reliability, maintainability, security, and code duplication. These views give you a simple graphical representation of your code that helps easily flag problem areas, as shown in Figure 12.12:

			
				
					[image: Figure 12.12 – SonarCloud analysis highlighting technical debt areas]
				

			

			Figure 12.12 – SonarCloud analysis highlighting technical debt areas

			These tools have built-in analyzers that analyze your code and flag reliability, security, and performance issues for remediation.

			Once an issue has been flagged, you can use the web user interface shown in Figure 12.13 to assign it to a team member, add comments to it, or mark it as resolved or ignored:

			
				
					[image: Figure 12.13 – Code analysis recommendations per line of code]
				

			

			Figure 12.13 – Code analysis recommendations per line of code

			For me, SonarCloud and SonarQube have a few major selling points:

			
					They help expose technical debt to non-developers in a very user-friendly way. An engineering manager or chief technology officer can look at the project in their web browser and get an understanding of the weak areas without ever having to install Visual Studio. This helps make technical debt transparent.

					Items flagged by SonarCloud and SonarQube tend to be worth investigating, perhaps even more so than items flagged by Visual Studio code analyzers.

					You tend to get a good result with these tools out of the box without needing additional configuration, though the configuration is available for customization should you wish to do so.

			

			SonarCloud and SonarQube are commercial products that are priced based on the lines of code in your projects. SonarCloud is also freely available for any public GitHub repository.

			Since the code in this book is public on GitHub, you can see its code analysis results at https://sonarcloud.io/summary/overall?id=IntegerMan_Refactoring-with-CSharp. I’d also strongly recommend that you create an account and have SonarCloud analyze some open-source code you’ve written or are familiar with, just to walk through the setup and analysis process and see the recommendations it gives you.

			While SonarCloud and SonarQube are not .NET-specific tools, I do find they work well with .NET projects, which is why they’re highlighted in this book.

			Next, let’s look at a tool explicitly built for .NET and C# projects in particular: NDepend.

			In-depth .NET analysis with NDepend

			NDepend is a power tool designed to help architects and software engineers get the most out of their C# projects.

			NDepend can operate as a Visual Studio extension such as GitHub Copilot Chat, as a standalone application, or as a build agent integrated into an Azure DevOps build pipeline.

			When NDepend runs its analysis, it produces an HTML report (pictured in Figure 12.14) and populates a dashboard view with the same information in Visual Studio:

			
				
					[image: Figure 12.14 – NDepend report showing code analysis results]
				

			

			Figure 12.14 – NDepend report showing code analysis results

			This report highlights the number of code analysis rules violated by the project, the current unit test code coverage percentages, and how metrics have changed over time.

			Try it out

			You can view a sample NDepend report for this chapter in the Chapter12/Ch12FinalCode/NDependOut/NDependReport.html file in this book’s GitHub repository.

			If you and your engineering team are trying to answer questions such as “Are we getting better or worse?”, “What are our major problems?”, or “What areas need to be fixed the most?”, NDepend will help you with that.

			Like SonarCloud, NDepend operates on a series of analyzers called “rules.” These rules are written using LINQ against a model representing your source code. The default rules ship with their source code included and can be customized to your team’s needs. You can also write your own rules – much as we’ll write our own Roslyn Analyzers in the next two chapters.

			These rules also allow you to compare how your code has changed since it was last baselined and estimate the amount of time it will take to resolve the technical debt they represent.

			NDepend’s strengths go past its primary report, rules list, and list of rules violations. The real strength of NDepend is in its data visualizations.

			The dependency matrix is what NDepend was originally known for and allows you to see a two-dimensional matrix of different namespaces and types, as shown in Figure 12.15:

			
				
					[image: Figure 12.15 – The NDepend dependency matrix]
				

			

			Figure 12.15 – The NDepend dependency matrix

			This matrix helps you detect namespaces or types that are dependent on each other. When different types or namespaces are mutually dependent on each other, this typically represents incorrectly segmented software architecture, and NDepend makes this highly visible when violations are present.

			NDepend’s visualizations don’t stop there, however. My favorite visualization built into NDepend is its heat view, which allows you to view types or methods inside your project in a hierarchical tree with different rectangles representing different types or methods.

			This view is similar to a tree map in data visualization tools, but each rectangle is colorized and sized based on various metrics calculated by NDepend. These metrics go well beyond the metrics Visual Studio calculates on its own and include things such as the lines of code, cyclomatic complexity, percentage of unit test coverage, or even the amount of comments in the file.

			This heat map, pictured in Figure 12.16, is the most intuitive way I’ve found of helping me zero in on potentially problematic code – and communicate problem areas visually to key stakeholders:

			
				
					[image: Figure 12.16 – An NDepend heat map showing lines of code and cyclomatic complexity]
				

			

			Figure 12.16 – An NDepend heat map showing lines of code and cyclomatic complexity

			NDepend also offers a dependency graph view. This graph allows you to see how assemblies, namespaces, types, methods, properties, events, and even fields interact with each other richly and interactively, as shown in Figure 12.17:

			
				
					[image: Figure 12.17 – Namespace and type interactions within the Chapter12 project]
				

			

			Figure 12.17 – Namespace and type interactions within the Chapter12 project

			This allows you to visualize your software architecture and communicate that architecture to others on your team. This is particularly handy when onboarding new developers.

			The graph view also allows you to spot problem areas such as types that depend on too many other types, different namespaces dependent on each other, and classes that likely violate the SRP.

			In my experience, NDepend takes some additional time to configure and investigate, but it represents a very effective way of visualizing, communicating, and navigating problem areas in your code.

			Let’s finish this chapter by exploring code analysis at our fictional organization.

			Case study – Cloudy Skies Airline

			Cloudy Skies Airlines knew they had a lot of technical debt and code issues, but they weren’t sure which areas they should prioritize. Each engineer had different opinions on what was most important. As you would expect, these opinions were usually influenced by what each engineer had worked on most recently.

			To resolve this issue, engineering leadership turned to the data. They started analyzing the available code metrics in Visual Studio and cataloging where most code analysis warnings seemed to be located.

			Engineering management then compared the problem areas with the areas that had changed within the past 3 months and the areas the organization expects will need to change to support the team’s upcoming initiatives. This approach helped engineering management prioritize technical debt resolution in strategic areas that supported business objectives.

			To help resolve the backlog of warnings, developers were given a new mandate: each commit you make should not increase the number of active code analysis warnings. Decreasing the warning count or having it stay the same is fine, but increasing it will not be acceptable in code review.

			This policy built additional awareness of code analysis warnings and the warnings were gradually reduced over time. Once the team got acclimated to paying attention to warnings, they moved to a larger code analysis ruleset. This caused a new series of warnings to come in, but those warnings helped identify potential or actual problems, as well as optimizations for the application.

			To help provide insight into the health of its code, the organization is currently evaluating SonarCloud and NDepend to provide the team with a quality dashboard that will help them focus on key areas and ensure quality remains high going forward.

			Summary

			In this chapter, we saw how code metrics and code analysis tools can help you spot problem areas in your code, follow best practices, and prioritize areas of technical debt. This will help you understand the issues you and your team struggle with. Once you know the areas you struggle with, you can focus on remediating them going forward. This also helps you prioritize areas of technical debt and communicate those areas to others.

			These built-in analyzers are incredibly handy and it turns out you can build some on your own. Over the next two chapters, we’ll do just that as we build our own code analyzer that can detect and automatically fix issues.

			Questions

			Answer the following questions to test your knowledge of this chapter:

			
					What are the areas you consider to be most problematic about your code?

					What do the code metrics say about these problem areas?

					What is cyclomatic complexity and how is it calculated?

					What are the things you should consider when picking a code analysis ruleset?

			

			Further reading

			You can find more information about code analysis at these URLs:

			
					Code Metrics Values: https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values

					Overview of .NET source code analysis: https://learn.microsoft.com/en-us/dotnet/fundamentals/code-analysis/overview

					SonarCloud: https://www.sonarsource.com/products/sonarcloud/

					NDepend: https://www.ndepend.com/

			

		

	
		
			13

			Creating a Roslyn Analyzer

			In the previous chapter, we covered the use of code analyzers to detect issues in code. But what happens when your team has common issues that aren’t detected by any existing analysis rules?

			It turns out that modern C# provides a means for building custom analyzers through something called Roslyn Analyzers. In this chapter, we’ll see how Roslyn Analyzers work in action by building an analyzer of our own.

			This chapter covers the following topics:

			
					Understanding Roslyn Analyzers

					Creating a Roslyn Analyzer

					Testing Roslyn Analyzers with RoslynTestKit

					Sharing analyzers as Visual Studio extensions

			

			Technical requirements

			Unlike other chapters, we won’t be starting with sample code. Instead, we’ll be starting with a blank solution and gradually adding new projects to that solution.

			The starting empty solution and final code for this chapter are available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter13 folder.

			Understanding Roslyn Analyzers

			Before we can go into what a Roslyn Analyzer is, let’s talk about Roslyn.

			Roslyn is the codename for the reimagined .NET Compiler Platform that was released alongside Visual Studio 2015. Since “.NET Compiler Platform” is a lot to say, most people refer to this as the Roslyn compiler or simply Roslyn for short.

			Before Roslyn, if a tool wanted to understand C#, VB, or F# source code, developers needed to write their own language parser for these code files. This involved a significant amount of time and complexity, and this effort needed to be repeated every time these programming languages changed. This led to tools being slower to support new language features, lost productivity, and bugs.

			One of the explicit goals of the Rosyln compiler was to provide visibility into the structure of code in a standardized way. This way, plugins could work with the Roslyn APIs to get live information about code without having to write their own parser.

			To do this, projects can create Roslyn Analyzers, which integrate into the code analysis and compilation process. This lets you do the following:

			
					Provide warnings and errors when anti-patterns in code are present

					Integrate into the Quick Actions menu, allowing developers to automatically fix known issues using established solutions

					Provide refactoring capabilities, thereby improving developer productivity

			

			You’ve been working with Roslyn Analyzers this whole time with the various code warnings, suggestions, and Quick Action refactorings you’ve seen in Visual Studio.

			You can explore the built-in analyzers in your projects by going to Solution Explorer and then expanding a project’s Dependencies node, followed by its Analyzers node and specific analyzer assemblies, as shown in Figure 13.1:

			
				
					[image: Figure 13.1 – Code analyzers in Solutions Explorer]
				

			

			Figure 13.1 – Code analyzers in Solutions Explorer

			Through the rest of this chapter, we’ll create a Roslyn Analyzer of our own, but before we do, let’s talk about how Roslyn sees C# code.

			Installing the extension development workload and DGML editor

			When you’re developing with Roslyn Analyzers, two additions to Visual Studio will help you create and debug your own analyzers. Let’s install these by launching Visual Studio Installer from the Windows start menu. Next, select your installation of Visual Studio and click Modify.

			This will bring up a list of workloads and features that are available. These change over time, but you’ll want to make sure that the Visual Studio extension development workload is checked in the Workloads tab, as shown in Figure 13.2:

			
				
					[image: Figure 13.2 – Installing Visual Studio extension development and DGML editor]
				

			

			Figure 13.2 – Installing Visual Studio extension development and DGML editor

			Next, find DGML editor in the Individual components tab and check it as well before clicking Modify to install the additional components.

			The Visual Studio extension development workload is useful when you are trying to create a VSIX extension project for Visual Studio. This type of project allows you to add custom user interface elements, analyzers, and new features to Visual Studio. We’ll talk more about VSIX extensions periodically throughout the rest of this chapter and the next.

			The DGML editor works with Directed Graph Markup Language (DGML) to show interactive visualizations in Visual Studio. It also happens to install a very useful view that will help us understand Rosyln more: Syntax Visualizer.

			Introducing Syntax Visualizer

			Syntax Visualizer is a view in Visual Studio that allows you to see the structure of source code from the Roslyn API’s point of view.

			To see this in action, open a C# file in your editor and then open Syntax Visualizer by clicking the View menu, followed by Other Windows and then Syntax Visualizer.

			This should show you a hierarchy of various nodes corresponding to the code in your editor, as shown in Figure 13.3:

			
				
					[image: Figure 13.3 – Syntax Visualizer synchronizing with the current code selection]
				

			

			Figure 13.3 – Syntax Visualizer synchronizing with the current code selection

			Click on various keywords, variables, methods, and values in your code and watch Syntax Visualizer change to reflect what you’ve selected.

			This is a very good way of understanding how code is structured in Roslyn’s APIs, but the tool can also be helpful when you’re not sure what class inside of the Roslyn API refers to the type of code element you want to work with.

			Now that we have a slightly greater understanding of what the Roslyn API is, let’s create our first Roslyn Analyzer.

			Creating a Roslyn Analyzer

			People create custom Roslyn Analyzers when they experience common issues in their code that no existing analyzer addresses. These custom analyzers help enforce rules that specific organizations or teams find to be useful. However, these organization-specific rules tend to be less relevant to the larger .NET community.

			Here are a few examples of when you might want to build a custom analyzer:

			
					Your team has been having issues with too many FormatException errors from things such as int.Parse and wants to make int.TryParse their standard

					Due to large files and limited memory, your team wants to avoid the File.ReadAllText method and use stream-based approaches instead

					Your team mandates that all classes must override the ToString method to improve the debugging and logging experience

			

			Note that none of these approaches relate to styling or syntax. Instead, these analyzers deal with team-specific decisions about how to best use .NET. We’ll explore ways of enforcing styling and syntax choices in Chapter 16, Adopting Code Standards.

			Let’s say that Cloudy Skies Airlines is spending a lot of time debugging and troubleshooting code and suspects that overriding ToString in more places would lead to a better developer experience for their team.

			Note

			It’s not an established best practice to override ToString in all classes. There are likely some performance drawbacks to doing so, but for this chapter, we’ll assume this rule makes sense for the Cloudy Skies team.

			Throughout the rest of this chapter, we’ll create this analyzer, starting from a blank solution.

			Adding the analyzer project to our solution

			While there are templates for creating Roslyn Analyzers built into Visual Studio, these are older templates and they hide some of the implementation details. Instead, we’re going to walk through the steps of creating and deploying a Roslyn Analyzer from an empty solution.

			We’ll start by adding a class library that will contain our analyzer. Class libraries are a special type of project that provides code to other projects but cannot run on their own.

			Starting with the Chapter13BeginningCode solution, we’ll right-click on the solution in Solution Explorer and then choose Add and then New Project….

			From there, we’ll select the type of project we want to create, select a Class Library project using the C# language, as shown in Figure 13.4, and click Next:

			
				
					[image: Figure 13.4 – Adding a C# Class Library project to our solution]
				

			

			Figure 13.4 – Adding a C# Class Library project to our solution

			Warning

			There are multiple projects with the name Class Library in different languages. Look for the green C# icon and the C# label in the list.

			Next, we’ll need to provide a name for our class library. This is the library that will hold the code analyzer we’re creating this chapter, so let’s call it Packt.Analyzers since the name of the project will become the default namespace of the project.

			After this, you’ll be asked to select the framework the project should use. Select .NET Standard 2.0 and click Create. The new project will be added to your solution.

			Why .NET Standard?

			Unlike other projects in this book, we’re using .NET Standard here. This is a special version of .NET that was designed to run on a variety of different .NET runtimes. This makes .NET Standard a great choice for when you don’t know which version of .NET your code will be running in. See the Further reading section for more information.

			To create a Roslyn Analyzer, we’ll need to add a few NuGet packages to our class library. To do this, right-click on the class library in Solution Explorer and then choose Manage NuGet Packages….

			Once you’re in NuGet Package Manager, go to the Browse tab and then search for and install version 4.0.1 of the Microsoft.CodeAnalysis package, as shown in Figure 13.5:

			
				
					[image: Figure 13.5 – Installing version 4.0.1 of Microsoft.CodeAnalysis]
				

			

			Figure 13.5 – Installing version 4.0.1 of Microsoft.CodeAnalysis

			Note that version 4.0.1 is not the most recent version of this package. This specific version was chosen to avoid a conflict with the testing library we’ll use later.

			Now that the package has been installed, we’re ready to start creating our Roslyn Analyzer.

			Defining a code analysis rule

			Let’s start by renaming the Class1.cs file to ToStringAnalyzer.cs and replacing its contents with the following:

			
using System;
using System.Linq;
using System.Collections.Immutable;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.Diagnostics;
namespace Packt.Analyzers {
 [DiagnosticAnalyzer(LanguageNames.CSharp)]
 public class ToStringAnalyzer : DiagnosticAnalyzer {
 }
}

			This is the minimum we need to have a compiling analyzer. Let’s explore what’s here.

			First of all, the ToStringAnalyzer class inherits from DiagnosticAnalyzer, which is a base class for all Roslyn Analyzers that provide warnings to the user.

			The class has a DiagnosticAnalyzer attribute that says the analyzer applies to code written in C#.

			Note

			It’s possible to write analyzers that apply to C#, F#, Visual Basic, or some combination of these languages.

			Inheriting from the abstract DiagnosticAnalyzers class forces us to override the SupportedDiagnostics property and the Initialize method. Let’s do that now in the simplest way possible:

			
public override ImmutableArray<DiagnosticDescriptor>
 SupportedDiagnostics => null;
public override void Initialize(AnalysisContext con) {
}

			The SupportedDiagnostics property returns ImmutableArray, which contains all diagnostic rules the analyzer provides to the editor. In our case, we’ll want it to return the warning the user might see if the rule is violated.

			Let’s add a new property and update our SupportedDiagnostics property, as shown here:

			
public static readonly DiagnosticDescriptor Rule =
 new DiagnosticDescriptor(
 id: "CSA1001",
 title: "Override ToString()",
 messageFormat: "Override ToString on {0}",
 category: "Maintainability",
 defaultSeverity: DiagnosticSeverity.Info,
 isEnabledByDefault: true,
 description: "Override ToString to help debugging.");
public override ImmutableArray<DiagnosticDescriptor>
 SupportedDiagnostics => ImmutableArray.Create(Rule);

			Here, we’ve added a static Rule property that defines the DiagnosticDescriptor object that’s defining our rule. This rule is then included in the SupportedDiagnostics property.

			Localization note

			DiagnosticDescriptor objects can be created with either raw strings, as we’re using here, or by using LocalizableString parameters. LocalizableString works better in different languages, so you’ll want to use it if you are trying to create a Roslyn Analyzer intended to be used throughout the globe.

			The DiagnosticDescriptor object that this code defines will show up in the Error List pane and build output if the rule is ever violated. The rule needs the following parts:

			
					ID: A piece of code starting with letters identifying a provider and then a numeric code. We chose the code CSA for Cloudy Skies Airlines.

					Title: The short name of the code analysis warning. This is what will appear in tooltips when the rule is violated.

					Message format: A formattable string that will appear in the Visual Studio tooltip.

					Category: The broad rule category. Common categories include Naming, Performance, Maintainability, Security, Reliability, Design, and Usage.

					Default severity: The severity of the code analysis rule without the user adjusting it. This will be Hidden, Info, Warning, or Error.

					Enabled by default: Whether the rule starts as enabled.

					Description: A detailed description of the rule and why it’s important. This shows up in the Error List pane when a rule violation is expanded.

			

			Defining your rule as a separate property is helpful when other code needs to refer to your exact rule definition.

			Now that our rule has been defined, let’s write the code that detects when the rule is violated.

			Analyzing symbols with our Roslyn Analyzer

			Let’s start by building out our Initialize method:

			
public override void Initialize(AnalysisContext con) {
 con.ConfigureGeneratedCodeAnalysis(
 GeneratedCodeAnalysisFlags.None);
 con.EnableConcurrentExecution();
 con.RegisterSymbolAction(Analyze, SymbolKind.NamedType);
}

			This method now does a few additional things:

			
					First, we configure the analyzer to ignore any auto-generated code for analysis purposes. These are files that the user didn’t write but various tools generate and so it doesn’t make sense to analyze them.

					Secondly, we tell Roslyn that it’s fine to evaluate multiple pieces of code with this rule at the same time. This is always the preferred option from a performance standpoint.

			

			Finally, we tell the analyzer that whenever it encounters a named Type during code analysis, we want to know about it. Specifically, the code should call a new Analyze method for each Type that is detected.

			We haven’t written that Analyze method yet, so let’s do so now:

			
private static void Analyze(
 SymbolAnalysisContext con) {
 INamedTypeSymbol sym = (INamedTypeSymbol)con.Symbol;
 IMethodSymbol toString =
 sym.GetMembers()
 .OfType<IMethodSymbol>()
 .FirstOrDefault(m => m.Name == "ToString"
 && m.IsOverride
 && m.Parameters.Length == 0);
 if (toString == null) {
 Diagnostic diagnostic = Diagnostic.Create(
 Rule, sym.Locations[0], sym.Name);
 con.ReportDiagnostic(diagnostic);
 }
}

			This code is not easy to write or read, so let’s go over it before discussing how to write analyzer code.

			First, since we know this method is called on named types, we can cast the symbol Roslyn gives us to INamedTypeSymbol, which lets us query further.

			Using this symbol, we can ask for all members such as properties and methods using GetMembers. Next, we can use LINQ to filter these down to just ones that are methods. Once we have these, we can use FirstOrDefault to see if we have a method named ToString that takes in zero parameters and is an override.

			Why not check the return type?

			We could check if the return type was a string, but the C# compiler doesn’t allow multiple methods with the same parameters and different return types. We also know all objects have string ToString(), so the return type will be string.

			If we didn’t find a ToString override, our analyzer should flag this as a violation of the rule. It does so by creating a Diagnostic object referencing the Rule property we defined earlier, as well as the name and location of the symbol that violated the rule. Here, the symbol will be a Type definition that does not override ToString.

			Before we go into verifying our analyzer works, let’s talk about writing analyzer code.

			Tips for writing Roslyn Analyzers

			In my experience, Roslyn Analyzers are one of the tougher pieces of code to write. With Roslyn, you’re looking at your C# code in a completely different light.

			Each analyzer you write will likely be analyzing something completely different than the last one, making discussing the breadth of options available in Roslyn difficult.

			I’ve found two key things helpful for writing Roslyn Analyzers:

			
					Looking at other Roslyn Analyzers: There are a lot of other Roslyn Analyzers out there (including the ones built into .NET) and most are open source. This means you can find an existing analyzer similar to what you’re interested in and then look at its source code and do something similar.See the Further reading section of this chapter for a few popular collections of Roslyn Analyzers.

					GitHub Copilot Chat: Starting with an empty Analyze method, you can give Copilot a prompt such as “I want to find all methods contained in this type” or “How would I check if this type is marked as public?”You still need to provide high-level guidance, but in my experience, Copilot can be extremely effective at helping you write complex and unfamiliar analyzer code.

			

			Now that we’ve built our Roslyn Analyzer, let’s look at how we can make sure it works.

			Testing Roslyn Analyzers with RoslynTestKit

			We’ll show how to use your Roslyn Analyzers in projects of your own at the end of this chapter, but we’ll start by writing unit tests around our existing analyzer.

			At a high level, we want to test two things with our analyzer:

			
					The analyzer doesn’t trigger for code that doesn’t violate its rule.

					The analyzer correctly flags code that it should.

			

			We’ll do this with two unit tests in a new unit test project.

			Adding a Roslyn Analyzer test project

			Our tests can be written in MSTest, xUnit, or NUnit. We’ll use xUnit for consistency.

			We’ll start by adding a new xUnit project to the solution by right-clicking on the solution and then choosing Add and then New Project…, as we’ve done before.

			After this, select the C# version of xUnit Test Project and click Next. Name your project Packt.Analyzers.Tests and click Next. When prompted with the framework, select .NET 8.0 and click Create.

			Once the project has been created, add a project reference to Packt.Analyzers by right-clicking on the Dependencies node in the Packt.Analyzers.Tests project and then selecting Add Project Reference…, as shown in Figure 13.6:

			
				
					[image: Figure 13.6 – Add Project Reference…]
				

			

			Figure 13.6 – Add Project Reference…

			Check the box next to Packt.Analyzers and click OK. This will allow you to reference your analyzers from the test project.

			Next, we’ll need to add a reference to the RoslynTestKit NuGet package. This is a testing framework-agnostic library that lets us unit-test Roslyn Analyzers by extending from certain test fixture classes, as we’ll see in a moment.

			Right-click Packt.Analyzers.Tests and click Manage NuGet Packages…. Next, go to the Browse tab and install SmartAnalyzers.RoslynTestKit.

			Troubleshooting installation issues

			You may encounter a conflict between the latest versions of Microsoft.CodeAnalysis and SmartAnalyzers.RoslynTestKit. See this chapter’s final code on GitHub for recommended versions of NuGet packages to resolve this issue.

			With the project setup out of the way, let’s create our test fixture.

			Creating AnalyzerTestFixture

			We’ll start by renaming UnitTest1.cs to ToStringAnalyzerTests.cs and replacing its contents with the following code:

			
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.Diagnostics;
using RoslynTestKit;
namespace Packt.Analyzers.Tests;
public class ToStringAnalyzerTests : AnalyzerTestFixture {
 protected override string LanguageName
 => LanguageNames.CSharp;
 protected override DiagnosticAnalyzer CreateAnalyzer()
 => new ToStringAnalyzer();
}

			This class inherits from AnalyzerTestFixture in RoslynTestKit. This forces the class to provide the language it works with and a method to create the analyzer we want to test. Since we’re working with C#, we return LanguageNames.CSharp for the language. In CreateAnalyzer, we instantiate and return an instance of our ToStringAnalyzer from the Packt.Analyzers project.

			This lets RoslynTestKit know how to create our analyzer and what languages we’re working with, but we haven’t defined a test yet. Let’s write our first test now.

			Verifying that our Roslyn Analyzer doesn’t flag good code

			Our first test will be to ensure that code that doesn’t violate our analyzer won’t get flagged as a rule violation. We’ll test this by defining a string containing valid code and then verifying that the analyzer didn’t find any issues with it.

			We declare the “good” code as follows:

			
public const string GoodCode = @"
using System;
public class Flight
{
 public string Id {get; set;}
 public string DepartAirport {get; set;}
 public string ArriveAirport {get; set;}
 public override string ToString() => Id;
}";

			This multi-line string defines C# for a simple class declaration of a Flight class, which includes an override of the ToString method. Because ToString is overridden, our rule should not find issues with this class definition.

			We can verify this with the following code:

			
[Fact]
public void AnalyzerShouldNotFlagGoodCode() {
 NoDiagnostic(GoodCode, ToStringAnalyzer.Rule.Id);
}

			Here, we use the NoDiagnostic method from the RoslynTestKit's AnalyzerTestFixture class to check that the code doesn’t violate our rule.

			RoslynTestKit needs to know the ID of the rule we’re checking for, so we use the Rule property we defined on ToStringAnalyzer earlier to provide its id value.

			Now that our test passes without issues, let’s move on to the second test.

			Verifying that our Roslyn Analyzer flags bad code

			To verify that bad code triggers the analyzer rule, we’ll use a similar approach: we’ll pass in known bad code and ensure that the rule is triggered.

			This is slightly more complicated because we want to make sure the rule is triggered for the right symbol in the code. So, when we define our bad code, we need to add [| and |] markers to denote which symbol should be flagged, as shown here:

			
public const string BadCode = @"
using System;
public class [|Flight|]
{
 public string Id {get; set;}
 public string DepartAirport {get; set;}
 public string ArriveAirport {get; set;}
}";

			This code doesn’t have a ToString override, so the Flight class should be flagged as a rule violation. We can verify this with the HasDiagnostic method:

			
[Fact]
public void AnalyzerShouldFlagViolations() {
 HasDiagnostic(BadCode, ToStringAnalyzer.Rule.Id);
}

			This code is very similar to our approach to validating good code and will fail if the rule was not triggered or was not triggered explicitly for the Flight symbol.

			We could continue to expand our tests with additional examples and counter-examples, but let’s move on to talking briefly about debugging our Roslyn Analyzers.

			Debugging Roslyn Analyzers

			When you write a Roslyn Analyzer, it’s unlikely that you’ll get it right the first time.

			Unit tests help detect failures in your analyzer, but let’s talk about how you would debug a Roslyn Analyzer.

			My recommended approach with Roslyn Analyzers is to follow the approach of this chapter: create a class library containing your analyzer and a test project that tests it.

			If your analyzer isn’t properly triggering for certain code, you can put breakpoints in your analyzer code and step through the code for a specific instance by right-clicking on a specific test and selecting Debug, as shown in Figure 13.7:

			
				
					[image: Figure 13.7 – Debugging a specific test case]
				

			

			Figure 13.7 – Debugging a specific test case

			I’ve found this approach to be generally very helpful when analyzing specific test cases. In these scenarios, I can see the exact objects the analyzer encounters from the test scenario. From there, I wrote enough code to get the analyzer to handle that scenario. Once the analyzer has handled that test case, I’m usually at a point where I’m ready to try the analyzer on a wider range of code, which we’ll discuss next.

			Sharing analyzers as Visual Studio extensions

			Once you’re ready to try an analyzer on more code or share it with your peers, there are a few options available:

			
					Deploy the analyzer as a NuGet package, as we’ll discuss in the next chapter

					Create a Visual Studio Installer (VSIX) to install the analyzers locally

					Create a new project and add an explicit reference to the analyzers by editing the .csproj file and adding an Analyzer node, as shown here:

			

			
<ItemGroup>
 <Analyzer Include="..\some\path\Your.Analyzer.dll" />
</ItemGroup>

			This last approach is one you might consider if you had a large solution and wanted your analyzer to only apply to other projects in that solution. However, I’ve found this approach to be buggy and require frequent reloads of Visual Studio for changes in the analyzers to take hold, so we’ll use the VSIX approach as we close out this chapter.

			Creating a Visual Studio extension (VSIX) for your Roslyn Analyzer

			Visual Studio extension projects (VSIX projects) allow you to bundle a diverse set of capabilities into an extension that can then be installed into Visual Studio.

			Let’s create a new VSIX project, add our analyzer to it, and then use it in a new instance of Visual Studio.

			We’ll start as we usually do: by right-clicking on the solution in Solution Explorer, choosing Add, and then New Project….

			Next, select the Empty VSIX Project template with C# as the language. Name this project Packt.Analyzers.Installer and click Create.

			This empty project consists of a single source.extension.vsixmanifest file, which we’ll refer to as the manifest. This manifest is the only file we’ll need. Double-click on it to open the designer, as shown in Figure 13.8:

			
				
					[image: Figure 13.8 – The manifest in the design view]
				

			

			Figure 13.8 – The manifest in the design view

			This opens the metadata view, which contains different settings you can configure. We’ll ignore those and click on the Assets blade on the left sidebar.

			The Assets blade specifies the different components that are included in the extension. We want to include our analyzer, so click New to open the Add New Asset dialogue.

			Next, specify the Analyzer type, use A project in current solution as your source, and then select the Packt.Analyzers project, as shown in Figure 13.9:

			
				
					[image: Figure 13.9 – Adding the Roslyn Analyzer to your VSIX project as an asset]
				

			

			Figure 13.9 – Adding the Roslyn Analyzer to your VSIX project as an asset

			Click OK; your analyzer should now appear in the list of assets.

			With that change, our VSIX project is now ready for us to use. To test this project, right-click on the Packt.Analyzers.Installer project and choose Set as Startup Project. Next, run your project – a new experimental instance of Visual Studio will open.

			Note

			It can take a few minutes for Visual Studio to open after you run the project. The version of Visual Studio that opens is built specifically for developing extensions and needs additional time to launch. It is not recommended to use this version of Visual Studio for actual development. Instead, use it to test your extensions and then close it.

			After a few minutes, a new instance of Visual Studio will open with your VSIX project installed. Using this instance of Visual Studio, you can open any other project and the Roslyn Analyzer you built in this chapter will be active.

			Specifically, our analyzer will show up as a suggestion on classes that don’t override ToString, such as the SkillController class in Figure 13.10:

			
				
					[image: Figure 13.10 – Our Roslyn Analyzer suggests overriding ToString]
				

			

			Figure 13.10 – Our Roslyn Analyzer suggests overriding ToString

			Warnings for your analyzer will also show up in the error list, though if you marked them as having a severity, as we did in the chapter, you’ll need to make sure that messages are displayed in those results. See the highlighted button in Figure 13.10 for the message filter.

			DebuggerDisplay attributes versus ToString overrides

			This chapter uses ToString as an example, and overriding ToString can help with the debugger experience. An alternative to this would be to add a [DebuggerDisplay] attribute above your class definition to describe how it appears in the debugger without needing to override ToString.

			Once you are satisfied with your test, close the new instance of Visual Studio.

			Building and testing your installer will have created a Packt.Analyzers.Installer.vsix file in the bin/Debug folder within your extension project. This .vsix file will let other people install your custom extension and use your analyzers in their projects.

			Note

			You could also distribute your installer on the Visual Studio marketplace. This would make the extension publicly available and easier for others to locate and download.

			Any time you update your analyzer, you’ll need to share a new version of the extension and your team will need to upgrade. This makes managing Roslyn Analyzers via .vsix files challenging.

			Fortunately, NuGet packages offer a better way of sharing Roslyn Analyzers, as we’ll see in the next chapter.

			Summary

			In this chapter, we created our first Roslyn Analyzer, tested it with RoslynTestKit, and built a VSIX extension to integrate it into Visual Studio.

			We saw how Roslyn Analyzers power all the warnings we interact with in Visual Studio and how you and your team can create new Roslyn Analyzers to detect and flag issues that are unique to your team and its codebase.

