
M A N N I N G

Yehonathan Sharvit
Forewords by Michael T. Nygard
 and Ryan Singer

Reduce software complexity

Data

Representation

Schema

Generic

Specific

Mutable

Immutable

Data-oriented

programming

Code Functional

programming

Object-oriented

programming

Principle #2: Represent
data with generic data
structures.

Principle # :1

Separate code
from data.

Principle #3:
Data is
immutable.

Principle #4: Separate
data schema from data
representation.

Principles of data-oriented programming

Data-Oriented Programming

Data-Oriented
Programming

REDUCE SOFTWARE COMPLEXITY

YEHONATHAN SHARVIT

Forewords by MICHAEL T. NYGARD and RYAN SINGER

MANN I NG

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Elesha Hyde
20 Baldwin Road Technical development editor: Marius Butuc
PO Box 761 Review editors: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Frances Buran
Proofreader: Keri Hales

Technical proofreader: Karsten Strøbaek
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617298578
Printed in the United States of America

www.manning.com

 To Karine, who supports my dysfunctionalities on a daily basis.

brief contents
PART 1 FLEXIBILITY ..1

1 ■ Complexity of object-oriented programming 3

2 ■ Separation between code and data 26

3 ■ Basic data manipulation 43

4 ■ State management 71

5 ■ Basic concurrency control 91

6 ■ Unit tests 110

PART 2 SCALABILITY ...137

7 ■ Basic data validation 141

8 ■ Advanced concurrency control 163

9 ■ Persistent data structures 175

10 ■ Database operations 197

11 ■ Web services 220
vivi

BRIEF CONTENTS vii
PART 3 MAINTAINABILITY..245

12 ■ Advanced data validation 247

13 ■ Polymorphism 272

14 ■ Advanced data manipulation 295

15 ■ Debugging 311

contents
forewords xiii
preface xvii
acknowledgments xviii
about this book xx
about the author xxiv
about the cover illustration xxv
dramatis personae xxvi

PART 1 FLEXIBILITY ..1

1 Complexity of object-oriented programming 3
1.1 OOP design: Classic or classical? 4

The design phase 4 ■ UML 101 6 ■ Explaining each piece of
the class diagram 9 ■ The implementation phase 12

1.2 Sources of complexity 13
Many relations between classes 14 ■ Unpredictable code
behavior 16 ■ Not trivial data serialization 18
Complex class hierarchies 20

2 Separation between code and data 26
2.1 The two parts of a DOP system 27
2.2 Data entities 29
viii

CONTENTS ix
2.3 Code modules 31
2.4 DOP systems are easy to understand 36
2.5 DOP systems are flexible 38

3 Basic data manipulation 43

3.1 Designing a data model 44
3.2 Representing records as maps 48
3.3 Manipulating data with generic functions 54
3.4 Calculating search results 58
3.5 Handling records of different types 65

4 State management 71

4.1 Multiple versions of the system data 72
4.2 Structural sharing 74
4.3 Implementing structural sharing 80
4.4 Data safety 82
4.5 The commit phase of a mutation 83
4.6 Ensuring system state integrity 85
4.7 Restoring previous states 86

5 Basic concurrency control 91

5.1 Optimistic concurrency control 92
5.2 Reconciliation between concurrent mutations 94
5.3 Reducing collections 97
5.4 Structural difference 99
5.5 Implementing the reconciliation algorithm 106

6 Unit tests 110

6.1 The simplicity of data-oriented test cases 110
6.2 Unit tests for data manipulation code 112

The tree of function calls 113 ■ Unit tests for functions down
the tree 115 ■ Unit tests for nodes in the tree 119

6.3 Unit tests for queries 121
6.4 Unit tests for mutations 126

CONTENTSx
PART 2 SCALABILITY..137

7 Basic data validation 141
7.1 Data validation in DOP 142
7.2 JSON Schema in a nutshell 143
7.3 Schema flexibility and strictness 149
7.4 Schema composition 154
7.5 Details about data validation failures 158

8 Advanced concurrency control 163
8.1 The complexity of locks 164
8.2 Thread-safe counter with atoms 165
8.3 Thread-safe cache with atoms 170
8.4 State management with atoms 172

9 Persistent data structures 175
9.1 The need for persistent data structures 175
9.2 The efficiency of persistent data structures 178
9.3 Persistent data structures libraries 184

Persistent data structures in Java 184 ■ Persistent data structures
in JavaScript 186

9.4 Persistent data structures in action 188
Writing queries with persistent data structures 188 ■ Writing
mutations with persistent data structures 191 ■ Serialization and
deserialization 192 ■ Structural diff 193

10 Database operations 197
10.1 Fetching data from the database 198
10.2 Storing data in the database 204
10.3 Simple data manipulation 207
10.4 Advanced data manipulation 211

11 Web services 220
11.1 Another feature request 221
11.2 Building the insides like the outsides 222
11.3 Representing a client request as a map 225

CONTENTS xi
11.4 Representing a server response as a map 227
11.5 Passing information forward 231
11.6 Search result enrichment in action 234

PART 3 MAINTAINABILITY..245

12 Advanced data validation 247

12.1 Function arguments validation 248
12.2 Return value validation 255
12.3 Advanced data validation 257
12.4 Automatic generation of data model diagrams 260
12.5 Automatic generation of schema-based unit tests 262
12.6 A new gift 269

13 Polymorphism 272

13.1 The essence of polymorphism 273
13.2 Multimethods with single dispatch 277
13.3 Multimethods with multiple dispatch 281
13.4 Multimethods with dynamic dispatch 286
13.5 Integrating multimethods in a production system 289

14 Advanced data manipulation 295

14.1 Updating a value in a map with eloquence 296
14.2 Manipulating nested data 299
14.3 Using the best tool for the job 301
14.4 Unwinding at ease 305

15 Debugging 311

15.1 Determinism in programming 312
15.2 Reproducibility with numbers and strings 314
15.3 Reproducibility with any data 318
15.4 Unit tests 321
15.5 Dealing with external data sources 329

CONTENTSxii
appendix A Principles of data-oriented programming 333
appendix B Generic data access in statically-typed languages 364
appendix C Data-oriented programming: A link in the chain of programming

paradigms 381
appendix D Lodash reference 387

index 391

forewords
Every programming principle, every design method, every architecture style, and even
most language features are about organizing complexity while allowing adaptation.
Two characteristics—immutable data and turning parts of the program into data
inside the program itself—drew me to Clojure in 2009 and more recently to Yehona-
than Sharvit’s Data-Oriented Programming.

 In 2005, I worked on one of my favorite projects with some of my favorite people.
It was a Java project, but we did two things that were not common practice in the Java
world at that time. First, we made our core data values immutable. It wasn’t easy but it
worked extraordinarily well. We hand-rolled clone and deepClone methods in many
classes. The payoff was huge. Just as one example, suppose you need template docu-
ments for users to instantiate. When you can make copies of entire object trees, the
objects themselves don’t need to “know” whether they are template data or instance
data. That decision is up to whatever object holds the reference. Another big benefit
came from comparison: when values are immutable, equality of identity indicates
equality of value. This can make for very fast equality checks.

 Our second technique was to take advantage of generic data—though not to the
extent Yehonathan will show you in this book. Where one layer had a hierarchy of
classes, its adjoining layer would represent those as instances of a more general class.
What would be a member variable in one layer would be described by a field in a map
in another layer. I am certain this style was influenced by the several small talkers on
our team. It also paid off immediately, as we were able to compose and recompose
objects in different configurations.
xiii

FOREWORDSxiv
 Data-oriented programming, as you will see, promises to reduce accidental complex-
ity, and raise the level of abstraction you work at. You will start to see repeated behavior
in your programs as artificial, a result of carving generic functions into classes, which act
like little namespaces that operate only on a subset of your program’s values (their
instances). We can “fold together” almost all of those values into maps and lists. We can
turn member names (data available only with difficulty via reflective APIs) into map
keys. As we do that, code simply melts away. This is the first level of enlightenment.

 At this point, you might object that the compiler uses those member names at
compile time for correctness checking. Indeed it does. But have faith, for Yehonathan
will guide you to the next level of enlightenment: that those compile-time checks are a
small subset of possible correctness checks on values. We can make the correctness
checks themselves into data, too! We can make schemas into values inside our programs.
What’s more, we can enforce criteria that researchers on the forefront of type systems
are still trying to figure out. This is the second level of enlightenment.

 Data-oriented programming especially shines when working with web APIs. There is
no type of system on the wire, so attempting to map a request payload directly into a
domain class guarantees a brittle, complex implementation. If we let data be data, we get
simpler code and far fewer dependencies on hundred-megabyte framework libraries.

 So, whatever happened to the OOP virtues of encapsulation, inheritance, and
polymorphism? It turns out we can decomplect these and get each of them à la carte.
(In my opinion, inheritance of implementations is the least important of these, even
though it is often the first one taught. I now prefer inheritance of interfaces via proto-
cols and shared function signatures.) Data-oriented programming offers polymor-
phism of the “traditional” kind: dispatch to one of many functions based on the type
of the first argument (in an OO language, this is a disguise for the method’s first
argument. It just happens it goes before the “.”). However, as with schema checking,
DOP allows more dynamism. Imagine dispatching based on the types of the first two
arguments. Or based on whether the argument has a “birthday” field with today’s date
in it! This is the third level of enlightenment.

 And as for encapsulation, we must still apply it to the organizing logic of our
program. We encapsulate subsystems, not values. This encapsulation embodies the
decision-hiding of David Parnas. Inside a subsystem, we can stop walling off our data
into the disjointed namespaces that classes impose. In the words of Alan Perlis, “It is
better to have one hundred functions operate on one data structure than ten func-
tions on ten data structures.”

 In our unending battle with entropy, we can use data-oriented programming to
both reduce the volume of code to keep up and raise the level of abstraction to make
our program’s logic and meaning precise and evident. Enjoy the journey and pause at
each new plateau to enjoy the view and say to yourself, “It’s just data!”

—MICHAEL T. NYGARD

 author of Release It!: Design and
Deploy Production-Ready Software

FOREWORDS xv
This book hit me at just the right time. I had been building web apps for nearly 20
years in an object-oriented framework. I never considered myself an expert program-
mer, but I knew my tools well enough to look at a typical business problem, sketch out
a data model, and build an MVC-style app to get the job done.

 Projects were thrilling at the start. I loved the feeling of plugging pieces together
and seeing the app come to life. But once I got it working, I ran into problems. I
couldn’t change one part without keeping all the other models in mind. I knew I
should write tests, but I had to set up so much state to test things that it didn’t feel
worth it—I didn’t want to write more code that would be hard to change. Even run-
ning bits of code in the console was tedious because I had to create database state to
call the method. I thought I was probably doing it wrong, but the solutions I knew
about, such as sophisticated testing frameworks, seemed to add to the complexity
instead of making things easier.

 Then one day, I saw a talk on YouTube by Rich Hickey, the creator of Clojure. He
was explaining functional programming and contrasting it with OO, which he deri-
sively called “place-oriented programming.” I wasn’t sure if he was right, but I heard a
hidden message that intrigued me: “It’s not you, it’s your language.” I watched all the
videos I could find and started to think Clojure might be the answer.

 Years went by. I kept watching Clojure videos and trying to apply functional princi-
ples when I could. But whenever it was time to start on a new project, I fell back on my
familiar framework. Changing to another language with a totally different ecosystem
of libraries was too big of a leap.

 Then, just as I was about to start work on a new product, I found this book. The
words “Data-Oriented” in the title rang a bell. I heard programmers in those Clojure
videos use the words before, but I hadn’t really understood what they meant. Some-
thing about how it’s easier to build systems that manipulate data literals (like maps
and arrays) instead of custom objects. The languages I knew had good support for
data literals, so I thought I might learn something to hold me over until that magical
day when I might switch to Clojure.

 My first a-ha moment came right in the introduction. In the first few pages, Yehona-
than explains that, though he’s written Clojure for 10 years, the book isn’t language-
specific, and the examples will be in JavaScript. Wait!—I thought. Could it really be
that I don’t have to change languages to deeply improve the way I write programs?

 I was so excited by this prospect that I devoured the book in one sitting. My eyes
opened to something that had been right in front of me all along. Of course my code
was hard to test! Because of the ORM I used, all my functionality was written in objects
that assumed a bunch of database state! When I saw it spelled out with examples in the
book, I couldn’t unsee it. I didn’t need a new language, I just needed to approach pro-
gramming differently!

 The designers I consider great all point to the same thing: good design is about
pulling things apart. It’s not just about getting the code to work, no matter how ugly.

FOREWORDSxvi
It’s about untangling the parts from each other so you can change one thing without
breaking everything else.

 This book pulls apart code and data, with surprising and exciting results. For me, it
also went further. It pulled apart a way of programming from a specific language. I might
never make that switch to Clojure, and I don’t feel like I have to anymore. Data-
Oriented Programming helped me see new possibilities in the languages I know and the
multitude of new frameworks appearing every day.

—RYAN SINGER

 author of Shape Up: Stop Running
in Circles and Ship Work that Matters

preface
I have been a software engineer since 2000. For me, there is clearly a “before” and an
“after” 2012. Why 2012? Because 2012 is the year I discovered Clojure. Before Clojure,
programming was my job. After Clojure, programming has been my passion.

 A few years ago, I wondered what features of Clojure made this programming lan-
guage such a great source of pleasure for me. I shared my questions with other mem-
bers of the Clojure community who have the same passion for it that I do. Together,
we discovered that what was so special about Clojure was not features, but principles.

 When we set out to distill the core principles of Clojure, we realized that they were,
in fact, applicable to other programming languages. It was then that the idea for this
book began to emerge. I wanted to share what I like so much about Clojure with the
global community of developers. For that, I would need a means of clearly expressing
ideas that are mostly unfamiliar to developers who do not know Clojure.

 I’ve always loved inventing stories, but would my invented dialogues be taken seri-
ously by programmers? Certainly, Plato had invented stories with his “Socratic Dia-
logues” to transmit the teachings of his teacher. Likewise, Rabbi Judah Halevi had
invented the story of the king of the Khazars to explain the foundations of Judaism.
But these two works are in the realm of thought, not practice!

 I then remembered a management book I had read a few years ago, called The Goal
(North River Press, 2014). In this book, Eliyahu Goldratt invents the story of a plant
manager who manages to save his factory thanks to the principles coming from the
theory of constraints. Plato, Judah Halevi, and Eliyahu Goldratt legitimized my crazy
desire to write a story to share ideas.
xvii

acknowledgments
First and foremost, I want to thank my beloved, Karine. You believed in me since the
beginning of this project. You always manage to see the light, even when it hides
behind several layers of darkness. To my wonderful children, Odaya, Orel, Advah,
Nehoray, and Yair, who were the first audience for the stories I invented when I was a
young daddy. You are the most beautiful story I ever wrote!

 There are numerous other folks to whom I want to also extend my thanks, includ-
ing Joel Klein, for all the fascinating and enriching discussions on the art and the soul;
to Meir Armon for helping me clarify what content should not be included in the
book; to Rich Hickey for inventing Clojure, such a beautiful language, which embraced
data-oriented programming before it even had a name; to Christophe Grand, whose
precious advice helped me to distill the first three principles of data-oriented pro-
gramming; to Mark Champine, for reviewing the manuscript so carefully and provid-
ing many valuable suggestions; to Eric Normand, for your encouragement and, in
particular, your advice on the application of data-oriented programming in Java; to
Bert Bates, for teaching me the secrets of writing a good book; and to Ben Button, for
reviewing the chapters that deal with JSON Schema.

 My thanks to all the folks at Manning Publications, especially Mike Stephens, for
agreeing to continue working with me despite the failure of my first book; Elesha
Hyde, for your availability and your attention to the smallest details; Marius Butuc, for
your enthusiastic positive feedback from reading the first chapter; Linda Kotlyarsky,
for formulating the chapter descriptions in such a fun way; and to Frances Buran for
improving the clarity of the text and the flow of the story.
xviii

ACKNOWLEDGMENTS xix
 To all the reviewers, Alex Gout, Allen Ding, Andreas Schabus, Andrew Jennings,
Andy Kirsch, Anne Epstein, Berthold Frank, Christian Kreutzer-Beck, Christopher
Kardell, Dane Balia, Dr. Davide Cadamuro, Elias Ilmari Liinamaa, Ezra Simeloff,
George Thomas, Giri S., Giuliano Araujo Bertoti, Gregor Rayman, J. M. Borovina
Josko, Jerome Meyer, Jesús A. Juárez Guerrero, John D. Lewis, Jon Guenther, Kelum
Prabath Senanayake, Kelvin Johnson, Kent R. Spillner, Kim Gabrielsen, Konstantin
Eremin, Marcus Geselle, Mark Elston, Matthew Proctor, Maurizio Tomasi, Michael
Aydinbas, Milorad Imbra, Özay Duman, Raffaella Ventaglio, Ramanan Nararajan,
Rambabu Posa, Saurabh Singh, Seth MacPherson, Shiloh Morris, Victor Durán,
Vincent Theron, William E. Wheeler, Yogesh Shetty, and Yvan Phelizot, your sugges-
tions helped make this a better book.

 Finally, I’d like to mention my cousin Nissim, whom a band of barbarians did not
allow to flourish.

about this book
Data-Oriented Programming was written to help developers reduce the complexity of the
systems they build. The ideas in this book are mostly applicable to systems that manip-
ulate information—systems like frontend applications, backend web servers, or web
services.

Who should read this book?
Data-Oriented Programming is for frontend, backend, and full stack developers with a
couple of years of experience in a high-level programming language like Java, C#,
C++, Ruby, or Python. For object-oriented programming developers, some ideas pre-
sented in this book might take them out of their comfort zone and require them to
unlearn some of the programming paradigms they feel so much at ease with. For func-
tional programming developers, this book will be a little easier to digest but should
deliver some nice surprises as well.

How this book is organized: A road map
This book tells a story that illustrates the value of data-oriented programming (DOP)
and how to apply its principles in real-life production systems. My suggestion is to fol-
low the story and read the chapters in order. However, if some chapters trigger your
curiosity more than the others, be aware that the material in part 1 and in chapter 7
are required to understand part 2 and part 3.

 Throughout the book, we use Lodash (https://lodash.com/) to illustrate how to
manipulate data with generic functions. In case you are reading a code snippet that
xx

https://lodash.com/

ABOUT THIS BOOK xxi
uses a Lodash function that you are unfamiliar with, you can refer to appendix D to
understand the behavior of the function.

 Part 1, Flexibility, contains six chapters and shines a spotlight on the challenges of
traditional object-oriented programming (OOP) and puts data-oriented program-
ming (DOP) center stage, revealing how to build flexible systems by using DOP’s basic
principles. The chapters line up this way:

 In chapter 1, Complexity of object-oriented programming, we look at the complexity
of OOP. Then, our DOP saga begins! Listen in on a conversation between
Theo, a senior developer, and his up-and-coming colleague, Dave. Feel empa-
thy for Theo struggling with OOP complexity and discover an excellent rea-
son for trying a different programming paradigm.

 Chapter 2, Separation between code and data, finds our friend Theo searching for a
solution that will reduce complexity and increase the flexibility of systems. His
job is on the line. Enter Joe, an experienced developer who has an answer for
him—DOP. Discover how DOP Principle #1 helps to reduce complexity of
information systems.

 Chapter 3, Basic data manipulation, explores how we can liberate our data from
its encapsulation in class rigidity and manipulate it freely with generic functions
by applying DOP Principle #2. Vive la révolution!

 Chapter 4, State management, explores state management with a multiversion
approach that lets us go back in time by restoring the system to a previous state
because, in DOP, state is nothing more than data. Time travel is real—in DOP!

 Chapter 5, Basic concurrency control, helps us to get high throughput of reads and
writes in a concurrent system by applying an optimistic concurrency control
strategy. No rose-colored glasses required!

 Chapter 6, Unit tests, offers a cup of joe . . . with Joe! Our friend Joe proves that
unit testing data-oriented code is so easy you can tackle it in a coffee shop. Grab
a cuppa and learn why it’s so straightforward—even for mutations!—as you
write a DOP unit test hands-on with Joe. It’s cool beans!

Part 2, Scalability, illustrates how to build a DOP system at scale with a focus on data val-
idation, multi-threaded environments, large data collections, and database access and
web services. Need to supersize your system? No problem!

 Chapter 7, Basic data validation, teaches us how to ensure that data going in and
out of our systems is valid, just in case . . . because, as Joe says, you are not
forced to validate data in DOP, but you can when you need to. To validate or
not to validate, that is the question!

 Chapter 8, Advanced concurrency control, discusses how, after our friend Joe breaks
down the implementation details of the atom mechanism, we’ll learn to man-
age the whole system state in a thread-safe way without using any locks. You
won’t know complexity from atom—up and atom!

ABOUT THIS BOOKxxii
 Chapter 9, Persistent data structures, moves to a more academic setting where our
friend Joe unveils the internal details of a safer and more scalable way to pre-
serve data immutability as well as how to implement it efficiently, no matter the
data size. Class is now in session!

 Chapter 10, Database operations, teaches us how to represent, access, and manip-
ulate data from the database in a way that offers added flexibility, and—you
guessed it!—less complexity.

 Chapter 11, Web services, lets us discover the simplicity of communicating with
web services. We’ll learn what Joe means when he says, “We should build the
insides of our systems like we build the outsides.”

Part 3, Maintainability, levels up to the DOP techniques of advanced data validation,
polymorphism, eloquent code, and debugging techniques, which are vital when
you’re working in a team. Welcome to the team!

 Chapter 12, Advanced data validation, allows us to discover the shape of things to
come. Here, you’ll learn how to validate data when it flows inside the system,
allowing you to ease development by defining the expected shape of function
arguments and return values.

 Chapter 13, Polymorphism, takes us along with Theo and Dave for a class in the
countryside—a fitting place to play with animals and learn about polymorphism
without objects via multimethods.

 Chapter 14, Advanced data manipulation, lets us see how Dave and Theo apply
Joe’s sage advice to turn tedious code into eloquent code as they create their own
data manipulation tools. “Put the cart before the horse.”—another gem from Joe!

 Chapter 15, Debugging, takes Dave and Theo to the museum for one last “hur-
rah” as they create an innovative solution for reproducing and fixing bugs.

This book also has four appendices:

 Appendix A, Principles of data-oriented programming, summarizes each of the four
DOP principles that are covered in detail in part 1 and illustrates how each
principle can be applied to both FP and OOP languages. It also describes the
benefits of each principle and the costs of adherence to each.

 Appendix B, Generic data access in statically-typed languages, presents various ways
to provide generic data access in statically-typed programming languages like
Java and C#.

 Appendix C, Data-oriented programming: A link in the chain of programming para-
digms, explores the ideas and trends that have inspired DOP. We look at the dis-
coveries that make it applicable in production systems at scale.

 Appendix D, Lodash reference, summarizes the Lodash functions that we use
throughout the book to illustrate how to manipulate data with generic func-
tions without mutating it.

ABOUT THIS BOOK xxiii
About the code
Most of the code snippets in this book are in JavaScript. We chose JavaScript for two
reasons:

 JavaScript supports both functional programming and object-oriented program-
ming styles.

 The syntax of JavaScript is easy to read in the sense that, even if you are not
familiar with JavaScript, you can read a piece of JavaScript code at a high level
as though it were pseudocode.

To make it easy for readers from any programming language to read the code snip-
pets, we have limited ourselves to basic JavaScript syntax and have avoided the use of
advanced language features like arrow functions and async notation. Where there was
a conceptual challenge in applying an idea to a statically-typed language, we have
added code snippets in Java.

 Code appears throughout the text and as separate code snippets in a fixed-width
font like this. In many cases, the original source code has been reformatted. We’ve
added line breaks and reworked indentation to accommodate the available page space
in the book. Code annotations also accompany some of the listings, highlighting import-
ant concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/data-oriented-programming, or from
the book’s Github link here: https://github.com/viebel/data-oriented-programming.

liveBook discussion forum
Purchase of Data-Oriented Programming includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can
attach comments to the book globally or to specific sections or paragraphs. It’s a snap
to make notes for yourself, ask and answer technical questions, and receive help from
the author and other users. To access the forum, go to https://livebook.manning.com/
book/data-oriented-programming/discussion. You can also learn more about Man-
ning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/data-oriented-programming/discussion
https://livebook.manning.com/book/data-oriented-programming/discussion
https://livebook.manning.com/book/data-oriented-programming/discussion
https://livebook.manning.com/book/data-oriented-programming
https://livebook.manning.com/discussion
https://github.com/viebel/data-oriented-programming

about the author
YEHONATHAN SHARVIT has over 20 years of experience as a soft-
ware engineer, programming with C++, Java, Ruby, JavaScript,
Clojure, and ClojureScript, both in the backend and the front-
end. At the time of writing this book, he works as a software
architect at Cycognito, building software infrastructures for
high-scale data pipelines. He shares his passion about program-
ming on his blog (https://blog.klipse.tech/) and at tech confer-
ences. You can follow him on Twitter (https://twitter.com/viebel).
xxiv

https://blog.klipse.tech/
https://twitter.com/viebel

about the cover illustration
The figure on the cover of Data-Oriented Programming is “Fille de l’Isle Santorin,” or
“Girl from the island of Santorini,” taken from a collection by Jacques Grasset de
Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xxv

dramatis personae

 THEO, senior developer

 NANCY, entrepreneur

 MONICA, manager, Theo’s boss

 DAVE, junior developer, Theo’s colleague

 JOE, independent programmer

 KAY, therapist, Joe’s wife

 JANE, Theo’s wife

 NERIAH, Joe’s son

 AURELIA, Joe’s daughter

The story takes place in San Francisco.
xxvi

Part 1

Flexibility

It’s Monday morning. Theodore is sitting with Nancy on the terrace of La Vita è
Bella, an Italian coffee shop near the San Francisco Zoo. Nancy is an entrepreneur
looking for a development agency for her startup company, Klafim. Theo works for
Albatross, a software development agency that seeks to regain the trust of startups.

Nancy and her business partner have raised seed money for Klafim, a social net-
work for books. Klafim’s unique value proposition is to combine the online world
with the physical world by allowing users to borrow books from local libraries and
then to meet online to discuss the books. Most parts of the product rely on the inte-
gration of already existing online services. The only piece that requires software
development is what Nancy calls a Global Library Management System. Their discus-
sion is momentarily interrupted by the waiter who brings Theo his tight espresso and
Nancy her Americano with milk on the side.

Theo In your mind, what’s a Global Library Management System?

Nancy It’s a software system that handles the basic housekeeping functions of a
library, mainly around the book catalog and the library members.

Theo Could you be a little bit more specific?

Nancy Sure. For the moment, we need a quick prototype. If the market response
to Klafim is positive, we will move forward with a big project.

Theo What features do you need for the prototype phase?

Nancy grabs the napkin under her coffee mug and writes down a couple of bulleted
points on the napkin.

2 PART 1 Flexibility
Theo Well, that’s pretty clear.

Nancy How much time would it take for your company to deliver the prototype?

Theo I think we should be able to deliver within a month. Let’s say Wednesday the
30th.

Nancy That’s too long. We need it in two weeks!

Theo That’s tough! Can you cut a feature or two?

Nancy Unfortunately, we cannot cut any feature, but if you like, you can make the
search very basic.

(Theo really doesn’t want to lose this contract, so he’s willing to work hard and sleep later.)

Theo I think it should be doable by Wednesday the 16th.

Nancy Perfect!

The requirements for the Klafim prototype

 Two kinds of library users are members and librarians.
 Users log in to the system via email and password.
 Members can borrow books.
 Members and librarians can search books by title or by author.
 Librarians can block and unblock members (e.g., when they are late in return-

ing a book).
 Librarians can list the books currently lent to a member.
 There could be several copies of a book.
 The book belongs to a physical library.

Complexity of object-
oriented programming

A capricious entrepreneur
In this chapter, we’ll explore why object-oriented programming (OOP) systems tend to
be complex. This complexity is not related to the syntax or the semantics of a specific
OOP language. It is something that is inherent to OOP’s fundamental insight—
programs should be composed from objects, which consist of some state, together
with methods for accessing and manipulating that state.

 Over the years, OOP ecosystems have alleviated this complexity by adding new
features to the language (e.g., anonymous classes and anonymous functions) and
by developing frameworks that hide some of this complexity, providing a simpler
interface for developers (e.g., Spring and Jackson in Java). Internally, the frame-
works rely on the advanced features of the language such as reflection and custom
annotations.

This chapter covers
 The tendency of OOP to increase system

complexity

 What makes OOP systems hard to understand

 The cost of mixing code and data together into
objects
3

4 CHAPTER 1 Complexity of object-oriented programming
 This chapter is not meant to be read as a critical analysis of OOP. Its purpose is to
raise your awareness of the tendency towards OOP’s increased complexity as a pro-
gramming paradigm. Hopefully, it will motivate you to discover a different program-
ming paradigm, where system complexity tends to be reduced. This paradigm is
known as data-oriented programming (DOP).

1.1 OOP design: Classic or classical?

 NOTE Theo, Nancy, and their new project were introduced in the opener for part 1.
Take a moment to read the opener if you missed it.

Theo gets back to the office with Nancy’s napkin in his pocket and a lot of anxiety in his
heart because he knows he has committed to a tough deadline. But he had no choice! Last
week, Monica, his boss, told him quite clearly that he had to close the deal with Nancy no
matter what.

Albatross, where Theo works, is a software consulting company with customers all over
the world. It originally had lots of customers among startups. Over the last year, however,
many projects were badly managed, and the Startup department lost the trust of its cus-
tomers. That’s why management moved Theo from the Enterprise department to the
Startup department as a Senior Tech lead. His job is to close deals and to deliver on time.

1.1.1 The design phase

Before rushing to his laptop to code the system, Theo grabs a sheet of paper, much big-
ger than a napkin, and starts to draw a UML class diagram of the system that will imple-
ment the Klafim prototype. Theo is an object-oriented programmer. For him, there is no
question—every business entity is represented by an object, and every object is made
from a class.

Theo spends some time thinking about the organization of the system. He identifies the
main classes for the Klafim Global Library Management System.

The requirements for the Klafim prototype

 There are two kinds of users: library members and librarians.
 Users log in to the system via email and password.
 Members can borrow books.
 Members and librarians can search books by title or by author.
 Librarians can block and unblock members (e.g., when they are late in return-

ing a book).
 Librarians can list the books currently lent to a member.
 There can be several copies of a book.
 A book belongs to a physical library.

51.1 OOP design: Classic or classical?
That was the easy part. Now comes the difficult part: the relations between the classes.
After two hours or so, Theo comes up with a first draft of a design for the Global Library
Management System. It looks like the diagram in figure 1.1.

 NOTE The design presented here doesn’t pretend to be the smartest OOP design:
experienced OOP developers would probably use a couple of design patterns to sug-
gest a much better design. This design is meant to be naive and by no means covers all
the features of the system. It serves two purposes:

 For Theo, the developer, it is rich enough to start coding.
 For me, the author of the book, it is rich enough to illustrate the complexity of a

typical OOP system.

Theo feels proud of himself and of the design diagram he just produced. He definitely
deserves a cup of coffee!

Near the coffee machine, Theo meets Dave, a junior software developer who joined
Albatross a couple of weeks ago. Theo and Dave appreciate each other, as Dave’s curiosity
leads him to ask challenging questions. Meetings near the coffee machine often turn into
interesting discussions about programming.

Theo Hey Dave! How’s it going?

 Dave Today? Not great. I’m trying to fix a bug in my code! I can’t understand why
the state of my objects always changes. I’ll figure it out though, I’m sure. How’s
your day going?

Theo I just finished the design of a system for a new customer.

Dave Cool! Would it be OK for me to see it? I’m trying to improve my design skills.

Theo Sure! I have the diagram on my desk. We can take a look now if you like.

The main classes of the library management system

 Library—The central part of the system design.
 Book—A book.
 BookItem—A book can have multiple copies, and each copy is considered as

a book item.
 BookLending—When a book is lent, a book lending object is created.
 Member—A member of the library.
 Librarian—A librarian.
 User—A base class for Librarian and Member.
 Catalog—Contains a list of books.
 Author—A book author.

6 CHAPTER 1 Complexity of object-oriented programming
1.1.2 UML 101

Latte in hand, Dave follows Theo to his desk. Theo proudly shows Dave his piece of art: the
UML diagram for the Library Management System (figure 1.1). Dave seems really excited.

Dave Wow! Such a detailed class diagram.

Theo Yeah. I’m pretty happy with it.

LibrarianC

blockMember(member: Member) : Bool

unblockMember(member: Member) : Bool

addBookItem(bookItem: BookItem) : BookItem

getBookLendingsOfMember(member: Member) : List<BookLending>

MemberC

isBlocked() : Bool

block() : Bool

unblock() : Bool

returnBook(bookLending: BookLending) : Bool

checkout(bookItem: BookItem) : BookLending

CatalogC

search(searchCriteria, queryStr) : List<Book>

addBookItem(librarian: Librarian, bookItem: BookItem) : BookItem

LibraryC

name : String

address : String

BookC

id : String

title : String

AuthorC

id : String

fullName: String

BookItemC

id : String

libId: String

checkout(member: Member) : BookLending

BookLendingC

id : String

lendingDate : date

dueDate : date

isLate() : Bool

returnBook() : Bool

UserC

id : String

email : String

password : String

login() : Bool

*

*

*

*

*

*

*

Figure 1.1 A class diagram for Klafim’s Global Library Management System

71.1 OOP design: Classic or classical?
Dave The thing is that I can never remember the meaning of the different arrows.

Theo There are four types of arrows in my class diagram: composition, association,
inheritance, and usage.

Dave What’s the difference between composition and association?

 NOTE Don’t worry if you’re not familiar with OOP jargon. We’re going to leave it
aside in the next chapter.

Theo It’s all about whether the objects can live without each other. With composi-
tion, when one object dies, the other one dies too. While in an association rela-
tion, each object has an independent life.

TIP In a composition relation, when one object dies, the other one also dies. While
in an association relation, each object has an independent life cycle.

In the class diagram, there are two kinds of composition symbolized by an arrow with
a plain diamond at one edge and an optional star at the other edge. Figure 1.2 shows
the relation between:

 A Library that owns a Catalog—A one-to-one composition. If a Library object
dies, then its Catalog object dies with it.

 A Library that owns many Members—A one-to-many composition. If a Library
object dies, then all its Member objects die with it.

TIP A composition relation is represented by a plain diamond at one edge and an
optional star at the other edge.

Dave Do you have association relations in your diagram?

Theo Take a look at the arrow between Book and Author. It has an empty diamond
and a star at both edges, so it’s a many-to-many association relation.

A book can be written by multiple authors, and an author can write multiple books.
Moreover, Book and Author objects can live independently. The relation between
books and authors is a many-to-many association (figure 1.3).

CatalogC

List<Book> search(searchCriteria, queryStr)

BookItem addBookItem(librarian: Librarian, bookItem: BookItem)

LibraryC

name : String

address : String

MemberC*

Figure 1.2 The two kinds of
composition: one-to-one and
one-to-many. In both cases,
when an object dies, the
composed object dies with it.

8 CHAPTER 1 Complexity of object-oriented programming
TIP A many-to-many association relation is represented by an empty diamond and a
star at both edges.

Dave I also see a bunch of dashed arrows in your diagram.

Theo Dashed arrows are for usage relations: when a class uses a method of another
class. Consider, for example, the Librarian::blockMember method. It calls
Member::block.

TIP Dashed arrows indicate usage relations (figure 1.4), for instance, when a class
uses a method of another class.

Dave I see. And I guess a plain arrow with an empty triangle, like the one between
Member and User, represents inheritance.

Theo Absolutely!

TIP Plain arrows with empty triangles represent class inheritance (figure 1.5), where
the arrow points towards the superclass.

BookC

id : String

title : String

AuthorC

id : String

fullName: String

*

*

Figure 1.3 Many-to-many association relation:
each object lives independently.

CC Librarian

Bool isBlocked()

Bool block()

Bool unblock()

Bool returnBook(bookLending: BookLending)

BookLending checkout(bookItem: BookItem)

C Member

Bool blockMember(member: Member)

Bool unblockMember(member: Member)

BookItem addBookItem(bookItem: BookItem)

List<BookLending> getBookLendingsOfMember(member: Member)

Figure 1.4 Usage relation: a class
uses a method of another class.

91.1 OOP design: Classic or classical?
1.1.3 Explaining each piece of the class diagram

Dave Thanks for the UML refresher! Now I think I can remember what the different
arrows mean.

Theo My pleasure. Want to see how it all fits together?

Dave What class should we look at first?

Theo I think we should start with Library.

THE LIBRARY CLASS

The Library is the root class of the library system. Figure 1.6 shows the system structure.

CC Member

isBlocked() : Bool

block() : Bool

unblock() : Bool

checkout(bookItem: BookItem) : BookLending

returnBook(bookLending : BookLending) : Bool

UserC

id : String

email : String

password : String

login() : Bool
Figure 1.5 Inheritance relation: a class
derives from another class.

*

*

name : String

address : String

CC Library

C Member

Bool isBlocked()

Bool block()

Bool unblock()

Bool returnBook(bookLending: BookLending)

BookLending checkout(bookItem: BookItem)

C Catalog

List<Book> search(searchCriteria, queryStr)

BookItem addBookItem(librarian: Librarian,

bookItem: BookItem)

CC Librarian

Bool blockMember(member: Member)

Bool unblockMember(member: Member)

BookItem addBookItem(bookItem: BookItem)

List<BookLending> getBookLendingsOfMember

(member: Member)

Figure 1.6 The Library class

10 CHAPTER 1 Complexity of object-oriented programming
In terms of code (behavior), a Library object does nothing on its own. It delegates
everything to the objects it owns. In terms of data, a Library object owns

 Multiple Member objects
 Multiple Librarian objects
 A single Catalog object

 NOTE In this book, we use the terms code and behavior interchangeably.

LIBRARIAN, MEMBER, AND USER CLASSES

Librarian and Member both derive from User. Figure 1.7 shows this relation.

The User class represents a user of the library:

 In terms of data members, it sticks to the bare minimum: it has an id, email,
and password (with no security and encryption for now).

 In terms of code, it can log in via login.

The Member class represents a member of the library:

 It inherits from User.
 In terms of data members, it has nothing more than User.
 In terms of code, it can

– Check out a book via checkout.
– Return a book via returnBook.
– Block itself via block.
– Unblock itself via unblock.
– Answer if it is blocked via isBlocked.

 It owns multiple BookLending objects.
 It uses BookItem in order to implement checkout.

C Member

isBlocked() : Bool

block() : Bool

unblock() : Bool

returnBook(bookLending : BookLending) : Bool

checkout(bookItem: BookItem) : BookLending

C Librarian

blockMember(member: Member) : Bool

unblockMember(member: Member) : Bool

addBookItem(bookItem: BookItem) : BookItem

: Member) :

CC User

id : String

email : String

password : String

login() : Bool

Figure 1.7 Librarian and Member derive from User.

111.1 OOP design: Classic or classical?
The Librarian class represents a librarian:

 It derives from User.
 In terms of data members, it has nothing more than User.
 In terms of code, it can

– Block and unblock a Member.
– List the member’s book lendings via getBookLendings.
– Add book items to the library via addBookItem.

 It uses Member to implement blockMember, unblockMember, and getBook-
Lendings.

 It uses BookItem to implement checkout.
 It uses BookLending to implement getBookLendings.

THE CATALOG CLASS

The Catalog class is responsible for the management of the books. Figure 1.8 shows
the relation among the Catalog, Librarian, and Book classes. In terms of code, a
Catalog object can

 Search books via search.
 Add book items to the library via addBookItem.

A Catalog object uses Librarian in order to implement addBookItem. In terms of
data, a Catalog owns multiple Book objects.

THE BOOK CLASS

Figure 1.9 presents the Book class. In terms of data, a Book object

 Should have as its bare minimum an id and a title.
 Is associated with multiple Author objects (a book might have multiple authors).
 Owns multiple BookItem objects, one for each copy of the book.

*

Bool blockMember(member: Member)

Bool unblockMember(member: Member)

C Librarian

BookItem addBookItem(bookItem: BookItem)

List<BookLending> getBookLendingsOfMember (member: Member)

C Catalog

List<Book> search(searchCriteria, queryStr)

BookItem addBookItem(librarian: Librarian, bookItem: BookItem)

BookC

id : String

title : String

Figure 1.8 The Catalog class

12 CHAPTER 1 Complexity of object-oriented programming
THE BOOKITEM CLASS

The BookItem class represents a book copy, and a book could have many copies. In
terms of data, a BookItem object

 Should have as its bare minimum data for members: an id and a libId (for its
physical library ID).

 Owns multiple BookLending objects, one for each time the book is lent.

In terms of code, a BookItem object can be checked out via checkout.

1.1.4 The implementation phase

After this detailed investigation of Theo’s diagrams, Dave lets it sink in as he slowly sips his
coffee. He then expresses his admiration to Theo.

Dave Wow! That’s amazing!

Theo Thank you.

Dave I didn’t realize people were really spending the time to write down their design
in such detail before coding.

Theo I always do that. It saves me lot of time during the coding phase.

Dave When will you start coding?

Theo When I finish my latte.

Theo grabs his coffee mug and notices that his hot latte has become an iced latte. He was
so excited to show his class diagram to Dave that he forgot to drink it!

* *

*

BookC

id : String

title : String

AuthorC

id : String

fullName: String

BookItemC

id : String

Iibld: String

BookLending checkout(member: Member)

BookLendingC

id : String

lendingDate : date

dueDate : date

Bool isLate()

Bool returnBook() Figure 1.9 The Book class

131.2 Sources of complexity
1.2 Sources of complexity
While Theo is getting himself another cup of coffee (a cappuccino this time), I
would like to challenge his design. It might look beautiful and clear on the paper,
but I claim that this design makes the system hard to understand. It’s not that Theo
picked the wrong classes or that he misunderstood the relations among the classes.
It goes much deeper:

 It’s about the programming paradigm he chose to implement the system.
 It’s about the object-oriented paradigm.
 It’s about the tendency of OOP to increase the complexity of a system.

TIP OOP has a tendency to create complex systems.

Throughout this book, the type of complexity I refer to is that which makes systems
hard to understand as defined in the paper, “Out of the Tar Pit,” by Ben Moseley
and Peter Marks (2006), available at http://mng.bz/enzq. It has nothing to do with
the type of complexity that deals with the amount of resources consumed by a pro-
gram. Similarly, when I refer to simplicity, I mean not complex (in other words, easy
to understand).

 Keep in mind that complexity and simplicity (like hard and easy) are not absolute
but relative concepts. We can compare the complexity of two systems and determine
whether system A is more complex (or simpler) than system B.

 NOTE Complexity in the context of this book means hard to understand.

As mentioned in the introduction of this chapter, there are many ways in OOP to
alleviate complexity. The purpose of this book is not be critical of OOP, but rather
to present a programming paradigm called data-oriented programming (DOP) that
tends to build systems that are less complex. In fact, the DOP paradigm is compati-
ble with OOP.

 If one chooses to build an OOP system that adheres to DOP principles, the system
will be less complex. According to DOP, the main sources of complexity in Theo’s sys-
tem (and of many traditional OOP systems) are that

 Code and data are mixed.
 Objects are mutable.
 Data is locked in objects as members.
 Code is locked into classes as methods.

This analysis is similar to what functional programming (FP) thinks about traditional
OOP. However, as we will see throughout the book, the data approach that DOP takes
in order to reduce system complexity differs from the FP approach. In appendix A, we
illustrate how to apply DOP principles both in OOP and in FP styles.

TIP DOP is compatible both with OOP and FP.

http://mng.bz/enzq

14 CHAPTER 1 Complexity of object-oriented programming
In the remaining sections of this chapter, we will illustrate each of the previous
aspects, summarized in table 1.1. We’ll look at this in the context of the Klafim project
and explain in what sense these aspects are a source of complexity.

1.2.1 Many relations between classes

One way to assess the complexity of a class diagram is to look only at the entities and
their relations, ignoring members and methods, as in figure 1.10. When we design a
system, we have to define the relations between different pieces of code and data.
That’s unavoidable.

TIP In OOP, code and data are mixed together in classes: data as members and code as
methods.

Table 1.1 Aspects of OOP and their impact on system complexity

Aspect Impact on complexity

Code and data are mixed. Classes tend to be involved in many relations.

Objects are mutable. Extra thinking is needed when reading code.

Objects are mutable. Explicit synchronization is required on multi-threaded environments.

Data is locked in objects. Data serialization is not trivial.

Code is locked in classes. Class hierarchies are complex.

* *

*

*
*

*

LibrarianCBookC

AuthorC

BookItemC

CatalogC

BookLendingC

LibraryC

MemberC

UserC

Figure 1.10 A class
diagram overview for
Klafim’s Library
Management System

151.2 Sources of complexity
From a system analysis perspective, the fact that code and data are mixed together
makes the system complex in the sense that entities tend to be involved in many rela-
tions. In figure 1.11, we take a closer look at the Member class. Member is involved in five
relations: two data relations and three code relations.

 Data relations:
– Library has many Members.
– Member has many BookLendings.

 Code relations:
– Member extends User.
– Librarian uses Member.
– Member uses BookItem.

Imagine for a moment that we were able, somehow, to split the Member class into two
separate entities:

 MemberCode for the code
 MemberData for the data

Instead of a Member class with five relations, we would have the diagram shown in fig-
ure 1.12 with:

 A MemberCode entity and three relations.
 A MemberData entity and two relations.

LibraryC

LibrarianC

BookItemCBookLendingCUserC

MemberC*

*

Figure 1.11 The class Member is
involved in five relations.

LibrarianC

BookItemCUserC

MemberCodeC

LibraryC

BookLendingC

MemberDataC

*

*
Figure 1.12 A class diagram where Member
is split into code and data entities

16 CHAPTER 1 Complexity of object-oriented programming
The class diagram where Member is split into MemberCode and MemberData is made of
two independent parts. Each part is easier to understand than the original diagram.

 Let’s split every class of our original class diagram into code and data entities.
Figure 1.13 shows the resulting diagram. Now the system is made of two indepen-
dent parts:

 A part that involves only data entities.
 A part that involves only code entities.

TIP A system where every class is split into two independent parts, code and data, is
simpler than a system where code and data are mixed.

The resulting system, made up of two independent subsystems, is easier to understand
than the original system. The fact that the two subsystems are independent means that
each subsystem can be understood separately and in any order. The resulting system
not simpler by accident; it is a logical consequence of separating code from data.

TIP A system made of multiple simple independent parts is less complex than a sys-
tem made of a single complex part.

1.2.2 Unpredictable code behavior

You might be a bit tired after the system-level analysis that we presented in the previ-
ous section. Let’s get refreshed and look at some code.

 Take a look at the code in listing 1.1, where we get the blocked status of a member
and display it twice. If I tell you that when I called displayBlockedStatusTwice, the
program displayed true on the first console.log call, can you tell me what the pro-
gram displayed on the second console.log call?