			In the next chapter, we’ll see how Roslyn Analyzers can be used to fix the issues they find and help safely refactor your code.

			Questions

			
					How do Roslyn Analyzers work?

					When would you want to create your own Roslyn Analyzer?

					How can you verify that Roslyn Analyzers work correctly?

			

			Further reading

			You can find more information about the topics that were covered in this chapter at these URLs:

			
					Roslyn Analyzers: https://learn.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview

					Install third-party analyzers: https://learn.microsoft.com/en-us/visualstudio/code-quality/install-roslyn-analyzers

					Awesome Roslyn: https://github.com/ironcev/awesome-roslyn

					.NET Standard: https://learn.microsoft.com/en-us/dotnet/standard/net-standard

			

			Here are some popular open-source Roslyn Analyzers on GitHub:

			
					Roslyn Analyzers: https://github.com/dotnet/roslyn-analyzers

					StyleCop: https://github.com/DotNetAnalyzers/StyleCopAnalyzers

			

		

	
		
			14

			Refactoring Code with Roslyn Analyzers

			In the last chapter, we saw how you can build Roslyn analyzers to flag issues in your code. In this chapter, we’ll improve our analyzers by giving them the ability to fix code issues by providing Quick Actions the user can invoke to modify their source code. We’ll also discuss some additional ways of deploying Roslyn analyzers that improve your ability to provide a consistent experience to your team members.

			This chapter covers the following:

			
					Building a Roslyn Analyzer code fix

					Testing code fixes with RoslynTestKit

					Publishing Roslyn analyzers as NuGet packages

			

			Technical requirements

			In this chapter, we’re starting right where we left off in Chapter 13.

			The starting code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter14/Ch14BeginningCode folder.

			Case study – Cloudy Skies Airlines

			In Chapter 13, we built a ToStringAnalyzer that detects classes that do not override the ToString method. This results in suggestions in the Visual Studio editor and a message in the error list.

			Cloudy Skies Airlines has deployed this internally and found it to be generally helpful, but there are a few things that need improvement:

			
					Although violations of the ToString override rule are flagged by the analyzer, not every developer is addressing this issue. When discussed internally, some developers stated they didn’t want to take the time to address it. Additionally, some of the newer developers didn’t fully understand the rule or what fixing it would look like.

					Whenever a new analyzer is created or a bug in an existing analyzer is addressed, a new VSIX file must be created. Developers then need to download and install it to get the updated version. Because of this, it’s hard for the team to know which developers have the analyzer installed or which version each developer is using.

			

			In this chapter, we’ll address these concerns. We’ll look at creating and testing a code fix provider that can automatically resolve detected issues. After that, we’ll explore publishing analyzers via NuGet packages and show how they can help your team have a consistent analyzer experience.

			Building a Roslyn Analyzer code fix

			Roslyn Analyzers allow you to provide options for users to automatically fix issues your analyzers detect in your code. They do this through something called a code fix provider, which can modify your document in an automated manner to resolve the diagnostic warning.

			Think of it this way: diagnostic analyzers, like our OverrideToStringAnalyzer, help detect issues in your team’s code. On the other hand, code fix providers give you a way of fixing these issues.

			Not all diagnostic analyzers will have code-fix providers, but in my experience, those that also provide code-fix providers tend to get addressed earlier and more consistently.

			Let’s see how one works.

			Creating a CodeFixProvider

			First, we’ll add a new class to the Packt.Analyzers class library. We’ll call this class ToStringCodeFix. Replace its contents with the following code for a basic code fix:

			
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CodeActions;
using Microsoft.CodeAnalysis.CodeFixes;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.CSharp.Syntax;
using Microsoft.CodeAnalysis.Text;
using System.Collections.Immutable;
using System.Composition;
using System.Linq;
using System.Threading.Tasks;
namespace Packt.Analyzers {
 [Shared]
 [ExportCodeFixProvider(LanguageNames.CSharp,
 Name = nameof(ToStringCodeFix))]
 public class ToStringCodeFix : CodeFixProvider {
 public override ImmutableArray<string>
 FixableDiagnosticIds =>
 ImmutableArray.Create(ToStringAnalyzer.Rule.Id);
 public override FixAllProvider GetFixAllProvider()
 => WellKnownFixAllProviders.BatchFixer;
 public async override Task RegisterCodeFixesAsync(
 CodeFixContext context) {
 throw new NotImplementedException();
 }
 }
}

			This is the minimum amount of code we need in order to have a compiling code fix provider. Before we build out the rest of this class, let’s examine what’s here already.

			First, we’re declaring a ToStringCodeFix class that inherits from CodeFixProvider. CodeFixProvider is the abstract class used for providing a fix for one or more diagnostics.

			Note that we named our code fix ToStringCodeFix to pair with the ToStringAnalyzer class it provides a code fix for. This is a convention I like to follow to help clearly associate analyzers and their code fixes.

			The class has two attributes assigned to it:

			
					The ExportCodeFixProviderAttribute tells Roslyn that the class represents a code fix, what the name of the code fix is, and the languages the code fix applies to

					The SharedAttribute doesn’t do anything on its own, but it is needed for Roslyn to be comfortable registering your code fix in Visual Studio

			

			These two attributes should be on every code fix you create. Failing to use them will result in your code fix provider not appearing for some users (don’t ask me how I know).

			The ToStringCodeFix class has three members at the moment:

			
					FixableDiagnosticIds: This lists the unique identifier of all analyzer rules this code fix can provide solutions to. In our case, this uses the ID of the ToStringAnalyzer rule, meaning it says it can fix that issue.

					GetFixAllProvider: By default, code fixes don’t support the “fix-all” functionality in Visual Studio. By overriding this method and returning WellKnownFixAllProviders.BatchFixer, we tell Visual Studio to allow the user to try to fix all issues of that type in the file, project, or even solution.

					RegisterCodeFixesAsync: This is where we can register our code fix and tell Visual Studio what to do if the user chooses to apply it.

			

			The bulk of our logic will be in RegisterCodeFixesAsync, so let’s implement that method now.

			Registering a code fix

			The job of RegisterCodeFixesAsync is to interpret code that violates the diagnostic rule we’ve set up and register an action that will let the user fix it.

			The code to do this is fairly involved, so let’s look at parts of it at a time. The first part has to do with interpreting where in the document the diagnostic violation occurred:

			
public async override Task RegisterCodeFixesAsync(
 CodeFixContext context) {
 Diagnostic diagnostic = context.Diagnostics.First();
 TextSpan span = diagnostic.Location.SourceSpan;
 Document doc = context.Document;

			Here, we get a CodeFixContext object that contains information about the code analysis diagnostic violations.

			These Diagnostic objects contain information about the exact span of text within the document that triggered the rule. In our case, this should be the text for the name of the class that doesn’t override ToString.

			Next, we get a reference to the Document containing the violation. Think of a Document as a file of source code somewhere in your solution. It’s possible to have analyzers and code fixes that look over your entire solution, so this Document helps narrow down the scope to the file containing the offending code.

			With this Document, we can gain access to the syntax tree and its type declarations:

			
 SyntaxNode root = await doc
 .GetSyntaxRootAsync(context.CancellationToken)
 .ConfigureAwait(false);
 TypeDeclarationSyntax typeDec =
 root.FindToken(span.Start)
 .Parent
 .AncestorsAndSelf()
 .OfType<TypeDeclarationSyntax>()
 .First();

			Here, we’re getting the SyntaxRoot element representing the base of our document and then finding the declaration of the class by the location of that span of text within the document.

			This lets us jump from the raw text we had in the span to an object representing the Type declaration. Having this object allows us to make changes and provide a fix.

			The final portion of the method registers the code action to fix the issue:

			
 CodeAction fix = CodeAction.Create(
 title: "Override ToString",
 createChangedDocument: c => FixAsync(doc, typeDec)
);
 context.RegisterCodeFix(fix, diagnostic);
}

			This code creates a CodeAction and registers it as a fix for the diagnostic rule. This fix has a title representing the text the user will see in the Quick Actions menu when making the fix and an action to invoke when the user is attempting to invoke the code fix. In this case, the code fix invokes the FixAsync method we’ve yet to see.

			Additional options

			There are several overloads and optional parameters to CodeAction.Create that let you change the entire solution instead of a single document or resolve conflicts when multiple code fixes have the same title.

			Now that we’ve registered our code fix, let’s see how the fix action works.

			Modifying the document with a code fix

			The final step in implementing our code fix is the FixAsync method. This method’s job is to modify the Document so that it no longer violates the diagnostic rule.

			In our case, the fix will be to generate code such as this:

			
public override string ToString()
{
 throw new NotImplementedException();
}

			Sadly, it’s a lot easier to write the raw C# here than it is to build it with the Roslyn API.

			To add this with Roslyn, we’ll follow these steps:

			
					Create a method body that throws a NotImplementedException.

					Create a list of modifiers that go with the method (public and override).

					Create a method declaration with the appropriate name and return type and make sure this method has the list of modifiers and the method body.

					Create a version of the Type declaration that has the new method.

					Find the Type declaration in the Document and replace it with our new one.

			

			Let’s see how this works, starting with the code that declares the new method body:

			
private Task<Document> FixAsync(Document doc,
 TypeDeclarationSyntax typeDec) {
 const string exType = "NotImplementedException";
 IdentifierNameSyntax exId =
 SyntaxFactory.IdentifierName(exType);
 BlockSyntax methodBody = SyntaxFactory.Block(
 SyntaxFactory.ThrowStatement(
 SyntaxFactory.ObjectCreationExpression(exId)
 .WithArgumentList(SyntaxFactory.ArgumentList())
)
);

			As you can see, the code to declare anything in Roslyn can get a bit dense. When you take a step back, though, this code is just declaring a method block that instantiates and throws a NotImplementedException.

			Next, we’ll define the method definition that uses this method body:

			
 SyntaxToken[] modifiers = new SyntaxToken[] {
 SyntaxFactory.Token(SyntaxKind.PublicKeyword),
 SyntaxFactory.Token(SyntaxKind.OverrideKeyword)
 };
 SyntaxToken returnType =
 SyntaxFactory.Token(SyntaxKind.StringKeyword);
 MethodDeclarationSyntax newMethod =
 SyntaxFactory.MethodDeclaration(
 SyntaxFactory.PredefinedType(returnType),
 SyntaxFactory.Identifier("ToString")
)
 .WithModifiers(SyntaxFactory.TokenList(modifiers))
 .WithBody(methodBody);

			This code is almost as dense as the last block, but all it really does is declare the method. This method brings together a return type of string, a name of ToString, the public and override modifiers, and the body we declared in the previous block.

			The final step in the fix is to modify the editor’s code with our code fix. We do this with the following code:

			
 TypeDeclarationSyntax newType =
 typeDec.AddMembers(newMethod);
 SyntaxNode root = typeDec.SyntaxTree.GetRoot();
 SyntaxNode newRoot = root.ReplaceNode(typeDec, newType);
 Document newDoc = doc.WithSyntaxRoot(newRoot);
 return Task.FromResult(newDoc);
}

			This code creates a new version of the Type declaration that has our new method. We then find the old Type declaration in the Document and replace it with the new one. This creates a new Document that we then return from our code fix, and Visual Studio updates our code accordingly.

			With that, we now have a working code fix. How do we know it’s working? We test it!

			Testing Code Fixes with RoslynTestKit

			In Chapter 13, we saw how the RoslynTestKit library helps your diagnostic analyzers flag code issues appropriately. In this chapter, we’ll revisit the library to verify our new code fix.

			We will start by creating a new class in our test project named ToStringCodeFixTests due to our common naming conventions.

			This class will start by declaring a test fixture like it did with the analyzer:

			
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CodeFixes;
using Microsoft.CodeAnalysis.Diagnostics;
using RoslynTestKit;
namespace Packt.Analyzers.Tests;
public class ToStringCodeFixTests : CodeFixTestFixture {
 protected override string LanguageName
 => LanguageNames.CSharp;
 protected override CodeFixProvider CreateProvider()
 => new ToStringCodeFix();
 protected override IReadOnlyCollection<DiagnosticAnalyzer>
 CreateAdditionalAnalyzers()
 => new[] { new ToStringAnalyzer() };

			Like before, our test class inherits from a test fixture, but this time it’s a CodeFixTestFixture since we’re testing a code fix.

			Also like before, we need to specify that our code fix affects the C# programming language and provide a reference to our class through the CreateProvider method.

			Unlike before, we also need to provide the code analyzer we’re testing through the CreateAdditionalAnalyzers method. The compiler will allow you to not override this method, but if you forget to do so, your analyzer will never trigger in the steps ahead, so be sure to include your analyzer here.

			Next, we test our code fix by providing a block of bad code and a block of good code and verifying that the code fix successfully moves from the bad code to the good code:

			
 public const string BadCode = @"
using System;
public class [|Flight|]
{
 public string Id {get; set;}
 public string DepartAirport {get; set;}
 public string ArriveAirport {get; set;}
}";
 public const string GoodCode = @"
using System;
public class Flight
{
 public string Id {get; set;}
 public string DepartAirport {get; set;}
 public string ArriveAirport {get; set;}
 public override string ToString()
 {
 throw new NotImplementedException();
 }
}";
 [Fact]
 public void CodeFixShouldMoveBadCodeToGood() {
 string ruleId = ToStringAnalyzer.Rule.Id;
 TestCodeFix(BadCode, GoodCode, ruleId);
 }
}

			This code should be somewhat familiar from the last chapter. Just like with analyzers, we need to denote the location the fix is triggered from using the [| and |] markers as we see on [|Flight|].

			The actual verification step occurs through the TestCodeFix method call. This method call will convert your bad code to a new form using the code fix and then compare that result to the expected good code.

			This comparison is very sensitive, and any extra space, line breaks, or differences at all will result in a failing test with the observed differences between the two strings highlighted, as shown in Figure 14.1:

			
				
					[image: Figure 14.1 – A test failure showing a string difference due to styling choices]
				

			

			Figure 14.1 – A test failure showing a string difference due to styling choices

			Assuming your formatting is consistent, your test should now pass, proving you have a good code fix.

			If you want, you can now launch your VSIX extension project and verify the code fix in Visual Studio. After that, you could share the VSIX file with colleagues or people in the .NET community and they’d have access to your analyzer and its fix.

			However, VSIX deployment has some downsides as we’ll soon see. Let’s close the chapter by looking at using NuGet packages to share your code fixes in a more controlled manner.

			Publishing Roslyn Analyzers as NuGet packages

			Using VSIX files to share code analyzers works, but isn’t an ideal solution.

			Since VSIX files must be manually installed and updated, this means that with a team of software engineers, you’re never sure who has the extension installed at all or who is on which version of the extension.

			Because each developer must install the VSIX themselves and keep it updated, this makes it harder to onboard new team members, release new analyzers or code fixes, or issue patches for issues found in your existing analyzers.

			Thankfully, there’s a better option: NuGet package deployment.

			Understanding NuGet package deployment

			Analyzers and code fixes can be packed into NuGet packages and deployed to a NuGet feed so others can find them. Once in a NuGet feed, any developer on the team can install the package into one or more projects.

			Once a NuGet package is installed, any developer who opens the project will automatically have the package downloaded through the largely invisible NuGet package restore step. If you install a NuGet package and then add, commit, and push the change, other developers will see it automatically installed when they pull your changes and open the project in Visual Studio.

			This means that only one developer on your team needs to install any NuGet package, including a package containing Roslyn Analyzers. Additionally, if you ever need to update the package to include new analyzers, any developer on the team can update the version of the package that is installed.

			By using NuGet package deployment for Roslyn Analyzers, your analyzers become:

			
					Easy to install

					Easy to update

					Consistently available across all developers on the team

					Intentionally associated with the project

			

			That last point is an interesting one. With VSIX deployment, analyzers apply to any code that a developer opens on their machine. There is no formal link between the analyzer and your team’s source code, but if a developer has a VSIX analyzer installed, they’ll see its recommendations.

			With NuGet packages, you’re explicit about which analyzers should analyze which projects because you explicitly associate them via the NuGet install process. This means that you can look at any project in your solution and get a sense of what analyzer rules should apply for all developers on your project, which is very hard to accomplish through VSIX deployment.

			Because of these things, I strongly recommend deploying your analyzers and code fixes as NuGet packages.

			Let’s see how that’s done.

			Building a NuGet package

			Visual Studio gives you an easy way of packaging most .NET projects: just right-click on a project in Solution Explorer, select Properties, and then find the General blade under Package in the navigator. From there, you can check the Produce a package file during build operations checkbox, as shown in Figure 14.2:

			
				
					[image: Figure 14.2 – Enabling NuGet package creation in Visual Studio]
				

			

			Figure 14.2 – Enabling NuGet package creation in Visual Studio

			When this box is checked, you should see something like the following in your build output after building:

			
1>Successfully created package 'C:\PacktBook\Chapter14\Ch14BeginningCode\Packt.Analyzers\bin\Debug\Packt.Analyzers.1.0.0.nupkg'.
1>Done building project "Packt.Analyzers.csproj".

			The general blade also lets you configure many of the pieces of metadata associated with the package. This lets you specify a readme file or a logo, enter any legal information you need, and more. These pieces of information will later be visible to users considering installing your package.

			The many things to consider when configuring a NuGet package for publishing to the public are beyond the scope of this book, but additional resources are listed in the Further reading section at the end of this chapter.

			Unfortunately, when building packages for Roslyn Analyzers, you need to customize more than Visual Studio makes available in the properties user interface.

			Double-click on Packt.Analyzers in Solution Explorer to open its .csproj file and replace it with this:

			
<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 <GeneratePackageOnBuild>True</GeneratePackageOnBuild>
 <IncludeBuildOutput>false</IncludeBuildOutput>
 <Authors>YourName</Authors>
 <Company>YourCompany</Company>
 <PackageId>YourCompany.Analyzers</PackageId>
 <PackageVersion>1.0.0</PackageVersion>
 <PackageLicenseExpression>MIT</PackageLicenseExpression>
 <Description>
 Sample analyzer with fix from "Refactoring with C#"
 by Matt Eland via Packt Publishing.
 </Description>
 <PackageProjectUrl>
https://github.com/PacktPublishing/Refactoring-with-CSharp
 </PackageProjectUrl>
 <RepositoryUrl>https://github.com/PacktPublishing/
Refactoring-with-CSharp</RepositoryUrl>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.CodeAnalysis"
 Version="4.0.1" />
 <None Include="$(OutputPath)\Packt.Analyzers.dll"
 Pack="true"
 PackagePath="analyzers/dotnet/cs"
 Visible="false" />
 </ItemGroup>
</Project>

			These additional pieces of metadata customize how your package will be installed. Let’s talk about each one of the relevant changes separately:

			
					GeneratePackageOnBuild is the same thing as checking the box on the properties page to build the package on build.

					IncludeBuildOutput tells the packaging process not to include the results of compilation in the generated package. Instead, we’ll do something different to include these files using the ItemGroup section.

					PackageId is a unique identifier for your NuGet package. While the code in this book uses Packt.Analyzers, I recommend using your name without spaces or punctuation in place of Packt to avoid conflicts publishing this.

					PackageVersion is the release version number of your package. The latest version of a package is typically what people install using NuGet.

					PackageLicenseExpression is optional, but it allows you to tell others what open-source license, if any, applies to the usage of your package. The various license types and their legal implications are beyond the scope of this book.

					Description is a short user-friendly description of what the package does and why someone might want to install it.

					RepositoryUrl is optional and tells others where the package code is available.

			

			The really critical part of this file is the None element in the ItemGroup. This step tells the packaging process to take the compiled DLL of the analyzer project and put it in the analyzers/dotnet/cs directory of the NuGet package.

			This directory is a special directory that .NET looks at when loading Roslyn Analyzers from various sources. If it doesn’t see your analyzers there, those analyzers will not be loaded.

			With these steps configured and the file saved, rebuild the project and you should see your NuGet package created inside the bin\Debug or bin\Release directory of your Packt.Analyzers project.

			Debug vs Release builds

			When publishing software, you’ll want to use the Release configuration instead of Debug. The Debug configuration suppresses certain compiler optimizations and adds extra build byproducts that help you debug your applications. Release builds tend to be smaller and faster and are generally recommended. You can change which configuration is active using the main toolbar in Visual Studio.

			Once your .nupkg file is created, you’re ready to publish it for others to use.

			Deploying the NuGet package

			Now that we have a .nupkg file, we can deploy it to any NuGet feed. This can be a feed you set up yourself at your organization, a private NuGet registry on GitHub, or a public NuGet feed such as the one at NuGet.org.

			Because NuGet.org is the standard place for sharing open-source code packages, we’ll explore this path in this chapter. If your code is proprietary and you only want to share it within your organization, it should not go on NuGet.org.

			NuGet hosting options

			If you’d like to host your NuGet packages outside of NuGet.org, you have a few options including setting up a private NuGet server or using a team-shared NuGet repository service such as those offered on GitHub. See the Further reading section for more information.

			To get started, navigate to NuGet.org, create a user, and then log in as that user.

			Once you are authenticated, click on the Upload tab to begin the process of uploading a NuGet package. This will allow you to drag and drop or click Browse… to find your NuGet package, as shown in Figure 14.3:

			
				
					[image: Figure 14.3 – Uploading a NuGet package]
				

			

			Figure 14.3 – Uploading a NuGet package

			If you need help finding your .nupkg file, it should be inside of the Packt.Analyzers project in the \bin\Debug folder or the \bin\Release folder depending on if you build your project in Debug or Release mode.

			Tip

			It’s always best to publish Release builds when sharing code with others.

			Once you’ve selected your NuGet package, the page will update with the information it detects about your package. This includes the version number, license file, readme file, and other information. While it’s best to configure these values in Visual Studio, some things, such as the readme file, can be customized here before publishing.

			If something doesn’t look right, you can create a new .nupkg file and upload that file.

			Once you’re satisfied with the information on the preview screen, click Submit and NuGet.org will begin checking your file for anything harmful and indexing the package so others can import it.

			This process typically takes 5 to 15 minutes but can vary. If you want to check on the status of your package, you can refresh the package details page found in Figure 14.4 to check on the status.

			
				
					[image: Figure 14.4 – NuGet.org checking and indexing a package]
				

			

			Figure 14.4 – NuGet.org checking and indexing a package

			Once this process finishes, you’re ready to reference the package in Visual Studio.

			Referencing the NuGet package

			Once your package is published on NuGet.org, you can reference it in any compatible .NET project.

			To prove this, open a solution from a previous chapter or create a new console application. Next, choose Manage NuGet Packages… for that project in Solution Explorer.

			Once NuGet Package Manager comes up, go to the Browse tab and search for your package by its name. Assuming the name is correct and your package has finished indexing, you should see the package in Figure 14.5:

			
				
					[image: Figure 14.5 – Referencing your package in NuGet Package Manager]
				

			

			Figure 14.5 – Referencing your package in NuGet Package Manager

			Click Install to install the latest published version of your package and notice the dependencies and license terms that appear based on your choices when creating the NuGet package.

			Once your package is installed, your analyzer will now be active and will appear inside of the Analyzers node nested inside of the project’s Dependencies node in Solution Explorer, as shown in Figure 14.6:

			
				
					[image: Figure 14.6 – Our analyzers package installed and active in a project]
				

			

			Figure 14.6 – Our analyzers package installed and active in a project

			The analyzer will also be active for any class in your project and it will provide suggestions and code fixes.

			Once you commit and push your changes to the project, others on your team will pull down the reference to the new NuGet dependency. Visual Studio will then restore your NuGet packages and install the analyzer locally into that project for your coworkers.

			If you ever need to update your NuGet package, you can create a new version of the package and upload it to NuGet.org. Once the new version is indexed, you’ll be able to update the installed version of the package from NuGet Package Manager.

			The NuGet deployment process makes it easy to install and update packages in your project that are then available to every developer on your team. This is why this process is my default recommendation for sharing your Roslyn Analyzers with your team.

			Packaging a CodeFixProvider as an extension

			If you want to package your code fix in a VSIX extension, you can do that in largely the same way as we did in Chapter 13 with one additional change.

			To get your CodeFixProvider to work in the extension, you’ll need to add a Managed Extensibility Framework (MEF) asset to your installer’s manifest.

			To do this, go to the Assets pane of your Installer project’s manifest and click New.

			Next, select Microsoft.VisualStudio.MefComponent as the type, specify the source as A project in current solution, and specify your analyzers project as the project (see Figure 14.7 for an example).

			
				
					[image: Figure 14.7 – Adding an MEF component asset to the installer manifest]
				

			

			Figure 14.7 – Adding an MEF component asset to the installer manifest

			This change will ensure your code fix is properly registered by the installer.

			In my experience, it’s usually easier to maintain analyzers via a NuGet package than a VSIX installer, but both deployment models have their advantages. Pick the approach that makes the most sense for your installation, updating, and security needs.

			Summary

			In this chapter, we saw how Roslyn Analyzers can be extended to provide code fixes along with the diagnostic information they already provided.

			Code fixes work by interpreting the tree structure of your code and making modifications to that structure, resulting in a new document or solution. Visual Studio then reacts to these changes by updating the source code.

			This means that code fixes can automatically make pre-configured modifications to your code to address known issues in a repeatable and safe manner.

			We also discussed how NuGet package deployment allows you to wrap up your Roslyn Analyzers into a package and share them with other developers – either other developers on your team or other developers worldwide.

			This concludes Part 3 of this book. In the final part of this book, we’ll explore some of the unique challenges and opportunities found in refactoring code in real-world organizations and teams.

			Questions

			
					What is the relationship between a DiagnosticAnalyzer and a CodeFixProvider?

					How can you test a code fix?

					What are some of the advantages of NuGet deployment versus VSIX deployment?

			

			Further reading

			You can find more information about materials from this chapter at the following URLs:

			
					Get started with syntax transformation: https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/get-started/syntax-transformation

					Configuring and Publishing NuGet Packages: https://learn.microsoft.com/en-us/nuget/quickstart/create-and-publish-a-package-using-visual-studio?tabs=netcore-cli

					Hosting your own NuGet feeds: https://learn.microsoft.com/en-us/nuget/hosting-packages/overview

					Working with NuGet on GitHub: https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-nuget-registry

			

		

	
		
			Part 4: Refactoring in the Enterprise

			In the fourth and final part of the book, we focus on the social aspects of refactoring: communicating technical debt to others, adopting code standards as an engineering organization, and refactoring in agile environments.

			Convincing a large team or organization of the importance of refactoring can be a critical battle, and so this part looks at how software engineers can partner with business leaders. These chapters contain key tips and tricks to ensure that refactoring actually happens and that the right areas of technical debt get refactored first.

			We specifically focus on refactoring in an agile environment and how to handle refactoring scenarios that are so large that it feels like a complete rewrite is necessary.

			This part contains the following chapters:

			
					Chapter 15, Communicating Technical Debt

					Chapter 16, Adopting Code Standards

					Chapter 17, Agile Refactoring

			

		

		
			
			

		

		
			
			

		

	
		
			15

			Communicating Technical Debt

			Most developers have worked in environments where they are unable to pay down technical debt, not due to the technical difficulty of the task, but because of organizational priorities, fears, urgent deadlines, and a lack of clear understanding of the full impact of technical debt on their software.

			In this chapter, we’ll explore some of these factors that can prevent you and your team from resolving technical debt and introduce some ways of helping the organization understand and value the refactoring process.

			We’re going to cover the following main topics:

			
					Overcoming barriers to refactoring

					Communicating technical debt

					Prioritizing technical debt

					Getting organizational buy-in

			

			Overcoming barriers to refactoring

			When I speak with developers in the technical community, almost everyone has stories of being told that they were not allowed to spend time refactoring their code.

			Sometimes this mandate came from upper management and sometimes from product management or someone involved in the agile process. However, just as often, the directive would come from engineering leadership such as a team lead or engineering manager.

			The reasons for this can vary by the organization and project you’re working on, but some common reasons include the following:

			
					There’s an urgent deadline and the team must focus on meeting it

					Refactoring the code isn’t perceived to provide any business value

					The change would be to a risky area of the application with a lot of technical debt and there’s a risk of introducing bugs

					Developers are told “Don’t worry about the quality of the code; this is just a prototype and won’t go into production” (it usually will)

					The team is assured “Don’t worry about the quality of the code; we’re going to completely rewrite this application” (you usually won’t)

			

			Let’s talk about some of these objections.

			Urgent deadlines

			The “we’re on a deadline” objection is a very common one for many teams. Sometimes, teams are truly on a critical deadline that can’t be missed. During these times, it can often be “all hands on deck,” with people working in high-stress environments and typically working late hours as well. When this is the case, spending time to address technical debt can be disruptive to the team and its chances of meeting the deadline.

			In other words, sometimes, this objection is a legitimate one that makes sense for the business during a specific and limited period of time.

			However, these high-urgency time periods cause technical debt to accumulate at a very high rate since developers aren’t given the time to do things the right way. While a team may be able to achieve amazing things in a short period of time, these things are rarely accomplished in a way that results in maintainable code that will stand the test of time.

			Additionally, many organizations flow from urgent deadline to urgent deadline, causing long stretches of time where the team accumulates technical debt at a staggering rate while not being able to pay it down.

			Sometimes deadlines cannot be altered or avoided, such as deadlines for the end of a fiscal year or a trade show or other conference. It can also be strategically beneficial to accumulate technical debt in the short term in return for meeting key business objectives that need to happen before a specific date.

			However, it is your responsibility as a software engineer or engineering leader to clearly, succinctly, and regularly communicate technical debt and its impact to management. Once management adequately understands the obstacle, you must then work with them on long-term remediation steps and scheduling of the work needed for that effort.

			We’ll talk more about this remediation process later in this chapter.

			“Don’t touch high-risk code”

			The objection that certain portions of code are too brittle to touch more than needed, so we shouldn’t improve them, is a laughable one when you think about it. After all, if code has decayed to the point where you’re afraid to even try to improve it, the need for refactoring is likely one that has been postponed for some time.

			While this code is dangerous to touch, not refactoring it could lead to disastrous results when the team is finally forced to make a change to it. Let’s examine the argument against refactoring this code.

			The core concern in this case is often a combination of the following fears:

			
					Touching this code is likely to introduce bugs

					We don’t understand how this code should work

					There are no tests that would catch defects that might be introduced

			

			I find that this objection often occurs after key people leave a team and nobody else has any knowledge of a complex area that those individuals maintained. The code in question usually has little to no documentation and very few unit tests, if any are present at all.

			These concerns don’t mean you can’t successfully improve or replace the code in question. In fact, some of the strategies we talked about in Part 2 of this book around testing code can significantly help with the fears behind this objection.

			First, you can write unit tests around the code you’re changing before you make any changes. Some of the advanced testing tools we explored in Chapter 9 such as Snapper and Scientist .NET can help with this.

			Deploying software in phased rollouts or with the option of rolling back can also help alleviate some fears, as we’ll see in Chapter 17, Agile Refactoring when we talk about things such as feature flags and blue/green deployments.

			“This code is going away, don’t spend time on it”

			The objection that specific code is temporary and you shouldn’t worry about its quality typically occurs either at the beginning of software projects, during prototyping phases, or at the end of software projects, when you’ve determined whether you must replace or retire the entire application.

			This often occurs when a team wants to test out a concept by building a quick “throwaway” prototype that can explore a concept or prove that a course of action is viable.

			Unfortunately, many “throwaway” prototypes survive to become the foundation of a future application, despite being built for speed in proving a concept and having been designed intentionally to not worry about performance, security, or reliability.

			A good prototype can get people so excited about the project that the following may occur:

			
					They forget they’re not dealing with “real” software and that the prototype was intended to be a temporary “throwaway”

					They view the functionality provided in the prototype as already complete

					The project gets an urgent deadline

			

			While there are certainly valid arguments that promoting a throwaway prototype to a real application is a symptom of mismanagement, let’s talk about productive things that members of the development team can do about this.

			First, understand that your “throwaway” prototypes have a good chance of being viewed as working pieces of software. Some teams use rough styling or sketch-style user interfaces, such as the one in Figure 15.1, to help others remember the application is just a prototype:

			
				
					[image: Figure 15.1 – A sample user interface wireframe]
				

			

			Figure 15.1 – A sample user interface wireframe

			Second, you can treat all code as production code deserving of refactoring, tests, and documentation, reducing your prototyping speed accordingly and somewhat defeating the idea of putting together a quick prototype.

			Third, in the event that a throwaway prototype is promoted to an operational piece of software, the first pieces of work should be around reworking the prototype as needed to serve as the basis for the application’s future.

			End-of-life applications

			The other time that code is viewed as non-permanent is when the application you’re developing is either at the end of its lifespan and about to be retired, or when people decide that the current level of technical debt requires a complete rewrite.

			In the case when applications truly are end-of-life and will not be maintained for much longer, the technical debt may not be a critical problem – assuming the application actually does go offline in the near future. In this case, the team should know roughly when the application will go offline and this date should be confirmed regularly.

			Tip

			It is important to check in regularly with management on the end-of-life status of the application. If the deactivation date is postponed or the decision to retire the application entirely seems less sure, you can change your posture to be more aggressive in your refactoring efforts.

			If you have an application that has so much technical debt that you believe it cannot be solved without a rewrite, be very careful. I have seen many teams assume that their application will be retired and replaced by a successor, only to see the rewrite get delayed farther and farther down the road or even canceled entirely.

			If you are depending on a rewrite to end your technical debt, I strongly recommend you have an estimated date for when that rewrite will start and when the old project will be retired. While software estimation can be challenging (as numerous books on the topic demonstrate), it is irresponsible to not improve your existing codebase without a believable timeline for the replacement coming online.

			I have seen dozens of software projects over the last 20 years as a software engineer. Over that time, I have only seen two projects get completely rewritten. One of these projects was due to a technical necessity since its technology would no longer function past a certain date and the other involved extraordinary efforts by a lead engineer who was frustrated by maintaining the old version of the application.

			You and your team will be better off if you assume that a complete rewrite will not happen and instead focus on paying down technical debt piece by piece.

			We’ll talk more about strategies for gradually renewing and replacing applications in Chapter 17, Agile Refactoring.

			“Just do the minimum required”

			Occasionally, you’ll hear something to the effect of “Why are you spending all this time refactoring or testing? Just do the work required to complete the task.”

			These statements can arise from a few different causes:

			
					The project being behind schedule

					A lack of trust in the development team due to past delays

					A lack of understanding of the importance of refactoring

			

			Whenever I encounter this objection, I think of a camping analogy I’ve heard before.

			When you go camping, you are expected to leave the campsite as good as you found it or slightly better. At the campsite, you are expected to not leave your trash strewn about, even though it is faster to do so than to spend time cleaning up after yourself. This is sometimes called the Boy Scout Rule.

			Secondly, if you go camping and you find your campsite to be a mess, it is entirely rational to spend some time cleaning up the campsite instead of setting up your tent on top of a pile of garbage!

			Applying this analogy to development, when you go to make a change, you may need to modify some areas of your code that are not up to current standards, not tested, or in need of cleanup in general. It is not unreasonable for changes to a file to include fixes to other unrelated pieces of work.

			Let’s say you are working on a small set of changes that affect a number of places throughout your application. You discover that one of those places has a significant amount of technical debt and likely needs several days of cleanup work to meet current standards. In this case, the appropriate thing to do would be to implement the small change in that area and talk about the additional refactorings needed during your next stand-up meeting. Often, the team will create a new separate work item for that larger refactoring effort.

			Agile refactoring

			We’ll talk more about tracking technical debt later in this chapter, and about refactoring in agile environments in Chapter 17, Agile Refactoring.

			While cleaning up code is important, try to keep the amount of cleanup work you’re doing proportional to the size of the work item you’re working on.

			“Refactoring doesn’t provide business value”

			One of the most dangerous objections to refactoring that I’ve encountered has been the assumption that refactoring doesn’t provide any value beyond the development team.

			That is to say that there is often an implicit assumption that developers only provide value to the organization when they add features or fix bugs. Under this mentality, things such as unit testing, refactoring, and documentation are all waste activities that developers do but do not provide meaningful value to the organization.

			This is a dangerous assumption because managers are usually rewarded for minimizing waste and maximizing the most value possible to the organization. When refactoring and testing are not valued by leadership, organizations trade technical debt accumulation for short-term boosts in things they value, such as new features being delivered. This results in long-term consequences as technical debt grows rampant, development slows to a crawl, and bugs are introduced with nearly every change.

			One reason for this devaluation of refactoring work is that new features are visible and often understandable to management, while technical debt is something they only hear about and cannot see.

			Anything you as a developer or engineering leader can do to help management understand the scope and effects of technical debt will help resolve this objection.

			In the next section, we’ll explore ways of helping improve the visibility of technical debt to non-developers.

			Communicating technical debt

			Explaining technical debt to non-developers can be challenging. Even when management trusts the development team, it is difficult for managers to understand what engineers deal with or how technical debt slows the software engineering process and introduces tremendous quality risks whenever the application is changed.

			Technical debt as risk

			In the course of my career, I’ve learned that while management has trouble understanding technical debt, there’s something they have a much better understanding of: risk.

			This may sound strange, but I’ve found the best way to help management understand technical debt is to present it in terms of risk management.

			Every aspect of technical debt in your system has both a probability and an impact.

			The probability of a piece of technical debt is the likelihood that the piece of technical debt will impact the development team during development or when the application is running in production.

			The impact is how much the technical debt will hurt things if it does impact the developers or deployed applications.

			For example, code in a critical area with medium complexity that is lacking tests might have a low or medium probability of producing issues, but would have a critical impact if those issues arose. That is to say that the code isn’t currently causing issues, but we think there’s a medium probability that it may be changed in the future in such a way that introduces a bug we won’t catch due to the complexity of the system. If this does occur, we believe that the impact on end users will be severe.

			When you can represent each risk in your codebase with an impact and probability, it allows management to start understanding the level of risk the current slate of technical debt represents.

			Creating a risk register

			These risk entries should be arranged into a spreadsheet or other series of tracked items (such as work items in the system) called a risk register. The risk register becomes a centralized place for management and development leaders to review the current risks present in software engineering projects.

			Your risk register might benefit from including the following pieces of information:

			
					ID – A unique identifier for the risk

					Title – A name for the risk, such as “High complexity code in the FlightManager's ScheduleFlight method”

					Status – Whether the risk is open, in the process of being remediated, or closed

					Probability – The probability that the risk affects future development or users of the system

					Impact – The severity of the impact of the risk if it materializes

					Priority – A priority for the risk based on its probability and impact

			

			A sample risk register for Cloudy Skies Airlines would look like the following:

			
				
					[image: Figure 15.2 – A sample risk register]
				

			

			Figure 15.2 – A sample risk register

			Your register doesn’t have to be limited to these columns. The person the risk is assigned to, the area or component the risk is in, and the estimated effort to resolve it are all fields you might want to consider adding, depending on your needs.

			When delays or production issues inevitably occur, you can point to existing risks in the risk register. This should help management understand that the risks have materialized into issues.

			Risks versus issues

			In risk management terminology, a risk is something that may occur while an issue is a risk that has materialized by actually occurring.

			This helps resist the temptation to blame the engineers involved in the change and instead helps focus the conversation on the risks present in the existing technical debt.

			By forming a shared risk register with management, you can actively involve them in the process of managing and resolving technical debt. This is an ongoing process involving regular risk review meetings, where the team must actively maintain the register as new risks are discovered or opinions on the potential impact or probability of existing risks change.

			In these risk review meetings, the group should review the current risk register and discuss any changes that have occurred since the previous month.

			Alternatives to a risk register

			I understand that not every developer, engineering leader, or even member of upper management feels comfortable working with a formal risk register.

			If you’d be more comfortable with a simpler process, you can achieve a similar amount of value by trying one of the following things:

			
					Having a simple bulleted list in a Word document – perhaps organized by major project or area

					Creating a new technical risk type of item in work item tracking software, such as Jira or Azure DevOps

					Having a regular newsletter that goes out to developers and business stakeholders with the “top 10 most wanted” pieces of technical debt

			

			The format of the risk register isn’t the most important part of the process. The important part of the process is that your team is actively itemizing technical debt as it is detected and regularly reviewing it with management to involve them in the process of resolving it.

			Prioritizing technical debt

			Tracking and communicating technical debt is a critical part of the process of paying it down. However, it’s just one step in the process.

			While refactoring code as related code is modified can be a viable strategy for paying down technical debt, this approach isn’t suitable for tackling large pieces of technical debt or debt that is related to the overall design of the software.

			In Chapter 17, Agile Refactoring, we’ll talk more about managing these larger pieces of work in an agile environment, but for now, let’s look at how you determine which pieces of technical debt should be prioritized.

			You want to prioritize addressing the items that are most likely to occur and those that will hurt the most if they do occur. In other words, if you have a high probability risk, you should prioritize that. Additionally, you should prioritize your high-impact pieces of technical debt.

			Calculating risk priorities with a risk score

			I’ve seen some organizations create a risk score out of the impact and probability of each technical risk they track. This risk score is a math equation where the probability of occurrence of a piece of technical debt is written as a number from 0 to 1, with 1 being 100% certain to happen and 0 meaning it will never happen.

			This results in a formula where you can calculate the priority of a piece of technical debt by multiplying its probability by its impact. This formula is as follows:

			
risk = impact * probability

			For example, a high-probability, low-impact piece of technical debt might have a 0.9 probability score and an impact of 3, resulting in a risk score of 2.7.

			Units and risk scores

			2.7 what, exactly? Well, we’re not really measuring anything tangible unless you choose to represent impact in hours or dollars, so I refer to this number as simply the “risk score” representing the overall expected negative impact the business expects by having the technical debt item present. This is useful for comparing two risks to each other.

			Let’s look at a different scenario with a high-impact, low-probability tech debt item, scored at 0.15 probability and an impact of 21, resulting in a risk score of 3.15.

			Here, the organization typically would focus on the second item because its overall risk score of 3.15 is higher than the 2.7 risk score of the first item, meaning it represents a larger threat to the organization.

			Further refinements to this approach might also factor in the estimated hours needed to resolve a piece of technical debt, so items that can be resolved faster can be prioritized over equivalent items that would take longer.

			The “gut feeling” approach

			It can be hard to numerically quantify things with any precision and estimates can sometimes feel more like wishful thinking than scientifically accurate predictions. I do think there’s value in getting some rough numbers on risks, but typically, team members will have a deeper “gut feeling” about the magnitude of some items over others.

			My stance is that numerical guides can be helpful, but your brain can point out other things that are important but hard to measure.

			Tip

			My rule of thumb is that you should focus on fixing the things that scare you the most. If there’s an area of your code that keeps you up at night, it’s usually a good idea to start there.

			This isn’t to say that you should stop all new development until technical debt is resolved (though sometimes this is needed in severe scenarios). I’m saying that when you get to pick what should be resolved, you should pick the area your team believes is the largest threat to the organization’s success. Once you’re done with the biggest problem, move on to the next one and then the next after that, while continuing to support the needs of the business.

			Getting organizational buy-in

			We’ve seen how we can track and prioritize technical debt, and we’ve seen how involving management in the process of tracking technical risk can help build trust and understanding, but let’s talk about scenarios where development leadership must “pitch” a major refactoring effort to management.

			These conversations can be stressful and represent a critical turning point in software projects. In these high-stakes conversations, your goal is to communicate the following things succinctly and respectfully:

			
					The problem facing the team and its impact if it is not resolved

					The proposed solution (or a set of proposed solutions to consider)

					The cost of the refactoring effort in terms of developer hours

					The timetable of the refactoring effort

					What you’d like management to do

			

			Note that your goal here isn’t to get them to agree to what you are proposing. Your goal is to get them to understand the issue and work with you on determining when and how it should be resolved.

			When your focus is on getting your way at all costs, this can result in a loss of trust, growing hostilities between development and management, and a feeling that developers cannot think in terms of business needs.

			Instead, if you view your partners in management as having legitimate insights and value to add to the organization, the conversation can become something different – a partnership where engineering and management work together for both the long-term and short-term needs of the business.

			Setting up the conversation

			Before you can even have a conversation about the problem, you need to be able to effectively communicate the problem and the scope of its potential solutions.

			This will take some consideration and planning. You don’t need to have a detailed project plan in place for this, but you do need to think through the scope of the project, the pieces that will need to change, and the people who will need to be involved.

			You’ll also need to consider your team’s current projects and what the people you’re looking to involve are currently working on, or slated to be working on soon.

			Remember that for your organization to say “yes” to your refactoring effort, they’ll need to say “no” to something else for the duration of your refactoring effort.

			Once you have a sufficient understanding of the scope of the problem and its solution, you should bring it to management. This can be done either as part of a regular check-in meeting between engineering leadership and management or as its own meeting.

			How you approach the meeting invite will depend on the individual you’re approaching.

			Some leaders may be receptive to you stopping by their office or sending them a direct message and saying something to the effect of “I have some concerns about the project. Do you have 30 minutes sometime to talk about this in more detail?”

			On the other hand, other leaders will want to have the conversation as soon as you broach the topic. For this reason, I recommend you prepare for the conversation and find a time when their calendar appears clear.

			Anticipating questions and objections

			As you present your concerns and options to management, you should keep in mind the types of questions or objections they might raise. Be prepared to drill into the technical details of the current problem as well as your proposed solutions.

			It’s also typical for management to want details on project timelines. This can include not only how long you expect the refactoring effort to take, but also how long the project can wait to be started.

			Remember that most organizations have major projects tentatively scheduled for at least the next quarter. Taking on a refactoring effort typically requires rearranging current and planned work in other areas. As an example, look at Figure 15.3 for a sample breakdown of major initiatives by quarter for the web, services, and integration teams:

			
				
					[image: Figure 15.3 – A project roadmap broken down by team and quarter]
				

			

			Figure 15.3 – A project roadmap broken down by team and quarter

			While the integration team may want to spend time in Q2 working on a piece of technical debt, doing so would risk the services team’s planned work on connecting to a new vendor and potentially delay the integration team’s own planned paid services work, both slated to begin in Q3.

			Be honest about the urgency of the issues your team is facing. Sometimes the answer is that it can wait, but the longer it is delayed the greater the penalty the team faces. At other times, refactoring efforts are needed to resolve urgent and already pressing issues the team is encountering with the current system.

			Additionally, keep in mind the background of the person you’re talking to and the people they talk to. If you’re talking to a very security-oriented person and you haven’t thought through the security ramifications of your change, that conversation is likely not going to go well.

			You don’t need to have an answer for every question you are asked, and it is acceptable to say “I don’t know; let me look into that and get back to you.”

			The bottom line is that changes to project schedules are serious matters and if you appear to have not taken the time to think about the most obvious concerns, it will not inspire confidence among management.

			Different approaches for different leaders

			I’ve met a lot of different people in management and it’s amazing how different two skilled leaders can be from one another.

			Some leaders are extremely analytical and incredibly data-driven, wanting to pore over reports and spreadsheets. Others are people-oriented and driven not as much by raw numbers as they are by specific stories of how something affects specific individuals.

			For leaders focused on the overall data, I usually present key metrics and highlight interesting findings. I often provide all relevant data to them for further analysis, either preemptively or upon request.

			An example metric might be that we spent 15 hours over the last 3 sprints dealing with this problem, or that 15% of the bugs from the last quarter could be traced back to this area.

			As far as sharing specific stories goes, I usually come prepared with two or three examples of how a problem impacts developers, end users, or other relevant stakeholders. This might be something such as “Last sprint, Priya tried to work on a new feature we thought would only take a few hours, but because of how this is architected, it actually took her 3 days,” or “Garret is a very competent developer, but he tried to modify this area of code and it wound up causing this critical production bug due to the code’s lack of maintainability.”

			An approach that works well with one individual may have very little impact on a different person. As a result, I find it best to have a few interesting metrics and a few relevant scenarios whenever I have these critical conversations on major refactoring efforts.

			The importance of communication

			One thing I hope you’ve picked up on in this chapter is that while you want to resolve technical debt, your goal is the short-term and long-term success of the organization.

			This means that any conversation about technical debt should be a two-way conversation where both parties listen to each other and can have their voices heard.

			Sometimes, the legitimate short-term needs of a business are to ship something as fast as possible or to meet a deadline with an external partner or agency.

			As an engineering leader, your goal is to ensure management understands the impact, urgency, and risk that technical debt represents and the importance of both small and large refactoring efforts. However, your focus is typically on the code, while management’s focus is centered on strategic initiatives or even simply keeping the business afloat and the lights on. Both roles and their perspectives are critically important to a healthy organization.

			At the end of the day, what you’re really after is open and honest communication between engineering and management where management can appreciate the risk and impact of technical debt and engineering can understand the pressures facing the organization.

			This communication starts with trust and respecting the contributions that management brings to the table in terms of steering the overall organization toward its goals and balancing priorities and needs that often compete with one another.

			Case study – Cloudy Skies Airlines

			As we close the chapter, let’s look at our case study from Cloudy Skies Airlines.

			Brian, a lead developer, has been investigating a growing number of problems with the reservation and payment processing part of the application.

			These issues, initially thought to be isolated, seem to occur during peak usage times when many customers are trying to book flights or modify their existing flight reservations.

			After investigating, Brian and his team discover that the problems are related to the current design and architecture of the system. While the system could handle the old number of users, it is simply not able to adequately scale to handle peak workloads given its current inefficiencies.

			Ordinarily, such a system could be scaled out to have multiple servers running in parallel with a load balancer distributing traffic between them (see Figure 15.4):

			
				
					[image: Figure 15.4 – A load balancer distributing requests to different application servers]
				

			

			Figure 15.4 – A load balancer distributing requests to different application servers

			However, the system was not designed to support multiple copies of the application running at once without significant rework.

			While the team is able to make some short-term performance and stability improvements to resolve the current issues, they understand that as the business grows, these problems will just resurface – particularly in peak travel seasons.

			After careful consideration, the team comes up with a plan that would allow the system to run multiple copies in parallel but would require a significant amount of rework.

			One of the engineers also suggests potentially moving from a model where the server does all the work and returns a successful response to the user to a model where the request is quickly validated and then put in a queue for processing. This approach would handle spikes in incoming requests but would require changes to how request processing currently works.

			Armed with these ideas and knowledge of the scope of the current problem and possible fixes, Brian schedules a meeting with Maddie, the Chief Technology Officer.

			During the meeting, Brian lays out the performance problem, the recent steps the team has taken to restore service, and the likelihood that it will occur again as the business grows and peak seasons approach.

			Once Brian is sure Maddie understands the basics of the problem, he gives an overview of the two possible remediation plans, as well as his personal recommendation to stick with the relatively simpler change of working to allow the application server to support multiple copies in parallel.

			Maddie asks several technical questions about scalability, particularly around why the current system is unable to have multiple copies running at once. After Brian explains the problems that would cause, Maddie understands the reasoning and the need for remediation and the conversation shifts toward scheduling.

			The next focus for the team was going to be integrating a newly acquired subsidiary airline into Cloudy Skies systems, as shown in Figure 15.5:

			
				
					[image: Figure 15.5 – The planned schedule showing major projects by quarter and the current date]
				

			

			Figure 15.5 – The planned schedule showing major projects by quarter and the current date

			Upon reviewing the problem, Maddie and Brian both agree that having a long-term solution in place for the scalability problems is more important, particularly with some peak travel seasons approaching.

			Maddie brings other executives into the conversation on the specifics of the plan and Brian answers their questions, while the team begins planning the architectural changes needed and the technical details of how the application could be scaled out as needed to handle additional traffic loads.

			After a short delay, the project is approved and the majority of Brian’s team is assigned to the effort, with the understanding that the previously planned work would begin later than originally scheduled to make room for the new scalability project, as shown in Figure 15.6:

			
				
					[image: Figure 15.6 – The adjusted schedule with the scalability project added in the near future]
				

			

			Figure 15.6 – The adjusted schedule with the scalability project added in the near future

			Brian and Maddie continue to check in on the progress of the work, and the scalability concerns are addressed before the peak travel times arrive.

			In the meantime, some team members are able to make progress in integrating the new subsidiary into the Cloudy Skies systems. As engineers finish their work on the scalability concerns, they transition over to that project, resulting in only a minor delay to that project’s initially planned delivery date.

			In the end, the business gets a more stable and scalable system as well as their planned integration of the new subsidiary, in addition to an improved communication channel between management and the software engineering team.

			Summary

			In this chapter, we explored common objections to refactoring code and paying down technical debt and some reasons and remedies for them.

			We also talked about communicating technical debt to management, particularly the idea of technical debt being viewed as a risk to the organization’s systems and productivity. We also introduced the idea of using a risk register to track technical debt over time and improve the visibility of technical debt to non-developers.

			We closed with a discussion about prioritizing technical debt, getting permission from management for larger refactoring projects, and the importance of trust, communication, and establishing a partnership with management in the remediation effort.

			In the next chapter, we’ll explore the value of code standards in terms of minimizing technical debt over time and how to choose an existing standard or build your own.

			Questions

			
					What obstacles are you currently encountering in getting time to prioritize technical debt?

					If management understood the problems you’re dealing with, how could they help you with them in terms of time, resources, or organizational support?

					What can you and your team do to build a collaborative relationship with management going forward?

					How well does management understand technical debt and its risks?

					Does it make sense for you to formally track technical debt as risk?

			

			Further reading

			You can find more thoughts on technical debt as risk, communication with engineering leadership, and risk management in general at the following URLs:

			
					Technical Debt as Risk: https://killalldefects.com/2019/12/24/technical-debt-as-risks/

					Escaping the black hole of technical debt: https://www.atlassian.com/agile/software-development/technical-debt

					How to use a technical debt register: https://blog.logrocket.com/product-management/how-to-use-technical-debt-register/

					Communicating with Management About Technical Debt: https://devops.com/communicating-with-management-about-technical-debt/

			

		

	
		
			16

			Adopting Code Standards

			In this chapter, we’ll talk about the importance of establishing clear code standards with the right degree of flexibility. We’ll also cover some built-in tooling in Visual Studio that will help your team adopt a consistent set of coding standards. This in turn helps you focus on the right things during code review.

			This chapter covers the following topics:

			
					Understanding code standards

					Establishing code standards

					Formatting and code cleanup in Visual Studio

					Applying code standards with EditorConfig

			

			Technical requirements

			The starting code for this chapter is available from GitHub at https://github.com/PacktPublishing/Refactoring-with-CSharp in the Chapter16/Ch16BeginningCode folder.

			Understanding code standards

			In this chapter, we’re going to explore the idea of code standards.

			Code standards are an agreed-upon set of standards your team decides should be applied to any new code created by the team.

			These standards have an important role in resolving disputes, focusing attention on the areas that truly matter, reducing the amount of technical debt teams naturally accumulate, and helping pay down existing technical debt.

			The importance of code standards

			One of the most frustrating experiences I’ve ever had as a developer is when I’ve sent a carefully thought-out change to another developer for review and I’ve heard back remarks such as the following:

			
					I don’t like your curly brace formatting

					Your indentation doesn’t match mine. I use spaces instead of tabs

					I’d like it if you’d use var instead of the Type

			

			In these scenarios, the developer in question ignores the substance of the change and instead focuses on the style of the change – specifically where the style differs from their preferences.

			The cure for this is to adopt a set of code standards that you and your team agree upon. These standards establish what your team cares about with regard to new code going forward. The standards might also contain the rationale behind the team’s style and code preferences.

			Some examples of code standard decisions might include the following:

			
					We use file-scoped namespaces because they result in less nesting

					Unit test classes should be named after the classes they test

					We prefer using target-typed new when instantiating objects

					Class definitions should be clearly organized and start with fields, then move on to constructors, properties, and finally methods

			

			These standards don’t have to be so rigid that developers don’t have any decisions to make or live in constant fear of violating them.

			Your code standards should be prescriptive enough that they address the major points of contention and confusion. This helps you focus on creating and maintaining code in a way that maximizes your ability to provide value to the organization.

			How code standards influence refactoring

			When you have a definitive set of standards that you and your team agree on, it opens the floodgates for refactoring.

			Without a set of standards, when you talk about old code, you might say “I don’t like this very much,” or “This isn’t how I would have written this,” or “This seems poorly put together.”

			These things may be true, but they aren’t compelling arguments for refactoring.

			Instead, when you can say “This class violates our code standards in these areas,” the conversation becomes much more productive. This is especially true when you can establish that some of your standards are critical while others are important but less critical.

			There are certain aspects of code standards that I believe are critical and worth going in and making changes to just to get the code onto the new standards. For me, these areas often revolve around the handling of IDisposable resources and using proper exception management practices.

			Whatever you and your team agree upon is critical. These standards will impact your priorities and the decisions you make while maintaining code. Standards violations can be issues that get dedicated work items assigned to people to go in and fix without any other reason for touching the code in question. We’ll talk more about this in the final chapter of this book.

			Applying code standards to existing code

			The non-critical standards are used to guide the work developers do every day. All code changes are expected to comply with these code standards. Often, the standards encourage developers to update nearby pre-existing code that is out of compliance.

			For example, your team might have a code standard to not use the var keyword when you can help it (or to always prefer var, if that’s your jam). The team’s expectation would be that as developers write new code, the new code will comply with this rule.

			When standards are defined, teams sometimes expect that code near the code you’re changing will also be updated to comply with the standards. This is particularly true for code in the same method. After all, you’ve spent effort testing your new code to validate the changes you made. This testing effort can help catch any issues introduced by refactoring the rest of the method.

			Over time, these code standards will help reduce the rate at which your team accumulates technical debt. This ongoing improvement of the existing code will also help pay down existing technical debt in frequently changed areas.

			Establishing code standards

			So, now that I’ve convinced you how code standards can reduce conflict in your team, focus code reviews, and guide refactoring efforts, let’s talk about where these standards come from and how we adopt them in our teams.

			Collective code standards

			Every software development team already has code standards.

			I say this because each software development team already has, by definition, at least one developer. Every developer, whether they’re aware of it or not, has their own set of internalized code standards.

			They may not have thought about their preferences or be able to list them out, but if you look at each developer on your team and the code they write in isolation, there will be a certain amount of consistency to it.

			The problem teams encounter is not that they don’t have standards, but rather that they have too many standards. Each developer operates from their own internal set of standards and preferences and the team must now come together and interact with each other’s unique styles and preferences.

			Usually, teams will gravitate toward certain styles as developers tend to mimic the existing style in code files. As time goes on and teams grow, there are usually conflicts over certain choices. When this happens, your team will need to decide whether the creative freedom of not having defined any collective standards is worth the friction and distractions caused by these differing preferences.

			Eventually, most teams formalize a set of standards around the things that really matter to those teams. Let’s talk about what should go on that list.

			Selecting what is important

			Programming is a creative endeavor and so we don’t want to place too many restrictions on how developers write code. On the other hand, when there are too few rules, it can result in somewhat eclectic areas of code that are suited to one developer’s preferences but not the larger team.

			So, how does a development team figure out what should go in its standards?

			I like to start with the standards that keep teams safe. These involve following established best practices such as those defined in the .NET’s Framework Design Guidelines (see Further reading for more information). These practices are less oriented around individual opinions. This lets them have a high impact while being relatively free of drama as a result.

			Next, look at the major sticking points your team bumps into in code review. If you’re sick of discussions around tabs versus spaces – whether or not the { belongs on its own line, or the use of var – these are things to consider adding to your team’s standards.

			If these areas are major sources of disagreements, you have a couple of choices:

			
					Pick a stance on the area of contention and adopt it as a team

					Make having no official stance on the topic your team’s official position

			

			Picking a stance and adopting it as a team may cause temporary arguments and hurt feelings. In the long term, adopting a stance tends to be beneficial since your team can operate with a consistent style. While developers may feel less appreciated or valued by the position, most tend to naturally warm to the new style over time, though this can lead to turnover in some cases when developers feel very strongly about a topic or that their opinions weren’t considered.

			You may not think that explicitly saying your team has no stance on an aspect of code would be very beneficial. However, I’ve seen this approach have a massive impact on the conversations teams have. By explicitly having no policy on the topic, the contentious topic now becomes something quickly resolved.

			Instead of debating whether var belongs in your code, the team can point to its standards that say individual developers can make their own choices on this matter. This moves your team past contentious areas and on to more productive topics. The primary downside is that your overall code will be less consistent.

			The value of consistency

			Code that follows consistent styling and design decisions feels more professional, makes it easier for developers to work in areas they’ve not worked in before and keeps developers productive and focused on the function of code instead of its form.

			Make sure the engineering team is represented when creating code standards and determining what goes in those standards. This can be done by involving the entire team or by picking a subset that represents the various experience levels and preferences of the engineers in your organization. Additionally, if you have individuals who may react particularly strongly to a new style, make sure their concerns are fully heard and – where possible – involve them in the process.

			Sources of code standards

			Sometimes, creating a standard of your own can be too difficult or polarizing, or you may find that you don’t know where to start when creating code standards.

			When this happens, I recommend starting from an established set of code standards and customizing those as needed.

			In Chapter 12, we covered the built-in code analysis rulesets and how you can progressively move your ruleset from the latest ruleset to the latest minimum, then the latest recommended, and finally all the latest rulesets. These code analysis rules can help enforce best practices.

			If you’d like a little more formality to things, Microsoft has documented C# coding conventions and framework design guidelines that give you a good starting point for your team. Both documents are referenced at the end of this chapter in the Further reading section and are fantastic, evergreen sources of wisdom around .NET and C#.

			Evolving code standards

			I mention “evergreen” because C# is not a dormant language. Every November, Microsoft ships new versions of C# with new language features building upon the previous year’s improvements. This makes the C# language feel more organic as it evolves over time.

			Additionally, the context in which we program changes over time. When .NET was first introduced, it was essentially a productivity improvement for developers primarily performing Windows desktop development. Since then, we’ve seen .NET become open source and cross-platform. At the same time, many organizations have migrated from on-premises data centers as cloud computing on platforms such as Azure and AWS has become the norm.

			Things that were best practices back in the original days of C# have since faded in popularity as new language features have arrived to take their place and as the .NET platform grows new features.

			I’ve been working with .NET since the beginning and have felt this in my own coding style. Throughout this book, I’ve discussed var because it’s an easy language feature to talk about, but it is a good example of how C# changes over time.

			Prior to var, you’d declare a dictionary of Guid keys and int values as follows:

			
Dictionary<Guid, int> data = new Dictionary<Guid, int>();

			When var was introduced, the standard shifted to using var to simplify your declaration since the Type was obvious:

			
var data = new Dictionary<Guid, int>();

			This resulted in less duplicated syntax and improved developer productivity while still keeping the Type obvious.

			With the recent addition of target-typed new, my preference changed to use it as follows:

			
Dictionary<Guid, int> data = new();

			I’m sharing my own personal journey on standards here because it’s a microcosm of what engineering teams will go through.

			You’ll adapt to standards and then C# will change over time, and you’ll adjust your standards to keep up. What you may consider a “best” practice right now may later turn out to not work well a few months into implementation. It’s also natural for the obstacles facing your team to change. When this happens, this forces you and your team to adopt new strategies to overcome these obstacles.

			It’s okay to change your standards over time. That’s normal and is a sign of an evolving language and the evolving context of our daily programming jobs.

			Integrating standards into your processes

			Code standards affect a few different places in software development, from how you approach building new features to the way in which you maintain code.

			Your code standards should be clearly documented and stored in a central location, such as a team wiki or shared document. These standards should be communicated to new developers who join the team to help them familiarize themselves with the team’s expectations on code standards.

			Code standards should also be reinforced in the code review process after all other concerns on the substance of code changes are discussed. These issues should be resolved before the code is approved and the work item is completed, but this shouldn’t be done in a punitive manner.

			It’s important to understand that internalizing code standards takes some time for new developers on the team. It’s normal for it to take a few months with the team before your new developers think in terms of the team’s standards.

			One thing that can help is to incorporate tools into the process that make it easy for your team to validate whether its code meets standards before it sends the code on for peer review. Code analysis rules and Roslyn Analyzers can help with this, but Visual Studio places a few more tools at your disposal that can help standardize code before code reaches human review: code formatting and .editorconfig files.

			Formatting and code cleanup in Visual Studio

			It turns out that Visual Studio can automatically arrange and even clean up your code in a consistent manner through built-in features.

			Formatting documents

			One of the easiest ways to do this is with the Format Document feature, either by pressing Ctrl + K and then Ctrl + D or by opening the Edit menu, then going to Advanced and selecting Format Document, as shown in Figure 16.1:

			
				
					[image: Figure 16.1 – Formatting the active editor document]
				

			

			Figure 16.1 – Formatting the active editor document

			This will change the code in your current file to match the preferences you’ve configured in Visual Studio.

			These settings can be configured by opening the Tools menu and then selecting Options…. From there, expand the Text Editor, C#, Code Style, and Formatting nodes until you see the various preferences for indentation, new lines, spacing, and wrapping.

			These settings blades allow you to configure the formatting preferences of Visual Studio and preview the formatting choices, as shown in Figure 16.2:

			
				
					[image: Figure 16.2 – Changing how Visual Studio formats catch statements]
				

			

			Figure 16.2 – Changing how Visual Studio formats catch statements

			Once you’ve customized your settings, these settings will be used any time you use the Format Document feature.

			Many developers learn the Ctrl + K and Ctrl + D shortcuts to format documents early on and use them reflexively, but you can actually get Visual Studio to apply code cleanup automatically.

			Automatically formatting documents

			Visual Studio has a Code Cleanup feature that allows you to format your code either manually or automatically whenever the file is saved.

			This is done through Code Cleanup profiles. These profiles can do things such as remove unused using statements, sort the members in your classes into a more consistent order, and apply your code formatting preferences to a file.

			To configure a code cleanup profile, go to the Options dialog again and this time, find Code Cleanup in the Text Editor node, as shown in Figure 16.3:

			
				
					[image: Figure 16.3 – Enabling code cleanup when files are saved]
				

			

			Figure 16.3 – Enabling code cleanup when files are saved

			From here, you can check Run Code Cleanup profile on Save to have your cleanup profile automatically applied.

			I also recommend you click Configure Code Cleanup to view your cleanup profiles.

			This shows you the fixers that will be applied as part of each profile, as shown in Figure 16.4, and allows you to configure what is and isn’t included in the code cleanup action:

			
				
					[image: Figure 16.4 – Configuring code cleanup profiles]
				

			

			Figure 16.4 – Configuring code cleanup profiles

			Automatically cleaning up code on save can be helpful, but it does have some downsides. If your code hasn’t been cleaned up in a while, your cleanup action could appear to create many changes in the file. This can be confusing in git when multiple authors are trying to modify the same file or even see what has changed.

			Configuring code style settings

			Believe it or not, when we covered the C# settings for new lines and indentation earlier, this wasn’t the limit of what Visual Studio can do.

			Visual Studio provides a Code Style settings section that allows you to configure your individual preferences around most language features found in C#.