AuthorDataC

LibrarianDataC CatalogCodeC

LibrarianCodeC

MemberCodeC

UserCodeC BookItemC

BookItemCodeC

*

*

*

*

*

*

*

BookDataC

BookItemDataC

BookLendingDataC

BookLendingCodeC

LibraryDataC

CatalogDataCMemberDataC

Figure 1.13 A class diagram where every class is split into code and data entities

171.2 Sources of complexity
class Member {
 isBlocked;

 displayBlockedStatusTwice() {
 var isBlocked = this.isBlocked;
 console.log(isBlocked);
 console.log(isBlocked);
 }
}

member.displayBlockedStatusTwice();

“Of course, it displayed true again,” you say. And you are right!
 Now, take a look at a slightly different pseudocode as shown in listing 1.2. Here we

display, twice, the blocked status of a member without assigning a variable. Same ques-
tion as before: if I tell you that when I called displayBlockedStatusTwice, the pro-
gram displayed true on the first console.log call, can you tell me what the program
displayed on the second console.log call?

class Member {
 isBlocked;

 displayBlockedStatusTwice() {
 console.log(this.isBlocked);
 console.log(this.isBlocked);
 }
}

member.displayBlockedStatusTwice();

The correct answer is . . . in a single-threaded environment, it displays true, while in a
multi-threaded environment, it’s unpredictable. Indeed, in a multi-threaded environ-
ment between the two console.log calls, there could be a context switch that changes
the state of the object (e.g., a librarian unblocked the member). In fact, with a slight
modification, the same kind of code unpredictability could occur even in a single-
threaded environment like JavaScript, when data is modified via asynchronous code
(see the section about Principle #3 in appendix A). The difference between the two
code snippets is that

 In the first listing (listing 1.1), we access a Boolean value twice , which is a prim-
itive value.

 In the second listing (listing 1.2), we access a member of an object twice.

TIP When data is mutable, code is unpredictable.

Listing 1.1 Really simple code

Listing 1.2 Apparently simple code

18 CHAPTER 1 Complexity of object-oriented programming
This unpredictable behavior of the second listing is one of the annoying conse-
quences of OOP. Unlike primitive types, which are usually immutable, object mem-
bers are mutable. One way to solve this problem in OOP is to protect sensitive code
with concurrency safety mechanisms like mutexes, but that introduces issues like a
performance hit and a risk of deadlocks.

 We will see later in the book that DOP treats every piece of data in the same way:
both primitive types and collection types are immutable values. This value treatment for
all citizens brings serenity to DOP developers’ minds, and more brain cells are avail-
able to handle the interesting pieces of the applications they build.

TIP Data immutability brings serenity to DOP developers’ minds.

1.2.3 Not trivial data serialization

Theo is really tired, and he falls asleep at his desk. He’s having dream. In his dream, Nancy
asks him to make Klafim’s Library Management System accessible via a REST API using
JSON as a transport layer. Theo has to implement a /search endpoint that receives a
query in JSON format and returns the results in JSON format. Listing 1.3 shows an input
example of the /search endpoint, and listing 1.4 shows an output example of the /search
endpoint.

{
 "searchCriteria": "author",
 "query": "albert"
}

[
 {
 "title": "The world as I see it",
 "authors": [
 {
 "fullName": "Albert Einstein"
 }
]
 },
 {
 "title": "The Stranger",
 "authors": [
 {
 "fullName": "Albert Camus"
 }
]
 }
]

Listing 1.3 A JSON input of the /search endpoint

Listing 1.4 A JSON output of the /search endpoint

191.2 Sources of complexity
Theo would probably implement the /search endpoint by creating three classes simi-
larly to what is shown in the following list and in figure 1.14. (Not surprisingly, every-
thing in OOP has to be wrapped in a class. Right?)

 SearchController is responsible for handling the query.
 SearchQuery converts the JSON query string into data.
 SearchResult converts the search result data into a JSON string.

The SearchController (see figure 1.14) would have a single handle method with the
following flow:

 Creates a SearchQuery object from the JSON query string.
 Retrieves searchCriteria and queryStr from the SearchQuery object.
 Calls the search method of the catalog:Catalog with searchCriteria and

queryStr and receives books:List<Book>.
 Creates a SearchResult object with books.
 Converts the SearchResult object to a JSON string.

What about other endpoints, for instance, those allowing librarians to add book items
through /add-book-item? Theo would have to repeat the exact same process and cre-
ate three classes:

 AddBookItemController to handle the query
 BookItemQuery to convert the JSON query string into data
 BookItemResult to convert the search result data into a JSON string

The code that deals with JSON deserialization that Theo wrote previously in Search-
Query would have to be rewritten in BookItemQuery. Same thing for the code that
deals with JSON serialization he wrote previously in SearchResult; it would have to be
rewritten in BookItemResult.

List<Book> search(searchCriteria, queryStr)

C Catalog

C SearchController

String handle(searchQuery: String)

* *

BookC

id : String

title : String

C SearchResult

SearchResult(books: List<Book>)

String toJSON()

C SearchQuery

searchCriteria: String

query: String

SearchQuery(jsonString: String)

Figure 1.14 The class diagram for SearchController

20 CHAPTER 1 Complexity of object-oriented programming
 The bad news is that Theo would have to repeat the same process for every end-
point of the system. Each time he encounters a new kind of JSON input or output,
he would have to create a new class and write code. Theo’s dream is turning into a
nightmare!

Suddenly, his phone rings, next to where he was resting his head on the desk. As Theo
wakes up, he realizes that Nancy never asked for JSON. It was all a dream . . . a really bad
dream!

TIP In OOP, data serialization is difficult.

It’s quite frustrating that handling JSON serialization and deserialization in OOP
requires the addition of so many classes and writing so much code—again and again!
The frustration grows when you consider that serializing a search query, a book item
query, or any query is quite similar. It comes down to

 Going over data fields.
 Concatenating the name of the data fields and the value of the data fields, sepa-

rated by a comma.

Why is such a simple thing so hard to achieve in OOP? In OOP, data has to follow a
rigid shape defined in classes, which means that data is locked in members. There is
no simple way to access data generically.

TIP In OOP, data is locked in classes as members.

We will refine later what we mean by generic access to the data, and we will see how
DOP provides a generic way to handle JSON serialization and deserialization. Until
then, you will have to continue suffering. But at least you are starting to become aware
of this suffering, and you know that it is avoidable.

 NOTE Most OOP programming languages alleviate a bit of the difficulty involved
in the conversion from and to JSON. It either involves reflection, which is definitely a
complex thing, or code verbosity.

1.2.4 Complex class hierarchies

One way to avoid writing the same code twice in OOP involves class inheritance. Indeed,
when every requirement of the system is known up front, you design your class hier-
archy is such a way that classes with common behavior derive from a base class.

 Figure 1.15 shows an example of this pattern that focuses on the part of our class
diagram that deals with members and librarians. Both Librarians and Members need
the ability to log in, and they inherit this ability from the User class.

So far, so good, but when new requirements are introduced after the system is imple-
mented, it’s a completely different story. Fast forward to Monday, March 29th, at 11:00 AM,
where two days are left before the deadline (Wednesday at midnight).

211.2 Sources of complexity
Nancy calls Theo with an urgent request. Theo is not sure if it’s a dream or reality. He
pinches himself and he can feel the jolt. It’s definitely reality!

Nancy How is the project doing?

Theo Fine, Nancy. We’re on schedule to meet the deadline. We’re running our last
round of regression tests now.

Nancy Fantastic! It means we have time for adding a tiny feature to the system, right?

Theo Depends what you mean by “tiny.”

Nancy We need to add VIP members to the system.

Theo What do you mean by VIP members?

Nancy VIP members are allowed to add book items to the library by themselves.

Theo Hmm . . .

Nancy What?

Theo That’s not a tiny change!

Nancy Why?

I’ll ask you the same question Nancy asked Theo: why is adding VIP members to our
system not a tiny task? After all, Theo has already written the code that allows librari-
ans to add book items to the library (it’s in Librarian::addBookItem). What prevents
him from reusing this code for VIP members? The reason is that, in OOP, the code is
locked into classes as methods.

TIP In OOP, code is locked into classes.

VIP members are members that are allowed to add book items to the library by them-
selves. Theo decomposes the customer requirements into two pieces:

CC Member

isBlocked() : Bool

checkout(bookItem: BookItem) : BookLending

returnBook(bookLending : BookLending) : Bool

UserC

id : String

email : String

password : String

login() : Bool

C Librarian

blockMember(member: Member) : Bool

unblockMember(member: Member) : Bool

addBookItem(bookItem: BookItem) : BookItem

getBookLendingsOfMember(member: Member) : List<BookLending>

Figure 1.15 The part of the
class diagram that deals with
members and librarians

22 CHAPTER 1 Complexity of object-oriented programming
 VIP members are library members.
 VIP members are allowed to add book items to the library by themselves.

Theo then decides that he needs a new class, VIPMember. For the first requirement
(VIP members are library members), it seems reasonable to make VIPMember derive
from Member. However, handling the second requirement (VIP members are allowed
to add book items) is more complex. He cannot make a VIPMember derive from
Librarian because the relation between VIPMember and Librarian is not linear:

 On one hand, VIP members are like librarians in that they are allowed to add
book items.

 On the other hand, VIP members are not like librarians in that they are not
allowed to block members or list the books lent to a member.

The problem is that the code that adds book items is locked in the Librarian class.
There is no way for the VIPMember class to use this code.

 Figure 1.16 shows one possible solution that makes the code of Librarian::add-
BookItem available to both Librarian and VIPMember classes. Here are the changes to
the previous class diagram:

 A base class UserWithBookItemRight extends User.
 addBookItem moves from Librarian to UserWithBookItemRight.
 Both VIPMember and Librarian extend UserWithBookItemRight.

It wasn’t easy, but Theo manages to handle the change on time, thanks to an all nighter
coding on his laptop. He was even able to add new tests to the system and run the regres-
sion tests again. However, he was so excited that he didn’t pay attention to the diamond

CC Member

isBlocked() : Bool

checkout(bookItem: BookItem) : BookLending

returnBook(bookLending : BookLending) : Bool

CC UserWithBookItemRight

addBookItem(bookItem: BookItem) : BookItem

UserC

id : String

email : String

password : String

login() : Bool

C Librarian

blockMember(member: Member) : Bool

unblockMember(member: Member) : Bool

getBookLendingsOfMember(member: Member) : List<BookLending>

VIPMemberC

Figure 1.16 A class diagram for a system with VIP members

231.2 Sources of complexity
problem VIPMember introduced in his class diagram due to multiple inheritance: VIPMember
extends both Member and UserWithBookItemRight, which both extend User.

Wednesday, March 31, at 10:00 AM (14 hours before the deadline), Theo calls Nancy to
tell her the good news.

Theo We were able to add VIP members to the system on time, Nancy.

Nancy Fantastic! I told you it was a tiny feature.

Theo Yeah, well . . .

Nancy Look, I was going to call you anyway. I just finished a meeting with my business
partner, and we realized that we need another tiny feature before the launch.
Will you be able to handle it before the deadline?

Theo Again, it depends what you mean by “tiny.”

Nancy We need to add Super members to the system.

Theo What do you mean by Super members?

Nancy Super members are allowed to list the books lent to other members.

Theo Err . . .

Nancy What?

Theo That’s not a tiny change!

Nancy Why?

As with VIP members, adding Super members to the system requires changes to Theo’s
class hierarchy. Figure 1.17 shows the solution Theo has in mind.

The addition of Super members has made the system really complex. Theo suddenly
notices that he has three diamonds in his class diagram—not gemstones but three “Deadly

UserC

id : String

email : String

password : String

login() : Bool

CC Member

isBlocked() : Bool

checkout(bookItem: BookItem) : BookLending

returnBook(bookLending : BookLending) : Bool

CC UserWithBlockMemberRight

blockMember(member: Member) : Bool

unblockMember(member: Member) : Bool

CC UserWithBookItemRight

addBookItem(bookItem: BookItem) : BookItem

C Librarian

getBookLendingsOfMember(member: Member) : List<BookLending>

VIPMemberC SuperMemberC

Figure 1.17 A class diagram for a system with Super and VIP members

24 CHAPTER 1 Complexity of object-oriented programming
Diamonds of Death” as OOP developers sometimes name the ambiguity that arises when a
class D inherits from two classes B and C, where both inherit from class A!

He tries to avoid the diamonds by transforming the User class into an interface and
using the composition over inheritance design pattern. But with the stress of the deadline
looming, he isn’t able to use all of his brain cells. In fact, the system has become so com-
plex, he’s unable to deliver the system by the deadline. Theo tells himself that he should
have used composition instead of class inheritance. But, it’s too late now.

TIP In OOP, prefer composition over class inheritance.

At 10:00 PM, two hours before the deadline, Theo calls Nancy to explain the situation.

Theo Look Nancy, we really did our best, but we won’t be able to add Super mem-
bers to the system before the deadline.

Nancy No worries, my business partner and I decided to omit this feature for now.
We’ll add it later.

With mixed feelings of anger and relief, Theo stops pacing around his office. He realizes
he will be spending tonight in his own bed, rather than plowing away on his computer at
the office. That should make his wife happy.

Theo I guess that means we’re ready for the launch tomorrow morning.

Nancy Yes. We’ll offer this new product for a month or so, and if we get good market
traction, we’ll move forward with a bigger project.

Theo Cool. Let’s be in touch in a month then. Good luck on the launch!

Summary
 Complexity in the context of this book means hard to understand.
 We use the terms code and behavior interchangeably.
 DOP stands for data-oriented programming.
 OOP stands for object-oriented programming.
 FP stands for functional programming.
 In a composition relation, when one object dies, the other one also dies.
 A composition relation is represented by a plain diamond at one edge and an

optional star at the other edge.
 In an association relation, each object has an independent life cycle.
 A many-to-many association relation is represented by an empty diamond and a

star at both edges.
 Dashed arrows indicate a usage relation; for instance, when a class uses a method

of another class.
 Plain arrows with empty triangles represent class inheritance, where the arrow

points towards the superclass.
 The design presented in this chapter doesn’t pretend to be the smartest OOP

design. Experienced OOP developers would probably use a couple of design
patterns and suggest a much better diagram.

25Summary
 Traditional OOP systems tend to increase system complexity, in the sense that
OOP systems are hard to understand.

 In traditional OOP, code and data are mixed together in classes: data as mem-
bers and code as methods.

 In traditional OOP, data is mutable.
 The root cause of the increase in complexity is related to the mixing of code

and data together into objects.
 When code and data are mixed, classes tend to be involved in many relations.
 When objects are mutable, extra thinking is required in order to understand

how the code behaves.
 When objects are mutable, explicit synchronization mechanisms are required

on multi-threaded environments.
 When data is locked in objects, data serialization is not trivial.
 When code is locked in classes, class hierarchies tend to be complex.
 A system where every class is split into two independent parts, code and data, is

simpler than a system where code and data are mixed.
 A system made of multiple simple independent parts is less complex than a sys-

tem made of a single complex part.
 When data is mutable, code is unpredictable.
 A strategic use of design patterns can help mitigate complexity in traditional

OOP to some degree.
 Data immutability brings serenity to DOP developers’ minds.
 Most OOP programming languages alleviate slightly the difficulty involved the

conversion from and to JSON. It either involves reflection, which is definitely a
complex thing, or code verbosity.

 In traditional OOP, data serialization is difficult.
 In traditional OOP, data is locked in classes as members.
 In traditional OOP, code is locked into classes.
 DOP reduces complexity by rethinking data.
 DOP is compatible both with OOP and FP.

Separation between
code and data

A whole new world
The first insight of DOP is that we can decrease the complexity of our systems by
separating code from data. Indeed, when code is separated from data, our systems
are made of two main pieces that can be thought about separately: data entities and
code modules. This chapter is a deep dive in the first principle of DOP (summa-
rized in figure 2.1).

This chapter covers
 The benefits of separating code from data

 Designing a system where code and data are
separate

 Implementing a system that respects the
separation between code and data

PRINCIPLE #1 Separate code from data such that the code resides in functions,
whose behavior doesn’t depend on data that is somehow encapsulated in the func-
tion’s context.
26

272.1 The two parts of a DOP system
In this chapter, we’ll illustrate the separation between code and data in the context of
Klafim’s Library Management System that we introduced in chapter 1. We’ll also unveil
the benefits that this separation brings to the system:

 The system is simple. It is easy to understand.
 The system is flexible and extensible. Quite often, it requires no design changes to

adapt to changing requirements.

This chapter focuses on the design of the code in a system where code and data are
separate. In the next chapter, we’ll focus on the design of the data. As we progress in
the book, we’ll discover other benefits of separating code from data.

2.1 The two parts of a DOP system
While Theo is driving home after delivering the prototype, he asks himself whether the
Klafim project was a success or not. Sure, he was able to satisfy the customer, but it was
more luck than brains. He wouldn’t have made it on time if Nancy had decided to keep
the Super members feature. Why was it so complicated to add tiny features to the system?
Why was the system he built so complex? He thought there should be a way to build more
flexible systems!

The next morning, Theo asks on Hacker News and on Reddit for ways to reduce system
complexity and build flexible systems. Some folks mention using different programming
languages, while others talk about advanced design patterns. Finally, Theo’s attention gets
captured by a comment from a user named Joe. He mentions data-oriented programming and
claims that its main goal is to reduce system complexity. Theo has never heard this term
before. Out of curiosity, he decides to contact Joe by email. What a coincidence! Joe lives
in San Francisco too. Theo invites him to a meeting in his office.

Joe is a 40-year-old developer. He was a Java developer for nearly a decade before adopt-
ing Clojure around 7 years ago. When Theo tells Joe about the Library Management System

Separate code from data

Code modules

Functions

Stateless (static)

Data as first argument

Relations

Usage

No inheritance

Data entities

Only members

No code

Relations

Association

Composition

Figure 2.1 DOP principle #1 summarized: Separate code from data.

28 CHAPTER 2 Separation between code and data
he designed and built, and about his struggles to adapt to changing requirements, Joe is
not surprised.

Joe tells Theo that the systems that he and his team have built in Clojure over the last 7
years are less complex and more flexible than the systems he used to build in Java. Accord-
ing to Joe, the systems they build now tend to be much simpler because they follow the
principles of DOP.

Theo I’ve never heard of data-oriented programming. Is it a new concept?

Joe Yes and no. Most of the foundational ideas of data-oriented programming, or
DOP as we like to call it, are well known to programmers as best practices. The
novelty of DOP, however, is that it combines best practices into a cohesive
whole.

Theo That’s a bit abstract for me. Can you give me an example?

Joe Sure! Take, for instance, the first insight of DOP. It’s about the relations between
code and data.

Theo You mean the encapsulation of data in objects?

Joe Actually, DOP is against data encapsulation.

Theo Why is that? I thought data encapsulation was a positive programming paradigm.

Joe Data encapsulation has both merits and drawbacks. Think about the way you
designed the Library Management System. According to DOP, the main cause
of complexity and inflexibility in systems is that code and data are mixed
together in objects.

TIP DOP is against data encapsulation.

Theo It sounds similar to what I’ve heard about functional programming. So, if I
want to adopt DOP, do I need to get rid of object-oriented programming and
learn functional programming?

Joe No, DOP principles are language-agnostic. They can be applied in both object-
oriented and functional programming languages.

Theo That’s a relief! I was afraid that you were going to teach me about monads,
algebraic data types, and higher order functions.

Joe No, none of that is required in DOP.

TIP DOP principles are language-agnostic.

Theo What does the separation between code and data look like in DOP then?

Joe Data is represented by data entities that only hold members. Code is aggre-
gated into modules where all functions are stateless.

Theo What do you mean by stateless functions?

Joe Instead of having the state encapsulated in the object, the data entity is passed
as an argument.

Theo I don’t get that.

Joe Here, let’s make it visual.

292.2 Data entities
Joe steps up to a whiteboard and quickly draws a diagram to illustrate his comment. Fig-
ure 2.2 shows Joe’s drawing.

Theo It’s still not clear.

Joe It will become clearer when I show you how it looks in the context of your
Library Management System.

Theo OK. Shall we start with code or with data?

Joe Well, it’s data-oriented programming, so let’s start with data.

2.2 Data entities
In DOP, we start the design process by discovering the data entities of our system.
Here’s what Joe and Theo have to say about data entities.

Joe What are the data entities of your system?

Theo What do you mean by data entities?

Joe I mean the parts of your system that hold information.

 NOTE Data entities are the parts of your system that hold information.

Theo Well, it’s a Library Management System, so we have books and members.

Joe Of course, but there are more. One way to discover the data entities of a system
is to look for nouns and noun phrases in the requirements of the system.

Theo looks at Nancy’s requirement napkin. He highlights the nouns and noun phrases
that seem to represent data entities.

Highlighting terms in the requirements that correspond to data entities

 There are two kinds of users: library members and librarians.
 Users log in to the system via email and password.
 Members can borrow books.
 Members and librarians can search books by title or by author.
 Librarians can block and unblock members (e.g., when they are late in return-

ing a book).
 Librarians can list the books currently lent to a member.
 There could be several copies of a book.

Separate code from data

Code modules Stateless functions

Data entities Only members

Figure 2.2 The separation between code and data

30 CHAPTER 2 Separation between code and data
Joe Excellent. Can you see a natural way to group these entities?

Theo Not sure, but it seems to me that users, members, and librarians form one
group, whereas books, authors, and book copies form another group.

Joe Sounds good to me. What would you call each group?

Theo Probably user management for the first group and catalog for the second
group.

Theo I’m not sure about the relations between books and authors. Should it be asso-
ciation or composition?

Joe Don’t worry too much about the details for the moment. We’ll refine our data
entity design later. For now, let’s visualize the two groups in a mind map.

Theo and Joe confer for a bit. Figure 2.3 shows the mind map they come up with.

The data entities of the system organized in a nested list

 The catalog data
– Data about books
– Data about authors
– Data about book items
– Data about book lendings

 The user management data
– Data about users
– Data about members
– Data about librarians

Library data

Catalog

Books

Authors

Book items

Book lendings

User management

Users

Members

Librarians Figure 2.3 The data entities of the
system organized in a mind map

312.3 Code modules
The most precise way to visualize the data entities of a DOP system is to draw a data
entity diagram with different arrows for association and composition. We will come
back to data entity diagrams later.

TIP Discover the data entities of your system and then sort them into high-level
groups, either as a nested list or as a mind map.

We will dive deeper into the design and representation of data entities in the next
chapter. For now, let’s simplify things and say that the data of our library system is
made of two high-level groups: user management and catalog.

2.3 Code modules
The second step of the design process in DOP is to define the code modules. Let’s lis-
ten in on Joe and Theo again.

Joe Now that you have identified the data entities of your system and have
arranged them into high-level groups, it’s time to think about the code part of
your system.

Theo What do you mean by the code part?

Joe One way to think about that is to identity the functionality of your system.

Theo looks again at Nancy’s requirements. This time he highlights the verb phrases that
represent functionality.

In addition, it’s obvious to Theo that members can also return a book. Moreover, there
should be a way to detect whether a user is a librarian or not. He adds those to the require-
ments and then lists the functionality of the system.

Highlighting terms in the requirements that correspond to functionality

 There are two kinds of users: library members and librarians.
 Users log in to the system via email and password.
 Members can borrow books.
 Members and librarians can search books by title or by author.
 Librarians can block and unblock members (e.g., when they are late in return-

ing a book).
 Librarians can list the books currently lent to a member.
 There could be several copies of a book.

The functionality of the library system

 Search for a book.
 Add a book item.
 Block a member.

32 CHAPTER 2 Separation between code and data
Joe Excellent! Now, tell me what functionality needs to be exposed to the outside
world?

Theo What do you mean by exposed to the outside world?

Joe Imagine that the Library Management System exposes an API over HTTP.
What functionality would be exposed by the HTTP endpoints?

Theo Well, all system functionality would be exposed except checking to see if a user
is a librarian.

Joe OK. Now give each exposed function a short name and gather them together
in a module box called Library.

That takes Theo less than a minute. Figure 2.4 shows the module that contains the
exposed functions of the library devised by Theo.

TIP The first step in designing the code part of a DOP system is to aggregate the
exposed functions into a single module.

Joe Beautiful! You just created your first code module.

Theo To me it looks like a class. What’s the difference between a module and a class?

Joe A module is an aggregation of functions. In OOP, a module is represented
by a class, but in other programming languages, it might be a package or a
namespace.

Theo I see.

Joe The important thing about DOP code modules is that they contain only state-
less functions.

Theo You mean like static methods in Java?

Joe Yes, and the classes of these static methods should not have any data members.

(continued)

 Unblock a member.
 Log a user into the system.
 List the books currently lent to a member.
 Borrow a book.
 Return a book.
 Check whether a user is a librarian.

searchBook()

addBookItem()

blockMember()

unblockMember()

getBookLendings()

checkoutBook()

returnBook()

C Library

Figure 2.4 The Library module
contains the exposed functions of the
Library Management System.

332.3 Code modules
Theo So, how do the functions know what piece of information they operate on?

Joe Easy. We pass that as the first argument to the function.

Theo OK. Can you give me an example?

Joe, biting his nails, takes a look at the list of functions of the Library module in figure 2.4.
He spots a likely candidate.

Joe Let’s take, for example, getBookLendings. In classic OOP, what would its
arguments be?

Theo A librarian ID and a member ID.

Joe So, in traditional OOP, getBookLendings would be a method of a Library
class that receives two arguments: librarianId and memberId.

Theo Yep.

Joe Now comes the subtle part. In DOP, getBookLendings is part of the Library
module, and it receives the LibraryData as an argument.

Theo Could you show me what you mean?

Joe Sure.

Joe goes over to Theo’s keyboard and starts typing. He enters an example of what a class
method looks like in OOP:

class Library {
 catalog
 userManagement

 getBookLendings(userId, memberId) {
 // accesses library state via this.catalog and this.userManagement
 }
}

Theo Right! The method accesses the state of the object (in our case, the library
data) via this.

Joe Would you say that the object’s state is an argument of the object’s methods?

Theo I’d say that the object’s state is an implicit argument to the object’s methods.

TIP In traditional OOP, the state of the object is an implicit argument to the meth-
ods of the object.

Joe Well, in DOP, we pass data as an explicit argument. The signature of getBook-
Lendings would look like this.

class Library {
 static getBookLendings(libraryData, userId, memberId) {
 }
}

Listing 2.1 The signature of getBookLendings

34 CHAPTER 2 Separation between code and data
Joe The state of the library is stored in libraryData, and libraryData is passed
to the getBookLendings static method as an explicit argument.

Theo Is that a general rule?

Joe Absolutely! The same rule applies to the other functions of the Library mod-
ule and to other modules as well. All of the modules are stateless—they receive
the library data that they manipulate as an argument.

TIP In DOP, functions of a code module are stateless. They receive the data that they
manipulate as an explicit argument, which is usually the first argument.

 NOTE A module is an aggregation of functions. In DOP, the module functions are
stateless.

Theo It reminds me of Python and the way the self argument appears in method
signatures. Here, let me show you an example.

class Library:
 catalog = {}
 userManagement = {}

 def getBookLendings(self, userId, memberId):
 # accesses library state via self.catalog and self.userManagement

Joe Indeed, but the difference I’m talking about is much deeper than a syntax
change. It’s about the fact that data lives outside the modules.

Theo I got that. As you said, module functions are stateless.

Joe Exactly! Would you like to try and apply this principle across the whole
Library module?

Theo Sure.

Theo refines the design of the Library module by including the details about the func-
tions’ arguments. He presents the diagram in figure 2.5 to Joe.

Joe Perfect. Now, we’re ready to tackle the high-level design of our system.

Theo What’s a high-level design in DOP?

Listing 2.2 A Python object as an explicit argument in method signatures

C Library

searchBook(libraryData, searchQuery)

addBookItem(libraryData, bookItemInfo)

blockMember(libraryData, memberId)

unblockMember(libraryData, memberId)

login(libraryData, loginInfo)

getBookLendings(libraryData, userId)

checkoutBook(libraryData, userId, bookItemId)

returnBook(libraryData, userId, bookItemId)
Figure 2.5 The Library module
with the functions’ arguments

352.3 Code modules
Joe A high-level design in DOP is the definition of modules and the interaction
between them.

Theo I see. Are there any guidelines to help me define the modules?

Joe Definitely. The high-level modules of the system correspond to the high-level
data entities.

Theo You mean the data entities that appear in the data mind map?

Joe Exactly!

Theo looks again at the data mind map (figure 2.6). He focuses on the high-level data enti-
ties library, catalog, and user management. This means that in the system, besides the
Library module, we have two high-level modules:

 The Catalog module deals with catalog data.
 The UserManagement module deals with user management data.

Theo then draws the high-level design of the Library Management System with the Catalog
and UserManagement modules. Figure 2.7 shows the addition of these modules, where:

 Functions of Catalog receive catalogData as their first argument.
 Functions of UserManagement receive userManagementData as their first argument.

Library data

Catalog

User management

Figure 2.6 A mind map of the high-
level data entities of the Library
Management System

C UserManagement
C Catalog

searchBook(catalogData, searchQuery)

addBookItem(catalogData, bookItemInfo)

checkoutBook(catalogData, bookItemId)

returnBook(catalogData, bookItemId)

getBookLendings(catalogData, userId)

C Library

searchBook(libraryData, searchQuery)

addBookItem(libraryData, bookItemInfo)

blockMember(libraryData, memberId)

unblockMember(libraryData, memberId)

login(libraryData, loginInfo)

getBookLendings(libraryData, userId)

checkoutBook(libraryData, userId, bookItemId)

returnBook(libraryData, userId, bookItemId)

blockMember(userManagementData, memberId)

unblockMember(userManagementData, memberId)

login(userManagementData, loginInfo)

isLibrarian(userManagementData, userId)

Figure 2.7 The modules of the Library Management System with their functions’ arguments

36 CHAPTER 2 Separation between code and data
It’s not 100% clear for Theo at this point how the data entities get passed between mod-
ules. For the moment, he thinks of libraryData as a class with two members:

 catalog holds the catalog data.
 userManagement holds the user management data.

Theo also sees that the functions of Library share a common pattern. (Later on in this
chapter, we’ll see the code for some functions of the Library module.)

 They receive libraryData as an argument.
 They pass libraryData.catalog to the functions of Catalog.
 They pass libraryData.userManagement to the functions of UserManagement.

TIP The high-level modules of a DOP system correspond to the high-level data enti-
ties.

2.4 DOP systems are easy to understand
Theo takes a look at the two diagrams that represent the high-level design of his system:

 The data entities in the data mind map in figure 2.8
 The code modules in the module diagram in figure 2.9

A bit perplexed, Theo asks Joe:

Theo I’m not sure that this system is better than a traditional OOP system where
objects encapsulate data.

Joe The main benefit of a DOP system over a traditional OOP system is that it’s eas-
ier to understand.

Theo What makes it easier to understand?

Joe The fact that the system is split cleanly into code modules and data entities.

Theo How does that help?

Joe When you try to understand the data entities of the system, you don’t have to
think about the details of the code that manipulates the data entities.

Theo So, when I look at the data mind map of my Library Management System, I can
understand it on its own?

Joe Exactly, and similarly, when you try to understand the code modules of the sys-
tem, you don’t have to think about the details of the data entities manipulated
by the code. There is a clear separation of concerns between the code and the
data.

Theo looks again at the data mind map in figure 2.8. He has kind of an Aha! moment:

Data lives on its own!

 NOTE A DOP system is easier to understand because the system is split into two
parts: data entities and code modules.

372.4 DOP systems are easy to understand
Now, Theo looks at the module diagram in figure 2.9. He feels a bit confused and asks Joe
for clarification:

 On one hand, the module diagram looks similar to the class diagrams from classic
OOP, boxes for classes and arrows for relations between classes.

 On the other hand, the code module diagram looks much simpler than the class
diagrams from classic OOP, but he cannot explain why.

Theo The module diagram seems much simpler than the class diagrams I am used to
in OOP. I feel it, but I can’t put it into words.

Joe The reason is that module diagrams have constraints.

Library data

Catalog

Books

Authors

Book items

Book lendings

User management

Users

Members

Librarians Figure 2.8 A data mind map of the
Library Management System

C UserManagement
C Catalog

searchBook(catalogData, searchQuery)

addBookItem(catalogData, bookItemInfo)

checkoutBook(catalogData, bookItemId)

returnBook(catalogData, bookItemId)

getBookLendings(catalogData, userId)

C Library

searchBook(libraryData, searchQuery)

addBookItem(libraryData, bookItemInfo)

blockMember(libraryData, memberId)

unblockMember(libraryData, memberId)

login(libraryData, loginInfo)

getBookLendings(libraryData, userId)

checkoutBook(libraryData, userId, bookItemId)

returnBook(libraryData, userId, bookItemId)

blockMember(userManagementData, memberId)

unblockMember(userManagementData, memberId)

login(userManagementData, loginInfo)

isLibrarian(userManagementData, userId)

Figure 2.9 The modules of the Library Management System with the function arguments

38 CHAPTER 2 Separation between code and data
Theo What kind of constraints?

Joe Constraints on the functions we saw before. All the functions are static (or
stateless), but there’s also constraints on the relations between the modules.

TIP All the functions in a DOP module are stateless.

Theo In what way are the relations between modules constrained?

Joe There is a single kind of relation between DOP modules—the usage relation. A
module uses code from another module. There’s no association, no composi-
tion, and no inheritance between modules. That’s what makes a DOP module
diagram easy to understand.

Theo I understand why there is no association and no composition between DOP
modules. After all, association and composition are data relations. But why no
inheritance relation? Does that mean that DOP is against polymorphism?

Joe That’s a great question! The quick answer is that in DOP, we achieve polymor-
phism with a different mechanism than class inheritance. We will talk about it
some day.

 NOTE For a discussion of polymorphism in DOP, see chapter 13.

Theo Now, you’ve piqued my curiosity. I thought inheritance was the only way to
achieve polymorphism.

Theo looks again at the module diagram in figure 2.9. Now he not only feels that this dia-
gram is simpler than traditional OOP class diagrams, he understands why it’s simpler: all
the functions are static, and all the relations between modules are of type usage. Table 2.1
summarizes Theo’s perception.

TIP The only kind of relation between DOP modules is the usage relation.

TIP Each part of a DOP system is easy to understand because it provides constraints.

2.5 DOP systems are flexible

Theo I see how a sharp separation between code and data makes DOP systems easier
to understand than classic OOP systems. But what about adapting to changes
in requirements?

Joe Another benefit of DOP systems is that it is easy to extend them and to adapt to
changing requirements.

Table 2.1 What makes each part of a DOP system easy to understand

System part Constraint on entities Constraints on relations

Data entities Members only (no code) Association and composition

Code modules Stateless functions (no members) Usage (no inheritance)

392.5 DOP systems are flexible
Theo I remember that, when Nancy asked me to add Super members and VIP mem-
bers to the system, it was hard to adapt my OOP system. I had to introduce a
few base classes, and the class hierarchy became really complex.

Joe I know exactly what you mean. I’ve experienced the same kind of struggle so
many times. Describe the changes in the requirements for Super members and
VIP members, and I’m quite sure that you’ll see how easy it would be to extend
your DOP system.

Theo opens his IDE and starts to code the getBookLendings function of the Library
module (see listing 2.3), first without addressing the requirements for Super members.
Theo remembers what Joe told him about module functions in DOP:

 Functions are stateless.
 Functions receive the data they manipulate as their first argument.

In terms of functionality, getBookLendings has two parts:

 Checks that the user is a librarian.
 Retrieves the book lendings from the catalog.

Basically, the code of getBookLendings has two parts as well:

 Calls the isLibrarian function from the UserManagement module and passes it
the UserManagementData.

 Calls the getBookLendings function from the Catalog module and passes it the
CatalogData.

class Library {
 static getBookLendings(libraryData, userId, memberId) {
 if(UserManagement.isLibrarian(libraryData.userManagement, userId)) {
 return Catalog.getBookLendings(libraryData.catalog, memberId);
 } else {
 throw "Not allowed to get book lendings";
 }
 }
}

class UserManagement {
 static isLibrarian(userManagementData, userId) {
 // will be implemented later
 }
}

The requirements for Super members and VIP members

 Super members are members that are allowed to list the book lendings to
other members.

 VIP members are members that are allowed to add book items to the library.

Listing 2.3 Getting the book lendings of a member

There are other
ways to manage
errors.

In chapter 3, we will see how
to manage permissions with
generic data collections.

40 CHAPTER 2 Separation between code and data
class Catalog {
 static getBookLendings(catalogData, memberId) {
 // will be implemented later
 }
}

It’s Theo’s first piece of DOP code and passing around all those data objects—library-
Data, libraryData.userManagement, and libraryData.catalog—feels a bit awkward.
But he did it! Joe looks at Theo’s code and seems satisfied.

Joe Now, how would you adapt your code to Super members?

Theo I would add a function isSuperMember to the UserManagement module and
call it from Library.getBookLendings.

Joe Exactly! It’s as simple as that.

Theo types the code on his laptop so that he can show it to Joe. Here’s how Theo adapts
his code for Super members.

class Library {
 static getBookLendings(libraryData, userId, memberId) {
 if(Usermanagement.isLibrarian(libraryData.userManagement, userId) ||
 Usermanagement.isSuperMember(libraryData.userManagement, userId)) {
 return Catalog.getBookLendings(libraryData.catalog, memberId);
 } else {
 throw "Not allowed to get book lendings";
 }
 }
}

class UserManagement {
 static isLibrarian(userManagementData, userId) {
 // will be implemented later
 }
 static isSuperMember(userManagementData, userId) {
 // will be implemented later
 }
}

class Catalog {
 static getBookLendings(catalogData, memberId) {
 // will be implemented later
 }
}

Now, the awkward feeling caused by passing around all those data objects is dominated by
a feeling of relief. Adapting to this change in requirements takes only a few lines of code
and requires no changes in the system design. Once again, Joe seems satisfied.

TIP DOP systems are flexible. Quite often they adapt to changing requirements with-
out changing the system design.

Listing 2.4 Allowing Super members to get the book lendings of a member

In chapter 3, we will see how
to query data with generic
data collections.

There are other
ways to manage
errors.

In chapter 3, we will see how
to manage permissions with
generic data collections.

In chapter 3, we will see how
to query data with generic
data collections.

412.5 DOP systems are flexible
Theo starts coding addBookItem. He looks at the signature of Library.addBookItem,
and the meaning of the third argument bookItemInfo isn’t clear to him. He asks Joe for
clarification.

class Library {
 static addBookItem(libraryData, userId, bookItemInfo) {
 }
}

Theo What is bookItemInfo?

Joe Let’s call it the book item information. Imagine we have a way to represent this
information in a data entity named bookItemInfo.

Theo You mean an object?

Joe For now, it’s OK to think about bookItemInfo as an object. Later on, I will
show you how to we represent data in DOP.

Besides this subtlety about how the book item information is represented by book-
ItemInfo, the code for Library.addBookItem in listing 2.6 is quite similar to the code
Theo wrote for Library.getBookLendings in listing 2.4. Once again, Theo is amazed by
the fact that adding support for VIP members requires no design change.

class Library {
 static addBookItem(libraryData, userId, bookItemInfo) {
 if(UserManagement.isLibrarian(libraryData.userManagement, userId) ||
 UserManagement.isVIPMember(libraryData.userManagement, userId)) {
 return Catalog.addBookItem(libraryData.catalog, bookItemInfo);
 } else {
 throw "Not allowed to add a book item";
 }
 }
}

class UserManagement {
 static isLibrarian(userManagementData, userId) {
 // will be implemented later
 }
 static isVIPMember(userManagementData, userId) {
 // will be implemented later
 }
}

class Catalog {
 static addBookItem(catalogData, memberId) {
 // will be implemented later
 }
}

Listing 2.5 The signature of Library.addBookItem

Listing 2.6 Allowing VIP members to add a book item to the library

There are other
ways to manage
errors.

In chapter 3, we will see how
to manage permissions with
generic data collections.

In chapter 4, we will see how
to manage state of the system
with immutable data.

42 CHAPTER 2 Separation between code and data
Theo It takes a big mindset shift to learn how to separate code from data!

Joe What was the most challenging thing to accept?

Theo The fact that data is not encapsulated in objects.

Joe It was the same for me when I switched from OOP to DOP.

Now it’s time to eat! Theo takes Joe for lunch at Simple, a nice, small restaurant near the
office.

Summary
 DOP principles are language-agnostic.
 DOP principle #1 is to separate code from data.
 The separation between code and data in DOP systems makes them simpler

(easier to understand) than traditional OOP systems.
 Data entities are the parts of your system that hold information.
 DOP is against data encapsulation.
 The more flexible a system is, the easier it is to adapt to changing requirements.
 The separation between code and data in DOP systems makes them more flexi-

ble than traditional OOP systems.
 When code is separated from data, we have the freedom to design code and

data in isolation.
 We represent data as data entities.
 We discover the data entities of our system and sort them into high-level groups,

either as a nested list or as a mind map.
 A DOP system is easier to understand than a traditional OOP system because

the system is split into two parts: data entities and code modules.
 In DOP, a code module is an aggregation of stateless functions.
 DOP systems are flexible. Quite often they adapt to changing requirements

without changing the system design.
 In traditional OOP, the state of the object is an implicit argument to the meth-

ods of the object.
 Stateless functions receive data they manipulate as an explicit argument.
 The high-level modules of a DOP system correspond to high-level data entities.
 The only kind of relation between code modules is the usage relation.
 The only kinds of relation between data entities are the association and the compo-

sition relation.
 For a discussion of polymorphism in DOP, see chapter 13.

Basic data manipulation
Meditation and programming
After learning why and how to separate code from data in the previous chapter,
let’s talk about data on its own. In contrast to traditional OOP, where system design
tends to involve a rigid class hierarchy, DOP prescribes that we represent our data
model as a flexible combination of maps and arrays (or lists), where we can access
each piece of information via an information path. This chapter is a deep dive into
the second principle of DOP.

This chapter covers
 Representing records with string maps to improve

flexibility

 Manipulating data with generic functions

 Accessing each piece of information via its
information path

 Gaining JSON serialization for free

PRINCIPLE #2 Represent data entities with generic data structures.
43

44 CHAPTER 3 Basic data manipulation
We increase system flexibility when we represent records as string maps and not as
objects instantiated from classes. This liberates data from the rigidity of a class-based sys-
tem. Data becomes a first-class citizen powered by generic functions to add, remove, or
rename fields.

 NOTE We refer to maps that have strings as keys as string maps.

The dependency between the code that manipulates data and the data is a weak
dependency. The code only needs to know the keys of specific fields in the record it
wants to manipulate. The code doesn’t even need to know about all the keys in the
record, only the ones relevant to it. In this chapter, we’ll deal only with data query.
We’ll discuss managing changes in system state in the next chapter.

3.1 Designing a data model
During lunch at Simple, Theo and Joe don’t talk about programming. Instead, they start
getting to know each other on a personal level. Theo discovers that Joe is married to Kay,
who has just opened her creative therapy practice after many years of studying various
fields related to well-being. Neriah, their 14-year-old son, is passionate about drones, whereas
Aurelia, their 12-year-old daughter, plays the transverse flute.

Joe tells Theo that he’s been practicing meditation for 10 years. Meditation, he says, has
taught him how to break away from being continually lost in a “storm thought” (especially
negative thoughts, which can be the source of great suffering) to achieve a more direct
relationship with reality. The more he learns to experience reality as it is, the calmer his
mind. When he first started to practice meditation, it was sometimes difficult and even
weird, but by persevering, he has increased his feeling of well-being with each passing year.

When they’re back at the office, Joe tells Theo that his next step in their DOP journey
will be about data models. This includes data representation.

Joe When we design the data part of our system, we’re free to do it in isolation.

Theo What do you mean by isolation?

Joe I mean that you don’t have to bother with code, only data.

Theo Oh, right. I remember you telling me how that makes a DOP system simpler
than OOP. Separation of concerns is a design principle I’m used to in OOP.

Joe Indeed.

Theo And, when we think about data, the only relations we have to think about are
association and composition.

Joe Correct.

Theo Will the data model design be significantly different than the data model I’m
used to designing as an OOP developer?

Joe Not so much.

Theo OK. Let me see if I can draw a DOP-style data entity diagram.

Theo takes a look at the data mind map that he drew earlier in the morning. He then
draws the diagram in figure 3.1.

He refines the details of the fields of each data entity and the kind of relations between
entities. Figure 3.2 shows the result of this redefined data entity diagram.

453.1 Designing a data model
Library data

Catalog

Books

Authors

Book items

Book lendings

User management

Users

Members

Librarians Figure 3.1 A data mind map of
the Library Management System

*

*

*

* *

name: String

address: String

CC Library

* *

CC Author

name: String

CC BookLending

lendingDate: String

CC BookItem

libld: String

purchaseDate: String

CC Catalog CC UserManagement

CC Librarian

email: String

password: String

CC Member

email: String

password: String

CC Book

title : String

publicationYear: Number

ISBN: String

publisher: String

Figure 3.2 A data model of the Library Management System

46 CHAPTER 3 Basic data manipulation
Joe The next step is to be more explicit about the relations between entities.

Theo What do you mean?

Joe For example, in your entity diagram, Book and Author are connected by a
many-to-many association relation. How is this relation going to be repre-
sented in your program?

Theo In the Book entity, there will be a collection of author IDs, and in the Author
entity, there will be a collection of book IDs.

Joe Sounds good. And what will the book ID be?

Theo The book ISBN.

 NOTE The International Standard Book Number (ISBN) is a numeric commercial
book identifier that is intended to be unique.

Joe And where will you hold the index that enables you to retrieve a Book from its
ISBN?

Theo In the Catalog because the catalog holds a bookByISBN index.

Joe What about author ID?

Theo Author ID is the author name in lowercase and with dashes instead of white
spaces (assuming that we don’t have two authors with the same name).

Joe And I guess that you also hold the author index in the Catalog?

Theo Exactly!

Joe Excellent. You’ve been 100% explicit about the relation between Book and
Author. I’ll ask you to do the same with the other relations of the system.

It’s quite easy for Theo to do, as he has done that so many times as an OOP developer. Fig-
ure 3.3 provides the detailed entity diagram of Theo’s system.

 NOTE By positional collection, we mean a collection where the elements are in order
(like a list or an array). By index, we mean a collection where the elements are accessi-
ble via a key (like a hash map or a dictionary).

The Catalog entity contains two indexes:

 booksByIsbn—The keys are book ISBNs, and the values are Book entities. Its type is
noted as {Book}.

 authorsById—The keys are author IDs, and the values are Author entities. Its type
is noted as {Author}.

Inside a Book entity, we have authors, which is a positional collection of author IDs of type
[String]. Inside an Author entity, we have books, which is a collection of book IDs of
type [String].

 NOTE For the notation for collections and index types, a positional collection of
Strings is noted as [String]. An index of Books is noted as {Book}. In the context of
a data model, the index keys are always strings.

473.1 Designing a data model
There is a dashed line between Book and Author, which means that the relation between
Book and Author is indirect. To access the collection of Author entities from a Book entity,
we’ll use the authorById index defined in the Catalog entity.

Joe I like your data entity diagram.

Theo Thank you.

Joe Can you tell me what the three kinds of data aggregations are in your diagram
(and, in fact, in any data entity diagram)?

Theo Let’s see . . . we have positional collections like authors in Book. We have
indexes like booksByIsbn in Catalog. I can’t find the third one.

Joe The third kind of data aggregation is what we’ve called, until now, an “entity”
(like Library, Catalog, Book, etc.), and the common term for entity in com-
puter science is record.

CC Author

id: String

bookIsbns: [String]

name: String

CC BookLending

lendingDate: String

bookIsbn: String

bookItemId: String

CC Library

name: String

address: String

catalog: Catalog

userManagement: UserManagement

CC Member

email: String

encryptedPassword: String

isBlocked: Boolean

bookLendings: [BookLending]

CC BookItem

id: String

libId: String

purchaseDate: String

isLent: Boolean

CC Book

title : String

publicationYear: Number

isbn: String

authorIds: [String]

bookItems: [BookItem]

CC UserManagement

librariansByEmail: {Librarian}

membersByEmail: {Member}

CC Catalog

booksByIsbn: {Book}

authorsById: {Author}

CC Librarian

email: String

encryptedPassword: String

*

*

*

*

*

*

*

*

Figure 3.3 Library management relation model. Dashed lines (e.g., between Book and Author) denote
indirect relations, [String] denotes a positional collection of strings, and {Book} denotes an index of
Books.