			These settings are found in the Options dialog under Text Editor, C#, Code Style, and then General, as shown in Figure 16.5:

			
				
					[image: Figure 16.5 – Configuring Code Style rules in Visual Studio]
				

			

			Figure 16.5 – Configuring Code Style rules in Visual Studio

			In this user interface, you can configure which rules you care about, what your preferences are on each rule, and how much you care about each rule. Also notice the Generate .editorconfig file from settings button, as we’ll talk about that more later.

			For each rule, you get to select whether the rule only appears as a refactoring option, whether Visual Studio subtly suggests the rule through green underlines on identifiers, or whether Visual Studio should be more aggressive, such as using compiler warnings or compiler errors for violations from standards.

			There are a lot of these settings, but they allow you to fine-tune your individual preferences for which C# features you prefer and how you like them formatted.

			However, these are your individual settings that get applied to the code you work with on your own machine. In the next section, we’ll talk about how to make these settings apply to your entire team.

			Applying code standards with EditorConfig

			Let’s take a look at how you can take the same code style settings found in the options dialog and attach them to a project through an .editorconfig file.

			The EditorConfig feature uses .editorconfig files that contain style and language usage rules that apply to your project. Any violation of your EditorConfig rules will result in compiler warnings and suggestions in the Visual Studio editor.

			EditorConfig files outside of Visual Studio

			At the time of this writing, .editorconfig files work in Visual Studio and JetBrains Rider natively. In VS Code, EditorConfig files are supported as long as you install the C# Dev Kit and the EditorConfig for VS Code extension. See the Further reading section for instructions on enabling these features in VS Code and JetBrains Rider.

			The key benefit of EditorConfig files is that they allow all developers working on a project to work with a consistent set of formatting and styling preferences.

			Reviewing our starter code

			The code we’ll be formatting lives in our Chapter 16 solution, which has a FlightQueryDecoder console app and an associated xUnit test project. This code is minimal for this chapter and revolves around the FlightQueryParser class.

			Let’s start with the first half of FlightQueryParser, which parses a flight search string such as AD08FEBDENLHR into a FlightQuery object:

			
namespace Packt.FlightQueryDecoder;
public class FlightQueryParser
{
 public FlightQuery ParseQuery(string query) {
 if (query.StartsWith("AD") && query.Length == 13)
 {
 var flightQuery = new FlightQuery {
 Date = DateTime.Parse(query.Substring(2, 5)),
 Origin = query.Substring(7, 3),
 Destination = query.Substring(10, 3)
 };
 return flightQuery;
 }
 else {
 throw new ArgumentException("Invalid query format");
 }
 }

			The actual logic here isn’t the focus. What I want to highlight to you is the inconsistency in how the code is formatted within the block.

			Let’s see the other half of the file, which takes a flight search result string such as DEN LHR 05:50P 09:40A E0/789 8:50 and converts it to a FlightQueryResult:

			
 public FlightQueryResult ParseResult(string result)
 {
 var fqr = new FlightQueryResult();
 var segments = result.Split(' ',
 StringSplitOptions.RemoveEmptyEntries
 | StringSplitOptions.TrimEntries);
 fqr.Origin = segments[0];
 fqr.Destination = segments[1];
 string today = DateTime.Today.ToShortDateString();
 fqr.DepartureTime = DateTime.Parse(
 today + " "+segments[2] + 'M');
 string seg3 = segments[3];
 fqr.ArrivalTime = DateTime.Parse($"{today} {seg3}M");
 fqr.AircraftTypeDesignator = segments[4];
 fqr.FlightDuration = TimeSpan.Parse(segments[5]);
 return fqr;
 }
}

			While this code is deliberately bad and inconsistently formatted to serve as an example, I’m sure you’ve seen many larger files in the real world with equally inconsistent styling.

			Now that we’ve introduced this code with its different styling choices, let’s add an .editorconfig file to the project and see how that can help enforce styles.

			Adding an EditorConfig

			To add the .editorconfig file, right-click on the Packt.FlightQueryDecoder project and choose Add and then New EditorConfig or New EditorConfig (IntelliCode).

			What is EditorConfig (IntelliCode)?

			There’s a difference between the New EditorConfig and New EditorConfig (IntelliCode) options. The standard option creates an .editorconfig file with the default options, whereas the IntelliCode choice analyzes your project and generates an .editorconfig file from the conventions it observes in your current code. Both are viable options for creating a starting point for your projects.

			Depending on which option you selected, you may need to select which folder the .editorconfig file should live in. If you’re prompted, select the default choice of the Packt.FlightQueryDecoder folder.

			Once this completes, you should see a new .editorconfig file present in your project in Solution Explorer.

			Before we go on to work with this .editorconfig file, it’s worth pointing out that the Code Style settings in the Options dialog we saw earlier can be used to generate an .editorconfig file based on your current code style choices. This allows you to customize your styles and then create an .editorconfig file out of these choices.

			Now that we have an .editorconfig file, let’s customize it.

			Customizing EditorConfigs

			Double-click on the .editorconfig file to open its properties view.

			You’ll see an editor with tabs allowing you to customize various properties related to white space, code style, naming style, and Roslyn Analyzers.

			There are a lot of options here, so we’ll focus on just a few very specific ones.

			Go to the Code Style tab and then scroll down to the bottom for the var preferences group.

			From here, you can state your team’s preferences and the severity of violations of those preferences. For example, if your team wants to avoid var, you could set all three var rules to Prefer explicit type and increase the severity to Warning or Error, as shown in Figure 16.6:

			
				
					[image: Figure 16.6 – Customizing the var preferences for your project]
				

			

			Figure 16.6 – Customizing the var preferences for your project

			Save this file and go back into FlightQueryParser.cs, and you should now see warnings and errors in your editor for violations of these rules, as seen in Figure 16.7:

			
				
					[image: Figure 16.7 – Visual Studio warnings against using var based on code style rules]
				

			

			Figure 16.7 – Visual Studio warnings against using var based on code style rules

			These rule violations do not cause your code to not compile but they do appear in the Error List view, as shown in Figure 16.8:

			
				
					[image: Figure 16.8 – Code violations appearing in Error List]
				

			

			Figure 16.8 – Code violations appearing in Error List

			Because .editorconfig files are added to source control when you commit your code, other developers on your team will pull down that file and see the exact same styling preferences and warnings you see on your machine.

			This makes code standards apparent during the development process and reduces the odds of a peer review of important code changes breaking down into a discussion of the appropriate placement of opening curly braces or the use of var.

			Summary

			Code standards are important for helping your team focus on productive things and ensuring source code can be easily maintained by all developers on your team.

			While code standards don’t need to include everything, it can be helpful to codify stances on commonly contested items or best practices your team wants to make sure absolutely every change follows.

			Visual Studio provides a number of features that help ensure a consistent and high-quality codebase including code formatting, code cleanup profiles, formatting on save, code analysis warning profiles, code styles at the editor level, and EditorConfigs to configure code styles inside of your editor.

			In the final chapter of this book, we’ll discuss refactoring code as part of a larger organization and as part of an agile software development team.

			Questions

			
					How do you determine what code standards your team should adopt?

					What are some ways you can handle disagreements on style rules?

					What are some options for configuring how Visual Studio formats code?

					What does the New EditorConfig (IntelliCode) option do?

			

			Further reading

			You can find more information about materials from this chapter at these URLs:

			
					Framework design guidelines: https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/

					.NET coding style guidelines: https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions

					Create portable, custom editor settings with EditorConfig: https://learn.microsoft.com/en-us/visualstudio/ide/create-portable-custom-editor-options

					Beginner friendly EditorConfig settings: https://newdevsguide.com/2022/11/22/beginner-friendly-csharp/

					Using EditorConfig in VS Code with C# Dev Kit: https://code.visualstudio.com/docs/csharp/formatting-linting#_how-to-support-editorconfig-with-c-dev-kit

					Using EditorConfig in JetBrains Rider: https://www.jetbrains.com/help/rider/Using_EditorConfig.html

			

		

	
		
			17

			Agile Refactoring

			In this final chapter, we’ll talk about refactoring as part of an agile team, succeeding with larger refactoring efforts, recovering when things go wrong, and incorporating deployment strategies to help make sure they don’t go wrong again.

			It’s possible to win many small refactoring battles with small pieces of offending code but lose the overall “war” when you can’t address large-scale design issues. This chapter explores how to continue to fight and win the smaller refactoring battles with your code from sprint to sprint. We will also cover the larger strategic battle of making sure your application has the right design – and correct it to something better when it doesn’t.

			This chapter covers the following topics:

			
					Refactoring in an agile environment

					Succeeding with agile refactoring strategies

					Accomplishing large-scale refactorings

					Recovering when refactoring goes wrong

					Deploying large-scale refactorings

			

			Refactoring in an agile environment

			Almost all development teams I work with use some form of agile software development to manage work over time in the form of short sprints, including any refactoring work.

			In this section, we’ll cover the basics of agile workflows and how refactoring can fit into this type of environment. This is important because if refactoring work can’t fit into an agile workflow, refactoring simply won’t happen.

			Key elements of agile teams

			Agile software development was officially codified in the Manifesto for Agile Software Development (commonly called the Agile Manifesto) and flows from the following core preferences:

			
					Individuals and interactions over processes and tools

					Working software over comprehensive documentation

					Customer collaboration over contract negotiation

					Responding to change over following a plan

			

			Following these guiding principles, the exact “flavor” of agile differs from team to team, but most teams adopt the following key components:

			
					Sprints: Work is conducted during fixed-duration periods called sprints. These range anywhere from 1 to 4 weeks, but 2 weeks is the norm.

					User stories: Work is tracked in the form of work items or user stories. Many teams require that any code change be associated with at least one work item.

					Backlogs: The work for each sprint is taken from a prioritized backlog of user stories the team has previously reviewed and refined.

			

			The exact details, roles, and names of things may vary from organization to organization, but these truths generally apply.

			This process creates an iterative and cyclical process where the team works on the work items the business considers the most important in one sprint while prioritizing and refining items for the following sprint, as shown in Figure 17.1:

			
				
					[image: Figure 17.1 – The cycle of agile software development]
				

			

			Figure 17.1 – The cycle of agile software development

			Agile is currently the best methodology we’ve found for software engineering in a business setting, but it does pose some unique obstacles to refactoring. See the Further reading section at the end of this chapter for additional resources on agile.

			Understanding obstacles to refactoring

			Agile is good for getting teams working on items that are important to the business and working through a prioritized backlog. Unfortunately, agile may not be the best development modality for proactive refactoring work.

			Most organizations require all code changes to be associated with at least one user story and developers are expected to be working on user stories when they have spare capacity.

			This leaves engineers in a conundrum where they know the areas of code that need to be refactored and have the technical skills and knowledge to refactor them, yet it is not acceptable within the boundaries of their teams for them to proactively improve code outside the bounds of an assigned user story.

			This causes technical debt to pile up and eventually decays the team’s velocity by slowing down work items. This also results in a greater number of bugs being introduced because the team has not been allowed to proactively manage the risk inherent in their legacy code.

			This isn’t to say that agile is bad. Agile is the best process we’ve found so far to manage work in software engineering teams; however, it has some limitations that must be solved to help organizations achieve both short-term and long-term success.

			Succeeding with agile refactoring strategies

			Ongoing refactoring is important in an agile environment, so let’s talk about some ways of making sure code gets refactored regularly.

			Dedicated work items for refactoring efforts

			Remember that every line of code you and your team write should deliver business value, including your refactoring efforts.

			Refactoring focuses on delivering value to the business by addressing known areas of technical risk and improving the speed the team can achieve in the future on related work in the targeted area.

			Given these facts, it makes sense that refactoring efforts should be represented inside a sprint as user stories. Just as one developer might get a user story about integrating with a new external system for a partner, another developer might get a user story to refactor and establish additional tests around the data access layer.

			In Chapter 15, we discussed tracking technical debt in a risk register. I didn’t make it explicit in that chapter, but you can use the same system that tracks your user stories to track your known technical risks as a specialized type of user story, such as the one shown in Figure 17.2:

			
				
					[image: Figure 17.2 – A technical debt item in Azure DevOps]
				

			

			Figure 17.2 – A technical debt item in Azure DevOps

			These technical debt user stories should look just like normal user stories and have the same degree of polish and refinement. However, these user stories should have a different type or a property with a different value so that you can identify technical debt items in your backlog and sprints.

			Additionally, it should be the responsibility of the developers on the team to write up these technical debt items and not the product owner, though the team will still need to walk the product owner through what the item is, the rough amount of effort needed to remediate it, and the risk the change is looking to resolve.

			Healthy agile teams should take a mixture of short-term and long-term items, with technical debt items typically falling in the long-term bucket.

			There may be times when you cannot do anything but short-term work and there may be times when you work with a product owner that doesn’t understand the risk present in your technical debt. The suggestions from Chapter 15 may help with this, but sometimes, there won’t be an easy answer.

			In these times, you may need to shift to a strategy of refactoring any code that changes.

			Refactoring code as it changes

			Most of the technical debt I’ve addressed over my career has come from the conscious decision to refactor any code I touch.

			This approach of refactoring code that changes has several key benefits:

			
					It ensures the areas that are changed most frequently get refactored.

					Since I’m working in that area anyway, I know I will be testing the code in question. This means that these testing efforts will help catch any issues that might be addressed as part of refactoring.

					It does not require the overhead of separate user stories for small, trivial refactoring efforts.

			

			In my experience, making it part of your policy to clean up and test the code around the areas you touch results in a much cleaner codebase over time.

			This approach has its limitations: when you are making a minor change in one area of code and the code needs serious refactoring efforts, it is typically irresponsible to expand the scope of your work item beyond a certain point.

			Additionally, some refactoring efforts cannot be achieved within the context of a single sprint and need more strategic thought and planning behind them.

			Refactoring sprints

			One concept I’ve encountered once or twice has been the idea of a refactoring sprint. A refactoring sprint follows the mentality of crop rotation in farming.

			I’m no farmer, but my understanding of crop rotation is that you can use a field for several seasons, but over time, that field starts to lose the nutrient values from the soil and becomes less productive as years go on.

			To combat this, farmers learned to leave these fields fallow and not grow anything in them for a time, as shown in Figure 17.3:

			
				
					[image: Figure 17.3 – Rotating crops over several years]
				

			

			Figure 17.3 – Rotating crops over several years

			Applied to agile development, you might spend several sprints working on normal work items, but after a handful of sprints, you introduce a refactoring sprint where the team’s effort goes into refactoring the areas of code that concern the team the most.

			In refactoring sprints, the development team can take on larger-scale efforts than they might otherwise try as part of a standard sprint.

			This also has the side effect of re-energizing your developers and getting them ready for another sequence of sprints around a key long-term business objective.

			In practicality, I’m not sure how well these sprints work regularly, but I’ve seen teams benefit from them tremendously in special scenarios. These refactoring sprints can be used to tackle larger problems or as a way of recharging the team after a major initiative is completed. I’ve also seen these sprints used as a way of keeping the team engaged during holiday seasons.

			Refactoring sabbaticals

			Most teams I’ve worked with simply can’t afford to have all their developers work primarily on refactoring efforts, even for a single sprint.

			Teams like this may want to take the idea of a refactoring sprint and scale it down so that it applies to just a single team member.

			I call this concept a refactoring sabbatical, where the developer effectively splits off of the team for a short time to work on a refactoring project, only to rejoin the larger team in the next sprint.

			In a future sprint, another developer gets to spend a sprint working on refactoring efforts while others work on traditional work items, as shown in Figure 17.4:

			
				
					[image: Figure 17.4 – A rotating developer sabbatical over several sprints]
				

			

			Figure 17.4 – A rotating developer sabbatical over several sprints

			Under this model, the refactoring efforts the developer wants to take on should be pre-approved, reviewed, and tested by other developers on the team.

			The developer on “sabbatical” should still be available for questions and work on emergency items. The only major change is that their work for a sprint is self-directed toward known refactoring goals.

			This has some of the same morale-boosting effects as a refactoring sprint but on a smaller scale. This also helps prevent teams from over-relying on any one person on the team, because people rotate into and out of sabbaticals frequently.

			While this model may see success in small and medium-sized refactorings, it is less effective in large-scale refactorings. We’ll discuss ways of succeeding with larger refactorings next.

			Accomplishing large-scale refactorings

			In my experience, successfully performing large-scale refactorings is one of the hardest challenges in all of software engineering.

			I define large-scale refactoring as something on the scale of replacing an application or a major architectural layer of an application. Moving an application from one database technology to another, replacing a REST API with a gRPC API, upgrading from Web Forms to Blazor, or replacing your entire service layer are all examples of this.

			Why large refactorings are difficult

			These projects are challenging because they typically take longer than a single sprint to accomplish and must meet feature parity with software that has been developed over the years.

			Additionally, software engineering projects are notoriously hard to accurately estimate, which is one of the reasons developers prefer agile software development over more traditional project management methodologies such as waterfall. Delays in software development projects can be difficult to predict and manifest in the form of unexpected technical obstacles, such as previously unknown limitations of other components or platforms or subtle bugs slowing development.

			Because of these factors, large refactoring efforts are significantly harder to achieve than medium refactoring efforts.

			Once completed, the results of these efforts can be daunting to move into production environments as well because they represent such a large change. Later in this chapter, we’ll talk about a few ways of reducing this risk, but the decision to replace or upgrade major parts of your application is not one without quality risks.

			This problem gets even more pronounced when teams choose to completely rewrite or replace software projects instead of refactoring them.

			The rewrite trap

			Rewrites take all the problems of large refactoring efforts and multiply them by a factor of at least 10.

			In this scenario, you are replacing an application that has been used for some time and typically has a significant number of active users and established features.

			It can be a struggle to re-implement years’ worth of features while keeping up with production bugs and other short-term work that must happen to keep the business running smoothly.

			When a team is actively working on a rewrite, they usually see little value in targeted refactorings of the current system they’re working on replacing. This means that if a rewrite is canceled or put on hold, the team gets no value out of their investment and still has a legacy system that needs to be supported.

			Since software projects are hard to estimate and manage, rewrites frequently take much longer than you expect them to. During this time, your engineers are working primarily on the rewrite, which takes capacity away from other initiatives.

			Remember that a rewrite usually provides no intrinsic value to the business or the users until it is active in a production environment and people are working with it live. This is why so few rewrite projects succeed.

			You can remediate this by offering early previews of a partial rewrite, but this is not always possible and may not be the best user experience if important features are not present yet in the rewrite.

			Lessons from the ship of Theseus

			There’s a thought experiment about the Greek hero Theseus that is relevant to refactoring software.

			In this thought experiment, the ship of Theseus, our hero, Theseus, sets sail on a long journey by sea. Throughout his long voyages, the crew gradually replaced pieces of the ship with spare materials and materials they made or found on their voyages. This continued for some time until there wasn’t a single piece of the original ship left in his ship as he returned home.

			This thought experiment asks whether the ship that came home is the same, and if it isn’t, when did it stop being that ship?

			While these are interesting philosophical questions, the concept is relevant to software engineering.

			Using refactoring, we can replace the “planks” of our virtual “ship” as technical debt takes hold in various areas. As we gradually refactor the components that need it the most, we continually evolve our software to stay relevant over time.

			This is why I view refactoring code as you write code as a critically important practice in software engineering. Technical debt is an inescapable reality of software and you must keep it in mind with every change you make by doing what you can to prevent it from taking hold and paying down existing debt areas through refactoring.

			Note

			Gradual refactoring only goes so far. Progressive refactoring may help keep your virtual “boat” afloat, but it won’t turn a rowboat into a cruise liner or submarine.

			Put more clearly, refactoring won’t help you move from an antiquated technology to a more modern one. Let’s look at a tool that might help with that.

			Upgrading projects with.NET Upgrade Assistant

			As new versions of .NET come out and new technologies emerge within the .NET ecosystem, keeping up can be a challenge.

			To address this, Microsoft introduced .NET Upgrade Assistant, which helps you safely upgrade and modernize your applications. At the time of writing, this tool has been useful with projects written with the following technologies:

			
					ASP.NET

					Universal Windows Platform (UWP)

					Windows Communication Foundation (WCF)

					Windows Forms

					Windows Presentation Foundation (WPF)

			

			.NET Upgrade Assistant can be installed either as a global tool or as a Visual Studio extension, as shown in Figure 17.5:

			
				
					[image: Figure 17.5 – Installing.NET Upgrade Assistant in Visual Studio]
				

			

			Figure 17.5 – Installing.NET Upgrade Assistant in Visual Studio

			Once the extension has been installed, you will be able to right-click on a project in Solution Explorer and choose Upgrade.

			From there, you’ll be able to configure a set of options on your project that will vary based on the technologies you use. You’ll also be able to configure the scope of the upgrade attempt and include and exclude files of your choosing.

			Once the upgrade runs, you’ll see a list of projects and files that were updated and see details in the log, as shown in Figure 17.6:

			

			
				
					[image: Figure 17.6 – .NET Upgrade Assistant in action]
				

			

			Figure 17.6 – .NET Upgrade Assistant in action

			You should make sure your project is properly backed up and in source control before attempting an upgrade and you may need to resolve certain issues yourself, but this tool can be very useful for starting an upgrade in an automated manner.

			For applications that can’t be easily upgraded with .NET Upgrade Assistant, you may need some more creative strategies, which we’ll talk about next.

			Refactoring and the strangler fig pattern

			In 2004, Martin Folwer introduced the strangler fig pattern to the software community in a post he titled StranglerFigApplication.

			In this post, Martin Fowler describes how certain fig trees, such as the Banyan Tree pictured in Figure 17.7, wrap themselves around other trees and gradually replace the structure of the other tree:

			
				
					[image: Figure 17.7 – Photo of a banyan tree by Ankit Bhattacharjee]
				

			

			Figure 17.7 – Photo of a banyan tree by Ankit Bhattacharjee

			Over time, this strangler fig assumes more and more of the structure of the tree and it effectively becomes a whole new tree.

			In this metaphor, the tree would be the legacy application you’re trying to replace while the various vines from the strangler fig represent your rewrite.

			Under this model, you’re not trying to rewrite the entire application and replace it with a freshly rewritten application.

			Instead, you take a single vertical slice of the application encompassing a core set of features and behaviors and you make a new implementation of them in a new technology. This might be a web page or a set of API endpoints, depending on what you’re writing.

			Once you’ve rewritten this capability in your new technology, you redirect traffic for that one area from the old application to the new application. This allows you to ship parts of your new application to users incrementally, validate things in production, and then take on another vertical slice of the application.

			Technical details

			There are a few technologies that can help achieve this goal of replacing vertical slices of an application. Azure API Management can help direct web traffic to an appropriate endpoint in API Management. I’ve also seen people succeed with Yet Another Reverse Proxy (YARP) for these efforts. Links to both can be found in the Further reading section.

			As you expand your rewrite and validate it works, you can remove portions of the original application so that you no longer need to maintain them.

			For areas that your new application doesn’t support yet, you can have it link back to existing areas on the old application.

			The strangler fig approach has some key advantages compared to a full rewrite:

			
					It allows you to iteratively deliver your rewrite in stages

					It works better in an agile environment

					It helps validate risk areas early instead of waiting for the full rewrite

					It allows you to remove replaced code from the original if you’d like

					It can be rolled out in parallel with the original as a preview

			

			Perhaps the biggest benefit of this pattern is that its success chance is significantly higher than attempting a total rewrite.

			Let’s talk about what to do when refactoring isn’t as successful.

			Recovering when refactoring goes wrong

			Sometimes, despite your best efforts, refactoring efforts will fail. It may be due to gaps in your tests or mistaken assumptions about new technologies, but a certain percentage of your refactoring attempts will fail.

			The impact of failed refactorings

			Failed refactorings can be both frustrating and a serious challenge to future refactoring work. After all, a significant barrier to refactoring is the belief that legacy code is so brittle that touching it will break it. When you change code and it breaks, you make it harder to change code in the future.

			When refactoring fails, you sometimes get to make a quick patch to address the issue you introduced. In this case, the code is refactored and service gets restored, but you’ve lost some of the team’s trust.

			Other times, failures in refactoring result in code getting rolled back to the previous version before you refactored it. Sometimes, you’ll get to make changes, add additional tests, and retry this refactoring, while other times, the team will decide that the refactoring is too dangerous to try again and you’ll lose your shot at improving the code for some time.

			Ultimately, this conversation boils down to how much the business trusts you to not make mistakes.

			Mistakes in software development will happen because people are imperfect and make mistakes, assume things without realizing them, and don’t know everything.

			Establishing safety in agile environments

			What you want to do as a technologist is create an environment where mistakes are infrequent and can easily and safely be caught before they reach production environments.

			There are certain things you can do to reduce the odds of breaking software when refactoring:

			
					Testing: Unit tests, manual tests, and having your peers test your code in a different environment can help you catch many mistakes and some assumptions.

					Code review: Teams that review changes before they ship to integration and production environments can catch bad assumptions, mistakes, and poor coding practices. Code review is also an opportunity for teams to share knowledge and techniques, as well as share knowledge of the codebase across the dev team.

					Code analysis: Using the documented best practices in .NET and adhering to your team’s standards, as we talked about in Part 3 of this book, can prevent issues the team has encountered before from recurring.

					Automated tests: Testing is so important I put it on here twice, but this time, I’m stressing that any change getting merged into a release branch needs to have automated tests run against it and pass before it can move on. This ensures that tests are reliably and repeatably run.

					Active monitoring: Regular monitoring of error and warning logs can help you detect problems early in production and staging environments.

			

			Be honest and transparent when an issue occurs and follow this sequence of steps:

			
					Confirm that the issue exists.

					Understand the issue enough to resolve it.

					Resolve the issue and restore service.

					Determine how you could have prevented the issue from occurring.

			

			When you look at a bug getting past your defensive practices as a way of improving your processes and identifying gaps, it becomes a learning opportunity for your team.

			Unfortunately, these learning opportunities do come with a penalty of lost trust from others due to the issue.

			I’ve found that openly and honestly communicating the following things helps encourage understanding and somewhat heal lost trust:

			
					The steps your team took to verify the item wouldn’t cause issues before release

					The nature of the bug and how it got past your team

					What you did to resolve it and restore service

					What you’re doing to ensure that things like it won’t be issues in the future

			

			This approach treats everyone with respect, shares understanding, provides opportunities for questions and suggestions, and assures them that the quality of the application is important to you and your team.

			Before we close this chapter and this book as a whole, let’s talk about some helpful practices you may want to consider when deploying software.

			Deploying large-scale refactorings

			Let’s talk about some ways of deploying code that can help you catch any issues that slip through before they become major problems.

			Using feature flags

			Feature flags are configuration settings that control whether features are active.

			When you push out new code that includes a new capability, that code doesn’t have to be immediately available. You can deploy as usual with the new feature area disabled in the configuration.

			Once you’re confident the rest of the software is working as intended, you can enable the new feature. If the feature winds up having issues, you can quickly disable it by flipping the feature flag back to its inactive state.

			While feature flags are helpful when you’re releasing actual features, you can also use them with major refactoring efforts. For example, a feature flag might govern whether the system uses LegacyBookingSystem or RevisedBookingSystem.

			Tip

			Feature flag libraries pair nicely with A/B testing libraries such as Scientist .NET, which we covered in Chapter 9.

			Popular feature flag tools include Azure App Configuration and Launchdarkly, but Microsoft also offers an open-source feature management library called .NET Feature Management.

			.NET Feature Management is surprisingly capable and integrates directly into your .NET applications, though it lacks some of the web monitoring capabilities a commercial software product might have.

			Feature flags add complexity to your application but give you options for when your features go live. This lets you enable a feature, evaluate it for correctness in a production environment, and then either disable it, patch any issues observed, or leave it on.

			Phased rollouts and blue/green deployments

			Phased rollouts or blue/green deployments take the idea of feature flags to a different level. In this model, you have distinct sets of servers, typically referred to as blue and green environments.

			In a blue/green deployment, you might start with 100% of your users using one environment. During this time, you patch the other server with your new update and verify that it appears to be running correctly, as shown in Figure 17.8:

			
				
					[image: Figure 17.8 – Users using the blue environment while the green one is being updated]
				

			

			Figure 17.8 – Users using the blue environment while the green one is being updated

			Once you’re sure the new server is operational and running without issue, you can start diverting a percentage of your users onto the new server.

			This subset of users represents real production traffic and can be used to monitor the behavior of your new release with a minimal set of users, as shown in Figure 17.9:

			
				
					[image: Figure 17.9 – The blue environment running most users while a subset of users are on green]
				

			

			Figure 17.9 – The blue environment running most users while a subset of users are on green

			If the new environment starts to have issues, you can quickly move users off of that server and onto the old one, then take the new environment offline for maintenance until you’ve addressed the issues and are ready to try again.

			Caution

			When migrating to a new revision and then rolling back to the old one, you must take special care to ensure any database migrations still work appropriately. Tools such as Entity Framework’s up-and-down scripts can help with this.

			If the new environment performs without issues, you can gradually “drain” users from the old environment onto the new environment. Eventually, your old environment will be empty and can be taken offline until the next deployment, as shown in Figure 17.10:

			
				
					[image: Figure 17.10 – The green environment handles all traffic and the blue one goes offline]
				

			

			Figure 17.10 – The green environment handles all traffic and the blue one goes offline

			The next time a deployment occurs, the roles will reverse and users will move from the green environment to the blue environment once the blue environment is updated to the next version.

			This sounds complex, and to some extent it is, but a lot of this complexity can be automated and managed by your cloud provider. For example, Azure provides blue/green deployments in many of its services, as detailed in the Further reading section.

			Once you’ve migrated over to a blue/green deployment model, the complexity becomes largely irrelevant, and instead, blue/green deployment becomes another tool in your quality toolbox.

			The value of continuous integration and continuous delivery

			All of this added complexity in the form of deployment and feature management sounds intimidating at first, but this level of maturity helps teams perform at very high levels and reduces the impact of any failures on the end users.

			This complexity can be a problem, but thankfully, continuous integration and continuous delivery (CI/CD) can help manage it.

			CI is about verifying the correctness of your software any time it changes. This means running code analysis, unit tests, and any other checks you need to do any time a change is about to be merged into an integration branch.

			CD focuses on automating the deployment of software applications in a repeatable and reliable manner. Instead of deployments being done from one specialized developer’s machine, deployments are done using an automated script that is typically run in a cloud environment. Continuous delivery allows you to ship your software in a repeatable and reliable manner to whatever environment you want.

			Some interpretations of CI/CD also include Infrastructure as Code (IaC) through tools such as Terraform or Bicep. IaC is used to configure cloud environments that have the same resources, security privileges, and configuration settings based on an IaC script. This means that deployments can be used to create missing cloud resources and secure resources, and generally make it easier for your team to create new environments consistently.

			When you put these tools and processes together, you get a well-defined and automated pipeline that checks new code for correctness, runs tests to ensure that the change doesn’t break anything, and can deploy changes to whatever environment you’d like – all without the possibility of human error in the process.

			Once you have a broad enough library of unit and integration tests, CI/CD allows you to deploy at whatever pace you’re comfortable with and is how some teams can deploy hundreds of times a day if they want to.

			This degree of process maturity gives teams the freedom to innovate at a rapid pace. These added safety nets of quality checks and automation further support refactoring efforts by taking the fear out of making the changes needed to keep your software clean and healthy.

			Case study – Cloudy Skies Airlines

			As we close this book, let’s take a final look at our case study company: Cloudy Skies Airlines.

			Cloudy Skies started with unmaintainable systems they were afraid to touch for fear of introducing critical bugs. They carried out a systematic review of the technical debt in their codebase and the quality issues the team had encountered in the past year.

			As a result, the team was able to prioritize a list of key areas of technical debt and identify critical areas lacking unit tests. Cloudy Skies carried out several refactoring sprints to address the most critical areas first, putting a heavy emphasis on expanding their unit tests.

			Once the quality hotspots were largely addressed, Cloudy Skies went back to a standard agile development cadence but allocated about 30% of their work each sprint toward paying down technical debt.

			Many of the systems Cloudy Skies used were out of date, but Cloudy Skies was able to use .NET Upgrade Assistant to quickly modernize most of them.

			For applications that could not be easily upgraded, development teams began following the strangler fig pattern to build a new application to cover vertical slices of the old application and tools such as YARP to route traffic to the new application where possible.

			All of this was supported by a culture of trust and transparency and modern application management processes through feature flags and CI/CD.

			While it will be some time before the developers are fully proud of their code, Cloudy Skies is heading in the right direction. The team has regained the respect of the larger organization and the added stability and agility is helping the business steer toward sunny horizons.

			Summary

			In this chapter, we explored the unique challenges of refactoring in an agile environment and strategies for including refactoring work inside agile sprints.

			We also looked at ways of accomplishing large-scale refactorings and how to respond when things don’t go as planned.

			This chapter also touched on some deployment and automation processes that can reduce the impact of issues on end users and minimize the risk of human error through feature flags, blue/green deployments, and CI/CD practices.

			Toward more sustainable software

			This book took you on a journey from the nature of technical debt to the procedures of refactoring. We talked about how to safely test and structure your software and how to evaluate code for best practices, prioritize, and communicate technical debt.

			We also talked about how the C# language and features of Visual Studio support you in this journey toward more sustainable software development.

			Every year our world changes a little as Microsoft unveils new C# preview features at the beginning of the year and releases them near the end.

			These capabilities give us a wide range of capabilities to tackle the development problems of today and tomorrow, but the reality is that software development continues to change.

			Software and software development grows more complex each year. Meanwhile, many teams are stuck maintaining yesterday’s code.

			It doesn’t have to be this way. You can modernize your software, and you can do it in an agile and responsible way while serving the needs of your business and its customers.

			I’ve been writing software in some shape or form for over 35 years now. New developers assume that more experience results in fewer mistakes. While this has some truth to it, I’ve personally found that the more experience I get, the less I trust my ability to not make mistakes.

			Make room for yourself – and others – to make mistakes. Mistakes will happen and bugs will reach production, but when they do, you need to learn from them.

			It is my sincere hope that you have learned something new from every chapter. Moreover, I want you to emerge from this book with hope – hope that your code can be a source of joy to you, or at least be less afraid to change.

			Through the practices outlined in this book, I believe that you and your team can reach a better place through successfully refactoring with C#.

			Questions

			
					How can technical debt be paid down inside of an agile setting?

					Why are large rewrites hard? What processes can help with this?

					What variances do you see right now in how you deploy and test software?

			

			Further reading

			You can find more information about the materials from this chapter at these URLs:

			
					Manifesto for Agile Software Development: StranglerFigApplication Post: https://martinfowler.com/bliki/StranglerFigApplication.html

					YARP: https://github.com/microsoft/reverse-proxy

					Azure API Management: https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts

					Overview of the.NET Upgrade Assistant: https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-overview

					.NET Feature Management: https://github.com/microsoft/FeatureManagement-Dotnet

					Blue-Green Deployment in Azure Container Apps: https://learn.microsoft.com/en-us/azure/container-apps/blue-green-deployment

					Vertical Slices: https://deviq.com/practices/vertical-slices

			

		

	
		
			Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for reference only, based on the printed edition of this book.

			Symbols

			.NET 8 5

			.NET analysis

			nullability analysis 286-288

			with NDepend 297-300

			.NET Feature Management 391

			.NET Upgrade Assistant 385

			projects, upgrading with 385, 386

			A

			abstract classes 118

			abstract members 118

			access modifiers

			private 67

			public 67

			active monitoring 389

			advanced code analysis tools

			exploring 294, 295

			agile environments

			safety, establishing in 389, 390

			Agile Manifesto 378

			agile software development 377

			agile teams

			key elements 378

			anti-patterns 105, 186

			identifying, in C# code 185, 186

			architectural principles

			DRY principle 195, 196

			high cohesion and low coupling 197, 198

			KISS principle 197

			arrange/act/assert pattern 146, 153

			arrow functions (Lambda expressions) 57

			Assert class 155

			automated testing 146

			automated tests 389

			auto properties 13

			AWS 5

			AWS Lambda 5

			Azure 5

			Azure App Configuration 391

			Azure App Services 5

			Azure Functions 5

			B

			backlogs 378

			baggage price calculator

			methods, extracting 24-26

			pitfalls, avoiding when removing code 23

			properties, converting to auto properties 13-15

			refactored code, testing 27, 28

			refactoring 11-13

			refactoring, in other editors 28

			refactoring, manually 26, 27

			unreachable code, removing 21

			unused code, removing 21

			unused parameters, removing 22, 23

			Bicep 393

			blue/green deployments 391-393

			boarding app

			refactoring 33, 34

			Bogus

			test data, generating with 210-213

			C

			C#

			nullability analysis, enabling in 236, 237

			C# 12 5

			CalculatePrice method

			extracting 24-26

			CallerMemberInformation attributes

			using 233, 234

			C# code

			anti-patterns, identifying 185, 186

			C# Dev Kit

			used, for refactoring Visual Studio Code 29, 30

			chaining constructors 76

			chaining methods 72, 73

			ChatGPT 5

			classes

			converting, into record classes 242, 243

			design, improving 238

			Cloudy Skies Airline flight scheduling system

			abstract members 118-121

			abstract methods, converting to virtual methods 121-123

			base class, extracting 113-115

			classes 100

			classes, moving to individual files 101, 102

			classes, organizing via refactoring 100

			composition, favoring over inheritance 130-132

			default interface implementations, providing 134, 135

			equality methods, generating 110-112

			fields, encapsulating 123, 124

			files and classes, renaming 102, 103

			intent, communicating with abstract 118

			interface implementations, moving up 116-118

			interfaces, extracting 132-134

			namespaces, modifying 103, 104

			parameters, wrapping into class 125-127

			partial classes and regions, avoiding 105, 106

			polymorphism 136, 137

			properties, wrapping into class 127-130

			refactored code, reviewing and testing 138, 139

			refactoring 99, 100

			ToString, overriding 106-109

			Cloudy Skies Airlines

			AI, using 278

			case study 8, 9, 323, 324, 394

			code analysis 300, 301

			technical debt, communicating 356-358

			Cloudy Skies API 227, 228

			code analysis 389

			default ruleset, used for solution analysis 285-288

			performing, in Visual Studio 285

			rulesets, configuring 288-290

			rules, responding to 290-293

			warning, treating as errors 293, 294

			code cleanup, in Visual Studio

			applying, automatically 368, 370

			code coverage 167, 168

			code fixes

			testing, with RoslynTestKit 329-331

			code fix provider 324

			creating 324-326

			packaging, as extension 338, 339

			code metrics

			calculating, in Visual Studio 281-284

			tracking, with SonarCloud and SonarQube 295-297

			code review 389

			code smells 177, 186

			identifying 5, 6

			code standards 361

			applying, to existing code 363

			collective code standards 363

			establishing 363

			evolving 365, 366

			examples 362

			importance 362

			influencing, for refactoring 362

			integrating, into processes 366

			selecting 364, 365

			sources 365

			code standards, applying with EditorConfig 371

			.editorconfig file, adding 373

			.editorconfig file, customizing 373-375

			starter code, reviewing 371, 372

			code testing, with xUnit 148

			additional test methods, adding 155

			exceptions 155

			test failure 155

			tests, organizing with arrange/act/assert pattern 153, 154

			unit test, writing 151, 152

			xUnit Test Project, connecting to main project 151

			xUnit Test Project, creating 148-150

			Codex model 257

			cohesion 197

			collections

			iterating over 53, 54

			comma-separated value (CSV) 195

			common type system (CTS) 101

			composition 131

			constructors 73

			chaining 76, 77

			generating 74-76

			refactoring 73, 74

			continuous integration and continuous delivery (CI/CD) 393

			coupling 198

			D

			Debug

			versus Release builds 335

			DebuggerDisplay attributes

			versus ToString overrides 321

			default interface implementations 134

			dependency injection (DI) 166, 167, 192, 195

			dependency inversion 167

			Dependency Inversion Principle (DIP) 193

			example 193-195

			deserialization 112

			Directed Graph Markup Language (DGML) 305

			Docker 5

			documents, in Visual Studio

			formatting 367, 368

			formatting automatically 368, 370

			Don’t Repeat Yourself (DRY) principle 195, 196

			E

			EditorConfig

			code standards, applying with 371

			else statements

			dropping, after return statements 37, 38

			encapsulation 123

			extension methods 57

			creating 94-96

			F

			failed refactorings

			impact 388, 389

			feature flags 390, 391

			flight scheduling system 99

			flight tracker

			refactoring 66, 67

			FluentAssertions

			readable assertions, writing with 206, 207

			FluentAssertions library 155

			foreach loop 54, 55

			for loops

			converting to 56

			Func 89

			functional programming 85

			data, returning from Actions with Funcs 89, 90

			expression-bodied members, using 85, 86

			functions, passing as parameters with actions 86-89

			G

			generative pre-trained transformer (GPT) 257

			generics

			using, to reduce duplication 247, 248

			generic type parameter 90

			GitHub Codespaces 30

			GitHub Copilot 256

			access, obtaining 261

			activating 260, 261

			installing 260, 261

			predictive model 256, 257

			used, for generating suggestions 262

			using, in Visual Studio 259, 260

			GitHub Copilot Chat 5

			conversation, starting with 258, 259

			documentation, drafting with 270-272

			interacting 262, 264

			limits 275

			refactoring with 264-267

			test stubs, generating with 273-275

			used, for targeted refactoring 267-270

			using, as code reviewer 267

			GitHub Copilot Chat, limitations

			data privacy 275-277

			public code concerns 277

			GitHub Copilot for Business 276

			GitHub Copilot Trust Center 276

			global using 205

			Google Cloud 5

			guard clauses

			used, for validation 231

			using, with GuardClauses library 232

			H

			hashing algorithms 110

			heap 110

			high cohesion 197

			I

			if statements 34

			converting, to switch statements 43-47

			inverting 36, 37

			restructuring 38, 39

			immutable classes

			advantages 239, 240

			preferring 238, 239

			Infrastructure as Code (IaC) 393

			inheritance 113

			init-only property

			using 240, 241

			input validation 228, 229

			CallerMemberInformation attributes, using 233, 234

			exceptions, throwing 230

			guard clauses, using 231

			guard clauses, using with GuardClauses library 232

			nameof keyword, using 231

			performing 229, 230

			instantiation 49

			Integrated Query (LINQ) statements 186

			IntelliJ Java editor 30

			Interface Segregation Principle (ISP) 192

			example 192, 193

			Introduce constant

			refactoring 18, 19

			Introduce local

			refactoring 15-18

			Introduce parameter

			refactoring 19-21

			inversion of control 167

			J

			JetBrains dotTrace 210

			JetBrains Rider

			refactoring in 30

			K

			KISS principle 197

			L

			Language INtegrated Query (LINQ)

			converting to 56-58

			large language models (LLMs) 256

			large-scale refactorings 383

			challenges, reasons 383

			large-scale refactorings, deploying 390

			blue/green deployments 391-393

			feature flags, using 390, 391

			phase rollouts 391

			value of CI/CD 393

			Launchdarkly 391

			legacy code 4

			LINQ methods

			combining 60, 61

			selecting 58-60

			Select method, using for transformation 61, 62

			LINQ statements

			refactoring 58

			Liskov Substitution Principle (LSP) 191

			low-cohesion 197

			M

			magic number 18, 177

			magic strings 18

			Managed Extensibility Framework (MEF) 339

			method access modifiers

			changing 67, 68

			method chaining 72

			methods

			renaming 68-70

			mocking frameworks 213

			mocking libraries

			need for 213-215

			mock object 214

			Moq

			mock objects, creating with 216

			Moq calls

			verifying 217, 218

			Moq return values

			programming 217

			MSTest 148, 163

			testing, with 164

			N

			named arguments 79

			nameof keyword

			using 230

			namespaces 103

			NDepend 295

			using, for .NET analysis 297-300

			NSubstitute

			mocking with 219

			NuGet Package Manager

			URL 202

			NuGet packages 23, 324

			building 332-335

			CodeFixProvider, packaging as extension 338, 339

			deploying 335-337

			hosting options 335

			referencing 337, 338

			Roslyn Analyzers, publishing as 331

			nullability analysis

			enabling, in C# 236, 237

			in .NET 286-288

			nullability operators 238

			using 237

			null coalescing assignment operator 238

			null coalescing operator 238

			null-conditional operator 238

			null-state analysis 60

			null values

			protecting 235, 236

			NUnit 148, 162

			testing, with 162

			O

			object initializers

			using 52, 53

			object instantiation 49

			target-typed new, used for simplifying creation 51

			var keyword, replacing with explicit Types 49, 50

			ObjectMother pattern 162

			object-oriented programming (OOP) 99

			Open-Closed Principle (OCP) 189

			example 190

			optional parameters 82, 83

			organizational buy-in 353

			approaches, for leaders 355

			conversation, setting up 353

			importance, of communication 356

			questions and objections, anticipating 354, 355

			overloading methods 70, 71

			P

			parameters

			adding 80, 82

			refactoring 77

			removing 83, 84

			renaming 68-70

			reordering 78, 79

			partial classes 105

			PascalCasing 248

			pattern matching 48

			exploring 245, 246

			pattern-matching expressions 47

			phased rollouts 391

			platform as a service (PaaS) 5

			polymorphism 135

			primary constructors 241, 242

			program flow, controlling 34-36

			converting, to switch statements 47-49

			else statements, dropping after return statements 37, 38

			if statements, converting to switch statements 43-47

			if statements, inverting 36, 37

			if statements, restructuring 38, 39

			ternary operators, using 41, 42

			pure methods 91

			Q

			Quick Actions icon 16

			Introduce constant 18, 19

			Introduce local 15-18

			Introduce parameter 19-21

			R

			readable assertions

			writing, with FluentAssertions 206, 207

			writing, with Shouldly 204-206

			readable tests

			creating, with Shouldly 202

			recommended rules

			versus minimum and default rules 293

			record classes

			classes, converting into 242-244

			refactored code

			reviewing 62, 96

			testing 27, 62

			refactoring 6, 7

			barriers, overcoming 343, 344

			code 380, 381

			dedicated work items 379, 380

			in agile environment 377

			obstacles 379

			sabbaticals 382

			sprints 381, 382

			refactoring barriers, overcoming

			objections 344-349

			refactoring tools

			in Visual Studio 7, 8

			reference equality 110

			Release builds

			versus Debug 335

			required property

			using 240, 241

			ReSharper

			Visual Studio, refactoring with 30, 31

			result publisher 223

			rewrites 383

			risk register

			alternatives 351

			creating 350

			risk score

			risk priorities, calculating with 352

			Roslyn Analyzer code fix

			building 324

			CodeFixProvider, creating 324-326

			document, modifying with 327-329

			registering 326, 327

			Roslyn Analyzers 186-305

			analyzer project, adding 307-309

			bad code, flagging 316

			code analysis rule, defining 309-311

			creating 307

			debugging 317, 318

			DGML editor, installing 305

			extension development workload, installing 305

			good code issues, verifying 315, 316

			publishing, as NuGet packages 331

			symbols, analyzing with 311, 312

			Syntax Visualizer 306, 307

			test fixture, creating 315

			testing, with RoslynTestKit 313

			test project, adding 314

			Visual Studio extension (VSIX), creating for 318,-321

			writing, tips 313

			RoslynTestKit

			Roslyn Analyzers, testing with 313

			used, for testing code fixes 329-331

			S

			Scientist .NET

			experimenting with 221-224

			sealed keyword 121

			Select methods

			using, for transformations 61, 62

			Shouldly

			NuGet packages, installing 202, 203

			performance, testing with 208, 209

			readable assertions, writing with 204-206

			readable tests, creating with 202

			Shouldly library 155

			Single Responsibility Principle (SRP) 187

			examples 187-189

			Snapper 220

			used, for pinning tests 220, 221

			SOLID code

			writing 186

			SOLID principles 187

			Dependency Inversion Principle (DIP) 193-195

			Interface Segregation Principle (ISP) 192, 193

			Liskov Substitution Principle (LSP) 191

			Open-Closed Principle (OCP) 189, 190

			Single Responsibility Principle (SRP) 187-189

			SonarCloud 295

			code metrics, tracking with 295, 296

			SonarQube

			code metrics, tracking with 295, 296

			sprints 378

			static class 94

			static members

			moving, to another type 92, 94

			static methods 91, 92

			strangler fig pattern 386, 387

			advantages, compared to full rewrite 388

			switch expressions

			converting to 47-49

			Syntax Visualizer 306

			system under test (SUT) 154

			T

			target-typed new keyword

			using 51

			TDD, with Visual Studio 173

			classes, generating 174, 175

			members, generating 175-177

			methods, generating 178, 179

			miles, adding 178, 179

			miles, redeeming 180-183

			red / green / refactor feature, implementing 177, 178

			requirements 173

			starting balance, setting 173

			tests, refactoring 180,-183

			technical debt 4

			as risk 349

			causes 4, 5

			communicating 349

			gut feeling approach 352, 353

			prioritizing 351

			risk priorities, calculating with riskscore 352

			ternary operators

			using 41, 42

			Terraform 393

			test data

			generating, with Bogus 210,-213

			test double 214

			Test-Driven Development (TDD) 171, 172, 208

			benefits 172

			cycle 172

			usage criteria 183

			Test Explorer 148

			testing 143, 144, 389

			with MSTest 163, 164

			with NUnit 162, 163

			testing mindset

			adopting 165

			code coverage 167, 168

			dependencies, isolating 165-167

			good and bad tests, evaluating 167

			testing, incorporating into workflow 165

			testing pyramid 145

			example 145

			test stubs 214

			generating, with GitHub Copilot Chat 273-275

			tests, types

			component tests 144

			end-to-end tests 144

			exploratory testing 144

			integration tests 144

			manual testing 144

			unit tests 144

			the ship of Theseus experiment 384

			transformers 256

			type aliases

			with using directive 248, 249

			U

			unit tests 27, 146, 147

			parameterizing, with Theory and InlineData 156-158

			refactoring 156

			test code, initializing with constructors and fields 158-160

			test code, sharing with methods 160-162

			user stories 378

			using directive

			with type aliases 248, 249

			V

			var keyword

			replacing, with explicit Types 49, 50

			vertical slice 387

			Visual Studio 7

			code analysis, performing 285

			code cleanup 367

			code cleanup profile, configuring 369, 370

			code metrics, calculating 281-284

			code style settings, configuring 370

			documents, formatting 367, 368

			documents, formatting automatically 368, 370

			formatting 367

			GitHub Copilot, using 259, 260

			refactoring tools 7, 8

			refactoring, with ReSharper 30, 31

			Visual Studio Code (VS Code)

			refactoring, with C# Dev Kit 29, 30

			Visual Studio Enterprise 210

			Visual Studio extension (VSIX)

			analyzers, sharing as 318

			creating, for Roslyn Analyzer 318-321

			Visual Studio Installer 305

			W

			waterfall methodology 383

			web services 112

			Windows Presentation Foundation (WPF) 234

			with expressions

			objects, cloning with 244

			X

			xUnit 148

			code testing with 148

			Y

			Yet Another Reverse Proxy (YARP) 388

		

	
		
			[image:]

			Packtpub.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			
				
					
						[image:]
					

				
			

			Clean Code in C#

			Jason Alls

			ISBN: 978-1-83898-297-3

			
					Write code that allows software to be modified and adapted over time

					Implement the fail-pass-refactor methodology using a sample C# console application

					Address cross-cutting concerns with the help of software design patterns

					Write custom C# exceptions that provide meaningful information

					Identify poor quality C# code that needs to be refactored

					Secure APIs with API keys and protect data using Azure Key Vault

					Improve your code’s performance by using tools for profiling and refactoring

			

			
				
					
						[image:]
					

				
			

			Real-World Implementation of C# Design Patterns

			Bruce M. Van Horn II

			ISBN: 978-1-80324-273-6

			
					Get to grips with patterns, and discover how to conceive and document them

					Explore common patterns that may come up in your everyday work

					Recognize common anti-patterns early in the process

					Use creational patterns to create flexible and robust object structures

					Enhance class designs with structural patterns

					Simplify object interaction and behavior with behavioral patterns

			

			Packt is searching for authors like you

			If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

			Share Your Thoughts

			Now you’ve finished Refactoring with C#, we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781835089989

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	OEBPS/image/B21324_11_15.jpg
[Fact]
public void CalculatelargestNunberiiithoutASeven_ReturnsLargestNunberilithoutSeven_WhenInputTsvalid()

1
1/ Arrange
Mock<INunberProvider> mockProvider = new Mock<INumberProvider>();
mockProvider. Setup(x => x.GenerateNunbers()).Returns(new List<int> { 17, 2, 13, 4, 22, 44 1);
17 Act
int result = TestMe.CalculatelargestNunberyithoutAseven(mockProvider. Object);
11 hssert
Assert.Equal(ud, result
3

‘
[0][t mewieimprjet Craptert s’ || inser

OEBPS/image/B21324_03_10.jpg
> -Erol

[Zelow]oo] g4

-

Test run finished: 12 Tests (12 Passe, 0 Faied, 0 Skipped) run in 321 ms

Test
4 @ Chapter3Tests (12)

4@ PacktCloudySkisshir Chapter3 Tests (12)
4@ BosrdingProcessorTests (9)
© Canpassengeriosrd ShouldRetumErpectedResuit (9)

“Board Now via Priority Lane

“Board Now via Priority Lane”)

“Please Wait')

“Board Now via Priority Lane”)

“Board Now’)
*Board Now via Priority Lane)

“Board Now via Priority Lane”)
*Board Now via Priority Lane)

oc X - Hiltary: Flse, i Jp: Flse cu P2,
oc 1 - Hiltary: Flse, 2 IpiTrue, P2, exp
oc ¥ - Hiltary: Flse, 3 Jp: Flse cu P2,
oc 1 - Hiltary: Flse, 3 IpiTrue, P2, exp
oc ¥ - Hiltary: Flse, 4 Jp: Flse cu P,
oc 1 - ity Tre, P, i True upi2,
oc ¥ - ity T, Pl i Flse, P2, exp
oc 1 - ity Tre, Pl i True, upi2,
oc ¥ - ity T, Pl i Flse, P, op

4® Passengerfests (3)

@ Fuliname_ShouldReturnFirstNameAndLastName (3)
© Fulname ShouldReturnFistNameAndLastNamefirst: “lane",last "Doe’, expected: Jane Do)
© Fuliname_ShouldReturFirstNameAndLastName(frst ",

last: "Smith", expected: "Jim Smith®)

© Fullname_ShouldReturnFistNameAndLastName(frst “John", last: “Doe”, expected: “John Doe”)

“Board Now via Priority Lane”)

Duration
3ms
3ms
2ms
2ms
2ms
<ims
<ims
<ims
<ims
<ims
<ims
<ims
<ims

1ms

1ms
<ims
<ims

1ms

OEBPS/image/B21324_05_10.jpg
oy ottt -] | Heep et B i

Tl=z

=

rport.Code (get;set;} (11)
public override string ToString() => Code;

f.DepartureL ocation.Code == depart. Code &&
f.DepartureL ocation.Code == depart. Code &&

fArrivalLocation.Code == arrive.Code &8

°{1d} {DepartureLocation Code]-" +
*{AivalLocation. Code} carrying " +
5(d) {DepartureL ocation.Cade}-" +
"{AivalLocation. Code} carrying " +

OEBPS/image/B21324_12_2.jpg
B9 | Fier [None -] i | | Mex: =@

Hierarchy Maintainabilty .. Cyclomatic Comple... Depth of Inhert.. | Class... v Lines of Sourc... | Lines of Executable...
ChapterdTests (Debug) @ 7 2 1 62 a5 18
Chapterd (Debug) "] 88 218 2 39 501 182

[{} PacktCloudySkiesAir Chapterd Fight Sch [l % 58 7 7 199 &
4 {} PackeCloudySkieshirChapterdFight [l 8 0 1 2 59 2
4 # FightTiacker] 7 9 1 2 50 2
K, schedler: Fightscheduier [0 0 1 1 0

@ FlightTracker(FightScheduler) (1] % 1 1 3 1

@ DisplayFights0: void m] 2 9 H 2

@ MarkFightDelayed(strng, Date [l u 1 7 7 4

@ MarkFightDeparted(string, Dat [l u 1 7 7 4

@ MorkFightarmived(string, Datel [l u 1 7 7 4

@, UpdatelghtFound(sting, Ac B n 2 s s s

@, FindFightByld(string): IFightir [l & 1 5 2 2

D #g Fight m % 1 1 0 H 1

I {} PacktCloudySkiesAir.Chapterd Flight.sch [l 2 E) 2 2 u 3
I {} PacktCloudySkiesAir.Chapterd Flight Boa [l) 54 1 " 10 2

OEBPS/image/B21324_05_02.jpg
2 references | 0 changes

1 @ vl Slpublic class PassengerFlightInfo| :

0 authors, 0 changes

IFlightInfo {

1
1

Convert to positional record

Extract interface...

Extract base class...

Generate constructor...

Move type to PassengerFlightinfo.cs
Move to namespace...

Generate Equals(object)...

Generate Equals and GetHashCode...

D authors, 0 changes
i}
nges
ation { get; set; }
nges
idon { get; set; }
nges
me { get; set; }
hges

{ get; set; }

nges

Generate overrides... DepartureTime — ArrivalTime;
Generate constructor 'PassengerFlightinfo()*
iges
Add 'DebuggerDisplay" attribute gers) {
D _passengers = passengers;

26 }

OEBPS/image/B21324_11_5.jpg
Visual Studio Installer '

Installed Available |

2 installations have updates available. ® Update all Developer News
|
) .) Simplified Code Refinement and Debugging with
0 Visual Studio Enterprise 2022 (3) Modiy e
{555 Lo This March, we announced GitHub Copilot chat ..
Tuesday, August 2, 2023
@ Update available e |
Newin Visual Stuios Compare Fies with Solution |
1772 View details © Update S 1
Comparing code i different fles i a common ne.
Monday, August 21,2023 |
0@ Visual Studio Build Tools 2022 Modiy
Mult-Branch Graph Avaiabl for General
1763 Lounch Audiences
® Gk miie e The power ofversion control comes alve wheny..
Tharsday, August 17,2023
1772 View details ® Update

View more Microsoft developer news..
Need help? Check out the Microsoft Developer
Community or reach us via Visual Studio
Support.

Installer version 36211531769

OEBPS/image/B21324_03_02.jpg
Fix formatting
Place statement on following line
Invert if

Suppress or configure issues

»

if (Status != BoardingStatus.PlaneDeparted) {
BoardingStatus.Boarding) {

tatus
via Priority Lane
p && Status ==
via Priority Lane
= BoardingStatus.Boarding) {
ngGroup >= group) {

=) if (_prioritylLaneGroups.Contains(group)) {

return "Board Now via Priority Lane"

BoardingStatus.Boarding) {

OEBPS/image/B21324_09_1.jpg
Browse

Installed Updat

[shouiay O [e prereesse

NuGet Package Manager: Chapter9Tests

Package source:

8 Q

Shouldly by Jake Ginnivan, Joseph Woodward, Simon Cropp, 384M de 421
Shouldly - Asserton framework for NET. The way asserting “Should" be

UnitTestCoder.Shouldly by Alan Singfield, 21.1K dovinlozds 302
Automatic generation of ¥ cod for Shouldly unittests. Reads yourtest
output and generates 2 matching test for each property in your model..

Shouldly.EqualityExtensions by whortieberbearer, 12.6K down 1,11
Extensions to Shouldly methods totake an equality comparer. Wil
hopefully be integrated into Shouldly t some point.

BDD-toolkit-dotnet.Shouldly by Marcin Markowsk, 5.24K dowr 230
Shouldly extensions for BOD-toolkit-dotnet

HiNetCloud NetCloudCore Shouldl byEicZung 3111 2372010
237.20.10-HiNetCoreAssembly-MD:
[+epQacvcjFb1DeLISV¥npA==]

@ Shouldly © nugetors [
Version:

© Package source mapping i oft. Configure

(%) Options

e
Shouldly - Assertion framework for NET. The way asserting
“Should" be

Version: a21

Author(s): Jake Ginnivan, Joseph Woodward, Simon
Cropp

License: BSD-2-Clause

Downloads: 38355948

Date published: Monday, April 24, 2023 (4/24/2023)

Project URL: https:/shouldly.org/

OEBPS/image/B21324_07_02.jpg
B o-=08

‘Search Solution Explorer (Cul

&[3 Solution ‘ChapterTBeginningCode' (2 of 2 projects)
4 65 Chapter?
26 Dependencies
a[) .edorconti
P acs Progam.cs
4853 ChapterTlests
S Dependencies
b 8Cn MileageTrackerTests.cs
8t Usings.cs

OEBPS/image/B21324_17_07.jpg

OEBPS/image/B21324_02_12.jpg
21

2267]

23
24
25
26
27
28
29
30

if (bags >

total = ApplyCheckedBagFee(bags, passengers, total);

o) {

}
if (isHoli
decimal

Console.

total +=

IAppinheckedBagFee I 7

Rename will update 2 references in 1 file.

I:‘ Include comments

I:‘ Include strings

Enter to rename, Shift+Enter to preview

eePercent;
olidayFee);

OEBPS/image/B21324_05_17.jpg
FlightinfoBase

Class.

4

Properties
& AnivalLocation

A ArivalTime

A

A Departurelocat...

DepartureTime
A Duration

& ud

IFlight|nfo

FreightFlightinfo A
Class.
+ FlightinfoBase

4 Properties

F Cargo
A CharterCompany
4 Methods

@ Tostring

IFlight|nfo

PassengerFlight...
Class
 FlightinfoBase

4 Fields

@ _passengers
4 Methods

@ Load

@ Tostring
@ Unload

A

OEBPS/image/B21324_04_12.jpg
Change Signature. X
Parameters:

Index Modiier Type Parsmeter Default Callsite T

1 string id e

2 string dest

3 DateTime depart

string: gote: Add
Remove

Preview method signature:

public Flight ScheduleNewflight(string id, string dest, DateTime depart)

[7] Preview reference changes

OEBPS/image/B21324_12_17.jpg
{} Packt.CloudySkiesAir
.Chapter12.Flight
.Scheduling

“: FlightScheduler
- IFlightinfo
“: AirportEvent
{} Packt.CloudySkiesAir

“: Airport
.Chapter12.Flight

“ Flight

“z FlightTracker

{} Packt.CloudySkiesAir
.Chapter12.Flight
.Scheduling.Search

“: FlightTimeFilter “z FlightSearch

“: AirportFilter

{} Packt.CloudySkiesAir
.Chapter12.Flight
.Scheduling.Flights

“: Cargoltem
“: CharterFlightinfo 2 Icargokem
“: PassengerFlightinfo “: FlightinfoBase FlghtStatus

“ FreightFlightinfo

OEBPS/image/Cover.png
<packt>

Refactoring with C#

Safely improve .NET applications and pay down
technical debt with Visual Studio, .NET 8, and C# 12

MATT ELAND

Foreword by Steve Smith, Principal Architect, NimblePros

OEBPS/image/B21324_14_7.jpg
Product ID:

Add New Asset

Tpe ‘mam\rmmmumwm

P e —— :

OEBPS/image/B21324_05_22.jpg
2 references | Matt Eland, 12 hours ago | 1 author, 3 changes

Elpublic sealed class PassengerFlightInfo : FlightInfoBase {

io-

[OR4 ‘ private int _passengers;

@

11

q
Generate constructor ‘PassengerFlightinfo(int)*
4 Generate Equals(object)

9 Encapsulate field: ‘_passengers' (and use property) El

Pull *_passengers' up 3

Generate Equals and GetHashCode

Encapsulate field: *_passengers' (but still use field)

12
13
14
15
16

‘ 4 references | Matt Eland, 12 hours ago | 1 author
= public override string BuildFlig
base.BuildFlightIdentifier() +
$" carrying {_passengers} peop

|}

Lines 5 to 15

public int Passengers { get => _passengers;

public void Load(int passengers) =>
= passengers;

Passengers| = passengers;

public void Unload() =>
= 0;

set => _passengers = value; }

public override string BuildFlightIdentifier() =>

base.BuildFlightIdentifier() +
$" carrying { 1 people";

$" carrying {Passengers} people";

Preview changes

OEBPS/image/B21324_07_10.jpg
LA NG [B:]0sf@o] - aE G-
Test run frishedt: 4 Tests (4 Passed, O Foded, 0 Skipped) run in 295 ms
Test Duration = Trsits Error Message
ChapterTTests (&) 2ms
4 © ChapterTlests (4) 2ms
4@ MiesgeTrackerTests (4) 2ms
© AddhiengeshouidincresseBoance 4
© ReceemiiengeshouidDecrenseBaance R
© RedeemMieageShouldPreventiegativealance <1ms

@ NewAccountShouldHaveStartingBalance. 2ms

OEBPS/image/B21324_16_05.jpg
Options

Search Options (Ctrl+E)

b Environment
b Projects and Solutions
» Source Control
» Work Items
4 Text Editor
General
Advanced
Code Cleanup
File Extension
b All Languages
» Android XML
b ASP.NET Web Forms
ack
General
Scroll Bars
Tabs
Advanced
4 Code Style
General
b Formatting
Naming
IntelliSense
b C/CH+
b CSS

X

Your .editorconfig file might override the local settings configured on this page which only apply to your machine.
To configure these settings to travel with your solution use EditorConfig files. More info Learn more

Generate .editorconfig file from settings

Description Preference Severity
" A
Prefer simplified boolean expressions | Yes “ || @ suggestion |
PR e Yes v || @ suggestion v
E E No ¥ | O Refactoring Only ¥
Prefer conditional expression over 'if with ‘ N V'} O Refactoring Only
returns 0 s ion
Prefer explicit tuple name Yes ~|| A Warming
| Enor [v]
// Prefer: ~
string s = expr ? "hello" : "world";
// Over:
string s;
if (expr) {
s = "hello";
} else {
s = "world";
i

Cancel

OEBPS/image/B21324_15_4.jpg
Web Application PR Aop Server 2 Database Server

3
{

OEBPS/image/B21324_12_10.jpg
§ L CESERRE | W KR 1 S N0 | ¥ Mt T Shwnee
@ -5 public string BuildMessage(string id, string status) {
1 is {status}";

Make static

Use expression body for method
Change signature...

Wrap every parameter »
Unwrap and indent all parameters

Extract base clas:

in Source

Configure CA1822 severity »

in Suppression File

Configure severity for all analyzers »

Configure severity for all ‘Performance’ analyzers » | in Source (attribute)

OEBPS/image/B21324_16_01.jpg
[P Duplicate Ctrl+E, V

X Delete Del
& Select All Ctrl+A . " N
ception("Invalid flight query format "quer
Insert File As Text...
Advanced s Toggle Spell Checker
Bookmarks [B Format Document Ctrl+K, Ctrl+D
Outlining Format Selection Ctrl+K, Ctrl+F
IntelliSense Tabify Selected Lines
Multiple Carets Untabify Selected Lines
Refactor Make Uppercase Ctrl+Shift+U

IntelliCode suggestions

Make Lowercase

OEBPS/image/B21324_04_15.jpg
@ vL‘: private string Format(DateTime time) {

Make static D]

Use expression body for method

(© @ CA1822 Member Format’ does not access instance data and can
be marked as static

Lines 63 to 65

Change signature..