48 CHAPTER 3 Basic data manipulation
 NOTE A record is a data structure that groups together related data items. It’s a col-
lection of fields, possibly of different data types.

Theo Is it correct to say that a data entity diagram consists only of records, positional
collections, and indexes?

Joe That’s correct. Can you make a similar statement about the relations between
entities?

Theo The relations in a data entity diagram are either composition (solid line with a
full diamond) or association (dashed line with an empty diamond). Both types
of relations can be either one-to-one, one-to-many, or many-to-many.

Joe Excellent!

TIP A data entity diagram consists of records whose values are either primitives, posi-
tional collections, or indexes. The relation between records is either composition or
association.

3.2 Representing records as maps
So far, we’ve illustrated the benefits we gain from the separation between code and
data at a high-system level. There’s a separation of concerns between code and data,
and each part has clear constraints:

 Code consists of static functions that receive data as an explicit argument.
 Data entities are modeled as records, and the relations between records are

represented by positional collections and indexes.

Now comes the question of the representation of the data. DOP has nothing special
to say about collections and indexes. However, it’s strongly opinionated about the
representation of records: records should be represented by generic data structures
such as maps.

 This applies to both OOP and FP languages. In dynamically-typed languages like
JavaScript, Python, and Ruby, data representation feels natural. While in statically-
typed languages like Java and C#, it is a bit more cumbersome.

Theo I’m really curious to know how we represent positional collections, indexes,
and records in DOP.

Joe Let’s start with positional collections. DOP has nothing special to say about the
representation of collections. They can be linked lists, arrays, vectors, sets, or
other collections best suited for the use case.

Theo It’s like in OOP.

Joe Right! For now, to keep things simple, we’ll use arrays to represent positional
collections.

Theo What about indexes?

Joe Indexes are represented as homogeneous string maps.

Theo What do you mean by a homogeneous map?

493.2 Representing records as maps
Joe I mean that all the values of the map are of the same kind. For example, in a
Book index, all the values are Book, and in an author index, all the values are
Author, and so forth.

Theo Again, it’s like in OOP.

 NOTE A homogeneous map is a map where all the values are of the same type. A hetero-
geneous map is a map where the values are of different types.

Joe Now, here’s the big surprise. In DOP, records are represented as maps, more
precisely, heterogeneous string maps.

Joe goes to the whiteboard and begins to draw. When he’s finished, he shows Theo the dia-
gram in figure 3.4.

Theo stays silent for a while. He is shocked to hear that the data entities of a system can be
represented as a generic data structure, where the field names and value types are not
specified in a class. Then, Theo asks Joe:

Theo What are the benefits of this folly?

Joe Flexibility and genericity.

Theo Could you explain, please?

Joe I’ll explain in a moment, but before that, I’d like to show you what an instance
of a record in a DOP system looks like.

Theo OK.

Joe Let’s take as an example, Watchmen, by Alan Moore and Dave Gibbons, which is
my favorite graphic novel. This masterpiece was published in 1987. I’m going
to assume that, in a physical library, there are two copies of this book, whose ID
is nyc-central-lib, and that one of the two copies is currently out. Here’s
how I’d represent the Book record for Watchmen in DOP.

Joe comes closer to Theo’s laptop. He opens a text editor (not an IDE!) and types the Book
record for Theo.

Data representation

Heterogeneous mapRecord

Array

Collection

Linked list

Set

Vector

Index Homogeneous map
Figure 3.4 The building blocks
of data representation

50 CHAPTER 3 Basic data manipulation
{
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authors": ["alan-moore", "dave-gibbons"],
 "bookItems": [
 {
 "id": "book-item-1",
 "libId": "nyc-central-lib",
 "isLent": true
 },
 {
 "id": "book-item-2",
 "libId": "nyc-central-lib",
 "isLent": false
 }
]
}

Theo looks at the laptop screen. He has a question.

Theo How am I supposed to instantiate the Book record for Watchmen programmat-
ically?

Joe It depends on the facilities that your programming language offers to instantiate
maps. With dynamic languages like JavaScript, Ruby, or Python, it’s straight-
forward, because we can use literals for maps and arrays. Here, let me show
you how.

Joe jots down the JavaScript code that creates an instance of a Book record, which rep-
resents as a map in JavaScript. He shows the code to Theo.

var watchmenBook = {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authors": ["alan-moore", "dave-gibbons"],
 "bookItems": [
 {
 "id": "book-item-1",
 "libId": "nyc-central-lib",
 "isLent": true
 },
 {
 "id": "book-item-2",
 "libId": "nyc-central-lib",
 "isLent": false
 }
]
}

Listing 3.1 An instance of a Book record represented as a map

Listing 3.2 A Book record represented as a map in JavaScript

513.2 Representing records as maps
Theo And, if I’m in Java?

Joe It’s a bit more tedious, but still doable with the immutable Map and List static
factory methods.

 NOTE See “Creating Immutable Lists, Sets, and Maps” at http://mng.bz/voGm for
more information on this Java core library.

Joe types the Java code to create an instance of a Book record represented as a map. He
shows Theo the Java code.

Map watchmen = Map.of(
 "isbn", "978-1779501127",
 "title", "Watchmen",
 "publicationYear", 1987,
 "authors", List.of("alan-moore", "dave-gibbons"),
 "bookItems", List.of(
 Map.of(
 "id", "book-item-1",
 "libId", "nyc-central-lib",
 "isLent", true
),
 Map.of (
 "id", "book-item-2",
 "libId", "nyc-central-lib",
 "isLent", false
)
)
);

TIP In DOP, we represent a record as a heterogeneous string map.

Theo I’d definitely prefer to create a Book record using a Book class and a BookItem
class.

Theo opens his IDE. He types the JavaScript code to represent a Book record as an instance
of a Book class.

class Book {
 isbn;
 title;
 publicationYear;
 authors;
 bookItems;
 constructor(isbn, title, publicationYear, authors, bookItems) {
 this.isbn = isbn;
 this.title = title;
 this.publicationYear = publicationYear;
 this.authors = authors;
 this.bookItems = bookItems;

Listing 3.3 A Book record represented as a map in Java

Listing 3.4 A Book record as an instance of a Book class in JavaScript

http://mng.bz/voGm

52 CHAPTER 3 Basic data manipulation
 }
}

class BookItem {
 id;
 libId;
 isLent;
 constructor(id, libId, isLent) {
 this.id = id;
 this.libId = libId;
 this.isLent = isLent;
 }
}

var watchmenBook = new Book("978-1779501127",
 "Watchmen",
 1987,
 ["alan-moore", "dave-gibbons"],
 [new BookItem("book-item-1", "nyc-central-lib", true),
 new BookItem("book-item-2", "nyc-central-lib", false)]);

Joe Theo, why do you prefer classes over maps for representing records?

Theo It makes the data shape of the record part of my program. As a result, the IDE
can auto-complete field names, and errors are caught at compile time.

Joe Fair enough. Can I show you some drawbacks for this approach?

Theo Sure.

Joe Imagine that you want to display the information about a book in the context
of search results. In that case, instead of author IDs, you want to display
author names, and you don’t need the book item information. How would
you handle that?

Theo I’d create a class BookInSearchResults without a bookItems member and
with an authorNames member instead of the authorIds member of the Book
class. Also, I would need to write a copy constructor that receives a Book object.

Joe In classic OOP, the fact that data is instantiated only via classes brings safety.
But this safety comes at the cost of flexibility.

TIP There’s a tradeoff between flexibility and safety in a data model.

Theo So, how can it be different?

Joe In the DOP approach, where records are represented as maps, we don’t need
to create a class for each variation of the data. We’re free to add, remove, and
rename record fields dynamically. Our data model is flexible.

Theo Interesting!

TIP In DOP, the data model is flexible. We’re free to add, remove, and rename
record fields dynamically at run time.

Joe Now, let me talk about genericity. How would you serialize the content of a
Book object to JSON?

533.2 Representing records as maps
TIP In DOP, records are manipulated with generic functions.

Theo Oh no! I remember that while working on the Klafim prototype, I had a night-
mare about JSON serialization when I was developing the first version of the
Library Management System.

Joe Well, in DOP, serializing a record to JSON is super easy.

Theo Does it require the usage of reflection in order to go over the fields of the
record like the Gson Java library does?

 NOTE See https://github.com/google/gson for more information on Gson.

Joe Not at all! Remember that in DOP, a record is nothing more than data. We can
write a generic JSON serialization function that works with any record. It can
be a Book, an Author, a BookItem, or anything else.

Theo Amazing!

TIP In DOP, you get JSON serialization for free.

Joe Actually, as I’ll show you in a moment, lots of data manipulation stuff can be
done using generic functions.

Theo Are the generic functions part of the language?

Joe It depends on the functions and on the language. For example, JavaScript pro-
vides a JSON serialization function called JSON.stringify out of the box, but
none for omitting multiple keys or for renaming keys.

Theo That’s annoying.

Joe Not so much; there are third-party libraries that provide data-manipulation facil-
ities. A popular data manipulation library in the JavaScript ecosystem is Lodash.

 NOTE See https://lodash.com/ to find out more about Lodash.

Theo What about other languages?

Joe Lodash has been ported to Java, C#, Python, and Ruby. Let me bookmark some
sites for you.

Joe bookmarks these sites for Theo:

 https://javalibs.com/artifact/com.github.javadev/underscore-lodash for Java
 https://www.nuget.org/packages/lodash/ for C#
 https://github.com/dgilland/pydash for Python
 https://rudash-website.now.sh/ for Ruby

 NOTE Throughout the book, we use Lodash to show how to manipulate data with
generic functions, but there is nothing special about Lodash. The exact same approach
could be implemented via other data manipulation libraries or custom code.

Theo Cool!

Joe Actually, Lodash and its rich set of data manipulation functions can be ported
to any language. That’s why it’s so beneficial to represent records as maps.

https://github.com/google/gson
https://lodash.com/
https://javalibs.com/artifact/com.github.javadev/underscore-lodash
https://www.nuget.org/packages/lodash/
https://github.com/dgilland/pydash
https://rudash-website.now.sh/

54 CHAPTER 3 Basic data manipulation
TIP DOP compromises on data safety to gain flexibility and genericity.

At the whiteboard, Joe quickly sketches the tradeoffs (see table 3.1).

3.3 Manipulating data with generic functions
Joe Now let me show you how to manipulate data in DOP with generic functions.

Theo Yes, I’m quite curious to see how you’ll implement the search functionality of
the Library Management System.

Joe OK. First, let’s instantiate a Catalog record for the catalog data of a library,
where we have a single book, Watchmen.

Joe instantiates a Catalog record according to Theo’s data model in figure 3.3. Here’s
what Joe shows to Theo.

var catalogData = {
 "booksByIsbn": {
 "978-1779501127": {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authorIds": ["alan-moore", "dave-gibbons"],
 "bookItems": [
 {
 "id": "book-item-1",
 "libId": "nyc-central-lib",
 "isLent": true
 },
 {
 "id": "book-item-2",
 "libId": "nyc-central-lib",
 "isLent": false
 }
]
 }
 },
 "authorsById": {
 "alan-moore": {
 "name": "Alan Moore",
 "bookIsbns": ["978-1779501127"]
 },

Table 3.1 The tradeoff among safety, flexibility, and genericity

OOP DOP

Safety High Low

Flexibility Low High

Genericity Low High

Listing 3.5 A Catalog record

553.3 Manipulating data with generic functions
 "dave-gibbons": {
 "name": "Dave Gibbons",
 "bookIsbns": ["978-1779501127"]
 }
 }
}

Theo I see the two indexes we talked about, booksByIsbn and authorsById. How
do you differentiate a record from an index in DOP?

Joe In an entity diagram, there’s a clear distinction between records and indexes.
But in our code, both are plain data.

Theo I guess that’s why this approach is called data-oriented programming.

Joe See how straightforward it is to visualize any part of the system data inside a
program? The reason is that data is represented as data!

TIP In DOP, data is represented as data.

Theo That sounds like a lapalissade.1

Joe Oh, does it? I’m not so sure! In OOP, data is usually represented by objects,
which makes it more challenging to visualize data inside a program.

TIP In DOP, we can visualize any part of the system data.

Theo How would you retrieve the title of a specific book from the catalog data?

Joe Great question! In fact, in a DOP system, every piece of information has an
information path from which we can retrieve the information.

Theo Information path?

Joe For example, the information path to the title of the Watchmen book in the
catalog is ["booksByIsbn", "978-1779501127", "title"].

Theo Ah, I see. So, is an information path sort of like a file path, but that names in
an information path correspond to nested entities?

Joe You’re exactly right. And once we have the path of a piece of information, we
can retrieve the information with Lodash’s _.get function.

Joe types a few characters on Theo’s laptop. Theo is amazed at how little code is needed to
get the book title.

_.get(catalogData, ["booksByIsbn", "978-1779501127", "title"])
// → "Watchmen"

Theo Neat. I wonder how hard it would be to implement a function like _.get
myself.

1 A lapalissade is an obvious truth—a truism or tautology—that produces a comical effect.

Listing 3.6 Retrieving the title of a book from its information path

56 CHAPTER 3 Basic data manipulation
After a few minutes of trial and error, Theo is able to produce his implementation. He
shows Joe the code.

function get(m, path) {
 var res = m;
 for(var i = 0; i < path.length; i++) {
 var key = path[i];
 res = res[key];
 }
 return res;
}

After testing Theo’s implementation of get, Joe compliments Theo. He’s grateful that
Theo is catching on so quickly.

get(catalogData, ["booksByIsbn", "978-1779501127", "title"]);
// → "Watchmen"

Joe Well done!

Theo I wonder if a function like _.get works smoothly in a statically-typed language
like Java?

Joe It depends on whether you only need to pass the value around or to access the
value concretely.

Theo I don’t follow.

Joe Imagine that once you get the title of a book, you want to convert the string
into an uppercase string. You need to do a static cast to String, right? Here,
let me show you an example that casts a field value to a string, then we can
manipulate it as a string.

((String)watchmen.get("title")).toUpperCase()

Theo That makes sense. The values of the map are of different types, so the compiler
declares it as a Map<String,Object>. The information of the type of the field
is lost.

Joe It’s a bit annoying, but quite often our code just passes the data around. In that
case, we don’t have to deal with static casting. Moreover, in a language like C#,
when using the dynamic data type, type casting can be avoided.2,3

Listing 3.7 Custom implementation of get

Listing 3.8 Testing the custom implementation of get

Listing 3.9 Casting a field value to a string

2 See http://mng.bz/4jo5 for the C# documentation on the built-in reference to dynamic types.
3 See appendix A for details about dynamic fields and type casting in C#.

We could use
forEach instead
of a for loop.

http://mng.bz/4jo5

573.3 Manipulating data with generic functions
TIP In statically-typed languages, we sometimes need to statically cast the field values.

Theo What about performance?

Joe In most programming languages, maps are quite efficient. Accessing a field
in a map is slightly slower than accessing a class member. Usually, it’s not
significant.

TIP There’s no significant performance hit for accessing a field in a map instead of as
a class member.

Theo Let’s get back to this idea of information path. It works in OOP too. I could
access the title of the Watchmen book with catalogData.booksByIsbn["978-
1779501127"].title. I’d use class members for record fields and strings for
index keys.

Joe There’s a fundamental difference, though. When records are represented as
maps, the information can be retrieved via its information path using a generic
function like _.get. But when records are represented as objects, you need to
write specific code for each type of information path.

Theo What do you mean by specific code? What’s specific in catalogData.books-
ByIsbn["978-1779501127"].title?

Joe In a statically-typed language like Java, you’d need to import the class defini-
tions for Catalog and Book.

Theo And, in a dynamically-typed language like JavaScript . . . ?

Joe Even in JavaScript, when you represent records with objects instantiated from
classes, you can’t easily write a function that receives a path as an argument
and display the information that corresponds to this path. You would have to
write specific code for each kind of path. You’d access class members with dot
notation and map fields with bracket notation.

Theo Would you say that in DOP, the information path is a first-class citizen?

Joe Absolutely! The information path can be stored in a variable and passed as an
argument to a function.

TIP In DOP, you can retrieve every piece of information via a path and a generic
function.

Joe goes to the whiteboard. He draws a diagram like that in figure 3.5, which shows the
catalog data as a tree.

Joe You see, Theo, each piece of information is accessible via a path made of
strings and integers. For example, the path of Alan Moore’s first book is
["catalog", "authorsById", "alan-moore", "bookIsbns", 0].

58 CHAPTER 3 Basic data manipulation
3.4 Calculating search results
Theo Interesting. I’m starting to feel the power of expression of DOP!

Joe Wait, that’s just the beginning. Let me show you how simple it is to write code
that retrieves book information and displays it in search results. Can you tell
me exactly what information has to appear in the search results?

Theo Searching for book information should return isbn, title, and author-
Names.

Joe And what would a BookInfo record look like for Watchmen?

Theo quickly enters the code on his laptop. He then shows it to Joe.

{
 "title": "Watchmen",
 "isbn": "978-1779501127",
 "authorNames": [
 "Alan Moore",
 "Dave Gibbons",
]
}

Listing 3.10 A BookInfo record for Watchmen in the context of search result

catalog

booksByIsbn

978-1779501127

title

authorIds

1

dave-gibbons

0

alan-moore

isbn

978-1779501127

publicationYear

Watchmen

1987

bookItems

1

book-item-2

libId

la-central-lib

isLent

false

0

book-item-1

libId

idid

nyc-cental-lib

isLent

true

authorsById

alan-moore

name

Alan Moore

bookIsbns

0

978-1779501127

dave-gibbons

name

Dave Gibbons

bookIsbns

0

978-1779501127

Figure 3.5 The catalog data as a tree

593.4 Calculating search results
Joe Now I’ll show you step by step how to write a function that returns search
results matching a title in JSON format. I’ll use generic data manipulation
functions from Lodash.

Theo I’m ready!

Joe Let’s start with an authorNames function that calculates the author names of a
Book record by looking at the authorsById index. Could you tell me what’s
the information path for the name of an author whose ID is authorId?

Theo It’s ["authorsById", authorId, "name"].

Joe Now, let me show you how to retrieve the name of several authors using _.map.

Joe types the code to map the author IDs to the author names. Theo nonchalantly peeks
over Joe’s shoulder.

_.map(["alan-moore", "dave-gibbons"],
 function(authorId) {
 return _.get(catalogData, ["authorsById", authorId, "name"]);
 });
// → ["Alan Moore", "Dave Gibbons"]

Theo What’s this _.map function? It smells like functional programming! You said I
wouldn’t have to learn FP to implement DOP!

Joe No need to learn functional programming in order to use _.map, which is a
function that transforms the values of a collection. You can implement it with
a simple for loop.

Theo spends a couple of minutes in front of his computer figuring out how to implement
_.map. Now he’s got it!

function map(coll, f) {
 var res = [];
 for(var i = 0; i < coll.length; i++) {
 res[i] = f(coll[i]);
 }
 return res;
}

After testing Theo’s implementation of map, Joe shows Theo the test. Joe again compli-
ments Theo.

map(["alan-moore", "dave-gibbons"],
 function(authorId) {
 return _.get(catalogData, ["authorsById", authorId, "name"]);
 });
// → ["Alan Moore", "Dave Gibbons"]

Listing 3.11 Mapping author IDs to author names

Listing 3.12 Custom implementation of map

Listing 3.13 Testing the custom implementation of map

We could use
forEach instead
of a for loop.

60 CHAPTER 3 Basic data manipulation
Joe Well done!

Theo You were right! It wasn’t hard.

Joe Now, let’s implement authorNames using _.map.

It takes a few minutes for Theo to come up with the implementation of authorNames.
When he’s finished, he turns his laptop to Joe.

function authorNames(catalogData, book) {
 var authorIds = _.get(book, "authorIds");
 var names = _.map(authorIds, function(authorId) {
 return _.get(catalogData, ["authorsById", authorId, "name"]);
 });
 return names;
}

Joe We also need a bookInfo function that converts a Book record into a Book-
Info record. Let me show you the code for that.

function bookInfo(catalogData, book) {
 var bookInfo = {
 "title": _.get(book, "title"),
 "isbn": _.get(book, "isbn"),
 "authorNames": authorNames(catalogData, book)
 };
 return bookInfo;
}

Theo Looking at the code, I see that a BookInfo record has three fields: title,
isbn, and authorNames. Is there a way to get this information without looking
at the code?

Joe You can either add it to the data entity diagram or write it in the documenta-
tion of the bookInfo function, or both.

Theo I have to get used to the idea that in DOP, the record field information is not
part of the program.

Joe Indeed, it’s not part of the program, but it gives us a lot of flexibility.

Theo Is there any way for me to have my cake and eat it too?

Joe Yes, and someday I’ll show you how to make record field information part of a
DOP program (see chapters 7 and 12).

Theo Sounds intriguing!

Joe Now that we have all the pieces in place, we can write our searchBooksBy-
Title function, which returns the book information about the books that
match the query. First, we find the Book records that match the query with
_.filter and then we transform each Book record into a BookInfo record
with _.map and bookInfo.

Listing 3.14 Calculating the author names of a book

Listing 3.15 Converting a Book record into a BookInfo record

There’s no need to create
a class for bookInfo.

613.4 Calculating search results
function searchBooksByTitle(catalogData, query) {
 var allBooks = _.values(_.get(catalogData, "booksByIsbn"));
 var matchingBooks = _.filter(allBooks, function(book) {
 return _.get(book, "title").includes(query);
 });

 var bookInfos = _.map(matchingBooks, function(book) {
 return bookInfo(catalogData, book);
 });
 return bookInfos;
}

Theo You’re using Lodash functions without any explanation again!

Joe Sorry about that. I am so used to basic data manipulation functions that I con-
sider them as part of the language. What functions are new to you?

Theo _.values and _.filter

Joe Well, _.values returns a collection made of the values of a map, and _.filter
returns a collection made of the values that satisfy a predicate.

Theo _.values seems trivial. Let me try to implement _.filter.

The implementation of _.filter takes a bit more time. Eventually, Theo manages to get
it right, then he is able to test it.

function filter(coll, f) {
 var res = [];
 for(var i = 0; i < coll.length; i++) {
 if(f(coll[i])) {
 res.push(coll[i]);
 }
 }
 return res;
}

filter(["Watchmen", "Batman"], function (title) {
 return title.includes("Watch");
});
// → ["Watchmen"]

Theo To me, it’s a bit weird that to access the title of a book record, I need to write
_.get(book, "title"). I’d expect it to be book.title in dot notation or
book["title"] in bracket notation.

Joe Remember that book is a record that’s not represented as an object. It’s a map.
Indeed, in JavaScript, you can write _.get(book, "title"), book.title, or
book["title"]. But I prefer to use Lodash’s _.get function. In some lan-
guages, the dot and the bracket notations might not work on maps.

Listing 3.16 Searching books that match a query

Listing 3.17 Custom implementation of filter

Listing 3.18 Testing the custom implementation of filter

The includes JavaScript
function checks whether
a string includes a string
as a substring.

We could use
forEach instead
of a for loop.

62 CHAPTER 3 Basic data manipulation
Theo Being language-agnostic has a price!

Joe Right, would you like to test searchBooksByTitle?

Theo Absolutely! Let me call searchBooksByTitle to search the books whose title
contain the string Watch.

searchBooksByTitle(catalogData, "Wat");
//[
// {
// "authorNames": [
// "Alan Moore",
// "Dave Gibbons"
//],
// "isbn": "978-1779501127",
// "title": "Watchmen"
// }
//]

Theo It seems to work! Are we done with the search implementation?

Joe Almost. The searchBooksByTitle function we wrote is going to be part of the
Catalog module, and it returns a collection of records. We have to write a
function that’s part of the Library module, and that returns a JSON string.

Theo You told me earlier that JSON serialization was straightforward in DOP.

Joe Correct. The code for searchBooksByTitleJSON retrieves the Catalog record,
passes it to searchBooksByTitle, and converts the results to JSON with
JSON.stringify. That’s part of JavaScript. Here, let me show you.

function searchBooksByTitleJSON(libraryData, query) {
 var results = searchBooksByTitle(_.get(libraryData, "catalog"), query);
 var resultsJSON = JSON.stringify(results);
 return resultsJSON;
}

Joe In order to test our code, we need to create a Library record that contains our
Catalog record. Could you do that for me, please?

Theo Should the Library record contain all the Library fields (name, address,
and UserManagement)?

Joe That’s not necessary. For now, we only need the catalog field, then the test
for searching books.

var libraryData = {
 "catalog": {
 "booksByIsbn": {
 "978-1779501127": {
 "isbn": "978-1779501127",
 "title": "Watchmen",

Listing 3.19 Testing searchBooksByTitle

Listing 3.20 Implementation of searching books in a library as JSON

Listing 3.21 A Library record

633.4 Calculating search results
 "publicationYear": 1987,
 "authorIds": ["alan-moore",
 "dave-gibbons"],
 "bookItems": [
 {
 "id": "book-item-1",
 "libId": "nyc-central-lib",
 "isLent": true
 },
 {
 "id": "book-item-2",
 "libId": "nyc-central-lib",
 "isLent": false
 }
]
 }
 },
 "authorsById": {
 "alan-moore": {
 "name": "Alan Moore",
 "bookIsbns": ["978-1779501127"]
 },
 "dave-gibbons": {
 "name": "Dave Gibbons",
 "bookIsbns": ["978-1779501127"]
 }
 }
 }
};

searchBooksByTitleJSON(libraryData, "Wat");

Theo How are we going to combine the four functions that we’ve written so far?

Joe The functions authorNames, bookInfo, and searchBooksByTitle go into
the Catalog module, and searchBooksByTitleJSON goes into the Library
module.

Theo looks at the resulting code of the two modules, Library and Catalog. He’s quite
amazed by its conciseness.

class Catalog {
 static authorNames(catalogData, book) {
 var authorIds = _.get(book, "authorIds");
 var names = _.map(authorIds, function(authorId) {
 return _.get(catalogData, ["authorsById", authorId, "name"]);
 });
 return names;
 }

Listing 3.22 Test for searching books in a library as JSON

Listing 3.23 Calculating search results for Library and Catalog

64 CHAPTER 3 Basic data manipulation
 static bookInfo(catalogData, book) {
 var bookInfo = {
 "title": _.get(book, "title"),
 "isbn": _.get(book, "isbn"),
 "authorNames": Catalog.authorNames(catalogData, book)
 };
 return bookInfo;
 }

 static searchBooksByTitle(catalogData, query) {
 var allBooks = _.get(catalogData, "booksByIsbn");
 var matchingBooks = _.filter(allBooks,
 function(book) {
 return _.get(book, "title").includes(query);
 });
 var bookInfos = _.map(matchingBooks, function(book) {
 return Catalog.bookInfo(catalogData, book);
 });
 return bookInfos;
 }
}

class Library {
 static searchBooksByTitleJSON(libraryData, query) {
 var catalogData = _.get(libraryData, "catalog");
 var results = Catalog.searchBooksByTitle(catalogData, query);
 var resultsJSON = JSON.stringify(results);
 return resultsJSON;
 }
}

After testing the final code in listing 3.24, Theo looks again at the source code from list-
ing 3.23. After a few seconds, he feels like he’s having another Aha! moment.

Library.searchBooksByTitleJSON(libraryData, "Watchmen");
// → "[{\"title\":\"Watchmen\",\"isbn\":\"978-1779501127\",
// → \"authorNames\":[\"Alan Moore\",\"Dave Gibbons\"]}]"

Theo The important thing is not that the code is concise, but that the code contains
no abstractions. It’s just data manipulation!

Joe responds with a smile that says, “You got it, my friend!”

Joe It reminds me of what my first meditation teacher told me 10 years ago:
meditation guides the mind to grasp the reality as it is without the abstractions
created by our thoughts.

TIP In DOP, many parts of our code base tend to be just about data manipulation
with no abstractions.

Listing 3.24 Search results in JSON

There’s no need
to create a class
for bookInfo.

When _.filter is
passed a map, it
goes over the values
of the map.

Converts data
to JSON (part
of JavaScript)

653.5 Handling records of different types
3.5 Handling records of different types
We’ve seen how DOP enables us to treat records as first-class citizens that can be
manipulated in a flexible way using generic functions. But if a record is nothing more
than an aggregation of fields, how do we know what the type of the record is? DOP has
a surprising answer to this question.

Theo I have a question. If a record is nothing more than a map, how do you know
the type of the record?

Joe That’s a great question with a surprising answer.

Theo I’m curious.

Joe Most of the time, there’s no need to know the record type.

Theo What! What do you mean?

Joe I mean that what matters most are the values of the fields. For example, take a
look at the Catalog.authorNames source code. It operates on a Book record,
but the only thing that matters is the value of the authorIds field.

Doubtful, Theo looks at the source code for Catalog.authorNames. This is what Theo sees.

function authorNames(catalogData, book) {
 var authorIds = _.get(book, "authorIds");
 var names = _.map(authorIds, function(authorId) {
 return _.get(catalogData, ["authorsById", authorId, "name"]);
 });
 return names;
}

Theo What about differentiating between various user types like Member versus
Librarian? I mean, they both have email and encryptedPassword. How do
you know if a record represents a Member or a Librarian?

Joe Simple. You check to see if the record is found in the librariansByEmail
index or in the membersByEmail index of the Catalog.

Theo Could you be more specific?

Joe Sure! Let me write what the user management data of our tiny library might
look like, assuming we have one librarian and one member. To keep things
simple, I’m encrypting passwords through naive base-64 encoding for the User-
Management record.

var userManagementData = {
 "librariansByEmail": {
 "franck@gmail.com" : {
 "email": "franck@gmail.com",
 "encryptedPassword": "bXlwYXNzd29yZA=="
 }
 },

Listing 3.25 Calculating the author names of a book

Listing 3.26 A UserManagement record

The base-64
encoding of
"mypassword"

66 CHAPTER 3 Basic data manipulation
 "membersByEmail": {
 "samantha@gmail.com": {
 "email": "samantha@gmail.com",
 "encryptedPassword": "c2VjcmV0",
 "isBlocked": false,
 "bookLendings": [
 {
 "bookItemId": "book-item-1",
 "bookIsbn": "978-1779501127",
 "lendingDate": "2020-04-23"
 }
]
 }
 }
}

TIP Most of the time, there’s no need to know the record type.

Theo This morning, you told me you’d show me the code for UserManagement
.isLibrarian function this afternoon.

Joe So, here we are. It’s afternoon, and I’m going to fulfill my promise.

Joe implements isLibrarian. With a slight pause, he then issues the test for isLibrarian.

function isLibrarian(userManagement, email) {
 return _.has(_.get(userManagement, "librariansByEmail"), email);
}

isLibrarian(userManagementData, "franck@gmail.com");
// → true

Theo I’m assuming that _.has is a function that checks whether a key exists in a
map. Right?

Joe Correct.

Theo OK. You simply check whether the librariansByEmail map contains the
email field.

Joe Yep.

Theo Would you use the same pattern to check whether a member is a Super mem-
ber or a VIP member?

Joe Sure. We could have SuperMembersByEmail and VIPMembersByEmail indexes.
But there’s a better way.

Theo How?

Joe When a member is a VIP member, we add a field, isVIP, with the value true to
its record. To check if a member is a VIP member, we check whether the
isVIP field is set to true in the member record. Here’s how I would code
isVIPMember.

Listing 3.27 Checking if a user is a librarian

Listing 3.28 Testing isLibrarian

The base-64
encoding of
"secret"

673.5 Handling records of different types
function isVIPMember(userManagement, email) {
 return _.get(userManagement, ["membersByEmail", email, "isVIP"]) == true;
}

Theo I see that you access the isVIP field via its information path, ["membersBy-
Email", email, "isVIP"].

Joe Yes, I think it makes the code crystal clear.

Theo I agree. I guess we can do the same for isSuperMember and set an isSuper
field to true when a member is a Super member?

Joe Yes, just like this.

Joe assembles all the pieces in a UserManagement class. He then shows the code to Theo.

class UserManagement {
 isLibrarian(userManagement, email) {
 return _.has(_.get(userManagement, "librariansByEmail"), email);
 }

 isVIPMember(userManagement, email) {
 return _.get(userManagement,
 ["membersByEmail", email, "isVIP"]) == true;
 }

 isSuperMember(userManagement, email) {
 return _.get(userManagement,
 ["membersByEmail", email, "isSuper"]) == true;
 }
}

Theo looks at the UserManagement module code for a couple of seconds. Suddenly, an
idea comes to his mind.

Theo Why not have a type field in member record whose value would be either VIP
or Super?

Joe I assume that, according to the product requirements, a member can be both a
VIP and a Super member.

Theo Hmm . . . then the types field could be a collection containing VIP or Super
or both.

Joe In some situations, having a types field is helpful, but I find it simpler to have
a Boolean field for each feature that the record supports.

Theo Is there a name for fields like isVIP and isSuper?

Joe I call them feature fields.

TIP Instead of maintaining type information about a record, use a feature field (e.g.,
isVIP).

Listing 3.29 Checking whether a member is a VIP member

Listing 3.30 The code of UserManagement module

68 CHAPTER 3 Basic data manipulation
Theo Can we use feature fields to differentiate between librarians and members?

Joe You mean having an isLibrarian and an isMember field?

Theo Yes, and having a common User record type for both librarians and members.

Joe We can, but I think it’s simpler to have different record types for librarians and
members: Librarian for librarians and Member for members.

Theo Why?

Joe Because there’s a clear distinction between librarians and members in terms of
data. For example, members can have book lendings but librarians don’t.

Theo I agree. Now, we need to mention the two Member feature fields in our entity
diagram.

With that, Theo adds these fields to his diagram on the whiteboard. When he’s finished, he
shows Joe his additions (figure 3.6).

Joe Do you like the data model that we have designed together?

Theo I find it quite simple and clear.

CC Author

id: String

bookIsbns: [String]

name: String

CC BookLending

lendingDate: String

bookIsbn: String

bookItemId: String

CC Library

name: String

address: String

catalog: Catalog

userManagement: Catalog

CC Member

email: String

encryptedPassword: String

isBlocked: Boolean

bookLendings: [BookLending]

isVIP: Boolean

isSuper: Boolean

CC BookItem

id: String

libId: String

purchaseDate: String

isLent: Boolean

CC Book

title : String

publicationYear: Number

isbn: String

authorIds: [String]

bookItems: [BookItem]

CC UserManagement

librariansByEmail: {Librarian}

membersByEmail: {Member}

CC Catalog

booksByIsbn: {Book}

authorsById: {Author}

CC Librarian

email: String

encryptedPassword: String

*

*

*

*

*

*
*

*

Figure 3.6 A library management data model with the Member feature fields isVIP and isSuper

69Summary
Joe That’s the main goal of DOP.

Theo Also, I’m pleasantly surprised how easy it is to adapt to changing requirements,
both in terms of code and the data model.

Joe I suppose you’re also happy to get rid of complex class hierarchy diagrams.

Theo Absolutely! Also, I think I’ve found an interesting connection between DOP
and meditation.

Joe Really?

Theo When we were eating at Simple, you told me that meditation helped you expe-
rience reality as it is without the filter of your thoughts.

Joe Right.

Theo From what you taught me today, I understand that in DOP, we are encouraged
to treat data as data without the filter of our classes.

Joe Clever! I never noticed that connection between those two disciplines that are
so important for me. I guess you’d like to continue your journey in the realm
of DOP.

Theo Definitely. Let’s meet again tomorrow.

Joe Unfortunately, tomorrow I’m taking my family to the beach to celebrate the
twelfth birthday of my eldest daughter, Aurelia.

Theo Happy birthday, Aurelia!

Joe We could meet again next Monday, if that’s OK with you.

Theo With pleasure!

Summary
 DOP principle #2 is to represent data entities with generic data structures.
 We refer to maps that have strings as keys as string maps.
 Representing data as data means representing records with string maps.
 By positional collection, we mean a collection where the elements are in order

(like a list or an array).
 A positional collection of Strings is noted as [String].
 By index, we mean a collection where the elements are accessible via a key (like

a hash map or a dictionary).
 An index of Books is noted as {Book}.
 In the context of a data model, the index keys are always strings.
 A record is a data structure that groups together related data items. It’s a collec-

tion of fields, possibly of different data types.
 A homogeneous map is a map where all the values are of the same type.
 A heterogeneous map is a map where the values are of different types.
 In DOP, we represent a record as a heterogeneous string map.
 A data entity diagram consists of records whose values are either primitives, posi-

tional collections, or indexes.
 The relation between records in a data entity diagram is either composition or

association.

70 CHAPTER 3 Basic data manipulation
 The data part of a DOP system is flexible, and each piece of information is
accessible via its information path.

 There is a tradeoff between flexibility and safety in a data model.
 DOP compromises on data safety to gain flexibility and genericity.
 In DOP, the data model is flexible. We’re free to add, remove, and rename

record fields dynamically at run time.
 We manipulate data with generic functions.
 Generic functions are provided either by the language itself or by third-party

libraries like Lodash.
 JSON serialization is implemented in terms of a generic function.
 On the one hand, we’ve lost the safety of accessing record fields via members

defined at compile time. On the other hand, we’ve liberated data from the lim-
itation of classes and objects. Data is represented as data!

 The weak dependency between code and data makes it is easier to adapt to
changing requirements.

 When data is represented as data, it is straightforward to visualize system data.
 Usually, we do not need to maintain type information about a record.
 We can visualize any part of the system data.
 In statically-typed languages, we sometimes need to statically cast the field values.
 Instead of maintaining type information about a record, we use a feature field.
 There is no significant performance hit for accessing a field in a map instead of

a class member.
 In DOP, you can retrieve every piece of information via an information path and

a generic function.
 In DOP, many parts of our code base tend to be just about data manipulation

with no abstractions.

Lodash functions introduced in this chapter

Function Description

get(map, path) Gets the value of map at path

has(map, path) Checks if map has a field at path

merge(mapA, mapB) Creates a map resulting from the recursive merges between mapA and mapB

values(map) Creates an array of values of map

filter(coll, pred) Iterates over elements of coll, returning an array of all elements for which
pred returns true

map(coll, f) Creates an array of values by running each element in coll through f

State management
Time travel
So far, we have seen how DOP handles queries via generic functions that access sys-
tem data, which is represented as a hash map. In this chapter, we illustrate how
DOP deals with mutations (requests that change the system state). Instead of updat-
ing the state in place, we maintain multiple versions of the system data. At a specific
point in time, the system state refers to a specific version of the system data. This
chapter is a deep dive in the third principle of DOP.

The maintenance of multiple versions of the system data requires the data to be
immutable. This is made efficient both in terms of computation and memory via a

This chapter covers
 A multi-version approach to state management

 The calculation phase of a mutation

 The commit phase of a mutation

 Keeping a history of previous state versions

PRINCIPLE #3 Data is immutable.
71

72 CHAPTER 4 State management
technique called structural sharing, where parts of the data that are common between
two versions are shared instead of being copied. In DOP, a mutation is split into two
distinct phases:

 In the calculation phase, we compute the next version of the system data.
 In the commit phase, we move the system state forward so that it refers to the

version of the system data computed by the calculation phase.

This distinction between calculation and commit phases allows us to reduce the part
of our system that is stateful to its bare minimum. Only the code of the commit phase
is stateful, while the code in the calculation phase of a mutation is stateless and is
made of generic functions similar to the code of a query. The implementation of the
commit phase is common to all mutations. As a consequence, inside the commit
phase, we have the ability to ensure that the state always refers to a valid version of the
system data.

 Another benefit of this state management approach is that we can keep track of
the history of previous versions of the system data. Restoring the system to a previous
state (if needed) becomes straightforward. Table 4.1 shows the two phases.

In this chapter, we assume that no mutations occur concurrently in our system. In the
next chapter, we will deal with concurrency control.

4.1 Multiple versions of the system data
When Joe comes in to the office on Monday, he tells Theo that he needs to exercise before
starting to work with his mind. Theo and Joe go for a walk around the block, and the dis-
cussion turns toward version control systems. They discuss how Git keeps track of the
whole commit history and how easy and fast it is to restore the code to a previous state.
When Theo tells Joe that Git’s ability to “time travel” reminds him one of his favorite mov-
ies, Back to the Future, Joe shares that a month ago he watched the Back to the Future trilogy
with Neriah, his 14-year-old son.

Their walk complete, they arrive back at Theo’s office. Theo and Joe partake of the
espresso machine in the kitchen before they begin today’s lesson.

Joe So far, we’ve seen how we manage queries that retrieve information from the
system in DOP. Now I’m going to show you how we manage mutations. By a
mutation, I mean an operation that changes the state of the system.

 NOTE A mutation is an operation that changes the state of the system.

Table 4.1 The two phases of a mutation

Phase Responsibility State Implementation

Calculation Computes the next version of system data Stateless Specific

Commit Moves the system state forward Stateful Common

734.1 Multiple versions of the system data
Theo Is there a fundamental difference between queries and mutations in DOP?
After all, the whole state of the system is represented as a hash map. I could
easily write code that modifies part of the hash map, and it would be similar to
the code that retrieves information from the hash map.

Joe You could mutate the data in place, but then it would be challenging to ensure
that the code of a mutation doesn’t put the system into an invalid date. You
would also lose the ability to track previous versions of the system state.

Theo I see. So, how do you handle mutations in DOP?

Joe We adopt a multi-version state approach, similar to what a version control sys-
tem like Git does; we manage different versions of the system data. At a specific
point in time, the state of the system refers to a version of the system data. After
a mutation is executed, we move the reference forward.

Theo I’m confused. Is the system state mutable or immutable?

Joe The data is immutable, but the state reference is mutable.

TIP The data is immutable, but the state reference is mutable.

Noticing the look of confusion on Theo’s face, Joe draws a quick diagram on the white-
board. He then shows Theo figure 4.1, hoping that it will clear up Theo’s perplexity.

Theo Does that mean that before the code of a mutation runs, we make a copy of the
system data?

Joe No, that would be inefficient, as we would have to do a deep copy of the data.

After mutation B After mutation C

Mutation A

Mutation B

Data V10

Data V11

Data V12

Mutation A

Mutation B

Mutation C

Data V10

Data V11

Data V12

Data V13

System State

System State

Figure 4.1 After mutation B is executed, the system state refers to Data V12. After
mutation C is executed, the system state refers to Data V13.

74 CHAPTER 4 State management
Theo How does it work then?

Joe It works by using a technique called structural sharing, where most of the data
between subsequent versions of the state is shared instead of being copied.
This technique efficiently creates new versions of the system data, both in
terms of memory and computation.

Theo I’m intrigued.

TIP With structural sharing, it’s efficient (in terms of memory and computation) to
create new versions of data.

Joe I’ll explain in detail how structural sharing works in a moment.

Theo takes another look at the diagram in figure 4.1, which illustrates how the system state
refers to a version of the system data. Suddenly, a question emerges.

Theo Are the previous versions of the system data kept?

Joe In a simple application, previous versions are automatically removed by the
garbage collector. But, in some cases, we maintain historical references to pre-
vious versions of the data.

Theo What kind of cases?

Joe For example, if we want to support time travel in our system, as in Git, we can
move the system back to a previous version of the state easily.

Theo Now I understand what you mean by data is immutable, but the state reference
is mutable!

4.2 Structural sharing
As mentioned in the previous section, structural sharing enables the efficient cre-
ation of new versions of immutable data. In DOP, we use structural sharing in the
calculation phase of a mutation to compute the next state of the system based on
the current state of the system. Inside the calculation phase, we don’t have to deal
with state management; that is delayed to the commit phase. As a consequence, the
code involved in the calculation phase of a mutation is stateless and is as simple as
the code of a query.

Theo I’m really intrigued by this more efficient way to create new versions of data.
How does it work?

Joe Let’s take a simple example from our library system. Imagine that you want to
modify the value of a field in a book in the catalog; for instance, the publica-
tion year of Watchmen. Can you tell me the information path for Watchmen’s
publication year?

Theo takes a quick look at the catalog data in figure 4.2. Then he answers Joe’s question.

754.2 Structural sharing
Theo The information path for Watchmen’s publication year is ["catalog", "books-
ByIsbn", "978-1779501127", "publicationYear"].

Joe Now, let me show how you to use the immutable function _.set that Lodash
also provides.

Theo Wait! What do you mean by an immutable function? When I looked at the
Lodash documentation for _.set on their website, it said that it mutates the
object.

Joe You’re right, but the default Lodash functions are not immutable. In order to
use an immutable version of the functions, we need to use the Lodash FP mod-
ule as explained in the Lodash FP guide.

 NOTE See https://lodash.com/docs/4.17.15#set to view Lodash’s documentation
for _.set, and see https://github.com/lodash/lodash/wiki/FP-Guide to view the
Lodash FP guide.

Theo Do the immutable functions have the same signature as the mutable functions?

Joe By default, the order of the arguments in immutable functions is shuffled.
The Lodash FP guide explains how to resolve this. With this piece of code,

catalog

booksByIsbn

978-1779501127

title

authorIds

1

dave-gibbons

0

alan-moore

isbn

978-1779501127

publicationYear

Watchmen

1987

bookItems

1

book-item-2

libId

la-central-lib

isLent

false

0

book-item-1

libId

idid

nyc-cental-lib

isLent

true

authorsById

alan-moore

name

Alan Moore

bookIsbns

0

978-1779501127

dave-gibbons

name

Dave Gibbons

bookIsbns

0

978-1779501127

Figure 4.2 Visualization of the catalog data. The nodes in the information path to Watchmen’s publication
year are marked with a dotted border.

https://lodash.com/docs/4.17.15#set
https://github.com/lodash/lodash/wiki/FP-Guide

76 CHAPTER 4 State management
the signature of the immutable functions is exactly the same as the mutable
functions.

_ = fp.convert({
 "cap": false,
 "curry": false,
 "fixed": false,
 "immutable": true,
 "rearg": false
});

TIP In order to use Lodash immutable functions, we use Lodash’s FP module, and
we configure it so that the signature of the immutable functions is the same as in the
Lodash documentation web site.

Theo So basically, I can still rely on Lodash documentation when using immutable
versions of the functions.

Joe Except for the piece in the documentation that says the function mutates the
object.

Theo Of course!

Joe Now I’ll show you how to write code that creates a version of the library data
with the immutable function _.set.

Joe’s fingers fly across Theo’s keyboard. Theo then looks at Joe’s code, which creates a ver-
sion of the library data where the Watchmen publication year is set to 1986.

var nextLibraryData = _.set(libraryData,
 ["catalog", "booksByIsbn",
 "978-1779501127", "publicationYear"],
 1986);

 NOTE A function is said to be immutable when, instead of mutating the data, it cre-
ates a new version of the data without changing the data it receives.

Theo You told me earlier that structural sharing allowed immutable functions to be
efficient in terms of memory and computation. Can you tell me what makes
them efficient?

Joe With pleasure, but before that, you have to answer a series of questions. Are
you ready?

Theo Yes, sure . . .

Joe What part of the library data is impacted by updating the Watchmen publication
year: the UserManagement or the Catalog?

Listing 4.1 Configuring Lodash so immutable and mutable functions have same signature

Listing 4.2 Using _.set as an immutable function

774.2 Structural sharing
Theo Only the Catalog.

Joe What part of the Catalog?

Theo Only the booksByIsbn index.

Joe What part of the booksByIsbn index?

Theo Only the Book record that holds the information about Watchmen.

Joe What part of the Book record?

Theo Only the publicationYear field.

Joe Perfect! Now, suppose that the current version of the library data looks like
this.

Joe goes to the whiteboard and draws a diagram. Figure 4.3 shows the result.