Extract base class.. private string Format(DateTime time) {

private [tatic Jstring Format(DateTime time) {
return time.ToString("ddd MMM dd HH:mm tt");

Suppress or configure issues

OEBPS/image/B21324_05_06.jpg
28

29
30
31
32
33
85

86
87
88
89

|
T

=]

0 references | Matt Eland, 1 day ago | 1 author, 1 change
public void RemoveFlight(IFlightInfo flight) {

3

_flights.Remove(flight);

[Stuff T don't want to look at right now

2 references | @ 1/1 passing | Matt Eland, 1 day ago | 1 author, 1 change
public IEnumerable<IFlightInfo> GetAllFlights() {

}
}

return _flights.AsReadonly();

OEBPS/image/B21324_11_9.jpg
@ Matt Eland

Generate a list of 10 random numbers.

@ copilot

/1 Populate a list of random numbers
List<int> numbers = new List<int>0);
Randon rand = new Random();

for (int i=0; i<10; it+)
i1

nunbers. Add(rand.Next(1, 161)); // Generates numbers between 1 and 100
3

<@

A s e

OEBPS/image/B21324_12_5.jpg
Entire Solution - /[@ otrors ||[A 3 Warmings | [@ 2 s]| 7 | [Buia+ g
Code Description

A
A
A
o
» @

csas1e
csasie
csas1e
IDEOOTS
IDEDDS9

Non-nullable property ‘Country’ must contain a non-null value when exiting constructor. Consider declaring the property as nullable.

Non-nullable property 'Code’ must contain a non-null value when exiting constructor. Consider declaring the property as nullable.
Non-nullable property ‘Name' must contain 2 non-null value when exiting constructor. Consider declaring the property as nullable.
Use pattern matching

Unnecessary assignment of a value to ‘otherName’

Project
Chapteni2
Chaptent2
Chaptert2
Chaptent2
Chapteri2

OEBPS/image/B21324_09_5.jpg
Calling
Code

Scientist Legacy
................................... NET vt ROULINE
x
Results New
Publisher Routine

OEBPS/image/B21324_13_3.jpg
Syntax Tree

b UsingDirective [0.38)
4 FileScopedNamespaceDeclaration [42.367)
b NomespaceKeword [42.5T)
b QualifedName [52.89)
b SemicolonToken [69.90)
4 ClassDeclaraion [94.367)
b PublicKeyword [64.100)
b ClassKeyword [101.106)
b IdentiferToken [107.113)
b OpenBraceToken [114.115)
4 MethodDeclaration [110.364)

»
b Attributelist [119.261)
b PublicKeyword [265.271)
b PredefinedType [272.278)
IdentifierToken [279.291)
b ParameterList [291.317)
b Block[318.364)
b CloseBraceToken [366.367)
b EndOfFileToken [371.371)

Fropertios
Tpe SyntaxToken
Kind dentierToken
Clasication” Method Neome [
FullSpan
HasLeadingTrivia
HasStructuredTiivia
HasTrailingTrivia
IsMissing
Language
LeadingTrivia
Parent
RawKind
Span
SpanStart
SyntaxTree
Text
TrailingTrivia
Value
ValueText

Syntax Visualer

[279.291)
False
False
False
False

c#

[SuppressMessage(*Performance”, "CA182Z
8508

[279.291)

279

using System.Diagnostics.CodeAnalysis; nai
BuildMessage

BuildMessage
BuildMessage

OEBPS/image/B21324_02_07.jpg
35|
3¢ @ lel if (travelTime.Month >= 11 || travelTime.Month <= 2) {
31

Replace ‘||' with ‘&&" i
iy If).
39 Introduce local >
4l Extract method
u]

- Extract local function
u7

43 Place statement on following line

Suppress or configure issues » | into extracted method to invoke at call sites

into new overload

OEBPS/image/B21324_02_16.jpg
0 File Edt View Gt Project Buld Debug Test Analyze Tools Extensions Window Help | O Search- Chapter2BeginningCode (4] = o x
©-0 -8 © - - Debug ~|[AnycPU - [Chapter2 | B Chapte2 - > - BB BT LD
BaggogeCalculatorlestscs | IPFIIRGTEER g program.cs editorconfig Chapter2 ~ # [Solution Explorer ~ax
G Chapter2 _ | %8 Packt Cloudy SkiesAi Chapter2 BaggageCal - © CalclatePrice(int numChecked,int numCar -| ado--08 #15]
17 3 A || earch Solution Explorer (Ctr+s) p-
18 &R Solution 'Chapter2BeginningCode' (2 of 2 projects)
19 8 if (nunChecked > 0) { = e
20 B if (numChecked <= numPassengers) { T b 58 Dependencies
21 Console.uriteLine($"Checked bag price: {numChecked * ueM}); 2 — 80} editorconfig
22 total += numChecked * uoM; b« C¥ BaggageCalculator.cs
23 B } else { b vC# Program.cs.
24 decimal checkedFee = (numPassengers * 4eM) + ((numChecked - nt 4653 ChapterZTests
25 Console.WriteLine($"Checked bag price: {checkedFee}"); b &8 Dependencies
26 total += checkedFee; | || Poeiame s
5 3 85 Usings.cs
28 ¥
29 -
? 308 if (travelTime.Month >= 11 || travelTime.Month <= 2) {
[Mergeinto pattern [][@ Merge nto pattem in method Goleulteprice [F@EPETCeNt] = (L G Changes
into two i into patter in-
ST m e Properties v a1x
4 Negate | expression § Mergeinto pattern in project .
A Eip'|l operands @ Mergeinto patter in solution -
— AP
Pl
W, Inspection: 'Merge null/pattern/value checks into 'or/'and pattems' » 1anges

ST

38

PrIvace uscimac
decimal total

l\uLdkcrl;eru}t()nt numBags) {

OEBPS/image/B21324_06_07.jpg
« [Solution 'CheptertBeginningCode’ (2 of 2 projects)
» 8@ Chapters

4 + 571 Chapter6XUnitlests

L)

UnitTestl.cs
«Ca Usings.cs

Add COM Reference...
D Manage NuGet Packages...

OEBPS/image/B21324_14_3.jpg
MattEland ~

'@ nuget Upload

Search for packag

R > Packages > Upload

Your package file will be uploaded and hosted on the NuGet Gallery server (https://www.nuget.org).

To learn more about authoring great packages, view our Best Practices page.

v Upload

‘ Browse or Drop files to select a package (nupkg) or symbols package (:snupk

OEBPS/image/B21324_16_08.jpg
Entire Solution ~||[@ 2Erors] |[A 7Warnings || [@ 2Messages || 7 | [Build + IntelliSense -

eePBPPPPPOO

Code
IDE0008
IDE0008
csas1e

Description
Use explicit type instead of 'var'
Use explicit type instead of ‘var'

Non-nullable property ‘Origin' must contain 2 non- i
Non-nullable property ‘Destination’ must contain a non- i

Non-nullable property ‘Origin' must contain 2 non-+ i

Non-nullable property ‘Destination’ must contain a non- i

Use explict type instead of ‘var
Remove unused parameter ‘args'
Member ‘ParseQuery’ does not access instance data and can be marked s static
Member ParseResult does not access instance data and can be marked as static

PRRRRIRIRE

OEBPS/image/B21324_03_09.jpg
Fix formatting

Convert to LINQ
Convert to LINQ (call form)

Use implicit type

X
1
1
1
1
1£ Convert to ‘for'
 ;
2
2
2

jeroo
23 : N =
it onsoieliTEeiihel [filteredPassengers.AddRange(passengers .here(p 3 !hasBoarded.HasValue || p.HasBoarded ==
- i DisplayBoardingHeader();

Place statement on following line

Suppress or configure issues
S+ canrassel

1- foreach (Passenger P in passengers) 1{
- =

‘using Packt.CloudySkiesAir. Chapters;
using System.Ling;

Lines 10 to 18
[»] List<Passenger> filteredPassengers = new();

!hasBoarded.HasValue || p.HasBoarded == hasBoarded) {

i b e

hasBoarded))];

OEBPS/image/B21324_12_9.jpg
Code Description
© A CATE22 Member BuildMessage’does not sccess instance dats and can be marked asstatic
The behavior of ‘StingBuilder Appendi(ref StringBuilder AppendinterpolatedStringHandier) could vary based on the current userslocale
© A CAT05 settings Replace this callinCharterFightinfo.BuildFlightidentiier(' with a cal to StringBuilder.Append FormatProvider, ef
Builder AppendinterpolstedStringHandler)’
4 & Catzps e behvior of ‘Dtelime Totang(sting) could vy based o the curent user's ocle sttings.Replacethis cal in DateTime.Format(’
with a call to ‘DateTime.ToString(string, [FormatProvider)

OEBPS/image/B21324_11_2.jpg
Whatis .NET?

/' Searching for: What is .NET?

\/ Generating answers for you.

NET is an open source developer platform created by Microsoft for building many different types of
applications. It s a free, cross-platform, open source developer platform for building many different types of
applications. With .NET, you can use multiple languages, editors, and libraries to build for web, mobile,
desktop, games, loT, and more. You can write .NET apps in C#, F#, or Visual Basic. C# s a simple, modern,
object-oriented, and type-safe programming language. F# is a programming language that makes it easy to
write succinct, robust, and performant code. Visual Basic is an approachable language with a simple syntax
for building type-safe, object-oriented apps ' 2

1 hope that helps! Let me know if you have any other questions.

Leammore: 1. dotnetmicrosoftcom 2. dotnetmicrosoftcom 3. bing.com 10f30 @

OEBPS/image/B21324_05_25.jpg
3 references | 0 changes | 0 authors, 0 changes

@ ~Hpublic class [CargoIten {

Extract interface...
Extract base class...
Move to namespace...

Generate Equals(object)...

Generate Equals and GetHashCode...

0 changes
{ get; set; }
0 cha

ToStrlng() =>
el

OEBPS/image/B21324_17_03.jpg
Year | Year 2 Year 3
In In In In Eallow In
Use Use Use Use Use
In In In In
Use Fallow Fallow Use Use Use

OEBPS/image/B21324_15_1.jpg
Chat App Prototype v0.0.1

[Text T Vision T Speech T chat T Settings]

~ Video
Camera [Primary Webcam 1 le
Take Picture I

— Conversation Log

440008 4004 402008 A0
40208 ssstemreien
BN 4 A0

440008 4004 40008 A0
40208 essstemreien
BN 4 Aot

440008 40204 40008 A0
AR S
BN S Aot

73400808408 SNIE @0 AN

OEBPS/image/B21324_04_04.jpg
reference | @ 1/1 passi

Flight? flight = FindFlightById(id);
if (fFlight != null) {
flight.DepartureTime = time;
flight.Status = FlightStatus.Departed;
Console.Writeline($"{id} departed at {Format(t
} else {
Console.WriteLine($"{id} could not be found");

i

md ~

Rename will update 3 references in 1 file

["] Include comments

[include strings
Enter to rename, Shift+Enter to preview

return flight;

OEBPS/image/B21324_05_14.jpg
EE IFlightinfo 9 IFlightinfo

FreightFlightinfo A Passengerflightinfo
Class Class
.4

4 Properties 4 Properties

A Arrivallocation ArrivalLocation

& _ArivalTime ArivalTime

Cargo Departurelocation
& CharterCompany DepartureTime

DepartureLocation
/& DepartureTime

Duration

& Duration
ZLd

M
[\

4 Methods ® Load
®
@

BuildFlightidentifier

@ BuildFlightidentifier
@ Tostring

Tostring
Unload

OEBPS/image/B21324_07_09.jpg
»>-@rol B[00 8-y

Test run fnished: 3 Tests (2 Passed, T Filed, 0 Skipped) run in 324 ms

&-

Test
4@ ChptertTests ()
4 ChaptertTests ()
4 MilesgeTrsckerTests ()
© AddMiesgeshouldincresseBslance
© NewhccountShouldHaveStartingdslance
 RedeemileageShouldDecressedalance

Durati.. ~ |Traits
sms
Sms
Sms
<ims
2ms
3ms

Error Message

System NotimplementedException : The method or operation is not implemented.

OEBPS/image/B21324_05_01.jpg
FlightScheduler IFlightinfo A | K Departurelocation | Airport

Class. Interface Class.

4 Methods @ flights | 4 Properties & Anivaltocation | pae——
@ GetAllFlights A ArivalTime A Code
@ RemoveFlight K DepartureTime & Country
@ ScheduleFlight (+ 1 overload) K Duration & Name
@ Search K

? IFlightinfo ? IFlightinfo

FreightFlightinfo A PassengerFlightinfo A
Class. Class.
v

4 Properties 4 Properties

& AnivalLocation & AnivalLocation

A AmivalTime & AnivalTime

& Cargo A Departurel ocation

A CharterCompany & DepartureTime

A Departurel ocation A Duration

& DepartureTime & ud

A Duration 4 Methods

& ® BuildFlightidentifier
4 Methods ® Load

@ BuildFlightidentifier @ ToString

@ ToString @ Unload

OEBPS/image/B21324_06_01.jpg
Manual
Tests

End-to-end
Tests

Integration Tests

Component Tests

Unit Tests

OEBPS/image/B21324_14_6.jpg
Edit View Git Project Buld Debug Test Analyze Tools Extensions Window Help | Search (Ctrl+Q) P | consoleappt

- b oot < b - |]

1¢” Sinternal class

Progran {
0 references

3‘ private stati @ class Program
Console. W 5 B ion ' K j
CSA1001: Override ToString on Program £ solution Copsoledppltlcfiproicl)
i 4 ConsoleApp1
4 &8 Dependencies
Analyzers

A @ o-s08

[Search Solution Explorer (Ctrl+)

o EwWwN
-

Microsoft.CodeAnalysis.Analyzers
& Microsoft.CodeAnalysis.CSharp.Analyzers
@a Microsoft.CodeAnalysis.CSharp.NetAnalyzers

@ Microsoft.Interop.CominterfaceGenerator

& Microsoft.Interop.JavaScript.JSImportGenerator

3
3
3
> §a Microsoft.CodeAnalysis.NetAnalyzers
3
3
3

@ Microsoft Interop LibrarylmportGenerator

& Microsoft Interop.SourceGeneration
|| 4 & PacktAnalyzers
of CSA1001: Override ToString()

@ System.TextJson SourceGeneration

P @ System.Text.RegularExpressions.Generator
b 8 Frameworks
b '@ Packages
D C# Program.cs

OEBPS/image/B21324_12_14.jpg
ne Main

n
n
Diagrams
;:lmmmn'
7 osptenComsoe
°0 Chapter12 = syseming ~
T spemcotuctons ™

Dependency Graph Dependency Matrix Treemap Metric View Abstractness vs. Instability

View as [SCALED | FULL @ View as [SCALED |FULL @ View CONTROL IMAGE @

View as | SCALED FULL @

Application Metrics Note: Further Application Statistics are
#Lines of Code Debt Quality Gates
247 & 41 7.91% v fom7.92% < Fail o
6 (NotMyCode) = nodir @ wam i
Debt 6h1omin = noain

T The technical-debt s incompiete because no .

yp coverage data specitied S
24 = noaf A critical 1
1 Assemblies = nodi A violated "
10 Namespaces = nodif ® o« 152

Coverage
70 Methods = noin
N — e

OEBPS/image/B21324_17_06.jpg
N MattEland.AutomatingMyDog.Cy
él attEland.AutomatingMyDog.Core feaveFcdiBad
C:\Dev\repos\AutomatingMyDog\MattEland.AutomatingMyDog.Core

@© Target framework > Select components > Upgrade

Upgrade selected components

48 Finalize project dependendies 9/23

Cancel

» ‘@ AzureAlLanguage.Conversations 1.0.0
» ‘@ AzureAlOpenAl 1.0.0-beta.5

» '@ AzureAlTextAnalytics 5.2.0

® ©® ® 6

» '@ Microsoft.Azure.CognitiveServices.Language.LUIS.Runtime 3.0.0

OEBPS/image/B21324_15_3.jpg
TEAM Q1 Q2 3 4
New Web Portal Launch ‘Sales Campaign
Web Team
I Integration with new Payment System

New Payment System Connect with New Vendor
Services Team

Compliance Audit Performance Improvements

Integrations Team New Vendor Onboarding Paid Services work for Legacy Customer

OEBPS/image/B21324_02_03.jpg
11 B if (carryon > 0) {

12¢ Console.WriteLine($"Carry-on: {_}");

13 total += carryOn * 30M;
14 {

OEBPS/image/B21324_02_11.jpg
21

2247~ H

Quick Actions (Ctrl+.)

23
24
25
26
27
28
29
30
31
32
33
34

if (bags > 0) {
if (bags <= passengers) {

al firstBagFee = bags * FirstBagFee;
.WriteLine($"Checked: {firstBagFee}");

total += firstBagFee;

else {

decimal firstBagFee = passengers * FirstBagFee;

decimal extraBagFee = (bags - passengers) * ExtraBagFee;

decimal checkedFee = firstBagFee + extraBagFee;

.WriteLine($"Checked: {checkedFee}");
total += checkedFee;

OEBPS/image/B21324_05_11.jpg
24
25
26
27
28
29
30
3L
32
33
34
35
36

PassengerFlightInfo flight = new() {

Arrivallocation = arr,
DeparturelLocation = dep,
DepartureTime = DateTime.Now,
ArrivalTime = DateTime.Now.AddHours(d),
Id = "CSeee4",

i

int passengers = 308;
flight.Load(passengers);

> @ flight | {CS0004 DNA-CSI carrying 308 people})

OEBPS/image/B21324_11_16.jpg
nces | 0 ch 0 authors, 0 ch
pub'L:u: class TestMeTests

{

[Fact]|

eferences sthor

public void Ca'l.cu'LateLargestNMbeNlthoutASeven _ThrowsException_WhenInputIsNull()

{

// Arrange

Mock<INumberProvider> mockProvider = new Mock<INumberProvider>();

mockProvider.Setup(x => x.GenerateNumbers()).Returns((IEnunerable<int>)null);

// Act & Assert

Assert.Throws<ArgumentNullException>(() => TestMe.CalculateLargestNumberWithoutASeven(mockProvider.Object));
}

puh'l.lc void Ca'l.cu'LateLargestNumberWlthoutASeven ReturnsLargestNumberWithoutSeven_WhenInputIsValid()
{

// Arrange

Mock<INumberProvider> mockProvider = new Mock<INumberProvider>();

mockProvider.Setup(x => x.GenerateNumbers()).Returns(new List<int> { 17, 2, 13, 4, 22, u44 });

/1 Act
int result = TestMe.CalculatelLargestNumberWithoutASeven(mockProvider.Object);

// Assert
Assert.Equal(44, result);

OEBPS/image/B21324_04_03.jpg
public FLight? MarkFlightDeparted(string id, DateTime B) {

Flight? flight = FindFlightById(id); 8

Ask Copilot
if (flight != null) {

At/

x 5 @ Quick Actions and Refactorings... Crl+.
flight.DepartureTime = t; e T
flight.Status = FlightStatus.Departed; s S Wiige G Ge

Console.WriteLine($"{id} departed at {Format(t

OEBPS/image/B21324_07_03.jpg
// Act
MileageTracker tracker = new();
Generate class ‘MileageTracker' in new file E] 50246 The type or namespace name ‘MileageTracker’ could not be

Generate class ‘MileageTracker’ found (are you missing a using directive or an assembly reference?)
Adding MileageTracker.cs' to ‘Chapter7Tests’ with content:

Generate nested class ‘MileageTracker

Generate new type...

Change ‘MileageTracker' to "MileageTrackerTests'.

| Preview changes

OEBPS/image/B21324_12_1.jpg
Debug Test | Anslyze | Tools

bug = || Any Pl
m“e
s = resul

Code Cleanup
Run Code Analysis »
Build and Suppress Active lssues » AWp
Configure Code Anslysis . o

= Time >= < MinAr
Calculate Code Metncs. V][Forsolution |

Windows . For Chapter12

OEBPS/image/B21324_13_7.jpg
»>-@rolv[Az]0:]00] A-HEEOS -

Test run finished: 2 Tests (2 Passed, 0 Faiked, 0 Skipped) run in 1.6 sec

Test Durati.. ~ Traits Error Message
4© PacktAnalyzersTests @) s me
4 © PocktAnslyzersTests (2) 46 ms

OEBPS/image/B21324_05_21.jpg
Pull Members Up 52

Select destination and members to pull up.

Select destination:

+0 [Flightinfo

Select members:

Members Make abstract Select All

@, _passengers
L] . _passeng Deselect Al

@ BuildFlightldentifier()

Select Dependents

@ ToString()

Select Public

[@ Load(int
O

OooE

@ Unload()

OK Cancel

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B21324_04_08.jpg
4/4 passing | Matt Eland, a
public Flight Schedu‘l.eNeulF'l)ght(str:Lng id,
B Flight +ught new()

str:mg dest, DateTime depart, string gate) {

Destm = ‘m‘ CS7036: There is no argument given that corresponds to the required parameter ‘id" of ‘Flight Flight(string, string,
DateTime)'
DepartureTime =

Gate = gate, Show potential fixes (Ctrl+.)
Status = FlightStacus.invouna

14
|| return ScheduleNewFlight(flight,

OEBPS/image/B21324_11_12.jpg
public static void Main() {
RefactorMe refactorMe = new RefactorMe();
refactorMe.DisplayRandomNumbers() ;|

¥ D void RefactorMe.DisplayRandomNumbers()

Displays a sequence of 10 random numbers.

OEBPS/image/B21324_04_13.jpg
8- 2189y s o B R T R CLE

o~ gt
A Status 7ot onroe
SR atst e et penes st 22
past
oo uesessoats) caute vt b s

'
rp

s <Ly st ignebspstae g o, cerine sepsesserin)
e o - R e
S T
S kit < gt
g st = Pt e
| e s L g o ? renattspactrerioey
oot westsnats o) can vt b s

'

v iy Form e T ey |
et ioe ToStiraCaed N cd e <17

o eleils. poraIe

I S

OEBPS/image/B21324_16_04.jpg
3 220
| Configure Code Cleanup X

Profiles: Included fixers:
Profile 1 (default) Remove unnecessary Imports or usings
Profile 2 Apply file header preferences

Sort Imports or usings

Format document

Available fixers:

] Apply object creation preferences

Remove unused variables

Apply IsNot preferences

Format document (C++)

Add transitively used and remove unused #include statements (C++)
Apply conditional expression preferences

Apply auto property preferences

|

OEBPS/image/B21324_11_6.jpg
Manage Extensions
b Installed
4 Online

4 Visual Studio Marketplace
Search Results
b Controls
b Templates
b Tools
b Updates (2)

b Roaming Extension Manager

Change your settings for Extensions

GitHub Copilot

Trial

GitHub Copilot Chat

GitHub Copilot is an Al pair programmer that helps
you write code faster and with less work. Requires...

o

GitHub Copilot Chat brings fully integrated Al-powered Copilot

chat experiences to Visual Studio. Requires a GitHub ID which ha...

22 Microsoft

’ GitHub Themes

Port of the popular dark and light GitHub themes for Visual Studio

Code.

Open on GitHub

Created By: GitHub
Version: 1.100.0.0
Installs: 480589

Pricing Category: Trial
Rating: /7 /- (131 Votes)
More Information

Report Extension to Microsoft

Scheduled For Install:

None

Scheduled For Update:

None

OEBPS/image/B21324_03_05.jpg
9 = public void Fullname_ShouldReturnFirstNameAndLastName
10 // Arrange

19 - var p = Build(first, last);

if DEO00S Use explicit type instead of 'var'

1t Inline temporary variable Lines 10 to 12

13 | // Arrange

14 2tepeesonconfigus Euce IR Build(first, last);

17 Assert.Equal(Passenger p = Build(first, last);
18 3}

OEBPS/image/B21324_05_05.jpg
i@ ~ | namespace Packt.CloudySkiesAir.Chapter5.AirTravel;

Change namespace to match folder structure]

IDEO130 Namespace "Packt.CloudySkiesAir.ChapterS.AirTravel" does

Convert to block scoped namespace not match folder structure, expected "Packt.CloudySkiesAir.Chapter5"

Lines 2 to 8

Move file to “AirTravel using System.Collections.Generi

Change namespace to ‘Packt.CloudySkiesAir Chapters®

OEBPS/image/B21324_02_15.jpg
2 Matt Eland

37 private decimal CalculatePriceFlat(int numBags) {

38 decimal total = 0;

39

40 // Business says to use a flat 100 regardless of count
41 return 100M;

42

43 // 01d logic: $50 per bag

44 return numBags * 50M;

@ Comment unreachable code

46
&, Compiler warning: ‘CS0162: Code is unreachable’ >

47| & Inspection: "Heuristically unreachable code’ >
® Navigate To.. A
5 Inspect This.. CtieAleShit A
3 Generate Code... Aelnsent

OEBPS/image/B21324_06_06.jpg
»r-Crelva G- Search (Ctri+l) o
Test run finished: 1 Tests (1 Passed, 0 Failed, 0 Skipped) run in 302 ms A0 Warnings @ 0 Errors
Test Duration Traits Error Message Test Detail Summary
4 @ Chapter6XUnitTests (1) 1ms @ Chapter6XUnitTests.UnitTestl.Testl
4 @ Chapter6XUnitTests (1) 1ms Source: UnitTestl.cs lined
4 ® Unitfestt (1) . ®buration: 1

O Test! Tms

OEBPS/image/B21324_12_6.jpg
Jpublic class Airport {
5 references | Matt Eland, 23 hours ago | 1 author, 1 change
public string Country { get; set; }

6 references | Matt Eland, 23 hours ago | 1 author, 1 change
public string Code { get; set;
4 references | Matt Eland, 23 hours ago | 1 author, 1 change
public string Name { get; se

- @ .| & string AirportName { get; set;}
S public override

irport? othel (38618 Non-nullable property ‘Name’ must contain a non-null value when exiing constructor. Consider declaring the property as nulable.

Show potential fixes (Ctrl+)

OEBPS/image/B21324_05_15.jpg
2 references | Matt Eland, 39 minutes ago | 1 author, 1 change
i@~ Hpublic class PassengerFlightInfg : IFlightInfo {

Convert to positional record

n

Extract interface... minutes ago | 1 author, 1 change

i
author, 1 change
tion { get; set; }

‘] Generate constructor...

OEBPS/image/B21324_13_10.jpg
SkillController.cs %

| &MattBot @ _logger
7 |using Microsoft Extensions.Logging;
8
9 Enamespace MattBot.Controllers
10 {
1 11/ <sunmary>
12 /// A controller that handles skill replies to the bot.
13 /11 </sunmary>
u [ApiController]
15 [Route("api/skills")]

3 references | 0 changes | 0 authors, 0 changes
@ 16 public class SkillController : ChannelServiceController
iZ (priv@ g class MattBot.Controllers.SkillController T
1 : Acontrollr that handles siill replies to the bot. 7° '
i Oreferences| of i

- et CSAT0Dt: Overide ToSing onSKlController |y i cantreties Logger)
2 {1 basd Show potential fixes (AltsEnter or Ctrl+)
2
2

100% 1§

(oo]| @ 0frrs | & 0orzWarnge [0 3 wewoge |] [t]

Code Desaription Project
b @ CSA10010verride ToString on BotController Mattgot
b @ CSA1001Override ToString on SkilController MattBot
4 @ CSA10010verride ToString on Startup MattBot

‘Override ToString to help debugging.

File
BotController.cs
skillController.cs
Startup.cs

OEBPS/image/B21324_03_06.jpg
2

Ho|

NNNNNNN

‘ refe ing | Matt Eland, 1 day ago | 1 author, 1 change

cprivate Passenger Build(string firstName, string lastName) {

]
@-| Passenger passenger] = new();

Fix formatting ‘ @ DE0017 Object initialization can be simplified

Object initialization can be simplified D‘ Lines 20 to 26
private Passenger Build(string firstName, string lastName) {
Passenger passenger = nen(fj

Inline temporary variable irstName = firstNamef|

astName = lastName;
Passenger passenger = new()[q
Suppress or configure issues FirstName = firstName]]

LastName = lastName

Introduce local >

Introduce parameter for ‘new()"

return passenger;

OEBPS/image/B21324_10_1.jpg
public FlightInfo GetF'nght(strlng id, string apiKey) {

1 RestRequest request = nen(s"/fLights/{id. ToLoverO}"); _©
request . AddHE &cetion Thiown @id_ | null 5] S e

A System.NullReferencebxception: Object reference not set to an instance of an
FlightInfo re object:
idwas null
return respo
sk Copilot | Show CallStack | View Details | Copy Detais | Start Live Share session
H

4 Exception Settings
Break when this exception type is thrown

OEBPS/image/B21324_02_08.jpg
0 references | Matt Eland, 6 hours ago | 1 author, 2 changes
private decimal CalculatePriceFlat(int numBags) {

decimal total = 0;

// Business says to use a flat 100 regardless of count
return 106M;

// Old logic: $50 per bag
return numBags * ExtraBagFee;

OEBPS/image/B21324_11_11.jpg
How would you improve this code?

1 and 100, and then outputs them to the console. The code is simple but can be optimized
to improve its performance and readability.

inside the loop. This will reduce the overhead of the random number generator by reusing
the same instance for each iteration of the loop. Additionally, to improve readability, the
int> _numbers. =

new List<int>(10): instead of the default constructor.

OEBPS/image/B21324_13_2.jpg
Modifying — Visual Sudi Enterprise 2022 (3) — 17.1.2

Workloads Individual components Language packs

Creata 2 and 3D games with sty powerul ross
pltform development enorment.

Other Toolsets (5)

| Bucoyrioies
Connact davelop, an tetcota sotions i SQL Seve,
Rasre Data Lae or Fodoop

Visua Studio extension development

Create ks and exersions or Visol S g
news commands, code analyers and o windows.

[}t bt deopmert v
Creareand debug appiatons ranning i 3 Linux
envitanmen:or on an embedded device.

Locston
CAprogram Fles\Micosof Visul Sudi2022\nverpise

Instalation locations
e th ull pomerof C1 1t buid prcfssionsl gams
pomsred by Dieci, Unvea, o Cocos2d

(i

u Ofce/Sharepoint development
et Offce and Sharckoint acd-is, St
Soltons,and VSTO ackdin o C5, VB, an et

8y continuing,you sgree o the licens for the VisulStucic eiion you seeced. We ls ofe the abify o downad other softare with Visuel
Stk T softwone f e separtely, s ool n (e 3 Bty Notces o n s acomparying s, By cotining,you oo agi 1o s

Installation details
v Visua Stucia DK
v Visua tudio extansion deveopment prr.
~ Optonsl
N proflg ools
ntliCode
nliTace

B2 Text Templte Tanstormation

NET Compler latiorm SO

Developer Ansytcs tools
Modelng SOK

~ Individual components
SO Sarver bpress 2019 Local O
e St

Gl Designer
Do edno]
T

NuGet orgets and buld asks
MLNET Mode Bider 2022

Remoue oot support companants

Total spacereqire 0

nstalwhie dowrlosding - [Close

OEBPS/image/B21324_17_02.jpg
1 TECHNICAL DEeT 1342
1342 Data Access Layer is too complex and lacks proper tests

@ vancina ©0Comments AddTag B Save
Sae ® New e My Apps
Reaon O Moved 1 ferstion My Apps\Backlog

Description

s a developer, | want to refactor the data access layer and add additional
tests 50 that the data access layer doesn't break as frequently during
davelopment or nisk crtical issues reaching production.

This work entails reworking the complexity of methods in the RepositoryBase.
class, potentially extracting helper methods or helper objects. and adding
xUnit tests around this area. An additional layer of abstraction may be
necessary to mock database calls for testing.

OEBPS/image/B21324_04_07.jpg
Pick members 0

[
Pick members to be used a5 constructor parameters

X

[v] #14 i

[4] Hectnation

F0cpstucTime
] #anivaiime

e Codeaia]
[Add null checks

]
f

OEBPS/image/B21324_07_08.jpg
// Act
tracker

.AddMiles(50);

®

/1 Asse;
Assert.

Introduce local for ‘tracker.AddMiles(50)’

OEBPS/image/B21324_13_6.jpg
20 0-=06 [f-]a

Sesech Solution Explorer (Ctrl=;)

13 Solution ‘Chapter!3BeginningCode' 2 of 2 projects)

OEBPS/image/B21324_02_04.jpg
&~

Introduce local

Console.WriteLine($"Carry-on bag price: {numCarryOn * 36M}"); ET
> Introduce local for 'numCarryOn * 30M' Lines 13 to 16

Bdract iethiod Introduce local for all occurrences of ‘numCarryon * 30m'| » | £

Extract local function

Console.WriteLine($"Carry-on bag price: _}");

Introduce parameter for ‘numCarryOn * 30M* »

lumPassengers) numCarryOn * 30M;
{ Console.WriteLine($"Carry-on bag price: {E}");
Console.lWriteLine($"Checked bag price: {numChecked * 4oM}") total += |
total += numChecked * 4GM;
3
? else

Preview changes
K 2

OEBPS/image/B21324_14_2.jpg
Package

General Generate NuGet package on buikd
Produce s packsge e during buld operstions

Package ID ©

‘The case-insensitive package identifier, which must be unique across nuget.org or whatever
gallery the package resides in.IDs may not contain spaces or characters that are not valid for a
URL, and generally follow NET namespace rules.