Theo So far, so good . . .

Joe Next, let me show you what an immutable function does when you use it to cre-
ate a new version of Library, where the publication year of Watchmen is set to
1986 instead of 1987.

Joe updates his diagram on the whiteboard. It now looks like figure 4.4.

...

...

...

Library

Catalog UserManagement

booksBylsbn

watchmen

publicationYear:1987 authorldstitle:Watchmen

authorsByld

Figure 4.3 High-level visualization of the current version of Library

78 CHAPTER 4 State management
Theo Could you explain?

Joe The immutable function creates a fresh Library hash map, which recursively
uses the parts of the current Library that are common between the two ver-
sions instead of deeply copying them.

Theo It’s a bit abstract for me.

Joe The next version of Library uses the same UserManagement hash map as the
old one. The Catalog inside the next Library uses the same authorsById as
the current Catalog. The Watchmen Book record inside the next Catalog uses
all the fields of the current Book except for the publicationYear field.

Theo So, in fact, most parts of the data are shared between the two versions. Right?

Joe Exactly! That’s why this technique is called structural sharing.

TIP Structural sharing provides an efficient way (both in terms of memory and com-
putation) to create a new version of the data by recursively sharing the parts that don’t
need to change.

Theo That’s very cool!

Joe Indeed. Now let’s look at how to write a mutation for adding a member using
immutable functions.

Library

booksByIsbn

watchmen

authorldstitle:WatchmenpublicationYear:1987

authorsById...

...

...

«Next»

Catalog

«Next»

booksByIsbn

«Next»

watchmen

«Next»

publicationYear:1986

«Next»

Library

UserManagementCatalog

Figure 4.4 Structural sharing provides an efficient way to create a new version of the data.
Next Library is recursively made of nodes that use the parts of Library that are
common between the two.

794.2 Structural sharing
Once again, Joe goes to the whiteboard. Figure 4.5 shows the diagram that Joe draws to
illustrate how structural sharing looks when we add a member.

Theo Awesome! The Catalog and the librarians hash maps don’t have to be copied!

Joe Now, in terms of code, we have to write a Library.addMember function that
delegates to UserManagement.addMember.

Theo I guess it’s going to be similar to the code we wrote earlier to implement the
search books query, where Library.searchBooksByTitleJSON delegates to
Catalog.searchBooksByTitle.

Joe Similar in the sense that all the functions are static, and they receive the data
they manipulate as an argument. But there are two differences. First, a muta-
tion could fail, for instance, if the member to be added already exists. Second,
the code for Library.addMember is a bit more elaborate than the code for
Library.searchBooksByTitleJSON because we have to create a new version
of Library that refers to the new version of UserManagement. Here, let me
show you an example.

UserManagement.addMember = function(userManagement, member) {
 var email = _.get(member, "email");
 var infoPath = ["membersByEmail", email];
 if(_.has(userManagement, infoPath)) {
 throw "Member already exists.";
 }
 var nextUserManagement = _.set(
 userManagement,
 infoPath,
 member);
 return nextUserManagement;
};

Listing 4.3 The code for the mutation that adds a member

Library

UserManagement Catalog

librarians

member0 member1

members ...

...

«Next»

Library

«Next»

userManagement

«Next»

members

Figure 4.5 Adding a member
with structural sharing. Most of
the data is shared between the
two versions.

Checks if a member with
the same email address
already exists

Creates a new version of
userManagement that
includes the member

80 CHAPTER 4 State management
Library.addMember = function(library, member) {
 var currentUserManagement = _.get(library, "userManagement");
 var nextUserManagement = UserManagement.addMember(
 currentUserManagement,
 member);
 var nextLibrary = _.set(library,
 "userManagement",
 nextUserManagement);
 return nextLibrary;
};

Theo To me, it’s a bit weird that immutable functions return an updated version of
the data instead of changing it in place.

Joe It was also weird for me when I first encountered immutable data in Clojure
seven years ago.

Theo How long did it take you to get used to it?

Joe A couple of weeks.

4.3 Implementing structural sharing
When Joe leaves the office, Theo meets Dave near the coffee machine. Dave looks perplexed.

Dave Who’s the guy that just left the office?

Theo It’s Joe. My DOP mentor.

Dave What’s DOP?

Theo DOP refers to data-oriented programming.

Dave I never heard that term before.

Theo It’s not well-known by programmers yet, but it’s quite a powerful programming
paradigm. From what I’ve seen so far, it makes programming much simpler.

Dave Can you give me an example?

Theo I just learned about structural sharing and how it makes it possible to create
new versions of data, effectively without copying.

Dave How does that work?

Theo takes Dave to his office and shows him Joe’s diagram on the whiteboard (see figure 4.6).
It takes Theo a few minutes to explain to Dave what it does exactly, but in the end, Dave
gets it.

Dave What does the implementation of structural sharing look like?

Theo I don’t know. I used the _.set function from Lodash.

Dave It sounds like an interesting challenge.

Theo Take the challenge if you want. Right now, I’m too tired for this recursive algo-
rithmic stuff.

Creates a new version of
library that contains the new
version of userManagement

814.3 Implementing structural sharing
The next day, Theo stops by Dave’s cubicle before heading to his office. Dave, with a touch
of pride, shows Theo his implementation of structural sharing. Theo is amazed by the fact
that it’s only 11 lines of JavaScript code!

function setImmutable(map, path, v) {
 var modifiedNode = v;
 var k = path[0];
 var restOfPath = path.slice(1);
 if (restOfPath.length > 0) {
 modifiedNode = setImmutable(map[k], restOfPath, v);
 }
 var res = Object.assign({}, map);
 res[k] = modifiedNode;
 return res;
}

Theo Dave, you’re brilliant!

Dave (smiling) Aw, shucks.

Theo Oops, I have to go. I’m already late for my session with Joe! Joe is probably wait-
ing in my office, biting his nails.

Listing 4.4 The implementation of structural sharing

Library

booksByIsbn

watchmen

authorldstitle:WatchmenpublicationYear:1987

authorsById...

...

...

«Next»

Catalog

«Next»

booksByIsbn

«Next»

watchmen

«Next»

publicationYear:1986

«Next»

Library

UserManagementCatalog

Figure 4.6 Structural sharing in action

Shallow
clones a map
in JavaScript.

82 CHAPTER 4 State management
4.4 Data safety
Joe is about to start the day’s lesson. Theo asks him a question about yesterday’s material
instead.

Theo Something isn’t clear to me regarding this structural sharing stuff. What hap-
pens if we write code that modifies the data part that’s shared between the two
versions of the data? Does the change affect both versions?

Joe Could you please write a code snippet that illustrates your question?

Theo starts typing on his laptop. He comes up with this code to illustrate modifying a piece
of data shared between two versions.

var books = {
 "978-1779501127": {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authorIds": ["alan-moore",
 "dave-gibbons"]
 }
};

var nextBooks = _.set(books, ["978-1779501127", "publicationYear"], 1986)

console.log("Before:", nextBooks["978-1779501127"]["authorIds"][1]);

books["978-1779501127"]["authorIds"][1] = "dave-chester-gibbons";

console.log("After:", nextBooks["978-1779501127"]["authorIds"][1]);
// → Before: dave-gibbons
// → After: dave-chester-gibbons

Theo My question is, what is the value of isBlocked in updatedMember?

Joe The answer is that mutating data via the native hash map setter is forbidden.
All the data manipulation must be done via immutable functions.

 NOTE All data manipulation must be done with immutable functions. It is forbid-
den to use the native hash map setter.

Theo When you say “forbidden,” you mean that it’s up to the developer to make sure
it doesn’t happen. Right?

Joe Exactly.

Theo Is there a way to protect our system from a developer’s mistake?

Joe Yes, there is a way to ensure the immutability of the data at the level of the data
structure. It’s called persistent data structures.

Theo Are persistent data structures also efficient in terms of memory and computation?

Joe Actually, the way data is organized inside persistent data structures make them
even more efficient than immutable functions.

Listing 4.5 Modifying data that’s shared between two versions

834.5 The commit phase of a mutation
TIP Persistent data structures are immutable at the level of the data. There is no way
to mutate them, even by mistake.

Theo Are there libraries providing persistent data structures?

Joe Definitely. I just happen to have a list of those libraries on my computer.

Joe, being well-organized for a programmer, quickly brings up his list. He shows it to Theo:

 Immutable.js in JavaScript at https://immutable-js.com/
 Paguro in Java at https://github.com/GlenKPeterson/Paguro
 Immutable Collections in C# at http://mng.bz/y4Ke
 Pyrsistent in Python at https://github.com/tobgu/pyrsistent
 Hamster in Ruby at https://github.com/hamstergem/hamster

Theo Why not use persistent data structures instead of immutable functions?

Joe The drawback of persistent data structures is that they are not native. This
means that working with them requires conversion from native to persistent
and from persistent to native.

Theo What approach would you recommend?

Joe If you want to play around a bit, then start with immutable functions. But for a
production application, I’d recommend using persistent data structures.

Theo Too bad the native data structures aren’t persistent!

Joe That’s one of the reasons why I love Clojure—the native data structures of the
language are immutable!

4.5 The commit phase of a mutation
So far, we saw how to implement the calculation phase of a mutation. The calculation
phase is stateless in the sense that it doesn’t make any change to the system. Now, let’s
see how to update the state of the system inside the commit phase.

Theo takes another look at the code for Library.addMember. Something bothers him:
this function returns a new state of the library that contains an additional member, but it
doesn’t affect the current state of the library.

Library.addMember = function(library, member) {
 var currentUserManagement = _.get(library, "userManagement");
 var nextUserManagement = UserManagement.addMember(
 currentUserManagement,
 member);
 var nextLibrary = _.set(library, "userManagement", nextUserManagement);
 return nextLibrary;
};

Theo I see that Library.addMember doesn’t change the state of the library. How
does the library state get updated?

Listing 4.6 The commit phase moves the system state forward

https://immutable-js.com/
https://github.com/GlenKPeterson/Paguro
http://mng.bz/y4Ke
https://github.com/tobgu/pyrsistent
https://github.com/hamstergem/hamster

84 CHAPTER 4 State management
Joe That’s an excellent question. Library.addMember deals only with data calcula-
tion and is stateless. The state is updated in the commit phase by moving for-
ward the version of the state that the system state refers to.

Theo What do you mean by that?

Joe Here’s what happens when we add a member to the system. The calculation
phase creates a version of the state that has two members. Before the commit
phase, the system state refers to the version of the state with one member. The
responsibility of the commit phase is to move the system state forward so that it
refers to the version of the state with two members.

TIP The responsibility of the commit phase is to move the system state forward to the
version of the state returned by the calculation phase.

Joe draws another illustration on the whiteboard (figure 4.7). He hopes it helps to clear up
any misunderstanding Theo may have.

Theo How is this implemented?

Joe The code is made of two classes: System, a singleton stateful class that imple-
ments the mutations, and SystemState, a singleton stateful class that manages
the system state.

Theo It sounds to me like classic OOP.

Joe Right, and this part of the system being stateful is OOP-like.

Theo I’m happy to see that you still find some utility in OOP.

Joe Meditation taught me that every part of our universe has a role to play.

Theo Nice! Could you show me some code?

Joe Sure.

Joe thinks for a moment before starting to type. He wants to show the System class and its
implementation of the addMember mutation.

class System {
 addMember(member) {
 var previous = SystemState.get();

Listing 4.7 The System class

System State

System State

addMember addMember

State with one

member

State with one

member

State with two

members
State with two

members

Before Commit After Commit

Figure 4.7 The commit phase moves the system state forward.

854.6 Ensuring system state integrity
 var next = Library.addMember(previous, member);
 SystemState.commit(previous, next);
 }
}

Theo What does SystemState look like?

Joe I had a feeling you were going to ask that. Here’s the code for the System-
State class, which is a stateful class!

class SystemState {
 systemState;

 get() {
 return this.systemState;
 }

 commit(previous, next) {
 this.systemState = next;
 }
}

Theo I don’t get the point of SystemState. It’s a simple class with a getter and a
commit function, right?

Joe In a moment, we are going to enrich the code of the SystemState.commit
method so that it provides data validation and history tracking. For now, the
important thing to notice is that the code of the calculation phase is stateless
and is decoupled from the code of the commit phase, which is stateful.

TIP The calculation phase is stateless. The commit phase is stateful.

4.6 Ensuring system state integrity
Theo Something still bothers me about the way functions manipulate immutable

data in the calculation phase. How do we preserve data integrity?

Joe What do you mean?

Theo In OOP, data is manipulated only by methods that belong to the same class as
the data. It prevents other classes from corrupting the inner state of the class.

Joe Could you give me an example of an invalid state of the library?

Theo For example, imagine that the code of a mutation adds a book item to the
book lendings of a member without marking the book item as lent in the cata-
log. Then the system data would be corrupted.

Joe In DOP, we have the privilege of ensuring data integrity at the level of the
whole system instead of scattering the validation among many classes.

Theo How does that work?

Joe The fact that the code for the commit phase is common to all the mutations
allows us to validate the system data in a central place. At the beginning of the
commit phase, there is a step that checks whether the version of the system

Listing 4.8 The SystemState class

SystemState is covered
in listing 4.8.

86 CHAPTER 4 State management
state to be committed is valid. If the data is invalid, the commit is rejected.
Here let me show you.

SystemState.commit = function(previous, next) {
 if(!SystemValidity.validate(previous, next)) { // not implemented for now
 throw "The system data to be committed is not valid!";
 };
 this.systemData = next;
};

Theo It sounds similar to a commit hook in Git.

Joe I like your analogy!

Theo Why are you passing the previous state in previous and the next state in next
to SystemValidity.validate?

Joe Because it allows SystemValidity.validate to optimize the validation in
terms of computation. For example, we could validate just the data that has
changed.

TIP In DOP, we validate the system data as a whole. Data validation is decoupled
from data manipulation.

Theo What does the code of SystemValidity.validate look like?

Joe Someday, I will show you how to define a data schema and to validate that a
piece of data conforms to a schema.

 NOTE See chapters 7 and 12 to see how Joe defines this data schema.

4.7 Restoring previous states
Another advantage of the multi-version state approach with immutable data that is
manipulated via structural sharing is that we can keep track of the history of all the
versions of the data without exploding the memory of our program. It allows us, for
instance, to restore the system back to an earlier state easily.

Theo You told me earlier that it was easy to restore the system to a previous state.
Could you show me how?

Joe Happily, but before that, I’d like to make sure you understand why keeping
track of all the versions of the data is efficient in terms of memory.

Theo I think it’s related to the fact that immutable functions use structural sharing,
and most of the data between subsequent versions of the state is shared.

TIP Structural sharing allows us to keep many versions of the system state without
exploding memory use.

Joe Perfect! Now, I’ll show you how simple it is to undo a mutation. In order to
implement an undo mechanism, our SystemState class needs to have two

Listing 4.9 Data validation inside the commit phase

874.7 Restoring previous states
references to the system data: systemData references the current state of the
system, and previousSystemData references the previous state of the system.

Theo That makes sense.

Joe In the commit phase, we update both previousSystemData and systemData.

Theo What does it take to implement an undo mechanism?

Joe The undo is achieved by having systemData reference the same version of the
system data as previousSystemData.

Theo Could you walk me through an example?

Joe To make things simple, I am going to give a number to each version of the sys-
tem state. It starts at V0, and each time a mutation is committed, the version is
incremented: V1, V2, V3, and so forth.

Theo OK.

Joe Let’s say that currently our system state is at V12 (see figure 4.8). In the
SystemState object, systemData refers to V12, and previousSystemData
refers to V11.

Theo So far, so good . . .

Joe Now, when a mutation is committed (for instance, adding a member), both
references move forward: systemData refers to V13, and previousSystem-
Data refers to V12.

Joe erases the whiteboard to make room for another diagram (figure 4.9). When he’s
through with his drawing, he shows it to Theo.

systemData

previousSystemData

Mutation A Mutation B
Data V10 Data V11 Data V12

Figure 4.8 When the system state is at V12, systemData refers to V12, and
previousSystemData refers to V11.

previousSystemData

Mutation A Mutation B Mutation C

systemData

Data V10 Data V11 Data V12 Data V13

Figure 4.9 When a mutation is committed, systemData refers to V13, and
previousSystemData refers to V12.

88 CHAPTER 4 State management
Theo I suppose that when we undo the mutation, both references move backward.

Joe In theory, yes, but in practice, it’s necessary to maintain a stack of all the state
references. For now, to simplify things, we’ll maintain only a reference to the
previous version. As a consequence, when we undo the mutation, both refer-
ences refer to V12. Let me draw another diagram on the whiteboard that shows
this state (see figure 4.10).

Theo Could you show me how to implement this undo mechanism?

Joe Actually, it takes only a couple of changes to the SystemState class. Pay atten-
tion to the changes in the commit function. Inside systemDataBeforeUpdate,
we keep a reference to the current state of the system. If the validation and
the conflict resolution succeed, we update both previousSystemData and
systemData.

class SystemState {
 systemData;
 previousSystemData;

 get() {
 return this.systemData;
 }

 commit(previous, next) {
 var systemDataBeforeUpdate = this.systemData;
 if(!Consistency.validate(previous, next)) {
 throw "The system data to be committed is not valid!";
 }
 this.systemData = next;
 this.previousSystemData = systemDataBeforeUpdate;
 }

 undoLastMutation() {
 this.systemData = this.previousSystemData;
 }
}

Listing 4.10 The SystemState class with undo capability

previousSystemData

Mutation A Mutation B Mutation C

systemData

Data V10 Data V11 Data V12 Data V13

Figure 4.10 When a mutation is undone, both systemData and previousSystemData refer
to V12.

89Summary
Theo I see that implementing System.undoLastMutation is simply a matter of hav-
ing systemData refer the same value as previousSystemData.

Joe As I told you, if we need to allow multiple undos, the code would be a bit more
complicated, but you get the idea.

Theo I think so. Although Back to the Future belongs to the realm of science fiction, in
DOP, time travel is real.

Summary
 DOP principle #3 states that data is immutable.
 A mutation is an operation that changes the state of the system.
 In a multi-version approach to state management, mutations are split into cal-

culation and commit phases.
 All data manipulation must be done via immutable functions. It is forbidden to

use the native hash map setter.
 Structural sharing allows us to create new versions of data efficiently (in terms of

memory and computation), where data that is common between the two ver-
sions is shared instead of being copied.

 Structural sharing creates a new version of the data by recursively sharing the
parts that don’t need to change.

 A mutation is split in two phases: calculation and commit.
 A function is said to be immutable when, instead of mutating the data, it creates

a new version of the data without changing the data it receives.
 During the calculation phase, data is manipulated with immutable functions that

use structural sharing.
 The calculation phase is stateless.
 During the commit phase, we update the system state.
 The responsibility of the commit phase is to move the system state forward to

the version of the state returned by the calculation phase.
 The data is immutable, but the state reference is mutable.
 The commit phase is stateful.
 We validate the system data as a whole. Data validation is decoupled from data

manipulation.
 The fact that the code for the commit phase is common to all the mutations

allows us to validate the system state in a central place before we update the
state.

 Keeping the history of the versions of the system data is memory efficient due to
structural sharing.

 Restoring the system to one of its previous states is straightforward due to the
clear separation between the calculation phase and the commit phase.

90 CHAPTER 4 State management
 In order to use Lodash immutable functions, we use the Lodash FP module
(https://github.com/lodash/lodash/wiki/FP-Guide).

Lodash functions introduced in this chapter

Function Description

set(map, path, value) Creates a map with the same fields as map with the addition of a
<path, value> field

https://github.com/lodash/lodash/wiki/FP-Guide

Basic concurrency control
Conflicts at home
The changes required for system manage concurrency are only in the commit
phase. They involve a reconciliation algorithm that is universal, in the sense that it
can be used in any system where data is represented as an immutable hash map.
The implementation of the reconciliation algorithm is efficient because subse-
quent versions of the system state are created via structural sharing.

 In the previous chapter, we illustrated the multiversion approach to state man-
agement, where a mutation is split into two distinct phases: the calculation phase
that deals only with computation, and the commit phase that moves the state ref-
erence forward. Usually, in a production system, mutations occur concurrently.
Moving the state forward naively like we did in the previous chapter is not appro-
priate. In the present chapter, we are going to learn how to handle concurrent
mutations.

This chapter covers
 Managing concurrent mutations with a lock-free

optimistic concurrency control strategy

 Supporting high throughput of reads and writes

 Reconciliation between concurrent mutations
91

92 CHAPTER 5 Basic concurrency control
 In DOP, because only the code of the commit phase is stateful, that allows us to use
an optimistic concurrency control strategy that doesn’t involve any locking mechanism. As
a consequence, the throughput of reads and writes is high. The modifications to the
code are not trivial, as we have to implement an algorithm that reconciles concurrent
mutations. But the modifications impact only the commit phase. The code for the cal-
culation phase stays the same as in the previous chapter.

 NOTE This chapter requires more of an effort to grasp. The flow of the reconcilia-
tion algorithm is definitely not trivial, and the implementation involves a nontrivial
recursion.

5.1 Optimistic concurrency control
This morning, before getting to work, Theo takes Joe to the fitness room in the office and,
while running on the step machine, the two men talk about their personal lives again. Joe
talks about a fight he had last night with Kay, who thinks that he pays more attention to his
work than to his family. Theo recounts the painful conflict he had with Jane, his wife,
about house budget management. They went to see a therapist, an expert in Imago Rela-
tionship Therapy. Imago allowed them to transform their conflict into an opportunity to
grow and heal.

Joe’s ears perk up when he hears the word conflict because today’s lesson is going to be
about resolving conflicts and concurrent mutations. A different kind of conflict, though. . . .
After a shower and a healthy breakfast, Theo and Joe get down to work.

Joe Yesterday, I showed you how to manage state with immutable data, assuming
that no mutations occur concurrently. Today, I am going to show you how to
deal with concurrency control in DOP.

Theo I’m curious to discover what kind of lock mechanisms you use in DOP to syn-
chronize concurrent mutations.

Joe In fact, we don’t use any lock mechanism!

Theo Why not?

Joe Locks hit performance, and if you’re not careful, your system could get into a
deadlock.

Theo So, how do you handle possible conflicts between concurrent mutations in
DOP?

Joe In DOP, we use a lock-free strategy called optimistic concurrency control. It’s a
strategy that allows databases like Elasticsearch to be highly scalable.

 NOTE See https://www.elastic.co/elasticsearch/ to find out more about Elastic-
search.

Theo You sound like my couples therapist and her anger-free, optimistic conflict
resolution strategy.

Joe Optimistic concurrency control and DOP fit together well. As you will see in a
moment, optimistic concurrency control is super efficient when the system
data is immutable.

https://www.elastic.co/elasticsearch/

935.1 Optimistic concurrency control
TIP Optimistic concurrency control with immutable data is super efficient.

Theo How does it work?

Joe Optimistic concurrency control occurs when we let mutations ask forgiveness
instead of permission.

TIP Optimistic concurrency control occurs when we let mutations ask forgiveness
instead of permission.

Theo What do you mean?

Joe The calculation phase does its calculation as if it were the only mutation run-
ning. The commit phase is responsible for reconciling concurrent mutations
when they don’t conflict or for aborting the mutation.

TIP The calculation phase does its calculation as if it were the only mutation running.
The commit phase is responsible for trying to reconcile concurrent mutations.

Theo That sounds quite challenging to implement.

Joe Dealing with state is never trivial. But the good news is that the code for the
reconciliation logic in the commit phase is universal.

Theo Does that mean that the same code for the commit phase can be used in any
DOP system?

Joe Definitely. The code that implements the commit phase assumes nothing
about the details of the system except that the system data is represented as an
immutable map.

TIP The implementation of the commit phase in optimistic concurrency control is
universal. It can be used in any system where the data is represented by an immutable
hash map.

Theo That’s awesome!

Joe Another cool thing is that handling concurrency doesn’t require any changes
to the code in the calculation phase. From the calculation phase perspective,
the next version of the system data is computed in isolation as if no other muta-
tions were running concurrently.

Joe stands up to illustrate what he means on the whiteboard. While Theo looks at the draw-
ing in figure 5.1, Joe summarizes the information in table 5.1.

Table 5.1 The two phases of a mutation with optimistic concurrency control

Phase Responsibility State Implementation

Calculation Compute next state in isolation Stateless Specific

Commit Reconcile and update system state Stateful Common

94 CHAPTER 5 Basic concurrency control
5.2 Reconciliation between concurrent mutations
Theo Could you give me some examples of conflicting concurrent mutations?

Joe Sure. One example would be two members trying to borrow the same book
copy. Another example might be when two librarians update the publication
year of the same book.

Theo You mentioned that the code for the reconciliation logic in the commit phase
is universal. What do you mean exactly by reconciliation logic?

Joe It’s quite similar to what could happen in Git when you merge a branch back
into the main branch.

Theo I love it when the main branch stays the same.

Joe Yes, it’s nice when the merge has no conflicts and can be done automatically.
Do you remember how Git handles the merge in that case?

Theo Git does a fast-forward; it updates the main branch to be the same as the merge
branch.

Joe Right! And what happens when you discover that, meanwhile, another devel-
oper has committed their code to the main branch?

Theo Then Git does a three-way merge, trying to combine all the changes from the
two merge branches with the main branch.

Joe Does it always go smoothly?

Theo Usually, yes, but it’s possible that two developers have modified the same line
in the same file. I then have to manually resolve the conflict. I hate when that
happens!

TIP In a production system, multiple mutations run concurrently. Before updating
the state, we need to reconcile the conflicts between possible concurrent mutations.

Calculation phase

Commit phase

Capture system state

Compute next version

Abort mutation Reconcile mutations

Update system state

Update system state

Concurrent mutations?
Yes

Yes No
Conflict?

No

Figure 5.1 The logic flow
of optimistic concurrency
control

955.2 Reconciliation between concurrent mutations
Joe In DOP, the reconciliation algorithm in the commit phase is quite similar to a
merge in Git, except instead of a manual conflict resolution, we abort the
mutation. There are three possibilities to reconcile between possible concur-
rent mutations: fast-forward, three-way merge, or abort.

Joe goes to the whiteboard again. He draws the two diagrams shown in figures 5.2 and 5.3.

Theo Could you explain in more detail?

Joe When the commit phase of a mutation starts, we have three versions of the sys-
tem state: previous, which is the version on which the calculation phase based
its computation; current, which is the current version during the commit
phase; and next, which is the version returned by the calculation phase.

Theo Why would current be different than previous?

Joe It happens when other mutations have run concurrently with our mutation.

Theo I see.

Joe If we are in a situation where the current state is the same as the previous state,
it means that no mutations run concurrently. Therefore, as in Git, we can
safely fast-forward and update the state of the system with the next version.

Theo What if the state has not stayed the same?

Joe Then it means that mutations have run concurrently. We have to check for
conflicts in a way similar to the three-way merge used by Git. The difference is
that instead of comparing lines, we compare fields of the system hash map.

Theo Could you explain that?

Yes No

Yes No

State has stayed the same

Fast forward Concurrent mutations compatible?

Abort3-way Merge

Figure 5.2 The
reconciliation flow

previous

current

next

The base version
for the Calculation
phase

The version during
the Commit phase

The version
returned by the
Calculation phase

Figure 5.3 When the commit phase
starts, there are three versions of the
system state.

96 CHAPTER 5 Basic concurrency control
Joe We calculate the diff between previous and next and between previous and
current. If the two diffs have no fields in common, then there is no conflict
between the mutations that have run concurrently. We can safely apply the
changes from previous to next into current.

Joe makes his explanation visual with another diagram on the whiteboard. He then shows
figure 5.4 to Theo.

Theo What if there is a conflict?

Joe Then we abort the mutation.

Theo Aborting a user request seems unacceptable.

Joe In fact, in a user-facing system, conflicting concurrent mutations are fairly rare.
That’s why it’s OK to abort and let the user run the mutation again. Here, let
me draft a table to show you the differences between Git and DOP (table 5.2).

Table 5.2 The analogy between Git and data-oriented programming

Data-oriented programming Git

Concurrent mutations Different branches

A version of the system data A commit

State A reference

Calculation phase Branching

Validation Precommit hook

Reconciliation Merge

Fast-forward Fast-forward

Three-way merge Three-way merge

Abort Manual conflict resolution

Hash map Tree (folder)

Leaf node Blob (file)

Data field Line of code

diffPreviousCurrent

diffPreviousNext

diffPreviousNext

next

current

mergedprevious

Figure 5.4 In a three-way merge, we calculate the diff between previous and
next, and we apply it to current.

975.3 Reducing collections
Theo Great! That helps, but in cases where two mutations update the same field of
the same entity, I think it’s fair enough to let the user know that the request
can’t be processed.

TIP In a user-facing system, conflicting concurrent mutations are fairly rare.

5.3 Reducing collections
Joe Are you ready to challenge your mind with the implementation of the diff

algorithm?

Theo Let’s take a short coffee break before, if you don’t mind. Then, I’ll be ready to
tackle anything.

After enjoying large mug of hot coffee and a few butter cookies, Theo and Joe are back to
work. Their discussion on the diff algorithm continues.

Joe In the implementation of the diff algorithm, we’re going to reduce collections.

Theo I heard about reducing collections in a talk about FP, but I don’t remember
the details. Could you remind me how this works?

Joe Imagine you want to calculate the sum of the elements in a collection of num-
bers. With Lodash’s _.reduce, it would look like this.

_.reduce([1, 2, 3], function(res, elem) {
 return res + elem;
}, 0);
// → 6

Theo I don’t understand.

Joe goes to the whiteboard and writes the description of _.reduce. Theo waits patiently
until Joe puts the pen down before looking at the description.

Listing 5.1 Summing numbers with _.reduce

Description of _.reduce

_.reduce receives three arguments:

 coll—A collection of elements
 f—A function that receives two arguments
 initVal—A value

Logic flow:

1 Initialize currentRes with initVal.
2 For each element x of coll, update currentRes with f(currentRes, x).
3 Return currentRes.

98 CHAPTER 5 Basic concurrency control
Theo Would you mind if I manually expand the logic flow of that code you just wrote
for _.reduce?

Joe I think it’s a great idea!

Theo In our case, initVal is 0. It means that the first call to f will be f(0, 1). Then,
we’ll have f(f(0, 1), 2) and, finally, f(f(f(0, 1), 2), 3).

Joe I like your manual expansion, Theo! Let’s make it visual.

Now Theo goes to the whiteboard and draws a diagram. Figure 5.5 shows what that looks like.

Theo It’s much clearer now. I think that by implementing my custom version of
_.reduce, it will make things 100% clear.

It takes Theo much less time than he expected to implement reduce(). In no time at all,
he shows Joe the code.

function reduce(coll, f, initVal) {
 var currentRes = initVal;
 for (var i = 0; i < coll.length; i++) {
 currentRes = f(currentRes, coll[i])
 }
 return currentRes;
}

After checking that Theo’s code works as expected (see listing 5.3), Joe is proud of Theo.
He seems to be catching on better than he anticipated.

reduce([1, 2, 3], function(res, elem) {
 return res + elem;
}, 0);
// → 6

Joe Well done!

Listing 5.2 Custom implementation of _.reduce

Listing 5.3 Testing the custom implementation of reduce()

f

f

f

a2

a1

a0 initVal Figure 5.5 Visualization
of _.reduce

We could use
forEach instead
of a for loop.

995.4 Structural difference
5.4 Structural difference

 NOTE This section deals with the implementation of a structural diff algorithm. Feel
free to skip this section if you don’t want to challenge your mind right now with the
details of a sophisticated use of recursion. It won’t prevent you from enjoying the rest
of the book. You can come back to this section later.

Theo How do you calculate the diff between various versions of the system state?

Joe That’s the most challenging part of the reconciliation algorithm. We need to
implement a structural diff algorithm for hash maps.

Theo In what sense is the diff structural?

Joe The structural diff algorithm looks at the structure of the hash maps and
ignores the order of the fields.

Theo Could you give me an example?

Joe Let’s start with maps without nested fields. Basically, there are three kinds of
diffs: field replacement, field addition, and field deletion. In order to make
things not too complicated, for now, we’ll deal only with replacement and
addition.

Joe once again goes to the whiteboard and draws table 5.3, representing the three kinds of
diffs. Theo is thinking the whiteboard is really starting to fill up today.

Theo I notice that the order of the maps matters a lot. What about nested fields?

Joe It’s the same idea, but the nesting makes it a bit more difficult to grasp.

Joe changes several of the columns in table 5.3. When he’s through, he shows Theo the
nested fields in table 5.4.

Table 5.3 Kinds of structural differences between maps without nested fields

Kind First map Second map Diff

Replacement {"a": 1} {"a": 2} {"a": 2}

Addition {"a": 1} {"a": 1, "b": 2} {"b": 2}

Deletion {"a": 1, "b": 2} {"a": 1} Not supported

Table 5.4 Kinds of structural differences between maps with nested fields

Kind First map Second map Diff

Replacement {
 "a": {
 "x": 1
 }
}

{
 "a": {
 "x": 2
 }
}

{
 "a": {
 "x": 2
 }
}

100 CHAPTER 5 Basic concurrency control
 NOTE The version of the structural diff algorithm illustrated in this chapter does
not deal with deletions. Dealing with deletions is definitely possible, but it requires a
more complicated algorithm.

Theo As you said, it’s harder to grasp. What about arrays?

Joe We compare the elements of the arrays in order: if they are equal, the diff is
null; if they differ, the diff has the value of the second array.

Joe summarizes the various kinds of diffs in another table on the whiteboard. Theo looks
at the result in table 5.5.

Theo This usage of null is a bit weird but OK. Is it complicated to implement the
structural diff algorithm?

Joe Definitely! It took a good dose of mental gymnastics to come up with these 30
lines of code.

Joe downloads the code from one his personal repositories. Theo, with thumb and forefin-
gers touching his chin and his forehead slightly tilted, studies the code.

function diffObjects(data1, data2) {
 var emptyObject = _.isArray(data1) ? [] : {};
 if(data1 == data2) {

Addition {
 "a": {
 "x": 1
 }
}

{
 "a": {
 "x": 1,
 "y": 2,
 }
}

{
 "a": {
 "y": 2
 }
}

Deletion {
 "a": {
 "x": 1,
 "y": 2,
 }
}

{
 "a": {
 "y": 2
 }
}

Not supported

Table 5.5 Kinds of structural differences between arrays without nested elements

Kind First array Second array Diff

Replacement [1] [2] [2]

Addition [1] [1, 2] [null, 2]

Deletion [1, 2] [1] Not supported

Listing 5.4 The implementation of a structural diff

Table 5.4 Kinds of structural differences between maps with nested fields (continued)

Kind First map Second map Diff

_.isArray checks whether
its argument is an array.

1015.4 Structural difference

_.is

whet
arg

is an
coll
 return emptyObject;
 }
 var keys = _.union(_.keys(data1), _.keys(data2));
 return _.reduce(keys,
 function (acc, k) {
 var res = diff(
 _.get(data1, k),
 _.get(data2, k));
 if((_.isObject(res) && _.isEmpty(res)) ||

 (res == "no-diff")) {
 return acc;
 }
 return _.set(acc, [k], res);
 },
 emptyObject);
}

function diff(data1, data2) {
 if(_.isObject(data1) && _.isObject(data2)) {
 return diffObjects(data1, data2);
 }
 if(data1 !== data2) {
 return data2;
 }
 return "no-diff";
}

Theo Wow! It involves a recursion inside a reduce! I’m sure Dave will love this, but
I’m too tired to understand this code right now. Let’s focus on what it does
instead of how it does it.

In order familiarize himself with the structural diff algorithm, Theo runs the algorithm
with examples from the table that Joe drew on the whiteboard. While Theo occupies his
fingers with more and more complicated examples, his mind wanders in the realm of
performance.

var data1 = {
 "a": {
 "x": 1,
 "y": [2, 3],
 "z": 4
 }
};

var data2 = {
 "a": {
 "x": 2,
 "y": [2, 4],
 "z": 4
 }
}

Listing 5.5 An example of usage of a structural diff

_.union creates an
array of unique
values from two
arrays (like union of
two sets in Maths).

_.isObject checks
whether its argument
is a collection (either
a map or an array).

Empty
checks
her its
ument
 empty
ection. "no-diff" is how

we mark that
two values are
the same.

102 CHAPTER 5 Basic concurrency control
diff(data1, data2);
//{
// "a": {
// "x": 2,
// "y": [
// undefined,
// 4
//]
// }
//}

Theo What about the performance of the structural diff algorithm? It seems that the
algorithm goes over the leaves of both pieces of data?

Joe In the general case, that’s true. But, in the case of system data that’s manipu-
lated with structural sharing, the code is much more efficient.

Theo What do you mean?

Joe With structural sharing, most of the nested objects are shared between two ver-
sions of the system state. Therefore, most of the time, when the code enters
diffObjects, it will immediately return because data1 and data2 are the same.

TIP Calculating the diff between two versions of the state is efficient because two
hash maps created via structural sharing from the same hash map have most of their
nodes in common.

Theo Another benefit of immutable data . . . Let me see how the diff algorithm
behaves with concurrent mutations. I think I’ll start with a tiny library with no
users and a catalog with a single book, Watchmen.

var library = {
 "catalog": {
 "booksByIsbn": {
 "978-1779501127": {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authorIds": ["alan-moore", "dave-gibbons"]
 }
 },
 "authorsById": {
 "alan-moore": {
 "name": "Alan Moore",
 "bookIsbns": ["978-1779501127"]
 },
 "dave-gibbons": {
 "name": "Dave Gibbons",
 "bookIsbns": ["978-1779501127"]
 }
 }
 }
};

Listing 5.6 The data for a tiny library

1035.4 Structural difference
Joe I suggest that we start with nonconflicting mutations. What do you suggest?

Theo A mutation that updates the publication year of Watchmen and a mutation that
updates both the title of Watchmen and the name of the author of Watchmen.

On his laptop, Theo creates three versions of the library. He shows Joe his code, where one
mutation updates the publication year of Watchmen, and the other one updates the title of
Watchmen and the author’s name.

var previous = library;

var next = _.set(
 library,
 ["catalog", "booksByIsbn", "978-1779501127", "publicationYear"],
 1986);

var libraryWithUpdatedTitle = _.set(
 library,
 ["catalog", "booksByIsbn", "978-1779501127", "title"],
 "The Watchmen");
var current = _.set(
 libraryWithUpdatedTitle,
 ["catalog", "authorsById", "dave-gibbons", "name"],
 "David Chester Gibbons");

Theo I’m curious to see what the diff between previous and current looks like.

Joe Run the code and you’ll see.

Theo runs the code snippets for the structural diff between previous and next and for
the structural diff between previous and current. His curiosity satisfied, Theo finds it’s
all beginning to make sense.

diff(previous, next);
//{
// "catalog": {
// "booksByIsbn": {
// "978-1779501127": {
// "publicationYear": 1986
// }
// }
// }
//}

diff(previous, current);
//{
// "authorsById": {
// "dave-gibbons": {
// "name": "David Chester Gibbons",

Listing 5.7 Two nonconflicting mutations

Listing 5.8 Structural diff between maps with a single difference

Listing 5.9 Structural diff between maps with two differences

104 CHAPTER 5 Basic concurrency control
// }
// },
// "catalog": {
// "booksByIsbn": {
// "978-1779501127": {
// "title": "The Watchmen"
// }
// }
// }
//}
//

Joe Can you give me the information path of the single field in the structural diff
between previous and next?

Theo It’s ["catalog", "booksByIsbn", "978-1779501127", "publicationYear"].

Joe Right. And what are the information paths of the fields in the structural diff
between previous and current?

Theo It’s ["catalog", "booksByIsbn", "978-1779501127", "title"] for the book
title and ["authorsById", "dave-gibbons", "name"] for the author’s name.

Joe Perfect! Now, can you figure out how to detect conflicting mutations by
inspecting the information paths of the structural diffs?

Theo We need to check if they have an information path in common or not.

Joe Exactly! If they have, it means the mutations are conflicting.

Theo But I have no idea how to write code that retrieves the information paths of a
nested map.

Joe Once again, it’s a nontrivial piece of code that involves a recursion inside a
reduce. Let me download another piece of code from my repository and show
it to you.

function informationPaths (obj, path = []) {
 return _.reduce(obj,
 function(acc, v, k) {
 if (_.isObject(v)) {
 return _.concat(acc,
 informationPaths(v,
 _.concat(path, k)));
 }
 return _.concat(acc, [_.concat(path, k)]);
 },
 []);
}

Theo Let me see if your code works as expected with the structural diffs of the
mutations.

Theo tests Joe’s code with two code snippets. The first shows the information paths of the
structural diff between previous and next, and the second shows the information paths
of the structural diff between previous and current.

Listing 5.10 Calculating the information paths of a (nested) map

1055.4 Structural difference
informationPaths(diff(previous, next));
// → ["catalog.booksByIsbn.978-1779501127.publicationYear"]

informationPaths(diff(previous, current));
// [
// [
// "catalog",
// "booksByIsbn",
// "978-1779501127",
// "title"
//],
// [
// "authorsById",
// "dave-gibbons",
// "name"
//]
//]

Theo Nice! I assume that Lodash has a function that checks whether two arrays have
an element in common.

Joe Almost. There is _.intersection, which returns an array of the unique values
that are in two given arrays. For our purpose, though, we need to check
whether the intersection is empty. Here, look at this example.

function havePathInCommon(diff1, diff2) {
 return !_.isEmpty(_.intersection(informationPaths(diff1),
 informationPaths(diff2)));
}

Theo You told me earlier that in the case of nonconflicting mutations, we can
safely patch the changes induced by the transition from previous to next
into current. How do you implement that?

Joe We do a recursive merge between current and the diff between previous and
next.

Theo Does Lodash provide an immutable version of recursive merge?

Joe Yes, here’s another example. Take a look at this code.

_.merge(current, (diff(previous, next)));
//{
// "authorsById": {
// "dave-gibbons": {
// "name": "David Chester Gibbons"
// }
// },

Listing 5.11 Fields that differ between previous and next

Listing 5.12 Fields that differ between previous and current

Listing 5.13 Checking whether two diff maps have a common information path

Listing 5.14 Applying a patch

106 CHAPTER 5 Basic concurrency control
// "catalog": {
// "authorsById": {
// "alan-moore": {
// "bookIsbns": ["978-1779501127"]
// "name": "Alan Moore"
// },
// "dave-gibbons": {
// "bookIsbns": ["978-1779501127"],
// "name": "Dave Gibbons"
// },
// },
// "booksByIsbn": {
// "978-1779501127": {
// "authorIds": ["alan-moore", "dave-gibbons"],
// "isbn": "978-1779501127",
// "publicationYear": 1986,
// "title": "The Watchmen"
// }
// }
// }
//}

Theo Could it be as simple as this?

Joe Indeed.

5.5 Implementing the reconciliation algorithm
Joe All the pieces are now in place to implement our reconciliation algorithm.

Theo What kind of changes are required?

Joe It only requires changes in the code of SystemState.commit. Here, look at
this example on my laptop.

class SystemState {
 systemData;

 get() {
 return this.systemData;
 }

 set(_systemData) {
 this.systemData = _systemData;
 }

 commit(previous, next) {
 var nextSystemData = SystemConsistency.reconcile(
 this.systemData,
 previous,
 next);
 if(!SystemValidity.validate(previous, nextSystemData)) {
 throw "The system data to be committed is not valid!";
 };

Listing 5.15 The SystemState class

SystemConsistency class is
implemented in listing 5.16.

1075.5 Implementing the reconciliation algorithm
 this.systemData = nextSystemData;
 }
}

Theo How does SystemConsistency do the reconciliation?

Joe The SystemConsistency class starts the reconciliation process by comparing
previous and current. If they are the same, then we fast-forward and return
next. Look at this code for SystemConsistency.

class SystemConsistency {
 static threeWayMerge(current, previous, next) {
 var previousToCurrent = diff(previous, current);
 var previousToNext = diff(previous, next);
 if(havePathInCommon(previousToCurrent, previousToNext)) {
 return _.merge(current, previousToNext);
 }
 throw "Conflicting concurrent mutations.";
 }
 static reconcile(current, previous, next) {
 if(current == previous) {
 return next;
 }
 return SystemConsistency.threeWayMerge(current,
 previous,
 next);
 }
}

Theo Wait a minute! Why do you compare previous and current by reference?
You should be comparing them by value, right? And, it would be quite expen-
sive to compare all the leaves of the two nested hash maps!

Joe That’s another benefit of immutable data. When the data is not mutated, it is
safe to compare references. If they are the same, we know for sure that the data
is the same.

TIP When data is immutable, it is safe to compare by reference, which is super fast.
When the references are the same, it means that the data is the same.

Theo What about the implementation of the three-way merge algorithm?

Joe When previous differs from current, it means that concurrent mutations
have run. In order to determine whether there is a conflict, we calculate two
diffs: the diff between previous and current and the diff between previous
and next. If the intersection between the two diffs is empty, it means there is
no conflict. We can safely patch the changes between previous to next into
current.

Theo takes a closer look at the code for the SystemConsistency class in listing 5.16. He
tries to figure out if the code is thread-safe or not.

Listing 5.16 The reconciliation flow in action

When the system
state is the same
as the state used
by the calculation
phase, we fast-
forward.

108 CHAPTER 5 Basic concurrency control
Theo I think the code for SystemConsistency class is not thread-safe! If there’s a
context switch between checking whether the system has changed in the
SystemConsistency class and the updating of the state in SystemData class, a
mutation might override the changes of a previous mutation.

Joe You are totally right! The code works fine in a single-threaded environment
like JavaScript, where concurrency is handled via an event loop. However, in a
multi-threaded environment, the code needs to be refined in order to be
thread-safe. I’ll show you some day.

 NOTE The SystemConsistency class is not thread-safe. We will make it thread-safe
in chapter 8.

Theo I think I understand why you called it optimistic concurrency control. It’s
because we assume that conflicts don’t occur too often. Right?

Joe Correct! It makes me wonder what your therapist would say about conflicts that
cannot be resolved. Are there some cases where it’s not possible to reconcile
the couple?

Theo I don’t think she ever mentioned such a possibility.

Joe She must be a very optimistic person.

Summary
 Optimistic concurrency control allows mutations to ask forgiveness instead of

permission.
 Optimistic concurrency control is lock-free.
 Managing concurrent mutations of our system state with optimistic concurrency

control allows our system to support a high throughput of reads and writes.
 Optimistic concurrency control with immutable data is super efficient.
 Before updating the state, we need to reconcile the conflicts between possible con-

current mutations.
 We reconcile between concurrent mutations in a way that is similar to how Git han-

dles a merge between two branches: either a fast-forward or a three-way merge.
 The changes required to let our system manage concurrency are only in the

commit phase.
 The calculation phase does its calculation as if it were the only mutation running.
 The commit phase is responsible for trying to reconcile concurrent mutations.
 The reconciliation algorithm is universal in the sense that it can be used in any sys-

tem where the system data is represented as an immutable hash map.
 The implementation of the reconciliation algorithm is efficient, as it leverages

the fact that subsequent versions of the system state are created via structural
sharing.

 In a user-facing system, conflicting concurrent mutations are fairly rare.
 When we cannot safely reconcile between concurrent mutations, we abort the

mutation and ask the user to try again.

109Summary
 Calculating the structural diff between two versions of the state is efficient because
two hash maps created via structural sharing from the same hash map have most
of their nodes in common.

 When data is immutable, it is safe to compare by reference, which is fast. When
the references are the same, it means that the data is the same.

 There are three kinds of structural differences between two nested hash maps:
replacement, addition, and deletion.

 Our structural diff algorithm supports replacements and additions but not
deletions.

Lodash functions introduced in this chapter

Function Description

concat(arrA, arrB) Creates an new array, concatenating arrA and arrB

intersection(arrA, arrB) Creates an array of unique values both in arrA and arrB

union(arrA, arrB) Creates an array of unique values from arrA and arrB

find(coll, pred) Iterates over elements of coll, returning the first element for
which pred returns true

isEmpty(coll) Checks if coll is empty

reduce(coll, f, initVal) Reduces coll to a value that is the accumulated result of running
each element in coll through f, where each successive invoca-
tion is supplied the return value of the previous

isArray(coll) Checks if coll is an array

isObject(coll) Checks if coll is a collection

Unit tests
Programming at a coffee shop
In a data-oriented system, our code deals mainly with data manipulation: most of
our functions receive data and return data. As a consequence, it’s quite easy to
write unit tests to check whether our code behaves as expected. A unit test is made
of test cases that generate data input and compare the data output of the function
with the expected data output. In this chapter, we write unit tests for the queries
and mutations that we wrote in the previous chapters.

6.1 The simplicity of data-oriented test cases
Theo and Joe are seated around a large wooden table in a corner of “La vie est belle,” a
nice little French coffee shop, located near the Golden Gate Bridge. Theo orders a café
au lait with a croissant, and Joe orders a tight espresso with a pain au chocolat. Instead
of the usual general discussions about programming and life when they’re out of the

This chapter covers
 Generation of the minimal data input for a

test case

 Comparison of the output of a function with
the expected output

 Guidance about the quality and the quantity
of the test cases
110

1116.1 The simplicity of data-oriented test cases
office, Joe leads the discussion towards a very concrete topic—unit tests. Theo asks Joe for
an explanation.

Theo Are unit tests such a simple topic that we can tackle it here in a coffee shop?

Joe Unit tests in general, no. But unit tests for data-oriented code, yes!

Theo Why does that make a difference?

Joe The vast majority of the code base of a data-oriented system deals with data
manipulation.

Theo Yeah. I noticed that almost all the functions we wrote so far receive data and
return data.

TIP Most of the code in a data-oriented system deals with data manipulation.

Joe Writing a test case for functions that deal with data is only about generating
data input and expected output, and comparing the output of the function
with the expected output.

Theo That’s it?

Joe Yes. As you’ll see in a moment, in DOP, there’s usually no need for mock
functions.

Theo I understand how to compare primitive values like strings or numbers, but I’m
not sure how I would compare data collections like maps.

Joe You compare field by field.

Theo Recursively?

Joe Yes!

Theo Oh no! I’m not able to write any recursive code in a coffee shop. I need the
calm of my office for that kind of stuff.

Joe Don’t worry. In DOP, data is represented in a generic way. There is a generic
function in Lodash called _.isEqual for recursive comparison of data collec-
tions. It works with both maps and arrays.

Joe opens his laptop. He is able to convince Theo by executing a few code snippets with
_.isEqual to compare an equal data collection with a non-equal one.

_.isEqual({
 "name": "Alan Moore",
 "bookIsbns": ["978-1779501127"]

The steps of a test case

1 Generate data input: dataIn
2 Generate expected output: dataOut
3 Compare the output of the function with the expected output: f(dataIn) and

dataOut

Listing 6.1 Comparing an equal data collection recursively

112 CHAPTER 6 Unit tests
}, {
 "name": "Alan Moore",
 "bookIsbns": ["978-1779501127"]
 });
// → true

_.isEqual({
 "name": "Alan Moore",
 "bookIsbns": ["978-1779501127"]
}, {
 "name": "Alan Moore",
 "bookIsbns": ["bad-isbn"]
 });
// → false

Theo Nice!

Joe Most of the test cases in DOP follow this pattern.

Theo decides he wants to try this out. He fires up his laptop and types a few lines of
pseudocode.

var dataIn = {
 // input
};

var dataOut = {
 // expected output
};

_.isEqual(f(dataIn), dataOut);

TIP It’s straightforward to write unit tests for code that deals with data manipulation.

Theo Indeed, this looks like something we can tackle in a coffee shop!

6.2 Unit tests for data manipulation code
A waiter in an elegant bow tie brings Theo his croissant and Joe his pain au chocolat. The
two friends momentarily interrupt their discussion to savor their French pastries. When
they’re done, they ask the waiter to bring them their drinks. Meanwhile, they resume the
discussion.

Joe Do you remember the code flow of the implementation of the search query?

Theo Let me look again at the code that implements the search query.

Theo brings up the implementation of the search query on his laptop. Noticing that Joe is
chewing on his nails again, he quickly checks out the code.

Listing 6.2 Comparing a non-equal data collection recursively

Listing 6.3 The general pattern of a data-oriented test case

1136.2 Unit tests for data manipulation code
class Catalog {
 static authorNames(catalogData, authorIds) {
 return _.map(authorIds, function(authorId) {
 return _.get(catalogData, ["authorsById", authorId, "name"]);
 });
 }

 static bookInfo(catalogData, book) {
 var bookInfo = {
 "title": _.get(book, "title"),
 "isbn": _.get(book, "isbn"),
 "authorNames": Catalog.authorNames(catalogData,
 _.get(book, "authorIds"))
 };
 return bookInfo;
 }

 static searchBooksByTitle(catalogData, query) {
 var allBooks = _.get(catalogData, "booksByIsbn");
 var matchingBooks = _.filter(allBooks, function(book) {
 return _.get(book, "title").includes(query);
 });
 var bookInfos = _.map(matchingBooks, function(book) {
 return Catalog.bookInfo(catalogData, book);
 });
 return bookInfos;
 }
}

class Library {
 static searchBooksByTitleJSON(libraryData, query) {
 var catalogData = _.get(libraryData, "catalog");
 var results = Catalog.searchBooksByTitle(catalogData, query);
 var resultsJSON = JSON.stringify(results);
 return resultsJSON;
 }
}

6.2.1 The tree of function calls

The waiter brings Theo his café au lait and Joe his tight espresso. They continue their dis-
cussion while enjoying their coffees.

Joe Before writing a unit test for a code flow, I find it useful to visualize the tree of
function calls of the code flow.

Theo What do you mean by a tree of function calls?

Joe Here, I’ll draw the tree of function calls for the Library.searchBooksBy-
TitleJSON code flow.

Joe puts down his espresso and takes a napkin from the dispenser. He carefully places it
flat on the table and starts to draw. When he is done, he shows the illustration to Theo (see
figure 6.1).

Listing 6.4 The code involved in the implementation of the search query

114 CHAPTER 6 Unit tests
Theo Nice! Can you teach me how to draw a tree of function calls like that?

Joe Sure. The root of the tree is the name of the function for which you draw the
tree, in our case, Library.searchBooksByTitleJSON. The children of a
node in the tree are the names of the functions called by the function. For exam-
ple, if you look again at the code for Library.searchBooksByTitleJSON (list-
ing 6.4), you’ll see that it calls Catalog.searchBooksByTitle, _.get, and
JSON.stringify.

Theo How long would I continue to recursively expand the tree?

Joe You continue until you reach a function that doesn’t belong to the code base
of your application. Those nodes are the leaves of our tree; for example, the
functions from Lodash: _.get, _.map, and so forth.

Theo What if the code of a function doesn’t call any other functions?

Joe A function that doesn’t call any other function would be a leaf in the tree.

Theo What about functions that are called inside anonymous functions like Catalog
.bookInfo?

Joe Catalog.bookInfo appears in the code of Catalog.searchBooksByTitle.
Therefore, it is considered to be a child node of Catalog.searchBooksBy-
Title. The fact that it is nested inside an anonymous function is not relevant
in the context of the tree of function calls.

 NOTE A tree of function calls for a function f is a tree where the root is f, and the
children of a node g in the tree are the functions called by g. The leaves of the tree are
functions that are not part of the code base of the application. These are functions
that don’t call any other functions.

Theo It’s very cool to visualize my code as a tree, but I don’t see how it relates to
unit tests.

Library.searchBooksByTitleJSON

_.get JSON.stringify Catalog.searchBooksByTitle

_.get _.map _.filter Catalog.bookInfo

_.get Catalog.authorNames

_.get _.map

Figure 6.1 The tree of function calls for the search query code flow

1156.2 Unit tests for data manipulation code
Joe The tree of function calls guides us about the quality and the quantity of test
cases we should write.

Theo How?

Joe You’ll see in a moment.

6.2.2 Unit tests for functions down the tree

Joe Let’s start from the function that appears in the deepest node in our tree:
Catalog.authorNames. Take a look at the code for Catalog.authorNames
and tell me what are the input and the output of Catalog.authorNames.

Joe turns his laptop so Theo can a closer look at the code. Theo takes a sip of his café au
lait as he looks over what’s on Joe’s laptop.

Catalog.authorNames = function (catalogData, authorIds) {
 return _.map(authorIds, function(authorId) {
 return _.get(catalogData, ["authorsById", authorId, "name"]);
 });
};

Theo The input of Catalog.authorNames is catalogData and authorIds. The
output is authorNames.

Joe Would you do me a favor and express it visually?

Theo Sure.

It’s Theo’s turn to grab a napkin. He draws a small rectangle with two inward arrows and
one outward arrow as in figure 6.2.

Joe Excellent! Now, how many combinations of input would you include in the
unit test for Catalog.authorNames?

Theo Let me see.

Theo reaches for another napkin. This time he creates a table to gather his thoughts
(table 6.1).

Listing 6.5 The code of Catalog.authorNames

Catalog.authorNames()

catalogData authorIds

authorNames

Figure 6.2 Visualization of the input
and output of Catalog.authorNames

116 CHAPTER 6 Unit tests
Theo To begin with, I would have a catalogData with two author IDs and call
Catalog.authorNames with three arguments: an empty array, an array with a
single author ID, and an array with two author IDs.

Joe How would you generate the catalogData?

Theo Exactly as we generated it before.

Turning to his laptop, Theo writes the code for catalogData. He shows it to Joe.

var catalogData = {
 "booksByIsbn": {
 "978-1779501127": {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authorIds": ["alan-moore", "dave-gibbons"],
 "bookItems": [
 {
 "id": "book-item-1",
 "libId": "nyc-central-lib",
 "isLent": true
 },
 {
 "id": "book-item-2",
 "libId": "nyc-central-lib",
 "isLent": false
 }
]
 }
 },
 "authorsById": {
 "alan-moore": {
 "name": "Alan Moore",
 "bookIsbns": ["978-1779501127"]
 },
 "dave-gibbons": {
 "name": "Dave Gibbons",
 "bookIsbns": ["978-1779501127"]
 }
 }
};

Table 6.1 The table of test cases for Catalog.authorNames

catalogData authorIds authorNames

Catalog with two authors Empty array Empty array

Catalog with two authors Array with one author ID Array with one author name

Catalog with two authors Array with two author IDs Array with two author names

Listing 6.6 A complete catalogData map

1176.2 Unit tests for data manipulation code
Joe You could use your big catalogData map for the unit test, but you could also
use a smaller map in the context of Catalog.authorNames. You can get rid of
the booksByIsbn field of the catalogData and the bookIsbns fields of the
authors.

Joe deletes a few lines from catalogData and gets a much smaller map. He shows the revi-
sion to Theo.

var catalogData = {
 "authorsById": {
 "alan-moore": {
 "name": "Alan Moore"
 },
 "dave-gibbons": {
 "name": "Dave Gibbons"
 }
 }
};

Theo Wait a minute! This catalogData is not valid.

Joe In DOP, data validity depends on the context. In the context of Library
.searchBooksByTitleJSON and Catalog.searchBooksByTitle, the mini-
mal version of catalogData is indeed not valid. However, in the context of
Catalog.bookInfo and Catalog.authorNames, it is perfectly valid. The reason
is that those two functions access only the authorsById field of catalogData.

TIP The validity of the data depends on the context.

Theo Why is it better to use a minimal version of the data in a test case?

Joe For a very simple reason—the smaller the data, the easier it is to manipulate.

TIP The smaller the data, the easier it is to manipulate.

Theo I’ll appreciate that when I write the unit tests!

Joe Definitely! One last thing before we start coding: how would you check that the
output of Catalog.authorNames is as expected?

Theo I would check that the value returned by Catalog.authorNames is an array
with the expected author names.

Joe How would you handle the array comparison?

Theo Let me think. I want to compare by value, not by reference. I guess I’ll have to
check that the array is of the expected size and then check member by mem-
ber, recursively.

Joe That’s too much of a mental burden when you’re in a coffee shop. As I showed
you earlier (see listing 6.1), we can recursively compare two data collections by
value with _.isEqual from Lodash.

Listing 6.7 A minimal version of catalogData

118 CHAPTER 6 Unit tests
TIP We can compare the output and the expected output of our functions with
_.isEqual.

Theo Sounds good! Let me write the test cases.

Theo starts typing on his laptop. After a few minutes, he has some test cases for Catalog
.authorNames, each made from a function call to Catalog.authorNames wrapped in
_.isEqual.

var catalogData = {
 "authorsById": {
 "alan-moore": {
 "name": "Alan Moore"
 },
 "dave-gibbons": {
 "name": "Dave Gibbons"
 }
 }
};

_.isEqual(Catalog.authorNames(catalogData, []), []);
_.isEqual(Catalog.authorNames(
 catalogData,
 ["alan-moore"]),
 ["Alan Moore"]);
_.isEqual(Catalog.authorNames(catalogData, ["alan-moore", "dave-gibbons"]),
 ["Alan Moore", "Dave Gibbons"]);

Joe Well done! Can you think of more test cases?

Theo Yes. There are test cases where the author ID doesn’t appear in the catalog
data, and test cases with empty catalog data. With minimal catalog data and
_.isEqual, it’s really easy to write lots of test cases!

Theo really enjoys this challenge. He creates a few more test cases to present to Joe.

_.isEqual(Catalog.authorNames({}, []), []);
_.isEqual(Catalog.authorNames({}, ["alan-moore"]), [undefined]);

_.isEqual(Catalog.authorNames(catalogData, ["alan-moore",
 "albert-einstein"]), ["Alan Moore", undefined]);
_.isEqual(Catalog.authorNames(catalogData, []), []);
_.isEqual(Catalog.authorNames(catalogData, ["albert-einstein"]),
 [undefined]);

Theo How do I run these unit tests?

Joe You use your preferred test framework.

Listing 6.8 Unit test for Catalog.authorNames

Listing 6.9 More test cases for Catalog.authorNames

1196.2 Unit tests for data manipulation code
 NOTE We don’t deal here with test runners and test frameworks. We deal only with
the logic of the test cases.

6.2.3 Unit tests for nodes in the tree

Theo I’m curious to see what unit tests for an upper node in the tree of function calls
look like.

Joe Sure. Let’s write a unit test for Catalog.bookInfo. How many test cases would
you have for Catalog.bookInfo?

Catalog.bookInfo = function (catalogData, book) {
 return {
 "title": _.get(book, "title"),
 "isbn": _.get(book, "isbn"),
 "authorNames": Catalog.authorNames(catalogData,
 _.get(book, "authorIds"))
 };
};

Theo takes another look at the code for Catalog.bookInfo on his laptop. Then, reaching
for another napkin, he draws a diagram of its input and output (see figure 6.3).

Theo I would have a similar number of test cases for Catalog.authorNames: a book
with a single author, with two authors, with existing authors, with non-existent
authors, with . . .

Joe Whoa! That’s not necessary. Given that we have already written unit tests for
Catalog.authorNames, we don’t need to check all the cases again. We simply
need to write a minimal test case to confirm that the code works.

TIP When we write a unit test for a function, we assume that the functions called by
this function are covered by unit tests and work as expected. It significantly reduces
the quantity of test cases in our unit tests.

Theo That makes sense.

Joe How would you write a minimal test case for Catalog.bookInfo?

Theo once again takes a look at the code for Catalog.bookInfo (see listing 6.10). Now he
can answer Joe’s question.

Listing 6.10 The code of Catalog.bookInfo

Catalog.bookInfo()

catalogData book

bookInfo

Figure 6.3 Visualization of the input
and output of Catalog.bookInfo

120 CHAPTER 6 Unit tests
Theo I would use the same catalog data as for Catalog.authorNames and a book
record. I’d test that the function behaves as expected by comparing its return
value with a book info record using _.isEqual. Here, let me show you.

It takes Theo a bit more time to write the unit test. The reason is that the input and the
output of Catalog.authorNames are both records. Dealing with a record is more complex
than dealing with an array of strings (as it was the case for Catalog.authorNames). Theo
appreciates the fact that _.isEqual saves him from writing code that compares the two
maps property by property. When he’s through, he shows the result to Joe and takes a nap-
kin to wipe his forehead.

var catalogData = {
 "authorsById": {
 "alan-moore": {
 "name": "Alan Moore"
 },
 "dave-gibbons": {
 "name": "Dave Gibbons"
 }
 }
};

var book = {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authorIds": ["alan-moore", "dave-gibbons"]
};

var expectedResult = {
 "authorNames": ["Alan Moore", "Dave Gibbons"],
 "isbn": "978-1779501127",
 "title": "Watchmen",
};

var result = Catalog.bookInfo(catalogData, book);

_.isEqual(result, expectedResult);

Joe Perfect! Now, how would you compare the kind of unit tests for Catalog
.bookInfo with the unit tests for Catalog.authorNames?

Theo On one hand, there is only a single test case in the unit test for Catalog.book-
Info. On the other hand, the data involved in the test case is more complex
than the data involved in the test cases for Catalog.authorNames.

Joe Exactly! Functions that appear in a deep node in the tree of function calls tend
to require more test cases, but the data involved in the test cases is less complex.

TIP Functions that appear in a lower level in the tree of function calls tend to
involve less complex data than functions that appear in a higher level in the tree
(see table 6.2).

Listing 6.11 Unit test for Catalog.bookInfo

1216.3 Unit tests for queries
6.3 Unit tests for queries
In the previous section, we saw how to write unit tests for utility functions like Catalog
.bookInfo and Catalog.authorNames. Now, we are going to see how to write unit tests
for the nodes of a query tree of function calls that are close to the root of the tree.

Joe Theo, how would you write a unit test for the code of the entry point of the
search query?

To recall the particulars, Theo checks the code for Library.searchBooksByTitleJSON.
Although Joe was right about today’s topic being easy enough to enjoy the ambience of a
coffee shop, he has been doing quite a lot of coding this morning.

Library.searchBooksByTitleJSON = function (libraryData, query) {
 var catalogData = _.get(libraryData, "catalog");
 var results = Catalog.searchBooksByTitle(catalogData, query);
 var resultsJSON = JSON.stringify(results);
 return resultsJSON;
};

He then takes a moment to think about how he’d write a unit test for that code. After
another Aha! moment, now he’s got it.

Theo The inputs of Library.searchBooksByTitleJSON are library data and a
query string, and the output is a JSON string (see figure 6.4). So, I would cre-
ate a library data record with a single book and write tests with query strings
that match the name of the book and ones that don’t match.

Joe What about the expected results of the test cases?

Table 6.2 The correlation between the depth of a function in the tree of function calls and the
quality and quantity of the test cases

Depth in the tree Complexity of the data Number of test cases

Lower Higher Lower

Higher Lower Higher

Listing 6.12 The code of Library.searchBooksByTitleJSON

query

Library.searchBooksByTitleJSON()

libraryData

resultsJSON

Figure 6.4 The input and output of
Library.searchBooksByTitleJSON

122 CHAPTER 6 Unit tests
Theo In cases where the query string matches, the expected result is a JSON string
with the book info. In cases where the query string doesn’t match, the
expected result is a JSON string with an empty array.

Joe Hmm . . .

Theo What?

Joe I don’t like your answer.

Theo Why?

Joe Because your test case relies on a string comparison instead of a data comparison.

Theo What difference does it make? After all, the strings I’m comparing come from
the serialization of data.

Joe It’s inherently much more complex to compare JSON strings than it is to com-
pare data. For example, two different strings might be the serialization of the
same piece of data.

Theo Really? How?

Joe Take a look at these two strings. They are the serialization of the same data.
They’re different strings because the fields appear in a different order, but in
fact, they serialize the same data!

Joe turns his laptop to Theo. As Theo looks at the code, he realizes that, once again, Joe
is correct.

var stringA = "{\"title\":\"Watchmen\",\"publicationYear\":1987}";
var stringB = "{\"publicationYear\":1987,\"title\":\"Watchmen\"}";

TIP Avoid using a string comparison in unit tests for functions that deal with data.

Theo I see. . . . Well, what can I do instead?

Joe Instead of comparing the output of Library.searchBooksByTitleJSON with
a string, you could deserialize the output and compare it to the expected data.

Theo What do you mean by deserialize a string?

Joe Deserializing a string s, for example, means to generate a piece of data whose
serialization is s.

Theo Is there a Lodash function for string deserialization?

Joe Actually, there is a native JavaScript function for string deserialization; it’s
called JSON.parse.

Joe retrieves his laptop and shows Theo an example of string deserialization. The code
illustrates a common usage of JSON.parse.

var myString = "{\"publicationYear\":1987,\"title\":\"Watchmen\"}";
var myData = JSON.parse(myString);

Listing 6.13 Two different strings that serialize the same data

Listing 6.14 Example of string deserialization

1236.3 Unit tests for queries
_.get(myData, "title");
// → "Watchmen"

Theo Cool! Let me try writing a unit test for Library.searchBooksByTitleJSON
using JSON.parse.

It doesn’t take Theo too much time to come up with a piece of code. Using his laptop, he
inputs the unit test.

var libraryData = {
 "catalog": {
 "booksByIsbn": {
 "978-1779501127": {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authorIds": ["alan-moore",
 "dave-gibbons"]
 }
 },
 "authorsById": {
 "alan-moore": {
 "name": "Alan Moore",
 "bookIsbns": ["978-1779501127"]
 },
 "dave-gibbons": {
 "name": "Dave Gibbons",
 "bookIsbns": ["978-1779501127"]
 }
 }
 }
};

var bookInfo = {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "authorNames": ["Alan Moore",
 "Dave Gibbons"]
};

_.isEqual(JSON.parse(Library.searchBooksByTitleJSON(libraryData,
 "Watchmen")),
 [bookInfo]);

_.isEqual(JSON.parse(Library.searchBooksByTitleJSON(libraryData,
 "Batman")),
 []);

Joe Well done! I think you’re ready to move on to the last piece of the puzzle and
write the unit test for Catalog.searchBooksByTitle.

Listing 6.15 Unit test for Library.searchBooksByTitleJSON

124 CHAPTER 6 Unit tests
Because Theo and Joe have been discussing unit tests for quite some time, he asks Joe if he
would like another espresso. They call the waiter and order, then Theo looks again at the
code for Catalog.searchBooksByTitle.

Catalog.searchBooksByTitle = function(catalogData, query) {
 var allBooks = _.get(catalogData, "booksByIsbn");
 var matchingBooks = _.filter(allBooks, function(book) {
 return _.get(book, "title").includes(query);
 });
 var bookInfos = _.map(matchingBooks, function(book) {
 return Catalog.bookInfo(catalogData, book);
 });
 return bookInfos;
};

Writing the unit test for Catalog.searchBooksByTitle is a more pleasant experience for
Theo than writing the unit test for Library.searchBooksByTitleJSON. He appreciates
this for two reasons:

 It’s not necessary to deserialize the output because the function returns data.
 It’s not necessary to wrap the catalog data in a library data map.

var catalogData = {
 "booksByIsbn": {
 "978-1779501127": {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authorIds": ["alan-moore",
 "dave-gibbons"]
 }
 },
 "authorsById": {
 "alan-moore": {
 "name": "Alan Moore",
 "bookIsbns": ["978-1779501127"]
 },
 "dave-gibbons": {
 "name": "Dave Gibbons",
 "bookIsbns": ["978-1779501127"]
 }
 }
};

var bookInfo = {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "authorNames": ["Alan Moore",
 "Dave Gibbons"]
};

Listing 6.16 The code of Catalog.searchBooksByTitle

Listing 6.17 Unit test for Catalog.searchBooksByTitle

1256.3 Unit tests for queries
_.isEqual(Catalog.searchBooksByTitle(catalogData, "Watchmen"), [bookInfo]);
_.isEqual(Catalog.searchBooksByTitle(catalogData, "Batman"), []);

Joe That’s a good start!

Theo I thought I was done. What did I miss?

Joe You forgot to test cases where the query string is all lowercase.

Theo You’re right! Let me quickly add one more test case.

In less than a minute, Theo creates an additional test case and shows it to Joe. What a dis-
appointment when Theo discovers that the test case with "watchmen" in lowercase fails!

_.isEqual(Catalog.searchBooksByTitle(catalogData, "watchmen"),
 [bookInfo]);

Joe Don’t be too upset, my friend. After all, the purpose of unit tests is to find bugs
in the code so that you can fix them. Can you fix the code of Catalog-
Data.searchBooksByTitle?

Theo Sure. All I need to do is to lowercase both the query string and the book title
before comparing them. I’d probably do something like this.

Catalog.searchBooksByTitle = function(catalogData, query) {
 var allBooks = _.get(catalogData, "booksByIsbn");
 var queryLowerCased = query.toLowerCase();
 var matchingBooks = _.filter(allBooks, function(book) {
 return _.get(book, "title")
 .toLowerCase()
 .includes(queryLowerCased);
 });
 var bookInfos = _.map(matchingBooks, function(book) {
 return Catalog.bookInfo(catalogData, book);
 });
 return bookInfos;
};

After fixing the code of Catalog.searchBooksByTitle, Theo runs all the test cases
again. This time, all of them pass—what a relief!

_.isEqual(Catalog.searchBooksByTitle(catalogData, "watchmen"),
 [bookInfo]);

Joe It’s such good feeling when all the test cases pass.

Theo Sure is.

Joe I think we’ve written unit tests for all the search query code, so now we’re ready
to write unit tests for mutations. Thank goodness the waiter just brought our
coffee orders.

Listing 6.18 Additional test case for Catalog.searchBooksByTitle

Listing 6.19 Fixed code of Catalog.searchBooksByTitle

Listing 6.20 Additional test case for Catalog.searchBooksByTitle

Converts the query
to lowercase

Converts the book
title to lowercase

126 CHAPTER 6 Unit tests
6.4 Unit tests for mutations
Joe Before writing unit tests for the add member mutation, let’s draw the tree of

function calls for System.addMember.

Theo I can do that.

Theo takes a look at the code for the functions involved in the add member mutation. He
notices the code is spread over three classes: System, Library, and UserManagement.

System.addMember = function(systemState, member) {
 var previous = systemState.get();
 var next = Library.addMember(previous, member);
 systemState.commit(previous, next);
};

Library.addMember = function(library, member) {
 var currentUserManagement = _.get(library, "userManagement");
 var nextUserManagement = UserManagement.addMember(
 currentUserManagement, member);
 var nextLibrary = _.set(library, "userManagement", nextUserManagement);
 return nextLibrary;
};

UserManagement.addMember = function(userManagement, member) {
 var email = _.get(member, "email");
 var infoPath = ["membersByEmail", email];
 if(_.has(userManagement, infoPath)) {
 throw "Member already exists.";
 }
 var nextUserManagement = _.set(userManagement,
 infoPath,
 member);
 return nextUserManagement;
};

Theo grabs another napkin. Drawing the tree of function calls for System.addMember is
now quite easy (see figure 6.5).

Listing 6.21 The functions involved in the add member mutation

System.addMember

SystemState.get SystemState.commit Library.addMember

UserManagement.addMember_.get _.set

_.has _.set

Figure 6.5 The tree of function calls for System.addMember

1276.4 Unit tests for mutations
Joe Excellent! So which functions of the tree should be unit tested for the add
member mutation?

Theo I think the functions we need to test are System.addMember, SystemState
.get, SystemState.commit, Library.addMember, and UserManagement
.addMember. That right?

Joe You’re totally right. Let’s defer writing unit tests for functions that belong to
SystemState until later. Those are generic functions that should be tested
outside the context of a specific mutation. Let’s assume for now that we’ve
already written unit tests for the SystemState class. We’re left with three func-
tions: System.addMember, Library.addMember, and UserManagement.add-
Member.

Theo In what order should we write the unit tests, bottom up or top down?

Joe Let’s start where the real meat is—in UserManagement.addMember. The two
other functions are just wrappers.

Theo OK.

Joe Writing a unit test for the main function of a mutation requires more effort
than writing the test for a query. The reason is that a query returns a response
based on the system data, whereas a mutation computes a new state of the system
based on the current state of the system and some arguments (see figure 6.6).

TIP Writing a unit test for the main function of a mutation requires more effort than
for a query.

Theo It means that in the test cases of UserManagement.addMember, both the input
and the expected output are maps that describe the state of the system.

Joe Exactly. Let’s start with the simplest case, where the initial state of the system
is empty.

Theo You mean that userManagementData passed to UserManagement.addMember
is an empty map?

Joe Yes.

Once again, Theo places his hands over his laptop keyboard, thinks for a moment, and
begins typing. He reminds himself that the code needs to add a member to an empty user

Mutation

SystemData Argument

Query

Argument SystemData

NextSystemData ResponseData

Figure 6.6 The output of a mutation is more complex than
the output of a query.

128 CHAPTER 6 Unit tests
management map and to check that the resulting map is as expected. When he’s finished,
he shows his code to Joe.

var member = {
 "email": "jessie@gmail.com",
 "password": "my-secret"
};

var userManagementStateBefore = {};

var expectedUserManagementStateAfter = {
 "membersByEmail": {
 "jessie@gmail.com": {
 "email": "jessie@gmail.com",
 "password": "my-secret"
 }
 }
};

var result = UserManagement.addMember(userManagementStateBefore, member);
_.isEqual(result, expectedUserManagementStateAfter);

Joe Very nice! Keep going and write a test case when the initial state is not empty.

Theo knows this requires a few more lines of code but nothing complicated. When he fin-
ishes, he once again shows the code to Joe.

var jessie = {
 "email": "jessie@gmail.com",
 "password": "my-secret"
};

var franck = {
 "email": "franck@gmail.com",
 "password": "my-top-secret"
};

var userManagementStateBefore = {
 "membersByEmail": {
 "franck@gmail.com": {
 "email": "franck@gmail.com",
 "password": "my-top-secret"
 }
 }
};

var expectedUserManagementStateAfter = {
 "membersByEmail": {
 "jessie@gmail.com": {
 "email": "jessie@gmail.com",

Listing 6.22 Test case for Catalog.addMember without members

Listing 6.23 Test case for Catalog.addMember with existing members

1296.4 Unit tests for mutations
 "password": "my-secret"
 },
 "franck@gmail.com": {
 "email": "franck@gmail.com",
 "password": "my-top-secret"
 }
 }
};

var result = UserManagement.addMember(userManagementStateBefore, jessie);
_.isEqual(result, expectedUserManagementStateAfter);

Joe Awesome! Can you think of other test cases for UserManagement.addMember?

Theo No.

Joe What about cases where the mutation fails?

Theo Right! I always forget to think about negative test cases. I assume that relates to
the fact that I’m an optimistic person.

TIP Don’t forget to include negative test cases in your unit tests.

Joe Me too. The more I meditate, the more I’m able to focus on the positive side of
life. Anyway, how would you write a test case where the mutation fails?

Theo I would pass to UserManagement.addMember a member that already exists in
userManagementStateBefore.

Joe And how would you check that the code behaves as expected in case of a failure?

Theo Let me see. When a member already exists, UserManagement.addMember
throws an exception. Therefore, what I need to do in my test case is to wrap the
code in a try/catch block.

Joe Sounds good to me.

Once again, it doesn’t require too much of an effort for Theo to create a new test case.
When he’s finished, he eagerly turns his laptop to Joe.

var jessie = {
 "email": "jessie@gmail.com",
 "password": "my-secret"
};

var userManagementStateBefore = {
 "membersByEmail": {
 "jessie@gmail.com": {
 "email": "jessie@gmail.com",
 "password": "my-secret"
 }
 }
};

Listing 6.24 Test case for UserManagement.addMember if it’s expected to fail

130 CHAPTER 6 Unit tests
var expectedException = "Member already exists.";
var exceptionInMutation;

try {
 UserManagement.addMember(userManagementStateBefore, jessie);
} catch (e) {
 exceptionInMutation = e;
}

_.isEqual(exceptionInMutation, expectedException);

Theo Now, I think I’m ready to move forward and write unit tests for Library.add-
Member and System.addMember.

Joe I agree with you. Please start with Library.addMember.

Theo Library.addMember is quite similar to UserManagement.addMember. So I
guess I’ll write similar test cases.

Joe In fact, that won’t be required. As I told you when we wrote unit tests for a
query, when you write a unit test for a function, you can assume that the func-
tions down the tree work as expected.

Theo Right. So I’ll just write the test case for existing members.

Joe Go for it!

Theo starts with a copy-and-paste of the code from the UserManagement.addMember test
case with the existing members in listing 6.23. After a few modifications, the unit test for
Library.addMember is ready.

var jessie = {
 "email": "jessie@gmail.com",
 "password": "my-secret"
};

var franck = {
 "email": "franck@gmail.com",
 "password": "my-top-secret"
};

var libraryStateBefore = {
 "userManagement": {
 "membersByEmail": {
 "franck@gmail.com": {
 "email": "franck@gmail.com",
 "password": "my-top-secret"
 }
 }
 }
};

var expectedLibraryStateAfter = {
 "userManagement": {
 "membersByEmail": {

Listing 6.25 Unit test for Library.addMember

1316.4 Unit tests for mutations
 "jessie@gmail.com": {
 "email": "jessie@gmail.com",
 "password": "my-secret"
 },
 "franck@gmail.com": {
 "email": "franck@gmail.com",
 "password": "my-top-secret"
 }
 }
 }
};

var result = Library.addMember(libraryStateBefore, jessie);
_.isEqual(result, expectedLibraryStateAfter);

Joe Beautiful! Now, we’re ready for the last piece. Write a unit test for System
.addMember. Before you start, could you please describe the input and the out-
put of System.addMember?

Theo takes another look at the code for System.addMember and hesitates; he’s a bit con-
fused. The function doesn’t seem to return anything!

System.addMember = function(systemState, member) {
 var previous = systemState.get();
 var next = Library.addMember(previous, member);
 systemState.commit(previous, next);
};

Theo The input of System.addMember is a system state instance and a member. But,
I’m not sure what the output of System.addMember is.

Joe In fact, System.addMember doesn’t have any output. It belongs to this stateful
part of our code that doesn’t deal with data manipulation. Although DOP
allows us to reduce the size of the stateful part of our code, it still exists. Here is
how I visualize it.

Joe calls the waiter to see if he can get more napkins. With that problem resolved, he draws
the diagram in figure 6.7.

Listing 6.26 The code of System.addMember

Change system stateMutation

SystemData Member

Nothing

Figure 6.7 System.addMember
doesn’t return data—it changes the
system state!

132 CHAPTER 6 Unit tests
Theo Then how do we validate that the code works as expected?

Joe We’ll retrieve the system state after the code is executed and compare it to the
expected value of the state.

Theo OK. I’ll try to write the unit test.

Joe Writing unit tests for stateful code is more complicated than for data manipula-
tion code. It requires the calm of the office.

Theo Then let’s go back to the office. Waiter! Check, please.

Theo picks up the tab, and he and Joe take the cable car back to Albatross. When they’re
back at the office, Theo starts coding the unit test for Library.addMember.

Theo Can we use _.isEqual with system state?

Joe Definitely. The system state is a map like any other map.

TIP The system state is a map. Therefore, in the context of a test case, we can com-
pare the system state after a mutation is executed to the expected system state using
_.isEqual

Theo copies and pastes the code for Library.addMember (listing 6.21), which initializes
the data for the test. Then, he passes a SystemState object that is initialized with
libraryStateBefore to System.addMember. Finally, to complete the test, he compares
the system state after the mutation is executed with the expected value of the state.

class SystemState {
 systemState;

 get() {
 return this.systemState;
 }

 commit(previous, next) {
 this.systemState = next;
 }
}
window.SystemState = SystemState;

var jessie = {
 "email": "jessie@gmail.com",
 "password": "my-secret"
};

var franck = {
 "email": "franck@gmail.com",
 "password": "my-top-secret"
};

var libraryStateBefore = {
 "userManagement": {
 "membersByEmail": {

Listing 6.27 Unit test for System.addMember

1336.4 Unit tests for mutations
 "franck@gmail.com": {
 "email": "franck@gmail.com",
 "password": "my-top-secret"
 }
 }
 }
};

var expectedLibraryStateAfter = {
 "userManagement": {
 "membersByEmail": {
 "jessie@gmail.com": {
 "email": "jessie@gmail.com",
 "password": "my-secret"
 },
 "franck@gmail.com": {
 "email": "franck@gmail.com",
 "password": "my-top-secret"
 }
 }
 }
};

var systemState = new SystemState();
systemState.commit(null, libraryStateBefore);
System.addMember(systemState, jessie);

_.isEqual(systemState.get(),
 expectedLibraryStateAfter);

Joe Wow, I’m impressed; you did it! Congratulations!

Theo Thank you. I’m so glad that in DOP most of our code deals with data manipu-
lation. It’s definitely more pleasant to write unit tests for stateless code that
only deals with data manipulation.

Joe Now that you know the basics of DOP, would you like to refactor the code of
your Klafim prototype according to DOP principles?

Theo Definitely. Nancy told me yesterday that Klafim is getting nice market traction.
I’m supposed to have a meeting with her in a week or so about the next steps.
Hopefully, she’ll be willing to work with Albatross for the long term.

Joe Exciting! Do you know what might influence Nancy’s decision?

Theo Our cost estimate, certainly, but I know she’s in touch with other software com-
panies. If we come up with a competitive proposal, I think we’ll get the deal.

Joe I’m quite sure that after refactoring to DOP, features will take much less time
to implement. That means you should be able to quote Nancy a lower total cost
than the competition, right?

Theo I’ll keep my fingers crossed!

Creates an empty
SystemState object
(see chapter 4)

Initializes the system
state with the library
data before the
mutation

Executes the
mutation on the
SystemState object

Validates the state after the
mutation is executed

134 CHAPTER 6 Unit tests
Moving forward
The meeting with Nancy went well. Albatross got the deal, Monica (Theo’s boss) is
pleased, and it’s going to be a long-term project with a nice budget. They’ll need to hire a
team of developers in order to meet the tough deadlines. While driving back to the office,
Theo gets a phone call from Joe.

Joe How was your meeting with Nancy?

Theo We got the deal!

Joe Awesome! I told you that with DOP the cost estimation would be lower.

Theo In fact, we are not going to use DOP for this project.

Joe Why?

Theo After refactoring the Library Management System prototype to DOP, I did a
deep analysis with my engineers. We came to the conclusion that DOP might
be a good fit for the prototype phase, but it won’t work well at scale.

Joe Could you share the details of your analysis?

Theo I can’t right now. I’m driving.

Joe Could we meet in your office later today?

Theo I’m quite busy with the new project and the tough deadlines.

Joe Let’s meet at least in order to have a proper farewell.

Theo OK. Let’s meet at 4 PM, then.

 NOTE The story continues in the opener of part 2.

Summary
 Most of the code in a data-oriented system deals with data manipulation.
 It’s straightforward to write unit tests for code that deals with data manipulation.
 Test cases follow the same simple general pattern:

a Generate data input
b Generate expected data output
c Compare the output of the function with the expected data output

 In order to compare the output of a function with the expected data output, we
need to recursively compare the two pieces of data.

 The recursive comparison of two pieces of data is implemented via a generic
function.

 When a function returns a JSON string, we parse the string back to data so that
we deal with data comparison instead of string comparison.

 A tree of function calls for a function f is a tree where the root is f, and the chil-
dren of a node g in the tree are the functions called by g.

 The leaves of the tree are functions that are not part of the code base of the
application and are functions that don’t call any other functions.

 The tree of function calls visualization guides us regarding the quality and
quantity of the test cases in a unit test.

135Summary
 Functions that appear in a lower level in the tree of function calls tend to involve
less complex data than functions that appear in a higher level in the tree.

 Functions that appear in a lower level in the tree of function calls usually need
to be covered with more test cases than functions that appear in a higher level
in the tree.

 Unit tests for mutations focus on the calculation phase of the mutation.
 The validity of the data depends on the context.
 The smaller the data, the easier it is to manipulate.
 We compare the output and the expected output of our functions with a generic

function that recursively compares two pieces of data (e.g., _.isEqual).
 When we write a unit test for a function, we assume that the functions called by

this function are covered by the unit tests and work as expected. This signifi-
cantly reduces the quantity of test cases in our unit tests.

 We avoid using string comparison in unit tests for functions that deal with data.
 Writing a unit test for the main function of a mutation requires more effort

than for a query.
 Remember to include negative test cases in your unit tests.
 The system state is a map. Therefore, in the context of a test case, we can com-

pare the system state after a mutation is executed to the expected system state
using a generic function like _.isEqual.

Part 2

Scalability

Theo feels a bit uncomfortable about the meeting with Joe. He was so enthusias-
tic about DOP, and he was very good at teaching it. Every meeting with him was an
opportunity to learn new things. Theo feels lot of gratitude for the time Joe spent
with him. He doesn’t want to hurt him in any fashion. Surprisingly, Joe enters the
office with the same relaxed attitude as usual, and he is even smiling.

Joe I’m really glad that you got the deal with Nancy.

Theo Yeah. There’s lot of excitement about it here in the office, and a bit of
stress too.

Joe What kind of stress?

Theo You know. . . . We need to hire a team of developers, and the deadlines
are quite tight.

Joe But you told me that you won’t use DOP. I assume that you gave regular
deadlines?

Theo No, my boss Monica really wanted to close the deal. She feels that success
with this project is strategically important for Albatross, so it’s worthwhile
to accept some risk by giving what she calls an “optimistic” time estima-
tion. I told her that it was really an unrealistic time estimation, but Mon-
ica insists that if we make smart decisions and bring in more developers,
we can do it.

Joe I see. Now I understand why you told me over the phone that you were
very busy. Anyway, would you please share the reasons that made you
think DOP wouldn’t be a good fit at scale?

138 PART 2 Scalability
Theo First of all, let me tell you that I feel lot of gratitude for all the teaching you
shared with me. Reimplementing the Klafim prototype with DOP was really
fun and productive due to the flexibility this paradigm offers.

Joe I’m happy that you found it valuable.

Theo But, as I told you over the phone, now we’re scaling up into a long-term project
with several developers working on a large code base. We came to the conclu-
sion that DOP will not be a good fit at scale.

Joe Could you share the reasons behind your conclusion?

Theo There are many of them. First of all, as DOP deals only with generic data struc-
tures, it’s hard to know what kind of data we have in hand, while in OOP, we
know the type of every piece of data. For the prototype, it was kind of OK. But
as the code base grows and more developers are involved in the project, it
would be too painful.

Joe I hear you. What else, my friend?

Theo Our system is going to run on a multi-threaded environment. I reviewed the
concurrency control strategy that you presented, and it’s not thread-safe.

Joe I hear you. What else, my friend?

Theo I have been doing a bit of research about implementing immutable data struc-
tures with structural sharing. I discovered that when the size of the data
structures grows, there is a significant performance hit.

Joe I hear you. What else?

Theo As our system grows, we will use a database to store the application data and
external services to enrich book information, and in what you have showed me
so far, data lives in memory.

Joe I hear you. What else, my friend?

Theo Don’t you think I have shared enough reasons to abandon DOP?

Joe I think that your concerns about DOP at scale totally make sense. However, it
doesn’t mean that you should abandon DOP.

Theo What do you mean?

Joe With the help of meditation, I learned not be attached to the objections that
flow in my mind while I’m practicing. Sometimes all that is needed to quiet our
minds is to keep breathing; sometimes, a deeper level of practice is needed.

Theo I don’t see how breathing would convince me to give DOP a second chance.

Joe Breathing might not be enough in this case, but a deeper knowledge of DOP
could be helpful. Until now, I have shared with you only the material that was
needed in order to refactor your prototype. In order to use DOP in a big proj-
ect, a few more lessons are necessary.

Theo But I don’t have time for more lessons. I need to work.

Joe Have you heard the story about the young woodcutter and the old man?

Theo No.

Joe It goes like this.

139PART 2 Scalability
Theo takes a moment to meditate on the story. He wonders if he needs to take the time to
sharpen his saw and commit to a deeper level of practice.

Theo Do you really think that with DOP, it will take much less time to deliver the
project?

Joe I know so!

Theo But if we miss the deadline, I will probably get fired. I’m the one that needs to
take the risk, not you.

Joe Let’s make a deal. If you miss the deadline and get fired, I will hire you at my
company for double the salary you make at Albatross.

Theo And what if we meet the deadline?

Joe If you meet the deadline, you will probably get promoted. In that case, I will
ask you to buy a gift for my son Neriah and my daughter Aurelia.

Theo Deal! When will I get my first lesson about going deeper into DOP?

Joe Why not start right now?

Theo Let me reschedule my meetings.

The young woodcutter and the old man

A young woodcutter strained to saw down a tree. An old man who was watching near-
by asked, “What are you doing?”

“Are you blind?” the woodcutter replied. “I’m cutting down this tree.”

The old man replied, “You look exhausted! Take a break. Sharpen your saw.”

The young woodcutter explained to the old man that he had been sawing for hours
and did not have time to take a break.

The old man pushed back, “If you sharpen the saw, you would cut down the tree much
faster.”

The woodcutter said, “I don’t have time to sharpen the saw. Don’t you see, I’m too
busy!”

Basic data validation
A solemn gift
At first glance, it may seem that embracing DOP means accessing data without validat-
ing it and engaging in wishful thinking, where data is always valid. In fact, data valida-
tion is not only possible but recommended when we follow data-oriented principles.

 This chapter illustrates how to validate data when data is represented with
generic data structures. It focuses on data validation occurring at the boundaries of
the system, while in part 3, we will deal with validating data as it flows through the
system. This chapter is a deep dive into the fourth principle of DOP.

This chapter covers
 The importance of validating data at system

boundaries

 Validating data using the JSON Schema language

 Integrating data validation into an existing code
base

 Getting detailed information about data validation
failures

PRINCIPLE #4 Separate data schema from data representation.
141

142 CHAPTER 7 Basic data validation
7.1 Data validation in DOP
Theo has rescheduled his meetings. With such an imposing deadline, he’s still not sure if
he’s made a big mistake giving DOP a second chance.

 NOTE The reason why Theo rescheduled his meetings is explained in the opener
for part 2. Take a moment to read the opener if you missed it.

Joe What aspect of OOP do you think you will miss the most in your big project?

Theo Data validation.

Joe Can you elaborate a bit?

Theo In OOP, I have this strong guarantee that when a class is instantiated, its mem-
ber fields have the proper names and proper types. But with DOP, it’s so easy
to have small mistakes in field names and field types.

Joe Well, I have good news for you! There is a way to validate data in DOP.

Theo How does it work? I thought DOP and data validation were two contradictory
concepts!

Joe Not at all. It’s true that DOP doesn’t force you to validate data, but it doesn’t
prevent you from doing so. In DOP, the data schema is separate from the data
representation.

Theo I don’t get how that would eliminate data consistency issues.

Joe According to DOP, the most important data to validate is data that crosses the
boundaries of the system.

Theo Which boundaries are you referring to?

Joe In the case of a web server, it would be the areas where the web server commu-
nicates with its clients and with its data sources.

Theo A diagram might help me see it better.

Joe goes to the whiteboard and picks up the pen. He then draws a diagram like the one in
figure 7.1.

Data

Data

Client (e.g., web browser)

Web server

Web service Database

Data

Figure 7.1 High-level architecture of
a modern web server

1437.2 JSON Schema in a nutshell
Joe This architectural diagram defines what we call the boundaries of the system in
terms of data exchange. Can you tell me what the three boundaries of the sys-
tem are?