[stassembiyName)

| Pcsnazes

OEBPS/image/B21324_05_26.jpg

OEBPS/image/B21324_11_1.jpg
public static void Main(string[] args)
int X
int y = 2;

// Add and display the two numbers
Console.WriteLine(x + v);

} ["4 gof18 v void ConsoleWriteLine(int value)

OEBPS/image/B21324_03_01.jpg
Boarding Group 4

Torrey Kilback
Cielo Connelly
Justine Bergstrom
Myrna Brekke
Herminia Schultz
Hollis Kirlin
Chase West

Dave Nader

Perry Ritchie
Brant Flatley
Mary Gutmann
Mitchell Ritchie
Ernestina Sipes
Alberta Medhurst
Audie Brown
Dayana Heller
Samantha 0'Kon
Delta Brekke

Group
Group
Group
Group
Group
Group
Group
Group
Group
Group
Group
Group
Group
Group
Group
Group
Group
Group

NOOOUEWWNNNNRERRERRER

: Onboard
: Onboard
: Onboard
: Onboard

Board Now via Priority Lane
Onboard

Onboard

Onboard

Onboard

Board Now via Priority Lane
Onboard

Onboard

Onboard

Onboard

Please Wait

Please Wait

Please Wait

Onboard

OEBPS/image/B21324_12_13.jpg
sonarcloud My Projects Mylssues Explore Q s o + @

Refactoring-with-CSh. Integer Man > Refactoring-with-CSharp > 1 main [2
EE O Summary Issues Security Hotspots Measures Code Activity
10/79 issues fe) e i il 9 i)
Find" method should be used instead of the "FirstOrDefault" extension method. ¢
e Chapter03../Chapter3/LingExamples.cs Find" method should be used instead of the “FirstOrDefault” extension csharpsquid:S6602 performance +
« Oopenv @ v 115 - Smin effort + 1 month age
o e e et ® Code Smell pen~ © Minorv @ Matt Eland 5 4 onth ag
Pull Requests *FirstOrDefault” extension method.
® Code Smell Whereistheissue? = Whyisthisanissue? |~ Howcanlfixit? | Activity = Moreinfo
“author'is null on at least one execution path. L, L
Bug Passenger author = people. FirstorDefault(p => p.Fulllane == “Matt Eland");
@ "Find" method should be used instead of the "FirstOrDefault" extension method.

Remove the unused local variable ‘anyBoarded
® Code Smell

Console.WriteL ine(s"{author . Fulliane} is group {author BoardingGroup)”);
Drop 'Where' and move the condition into the b
Any.

public void ConbineLtngMethods() {
PassengerGenerator generator = new();
ple = generator

® Code S

Remove the unused local variable 'numBoarded’ bool. anyBoarded =
people_wnere(p => p.HasBoarded) .Any();
int numBoarded
people_khere(p => p.HasBoarded) .Count();
Passenger firstBoarded =
E people_Hhere(p => p.HasBoarded) First();
}

® Code Smell

Drop 'Where' and move the condition into the
‘Count.

Information ® Code Smell
public void Transforntngiithselect() {
PassengerGenerator generator = new();

irstBoarded U > people = generator

Remove the unused local variable

Administration

® Code Smell
Listestring> nanes = new().

foreach (Passenger p in people) {
if (1p.HasBoarded) {

Collapse Drop 'Where' and move the condition into the o O
nanes_Add($" {p.FullNane} - {p.BoardingGroup}");
3

“First.

OEBPS/image/B21324_05_09.jpg
13 references | Matt Eland, Less than 5 minutes ago | 1 author, 1 change
public string Eodnulﬂnot,:fcg'f;l—

5 references | Matt Eland, Ask Copilot Alt+/
public string Nan @ QuickActions and Refactorings.. Ctrl+.
| &b Rename.. Ctrl+R, Ctri+R
0 references | 0 changes | Remove and Sort Usings Ctrl+R, Ctrl+G
HIBLIE GyerEidel Peek Definition Alt+F12
Go To Definition F12
Go To Base
Go To Implementation Ctrl+F12
| Find All References
View Call Hierarchy Ctrl+K, Ctrl+T

Track Value Source

OEBPS/image/B21324_04_18.jpg
o

public Flight? narkrugntArnved(stnng id, DateTime arrivalTime, string gate = "TBD") {
return UpdateFlightIfFound(id, flight => {

£light.ArrivalTime = arrivalTime;

flight .Gate = gate;

flight.Status = FlightStatus.OnTime;

Console.WriteLine($"{id} arrived at {arrivalTime.Forf

3 i 9, Format (extension) string DateTime.Format()
@ GetDateTimeFormats

OEBPS/image/B21324_09_2.jpg
Preview Changes. X

Visual Studio is about to make changes to ths solution. Click OK
oottt Cen]

ChapterdTests

Installing:
DiffEngine.11.3.0
EmptyFlesA40
Shouldly42.1
System.CodeDom.60.0
System Management 60.1

[m R

OEBPS/image/B21324_12_15.jpg
t.CodeAnalysis

=

o0 Chapter12

={ * Packt.CloudySkiesAir.Chapter12.*
E-E-(* Flight.* 1
[+ | - P .Scheduling.* 4}
(0 0 O B{E0 Figs 1.
3| @ @{) bR |G
[t} Q o - = [
i gt B
@ 5 © fled = full =7 Il = B2
4 B H 8 HE
(el (S Sl o GG o
2RIz
525:a8¢
= P58° 5
5 o = a
& g 2
5
G

g (O & Flight
ik (™ FlightTracker
% - BaggageCalculator

BoardingProcessor
BoardingStatus

P
-1
B (| B

Passenger

B

(* B-() .Flights
fp F-{} .Search

gt

seojAegle|idwoy swiuny welsAs

[+ §¢ DateHelpers

{} System.Runtime.CompilerServices

+}-0-0 System.Runtime
++-0-0 System.Console
+-0-0 System.Linq

++-0-0 System.Collections

(g O I e s

Il
o offololo o oo

1118 12 14/23/8 10 7 0 1

OEBPS/image/B21324_14_5.jpg
Browse Installed Updates NuGet Package Manager: ConsoleApp1

[Packt Analyzers x[-] © [include prerelease Package source: | nugetorg ~|
.
. e Packt.Analyzers B nugerog
e Packt.Analyzers by packtAnalyzers 102 |

A sample Roslyn diagnostic analyzer and its associated code fix

Version: |Latest stable 1.02 Al s

@ Package source mapping is off. Configure

(+) Options |

Description
A sample Roslyn diagnostic analyzer and its associated code fix |

Version: 1.02
Author(s): PacktAnalyzers
License: MIT

|
Downloads: 0 1
Date publi Thursday, 7,2023 (9/7/2023) |
Report Abuse: https://www.nuget.org/packages/Packt.Analyzers/1.0.2/ReportAbuse

4 Dependencies
4 NETStandard, Version=v2.0 v

OEBPS/image/B21324_02_10.jpg
Change Signature
Parameters:
Index Modifier Type Parameter Default Callsite
1 int numChecked
2 int numCaryOn
= int numPassengers

isHoliday

Preview method signature:

public decimal CalculatePrice(int numChecked, int numCarryOn, int numPassengers, bool isHoliday)

[] Preview reference changes

OEBPS/image/B21324_04_10.jpg
Preview method signature:

public Fight? MarkFlightArived(sting id, DateTime anivalTime)

[0 Preview reference changes

~
E II I x

OEBPS/image/B21324_04_02.jpg

OEBPS/image/B21324_06_10.jpg
Ew

a

2

6 references | Matt Eland, 5 days ago | 1 author, 1 change
public class PassengerFlightInfo : FlightInfoBase {
private int _passengers;
4 references | @ 1/1 passing | Matt Eland, 5 days ago | 1 author, 1 change
public int Passengers {
get => _passengers;
private set => _passengers = value;

)

1 reference | @ 1/1 passing | Matt Eland, 5 days ago | 1 author, 1 change
public void Load(int passengers) =>
Passengers = passengers;

0 references | Matt Eland, 5 days ago | 1 author, 1 change
public void Unload() =>

5 references | Matt Eland, 5 days ago | 1 author, 1 change

public override string BuildFlightIdentifier() =>
base.BuildFlightIdentifier() +
$" carrying {Passengers} people

OEBPS/image/B21324_06_02.jpg
Manual Tests

Unit
Tests

OEBPS/image/B21324_13_8.jpg
[Asample Roslyn Analyze]

OEBPS/image/B21324_02_02.jpg
5

private decimal holidayFeePercent = 0.1M;

2 references | Matt Eland, Less than 5 minutes ago

€@~ F'. public decimal ﬁolidayFeePercent

| 1 author, 1 change

{

q

4 Use auto property »

Generate constructor ‘BaggageCalculator(decimal)’

Replace 'HolidayFeePercent' with methods

L7 IDE0032 Use auto property

Lines 3 to 10
public class BaggageCalculator {

11 Generate Equals(object)

12 Generate Equals and GetHashCode

13

11/ Extract base class...

14 Suppress or configure issues >

1 = S ¥ s

17 Console.WriteLine($"Carry-on
18 total += carryOn * 30M;

19 }

20

24 EI‘ if (bags > 0) {

22 =] if (bags <= passengers) {
23 | Console.WriteLine($"Checke

Preview changes

Fix all occurrences in: Document | Project | Solution | Containing Member
| Containing Type

U: {Ddgs = Quriy=J;

OEBPS/image/B21324_05_19.jpg
Q IFlightinfo

Abstract Class

4 Properties
& Anivallocation
AnivalTime

Departurelocation

DepartureTime

Duration

&

(FreightFlightinfo ~ Passengerflightinfo A
Clss Clss
» lghtnfonase * lghtnfosase
+ Propatis 4 Fields
& Cargo @ _passengers
& CharterCompany 4 Methods
4 Methods DO Buldightdentiier
& @ BuidFightidentier @ Load
D Tosting ® Tosting

@ Unload

OEBPS/image/B21324_11_3.jpg
12
13
14
15
16
17
18
19
20
21

public static List<BoardingPass> Generate() {
Faker faker = new();
List<BoardingPass> passes = new();

for (int i = 0; i < 15; i++) {

Explain the current selected lines

Al suggestions might be inaccurate.

I'm confused by this code. What does this do?

>

passes.Add(pass);

return passes;

OEBPS/image/B21324_16_07.jpg
22
23
21
25

21
28
29
30

var fqr = new FlightQueryResult();

var segments = result.Split(' ',

‘u : g strinall?

al IDE000S: Use explicit type instead of var'

£q1_Show potentialfixes (Ctri+)

tries

2l

OEBPS/image/B21324_15_2.jpg
1D Title Status Area Probability Impact Priority

RISK-1 High complexity code in FlightManager In Progres Flight Medium Medium Medium
RISK-2 Scalability Concerns in Booking System Open Booking Medium High High
RISK-3 Untested complex logic in staff scheduler Open Staff Scheduling Low Medium Low

High quantity of regression bugs in luggage router Closed Luggage High Medium High

OEBPS/image/B21324_QR_Free_PDF.jpg

OEBPS/image/B21324_05_20.jpg
129 -5 publlc strlng ‘BulldFllghtIdentlfler(() =>

13 Fix formatting
14
14 Use block body for method
d Replace 'BuildFlightldentifier' with property
17 Pull 'BuildFlightldentifier()' up
1§ Change signature...

Suppress or configure issues

}-{ArrivallLocation} carrying"

ring()
Pull ‘BuildFlightldentifier' up to ‘IFlightinfo’

Pull ‘BuildFlightldentifier' up to 'FlightinfoBase*

Pull members up to base type...

OEBPS/image/Packt_Logo_New1.png
<packt

OEBPS/image/B21324_03_04.jpg
619 -F switch (Status) {
6

o2 Add missing cases [] 1060010 populate switch

64 Suppress or configure issues » | Lines 73 to 74

65 : "Board Now";

: - e c—
67

68 default:

69

e | e

s Fix all occurrences in: Document | Project | Solution | Containing Member
73 | Containing Type

™ ef

75 return "Boarding Not Started";

OEBPS/image/B21324_13_1.jpg
20 508 £8
Semch Slution aploes ()
8 Solution ‘Chapter12FinalCode’ (2 of 2 projects)
[« < Chapteriz

4 28 ependences

Microsoft CodeAnalysis.CSherp.NetAnalyzers
4 55 Microsoft.CodeAnalysss NetAnalyzers
4R CAT000: Do not declare static members on generic types
4R CAT00: Types that own disposable fields should be disposable
8o CAT002: Do not expose genenc it
o CAT003: Use generic event handler instances
flg CAT005: Avoid excessive parameters on generic types
g, CATO0R: Enums should have 7ero value
a8 CAT010: Generic interface should also be implemented
Bl CA1012: Abstract types should not have public constructors
flg CAT014: Mark accembiie with 1 SCompliant

OEBPS/image/B21324_12_4.jpg
Show output from: [Build Flle| K]

Build started

1>------ Bulld started: Project: Chapter12, Configuration: Debug Any CPU -

15C:\Progran Files\dotnet\sdk\8.0.100-preview.7.23376. 3\Sdks \Microsoft. NET . Sak\targets\Microsoft T . Runtimeldentifier Inference. targets
(314,5): message NETSDK1657: You are using a preview version of .NET. See: https://ake.ms/dotnet-support-polic

1>C: \Dev\repos\ReFactoringiithCsharp\ Chapter12\Ch12BeginningCode\Chapter12\ FLight \Scheduling\Airport .cs(4,17,4,24): warning CS8618: Non-
nullable property ‘Country’ mist contain a ron-null value when exiting constructor. Consider declaring the property as nullable.

1>C: \Dev\repos\ReFactoringiithCsharp\ Chapter12\Ch12BeginningCode\Chapter12\ Flight \Scheduling\Airport .c5(5,17,5,21): warning CS8618: Non-
nulldble property ‘Code’ mist contain a non-null value when exiting constructor. Consider declaring the property as nullable.

1>C: \Dev\repos\ReFactoringiithCsharp\Chapter12\Ch12BeginningCode\Chapter12\ FLight \Scheduling\Airport .cs(6,17,6,21): warning CS8618: Non-
nulldble property ‘Name’ mist contain a non-null value when exiting constructor. Consider declaring the property as nullable.

15Chapter12 > C:\Dev\repos\RefactoringiithCSharp\Chapter12\Chl 2BeginningCode\ Chapter12\bin\Debug\nets. 6\Chapterl2. d11

1>Done building project "Chapteri2.csproj”.

Build: 1 succeeded, 0 failed, 0 up-to-date, O skipped

Build started at 10:14 PM and took 84.289 seconds

OEBPS/image/B21324_02_09.jpg
- a
6 references | @ 5/5 passing | 0 changes | 0 authors, 0 changes

10 public decimal CalculatePrice(int numChecked, int numCarryOn,
116"~ 3 int numPassengers, DateTime [travelTimg, bool isHoliday) {
i Change signature... RL=6;

14 Wrap every parameter > yon > @) {

&Y (e B , | carryOnFee = numCarryOn * CarryOnFee;

1€ .WriteLine($"Carry-on bag price: {carryOnFee}");
1+ Extract base class.. = carryOnFee;

1€ Suppress or configure issues »
16—u

OEBPS/image/B21324_04_09.jpg
3@ -b public Flight? MarkFlightArrived(DateTine arrivalTime, string id) {
3 hongesionatre. = FindFlightById(id);

i e e iy {

141 Wrap every parameter » |valTime = arrivalTime;

42 Unwrap and indent all parameters S = FlightStatus.OnTime;

u; teLine($"{id} arrived at {Format(arrivalTime)}.");
i Extract base class...

45 Console.WriteLine($"{id} could not be found");

OEBPS/image/B21324_16_03.jpg
) Options

Search Options (Ctrl+E)

Select Code Cleanup on Save profile: | Profile 1
E s""_':;‘me’;‘s " Run Code Cleanup profile on Save
e et S
e ot Gagte Gy
> Work Items
\ 4 Text Editor
e
Piieresd
@it @z

(File Extension

OEBPS/image/B21324_07_04.jpg

OEBPS/image/B21324_05_04.jpg
S|

Search Solution Explorer (Ctrl=;)

803 Solution ‘ChaptersBeginningCode' (2 of 2 projects)
4 65 Chapters
b 86 Dependencies
8 [) editorconfig

b +Cu Airport.cs

848, ClssDingram.cd
b 8 FlightSeheduler.cs
b+ Freightflightinfo.cs
b v IFightinfo.cs
0 PassengesFlightinto.cs

P 6.co Program.cs

OEBPS/image/B21324_11_7.jpg
// Populate a list of random numbers
Rakdom rand = new Random();

} ol‘,? Random
o@ RandomAccess
o Range

OEBPS/image/B21324_02_14.jpg
30 File Edit Selection View Go Run Terminal Help BaggageCalculator.cs - Chapter2BeginningCode - Visual Studio Code

EXPLORER C# Program.cs C# BaggageCalculator.cs 1 X
v OPEN EDITORS Chapter2 > C# BaggageCalculator.cs > % BaggageCalculator > @ CalculatePriceFlat
zo Lwiai T= wneckeuree,
C# Program.cs Chapter2 o7)
X C# BaggageCalculatorcs Chapter2 1 28 }
> CHAPTER2BEGINNINGCODE 29
> OUTLINE 30 if (travelTime.Month >= 11 || travelTime.Month <= 2) {
> TIMELINE 31 Console.WriteLine($"Holiday Fee: {total * HolidayTravelFeePercent}");
= * 7 :
 SOLUTION EXPLORER 32 total += total HolidayTravelFeePercent;
33
v B Chapter2BeginningCode an, ¥
v @ chapter2 35 return total;
> & Dependencies 36 ¥
&> .editorconfig 0 references
C# BaggageCalculator.cs 1 37 pr‘ivate‘decimal CalculatePriceFlat(int numBags) {
38 decimal total = @;
C# Program.cs
nE 39
£ Chapter2Tests Gty 40 // Business says to use a flat 100 regardless of count
> &9 Dependencies 41 return 10eM;
C# BaggageCalculatorTests.cs 42
C# Usings.cs 43 // 01d logic: $5@ per bag
a ® return [UMBags * 50M;
42 u k Fi:
46 Quick Fix...
47

More Actions...
® Wrap expression

® Wrap and align expression

OEBPS/image/B21324_04_14.jpg
>

t ge
61Q -} private Flight? F:mdFllghtById(str:mg id) {

o a0

67

6 Extract base class...

Use expression body for method | » | Lines 61 to 65

Ch: ignature...
SEESERAE private Flight? FindFLightById(string id) [
| _flights.FirstorDefault(f => £.Id

id);

2 ’
g e el Fe ¢

| private Flight? FindFlightById(string id) F3 _flights.FirstOrDefault(f => £.Id =
1

id);

OEBPS/image/B21324_06_09.jpg
cevvvvoom

OEBPS/image/B21324_11_13.jpg
9

IElpub'Lic class DocumentMe {

10
/// / /// // /S)
000
/ SI2IPID oo/ 12
O //// 0 %
7 / / / / / 2 /
%/ //// A;/A/ﬁ// | 2
/ // / // // /
////// DB ///////// 17
11 pub'Llc int AddEvenNumbers(lnt[]" numbers, if 18 public int AddEvenNumbers(int[1? numbers, int to
5] if (numbers == null || numbers.Length == 19 if (numbers == null || numbers.Length == 0)
A3 const string message = "There must be af 20 const string message = "There must be at
4 throw new ArgumentException(message, narl 21 throw new ArgumentException(message, nam
15 } 22 &
16 23
k) return total + numbers.Where(n => n % 2 = 4 return total + numbers.Where(n =>n % 2 == 0
18 } 25 }
19 } 26
Al suggestions might be inaccurate.
Ask Copilot > |l /Accept H Cancel]

OEBPS/image/B21324_17_09.jpg
_:>=
Gog -

I B I
Blue Environment Green Environment
Status: Active Status: Active

Version: 5.0 Version: 5.1

Users: 90% Users: 10 %

OEBPS/image/B21324_11_10.jpg
Show autput from: Gitrub Copilt chat S

IEKC)

Logging to: C:\Users\Adnin\AppData\Local\Temp\VSGitHubCopi 1ot Logs\2023823_622555_VSGitHubCopilot .chat. log

[Conversations
[Conversations
[Conversations
[Conversations
[Conversations
[Conversations

Information]
Information]
Information]
Information]
Information]
Information]

Copilot chat version 0.1.1305-betas5aeadb128 (9.1.1305.23274). VS: VisualStutio
[CopilotClient] Need to get an auth token.

[CopilotClient] Status Code: 208, Reason Phrase: OK

[CopilotClient] Response Content: HasToken: True, ChatEnabled: True, Expiresat:
[CopilotClient] Obtained a token which is valid for 9.9999973.

Current syntax node is a method.

[CopilotsessionProvider Information] Begin sending message (Conversationld:186724¢7-9a5e-4294-bb95-e6eBe7bye

[CopilotSessionProvider Information] Request content:

‘Generate a 1ist of 10 random numbers”

OEBPS/image/B21324_17_01.jpg
fgpﬁntl

Deploy Select
Code Features

Implement
Features

fgpﬁntZ

Deploy
Code

Select
Features

(s

print 3

Deploy
Code

OEBPS/image/B21324_05_23.jpg
scheduler.Search(null, arr, null, null, null, null, null, null); = b co FreiohtFiat
isH {[@ -

@

[deprecated] IEnumerable<IFlightinfo> FlightScheduler Search(Airport? depart, Airport? arrive, DateTime? minDepartTime,
DateTime? maxDepartTime, DateTime? minArriveTime, DateTime? maxAriveTime, TimeSpan? minLength, TimeSpan?
maxLength) (+ 1 overload)

Show potential fixes (Ctrl+.)

OEBPS/toc.xhtml

		

		Contents

			

						Refactoring with C#

						Foreword

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: Refactoring with C# in Visual Studio

						Chapter 1: Technical Debt, Code Smells, and Refactoring

					

								Understanding technical debt and legacy code

							

										Where technical debt comes from

							

						

								Identifying code smells

								Introducing refactoring

							

										Refactoring tools in Visual Studio

							

						

								Case study – Cloudy Skies Airlines

								Summary

								Questions

								Further reading

					

				

						Chapter 2: Introduction to Refactoring

					

								Technical requirements

								Refactoring a baggage price calculator

							

										Converting properties to auto properties

										Introducing locals

										Introducing constants

										Introducing parameters

										Removing unreachable and unused code

										Extracting methods

										Refactoring manually

										Testing refactored code

							

						

								Refactoring in other editors

							

										Refactoring in Visual Studio Code with the C# Dev Kit

										Refactoring in JetBrains Rider

										Refactoring in Visual Studio with ReSharper

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 3: Refactoring Code Flow and Iteration

					

								Technical requirements

								Refactoring the boarding app

								Controlling program flow

							

										Inverting if statements

										Dropping else statements after return statements

										Restructuring if statements

										Using ternary operators

										Converting if statements into switch statements

										Converting to switch expressions

							

						

								Instantiating objects

							

										Replacing var with explicit Types

										Simplifying creation with target-typed new

										Using object initializers

							

						

								Iterating over collections

							

										Introducing foreach

										Converting to for loops

										Converting to LINQ

							

						

								Refactoring LINQ statements

							

										Choosing the correct LINQ method

										Combining LINQ methods

										Transforming with Select

							

						

								Reviewing and testing our refactored code

								Summary

								Questions

								Further reading

					

				

						Chapter 4: Refactoring at the Method Level

					

								Technical requirements

								Refactoring the flight tracker

								Refactoring methods

							

										Changing method access modifiers

										Renaming methods and parameters

										Overloading methods

										Chaining methods

							

						

								Refactoring constructors

							

										Generating constructors

										Chaining constructors

							

						

								Refactoring parameters

							

										Reordering parameters

										Adding parameters

										Introducing optional parameters

										Removing parameters

							

						

								Refactoring to functions

							

										Using expression-bodied members

										Passing functions as parameters with actions

										Returning data from Actions with Funcs

							

						

								Introducing static methods and extension methods

							

										Making methods static

										Moving static members to another type

										Creating extension methods

							

						

								Reviewing and testing our refactored code

								Summary

								Questions

								Further reading

					

				

						Chapter 5: Object-Oriented Refactoring

					

								Technical requirements

								Refactoring the flight search system

								Organizing classes via refactoring

							

										Moving classes to individual files

										Renaming files and classes

										Changing namespaces

										Avoiding partial classes and regions

							

						

								Refactoring and inheritance

							

										Overriding ToString

										Generating equality methods

										Extracting a base class

										Moving interface implementations up the inheritance tree

							

						

								Controlling inheritance with abstract

							

										Communicating intent with abstract

										Introducing abstract members

										Converting abstract methods to virtual methods

							

						

								Refactoring for better encapsulation

							

										Encapsulating fields

										Wrapping parameters into a class

										Wrapping properties into a class

										Favoring composition over inheritance

							

						

								Improving classes with interfaces and polymorphism

							

										Extracting interfaces

										Providing default interface implementations

										Introducing polymorphism

							

						

								Reviewing and testing our refactored code

								Summary

								Questions

								Further reading

					

				

						Part 2: Refactoring Safely

						Chapter 6: Unit Testing

					

								Technical requirements

								Understanding testing and unit tests

							

										Types of tests and the testing pyramid

										Unit tests

							

						

								Testing code with xUnit

							

										Creating an xUnit Test Project

										Connecting the xUnit Test Project to your main project

										Writing your first unit test

										Organizing tests with Arrange/Act/Assert

										Understanding tests and exceptions

										Adding additional test methods

							

						

								Refactoring unit tests

							

										Parameterizing tests with Theory and InlineData

										Initializing test code with constructors and fields

										Sharing test code with methods

							

						

								Exploring other testing frameworks

							

										Testing with NUnit

										Testing with MSTest

							

						

								Adopting a testing mindset

							

										Incorporating testing into your workflow

										Isolating dependencies

										Evaluating good and bad tests

										Thoughts on code coverage

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 7: Test-Driven Development

					

								Technical requirements

								What is Test-Driven Development?

								Test-Driven Development with Visual Studio

							

										Setting the starting balance

										Adding miles and generating methods

										Redeeming miles and refactoring tests

							

						

								When to use Test-Driven Development

								Summary

								Questions

								Further reading

					

				

						Chapter 8: Avoiding Code Anti-Patterns with SOLID

					

								Identifying anti-patterns in C# code

								Writing SOLID code

							

										Single Responsibility Principle

										Open-Closed Principle

										Liskov Substitution Principle

										Interface Segregation Principle

										Dependency Inversion Principle

							

						

								Considering other architectural principles

							

										Learning the DRY principle

										KISS principle

										Understanding high cohesion and low coupling

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 9: Advanced Unit Testing

					

								Technical requirements

								Creating readable tests with Shouldly

							

										Installing the Shouldly NuGet package

										Writing readable assertions with Shouldly

										Writing readable assertions with FluentAssertions

										Testing performance with Shouldly

							

						

								Generating test data with Bogus

								Mocking dependencies with Moq and NSubstitute

							

										Understanding the need for mocking libraries

										Creating mock objects with Moq

										Programming Moq return values

										Verifying Moq calls

										Mocking with NSubstitute

							

						

								Pinning tests with Snapper

								Experimenting with Scientist .NET

								Summary

								Questions

								Further reading

					

				

						Chapter 10: Defensive Coding Techniques

					

								Technical requirements

								Introducing the Cloudy Skies API

								Validating inputs

							

										Performing basic validation

										Using the nameof keyword

										Validation with guard clauses

										Guard clauses with the GuardClauses library

										Using CallerMemberInformation attributes

							

						

								Protecting against null

							

										Enabling nullability analysis in C#

										Using nullability operators

							

						

								Moving beyond classes

							

										Preferring immutable classes

										Using required and init-only properties

										Primary constructors

										Converting classes into record classes

										Cloning objects using with expressions

							

						

								Advanced type usage

							

										Exploring pattern matching

										Using generics to reduce duplication

										Introducing type aliases with the using directive

							

						

								Summary

								Questions

								Further reading

					

				

						Part 3: Advanced Refactoring with AI and Code Analysis

						Chapter 11: AI-Assisted Refactoring with GitHub Copilot

					

								Technical requirements

								Introducing GitHub Copilot

							

										Understanding GitHub’s predictive model

										Starting the conversation with GitHub Copilot Chat

							

						

								Getting started with GitHub Copilot in Visual Studio

							

										Installing and activating GitHub Copilot

										Getting access to GitHub Copilot

										Generating suggestions with GitHub Copilot

										Interacting with GitHub Copilot Chat

							

						

								Refactoring with GitHub Copilot Chat

							

										GitHub Copilot Chat as a code reviewer

										Targeted refactoring with GitHub Copilot Chat

							

						

								Drafting documentation with GitHub Copilot Chat

								Generating test stubs with GitHub Copilot Chat

								Understanding the limits of GitHub Copilot

							

										Data privacy and GitHub Copilot

										Concerns around GitHub Copilot and public code

							

						

								Case study: Cloudy Skies Airline

								Summary

								Questions

								Further reading

					

				

						Chapter 12: Code Analysis in Visual Studio

					

								Technical requirements

								Calculating code metrics in Visual Studio

								Performing code analysis in Visual Studio

							

										Analyzing your solution using the default ruleset

										Configuring code analysis rulesets

										Responding to code analysis rules

										Treating warnings as errors

							

						

								Exploring advanced code analysis tools

							

										Tracking code metrics with SonarCloud and SonarQube

										In-depth .NET analysis with NDepend

							

						

								Case study – Cloudy Skies Airline

								Summary

								Questions

								Further reading

					

				

						Chapter 13: Creating a Roslyn Analyzer

					

								Technical requirements

								Understanding Roslyn Analyzers

							

										Installing the extension development workload and DGML editor

										Introducing Syntax Visualizer

							

						

								Creating a Roslyn Analyzer

							

										Adding the analyzer project to our solution

										Defining a code analysis rule

										Analyzing symbols with our Roslyn Analyzer

										Tips for writing Roslyn Analyzers

							

						

								Testing Roslyn Analyzers with RoslynTestKit

							

										Adding a Roslyn Analyzer test project

										Creating AnalyzerTestFixture

										Verifying that our Roslyn Analyzer doesn’t flag good code

										Verifying that our Roslyn Analyzer flags bad code

										Debugging Roslyn Analyzers

							

						

								Sharing analyzers as Visual Studio extensions

							

										Creating a Visual Studio extension (VSIX) for your Roslyn Analyzer

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 14: Refactoring Code with Roslyn Analyzers

					

								Technical requirements

								Case study – Cloudy Skies Airlines

								Building a Roslyn Analyzer code fix

							

										Creating a CodeFixProvider

										Registering a code fix

										Modifying the document with a code fix

							

						

								Testing Code Fixes with RoslynTestKit

								Publishing Roslyn Analyzers as NuGet packages

							

										Understanding NuGet package deployment

										Building a NuGet package

										Deploying the NuGet package

										Referencing the NuGet package

										Packaging a CodeFixProvider as an extension

							

						

								Summary

								Questions

								Further reading

					

				

						Part 4: Refactoring in the Enterprise

						Chapter 15: Communicating Technical Debt

					

								Overcoming barriers to refactoring

							

										Urgent deadlines

										“Don’t touch high-risk code”

										“This code is going away, don’t spend time on it”

										End-of-life applications

										“Just do the minimum required”

										“Refactoring doesn’t provide business value”

							

						

								Communicating technical debt

							

										Technical debt as risk

										Creating a risk register

										Alternatives to a risk register

							

						

								Prioritizing technical debt

							

										Calculating risk priorities with a risk score

										The “gut feeling” approach

							

						

								Getting organizational buy-in

							

										Setting up the conversation

										Anticipating questions and objections

										Different approaches for different leaders

										The importance of communication

							

						

								Case study – Cloudy Skies Airlines

								Summary

								Questions

								Further reading

					

				

						Chapter 16: Adopting Code Standards

					

								Technical requirements

								Understanding code standards

								Establishing code standards

								Formatting and code cleanup in Visual Studio

								Applying code standards with EditorConfig

							

										Reviewing our starter code

										Adding an EditorConfig

										Customizing EditorConfigs

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 17: Agile Refactoring

					

								Refactoring in an agile environment

							

										Key elements of agile teams

										Understanding obstacles to refactoring

							

						

								Succeeding with agile refactoring strategies

							

										Dedicated work items for refactoring efforts

										Refactoring code as it changes

										Refactoring sprints

										Refactoring sabbaticals

							

						

								Accomplishing large-scale refactorings

							

										Why large refactorings are difficult

										The rewrite trap

										Lessons from the ship of Theseus

										Upgrading projects with.NET Upgrade Assistant

										Refactoring and the strangler fig pattern

							

						

								Recovering when refactoring goes wrong

							

										The impact of failed refactorings

										Establishing safety in agile environments

							

						

								Deploying large-scale refactorings

							

										Using feature flags

										Phased rollouts and blue/green deployments

										The value of continuous integration and continuous delivery

							

						

								Case study – Cloudy Skies Airlines

								Summary

								Toward more sustainable software

								Questions

								Further reading

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/image/B21324_14_1.jpg
Test Detail Summary
@ Packt . Analyzers. Tests. TostringCodeF ixTests. CodeF ixShouldHoveBadCodeToGood
[E] source: TostringCodeFixTests. cs line 41
©buration: 837 ms
5 Message:
RoslynTestKit. TransformedCodeDifferentThanExpectedException : Transformed code is different than expected:

From Line 9:
- ----public-override-string-Tostring()- {3+
-public-override- string- Tostring)%+
g5

OEBPS/image/B21324_04_06.jpg
A eterenoes | Math Elail 25 Houtsado: | |atioli 2 hianges
Fuight {
htt Eland, 1 day ago | 1 author, 1 change

Convert to positional record - 1

Eime T htt Eland, 1 day ago | 1 author, 1 change
" \tion { get; set; }

tt Eland, 1 day ago | 1 author, 1 change
ureTime { get; set; }

itt Eland, 1 hour ago | 1 author, 1 change

Move to namespace. alTime { get; set; }

Extract base clas:

OEBPS/image/B21324_07_07.jpg
»>-Crolv|Ei]@c]@] -4l

Se-

Test run finished: 1 Tests 0 Passed, 1 Failed, 0 Skipped) run in 321 ms

Test

4© ChapterTTests (1)

Do Test Detail Summary

ChapterTTests (1)
4@ MileageTrackerTests (1)
© Newac

© ChapterTTests. HileageTrackerTests. NewAccountShouldHavestart ingBalance
] Source: RewardhilesTrackerTests.cs line 7

©buration: 2 ns

Expected: 100
Actual: ©

Stack Trace:

Line1s
RuntineMethodHandle. InvokeMethod(Object target, Voidss arguments, Signature sig, Boolean isConstructor)

a :

[Assert.Equal() Failure
a

[MethodInvoker. Invoke(Object obj, IntPtrs args, BindingFlags invokeAttr)

OEBPS/image/B21324_03_07.jpg
9 Cpublic void DisplayBoardingStatus(List<Passenger> passengers, bool? hasBoarded = null) {
‘ List<Passenger> filteredPassengers = nen();
11 L for (int i =0; i < passengers.Count; i++) {

i Fix formatting Lines 10 to 14

11 Place statement on folowing lne. | LiSE<Passenger> Filteredpassengers = nen();

1 Reverse ‘for’ statement

1 . -

17 Convert to ‘foreach’ m ° e &
; if (lhasBoarded.HasValue || p.HasBoarded == hasBoarded) {
27 Suppressor configure isues filteredPassengers.Add(p) ;

20 foreach (Passenger p

21 string statushessa‘ e

? "Onboard"

OEBPS/image/B21324_05_16.jpg
Extract Base Class.