 NOTE The boundaries of a system are defined as the areas where the system exchanges
data.

Theo Let me see. The first one is the client boundary, then we have the database
boundary, and finally, the web service boundary.

Joe Exactly! It’s important to identify the boundaries of a system because, in
DOP, we differentiate between two kinds of data validation: validation that
occurs at the boundaries of the system and validation that occurs inside the
system. Today, we’re going to focus on validation that occurs at the boundar-
ies of the system.

Theo Does that mean data validation at the boundaries of the system is more
important?

Joe Absolutely! Once you’ve ensured that data going into and out of the system is
valid, the odds for an unexpected piece of data inside the system are pretty low.

TIP When data at system boundaries is validated, it’s not critical to validate data
again inside the system.

Theo Why do we need data validation inside the system then?

Joe It has to do with making it easier to code your system as your code base grows.

Theo And, what’s the main purpose of data validation at the boundaries?

Joe To prevent invalid data from going in and out of the system, and to display
informative errors when we encounter invalid data. Let me draw a table on the
whiteboard so you can see the distinction (table 7.1).

Theo When will you teach me about data validation inside the system?

Joe Later, when the code base is bigger.

7.2 JSON Schema in a nutshell
Theo For now, the Library Management System is an application that runs in mem-

ory, with no database and no HTTP clients connected to it. But Nancy will
probably want me to make the system into a real web server with clients, data-
base, and external services.

Joe OK. Let’s imagine how a client request for searching books would look.

Table 7.1 Two kinds of data validation

Kind of data validation Purpose Environment

Boundaries Guardian Production

Inside Ease of development Dev

144 CHAPTER 7 Basic data validation
Theo Basically, a search request is made of a string and the fields you’d like to
retrieve for the books whose title contains the string. So the request has two
fields: title, which is a string, and fields, which is an array of strings.

Theo quickly writes on the whiteboard. When he finishes, he steps aside to let Joe view his
code for a search request.

{
"title": "habit",
"fields": ["title", "weight", "number_of_pages"]

}

Joe I see. Let me show you how to express the schema of a search request sepa-
rately from the representation of the search request data.

Theo What do you mean exactly by “separately?”

Joe Data representation stands on its own, and the data schema stands on its own.
You are free to validate that a piece of data conforms with a data schema as you
will and when you will.

TIP In DOP, the data schema is separate from the data representation.

Theo It’s a bit abstract for me.

Joe I know. It will become much clearer in a moment. For now, I am going to show
you how to build the data schema for the search request in a schema language
called JSON Schema.

Theo I love JSON!

 NOTE Information on the JSON Schema language can be found at https://json
-schema.org. The schemas in this book use JSON Schema version 2020-12.

Joe First, we have to express the data type of the request. What’s the data type in
the case of a book search request?

Theo It’s a map.

Joe In JSON Schema, the data type for maps is called object. Look at this basic
skeleton of a map. It’s a map with two fields: type and properties.

Joe goes to the whiteboard. He quickly writes the code for the map with its two fields.

{
"type": "object",
"properties": {...}

}

Listing 7.1 An example of a search request

Listing 7.2 Basic schema skeleton of a map

https://json-schema.org
https://json-schema.org
https://json-schema.org

1457.2 JSON Schema in a nutshell
Joe The value of type is "object", and the value of properties is a map with the
schema for the map fields.

Theo I assume that, inside properties, we are going to express the schema of the map
fields as JSON Schema.

Joe Correct.

Theo I am starting to feel the dizziness of recursion.

Joe In JSON Schema, a schema is usually a JSON object with a field called type,
which specifies the data type. For example, the type for the title field is
string and . . .

Theo . . . the type for the fields field is array.

Joe Yes!

Now it’s Theo’s turn to go to the whiteboard. He fills the holes in the search request
schema with the information about the fields.

{
"type": "object",
"properties": {

"title": {"type": "string"},
"fields": {"type": "array"}

}
}

On Theo’s way back from the whiteboard to his desk, Joe makes a sign with his right hand
that says, “Stay near the whiteboard, please.” Theo turns and goes back to the whiteboard.

Joe We can be a little more precise about the fields property by providing infor-
mation about the type of the elements in the array. In JSON Schema, an array
schema has a property called items, whose value is the schema for the array
elements.

Without any hesitation, Theo adds this information on the whiteboard. Stepping aside, he
shows Joe the result.

{
"type": "object",
"properties": {

"title": {"type": "string"},
"fields": {

"type": "array",
"items": {"type": "string"}

}
}

}

Listing 7.3 Schema skeleton for search request

Listing 7.4 Schema for search request with information about array elements

146 CHAPTER 7 Basic data validation
Before going back to his desk, Theo asks Joe:

Theo Are we done now?

Joe Not yet. We can be more precise about the fields field in the search request.
I assume that the fields in the request should be part of a closed list of fields.
Therefore, instead of allowing any string, we could have a list of allowed values.

Theo Like an enumeration value?

Joe Exactly! In fact, JSON Schema supports enumeration values with the enum key-
word. Instead of {"type": "string"}, you need to have {"enum": […]} and
replace the dots with the supported fields.

Once again, Theo turns to the whiteboard. He replaces the dots with the information Joe
requests.

{
"type": "object",
"properties": {

"title": {"type": "string"},
"fields": {

"type": "array",
"items": {

"enum": [
"publishers",
"number_of_pages",
"weight",
"physical_format",
"subjects",
"publish_date",
"physical_dimensions"

]
}

}
}

}

Theo Are we done, now?

Joe Almost. We need to decide whether the fields of our search request are optional
or required. In our case, both title and fields are required.

Theo How do we express this information in JSON Schema?

Joe There is a field called required whose value is an array made of the names of
the required fields in the map.

After adding the required field, Theo looks at Joe. This time he makes a move with his
right hand that says, “Now you can go back to your desk.”

var searchBooksRequestSchema = {
"type": "object",

Listing 7.5 Schema for the search request with enumeration values

Listing 7.6 Schema of a search request

1477.2 JSON Schema in a nutshell
"properties": {
"title": {"type": "string"},
"fields": {

"type": "array",
"items": {

"enum": [
"publishers",
"number_of_pages",
"weight",
"physical_format",
"subjects",
"publish_date",
"physical_dimensions"

]
}

}
},
"required": ["title", "fields"]

};

Joe Now I’ll show you how to validate a piece of data according to a schema.

Theo What do you mean, validate?

Joe Validating data according to a schema means checking whether data conforms
to the schema. In our case, it means checking whether a piece of data is a valid
search books request.

TIP Data validation in DOP means checking whether a piece of data conforms to a
schema.

Theo I see.

Joe There are a couple of libraries that provide JSON Schema validation. They
have a validate function that receives a schema and a piece of data and
returns true when the data is valid and false when the data is not valid. I just
happen to have a file in my laptop that provides a table with a list of schema
validation libraries (table 7.2). We can print it out if you like.

Theo turns on the printer as Joe scans through his laptop for the table. When he has it up,
he checks with Theo and presses Print.

Table 7.2 Libraries for JSON Schema validation

Language Library URL

JavaScript Ajv https://github.com/ajv-validator/ajv

Java Snow https://github.com/ssilverman/snowy-json

C# JSON.net Schema https://www.newtonsoft.com/jsonschema

Python jschon https://github.com/marksparkza/jschon

Ruby JSONSchemer https://github.com/davishmcclurg/json_schemer

https://github.com/ajv-validator/ajv
https://github.com/ssilverman/snowy-json
https://www.newtonsoft.com/jsonschema
https://github.com/marksparkza/jschon
https://github.com/davishmcclurg/json_schemer

148 CHAPTER 7 Basic data validation
Theo So, if I call validate with this search request and that schema, it will return
true?

Theo indicates the search request example from listing 7.7 and the schema from listing 7.6.

{
"title": "habit",
"fields": ["title", "weight", "number_of_pages"]

}

Joe Give it a try, and you’ll see.

Indeed! When Theo executes the code to validate the search request, it returns true.

var searchBooksRequestSchema = {
"type": "object",
"properties": {

"title": {"type": "string"},
"fields": {

"type": "array",
"items": {"type": "string"}

}
},
"required": ["title", "fields"]

};

var searchBooksRequest = {
"title": "habit",
"fields": ["title", "weight", "number_of_pages"]

};

validate(searchBooksRequestSchema, searchBooksRequest);
// → true

Joe Now, please try an invalid request.

Theo Let me think about what kind of invalidity to try. I know, I’ll make a typo in the
title field and call it tilte with the l before the t.

As expected, the code with the type returns false. Theo is not surprised, and Joe is smil-
ing from ear to ear.

var invalidSearchBooksRequest = {
"tilte": "habit",
"fields": ["title", "weight", "number_of_pages"]

};

Listing 7.7 An example of a search request

Listing 7.8 Validating the search request

Listing 7.9 Validating an invalid search request

1497.3 Schema flexibility and strictness
validate(searchBooksRequestSchema, invalidSearchBooksRequest);
// → false

Theo The syntax of JSON Schema is much more verbose than the syntax for declar-
ing the members in a class. Why is that so?

Joe For two reasons. First, because JSON Schema is language independent, it can
be used in any programming language. As I told you, there are JSON Schema
validators available in most programming languages.

Theo I see.

Joe Second, JSON Schema allows you to express validation conditions that are much
harder, if not impossible, to express when data is represented with classes.

TIP The expressive power of JSON Schema is high!

Theo Now you have triggered my curiosity. Can you give me some examples?

Joe In a moment, we’ll talk about schema composition. Someday I’ll show you
some examples of advanced validation.

 NOTE Advanced validation is covered in chapter 12.

Theo What kind of advanced validation?

Joe What I mean by advanced validation is, for instance, validating that a number
falls within a given range or validating that a string matches a regular expression.

Theo Is there a way to get details about why the request is invalid?

Joe Absolutely! I’ll show you later. For now, let me show you how to make sure the
response the server sends back to the client is valid.

Theo It sounds much more complicated than a search book request!

Joe Why?

Theo Because a search response is made of multiple book results, and in each book
result, some of the fields are optional!

7.3 Schema flexibility and strictness
Joe Can you give me an example of what a book search response would look like?

Theo Take a look at this example. It’s a search response with information about two
books: 7 Habits of Highly Effective People and The Power of Habit.

[
{

"title": "7 Habits of Highly Effective People",
"available": true,
"isbn": "978-0812981605",
"subtitle": "Powerful Lessons in Personal Change",
"number_of_pages": 432

},

Listing 7.10 An example of a search response

150 CHAPTER 7 Basic data validation
{
"title": "The Power of Habit",
"available": false,
"isbn_13": "978-1982137274",
"subtitle": "Why We Do What We Do in Life and Business",
"subjects": [

"Social aspects",
"Habit",
"Change (Psychology)"

]
}

]

Joe It’s funny that you mention The Power of Habit. I’m reading this book in order
to get rid of my habit of biting my nails. Anyway, what fields are required and
what fields are optional in a book search response?

Theo In book information, the title and available fields are required. The other
fields are optional.

Joe As I told you when we built the schema for the book search request, fields in a
map are optional by default. In order to make a field mandatory, we have to
include it in the required array. I’d probably implement it with something
like this.

var searchBooksResponseSchema = {
"type": "array",
"items": {

"type": "object",
"required": ["title", "available"],
"properties": {

"title": {"type": "string"},
"available": {"type": "boolean"},
"subtitle": {"type": "string"},
"number_of_pages": {"type": "integer"},
"subjects": {

"type": "array",
"items": {"type": "string"}

},
"isbn": {"type": "string"},
"isbn_13": {"type": "string"}

}
}

};

TIP In JSON Schema, map fields are optional by default.

Theo I must admit that specifying a list of required fields is much simpler than hav-
ing to specify that a member in a class in nullable!

Joe Agreed!

Theo On the other hand, I find the nesting of the book information schema in the
search response schema a bit hard to read.

Listing 7.11 Schema of a search response

1517.3 Schema flexibility and strictness
Joe Nothing prevents you from separating the book information schema from the
search response schema.

Theo How?

Joe It’s just JSON, my friend. It means, you are free to manipulate the schema as
any other map in your program. For instance, you could have the book infor-
mation schema in a variable named bookInfoSchema and use it in the search
books response schema. Let me refactor the schema to show you what I mean.

var bookInfoSchema = {
"type": "object",
"required": ["title", "available"],
"properties": {

"title": {"type": "string"},
"available": {"type": "boolean"},
"subtitle": {"type": "string"},
"number_of_pages": {"type": "integer"},
"subjects": {

"type": "array",
"items": {"type": "string"}

},
"isbn": {"type": "string"},
"isbn_13": {"type": "string"}

}
};

var searchBooksResponseSchema = {
"type": "array",
"items": bookInfoSchema

};

Theo Once again, I have to admit that JSON Schemas are more composable than
class definitions.

TIP JSON Schemas are just maps. We are free to compose and manipulate them like
any other map.

Joe Let’s move on to validating data received from external data sources.

Theo Is that different?

Joe Not really, but I’ll take it as an opportunity to show you some other features of
JSON Schema.

Theo I’m curious to learn how data validation is used when we access data from the
database.

Joe Each time we access data from the outside, it’s a good practice to validate it.
Can you show me an example of how a database response for a search query
would look?

TIP It’s a good practice to validate data that comes from an external data source.

Listing 7.12 Schema of a search response refactored

152 CHAPTER 7 Basic data validation
Theo When we query books from the database, we expect to receive an array of
books with three fields: title, isbn, and available. The first two values should
be strings, and the third one should be a Boolean.

Joe Are those fields optional or required?

Theo What do you mean?

Joe Could there be books for which some of the fields are not defined?

Theo No.

Joe In that case, the schema is quite simple. Would you like to try writing the
schema for the database response?

Theo Let me see. It’s an array of objects where each object has three properties, so
something like this?

{
"type": "array",
"items": {

"type": "object",
"required": ["title", "isbn", "available"],
"properties": {

"title": {"type": "string"},
"available": {"type": "boolean"},
"isbn": {"type": "string"}

}
}

}

Joe Well done, my friend! Now, I want to tell you about the additionalProperties
field in JSON Schema.

Theo What’s that?

Joe Take a look at this array.

[
{

"title": "7 Habits of Highly Effective People",
"available": true,
"isbn": "978-0812981605",
"dummy_property": 42

},
{

"title": "The Power of Habit",
"available": false,
"isbn": "978-1982137274",
"dummy_property": 45

}
]

Listing 7.13 Schema of a database response

Listing 7.14 A book array with an additional property

1537.3 Schema flexibility and strictness
Joe Is it a valid database response?

Theo No. A database response should not have a dummy_property field. It should
have only the three required fields specified in the schema.

Joe It might be surprising but, by default, fields not specified in the schema of an
object are allowed in JSON Schema. In order to disallow them, one has to set
additionalProperties to false like this.

var booksFromDBSchema = {
"type": "array",
"items": {

"type": "object",
"required": ["title", "isbn", "available"],
"additionalProperties": false,
"properties": {

"title": {"type": "string"},
"available": {"type": "boolean"},
"isbn": {"type": "string"}

}
}

};

TIP In JSON Schema, by default, fields not specified in the schema of a map are
allowed.

Theo Why is that?

Joe The reason is that usually having additional fields in a map doesn’t cause
trouble. If your code doesn’t care about a field, it simply ignores it. But some-
times we want to be as strict as possible, and we set additionalProperties
to false.

Theo What about the search request and response schema from the previous discus-
sions? Should we set additionalProperties to false?

Joe That’s an excellent question. I’d say it’s a matter of taste. Personally, I like to
allow additional fields in requests and disallow them in responses.

Theo What’s the advantage?

Joe Well, the web server is responsible for the responses it sends to its clients. It
makes sense then to be as strict as possible. However, the requests are created
by the clients, and I prefer to do my best to serve my clients even when they are
not as strict as they should be.

Theo Naturally. “The client is always right.”

Joe Actually, I prefer the way Jon Postel formulated his robustness principle: “Be
conservative in what you send, be liberal in what you accept.”

TIP It’s a good practice to be strict with the data that you send and to be flexible with
the data that you receive.

Listing 7.15 Disallowing properties not mentioned in the schema

154 CHAPTER 7 Basic data validation
7.4 Schema composition
Theo What about validating data that comes from an external web service?

Joe Can you give me an example?

Theo In the near future, we’ll have to integrate with a service called Open Library
Books API that provides detailed information about books.

 NOTE For information on the Open Library Books API, see https://openlibrary
.org/dev/docs/api/books.

Joe Can you show me, for instance, the service response for Watchmen?

Theo Sure. Here you go.

Theo taps a few keys on his keyboard and brings up the response. Joe looks at the JSON for
a long time.

{
"publishers": [

"DC Comics"
],
"number_of_pages": 334,
"weight": "1.4 pounds",
"physical_format": "Paperback",
"subjects": [

"Graphic Novels",
"Comics & Graphic Novels",
"Fiction",
"Fantastic fiction"

],
"isbn_13": [

"9780930289232"
],
"title": "Watchmen",
"isbn_10": [

"0930289234"
],
"publish_date": "April 1, 1995",
"physical_dimensions": "10.1 x 6.6 x 0.8 inches"

}

Theo asks himself, “What could be so special in this JSON?” While Joe is meditating about
this piece of JSON, Theo writes the JSON Schema for the Books API response. It doesn’t
seem to be more complicated than any of the previous schemas. When Theo is done, he
asks Joe to take a look at the schema.

{
"type": "object",
"required": ["title"],

Listing 7.16 An Open Library Books API response example

Listing 7.17 Schema of the Open Library Books API response

https://openlibrary.org/dev/docs/api/books
https://openlibrary.org/dev/docs/api/books
https://openlibrary.org/dev/docs/api/books

1557.4 Schema composition
"properties": {
"title": {"type": "string"},
"publishers": {

"type": "array",
"items": {"type": "string"}

},
"number_of_pages": {"type": "integer"},
"weight": {"type": "string"},
"physical_format": {"type": "string"},
"subjects": {

"type": "array",
"items": {"type": "string"}

},
"isbn_13": {

"type": "array",
"items": {"type": "string"}

},
"isbn_10": {

"type": "array",
"items": {"type": "string"}

},
"publish_date": {"type": "string"},
"physical_dimensions": {"type": "string"}

}
}

Joe Good job!

Theo That wasn’t so hard. I really don’t see why you looked at this JSON response for
such a long time.

Joe Well, it has to do with the isbn_10 and isbn_13 fields. I assume that they’re
not both mandatory.

Theo Right! That’s why I didn’t include them in the required field of my schema.

Joe But one of them should always be there. Right?

Theo Sometimes one of them and sometimes both of them, like for Watchmen. It
depends on the publication year of the book. Books published before 2007
have isbn_10, and books published after 2007 have isbn_13.

Joe Oh, I see. And Watchmen has both because it was originally published in 1986
but published again after 2007.

Theo Correct.

Joe Then, you need your schema to indicate that one of the isbn fields is man-
datory. That’s a good opportunity for me to tell you about JSON Schema
composition.

Theo What’s that?

Joe It’s a way to combine schemas, similarly to how we combine logical conditions
with AND, OR, and NOT.

Theo I’d like to see that.

Joe Sure. How would you express the schema for the Books API response as a
composition of three schemas: basicBookInfoSchema, the schema that you
wrote where only title is required; mandatoryIsbn13, a schema where only

156 CHAPTER 7 Basic data validation
isbn_13 is required; and mandatoryIsb10, a schema where only isbn_10 is
required?

Theo I think it should be basicBookInfoSchema AND (mandatoryIsbn13 OR
mandatoryIsbn10).

Joe Exactly! The only thing is that in JSON Schema, we use allOf instead of AND,
and anyOf instead of OR.

Joe shows Theo the result in listing 7.18 and an example of its usage in listing 7.19.

var basicBookInfoSchema = {
"type": "object",
"required": ["title"],
"properties": {

"title": {"type": "string"},
"publishers": {

"type": "array",
"items": {"type": "string"}

},
"number_of_pages": {"type": "integer"},
"weight": {"type": "string"},
"physical_format": {"type": "string"},
"subjects": {

"type": "array",
"items": {"type": "string"}

},
"isbn_13": {

"type": "array",
"items": {"type": "string"}

},
"isbn_10": {

"type": "array",
"items": {"type": "string"}

},
"publish_date": {"type": "string"},
"physical_dimensions": {"type": "string"}

}
};

var mandatoryIsbn13 = {
"type": "object",
"required": ["isbn_13"]

};

var mandatoryIsbn10 = {
"type": "object",
"required": ["isbn_10"]

};

var bookInfoSchema = {
"allOf": [

basicBookInfoSchema,
{

Listing 7.18 Schema of an external API response

1577.4 Schema composition
"anyOf": [mandatoryIsbn13, mandatoryIsbn10]
}

]
};

var bookInfo = {
"publishers": [

"DC Comics"
],
"number_of_pages": 334,
"weight": "1.4 pounds",
"physical_format": "Paperback",
"subjects": [

"Graphic Novels",
"Comics & Graphic Novels",
"Fiction",
"Fantastic fiction"

],
"isbn_13": [

"9780930289232"
],
"title": "Watchmen",
"isbn_10": [

"0930289234"
],
"publish_date": "April 1, 1995",
"physical_dimensions": "10.1 x 6.6 x 0.8 inches"

};

validate(bookInfoSchema, bookInfo);
// → true

Theo I see why they call it allOf and anyOf. The first one means that data must con-
form to all the schemas, and the second one means that data must conform to
any of the schemas.

Joe Yup.

 NOTE JSON Schema also supports oneOf for cases where data must be valid against
exactly one schema.

Theo Nice. With schema composition, JSON Schema seems to have more expressive
power than what I was used to when representing data with classes.

Joe That’s only the beginning. I’ll show you more data validation conditions that
can’t be expressed when data is represented with classes some other time.

 NOTE Advanced data validation is covered in chapter 12.

Theo Something still bothers me, though. When data isn’t valid, you don’t know what
went wrong.

Listing 7.19 Validating an external API response

158 CHAPTER 7 Basic data validation
7.5 Details about data validation failures
Joe So far, we’ve treated JSON Schema validation as though it were binary: either a

piece of data is valid or it isn’t.

Theo Right . . .

Joe But, in fact, when a piece of data is not valid, we can get details about the
reason of the invalidity.

Theo Like when a required field is missing, can we get the name of the missing field?

Joe Yes. When a piece of data is not of the expected type, we can get information
about that also.

Theo That sounds very useful!

Joe Indeed. Let me show you how it works. Until now, we used a generic validate
function, but when we deal with validation failures, we need to be more specific.

Theo Why?

Joe Because each data validator library has its own way of exposing the details of
a data validation failure. For instance, in JavaScript Ajv, the errors from the
last data validation are stored as an array inside the validator instance.

Theo Why an array?

Joe Because there could be several failures. But let’s start with the case of a single
failure. Imagine we encounter a search book request where the title field is
named myTitle instead of title. Take a look at this example. As you can see,
we first instantiate a validator instance.

var searchBooksRequestSchema = {
"type": "object",
"properties": {

"title": {"type": "string"},
"fields": {

"type": "array",
"items": {"type": "string"}

}
},
"required": ["title", "fields"]

};

var invalidSearchBooksRequest = {
"myTitle": "habit",
"fields": ["title", "weight", "number_of_pages"]

};

var ajv = new Ajv();

ajv.validate(searchBooksRequestSchema, invalidSearchBooksRequest);

ajv.errors

Listing 7.20 Accessing validation errors in Ajv

Instantiates a
validator instance

Displays the
validation errors

1597.5 Details about data validation failures
Theo And what does the information inside the errors array look like?

Joe Execute the code snippet. You’ll see.

When Theo executes the code snippets from listing 7.20, he can hardly believe his eyes. He
looks at the details, finding the results hard to digest.

[
{

"instancePath": "",
"schemaPath": "#/required",
"keyword": "required",
"params": {

"missingProperty":"title"
},
"message": "must have required property 'title'"

}
]

Theo I find the contents of the errors array a bit hard to understand.

Joe Me too. Fortunately, Ajv provides a errorsText utility function to convert the
errors array in a human readable format. See, for instance, what is returned
when you call errorsText.

ajv.errorsText(ajv.errors);
// → "data must have required property 'title'"

Theo Let me see what happens when there are more than one validation failure in
the data.

Joe By default, Ajv catches only one validation error.

TIP By default, Ajv catches only the first validation failure.

Theo I guess that’s for performance reasons. Once the validator encounters an
error, it doesn’t continue the data parsing.

Joe Probably. Anyway, in order to catch more than one validation failure, you need
to pass the allErrors options to the Ajv constructor. Check out this code.

var searchBooksRequestSchema = {
"type": "object",
"properties": {

"title": {"type": "string"},
"fields": {

"type": "array",
"items": {"type": "string"}

Listing 7.21 Details for a single data validation failure in an array format

Listing 7.22 Displaying the errors in human readable format

Listing 7.23 Catching multiple validation failures

160 CHAPTER 7 Basic data validation

m
is

m

}
},
"required": ["title", "fields"]

};

var invalidSearchBooksRequest = {
"myTitle": "habit",
"fields": [1, 2]

};

var ajv = new Ajv({allErrors: true});

ajv.validate(searchBooksRequestSchema,
invalidSearchBooksRequest);

ajv.errorsText(ajv.errors);
// → "data must have required property 'title',
// → data/fields/0 must be string,
// → data/fields/1 must be string"

Joe We validate a search request with myTitle instead of title and numbers
instead of strings in the fields array. As you can see in the output of the code
snippet, three errors are returned.

Theo Great! I think I have all that I need in order to add data validation to the
boundaries of my system when Nancy asks me to make the Library Manage-
ment System into a web server.

Joe Would you allow me to give you a small gift as a token of our friendship?

Theo I’d be honored.

Joe takes a small package out of his bag, wrapped in a light-green ribbon. He hands Theo
the package with a solemn gesture.

When Theo undoes the ribbon, he discovers an elegant piece of paper decorated with
pretty little designs. In the center of the paper, Theo manages to read the inscription
“JSON Schema cheat sheet.” He smiles while browsing the cheat sheet. It’s exactly what he
needs.

{
"type": "array",
"items": {

"type": "object",
"properties": {

"myNumber": {"type": "number"},
"myString": {"type": "string"},
"myEnum": {"enum": ["myVal", "yourVal"]},
"myBool": {"type": "boolean"}

},
"required": ["myNumber", "myString"],

Listing 7.24 JSON Schema cheat sheet

A request with
three failures

Instantiates the Ajv constructor
with allErrors: true in order to
catch more than one failure

Converts the
errors to a human
readable format

At the root level,
data is an array.

Each element of the
array is a map.

The properties of
each field in the map

yNumber
 a number.

yString is
a string. myEnum is a

enumeration
value with two
possibilities:
"myVal" and
"yourVal".

myBool is a
boolean.

The mandatory fields in the map
are myNumber and myString;

other fields are optional.

161Summary
"additionalProperties": false
}

}

Then, Theo turns the paper over to find that the back is also filled with drawings. In the
center of the paper, he reads the inscription, “An example of valid data.”

[
{

"myNumber": 42,
"myString": "Hello",
"myEnum": "myVal",
"myBool": true

},
{

"myNumber": 54,
"myString": "Happy"

}
]

Summary
 DOP Principle #4 is to separate data schema and data representation.
 The boundaries of a system are defined to be the areas where the system

exchanges data.
 Some examples of data validation at the boundaries of the system are validation

of client requests and responses, and validation of data that comes from exter-
nal sources.

 Data validation in DOP means checking whether a piece of data conforms to a
schema.

 When a piece of data is not valid, we get information about the validation fail-
ures and send this information back to the client in a human readable format.

 When data at system boundaries is valid, it’s not critical to validate data again
inside the system.

 JSON Schema is a language that allows us to separate data validation from data
representation.

 JSON Schema syntax is a bit verbose.
 The expressive power of JSON Schema is high.
 JSON Schemas are just maps and, as so, we are free to manipulate them like any

other maps in our programs.
 We can store a schema definition in a variable and use this variable in another

schema.
 In JSON Schema, map fields are optional by default.
 It’s good practice to validate data that comes from an external data source.

Listing 7.25 An example of valid data

We don’t allow fields that
are not explicitly mentioned
in the schema.

This map is valid
because all its
fields are valid.

This map is valid
because it contains all
the required fields.

162 CHAPTER 7 Basic data validation
 It’s good practice to be strict regarding data that you send and to be flexible
regarding data that you receive.

 Ajv is a JSON Schema library in JavaScript.
 By default, Ajv catches only the first validation failure.
 Advanced validation is covered in chapter 12.

Advanced
concurrency control

No more deadlocks!
The traditional way to manage concurrency in a multi-threaded environment
involves lock mechanisms like mutexes. Lock mechanisms tend to increase the com-
plexity of the system because it’s not trivial to make sure the system is free of dead-
locks. In DOP, we leverage the fact that data is immutable, and we use a lock-free
mechanism, called an atom, to manage concurrency. Atoms are simpler to manage
than locks because they are lock-free. As a consequence, the usual complexity of
locks that are required to avoid deadlocks don’t apply to atoms.

 NOTE This chapter is mostly relevant to multi-threaded environments like Java,
C#, Python, and Ruby. It is less relevant to single-threaded environments like Java-
Script. The JavaScript code snippets in this chapter are written as though JavaScript
were multi-threaded.

This chapter covers
 Atoms as an alternative to locks

 Managing a thread-safe counter and a thread-safe
in-memory cache with atoms

 Managing the whole system state in a thread-safe
way with atoms
163

164 CHAPTER 8 Advanced concurrency control
8.1 The complexity of locks
This Sunday afternoon, while riding his bike across the Golden Gate Bridge, Theo thinks
about the Klafim project with concern, not yet sure that betting on DOP was a good
choice. Suddenly, Theo realizes that he hasn’t yet scheduled the next session with Joe. He
gets off his bike to call Joe. Bad luck, the line is busy.

When Theo gets home, he tries to call Joe again, but once again the phone is busy. After
dinner, Theo tries to call Joe one more time, with the same result—a busy signal. “Obvi-
ously, Joe is very busy today,” Theo tells himself. Exhausted by his 50-mile bike ride at an
average of 17 miles per hour, he falls asleep on the sofa. When Theo wakes up, he’s elated
to see a text message from Joe, “See you Monday morning at 11 AM?” Theo answers with a
thumbs up and prepares for another week of work.

When Joe arrives at the office, Theo asks him why his phone was constantly busy the day
before. Joe answers that he was about to ask Theo the same question. They look at each
other, puzzled, and then simultaneously break into laughter as they realize what hap-
pened: in an amazing coincidence, they’d tried to phone each other at exactly the same
times. They both say at once:

“A deadlock!”

They both head for Theo’s office. When they get to Theo’s desk, Joe tells him that today’s
session is going to be about concurrency management in multi-threaded environments.

Joe How do you usually manage concurrency in a multi-threaded environment?

Theo I protect access to critical sections with a lock mechanism, a mutex, for instance.

Joe When you say access, do you mean write access or also read access?

Theo Both!

Joe Why do you need to protect read access with a lock?

Theo Because, without a lock protection, in the middle of a read, a write could hap-
pen in another thread. It would make my read logically inconsistent.

Joe Another option would be to clone the data before processing it in a read.

Theo Sometimes I would clone the data; but in many cases, when it’s large, it’s too
expensive to clone.

TIP Cloning data to avoid read locks doesn’t scale.

Joe In DOP, we don’t need to clone or to protect read access.

Theo Because data is immutable?

Joe Right. When data is immutable, even if a write happens in another thread
during a read, it won’t make the read inconsistent because the write never
mutates the data that is read.

Theo In a sense, a read always works on a data snapshot.

Joe Exactly!

TIP When data is immutable, a read is always safe.

Theo But what about write access? Don’t you need to protect that with locks?

Joe Nope.

1658.2 Thread-safe counter with atoms
Theo Why not?

Joe We have a simpler mechanism—it’s called an atom.

Theo I am glad to hear there is a something simpler than locks. I really struggle each
time I have to integrate locks into a multi-threaded system.

Joe Me too! I remember a bug we had in production 10 years ago. We forgot to
release a lock when an exception was thrown in a critical section. It caused a
terrible deadlock.

Theo Deadlocks are really hard to avoid. Last year, we had a deadlock issue when two
locks were not released in the proper order.

Joe I have great news for you. With atoms, deadlocks never happen!

TIP With atoms, deadlocks never happen.

Theo That sounds great. Tell me more!

TIP Atoms provide a way to manage concurrency without locks.

8.2 Thread-safe counter with atoms
Joe Let’s start with a simple case: a counter shared between threads.

Theo What do you mean by a counter?

Joe Imagine that we’d like to count the number of database accesses and write the
total number of accesses to a log every minute.

Theo OK.

Joe Could you write JavaScript code for this multi-threaded counter using locks?

Theo But JavaScript is single-threaded!

Joe I know, but it’s just for the sake of illustration. Imagine that JavaScript were
multi-threaded and that it provided a Mutex object that you could lock and
unlock.

Theo It’s a bit awkward. I guess it would look like this.

Theo goes to the whiteboard. He writes what he imagines to be JavaScript code for a multi-
threaded counter with locks.

var mutex = new Mutex();
var counter = 0;

function dbAccess() {
mutex.lock();
counter = counter + 1;
mutex.unlock();
// access the database

}

function logCounter() {
mutex.lock();

Listing 8.1 A thread-safe counter protected by a mutex

166 CHAPTER 8 Advanced concurrency control
console.log('Number of database accesses: ' + counter);
mutex.unlock();

}

Joe Excellent. Now, I am going to show you how to write the same code with atoms.
An atom provides three methods:

 get returns the current value of the atom.
 set overwrites the current value of the atom.
 swap receives a function and updates the value of the atom with the result

of the function called on the current value of the atom.

Joe unzips a pocket in his laptop case and takes out a piece of paper. He hands it to
Theo. Theo is pleasantly surprised as the sheet of paper succinctly describes the methods
(table 8.1).

Theo How would it look like to implement a thread-safe counter with an atom?

Joe It’s quite simple, actually.

Joe pulls out his laptop, fires it up, and begins to type. When he’s done, he turns the laptop
around so that Theo can see the code to implement a thread-safe counter in an atom.

var counter = new Atom();
counter.set(0);

function dbAccess() {
counter.swap(function(x) {

return x + 1;
});
// access the database

}

function logCounter() {
console.log('Number of database accesses: ' + counter.get());

}

Theo Could you tell me what’s going on here?

Joe Sure! First, we create an empty atom. Then, we initialize the value of the atom
with counter.set(0). In the logger thread, we read the current value of the
atom with counter.get().

Theo And how do you increment the counter in the threads that access the database?

Table 8.1 The three methods of an atom

Method Description

get Returns the current value

set Overwrites the current value

swap Updates the current value with a function

Listing 8.2 A thread-safe counter stored in an atom

The argument x is the
current value of the atom,
same as counter.get().

1678.2 Thread-safe counter with atoms
Joe We call swap with a function that receives x and returns x + 1.

Theo I don’t understand how swap could be thread-safe without using any locks.

Joe quickly goes to the whiteboard. He sketches the diagram in figure 8.1.

Joe You see, swap computes the next value of the atom, and before modifying the
current value of the atom, it checks whether the value of the atom has changed
during the computation. If so, swap tries again, until no changes occur during
the computation.

Theo Is swap easy to implement?

Joe Let me show you the implementation of the Atom class and you’ll see.

class Atom {
state;

constructor() {}

get() {
return this.state;

}

set(state) {
this.state = state;

}

swap(f) {
while(true) {

var stateSnapshot = this.state;
var nextState = f(stateSnapshot);
if (!atomicCompareAndSet(this.state,

Listing 8.3 Implementation of the Atom class

Take snapshot

Update state

Compute next state

State changed?
Yes

No

Figure 8.1 High-level flow of swap

168 CHAPTER 8 Advanced concurrency control
stateSnapshot,
nextState)) {
continue;

}
return nextState;

}
}

}

Theo comes closer to the whiteboard. He modifies Joe’s diagram a bit to make the flow of
the swap operation more detailed. The resulting diagram is in figure 8.2. Theo still has a
few questions, though.

Theo What is atomicCompareAndSet?

Joe It’s the core operation of an atom. atomicCompareAndSet atomically sets the
state to a new value if, and only if, the state equals the provided old value. It
returns true upon success and false upon failure.

Theo How could it be atomic without using locks?

Joe That’s a great question! In fact, atomicCompareAndSet is a compare-and-swap
operation, provided by the language that relies on a functionality of the CPU
itself. For example, in Java the java.util.concurrent.atomic package has
an AtomicReference generic class that provides a compareAndSet() method.

 NOTE See http://tutorials.jenkov.com/java-concurrency/compare-and-swap.html
for general information about compare-and-swap operations. Implementations for
multi-threaded languages appear in table 8.2.

Uses a special thread-safe comparison operation
as this.state might have changed in another
thread during execution of the function f.

Take snapshot

snapshot = state

Compute next state

nextState = f(snapshot)

Check if state has changed

state == snapshot

State changed?
Yes

Update state

state = nextState

No

Figure 8.2 Detailed flow of swap

http://tutorials.jenkov.com/java-concurrency/compare-and-swap.html

1698.2 Thread-safe counter with atoms
Theo Apropos Java, how would the implementation of an atom look?

Joe It’s quite the same, besides the fact that Atom has to use generics, and the inner
state has to be stored in an AtomicReference.

Joe brings up a Java implementation of Atom on his laptop. Theo looks over the code.

class Atom<ValueType> {
private AtomicReference<ValueType> state;

public Atom() {}

ValueType get() {
return this.state.get();

}

void set(ValueType state) {
this.state.set(state);

}

ValueType swap(UnaryOPerator<ValueType> f) {
while(true) {

ValueType stateSnapshot = this.state.get();
ValueType nextState = f(stateSnapshot);
if (!this.state.compareAndSet(stateSnapshot,

nextState)) {
continue;

}
}
return nextState;

}
}

Theo What about using an atom in Java?

Joe Here, take a look. It’s quite simple.

Table 8.2 Implementation of an atomic compare and set in various languages

Language Link

Java http://mng.bz/mx0W

JavaScript Not relevant (single-threaded language)

Ruby http://mng.bz/5KG8

Python https://github.com/maxcountryman/atomos

C# http://mng.bz/6Zzp

Listing 8.4 Implementation of the Atom class in Java

this.state might have
changed in another thread
during the execution of f.

http://mng.bz/mx0W
http://mng.bz/5KG8
https://github.com/maxcountryman/atomos
http://mng.bz/6Zzp

170 CHAPTER 8 Advanced concurrency control
Atom<Integer> counter = new Atom<Integer>();

counter.set(0);

counter.swap(x -> x + 1);

counter.get();

Theo takes a couple of minutes to meditate about this atom stuff and to digest what he’s
just learned. Then, he asks Joe:

Theo What if swap never succeeds? I mean, could the while loop inside the code of
swap turn out to be an infinite loop?

Joe No! By definition, when atomicCompareAndSet fails on a thread, it means that
the same atom was changed on another thread during the execution of swap.
In this race between threads, there is always a winner.

Theo But isn’t it possible that some thread never succeeds because it always loses the
race against other threads?

Joe In theory, yes, but I’ve never encountered such a situation. If you have thou-
sands of threads that do nothing besides swapping an atom, it could happen I
suppose. But, in practice, once the atom is swapped, the threads do some real
work, for example, database access or I/O. This gives other threads the oppor-
tunity to swap the atom successfully.

 NOTE In theory, atoms could create starvation in a system with thousands of threads
that do nothing beside swapping an atom. In practice, once an atom is swapped, the
threads do some real work (e.g., database access), which creates an opportunity for
other threads to swap the atom successfully.

Theo Interesting. . . . Indeed, atoms look much easier to manage than locks.

Joe Now let me show you how to use atoms with composite data.

Theo Why would that be different?

Joe Usually, dealing with composite data is more difficult than dealing with primi-
tive types.

Theo When you sold me on DOP, you told me that we are able to manage data with
the same simplicity as we manage numbers.

TIP In DOP, data is managed with the same simplicity as numbers.

Joe That’s exactly what I am about to show you.

8.3 Thread-safe cache with atoms
Joe Are you familiar with the notion of in-memory cache?

Theo You mean memoization?

Listing 8.5 Using an Atom in Java

1718.3 Thread-safe cache with atoms
Joe Kind of. Imagine that database queries don’t vary too much in your applica-
tion. It makes sense in that case to store the results of previous queries in mem-
ory in order to improve the response time.

Theo Yes, of course!

Joe What data structure would you use to store the in-memory cache?

Theo Probably a string map, where the keys are the queries, and the values are the
results from the database.

TIP It’s quite common to represent an in-memory cache as a string map.

Joe Excellent! Now can you write the code to cache database queries in a thread-
safe way using a lock?

Theo Let me see: I’m going to use an immutable string map. Therefore, I don’t
need to protect read access with a lock. Only the cache update needs to be
protected.

Joe You’re getting the hang of this!

Theo The code should be something like this.

var mutex = new Mutex();
var cache = {};

function dbAccessCached(query) {
var resultFromCache = _.get(cache, query);
if (resultFromCache != nil) {

return resultFromCache;
}
var result = dbAccess(query);
mutex.lock();
cache = _.set(cache, query, result);
mutex.unlock();
return result;

}

Joe Nice! Now, let me show you how to write the same code using an atom instead
of a lock. Take a look at this code and let me know if it’s clear to you.

var cache = new Atom();
cache.set({});

function dbAccessCached(query) {
var resultFromCache = _.get(cache.get(), query);
if (resultFromCache != nil) {

return resultFromCache;
}
var result = dbAccess(query);
cache.swap(function(oldCache) {

Listing 8.6 Thread-safe cache with locks

Listing 8.7 Thread-safe cache with atoms

172 CHAPTER 8 Advanced concurrency control
return _.set(oldCache, query, result);
});
return result;

}

Theo I don’t understand the function you’re passing to the swap method.

Joe The function passed to swap receives the current value of the cache, which is a
string map, and returns a new version of the string map with an additional key-
value pair.

Theo I see. But something bothers me with the performance of the swap method in
the case of a string map. How does the comparison work? I mean, comparing
two string maps might take some time.

Joe Not if you compare them by reference. As we discussed in the past, when data
is immutable, it is safe to compare by reference, and it’s super fast.

TIP When data is immutable, it is safe (and fast) to compare it by reference.

Theo Cool. So atoms play well with immutable data.

Joe Exactly!

8.4 State management with atoms
Joe Do you remember a couple of weeks ago when I showed you how we resolve

potential conflicts between mutations? You told me that the code was not
thread-safe.

Theo Let me look again at the code.

Theo takes a look at the code for the SystemData class that he wrote some time ago
(repeated in listing 8.8). Without the validation logic, it makes the code easier to grasp.

class SystemState {
systemData;

get() {
return this.systemData;

}

set(_systemData) {
this.systemData = _systemData;

}

commit(previous, next) {
this.systemData = SystemConsistency.reconcile(this.systemData,

previous,
next);

}
}

Listing 8.8 SystemData class from part 1

1738.4 State management with atoms
It takes him a few minutes to remember how the commit method works. Suddenly, he has
an Aha! moment.

Theo This code is not thread-safe because the SystemConsistency.reconcile
code inside the commit method is not protected. Nothing prevents the two
threads from executing this code concurrently.

Joe Right! Now, can you tell me how to make it thread-safe?

Theo With locks?

Joe Come on . . .

Theo I was kidding, of course. We make the code thread-safe not with a lock but with
an atom.

Joe Nice joke!

Theo Let me see. I’d need to store the system data inside an atom. The get and set
method of SystemData would simply call the get and set methods of the
atom. How does this look?

class SystemState {
systemData;

constructor() {
this.systemData = new Atom();

}

get() {
return this.systemData.get();

}

commit(prev, next) {
this.systemData.set(next);

}
}

Joe Excellent. Now for the fun part. Implement the commit method by calling the
swap method of the atom.

Theo Instead of calling SystemConsistency.reconcile() directly, I need to wrap
it into a call to swap. So, something like this?

SystemData.commit = function(previous, next) {
this.systemData.swap(function(current) {

return SystemConsistency.reconcile(current,
previous,
next);

});
};

Listing 8.9 SystemData class with atom (without the commit method)

Listing 8.10 Implementation of SystemData.commit with atom

174 CHAPTER 8 Advanced concurrency control
Joe Perfect.

Theo This atom stuff makes me think about what happened to us yesterday, when we
tried to call each other at the exact same time.

Joe What do you mean?

Theo I don’t know, but I am under the impression that mutexes are like phone calls,
and atoms are like text messages.

Joe smiles at Theo but doesn’t reveal the meaning of his smile. After the phone deadlock
yesterday, Theo’s pretty sure that he and Joe are on the same page.

Summary
 Managing concurrency with atoms is much simpler than managing concur-

rency with locks because we don’t have to deal with the risk of deadlocks.
 Cloning data to avoid read locks doesn’t scale.
 When data is immutable, reads are always safe.
 Atoms provide a way to manage concurrency without locks.
 With atoms, deadlocks never happen.
 Using atoms for a thread-safe counter is trivial because the state of the counter

is represented with a primitive type (an integer).
 We can manage composite data in a thread-safe way with atoms.
 We make the highly scalable state management approach from part 1 thread-

safe by keeping the whole system state inside an atom.
 It’s quite common to represent an in-memory cache as a string map.
 When data is immutable, it is safe (and fast) to compare by reference.
 In theory, atoms could create starvation in a system with thousands of threads

that do nothing besides swapping an atom.
 In practice, once an atom is swapped, the threads do some real work (e.g.,

database access) to provide an opportunity for other threads to swap the atom
successfully.

Persistent data structures
Standing on the shoulders of giants
In part 1, we illustrated how to manage the state of a system without mutating data,
where immutability is maintained by constraining ourselves to manipulate the state
only with immutable functions using structural sharing. In this chapter, we present
a safer and more scalable way to preserve data immutability—representing data
with so-called persistent data structures. Efficient implementations of persistent
data structures exist for most programming languages via third-party libraries.

9.1 The need for persistent data structures
It’s at the university where Theo meets Joe this time. When Theo asks Joe if today’s topic
is academic in nature, Joe tells him that the use of persistent data structures only
became possible in programming languages following a discovery in 2001 by a computer

This chapter covers
 The internal details of persistent data

structures

 The time and memory efficiency of persistent
data structures

 Using persistent data structures in an
application
175

176 CHAPTER 9 Persistent data structures
researcher named Phil Bagwell.1 In 2007, Rich Hickey, the creator of Clojure, used this dis-
covery as the foundation of persistent data structures in Clojure. Unveiling the secrets of
these data structures to Theo in a university classroom is a way for Joe to honor the mem-
ory of Phil Bagwell, who unfortunately passed away in 2012. When they get to the univer-
sity classroom, Joe starts the conversation with a question.

Joe Are you getting used to DOP’s prohibition against mutating data in place and
creating new versions instead?

Theo I think so, but two things bother me about the idea of structural sharing that
you showed me.

Joe What bothers you, my friend?

Theo Safety and performance.

Joe What do you mean by safety?

Theo I mean that using immutable functions to manipulate data doesn’t prevent it
from being modified accidentally.

Joe Right! Would you like me to show you the naive way to handle immutability or
the real way?

Theo What are the pros and cons of each way?

Joe The naive way is easy but not efficient, although the real way is efficient but
not easy.

Theo Let’s start with the naive way then.

Joe Each programming language provides its own way to protect data from being
mutated.

Theo How would I do that in Java, for instance?

Joe Java provides immutable collections, and there is a way to convert a list or a
map to an immutable list or an immutable map.

 NOTE Immutable collections are not the same as persistent data structures.

Joe opens his laptop and fires it up. He brings up two code examples, one for immutable
lists and one for immutable maps.

var myList = new ArrayList<Integer>();
myList.add(1);
myList.add(2);
myList.add(3);

var myImmutableList = List.of(myList.toArray());

1 P. Bagwell, “Ideal hash trees” (No. REP_WORK), 2001. [Online]. Available: https://lampwww.epfl.ch/papers/
idealhashtrees.pdf.

Listing 9.1 Converting a mutable list to an immutable list in Java

https://lampwww.epfl.ch/papers/idealhashtrees.pdf
https://lampwww.epfl.ch/papers/idealhashtrees.pdf
https://lampwww.epfl.ch/papers/idealhashtrees.pdf

1779.1 The need for persistent data structures
var myMap = new HashMap<String, Object>();
myMap.put("name", "Isaac");
myMap.put("age", 42);

var myImmutableMap = Collections.unmodifiableMap(myMap);

Theo What happens when you try to modify an immutable collection?

Joe Java throws an UnsupportedOperationException.

Theo And in JavaScript?

Joe JavaScript provides an Object.freeze() function that prevents data from
being mutated. It works both with JavaScript arrays and objects.

Joe takes a minute to scroll through his laptop. When he finds what he’s looking for, he
shows Theo the code.

var a = [1, 2, 3];
Object.freeze(a);

var b = {foo: 1};
Object.freeze(b);

Theo What happens when you try to modify a frozen object?

Joe It depends. In JavaScript strict mode, a TypeError exception is thrown, and in
nonstrict mode, it fails silently.

 NOTE JavaScript’s strict mode is a way to opt in to a restricted variant of JavaScript
that changes some silent errors to throw errors.

Theo In case of a nested collection, are the nested collections also frozen?

Joe No, but in JavaScript, one can write a deepFreeze() function that freezes an
object recursively. Here’s another example.

function deepFreeze(object) {
// Retrieve the property names defined on object
const propNames = Object.getOwnPropertyNames(object);

// Freeze properties before freezing self

for (const name of propNames) {
const value = object[name];

if (value && typeof value === "object") {
deepFreeze(value);

}
}

Listing 9.2 Converting a mutable map to an immutable map in Java

Listing 9.3 Making an object immutable in JavaScript

Listing 9.4 Freezing an object recursively in JavaScript

178 CHAPTER 9 Persistent data structures
return Object.freeze(object);
}

Theo I see that it’s possible to ensure that data is never mutated, which answers my
concerns about safety. Now, let me share my concerns about performance.

TIP It’s possible to manually ensure that our data isn’t mutated, but it’s cumbersome.

Joe Sure.

Theo If I understand correctly, the main idea behind structural sharing is that most
data is usually shared between two versions.

Joe Correct.

Theo This insight allows us to create new versions of our collections using a shallow
copy instead of a deep copy, and you claimed that it was efficient.

Joe Exactly!

Theo Now, here is my concern. In the case of a collection with many entries, a shal-
low copy might be expensive.

Joe Could you give me an example of a collection with many entries?

Theo A catalog with 100,000 books, for instance.

Joe On my machine, making a shallow copy of a collection with 100,000 entries
doesn’t take more than 50 milliseconds.

Theo Sometimes, even 50 milliseconds per update isn’t acceptable.

Joe I totally agree with you. When one needs data immutability at scale, naive struc-
tural sharing is not appropriate.

Theo Also, shallow copying an array of 100,000 elements on each update would
increase the program memory by 100 KB.

Joe Indeed, at scale, we have a problem both with memory and computation.

TIP At scale, naive structural sharing causes a performance hit, both in terms of
memory and computation.

Theo Is there a better solution?

Joe Yes! For that, you’ll need to learn the real way to handle immutability. It’s
called persistent data structures.

9.2 The efficiency of persistent data structures
Theo In what sense are those data structures persistent?

Joe Persistent data structures are so named because they always preserve their pre-
vious versions.

TIP Persistent data structures always preserve the previous version of themselves
when they are modified.

Joe Persistent data structures address the two main limitations of naive structural
sharing: safety and performance.

1799.2 The efficiency of persistent data structures
Theo Let’s start with safety. How do persistent data structures prevent data from
being mutated accidentally?

Joe In a language like Java, they implement the mutation methods of the collec-
tion interfaces by throwing the run-time exception UnsupportedOperation-
Exception.

Theo And, in a language like JavaScript?

Joe In JavaScript, persistent data structures provide their own methods to access
data, and none of those methods mutate data.

Theo Does that mean that we can’t use the dot notation to access fields?

Joe Correct. Fields of persistent data structures are accessed via a specific API.

Theo What about efficiency? How do persistent data structures make it possible to
create a new version of a huge collection in an efficient way?

Joe Persistent data structures organize data in such a way that we can use structural
sharing at the level of the data structure.

Theo Could you explain?

Joe Certainly. Let’s start with the simplest data structure: a linked list. Imagine that
you have a linked list with 100,000 elements.

Theo OK.

Joe What would it take to prepend an element to the head of the list?

Theo You mean to create a new version of the list with an additional element?

Joe Exactly!

Theo Well, we could copy the list and then prepend an element to the list, but it
would be quite expensive.

Joe What if I tell you that the original linked list is guaranteed to be immutable?

Theo In that case, I could create a new list with a new head that points to the head of
the original list.

Theo goes to the classroom blackboard. He picks up a piece of chalk and draws the dia-
gram shown in figure 9.1.

Joe Would the efficiency of this operation depend on the size of the list?

Theo No, it would be efficient, no matter the size of the list.

Joe That’s what I mean by structural sharing at the level of the data structure itself.
It relies on a simple but powerful insight—when data is immutable, it is safe to
share it.

TIP When data is immutable, it is safe to share it.

New list

0 1 2 3 4 5

Original list

Figure 9.1 Structural sharing
with linked lists

180 CHAPTER 9 Persistent data structures
Theo I understand how to use structural sharing at the level of the data structure for
linked lists and prepend operations, but how would it work with operations
like appending or modifying an element in a list?

Joe For that purpose, we need to be smarter and represent our list as a tree.

Theo How does that help?

Joe It helps because when a list is represented as a tree, most of the nodes in the
tree can be shared between two versions of the list.

Theo I am totally confused.

Joe Imagine that you take a list with 100,000 elements and split it into two lists of
50,000 elements each: elements 0 to 49,999 in list 1, and elements 50,000 to
99,999 in list 2. How many operations would you need to create a new version
of the list where a single element—let’s say, element at index 75,100—is
modified?

It’s hard for Theo to visualize this kind of stuff mentally. He goes back to the blackboard
and draws a diagram (see figure 9.2). Once Theo looks at the diagram, it’s easy for him to
answer Joe’s question.

Theo List 1 could be shared with one operation. I’d need to create a new version of
list 2, where element 75,100 is modified. It would take 50,000 operations, so it’s
one operation of sharing and one operation of copying 50,000 elements. Over-
all, it’s 50,001 operations.

Joe Correct. You see that by splitting our original list into two lists, we can create a
new version of the list with a number of operations in the order of the size of
the list divided by 2.

Theo I agree, but 50,000 is still a big number.

Joe Indeed, but nobody prevents us from applying the same trick again, splitting
list 1 and list 2 in two lists each.

Theo How exactly?

Joe We can make list 1.1 with elements 0 to 24,999, then list 1.2 with elements
25,000 to 49,999, list 2.1 with elements 50,000 to 74,999, and list 2.2 with ele-
ments 75,000 to 99,999.

Theo Can you draw that on the blackboard?

Joe Sure.

List

« »Next

List 2

50,000...99,999

List 2

50,000...99,999

List 1

0...49,999

« »Next

List

Figure 9.2 Structural sharing when
a list of 100,000 elements is split

1819.2 The efficiency of persistent data structures
Now, it’s Joe that goes to the blackboard. He draws the diagram in figure 9.3.

Theo Let me count the number of operations for updating a single element. It takes
2 operations of sharing and 1 operation of copying 25,000 elements. Overall, it
takes 25,002 operations to create a new version of the list.

Joe Correct!

Theo Let’s split the list again then!

Joe Absolutely. In fact, we can split the list again and again until the size of the
lists is at most 2. Can you guess what is the complexity of creating a new ver-
sion then?

Theo I’d say around log2 N operations.

Joe I see that you remember well your material from school. Do you have a gut
feeling about what is log2 N when N is 100,000?

Theo Let me see . . . 2 to the power of 10 is around 1,000, and 2 to the power of 7 is
128. So, it should be a bit less than 17.

Joe It’s 16.6 to be precise. It means that in order to update an element in a per-
sistent list of 100,000 elements, we need around 17 operations. The same goes
for accessing elements.

Theo Nice, but 17 is still not negligible.

Joe I agree. We can easily improve the performance of accessing elements by using
a higher branching factor in our tree.

Theo What do you mean?

Joe Instead of splitting by 2 at each level, we could split by 32.

Theo But the running time of our algorithm would still grow with log N.

Joe You’re right. From a theoretical perspective, it’s the same. From a practical
perspective, however, it makes a big difference.

Theo Why?

Joe Because log32 N is 5 times lower than log2 N.

List 1 List 2

List

« »Next

List 2.2

75,000...99,999

List 1.1

0...24,499

List 1.2

25,000...49,999

List 2.1

50,000...74,999

List 2.2

75,000...99,999

List 2

« »Next

List

« »Next

Figure 9.3 Structural sharing when a list of 100,000 elements is split twice

182 CHAPTER 9 Persistent data structures
Theo That’s true: 2 to the power of 5 is 32.

Joe Back to our list of 100,000 elements, can you tell me how many operations are
required to access an element if the branching factor is 32?

Theo With a branching factor of 2, it was 16.6. If I divide 16.6 by 5, I get 3.3.

Joe Correct!

TIP By using a branching factor of 32, we make elements accessed in persistent lists
more efficient.

Theo Does this trick also improve the performance of updating an element in a list?

Joe Yes, indeed, it does.

Theo How? We’d have to copy 32 elements at each level instead of 2 elements. It’s a
16× performance hit that’s not compensated for by the fact that the tree depth
is reduced by 5×!

Joe I see that you are quite sharp with numbers. There is another thing to take
into consideration in our practical analysis of the performance: modern CPU
architecture.

Theo Interesting. The more you tell me about persistent data structures, the more I
understand why you wanted to have this session at a university: it’s because
we’re dealing with all this academic stuff.

Joe Yep. So, to continue, modern CPUs read and write data from and to the main
memory in units of cache lines, often 32 or 64 bytes long.

Theo What difference does that make?

Joe A nice consequence of this data access pattern is that copying an array of size
32 is much faster than copying 16 arrays of size 2 that belong to different levels
of the tree.

Theo Why is that?

Joe The reason is that copying an array of size 32 can be done in a single pair of
cache accesses: one for read and one for write. Although for arrays that belong
to different tree levels, each array requires its own pair of cache accesses, even
if there are only 2 elements in the array.

Theo In other words, the performance of updating a persistent list is dominated by
the depth of the tree.

TIP In modern CPU architectures, the performance of updating a persistent list is
dominated much more by the depth of the tree than by the number of nodes at each
level of the tree.

Joe That’s correct, up to a certain point. With today’s CPUs, using a branching fac-
tor of 64 would, in fact, decrease the performance of update operations.

Theo I see.

Joe Now, I am going to make another interesting claim that is not accurate from a
theoretical perspective but accurate in practice.

Theo What is it?

1839.2 The efficiency of persistent data structures
Joe The number of operations it takes to get or update an element in a persistent
list with branching factor 32 is constant.

Theo How can that be? You just made the point that the number of operations is
log32 N.

Joe Be patient, my friend. What is the highest number of elements that you can
have in a list, in practice?

Theo I don’t know. I never thought about that.

Joe Let’s assume that it takes 4 bytes to store an element in a list.

Theo OK.

Joe Now, can you tell me how much memory it would take to hold a list with 10 bil-
lion elements?

Theo You mean 1 with 10 zeros?

Joe Yes.

Theo Each element take 4 bytes, so it would be around 40 GB!

Joe Correct. Do you agree that it doesn’t make sense to hold a list that takes 40 GB
of memory?

Theo I agree.

Joe So let’s take 10 billion as an upper bound to the number of elements in a list.
What is log32 of 10 billion?

Once again, Theo uses the blackboard to clarify his thoughts. With that, he quickly finds
the answer.

Theo 1 billion is approximately 2^30. Therefore, 10 billion is around 2^33. That
means that log2 of 10 billion is 33, so log32 of 10 billion should be around
33/5, which is a bit less than 7.

Joe I am impressed again by your sharpness with numbers. To be precise, log32 of
10 billion is 6.64.

Theo (smiling) I didn’t get that far.

Joe Did I convince you that, in practice, accessing or updating an element in a per-
sistent list is essentially constant?

Theo Yes, and I find it quite amazing!

TIP Persistent lists can be manipulated in near constant time.

Joe Me too.

Theo What about persistent maps?

Joe It’s quite similar, but I don’t think we have time to discuss it now.

Startled, Theo looks at his watch. This morning’s session has gone by so quickly. He notices
that it’s time to get back to the office and have lunch.

184 CHAPTER 9 Persistent data structures
9.3 Persistent data structures libraries
On their way back to the office, Theo and Joe don’t talk too much. Theo’s thoughts take
him back to what he learned in the university classroom. He feels a lot of respect for Phil
Bagwell, who discovered how to manipulate persistent data structures efficiently, and for
Rich Hickey, who created a programming language incorporating that discovery as a core
feature and making it available to the world. Immediately after lunch, Theo asks Joe to
show him what it looks like to manipulate persistent data structures for real in a program-
ming language.

Theo Are persistent data structures available in all programming languages?

Joe A few programming languages like Clojure, Scala, and C# provide them as part
of the language. In most programming languages, though, you need a third-
party library.

Theo Could you give me a few references?

Joe Sure.

Using Theo’s laptop, Joe bookmarks some sites. He knows exactly which URLs to look for.
Then, while Theo is looking over the bookmarked sites, Joe goes to the whiteboard and
jots down the specific libraries in table 9.1.

 Immutable.js for JavaScript at https://immutable-js.com/
 Paguro for Java at https://github.com/GlenKPeterson/Paguro
 Immutable Collections for C# at http://mng.bz/QW51
 Pyrsistent for Python at https://github.com/tobgu/pyrsistent
 Hamster for Ruby at https://github.com/hamstergem/hamster

Theo What does it take to integrate persistent data structures provided by a third-
party library into your code?

9.3.1 Persistent data structures in Java

Joe In an object-oriented language like Java, it’s quite straightforward to integrate
persistent data structures in a program because persistent data structures
implement collection interfaces, besides the parts of the interface that mutate
in place.

Theo What do you mean?

Table 9.1 Persistent data structure libraries

Language Library

JavaScript Immutable.js

Java Paguro

C# Provided by the language

Python Pyrsistent

Ruby Hamster

https://immutable-js.com/
https://github.com/GlenKPeterson/Paguro
http://mng.bz/QW51
https://github.com/tobgu/pyrsistent
https://github.com/hamstergem/hamster

1859.3 Persistent data structures libraries
Joe Take for instance, Paguro for Java. Paguro persistent maps implement the
read-only methods of java.util.Map like get() and containsKey(), but not
methods like put() and remove(). On the other hand, Paguro vectors imple-
ment the read-only methods of java.util.List like get() and size(), but not
methods like set().

Theo What happens when we call put() or remove() on a Paguro map?

Joe It throws an UnSupportedOperationException exception.

Theo What about iterating over the elements of a Paguro collection with a forEach()?

Joe That works like it would in any Java collection. Here, let me show you an example.

var myVec = PersistentVector.ofIter(
List.of(10, 2, 3));

for (Integer i : myVec) {
System.out.println(i);

}

Theo What about Java streams?

Joe Paguro collections are Java collections, so they support the Java stream inter-
face. Take a look at this code.

var myVec = PersistentVector.ofIter(List.of(10, 2, 3));

vec1.stream().sorted().map(x -> x + 1);

TIP Paguro collections implement the read-only parts of Java collection interfaces.
Therefore, they can be passed to any methods that expect to receive a Java collection
without mutating it.

Theo So far, you told me how do use Paguro collections as Java read-only collections.
How do I make modifications to Paguro persistent data structures?

Joe In a way similar to the _.set() function of Lodash FP that we talked about
earlier. Instead of mutating in place, you create a new version.

Theo What methods does Paguro expose for creating new versions of a data structure?

Joe For vectors, you use replace(), and for maps, you use assoc().

var myVec = PersistentVector.ofIter(List.of(10, 2, 3));

var myNextVec = myVec.replace(0, 42);

Listing 9.5 Iterating over a Paguro vector

Listing 9.6 Streaming a Paguro vector

Listing 9.7 Creating a modified version of a Paguro vector

Creates a Paguro
vector from a
Java list

186 CHAPTER 9 Persistent data structures
var myMap = PersistentHashMap.of(Map.of("aa", 1, "bb", 2)
.entrySet());

var myNextMap = myMap.assoc("aa", 42);

Theo Yes! Now I see how to use persistent data structures in Java, but what about
JavaScript?

9.3.2 Persistent data structures in JavaScript

Joe In a language like JavaScript, it’s a bit more cumbersome to integrate per-
sistent data structures.

Theo How so?

Joe Because JavaScript objects and arrays don’t expose any interface.

Theo Bummer.

Joe It’s not as terrible as it sounds because Immutable.js exposes its own set of
functions to manipulate its data structures.

Theo What do you mean?

Joe I’ll show you in a moment. But first, let me show you how to initiate Immutable.js
persistent data structures.

Theo OK!

Joe Immutable.js provides a handy function that recursively converts a native data
object to an immutable one. It’s called Immutable.fromJS().

Theo What do you mean by recursively?

Joe Consider the map that holds library data from our Library Management Sys-
tem: it has values that are themselves maps. Immutable.fromJS() converts the
nested maps into immutable maps.

Theo Could you show me some code?

Joe Absolutely. Take a look at this JavaScript code for library data.

var libraryData = Immutable.fromJS({
"catalog": {

"booksByIsbn": {
"978-1779501127": {

"isbn": "978-1779501127",
"title": "Watchmen",
"publicationYear": 1987,
"authorIds": ["alan-moore",
"dave-gibbons"]

}
},
"authorsById": {

"alan-moore": {
"name": "Alan Moore",

Listing 9.8 Creating a modified version of a Paguro map

Listing 9.9 Conversion to immutable data

Creates a Paguro map
from a Java map entry set

1879.3 Persistent data structures libraries
"bookIsbns": ["978-1779501127"]
},
"dave-gibbons": {

"name": "Dave Gibbons",
"bookIsbns": ["978-1779501127"]

}
}

}
});

Theo Do you mean that the catalog value in libraryData map is itself an immutable
map?

Joe Yes, and the same for booksByIsbn, authorIds, and so forth.

Theo Cool! So how do I access a field inside an immutable map?

Joe As I told you, Immutable.js provides its own API for data access. For instance,
in order to access a field inside an immutable map, you use Immutable.get()
or Immutable.getIn() like the following.

Immutable.get(libraryData, "catalog");
Immutable.getIn(libraryData,

["catalog", "booksByIsbn", "978-1779501127", "title"]);
// → "Watchmen"

Theo How do I make a modification to a map?

Joe Similar to what we did with Lodash FP, you use an Immutable.set() or
Immutable.setIn() map to create a new version of the map where a field is
modified. Here’s how.

Immutable.setIn(libraryData,
["catalog", "booksByIsbn",

"978-1779501127", "publicationYear"],
1988);

Theo What happens when I try to access a field in the map using JavaScript’s dot or
bracket notation?

Joe You access the internal representation of the map instead of accessing a map
field.

Theo Does that mean that we can’t pass data from Immutable.js to Lodash for data
manipulation?

Joe Yes, but it’s quite easy to convert any immutable collection into a native Java-
Script object back and forth.

Theo How?

Joe Immutable.js provides a toJS() method to convert an arbitrary deeply nested
immutable collection into a JavaScript object.

Listing 9.10 Accessing a field and a nested field in an immutable map

Listing 9.11 Creating a new version of a map where a field is modified

188 CHAPTER 9 Persistent data structures
Theo But if I have a huge collection, it could take lots of time to convert it, right?

Joe True. We need a better solution. Hopefully, Immutable.js provides its own set
of data manipulation functions like map(), filter(), and reduce().

Theo What if I need more data manipulation like Lodash’s _.groupBy()?

Joe You could write your own data manipulation functions that work with the
Immutable.js collections or use a library like mudash, which provides a port of
Lodash to Immutable.js.

 NOTE You can access the mudash library at https://github.com/brianneisler/mudash.

Theo What would you advise?

Joe A cup of coffee, then I’ll show you how to port functions from Lodash to
Immutable.js and how to adapt the code from your Library Management System.
You can decide on whichever approach works best for your current project.

9.4 Persistent data structures in action
Joe Let’s start with our search query. Can you look at the current code and tell me

the Lodash functions that we used to implement the search query?

Theo Including the code for the unit tests?

Joe Of course!

 NOTE See chapter 6 for the unit test of the search query.

9.4.1 Writing queries with persistent data structures

Theo The Lodash functions we used were get, map, filter, and isEqual.

Joe Here’s the port of those four functions from Lodash to Immutable.js.

Immutable.map = function(coll, f) {
return coll.map(f);

};

Immutable.filter = function(coll, f) {
if(Immutable.isMap(coll)) {

return coll.valueSeq().filter(f);
}
return coll.filter(f);

};

Immutable.isEqual = Immutable.is;

Theo The code seems quite simple. But can you explain it to me, function by function?

Joe Sure. Let’s start with get. For accessing a field in a map, Immutable.js provides
two functions: get for direct fields and getIn for nested fields. It’s different
from Lodash, where _.get works both on direct and nested fields.

Listing 9.12 Porting some functions from Lodash to Immutable.js

https://github.com/brianneisler/mudash

1899.4 Persistent data structures in action
Theo What about map?

Joe Immutable.js provides its own map function. The only difference is that it is a
method of the collection, but it is something that we can easily adapt.

Theo What about filter? How would you make it work both for arrays and maps
like Lodash’s filter?

Joe Immutable.js provides a valueSeq method that returns the values of a map.

Theo Cool. And what about isEqual to compare two collections?

Joe That’s easy. Immutable.js provides a function named is that works exactly as
isEqual.

Theo So far, so good. What do I need to do now to make the code of the search
query work with Immutable.js?

Joe You simply replace each occurrence of an _ with Immutable; _.map becomes
Immutable.map, _.filter becomes Immutable.filter, and _.isEqual
becomes Immutable.isEqual.

Theo I can’t believe it’s so easy!

Joe Try it yourself; you’ll see. Sometimes, it’s a bit more cumbersome because
you need to convert the JavaScript objects to Immutable.js objects using
Immutable.fromJS.

Theo copies and pastes the snippets for the code and the unit tests of the search query.
Then, he uses his IDE to replace the _ with Immutable. When Theo executes the tests and
they pass, he is surprised but satisfied. Joe smiles.

class Catalog {
static authorNames(catalogData, authorIds) {

return Immutable.map(authorIds, function(authorId) {
return Immutable.getIn(

catalogData,
["authorsById", authorId, "name"]);

});
}

static bookInfo(catalogData, book) {
var bookInfo = Immutable.Map({

"title": Immutable.get(book, "title"),
"isbn": Immutable.get(book, "isbn"),
"authorNames": Catalog.authorNames(

catalogData,
Immutable.get(book, "authorIds"))

});
return bookInfo;

}

static searchBooksByTitle(catalogData, query) {
var allBooks = Immutable.get(catalogData, "booksByIsbn");
var queryLowerCased = query.toLowerCase();
var matchingBooks = Immutable.filter(allBooks, function(book) {

Listing 9.13 Implementing book search with persistent data structures

190 CHAPTER 9 Persistent data structures
return Immutable.get(book, "title").
toLowerCase().
includes(queryLowerCased);

});
var bookInfos = Immutable.map(matchingBooks, function(book) {

return Catalog.bookInfo(catalogData, book);
});
return bookInfos;

}
}

var catalogData = Immutable.fromJS({
"booksByIsbn": {

"978-1779501127": {
"isbn": "978-1779501127",
"title": "Watchmen",
"publicationYear": 1987,
"authorIds": ["alan-moore",

"dave-gibbons"]
}

},
"authorsById": {

"alan-moore": {
"name": "Alan Moore",
"bookIsbns": ["978-1779501127"]

},
"dave-gibbons": {

"name": "Dave Gibbons",
"bookIsbns": ["978-1779501127"]

}
}

});

var bookInfo = Immutable.fromJS({
"isbn": "978-1779501127",
"title": "Watchmen",
"authorNames": ["Alan Moore",

"Dave Gibbons"]
});

Immutable.isEqual(
Catalog.searchBooksByTitle(catalogData, "Watchmen"),
Immutable.fromJS([bookInfo]));

// → true

Immutable.isEqual(
Catalog.searchBooksByTitle(catalogData, "Batman"),
Immutable.fromJS([]));

// → true

Listing 9.14 Testing book search with persistent data structures

1919.4 Persistent data structures in action
9.4.2 Writing mutations with persistent data structures

Theo Shall we move forward and port the add member mutation?

Joe Sure. Porting the add member mutation from Lodash to Immutable.js only
requires you to again replace the underscore (_) with Immutable. Let’s look at
some code.

UserManagement.addMember = function(userManagement, member) {
var email = Immutable.get(member, "email");
var infoPath = ["membersByEmail", email];
if(Immutable.hasIn(userManagement, infoPath)) {

throw "Member already exists.";
}
var nextUserManagement = Immutable.setIn(userManagement,

infoPath,
member);

return nextUserManagement;
};

Theo So, for the tests, I’d convert the JavaScript objects to Immutable.js objects with
Immutable.fromJS(). How does this look?

var jessie = Immutable.fromJS({
"email": "jessie@gmail.com",
"password": "my-secret"

});

var franck = Immutable.fromJS({
"email": "franck@gmail.com",
"password": "my-top-secret"

});

var userManagementStateBefore = Immutable.fromJS({
"membersByEmail": {

"franck@gmail.com": {
"email": "franck@gmail.com",
"password": "my-top-secret"

}
}

});

var expectedUserManagementStateAfter = Immutable.fromJS({
"membersByEmail": {

"jessie@gmail.com": {
"email": "jessie@gmail.com",
"password": "my-secret"

},
"franck@gmail.com": {

"email": "franck@gmail.com",
"password": "my-top-secret"

Listing 9.15 Implementing member addition with persistent data structures

Listing 9.16 Testing member addition with persistent data structures

192 CHAPTER 9 Persistent data structures
}
}

});

var result = UserManagement.addMember(userManagementStateBefore, jessie);
Immutable.isEqual(result, expectedUserManagementStateAfter);
// → true

Joe Great!

9.4.3 Serialization and deserialization

Theo Does Immutable.js also support JSON serialization and deserialization?

Joe It supports serialization out of the box. As for deserialization, we need to write
our own function.

Theo Does Immutable.js provide an Immutable.stringify() function?

Joe That’s not necessary because the native JSON.stringify() function works
with Immutable.js objects. Here’s another example.

var bookInfo = Immutable.fromJS({
"isbn": "978-1779501127",
"title": "Watchmen",
"authorNames": ["Alan Moore",

"Dave Gibbons"]
});

JSON.stringify(bookInfo);
// → {\"isbn\":\"978-1779501127\",\"title\":\"Watchmen\",
// → \"authorNames\":[\"Alan Moore\",\"Dave Gibbons\"]}

Theo How does JSON.stringify() know how to handle an Immutable.js collection?

Joe As an OOP developer, you shouldn’t be surprised by that.

Theo Hmm . . . let me think a minute. OK, here’s my guess. Is that because JSON
.stringify() calls some method on its argument?

Joe Exactly! If the object passed to JSON.stringify() has a .toJSON() method,
it’s called by JSON.stringify().

Theo Nice. What about JSON deserialization?

Joe That needs to be done in two steps. You first convert the JSON string to a Java-
Script object and then to an immutable collection.

Theo Something like this piece of code?

Immutable.parseJSON = function(jsonString) {
return Immutable.fromJS(JSON.parse(jsonString));

};

Joe Exactly.

Listing 9.17 JSON serialization of an Immutable.js collection

Listing 9.18 Converting a JSON string into an immutable collection

1939.4 Persistent data structures in action
9.4.4 Structural diff

Theo So far, we have ported pieces of code that dealt with simple data manipula-
tions. I’m curious to see how it goes with complex data manipulations such as
the code that computes the structural diff between two maps.

 NOTE Chapter 5 introduces structural diff.

Joe That also works smoothly, but we need to port another eight functions.

Immutable.reduce = function(coll, reducer, initialReduction) {
return coll.reduce(reducer, initialReduction);

};

Immutable.isEmpty = function(coll) {
return coll.isEmpty();

};

Immutable.keys = function(coll) {
return coll.keySeq();

};

Immutable.isObject = function(coll) {
return Immutable.Map.isMap(coll);

};

Immutable.isArray = Immutable.isIndexed;

Immutable.union = function() {
return Immutable.Set.union(arguments);

};

Theo Everything looks trivial with one exception: the use of arguments in Immutable
.union.

Joe In JavaScript, arguments is an implicit array-like object that contains the values
of the function arguments.

Theo I see. It’s one of those pieces of JavaScript magic!

Joe Yep. We need to use arguments because Lodash and Immutable.js differ slightly
in the signature of the union function. Immutable.Set.union receives an array
of lists, whereas a Lodash _.union receives several arrays.

Theo Makes sense. Let me give it a try.

Blowing on his fingers like a seasoned safecracker, first one hand and then the next, Theo
begins typing. Once again, Theo is surprised to discover that after replacing the _ with
Immutable in listing 9.20, the tests pass with the code in listing 9.21.

function diffObjects(data1, data2) {
var emptyObject = Immutable.isArray(data1) ?

Immutable.fromJS([]) :

Listing 9.19 Porting Lodash functions involved in structural diff computation

Listing 9.20 Implementing structural diff with persistent data structures

194 CHAPTER 9 Persistent data structures
Immutable.fromJS({});
if(data1 == data2) {

return emptyObject;
}
var keys = Immutable.union(Immutable.keys(data1), Immutable.keys(data2));
return Immutable.reduce(keys,

function (acc, k) {
var res = diff(Immutable.get(data1, k),

Immutable.get(data2, k));
if((Immutable.isObject(res) && Immutable.isEmpty(res)) ||

(res == "data-diff:no-diff")) {
return acc;

}
return Immutable.set(acc, k, res);

},
emptyObject);

}

function diff(data1, data2) {
if(Immutable.isObject(data1) && Immutable.isObject(data2)) {

return diffObjects(data1, data2);
}
if(data1 !== data2) {

return data2;
}
return "data-diff:no-diff";

}

var data1 = Immutable.fromJS({
g: {

c: 3
},
x: 2,
y: {

z: 1
},
w: [5]

});

var data2 = Immutable.fromJS({
g: {

c:3
},
x: 2,
y: {

z: 2
},
w: [4]

});

Immutable.isEqual(diff(data1, data2),
Immutable.fromJS({

Listing 9.21 Testing structural diff with persistent data structures

195Summary
"w": [
4

],
"y": {

"z": 2
}

}));

Joe What do you think of all this, my friend?

Theo I think that using persistent data collections with a library like Immutable.js is
much easier than understanding the internals of persistent data structures. But
I’m also glad that I know how it works under the hood.

After accompanying Joe to the office door, Theo meets Dave. Dave had been peering
through the window in Theo’s office, looking at the whiteboard, anxious to catch a glimpse
of today’s topic on DOP.

Dave What did Joe teach you today?

Theo He took me to the university and taught me the foundations of persistent data
structures for dealing with immutability at scale.

Dave What’s wrong with the structural sharing that I implemented a couple of
months ago?

Theo When the number of elements in the collection is big enough, naive structural
sharing has performance issues.

Dave I see. Could you tell me more about that?

Theo I’d love to, but my brain isn’t functioning properly after this interesting but
exhausting day. We’ll do it soon, promise.

Dave No worries. Have a nice evening, Theo.

Theo You too, Dave.

Summary
 It’s possible to manually ensure that our data isn’t mutated, but it’s cumbersome.
 At scale, naive structural sharing causes a performance hit, both in terms of

memory and computation.
 Naive structural sharing doesn’t prevent data structures from being accidentally

mutated.
 Immutable collections are not the same as persistent data structures.
 Immutable collections don’t provide an efficient way to create new versions of

the collections.
 Persistent data structures protect data from mutation.
 Persistent data structures provide an efficient way to create new versions of the

collections.
 Persistent data structures always preserve the previous version of themselves when

they are modified.

196 CHAPTER 9 Persistent data structures
 Persistent data structures represent data internally in such a way that structural
sharing scales well, both in terms of memory and computation.

 When data is immutable, it is safe to share it.
 Internally, persistence uses a branching factor of 32.
 In practice, manipulation of persistent data structures is efficient even for col-

lections with 10 billion entries!
 Due to modern architecture considerations, the performance of updating a

persistent list is dominated much more by the depth of the tree than by the
number of nodes at each level of the tree.

 Persistent lists can be manipulated in near constant time.
 In most languages, third-party libraries provide an implementation of persistent

data structures.
 Paguro collections implement the read-only parts of Java collection interfaces.
 Paguro collections can be passed to any methods that expect to receive a Java

collection without mutating them.

Database operations
A cloud is a cloud
Traditionally in OOP, we use design patterns and complex layers of objects to struc-
ture access to the database. In DOP, we prefer to represent data fetched from the
database with generic data collections, namely, lists of maps, where fields in the
maps correspond to database column values. As we’ll see throughout the chapter,
the fact that fields inside a map are accessible dynamically via their names allows us
to use the same generic code for different data entities.

TIP The best way to manipulate data is to represent data as data.

In this chapter, we’ll illustrate the application of data-oriented principles when
accessing data from a relational database. Basic knowledge of relational database
and SQL query syntax (like SELECT, AS, WHERE, and INNER JOIN) is assumed. This
approach can be easily adapted to NoSQL databases.

This chapter covers
 Fetching data from the database

 Storing data in the database

 Manipulating data fetched from the database
197

198 CHAPTER 10 Database operations
 Applications that run on the server usually store data in a database. In DOP, we
represent data retrieved from the database the same way we represent any other data
in our application—with generic data collections. This leads to

 Reduced system complexity.
 Increased genericity.

10.1 Fetching data from the database
Theo and Joe go for a walk in a park near the office. They sit on a bench close to a beau-
tiful lake and gaze at the clouds in the sky. After a couple of minutes of meditative
silence, Joe asks Theo, “What do you see?” Theo tells him that this cloud looks to him
like a horse, and that one looks like a car. On their way back to the office, Theo asks Joe
for an explanation about the clouds. Joe answers with a mysterious smile on his lips, “A
cloud is a cloud.”

Theo So far you’ve shown me how DOP represents data that lives in the memory of
the application. What about data that comes from the outside?

Joe What do you mean by outside?

Theo Data that comes from the database.

Joe I’ll return the question to you. How do you think that we should represent data
that comes from the database in DOP?

Theo As generic data collections, I guess.

Joe Exactly! In DOP, we always represent data with generic data collections.

Theo Does that mean that we can manipulate data from the database with the same
flexibility as we manipulate in-memory data?

Joe Definitely.

TIP In DOP, we represent data from the database with generic data collections, and
we manipulate it with generic functions.

Theo Would you show me how to retrieve book search results when the catalog data
is stored in an SQL database?

Joe I’ll show you in a moment. First, tell me how you would design the tables that
store catalog data.

Theo Do you mean the exact table schemas with the information about primary keys
and nullability of each and every column?

Joe No, I only need a rough overview of the tables, their columns, and the relation-
ships between the tables.

Theo goes to the whiteboard. Figure 10.1 shows the diagram he draws as he explains his
thinking to Joe.

19910.1 Fetching data from the database
Theo I have a books table with three columns: title, isbn, and publication_
year. I also have an authors table with two columns: for id and name. Here,
let me draw these tables on the whiteboard to give you a visual (see tables 10.1
and 10.2).

Joe What about the connection between books and authors?

Theo Let’s see, a book could be written by multiple authors, and an author could write
multiple books. Therefore, I need a many-to-many book_authors table that con-
nects authors and books with two columns, book_isbn and author_id.

Theo once again turns to the whiteboard. He pens the book_authors table 10.3 to show Joe.

Table 10.1 The books table filled with two books

title isbn publication_year

The Power of Habit 978-0812981605 2012

7 Habits of Highly Effective People 978-1982137274 1989

Table 10.2 The authors table filled with three authors

id name

sean-covey Sean Covey

stephen-covey Stephen Covey

charles-duhigg Charles Duhigg

Table 10.3 The book_authors table with rows connecting books with their authors

book_isbn author_id

978-1982137274 sean-covey

978-1982137274 stephen-covey

978-0812981605 charles-duhigg

book_authors

(relationships of books and authors)T

book_isbn VARCHAR[32]

author_id VARCHAR[64]

booksT

isbn VARCHAR[32]

title VARCHAR[64]

publication_year INTEGER

authorsT

id VARCHAR[64]

name VARCHAR[64]

A book
may have
many authors.

1
1

**

An author
may author
many books.

Figure 10.1 The database model
for books and authors

200 CHAPTER 10 Database operations
Joe Great! Let’s start with the simplest case. We’re going to write code that searches
for books matching a title and that returns basic information about the books.
By basic information, I mean title, ISBN, and publication year.

Theo What about the book authors?

Joe We’ll deal with that later, as it’s a bit more complicated. Can you write an SQL
query for retrieving books that contain he word habit in their title?

Theo Sure.

This assignment is quite easy for Theo. First, he jots down the SQL query, then he displays
the results in table 10.4.

SELECT
title,
isbn,
publication_year
FROM
books
WHERE title LIKE '%habit%';

Joe How would you describe these results as a data collection?

Theo I would say it’s a list of maps.

TIP In DOP, accessing data from a NoSQL database is similar to the way we access
data from a relational database.

Joe Right! Now, can you write the search results as a list of maps?

Theo It doesn’t sound too complicated. How about this?

[
{

"title": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",
"publication_year": 1989

},
{

"title": "The Power of Habit",
"isbn": "978-0812981605",
"publication_year": 2012

}
]

Listing 10.1 SQL query to retrieve books whose title contains habit

Table 10.4 Results of the SQL query for books whose title contains the word habit

title isbn publication_year

The Power of Habit 978-0812981605 2012

7 Habits of Highly Effective People 978-1982137274 1989

Listing 10.2 Search results as a list of maps

20110.1 Fetching data from the database
Joe What about the JSON schema for the search results?

Theo It shouldn’t be too difficult if you allow me to take a look at the JSON schema
cheat sheet you kindly offered me the other day.

Joe Of course. The purpose of a gift is to be used by the one who receives it.

Theo takes a look at the JSON Schema cheat sheet to refresh his memory about the JSON
Schema syntax. After a few minutes, Theo comes up with a schema for the search results.
He certainly is putting Joe’s gift to good use.

{
"type": "array",
"items": {

"type": "object",
"properties": {

"myNumber": {"type": "number"},
"myString": {"type": "string"},
"myEnum": {"enum": ["myVal", "yourVal"]},
"myBool": {"type": "boolean"}

},
"required": ["myNumber", "myString"],
"additionalProperties": false

}
}

var dbSearchResultSchema = {
"type": "array",
"items": {

"type": "object",
"required": ["title", "isbn", "publication_year"],
"properties": {

"title": {"type": "string"},
"isbn": {"type": "string"},
"publication_year": {"type": "integer"}

}
}

};

Joe Excellent. Now I’m going to show you how to implement searchBooks in a
way that fetches data from the database and returns a JSON string with the
results. The cool thing is that we’re only going to use generic data collections
from the database layer down to the JSON serialization.

Theo Will it be similar to the implementation of searchBooks that we wrote when
you taught me the basis of DOP?

Joe Absolutely. The only difference is that then the state of the system was stored
locally, and we queried it with a function like _.filter. Now, we use SQL

Listing 10.3 JSON schema cheat sheet

Listing 10.4 The JSON schema for search results from the database

202 CHAPTER 10 Database operations
queries to fetch the state from the database. In terms of data representation
and manipulation, it’s exactly the same.

Joe goes to the whiteboard and sketches out the data flow in figure 10.2. Theo studies the
diagram.

Joe The data manipulation step in the diagram is implemented via generic func-
tions that manipulate data collections. As our examples get more elaborate, I
think you’ll see the benefits of being able to manipulate data collections with
generic functions.

Theo Sounds intriguing . . .

Joe For the communication with the database, we use a driver that returns a list of
maps. In JavaScript, you could use an SQL driver like node-postgres.

 NOTE See https://node-postgres.com for more information about this collection of
node.js modules for interfacing with PostgreSQL databases.

Theo And in Java?

Joe In Java, you could use JDBC (Java database connectivity) in addition to a small
utility function that converts a JDBC result set into a list of maps. If I can use
your laptop, I’ll show you what I mean.

Joe pulls a piece of code from one of his personal GitHub repositories. He then shows the
code for the JDBC conversion to Theo, who seems a bit surprised.

List<Map<String, Object>> convertJDBCResultSetToListOfMaps(ResultSet rs) {
List<Map<String, Object>> listOfMaps =

new ArrayList<Map<String, Object>>();
ResultSetMetaData meta = rs.getMetaData();
while (rs.next()) {

Map map = new HashMap();
for (int i = 1; i <= meta.getColumnCount(); i++) {

String key = meta.getColumnLabel(i);
Object value = rs.getObject(i);

Listing 10.5 Converting a JDBC result set into a list of hash maps

Database

Database driver

JSON serialize

Data (list of maps)

Data manipulation

Data Figure 10.2 Data flow for serving
a request that fetches data from
the database

https://node-postgres.com

20310.1 Fetching data from the database
map.put(key, value);
}
listOfMaps.add(map);

}
return listOfMaps;

}

TIP Converting a JDBC result set into a list of hash maps is quite straightforward.

Theo I expected it to be much more complicated to convert a JDBC result set into a
list of hash maps.

Joe It’s straightforward because, in a sense, JDBC is data-oriented.

Theo What about the field types?

Joe When we convert a JDBC result set into a list of maps, each value is considered
an Object.

Theo That’s annoying because it means that in order to access the value, we need to
cast it to its type.

Joe Yes and no. Look at our book search use case. We pass all the values along with-
out really looking at their type. The concrete value type only matters when we
serialize the result into JSON and that’s handled by the JSON serialization
library. It’s called late binding.

 NOTE With late binding, we defer dealing with data types as long as possible.

Theo Does that mean in my application that I’m allowed to manipulate data without
dealing with concrete types?

TIP In DOP, flexibility is increased as many parts of the system are free to manipulate
data without dealing with concrete types.

Joe Exactly. You’ll see late binding in action in a moment. That’s one of the great-
est benefits of DOP.

Theo Interesting, I can’t wait to see that!

Joe One last thing before I show you the code for retrieving search results from the
database. In order to make it easier to read, I’m going to write JavaScript code
as if JavaScript were dealing with I/O is a synchronous way.

Theo What do you mean?

Joe In JavaScript, an I/O operation like sending a query to the database is done
asynchronously. In real life, it means using either callback functions or using
async and await keywords.

Theo Oh yeah, that’s because JavaScript is single-threaded.

 NOTE For sake of simplicity, the JavaScript snippets in this chapter are written as if
JavaScript were dealing with I/O in a synchronous way. In real-life JavaScript, we need
to use async and await around I/O calls.

Joe Indeed, so I’ll be writing the code that communicates with the database as
though JavaScript were dealing with I/O synchronously. Here’s an example.

204 CHAPTER 10 Database operations
var dbClient;
var ajv = new Ajv({allErrors: true});

var title = "habit";
var matchingBooksQuery = `SELECT title, isbn

FROM books
WHERE title LIKE '%$1%'`;

var books = dbClient.query(matchingBooksQuery,
[title]);

if(!ajv.validate(dbSearchResultSchema, books)) {
var errors = ajv.errorsText(ajv.errors);
throw "Internal error: Unexpected result from the database: " + errors;

}

JSON.stringify(books);

Theo In a dynamically-typed language like JavaScript, I understand that the types of
the values in the list of maps returned by dbClient.query are determined at
run time. How does it work in a statically-typed language like Java, and what are
the types of the data fields in books?

Joe The function convertJDBCResultSetToListOfMaps we created earlier (see
listing 10.5) returns a list of Map<String, Object>. But JSON serialization
libraries like Gson know how to detect at run time the concrete type of the val-
ues in a map and serialize the values according to their type.

 NOTE See https://github.com/google/gson for information about Gson’s Java
serialization/deserialization library.

Theo What do you mean by serializing a value according to its type?
Joe For instance, the value of the field publication_year is a number; therefore,

it is not wrapped with quotes. However, the value of the field title is a string;
therefore, it is wrapped with quotes.

Theo Nice! Now, I understand what you mean by late binding.

Joe Cool! Now, let me show you how we store data in the database.

10.2 Storing data in the database
In the previous section, we saw how to retrieve data from the database as a list of maps.
Next, we’ll see how to store data in the database when data is represented with a map.

Theo I guess that storing data in the database is quite similar to fetching data from
the database.

Joe It’s similar in the sense that we deal only with generic data collections. Can you
write a parameterized SQL query that inserts a row with user info using only
email and encrypted_password, please?

Theo OK.

Listing 10.6 Searching books in the database, returning the results in JSON

dbClient holds the
DB connection.

Initializes Ajv (a JSON schema validation
library) with allErrors: true to catch all
the data validation errors

Uses a parameterized
SQL query as a security
best practice

Passes the parameters to the SQL
query as a list of values (in our
case, a list with a single value)

https://github.com/google/gson

20510.2 Storing data in the database
Theo takes a moment to think about the code and writes a few lines of SQL as Joe
requested. He shows it to Joe.

INSERT
INTO members
(email, encrypted_password)
VALUES ($1, $2)

Joe Great! And here’s how to integrate your SQL query in our application code.

var addMemberQuery =
"INSERT INTO members (email, password) VALUES ($1, $2)";

dbClient.query(addMemberQuery,
[_.get(member, "email"),

_.get(member, "encryptedPassword")]);

Theo Your code is very clear, but something still bothers me.

Joe What is that?

Theo I find it cumbersome that you use _.get(user, "email") instead of user
.email, like I would if the data were represented with a class.

Joe In JavaScript, you are allowed to use the dot notation user.email instead of
_.get(user, "email").

Theo Then why don’t you use the dot notation?

Joe Because I wanted to show you how you can apply DOP principles even in lan-
guages like Java, where the dot notation is not available for hash maps.

 NOTE In this book, we avoid using the JavaScript dot notation to access a field in a
hash map in order to illustrate how to apply DOP in languages that don’t support dot
notation on hash maps.

Theo That’s exactly my point. I find it cumbersome in a language like Java to use
_.get(user, "email") instead of user.email like I would if the data were
represented with a class.

Joe On one hand, it’s cumbersome. On the other hand, representing data with a
hash map instead of a static class allows you to access fields in a flexible way.

Theo I know—you’ve told me so many times! But I can’t get used to it.

Joe Let me give you another example of the benefits of the flexible access to data
fields in the context of adding a member to the database. You said that writing
[_.get(member, "email"), _.get(member, "encryptedPassword")] was
less convenient than writing [member.email, member.encryptedPassword].
Right?

Theo Absolutely!

Joe Let me show you how to write the same code in a more succinct way, using a
function from Lodash called _.at.

Listing 10.7 SQL statement to add a member

Listing 10.8 Adding a member from inside the application

Passes the two parameters to
the SQL query as an array

206 CHAPTER 10 Database operations
Theo What does this _.at function do?

Joe It receives a map m, a list keyList, and returns a list made of the values in m
associated with the keys in keyList.