New Type Name:

x

[FightinfoBase

[Packt CloudySkiesAir Chapter5 FlightinfoBase

Select destination
O Add o current file

@ New file name: [MlightinfoBase.cs

Select members:

i
]
|

EORRC

LR

§ H
OoCoCoco

e

]
i

OEBPS/image/B21324_15_6.jpg
Current Date
Q1 Q2 Q3 Q4
| | |

Improved Flight Selection Portal] [Crew Scheduling System Expansion]: Scalability Project |\ Integrating New Subsidiary | In-Flight App |

OEBPS/image/B21324_10_2.jpg
EBoardingPass p2 = new() {
Flight = myF @ -
Seag T ZB}fﬁ@ i ® BoardingPass BoardingPass((+ 1 overload)
Group = 1 C59035: Required member 'BoardingPass.Passenger’ must be set in the object initializer or attribute

b constructor.

Show potential fixes (Ctrl+.)

OEBPS/image/B21324_05_12.jpg
20 references | Matt Eland, 30 minutes ago | 1 author, 1 change
IQ vF,qubLic class Airport {

o s ago | 1 author, 1 change
Convert to positional record ks

L get; set; }

Extract interface... 5 minutes ago | 1 author, 1 change
g t; set; }

Extract base class... s ago | 1 author, 1 change
€ Generate constructor... t; set; }

Move to namespace... 0 changes

Generate Equals(object)... ToString() => Code;
Generate Equals and GetHashCode...
Generate overrides...

Generate constructor "Airport()’

Add 'DebuggerDisplay’ attribute

OEBPS/image/B21324_04_17.jpg
Move Static Members to Another Type:

OEBPS/image/B21324_12_12.jpg
Project Overview

Security Review 2

Maintainability 2

Overview

New Code

Code Smells

Debt

Debt Ratio

Rating

Overall Code

550

6d1h

3.6%

Refactoring-with-CSharp

Maintainability Overview 2

Sh

4h 10min

3h 20min

2h 30min

Technical Debt

1h 40min

50min

390/390 files

Size: Code Smells Color: Maintainability Rating A @B [C WD WE

Zoom: 1000% | Reset

%

k)

50 100 150 200

Lines of Code

OEBPS/image/B21324_11_17.jpg
Matt Eland (IntegerMan)

‘Your personal account

A Public profile
8 Account

& Appearance
F Accessibility

& Notifications

Access.
3 Billing and plans.

S Emails

@ Password and authentication
@) Sessions

£ SSH and GPG keys
Organizations

@ Enterprises

3 Moderation

GitHub Copilot

Go to your personal profile.

Suggestions matching public code

GitHub Copilot can allow or block suggestions matching public code. See the GitHub Copilot documentation to learn more.

Allow GitHub to use my code snippets for product improvements *

Allow GitHub, its affiates and third parties to use my code snippets to research and improve GitHub Coplot suggestions, related
models and product features. More information in Privacy FAQ

@t can take up t0 30 minutes for the changes to take effect. Restart your code editor for the changes to take effect immediately.

OEBPS/image/B21324_05_08.jpg
Pick members

~
X

Pick members to override

[[] @ Equals(object?)
[[] @ GetHashCode(

@ ToString()

Select All

Deselect All

0 B

OEBPS/image/B21324_09_3.jpg
Passenger passengpr = faker.Generate();

passenger .Board: * @ pissenger
passenger. NeedsHe| ; Loryca]
passenger . TSMilit ¢ romome

1/ Act K Lasthiame
string message = |’c MyiingCountry

// Assert v o

message . ShouldBe(; Rewardiles

10m) 8|

OEBPS/image/B21324_12_7.jpg
‘ 0 references | Matt Eland, 3 hours ago | 1 author, 4 changes

B public override bool Equals(object? obj) {
Airport? otherAirport = obj as Airport;

‘Wi{ (otherAirport == null)

Use pattern matching D @ IDE0019 Use pattern matching
Lines 8 to 11
public override bool Equals(object? obj) {

Use implicit type

Suppress or configure issues »

return Country == of
Code == othe: return false;

OEBPS/image/B21324_05_27.jpg
FlightFilterBase
Abstract Class

4 Methods
@ Shouldinclude

- ~ » ~
FlightDurationFilter A AirportFilter A
Class. Class.

+ FlightFilterBase + FlightFilterBase
4 Properties 4 Properties
& MaxDuration & Airport
/& MinDuration & IsDeparture
4 Methods 4 Methods
® Shouldinclude ® Shouldinclude
y . D,

FlightTimeFilter
Class.

 FlightFilterBase

4 Properties
& IsDeparture
& MaxTime
A& MinTime
4 Methods
@ Shouldinclude

A

OEBPS/image/B21324_17_05.jpg
Manage Extensions ? 53
b s i a— Uptde s g
_NET Upgrade Assistant
R e Gesedsy:

4 Visual Studio Marketplace

assist users with modernizing NET applications. Version: 0.5.26151392
Eeuchliesy Installs: 65281
D" Conks Pricing Category: Free
b Templates @ Review Assistant - Code Review Tool Rating: -+ (10Votes)
b Tools Review Assstant is 2 code review plug-in for Visual Studio. It Rscetbomatte
integrates with TFS, Git, SVN, and Mercurial. Supports multi-itertic.. e oo icrose
b Updates
b Roaming Extension Manager Porting Assistant for .NET 2022
Porting Assistant for NETis an analyss tool that scans NET

Framework applications and generates a NET Core compatibility as..

OEBPS/image/B21324_01_01.jpg
(ORg= public class

Bxtract

terfac

Move to namespace.

Generate Equals(object)
Generate Equals and GetHashCode.

Generate constructor.
Generate overides.
Generate constructor ‘SpeechViewModel)

Add ‘DebuggerDisplay’ attribute

OEBPS/image/B21324_13_5.jpg
Browse: Installed Updates
[VicrosoftCodenayss [T O [includeprercese

NuGet Package Manager: Packt.Analyzers

Package source:

NET

NET

NET

NET

NET

Microsoft.CodeAnalysis & by Microsoft, 20.2M downlosds
NET Compiler Platform ("Roslyn”).

Microsoft.CodeAnalysis.Common & by Microsoft, 602M downloads
Ashared package used by the Microsoft .NET Compiler Patform (‘Roslyn’).

Do not install this package manually, it will be added as a prerequisite by othe...

Microsoft.CodeAnalysis.CSharp & by Microsoft, 541M downloads
NET Compler Platform (*Roslyn") supportfor C%,
Microsoft CodeAnalysis CSharp.l.

Microsoft.CodeAnalysis.Analyzers © by Microsoft, 503M downloads
of Microsoft.C =

for NuGet package, ie.

and applications built on top of .NET Compiler Platform (Roslyn). This package s...

Microsoft.CodeAnalysis.Razor © by Microsoft, 350M downloads
Razor i a markup syntax for adding server-side logic to web pages. This package.
contains the Razor design-time nfrastructure.

470

470

334

6021

I3 Microsoft.CodeAnalysis @

Verson: 107

© Package source mapping i oft. Configure

Descripti
NET Compiler Platform (‘Roslyn’).

This i the all-in-one package (a superset of al assemblics). You can instell any of
these sub-packages if you only want part of the functionality:
- *Microsoft CodeAnalysis.CSharp Workspaces" (C¥ compiler + services)
icrosoft. CodeAnalysis VisualBasic- Workspaces" (VB compiler + services)
icrosoft CodeAnalysis. Compilers" (both compilers)
icrosoft. CodeAnalysis.CSharp (oly the C# compiler)
- *Microsoft. CodeAnalysis VisualBasic (only the VB compiler)

More details t https://aka.ms/roslyn-packages.
i i s Dol Souns e s i Ml ol el

OEBPS/image/B21324_02_05.jpg
-

11
126"
13
14
15
16
17
18
19
20

M-

if (carryon > 0) {

decimal l = carryOn * 30M;

Console.
total +=

if (bags >
if (bags
Consol

total

N

Rename will update 3 references in 1 file.

I:‘ Include comments

I:‘ Include strings

Enter to rename, Shift+Enter to preview

* 4eM}");

OEBPS/image/B21324_06_05.jpg
h Solution Exploves (Ctr-:)
Sekuton ChapterGieganngCode’ (2l 2 projctsl
> 568 Cuptert
+ 5 Chaptetiinalests
b &8 Dependencies
b +Cn Untlestles
+C8 Usings.cs

OEBPS/image/B21324_07_01.jpg
Red

* Writea
failing test

Green

* Make the
test pass

Refactor

+ Clean up new
code & test code

OEBPS/image/B21324_11_4.jpg
This code is a static class that generates 15 BoardingPass instances. BoardingPass is a class
that represents a boarding pass, which is an authorization pass that lets passengers board a
particular flight. For each BoardingPass created, the passenger's full name is set as the
constructor parameter. The Flight, Seat, and Group details of each BoardingPass are then
obtained from a call to the private GenerateFlight method. The Flight property of the
BoardingPass is set to the Flightinfo value that the GenerateFlight method returns.
GenerateFlight method is responsible for creating a new instance of the Flightinfo class
and populating it with random values. The values generated include the Miles, Status, Id,
ArrivalTime, DepartureTime, Origin and Destination.

<% What is the “Faker" class used for?

OEBPS/image/B21324_05_28.jpg
»r-Grolv|[Es]es[ec] A-HEOS-

Test run firushed: 3 Tests (3 Passed, 0 Faled, 0 Sipped) run in 304 ms.

Test

Chaptersiests (3)

4© PacktCloudySoeshirChapters.Tests (3)
FiightSchedulerTests (3)

© Schedulefight_Should_Add_Flight To_FightList
© SearchshouldNothetumtiddenFights

@ SearchShouldReturnMatchingFlights

OEBPS/image/B21324_16_06.jpg
Whitespace ~ Code Style Naming Style

Analyzers

[Semchseings

Prefer patter matching over mixed type check

Prefer extended property pattem
4 this. and Me. preferences (4)
Qualify ield access vith this' or Me'
Qualify property sccess with this'or Me'
Qualfy method access with this'or ‘Me'
Qualify event access with this'or ‘Me'
4 var preferences (3)
For buit-in types
When variable type is apparent
Elsewhere

2

= =5 =

5 ey

[—— T

[T Cram— T

OEBPS/image/BM_book-image_(2).jpg
<packh>

Real-World
Implementation of
C# Design Patterns

Overcome daily programming challenges using
elements of reusable object-oriented software

< BRUCE M. VAN HORN II
y Van Symons, CTO Vi -

OEBPS/image/B21324_04_11.jpg
Add Pacameter
——
Typename:

stting

© Typenameis recognized
Panameter name:

[gatd

Parameter kind
® Required
© Optional with defautt value:

Value to inject at call stes.

® Value: (A8

[0 Use named argument
© Introduce undefined 1000 vanables
© Inter trom context

Omit (only for optional parameters)

OEBPS/image/B21324_14_4.jpg
9 Packt.Analyzers 102

- T Frameworks & Dependencies ¥ UsedBy (@ Versions

A sample Roslyn diagnostic analyzer and its associated code fix

Downloads Full stats —
Total 0
Current version 0

Perday average 0

About
<O Last updated in a few seconds
@ Source repository

£ MIT license

Manage
2 Manage package

? Contact support

Owners Contact owners —

. MattEland

OEBPS/image/B21324_12_16.jpg
SE1H/Ghit!
Cctori())
{Packt
LFlightiBaggagel
|BaggageCalculator
caTculaterrilce]

.F1 |Packt.CloudySkiesAir/|
0}

Elight,
IDisplayEiigntalo)
MazkFlightDelayed!
(StringFDateTime)]
{a!
(String)DateTime))

& m " _m “m
ww 7 -

__o
o m
-

jostiy

0]
- ctoz(()

lPacker
sche [IgheNSehsaulingFlights

m_

m
REES f: mo wm

i

4

OEBPS/image/B21324_05_03.jpg
namespace Packt.CloudySkiesAir.Chapterd.AirTravel;

20 references | Matt Eland, Less than 5 minutes ago | 1 author, 1 change

@ ~ }EI public class Airport {

en

1

Al Convert to positional record

Extract interface...
Extract base class...
Generate constructor...

Rename file to Airport.cs

Rename type to Airportinfo

5 minutes ago | 1 author, 1 change

get; set; }
5 minutes ago | 1 author, 1 change
t; set; }

5 minutes ago | 1 author, 1 change
t; set; }

OEBPS/image/B21324_06_03.jpg
»>-Crel%] B @0 [@1]00u | 8- ga-
Completed cearing est resuls
Test o] Test DetailSummary

4 ChaptertXUnitTests (1)
4 ChaptertXUnitTests (1)
4 FightTests (1)

© ChaptersXUnitTests . FlightTests.GeneratedMessagehouldBeCorrect
[E] source: ElightTests. cs line 7
@puration: 1 ms

orrect

4 (pos 15)
Expected: Flight CSA1234 is On Time
Actual:

Flight CSA1234 status: On Time
* (pos 15)
Stack Trace:
FLightTests. GeneratedHessageShouldBeCorrect() Line 16
RuntineMethodHandle. InvokeMethod(Object target, Void«s arguments, Signature sig, Boolean isConstructor)

a ge:

’ Assert.Equal() Failure
a

[HethodInvoker. Invoke(Object obj, IntPtrx args, BindingFlags invokeAttr)

OEBPS/image/B21324_03_03.jpg
619 -+
6.

1 Place statement on following line
61 Invert if
6 —
P Convert to ‘switch" statement D
& Suppress or configure issues >
68 return "Please
69 }
70 return _priority
71 ? "Board N
72 "Board N
73 8 } else {
(2 return "Boarding
75 }
7% " 1
77

0 references | Matt Eland, 12 h
78 = internal object CanP)
79 throw new NotImple

if (Status == BoardingStatus.PlaneDeparted) {

Lines 60 to 75

return "Flight Departed

if (dsMilitary needsHelp) {

return "Board Now via Priority Lane";

}

if (CurrentBoardingGroup < group) {

return "Please Wait";

¥

return _prioritylLaneGroups.Contains(group)
? "Board Now via Priority Lane"
: "Board Now";

return "Boarding Not Started";

-

OEBPS/image/B21324_17_08.jpg
(eoo]) E50N
CEIN EE5EN
I N I § .

Blue Environment Green Environment
Status: Active Status: Updating
Version: 5.0 Version: 5.1

Users: 100% Users: 0 %

OEBPS/image/B21324_02_13.jpg
-~ 3

Test Explorer
»>-Cro B4 EADS- Search (Curel) P
Test run finished: 5 Tests (5 Passed, 0 Failed, 0 Skipped) run in 344 ms. A 0 Warings @ 0 Errors
Test Error Message Group Summary
4 @ Chapter2Tests (5) Chapter2Tests.

@ PacktCloudySkiesAir Chapter2 Tests . Tests in grou

4 @ BaggageCalculatorTests (5) (@© Total Duration: 5 m:

© HolidayPricelsCorrect Outoimes
© 5Passed

© PrceWithCamyOnBsglsCorrect
© FrceWithNoagsisCorrect

© PriceWihTuoCheckedisCorrect
© PrceWithTuoPsssengersindTh..

OEBPS/image/B21324_06_08.jpg
»>-Colv|[Es[@s[@0] 8- ae-

Test run finished: 6 Tests (6 Passed, 0 Failed, 0 Skipped) run in 339 ms

Test Duration
4® ChaptertXUnitests (6) 3ms
4® ChaptertXUnitests (6) 3ms
4 ® BaggageCelculatorfests (6) 3ms

© BaggageCalculatorCalculatesCorrectPrice (4) <1ms

@ BaggaoeCaiculatorCalulatesCormectPricelcaryOnEags:) checkedBags: O, passengers: 1, SHoliday: False, expecteck) o

) Bt e s et e o i s T e e S 5 B G 10T Sl

© BaggageCalculatorCaleulatesComectPrice{camyOniags: 2, checkedBagt 3, passengers: 2, sHolday: b, expectec: 190) o

@ BaggageCalcubtorCaliatesComectPricelcamyOnBags: 2 checkedBacs: 3, passengers 2, isHolicky: Tnie, expectect: 209) i

© CaryOnaggagelsPricedCorrectly <ims

© FirstCheckedBagShouldCostExpectedAmount G

OEBPS/image/B21324_15_5.jpg
Current Date
Q1 Q2 Q3 Q4
| |
[Improved Flight Selection Portal] [Crew Scheduling System Expansion] \ Integrating New Subsidiary | | In-Flight App

[[|

OEBPS/image/B21324_11_14.jpg
9 int DocumentMe.AddEvenNumbers(int[]? numbers, [int total = 0])
Adds up even numbers in an array.

Returns:
The total of all even numbers in the array.

Exceptions:
ArgumentException

OEBPS/image/B21324_13_9.jpg
Add New Asset

Type:

Project:

Microsoft.VisualStudio.Analyzer

A project in current solution

Packt Analyzers

Embed in this folder:

Target Version:

OEBPS/image/B21324_02_01.jpg
prlvate dec1mal holldayFeePercent

public decimal H: olldayFeePercen {

get { return holidayFeePercent; }
set { holidayFeePercent = value;

}

0:

1M;

OEBPS/image/B21324_04_01.jpg
FLIGHT

CSA2024
CSA2028
CSA2034
CSA2040
CSA2043
CSA2049
CSA2050
CSA2052
CSA2054
CSA2058
CSA2061
CSA2062
CSA2067
CSA2073
CSA2075

DEST

ORD
ATL
ORD
ORD
MCI
ATL
ORD
PNS
SAN
CMH
PNS
MCI
CHS
MCI
MCI

DEPARTURE

Sun
Sun
Mon
Mon
Mon
Mon
Mon
Mon
Mon
Mon
Mon
Mon
Mon
Mon
Mon

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

09
09
10
10
10
10
10
10
10
10
10
10
10
10
10

2XE8
23
00:
00:
00:
00:
00:
00:
ol:
Q18
ol:
OI8:
ol:
O
02:

24y
u1
o4
dkg
17
31
55
57
00
i/
21
u7
52
55
o4

PM
PM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM

GATE

Aol
col
Aol
Aol
cou
Ao3
col
A02
ces
Aol
cou
Aoy
Ae3
Ao3
Aod

STATUS

Inbound
Delayed
OnTime
OnTime
OnTime
OnTime
OnTime
OnTime
OnTime
OnTime
Inbound
Cancelled
Delayed
Delayed
Cancelled

OEBPS/image/B21324_12_3.jpg
=]

3 references | Matt Eland, 17 hours ago | 1 author, 1 change
public decimal CalculatePrice(int bags, int carryOn,
int passengers, bool isHoliday) {

@decimal total = 0;

if (carryOn > 0) {

decimal fee = carryOn * CarryOnFee;
ée .WriteLine($"Carry-on: {fee}");
o

+= fee;

if (bags > 0) {

ecimal bagFee = ApplyCheckedBagFee(bags, passengers);
ée .WriteLine($"Checked: {bagFee}");
+= bagFee;

if (isHoliday) {
decimal holidayFee = total * HolidayFeePercent;
.HriteLine("Holiday Fee: " + holidayFee);

otal += holidayFee;

return total;

OEBPS/image/BM_book-image_(1).jpg
Clean Code
in C#

OEBPS/image/B21324_05_18.jpg
O IFlightinfo

FlightinfoBase

Class.

4 Properties
& AnivalLocation

A AmivalTime

A Departurel ocation
A DepartureTime
A Duration

& d

FreightFlightinfo A PassengerFlightinfo A
Class. Class.
FlightinfoBase + FlightinfoBase

4 Properties 4 Fields
& Cargo € _passengers
A CharterCompany 4 Methods
4 Methods @ BuildFlightidentifier
@ BuildFlightidentifier @ Load
@ ToString @ ToString
@ Unload

OEBPS/image/B21324_07_05.jpg
0 references | 0 changes | 0 authors, 0 changes
ublic class MileageTrackerTests {
[Fact]
0 references | 0 changes | 0 authors, 0 changes
public void NewAccountShouldHaveStartingBalance() {
7/ Arrange
int expectedMiles = 100;

// Act
MileageTjracker tracker = new();

// Assert
Assert.Equal(expectedMiles, tracker.Balance);

¥ B
3 [®] [csosr: “MileageTracker’ does not contain a definition for ‘Balance'
first argument of type ‘MileageTracker’ could be found (are you miss

Show potential fixes (Ctrl+)

OEBPS/image/B21324_02_06.jpg
decimal checkedFee = numChecked * U@M;

fadraalud.
Introduce constant * Introduce constant for ‘40M" Lines 4 to 5
Extract method Introduce constant for all occurrences of '40M" 1 . .
private const decimal V = 4eM;
Extract local function Introduce local constant for *40M*
Introduce parameter for '40M' » Introduce local constant for all occurrences of ‘40M public decimal HolidayTravelFeePercent { get; set; } =
A Console.UriteLine($"Checked bag price: {¢-ines 22 to 24
i total += checkedFee; {)
} decimal checkedFee = numChecked *
I } decimal checkedFee = numChecked *
{' Console.WritelLine($"Checked bag pri {che
Be if (travelTime.Month >= 11 || travelTime.Month <:-ines 28 to 3{9
; £ .
' Console.WriteLine($"Holiday Travel Fee: {tot: dec:'ma'l. chigdianee = (numPassengers * E
total += total » HolidayTravelFeePercent; decinafgcheckedieck i (nuaRsssengensRal B
‘ } Console.WriteLine($"Checked bag price: {che
O FaR|

G Eoie G Preview changes

OEBPS/image/B21324_13_4.jpg
Add a new project

Recent project templates

[}

B &

Unit Test Project

Code Refactoring (NET Standard)

Console App

Analyzer with Code Fix (NET Standar)

Empty VSIX Project

Class Library

ASP.NET Core Web AP

MSTest Test Project

NUnit Test Project

pplication

c

=

=

c

=

=

c

c

o

[Clss Liray <[] Clearall
c ~ Allplatforms ~ Allprojecttypes =
gy S
S project for creating « IREBIAR that targets NET or NETStandard
¢ Android Lnux macos Windows Db
oR@ Razor Class Library
@ 1 project for creating o Rozor RSB tht argets NET Standord

e

]

Gl macos
WPF Class Library.

A project for creating a éass ity tht targets 3 NETWPF Application
G winows Deskiop ibiain

NET MAUI Class Library
A project for creating 3 NET MAUI s brary

¢ Android 05

Windows b web

MacCatast macOS MAUI Tizen
Windows

Glass Library (Universal Windows)

A projectfor creating a managed GRS (4l for Uriversl Windows latform
(UWP) apps.

OEBPS/image/B21324_17_10.jpg
EETIEN
oo
oy

Blue Environment
Status: Offline
Version: 5.0
Users: 0%

ErEe
s)
.

Green Environment
Status: Active
Version: 5.1
Users: 100 %

OEBPS/image/B21324_07_06.jpg
tracker.Balance);
Generate property ‘Balance’ D © @ C51061 "MileageTracker' does not contain a definition for ‘Balance'

e and no accessible extension method ‘Balance' accepting a first argument of
type 'MileageTracker' could be found (are you missing a using directive or...

Generate read-only field ‘Balance’

Lines 2 to 3
public class MileageTracker {
public IEnumerable<object> Balance { get; set; }

¥

OEBPS/image/B21324_05_24.jpg
[cargoltem
Class

[CharterFlightinfo
Class
 FlightinfoBase

4 Properties

A ltemType
& Quantity
4 Methods

® ToString

4 Methods
© BuildFlightldentifier

OEBPS/image/B21324_04_16.jpg
private static string Format(DateTime time) {

o : "
25 e ("ddd MMM dd HH:mm tt");

7 Move staic members o another type..
Change signature...
Bxtract base class...

OEBPS/image/B21324_12_11.jpg
> N SPELIIES LIS MU U1 USUUY 3Y11IUUI PIVULLES Uuling Ui,
ApeScaion [PDB fle portable scros pltforms
4 Buid
Genersl
Errorsand warmings | Errors and Warning level &
Cutput warnings Specifes the level to isplay for compile warnings. Higher levels produce more warnings, and
include il warning from lower levels.
Strong naming [
Advanced
S ‘Suppress specific warnings @
ks Blocks the compiler from generating the specified warnings. Separste multiple warning
b Code Analysis numbers with a comma () or semicolon
o [
b Resources

£ Treat warnings a errors O

[e

Treat specific warnings as errors ©
Specifies which warnings are treated as erors. Separate multiple warning numbers with a
comma (,) or semicolon

[sowerningsasErrorsy:u160s]
| uteosisvsuoont

OEBPS/image/B21324_16_02.jpg
Options

? XS
formatting % Your editorconfig file might override the local settings configured on this page which only apply to your machine.
To configure these settings to travel with your solution use EditorConfig files. More info Learn more
4 Text Editor
A [[IPlace open brace on new line for object, collection, array, and with initializers "
4 ASP.NET Web Forms [[IPlace open brace on new line for lambda expression
Fosmatiing New line options for keywords
ac# [Place "else” on new line
4 Code Style | MIpiace "catch” on new line
4 Formatting lace “finally” on new line
(€eerd| New line options for expressions
indentation [VIPlace members in object initializers on new line
New Lines))
: lace members in anonymous types on new line
Spacing
el Place query expression dlauses on new line -
4C/C++ BT =
4 Code Style ¥
4 Formatting catch (Exception e) {
General 3
Indentation finally {
New Lines }
Spacing
Unreal Engine
Wrapping
aF#
Formatting s
Quickinfo

OEBPS/image/B21324_05_07.jpg
20 references | Matt Eland, Less than 5 minutes ago | 1 author, 1 change

@ v}E‘ public class Airport {

tn

A Convert to positional record

Extract interface...
Extract base class...
Generate constructor...
Move to namespace...

Generate Equals(object)...

Generate Equals and GetHashCode...
Generate overrides...
Generate constructor "Airport()’

Add 'DebuggerDisplay’ attribute

5 minutes ago | 1 author, 1 change
get; set; }

n 5 minutes ago | 1 author, 1 change

t; set; }

5 minutes ago | 1 author, 1 change

t; set; }

OEBPS/image/B21324_09_4.jpg
»r-CroliBafox]en] a4

Test run finished: 27 Tests (26 Passed, 1 Failed, 0 Skipped) run in 302 ms

-

Search (C

Test

4@ ChaptersTests (27)

+ @ WileageTrackerTests (6]

b @ BaggageCalculatorTests (6)

» @ FiightTests (1)

4 ® PassengerTests (3)
© EosrcingMessageShouidBeAccurate
© FassengerfullNameShouldgeccurste
© EosrcingMessageShouldBeAccurate...

4@ FighttookingMansgerTests (5]
© EookingFiightShouldSuccesdForEmpt..
© EookingFightShouldSuccesdForEmpt...
© FighthaniestErperimentWithScientist
® EookingFightShouldSendEmaiNSu
© FighthaniestShouldMstchrpectat
© BookingFiightShouldSendEmails

Durati..
453 ms
bms

NE

1ms
30ms
T3ms
<ims
30ms
ams
149 ms
<ims
1ms
13ms
35ms
46 ms.
S4ms

Test Detail Summary.

=

© ChaptergTests. FlightBookingManagerTests. FlightManifestshouldMatchExpectations
E] Source: FLightBookingHanagerTests.cs Line 161

©ouration: 46 ns

Message:
Snapper. Exceptions. SnapshotsDoNotMatchException :
snapshots do not match
- snapshot
+ Received

"BoardingGroup":
“Ishilitary":

o,
false,

OEBPS/image/B21324_11_8.jpg
Solution Explorer

GitHub Copilot chat

@ copilot
Hello! Let's build together. Here are some suggestions to get you started:
% What does Console.WriteLine() do?
%4 How do | wite C# in s functions! style?
%, How does String.Substring() work?

I'm powered by Al, so surprises and mistakes are possible. Make sure to verify any
Al code or suggestions, and share feedback o that we can learn and improve.

Al suggestions might be inaccurate,

Ask Copilot

>

GitHub Copilot chat

OEBPS/image/B21324_03_08.jpg
9 Hpublic void DisplayBoardingStatus(List<Passenger> passengers, bool? hasBoarded = null) {
19 "] List<passenger> filteredPassengers = new();
11@ }a foreach (Passenger p in passengers) {

Fix formatting |Lines 16 to 12
‘ List<Passenger> filteredPassengers = new();

[l

14 Place statement on following line

Convert to LINQ
Convert to LINQ (call form)

\ if (lhasBoarded.HasValue || p.HasBoarded == hasBoarded) {
Convert to ‘for

Leclimpiciipe 1 Preview changes
!

Suppress o configure issues
27 d(passenger) ;

NN B R

OEBPS/image/B21324_06_04.jpg
Add a new project

Recent project templates
& xUnit Test Project

B Console App

@ Class Library

T WPF Application

3

3

3

3

= 1 et
Alllanguages - Alplatforms - Alprojecttypes -
,-:j XUnit Test Project

[prsjcttha contains I vt e th cas 1 on INET s Winciws, Linixarl
Macds.

¢ lnux macoS | Windows | Test

Aw KURR Test Project

A projectthat contains KU nt tests tht ca run on NET on Windows Linux and
Macds,
ViwlBaic U maos Windows Test

m KURR Test Project

A projectthat contains KU nt tests tht cam run on NET on Windows, Linux and
Macds,

e lnu maoS Windows Test

% NUnit Test Poject

A prjecthat contains Ui tesstht canrnan NETon Windows, Lino and
Mac0s.

Cf Unux macOS Windows Desktop Test Web

VB NUnit Test Project
i i

OEBPS/image/B21324_17_04.jpg
Sprint |
[[]
Refactoring Regular Work
@ []

Regular Work ~ Regular Work

Sprint 2

v

Regular Work Refactoring

L

Regular Work ~ Regular Work

Sprint 3
[] [1
Regular Work ~ Regular Work
% 1

Refactoring Regular Work

OEBPS/image/B21324_QR_Free_PDF1.jpg

OEBPS/image/B21324_05_13.jpg
X

Pick members ?

Pick members to be used in Equals/GetHashCode

& Country
K Code
[[] #Name

Select All

[l HE

Deselect All

["] implement IEquatable<Airport>
["] Generate operators

OEBPS/image/B21324_12_8.jpg
b Application

> Build

b Package

4 Code Analyss
Alanalyzers
NETsnslyzers

b Debug.

> Resources

Code Analysis

Al analyzers

Run on five analysis ©
Run code analysis ive in the editor 2 you type.

NET
analyzers

Enforce code style on build @
(] Priocice dhoguicstic abioiit o i o b,

Enable NET analyzers @
Run NET analyzers to help with APl usage.

Analyss level ©
Th set of analyzers that should be run in the project

[Latest

OEBPS/image/B21324_04_05.jpg
Flight flight = flightTracker.ScheduleNewFlight(}

i ST - P——
= rand.Next(g) A 10f2 Flight FightTiackerScheduleNewFlight(Fiight flight)