Theo How about an example?

Joe Sure. We create a list made of the fields email and encryptedPassword of a
member.

Joe types for a bit. He shows this code to Theo.

var member = {
"email": "samantha@gmail.com",
"encryptedPassword": "c2VjcmV0",
"isBlocked": false

};

_.at(member,
["email", "encryptedPassword"]);

// ? ["samantha@gmail.com", "c2VjcmV0"]

Theo Do the values in the results appear in the same order as the keys in keyList?

Joe Yes!

Theo That’s cool.

TIP Accessing a field in a hash map is more flexible than accessing a member in an
object instantiated from a class.

Joe And here’s the code for adding a member using _.at.

class CatalogDB {
static addMember(member) {

var addMemberQuery = `INSERT
INTO members

(email, encrypted_password)
VALUES ($1, $2)`;

dbClient.query(addMemberQuery,
_.at(member, ["email",

"encryptedPassword"]));
}

}

Theo I can see how the _.at function becomes really beneficial when we need to
pass a bigger number of field values.

Joe I’ll be showing you more examples that use the flexible data access that we
have in DOP.

Listing 10.9 Creating a list made of some values in a map with _.at

Listing 10.10 Using _.at to return multiple values from a map

20710.3 Simple data manipulation
10.3 Simple data manipulation
Quite often, in a production application, we need to reshape data fetched from the
database. The simplest case is when we need to rename the columns from the data-
base to those that are more appropriate for our application.

Joe Did you notice that the column names in our database follow the snake case
convention?

Theo I’m so used to the convention, no. I didn’t even think about that.

Joe Well, for instance, the column for the publication year of a book is called
publication_year.

Theo Go on . . .

Joe Inside JSON, I like to use Pascal case, like publicationYear.

Theo And I’d prefer to have bookTitle instead of title.

Joe So we’re both unhappy with the JSON string that searchBooks returns if we
pass the data retrieved from the database as is.

Theo Indeed!

Joe How would you fix it?

Theo I would modify the SQL query so that it renames the columns in the results.
Here, let me show you the query.

SELECT
title AS bookTitle,
isbn,
publication_year AS publicationYear
FROM
books
WHERE title LIKE '%habit%';

Joe That would work, but it seems a bit weird to modify an SQL query so that it fits
the naming convention of the application.

Theo Yeah, I agree. I imagine a database like MongoDB doesn’t make it easy to
rename the fields inside a query.

Joe Yep. Sometimes it makes more sense to deal with field names in application
code. How would you handle that?

Theo Well, in that case, for every map returned by the database query, I’d use a func-
tion to modify the field names.

Joe Could you show me what the code would look like?

Theo Sure. How about this?

function renameBookInfoKeys(bookInfo) {
return {

Listing 10.11 Renaming columns inside the SQL query

Listing 10.12 Renaming specific keys in a list of maps

208 CHAPTER 10 Database operations
"bookTitle": _.get(bookInfo, "title"),
"isbn": _.get(bookInfo, "isbn"),
"publicationYear": _.get(bookInfo, "publication_year")

};
}

var bookResults = [
{

"title": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",
"publication_year": 1989

},
{

"title": "The Power of Habit",
"isbn": "978-0812981605",
"publication_year": 2012

}
];

_.map(bookResults, renameBookInfoKeys);

Joe Would you write a similar piece of code for every query that you fetched from
the database?

Theo What do you mean?

Joe Suppose you want to rename the fields returned by a query that retrieves the
books a user has borrowed.

Theo I see. I’d write a similar piece of code for each case.

Joe In DOP, we can use the fact that a field name is just a string and write a generic
function called renameResultKeys that works on every list of maps.

Theo Wow! How does renameResultKeys know what fields to rename?

Joe You pass the mapping between the old and the new names as a map.

TIP In DOP, field names are just strings. It allows us to write generic functions to
manipulate a list of maps that represent data fetched from the database.

Theo Could you show me an example?

Joe Sure. A map like this can be passed to renameResultKeys to rename the fields
in the book search results. So, for example, you could write renameResult-
Keys like this.

renameResultKeys(bookResults, {
"title": "bookTitle",
"publication_year": "publicationYear"

});

Theo What happened to the field that stores the isbn?

Joe When a field is not mentioned, renameResultKeys leaves it as-is.

Listing 10.13 Renaming fields in SQL results

20910.3 Simple data manipulation
Theo Awesome! Can you show me the implementation of renameResultKeys?

Joe Sure, it’s only about map and reduce, so I’d do something like the following.

function renameKeys(map, keyMap) {
return _.reduce(keyMap,

function(res, newKey, oldKey) {
var value = _.get(map, oldKey);
var resWithNewKey = _.set(res, newKey, value);
var resWithoutOldKey = _.omit(resWithNewKey, oldKey);
return resWithoutOldKey;

},
map);

}

function renameResultKeys(results, keyMap) {
return _.map(results, function(result) {

return renameKeys(result, keyMap);
});

}

Theo That code isn’t exactly easy to understand!

Joe Don’t worry. The more you write data manipulation functions with map, filter,
and reduce, the more you get used to it.

Theo I hope so!

Joe What’s really important for now is that you understand what makes it possible
in DOP to write a function like renameResultKeys.

Theo I would say it’s because fields are accessible dynamically with strings.

Joe Exactly. You could say that fields are first-class citizens.

TIP In DOP, fields are first-class citizens.

Theo How would you write unit tests for a data manipulation function like rename-
ResultKeys?

Joe It’s similar to the unit tests we wrote earlier. You generate input and expected
results, and you make sure that the actual results equal the expected results.
Hang on; this may take a while.

While Joe is busy coding, Theo takes this opportunity to run to the kitchen and prepare
two espressos. What luck! There’s a box of Swiss chocolates on the counter. He grabs a cou-
ple of pieces and returns to his office just as Joe is finishing up the unit test.

var listOfMaps = [
{

"title": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",

Listing 10.14 Renaming the keys in SQL results

Listing 10.15 Unit test for renameResultKeys

210 CHAPTER 10 Database operations
"publication_year": 1989
},
{

"title": "The Power of Habit",
"isbn": "978-0812981605",
"publication_year": 2012

}
];

var expectedResults = [
{

"bookTitle": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",
"publicationYear": 1989

},
{

"bookTitle": "The Power of Habit",
"isbn": "978-0812981605",
"publicationYear": 2012

}
];

var results = renameResultKeys(listOfMaps,
{"title": "bookTitle",

"publication_year": "publicationYear"});

_.isEqual(expectedResults, results);

Theo Nice!

Joe Do you see why you’re free to use renameResultKeys with the results of any
SQL query?

Theo Yes, because the code of renameResultKeys is decoupled from the internal
details of the representation of data it operates on.

Joe Exactly! Now, suppose an SQL query returns user info in a table. How would
you use renameResultKeys to rename email to userEmail? Assume the table
looks like this (table 10.5).

Once again, the whiteboard comes in to play. When he’s finished, Joe shows Theo the
table.

Theo That’s easy!

Table 10.5 Results of an SQL query that returns email and
encrypted_password of some users

email encrypted_password

jennie@gmail.com secret-pass

franck@hotmail.com my-secret

21110.4 Advanced data manipulation
On his laptop, Theo writes the code to rename email. Satisfied, he turns the laptop to Joe.

var listOfMaps = [
{

"email": "jennie@gmail.com",
"encryptedPassword": "secret-pass"

},
{

"email": "franck@hotmail.com",
"encryptedPassword": "my-secret"

}
];

renameResultKeys(listOfMaps,
{"email": "userEmail"});

Joe Excellent! I think you’re ready to move on to advanced data manipulation.

10.4 Advanced data manipulation
In some cases, we need to change the structure of the rows returned by an SQL query
(for instance, aggregating fields from different rows into a single map). This could be
done at the level of the SQL query, using advanced features like JSON aggregation in
PostgreSQL. However, sometimes it makes more sense to reshape the data inside the
application because it keeps the SQL queries simple. As with the simple data manipu-
lation scenario of the previous section, once we write code that implements some data
manipulation, we’re free to use the same code for similar use cases, even if they involve
data entities of different types.

Theo What kind of advanced data manipulation did you have in mind?

Joe You’ll see in a minute, but first, an SQL task for you. Write an SQL query that
returns books, including author names, that contain the word habit in their
title.

Theo Let me give it a try.

After some trial and error, Theo is able to nail it down. He jots down an SQL query that
joins the three tables: books, book_authors, and authors.

SELECT
title,
isbn,
authors.name AS author_name
FROM
books
INNER JOIN
book_authors

Listing 10.16 Renaming email to userEmail

Listing 10.17 SQL query to retrieve books containing the word habit

212 CHAPTER 10 Database operations
ON books.isbn = book_authors.book_isbn
INNER JOIN
authors
ON book_authors.author_id = authors.id
WHERE books.title LIKE '%habit%';

Joe How many rows are in the results?

Theo goes to the whiteboard. He quickly sketches a table showing the results, then he
answers Joe’s question. Because 7 Habits of Highly Effective People has two authors, Theo lists
the book twice in table 10.6.

Theo Three rows.

Joe And how many books?

Theo Two books.

Joe Can you show me the results of the SQL query as a list of maps?

Theo Sure.

[
{

"title": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",
"publication_year": "Sean Covey"

},
{

"title": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",
"author_name": "Stephen Covey"

},
{

"title": "The Power of Habit",
"isbn": "978-0812981605",
"author_name": "Charles Duhigg"

}
]

Joe And what does the list of maps that we need to return look like?

Theo It’s a list with two maps, where the author names are aggregated in a list. Let
me write the code for that.

Table 10.6 Results of the SQL query that retrieves books whose title contain the word habit, including
author names

title isbn author_name

7 Habits of Highly Effective People 978-1982137274 Sean Covey

7 Habits of Highly Effective People 978-1982137274 Stephen Covey

The Power of Habit 978-0812981605 Charles Duhigg

Listing 10.18 A list of maps with the results for listing 10.17

21310.4 Advanced data manipulation
[
{

"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",
"authorNames": [

"Sean Covey",
"Stephen Covey"

]
},
{

"isbn": "978-0812981605",
"title": "The Power of Habit",
"authorNames": ["Charles Duhigg"]

}
]

Joe Perfect! Now, let’s take an example of an advanced data manipulation task,
where we convert the list of maps as returned from the database to a list of
maps where the author names are aggregated.

Theo Hmm . . . That sounds tough.

Joe Let me break the task in two steps. First, we group together rows that belong to
the same book (with the same ISBN). Then, in each group, we aggregate
author names in a list. Hold on, I’ll diagram it as a data processing pipeline.

Joe goes the whiteboard. He draws the diagram in figure 10.3.

Joe Does it makes sense to you now?

Theo Yes, the data pipeline makes sense, but I have no idea how to write code that
implements it!

Joe Let me guide you step by step. Let’s start by grouping together books with the
same ISBN using _.groupBy.

var sqlRows = [
{

"title": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",
"author_name": "Sean Covey"

},
{

"title": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",
"author_name": "Stephen Covey"

},
{

"title": "The Power of Habit",
"isbn": "978-0812981605",
"author_name": "Charles Duhigg"

}
];

_.groupBy(sqlRows, "isbn");

Listing 10.19 Aggregating author names in a list

Listing 10.20 Grouping rows by ISBN

214 CHAPTER 10 Database operations
Theo What does rowsByIsbn look like?

Joe It’s a map where the keys are isbn, and the values are lists of rows. Here’s how
that would look.

{
"978-0812981605": [

{
"author_name": "Charles Duhigg",
"isbn": "978-0812981605",

Listing 10.21 Rows grouped by ISBN

group by isbn

aggregate author_names

title 7 Habits of Highly Effective People

isbn 978-1982137274

author_name Sean Covey

title The Power of Habit

isbn 978-0812981605

author_name Charles Duhigg

title 7 Habits of Highly Effective People

isbn 978-1982137274

author_name Stephen Covey

title 7 Habits of Highly Effective People

isbn 978-1982137274

author_name Sean Covey

title The Power of Habit

isbn 978-0812981605

author_name Charles Duhigg

title 7 Habits of Highly Effective People

isbn 978-1982137274

author_name Stephen Covey

978-1982137274 978-0812981605

title 7 Habits of Highly Effective People

isbn 978-1982137274

authorNames [Sean Covey, Stephen Covey]

title The Power of Habit

isbn 978-0812981605

authorNames [Charles Duhigg]

Figure 10.3 Data pipeline for aggregating author names

21510.4 Advanced data manipulation
"title": "The Power of Habit"
}

],
"978-1982137274": [

{
"author_name": "Sean Covey",
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People"

},
{

"author_name": "Stephen Covey",
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People"

}
]

}

Theo What’s the next step?

Joe Now, we need to take each list of rows in rowsByIsbn and aggregate author
names.

Theo And how do we do that?

Joe Let’s do it on the list of two rows for 7 Habits of Highly Effective People. The code
looks like this.

var rows7Habits = [
{

"author_name": "Sean Covey",
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People"

},
{

"author_name": "Stephen Covey",
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People"

}
];

var authorNames = _.map(rows7Habits, "author_name");
var firstRow = _.nth(rows7Habits, 0);
var bookInfoWithAuthorNames = _.set(firstRow, "authorNames", authorNames);
_.omit(bookInfoWithAuthorNames, "author_name");

Joe First, we take the author names from all the rows. Then, we take the first row as
a basis for the book info, we add a field authorNames, and remove the field
author_name.

Theo Can we make a function of it?

Joe That’s exactly what I was going to suggest!

Listing 10.22 Aggregating author names

Takes the
author names
from all rows

Removes the
author_name field

216 CHAPTER 10 Database operations
Theo I’ll call the function aggregateField. It will receive three arguments: the
rows, the name of the field to aggregate, and the name of the field that holds
the aggregation.

Theo turns to his laptop. After a couple of minutes, his screen displays the implementation
for aggregateField.

function aggregateField(rows, fieldName, aggregateFieldName) {
var aggregatedValues = _.map(rows, fieldName);
var firstRow = _.nth(rows, 0);
var firstRowWithAggregatedValues = _.set(firstRow,

aggregateFieldName,
aggregatedValues);

return _.omit(firstRowWithAggregatedValues, fieldName);
}

Joe Do you mind writing a test case to make sure your function works as expected?

Theo With pleasure! Take a look.

var expectedResults = {
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",
"authorNames": [

"Sean Covey",
"Stephen Covey"

]
};

_.isEqual(expectedResults,
aggregateField(rows7Habits,

"author_name",
"authorNames"));

Joe Excellent! Now that we have a function that aggregates a field from a list of
rows, we only need to map the function over the values of our rowsByIsbn. Let
me code that up for you.

var rowsByIsbn = _.groupBy(sqlRows, "isbn");
var groupedRows = _.values(rowsByIsbn);

_.map(rowsByIsbn, function(groupedRows) {
return aggregateField(groupedRows, "author_name", "authorNames");

})

Listing 10.23 Aggregating an arbitrary field

Listing 10.24 Test case for aggregateField

Listing 10.25 Aggregating author names in rowsByIsbn

21710.4 Advanced data manipulation
Theo Why did you take the values of rowsByIsbn?

Joe Because we don’t really care about the keys in rowsByIsbn. We only care about
the grouping of the rows in the values of the hash map.

Theo Let me try to combine everything we’ve done and write a function that receives
a list of rows and returns a list of book info with the author names aggregated
in a list.

Joe Good luck, my friend!

To Theo, it’s less complicated than it seems. After a couple of trials and errors, he arrives at
the code and the test case.

function aggregateFields(rows, idFieldName,
fieldName, aggregateFieldName) {
var groupedRows = _.values(_.groupBy(rows, idFieldName));
return _.map(groupedRows, function(groupedRows) {

return aggregateField(groupedRows, fieldName, aggregateFieldName);
});

}

var sqlRows = [
{

"title": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",
"author_name": "Sean Covey"

},
{

"title": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",
"author_name": "Stephen Covey"

},
{

"title": "The Power of Habit",
"isbn": "978-0812981605",
"author_name": "Charles Duhigg"

}
];

var expectedResults =
[

{
"authorNames": [

"Sean Covey",
"Stephen Covey"

],
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People"

},
{

"authorNames": ["Charles Duhigg"],
"isbn": "978-0812981605",
"title": "The Power of Habit",

Listing 10.26 Aggregating a field in a list of rows

218 CHAPTER 10 Database operations
}
];

_.isEqual(aggregateFields(sqlRows,
"isbn",
"author_name",
"authorNames"),
expectedResults);

Theo I think I’ve got it.

Joe Congratulations! I’m proud of you, Theo.

Now Theo understands what Joe meant when he told him “a cloud is cloud” when they
were walking back from the park to the office. Instead of trapping data in the limits of our
objects, DOP guides us to represent data as data.

Summary
 Inside our applications, we represent data fetched from the database, no matter

if it is relational or nonrelational, as a generic data structure.
 In the case of a relational database, data is represented as a list of maps.
 Representing data from the database as data reduces system complexity because

we don’t need design patterns or complex class hierarchies to do it.
 We are free to manipulate data from the database with generic functions, such as

returning a list made of the values of some data fields, creating a version of a
map omitting a data field, or grouping maps in a list according to the value of a
data field.

 We use generic functions for data manipulation with great flexibility, using the
fact that inside a hash map, we access the value of a field via its name, repre-
sented as a string.

 When we package our data manipulation logic into custom functions that receive
field names as arguments, we are able to use those functions on different data
entities.

 The best way to manipulate data is to represent data as data.
 We represent data from the database with generic data collections, and we

manipulate it with generic functions.
 Accessing data from a NoSQL database is done in a similar way to the approach

presented in this chapter for accessing data from a relational database.
 With late binding, we care about data types as late as possible.
 Flexibility is increased as many parts of the system are free to manipulate data

without dealing with concrete types.
 Accessing a field in a hash map is more flexible than accessing a member in an

object instantiated from a class.

219Summary
 In DOP, field names are just strings. It allows us to write generic functions to
manipulate list of maps representing data fetched from the database.

 In DOP, fields are first-class citizens.
 We can implement renaming keys in a list of maps or aggregating rows returned

by a database query via generic functions.
 JDBC stands for Java database connectivity.
 Converting a JDBC result set into a list of maps is quite straightforward.

Lodash functions introduced in this chapter

Function Description

at(map, [paths]) Creates an array of values corresponding to paths of map

omit(map, [paths]) Creates a map composed of the fields of map not in paths

nth(arr, n) Gets the element at index n in arr

groupBy(coll, f) Creates a map composed of keys generated from the results of running
each element of coll through f. The corresponding value for each key
is an array of elements responsible for generating the key.

Web services
A faithful messenger
The architecture of modern information systems is made of software components
written in various programming languages like JSON, which communicate over the
wire by sending and receiving data represented in a language-independent data
exchange format. DOP applies the same principle to the communication between
inner parts of a program.

 NOTE When a web browser sends a request to a web service, it’s quite common
that the web service itself sends requests to other web services in order to fulfill the
web browser request. One popular data exchange format is JSON.

Inside a program, components communicate by sending and receiving data repre-
sented in a component independent format—namely, immutable data collections.
In the context of a web service that fulfills a client request by fetching data from a

This chapter covers
 Representing a client request as a map

 Representing a server response as a map

 Passing data forward

 Combining data from different sources
220

22111.1 Another feature request
database and other web services, representing data, as with immutable data collec-
tions, leads to these benefits:

 Using generic data manipulation functions to manipulate data from multiple
data sources

 Passing data forward freely with no additional complexity

11.1 Another feature request
After having delivered the database milestone on time, Theo calls Nancy to share the good
news. Instead of celebrating Theo’s success, Nancy asks him about the ETA for the next
milestone, Book Information Enrichment with the Open Library Books API. Theo tells her
that he’ll get back to her with an ETA by the end of the day. When Joe arrives at the office,
Theo tells him about the discussion with Nancy.

Theo I just got a phone call from Nancy, and she is stressed about the next milestone.

Joe What’s in the next milestone?

Theo Do you remember the Open Library Books API that I told you about a few
weeks ago?

 NOTE You can find the Open Library Books API at https://openlibrary.org/dev/
docs/api/books.

Joe No.

Theo It’s a web service that provides detailed information about books.

Joe Cool!

Theo Nancy wants to enrich the book search results. Instead of fetching book infor-
mation from the database, we need to retrieve extended book information
from the Open Library Books API.

Joe What kind of book information?

Theo Everything! Number of pages, weight, physical format, topics, etc. . . .

Joe What about the information from the database?

Theo Besides the information about the availability of the books, we don’t need it
anymore.

Joe Have you already looked at the Open Library Books API?

Theo It’s a nightmare! For some books, the information contains dozen of fields,
and for other books, it has only two or three fields.

Joe What’s the problem then?

Theo I have no idea how to represent data that is so sparse and unpredictable.

Joe When we represent data as data, that’s not an issue. Let’s have a coffee and I’ll
show you.

https://openlibrary.org/dev/docs/api/books
https://openlibrary.org/dev/docs/api/books
https://openlibrary.org/dev/docs/api/books

222 CHAPTER 11 Web services
11.2 Building the insides like the outsides
While Theo drinks his macchiato, Joe draws a diagram on a whiteboard. Figure 11.1 shows
Joe’s diagram.

Joe Before we dive into the details of the implementation of the book search result
enrichment, let me give you a brief intro.

Theo Sure.

Joe takes a sip of his espresso. He then points to the diagram (figure 11.1) on the whiteboard.

Joe Does this look familiar to you?

Theo Of course!

Joe Can you show me, roughly, the steps in the data flow of a web service?

Theo Sure.

Theo moves closer to the whiteboard. He writes a list of steps (see the sidebar) near the
architecture diagram.

Joe Excellent! Now comes an important insight about DOP.

Theo I’m all ears.

The steps of the data flow inside a web service

1 Receive a request from a client.
2 Apply business logic to the request.
3 Fetch data from external sources (e.g., database and other web services).
4 Apply business logic to the responses from external sources.
5 Send the response to the client.

Data

Data

Web browser

Web server

Web service Database

Data

Figure 11.1 The high-level architecture
of a modern information system

22311.2 Building the insides like the outsides
Joe We should build the insides of our systems like we build the outsides.

Theo What do you mean?

Joe How do components of a system communicate over the wire?

Theo By sending data.

Joe Does the data format depend on the programming language of the components?

Theo No, quite often it’s JSON, for which we have parsers in all programming
languages.

Joe What the idiom says is that, inside our program, the inner components of a pro-
gram should communicate in a way that doesn’t depend on the components.

Theo I don’t get that.

Joe Let me explain why traditional OOP breaks this idiom. Perhaps it will be
clearer then. When data is represented with classes, the inner components of
a program need to know the internals of the class definitions in order to
communicate.

Theo What do you mean?

Joe In order to be able to access a member in a class, a component needs to import
the class definition.

Theo How could it be different?

Joe In DOP, as we have seen so far, the inner components of a program communi-
cate via generic data collections. It’s similar to how components of a system
communicate over the wire.

TIP We should build the insides of our systems like we build the outsides.

Theo Why is that so important?

Joe From a design perspective, it’s important because it means that the inner com-
ponents of a program are loosely coupled.

Theo What do you mean by loosely coupled?

Joe I mean that components need no knowledge about the internals of other com-
ponents. The only knowledge required is the names of the fields.

TIP In DOP, the inner components of a program are loosely coupled.

Theo And from an implementation perspective?

Joe As you’ll see in a moment, implementing the steps of the data flow that you
just wrote on the whiteboard is easy. It comes down to expressing the busi-
ness logic in terms of generic data manipulation functions. Here, let me
show you a diagram.

Joe steps up to the whiteboard and sketches the drawing in figure 11.2. As Joe finishes, his
cell phone rings. He excuses himself and steps outside to take the call.

224 CHAPTER 11 Web services
Theo stands alone for a few minutes in front of the whiteboard, meditating about “build-
ing the insides of our systems like we build the outsides.” Without really noticing it, he
takes a marker and starts drawing a new diagram (see figure 11.3), which summarizes the
insights that Joe just shared with him.

JSON parse/serialize

Business logic

Data manipulation

JSON parse/serialize

Data

Data

Figure 11.2 The internals of a
data-oriented web service

Web browser

Web service

Data

Web service

JSON Parser (1)

JSON Serializer (3) JSON Parser (4)

JSON Serializer (6)

Data Data

Data Manipulation (2) Data Manipulation (5)

Business Logic

Data Data

Data Data

Database

Figure 11.3 Building the insides of our
systems like building the outsides. The inner
components of a web service communicate
with data. As an example, here is a typical
flow of a web service handling a client
request: (1) Parse the client JSON request
into data. (2) Manipulate data according
to business logic. (3) Serialize data into a
JSON request to a database and another
Web service. (4) Parse JSON responses into
data. (5) Manipulate data according to
business logic. (6) Serialize data into a
JSON response to the client.

22511.3 Representing a client request as a map
11.3 Representing a client request as a map
After a few minutes, Joe comes back. When he looks at Theo’s new drawing in figure 11.3,
he seems satisfied.

Joe Sorry for the interruption. Let’s start from the beginning—parsing a client
request. How do you usually receive the parameters of a client request?

Theo It depends. The parameters could be sent as URL query parameters in a GET
request or as a JSON payload in the body of a POST request.

Joe Let’s suppose we receive a JSON payload inside a web request. Can you give me
an example of a JSON payload for an advanced search request?

Theo It would contain the text that the book title should match.

Joe And what are the details about the fields to retrieve from the Open Library
Books API?

Theo They won’t be passed as part of the JSON payload because they’re the same for
all search requests.

Joe I can imagine a scenario where you want the client to decide what fields to
retrieve. For instance, a mobile client would prefer to retrieve only the most
important fields and save network bandwidth.

Theo Well, in that case, I would have two different search endpoints: one for mobile
and one for desktop.

Joe What about situations where the client wants to display different pieces of infor-
mation, depending on the application screen. For instance, in an extended
search result screen, we display all the fields. In a basic search result screen, we
display only the most important fields. Now you have four different use cases:
desktop extended, desktop basic, mobile extended, and mobile basic. Would
you create four different endpoints?

Theo OK, you’ve convinced me. Let’s have a single search endpoint and let the
client decide what fields to retrieve.

Joe Can you show me an example of a JSON payload for a search request?

Theo Sure.

Because there’s not much code, Theo writes the search request on the whiteboard. It takes
very little time to show how the clients would decide on what fields to retrieve for each
search result.

{
"title": "habit",
"fields": ["title", "weight", "number_of_pages"]

}

Joe Excellent! Now, the first step is to parse the JSON string into a data structure.

Theo Let me guess, it’s going to be a generic data structure.

Joe Of course! In that case, we’ll have a map. Usually, JSON parsing is handled by
the web server framework, but I’m going to show you how to do it manually.

Listing 11.1 Example of the search request payload

226 CHAPTER 11 Web services
Theo Wait! What do you mean by the web server framework?

Joe Stuff like Express in Node.js, Spring in Java, Django in Python, Ruby on Rails,
ASP.net in C#, and so forth.

Theo Oh, I see. So, how do you manually parse a JSON string into a map?

Joe In JavaScript, we use JSON.parse. In Java, we use a third-party library like Gson
(https://github.com/google/gson), maintained by Google.

Joe opens his laptop and writes two code fragments, one in JavaScript and the other in Java
with Gson. When he’s done, he shows the code to Theo.

var jsonString =
'{"title":"habit","fields":["title","weight","number_of_pages"]}';

JSON.parse(jsonString);

var jsonString =
'{"title":"habit","fields":["title","weight","number_of_pages"]}';

gson.fromJson(jsonString, Map.class);

Joe Can you write the JSON schema for the payload of a search request?

Theo Sure. It would look something like this.

var searchBooksRequestSchema = {
"type": "object",
"properties": {

"title": {"type": "string"},
"fields": {

"type": "array",
"items": {

"enum": [
"title",
"full_title",
"subtitle",
"publisher",
"publish_date",
"weight",
"physical_dimensions",
"number_of_pages",
"subjects",
"publishers",
"genre"

]
}

}
},
"required": ["title", "fields"]

};

Listing 11.2 Parsing a JSON string in JavaScript

Listing 11.3 Parsing a JSON string in Java with Gson

Listing 11.4 The JSON schema for a search request

https://github.com/google/gson

22711.4 Representing a server response as a map
Joe Nice! You marked the elements in the fields array as enums and not as
strings. Where did you get the list of allowed values?

Theo Nancy gave me the list of the fields that she wants to expose to the users. Here,
let me show you her list.

- title
- full_title
- subtitle
- publisher
- publish_date
- weight
- physical_dimensions
- number_of_pages
- subjects
- publishers
- genre

11.4 Representing a server response as a map
Joe What does the Open Library Books API look like?

Theo It’s quite straightforward. We create a GET request with the book ISBN, and it
gives us a JSON string with extended information about the book. Take a look
at this.

When Theo executes the code snippet, it displays a JSON string with the extended infor-
mation about 7 Habits of Highly Effective People.

fetchAndLog(
"https:/ /openlibrary.org/isbn/978-1982137274.json"

);
//{
// "authors": [
// {
// "key": "/authors/OL383159A",
// },
// {
// "key": "/authors/OL30179A",
// },
// {
// "key": "/authors/OL1802361A",
// },
//],
// "created": {
// "type": "/type/datetime",
// "value": "2020-08-17T14:26:27.274890",
// },
// "full_title": "7 Habits of Highly Effective
// People : Revised and Updated Powerful
// Lessons in Personal Change",

Listing 11.5 The important fields from the Open Library Books API

Listing 11.6 Fetching data from the Open Library Books API

A utility function
that fetches JSON
and displays it to
the console

228 CHAPTER 11 Web services
// "isbn_13": [
// "9781982137274",
//],
// "key": "/books/OL28896586M",
// "languages": [
// {
// "key": "/languages/eng",
// },
//],
// "last_modified": {
// "type": "/type/datetime",
// "value": "2021-09-08T19:07:57.049009",
// },
// "latest_revision": 3,
// "lc_classifications": [
// "",
//],
// "number_of_pages": 432,
// "publish_date": "2020",
// "publishers": [
// "Simon & Schuster, Incorporated",
//],
// "revision": 3,
// "source_records": [
// "bwb:9781982137274",
//],
// "subtitle": "Powerful Lessons in Personal Change",
// "title": "7 Habits of Highly Effective
// People : Revised and Updated",
// "type": {
// "key": "/type/edition",
// },
// "works": [
// {
// "key": "/works/OL2629977W",
// },
//],
//}

Joe Did Nancy ask for any special treatment of the fields returned by the API?

Theo Nothing special besides keeping only the fields I showed you.

Joe That’s it?

Theo Yes. For example, here’s the JSON string returned by the Open Library Books
API for 7 Habits of Highly Effective People after having kept only the necessary
fields.

{
"title":"7 Habits of Highly Effective People : Revised and Updated",
"subtitle":"Powerful Lessons in Personal Change",
"number_of_pages":432,
"full_title":"7 Habits of Highly Effective People : Revised and Updated

Listing 11.7 Open Library response for 7 Habits of Highly Effective People

22911.4 Representing a server response as a map
Powerful Lessons in Personal Change",
"publish_date":"2020",
"publishers":["Simon & Schuster, Incorporated"]

}

Theo Also, Nancy wants us to keep only the fields that appear in the client request.

Joe Do you know how to implement the double field filtering?

Theo Yeah, I’ll parse the JSON string from the API into a hash map, like we parsed a
client request, and then I’ll use _.pick twice to keep only the required fields.

Joe It sounds like a great plan to me. Can you code it, including validating the data
that is returned by the Open Library API?

Theo Sure! Let me first write the JSON schema for the Open Library API response.

Theo needs to refresh his memory with the materials about schema composition in order
to express the fact that either isbn_10 or isbn_13 are mandatory. After a few moments,
he shows the JSON schema to Joe.

var basicBookInfoSchema = {
"type": "object",
"required": ["title"],
"properties": {

"title": {"type": "string"},
"publishers": {

"type": "array",
"items": {"type": "string"}

},
"number_of_pages": {"type": "integer"},
"weight": {"type": "string"},
"physical_format": {"type": "string"},
"subjects": {

"type": "array",
"items": {"type": "string"}

},
"isbn_13": {

"type": "array",
"items": {"type": "string"}

},
"isbn_10": {

"type": "array",
"items": {"type": "string"}

},
"publish_date": {"type": "string"},
"physical_dimensions": {"type": "string"}

}
};

var mandatoryIsbn13 = {
"type": "object",
"required": ["isbn_13"]

};

Listing 11.8 The JSON schema for the Open Library Books API response

230 CHAPTER 11 Web services
var mandatoryIsbn10 = {
"type": "object",
"required": ["isbn_10"]

};

var bookInfoSchema = {
"allOf": [

basicBookInfoSchema,
{

"anyOf": [mandatoryIsbn13, mandatoryIsbn10]
}

]
};

Theo Now, assuming that I have a fetchResponseBody function that sends a request
and retrieves the body of the response as a string, let me code up the how to do
the retrieval. Give me a sec.

Theo types away in his IDE for several minutes. He shows the result to Joe.

var ajv = new Ajv({allErrors: true});
class OpenLibraryDataSource {

static rawBookInfo(isbn) {
var url = `https:/ /openlibrary.org/isbn/${isbn}.json`;
var jsonString = fetchResponseBody(url);
return JSON.parse(jsonString);

}

static bookInfo(isbn, requestedFields) {
var relevantFields = ["title", "full_title",

"subtitle", "publisher",
"publish_date", "weight",
"physical_dimensions", "genre",
"subjects", "number_of_pages"];

var rawInfo = rawBookInfo(isbn);
if(!ajv.validate(bookInfoSchema, rawInfo)) {

var errors = ajv.errorsText(ajv.errors);
throw "Internal error: Unexpected result from Open Books API: " +

errors;
}
var relevantInfo =

.pick(.pick(rawInfo, relevantFields), requestedFields);
return _.set(relevantInfo, "isbn", isbn);

}
}

 NOTE The JavaScript snippets of this chapter are written as if JavaScript were deal-
ing with I/O in a synchronous way. In real life, we need to use async and await around
I/O calls.

Listing 11.9 Retrieving book information from the Open Library Books API

Fetches JSON in
the body of a
response

23111.5 Passing information forward
Joe Looks good! But why did you add the isbn field to the map returned by
bookInfo?

Theo It will allow me to combine information from two sources about the same book.

Joe I like it!

11.5 Passing information forward
Joe If I understand it correctly, the program needs to combine two kinds of data:

basic book information from the database and extended book information
from the Open Library API. How are you going to combine them into a single
piece of data in the response to the client?

Theo In traditional OOP, I would create a specific class for each type of book
information.

Joe What to you mean?

Theo You know, I’d have classes like DBBook, OpenLibraryBook, and CombinedBook.

Joe Hmm . . .

Theo But that won’t work because we decided to go with a dynamic approach, where
the client decides what fields should appear in the response.

Joe True, and classes don’t bring any added value because we need to pass data for-
ward. Do you know the story of the guy who asked his friend to bring flowers to
his fiancée?

Theo No.

Joe takes a solemn position as if to speak before a gathering of peers. With a deep breath,
he tells Theo the following story. Entranced, Theo listens carefully.

Theo That doesn’t make any sense! Why would Willy have to read the letter in order
to fulfill his duty?

The story of the guy who asked his friend to bring flowers to his fiancée

A few weeks before their wedding, Hugo wanted to send flowers to Iris, his fiancée,
who was on vacation with her family in a neighboring town. Unable to travel because
he’s needed at work to fix a critical error in a security app, Hugo asks his friend Willy
to make the trip and to take the bouquet of flowers to his beloved, accompanied by
an envelope containing a love letter that Hugo had written for his fiancée. Willy, hav-
ing to make the trip anyway, kindly accepts.

Before giving the flowers to Iris, Willy phoned his friend Hugo to let him know that he
was about to complete his mission. Hugo’s joy was beyond belief until Willy told Hugo
how much he admired the quality of his writing style.

Hugo was disappointed. “What! Did you read the letter I wrote to my fiancée?”

“Of course!” answered Willy. “It was necessary to do so in order to fulfill my duty
faithfully.”

232 CHAPTER 11 Web services
Joe That’s exactly the point of the story! In a sense, traditional OOP is like Hugo’s
friend, Willy. In order to pass information forward, OOP developers think they
need to “open the letter” and represent information with specific classes.

Theo Oh, I see. And DOP developers emulate the spirit of what Hugo expected from
a delivery person; they just pass information forward as generic data structures.

Joe Exactly.

Theo That’s a subtle but funny analogy.

Joe Let’s get back to the question of combining data from the database with data
from the Books API. There are two ways to do this—nesting and merging.

Joe goes to the whiteboard. He finds an area to draw table 11.1 for Theo.

Theo How does nesting work?

Joe In nesting, we add a field named extendedInfo to the information fetched
from the Open Library API.

Theo I see. And what about merging?

Joe In merging, we combine the fields of both maps into a single map.

Theo If there are fields with the same name in both maps, what then?

Joe Then you have a merge conflict, and you need to decide how to handle the
conflict. That’s the drawback of merging.

 NOTE When merging maps, we need to think about the occurrences of conflicting
fields.

Theo Hopefully, in the context of extended search results, the maps don’t have any
fields in common.

Joe Then let’s merge them!

Theo Would I need to write custom code for merging two maps?

Joe No! As you might remember from one of our previous sessions, Lodash pro-
vides a handy _.merge function.

 NOTE _.merge was introduced in chapter 5.

Theo Could you refresh my memory?

Joe Sure. Show me an example of maps with data from the database and data from
the Open Library Books API, and I’ll show you how to merge them.

Theo From the database, we get only two fields: isbn and available. From the
Open Library API, we get six fields. Here’s what they look like.

Table 11.1 Two ways to combine hash maps

Advantages Disadvantages

Nesting No need to handle conflicts. Result is not flat.

Merging Result is flat. Need to handle conflicts.

23311.5 Passing information forward
var dataFromDb = {
"available": true,
"isbn": "978-1982137274"

};

var dataFromOpenLib = {
"title":"7 Habits of Highly Effective People : Revised and Updated",
"subtitle":"Powerful Lessons in Personal Change",
"number_of_pages":432,
"full_title":"7 Habits of Highly Effective People : \
Revised and Updated Powerful Lessons in Personal Change",
"publish_date":"2020",
"publishers":["Simon & Schuster, Incorporated"]

};

Joe After calling _.merge, the result is a map with fields from both maps.

_.merge(dataFromDb, dataFromOpenLib);
//{
// "available": true,
// "full_title": "7 Habits of Highly Effective People :\
// Revised and Updated Powerful Lessons in Personal Change",
// "isbn": "978-1982137274",
// "number_of_pages": 432,
// "publish_date": "2020",
// "publishers": ["Simon & Schuster, Incorporated"],
// "subtitle": "Powerful Lessons in Personal Change",
// "title": "7 Habits of Highly Effective People : Revised and Updated"
//}

Theo Let me code the JSON schema for the search books response. Here’s how that
would look.

var searchBooksResponseSchema = {
"type": "object",
"required": ["title", "isbn", "available"],
"properties": {

"title": {"type": "string"},
"available": {"type": "boolean"},
"publishers": {

"type": "array",
"items": {"type": "string"}

},
"number_of_pages": {"type": "integer"},
"weight": {"type": "string"},

Listing 11.10 A map with book information from the database

Listing 11.11 A map with book information from the Open Library Books API

Listing 11.12 Merging two maps

Listing 11.13 JSON schema for search books response

234 CHAPTER 11 Web services
"physical_format": {"type": "string"},
"subjects": {

"type": "array",
"items": {"type": "string"}

},
"isbn": {"type": "string"},
"publish_date": {"type": "string"},
"physical_dimensions": {"type": "string"}

}
};

Theo Yes! I think we now have all the pieces to enrich our search results.

11.6 Search result enrichment in action
Joe Can you write the steps of the enrichment data flow?

Theo Sure.

Theo goes to the whiteboard. He takes a moment to gather his thoughts, and then erases
enough space so there’s room to list the steps.

Joe Perfect! Would you like to try to implement it?

Theo I think I’ll start with the implementation of the book retrieval from the data-
base. It’s quite similar to what we did last month.

 NOTE See chapter 10 for last month’s lesson.

Joe Actually, it’s even simpler because you don’t need to join tables.

Theo That’s right, I need values only for the isbn and available columns.

Theo works for a bit in his IDE. He begins with the book retrieval from the database.

var dbSearchResultSchema = {
"type": "array",
"items": {

The steps for the search result enrichment data flow

1 Receive a request from a client.
2 Extract from the client’s request the query and the fields to fetch from Open

Library.
3 Retrieve from the database the books that match the query.
4 Fetch information from Open Library for each ISBN that match the query.
5 Extract from Open Library responses for the required fields.
6 Combine book information from the database with information from Open

Library.
7 Send the response to the client.

Listing 11.14 Retrieving books whose title matches a query

23511.6 Search result enrichment in action
"type": "object",
"required": ["isbn", "available"],
"properties": {

"isbn": {"type": "string"},
"available": {"type": "boolean"}

}
}

};

class CatalogDB {
static matchingBooks(title) {

var matchingBooksQuery = `
SELECT isbn, available
FROM books
WHERE title = like '%$1%';

`;
var books = dbClient.query(catalogDB, matchingBooksQuery, [title]);
if(!ajv.validate(dbSearchResultSchema, books)) {

var errors = ajv.errorsText(ajv.errors);
throw "Internal error: Unexpected result from the database: " +

errors;
}
return books;

}
}

Joe So far, so good . . .

Theo Next, I’ll go with the implementation of the retrieval of book information from
Open Library for several books. Unfortunately, the Open Library Books API
doesn’t support querying several books at once. I’ll need to send one request
per book.

Joe That’s a bit annoying. Let’s make our life easier and pretend that _.map works
with asynchronous functions. In real life, you’d need something like Promise
.all in order to send the requests in parallel and combine the responses.

Theo OK, then it’s quite straightforward. I’ll take the book retrieval code and add a
multipleBookInfo function that maps over bookInfo.

Theo looks over the book retrieval code in listing 11.9 and then concentrates as he types
into his IDE. When he’s done, he shows the result in listing 11.15 to Joe.

class OpenLibraryDataSource {
static rawBookInfo(isbn) {

var url = `https:/ /openlibrary.org/isbn/${isbn}.json`;
var jsonString = fetchResponseBody(url);
return JSON.parse(jsonString);

}

static bookInfo(isbn, requestedFields) {
var relevantFields = ["title", "full_title",

"subtitle", "publisher",
"publish_date", "weight",

Listing 11.15 Retrieving book information from Open Library for several books

236 CHAPTER 11 Web services
"physical_dimensions", "genre",
"subjects", "number_of_pages"];

var rawInfo = rawBookInfo(isbn);
if(!ajv.validate(dbSearchResultSchema, bookInfoSchema)) {

var errors = ajv.errorsText(ajv.errors);
throw "Internal error: Unexpected result from Open Books API: " +

errors;
}
var relevantInfo =

.pick(.pick(rawInfo, relevantFields), requestedFields);
return _.set(relevantInfo, "isbn", isbn);

}

static multipleBookInfo(isbns, fields) {
return _.map(function(isbn) {

return bookInfo(isbn, fields);
}, isbns);

}
}

Joe Nice! Now comes the fun part: combining information from several data sources.

Theo Yeah. I have two arrays in my hands: one with book information from the data-
base and one with book information from Open Library. I somehow need to
join the arrays, but I’m not sure I can assume that the positions of the book
information are the same in both arrays.

Joe What would you like to have in your hands?

Theo I wish I had two hash maps.

Joe And what would the keys in the hash maps be?

Theo Book ISBNs.

Joe Well, I have good news for you: your wish is granted!

Theo How?

Joe Lodash provides a function named _.keyBy that transforms an array into a map.

Theo I can’t believe it. Can you show me an example?

Joe Sure. Let’s call _.keyBy on an array with two books.

var books = [
{

"title": "7 Habits of Highly Effective People",
"isbn": "978-1982137274",
"available": true

},
{

"title": "The Power of Habit",
"isbn": "978-0812981605",
"available": false

}
];

_.keyBy(books, "isbn");

Listing 11.16 Transforming an array into a map with _.keyBy

23711.6 Search result enrichment in action
Joe And here’s the result.

{
"978-0812981605": {

"available": false,
"isbn": "978-0812981605",
"title": "The Power of Habit"

},
"978-1982137274": {

"available": true,
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People"

}
}

Theo keyBy is awesome!

Joe Don’t exaggerate, my friend; _.keyBy is quite similar to _.groupBy. The
only difference is that _.keyBy assumes that there’s only one element in
each group.

Theo I think that, with _.keyBy, I’ll be able to write a generic joinArrays function.

Joe I’m glad to see you thinking in terms of implementing business logic through
generic data manipulation functions.

TIP Many parts of the business logic can be implemented through generic data
manipulation functions.

Theo The joinArrays function needs to receive the arrays and the field name for
which we decide the two elements that need to be combined, for instance,
isbn.

Joe Remember, in general, it’s not necessarily the same field name for both arrays.

Theo Right, so joinArrays needs to receive four arguments: two arrays and two
field names.

Joe Go for it! And, please, write a unit test for joinArrays.

Theo Of course . . .

Theo works for a while and produces the code in listing 11.18. He then types the unit test
in listing 11.19.

function joinArrays(a, b, keyA, keyB) {
var mapA = _.keyBy(a, keyA);
var mapB = _.keyBy(b, keyB);
var mapsMerged = _.merge(mapA, mapB);
return _.values(mapsMerged);

}

Listing 11.17 The result of keyBy

Listing 11.18 A generic function for joining arrays

238 CHAPTER 11 Web services
var dbBookInfos = [
{

"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",
"available": true

},
{

"isbn": "978-0812981605",
"title": "The Power of Habit",
"available": false

}
];

var openLibBookInfos = [
{

"isbn": "978-0812981605",
"title": "7 Habits of Highly Effective People",
"subtitle": "Powerful Lessons in Personal Change",
"number_of_pages": 432,

},
{

"isbn": "978-1982137274",
"title": "The Power of Habit",
"subtitle": "Why We Do What We Do in Life and Business",
"subjects": [

"Social aspects",
"Habit",
"Change (Psychology)"

],
}

];

var joinedArrays = [
{

"available": true,
"isbn": "978-1982137274",
"subjects": [

"Social aspects",
"Habit",
"Change (Psychology)",

],
"subtitle": "Why We Do What We Do in Life and Business",
"title": "The Power of Habit",

},
{

"available": false,
"isbn": "978-0812981605",
"number_of_pages": 432,
"subtitle": "Powerful Lessons in Personal Change",
"title": "7 Habits of Highly Effective People",

},
]

Listing 11.19 A unit test for joinArrays

23911.6 Search result enrichment in action
_.isEqual(joinedArrays,
joinArrays(dbBookInfos, openLibBookInfos, "isbn", "isbn"));

Joe Excellent! Now, you are ready to adjust the last piece of the extended search
result endpoint.

Theo That’s quite easy. We fetch data from the database and from Open Library and
join them.

Theo works quite rapidly. He then shows Joe the code.

class Catalog {
static enrichedSearchBooksByTitle(searchPayload) {

if(!ajv.validate(searchBooksRequestSchema, searchPayload)) {
var errors = ajv.errorsText(ajv.errors);
throw "Invalid request:" + errors;

}
var title = _.get(searchPayload, "title");
var fields = _.get(searchPayload, "fields");

var dbBookInfos = CatalogDataSource.matchingBooks(title);
var isbns = _.map(dbBookInfos, "isbn");

var openLibBookInfos =
OpenLibraryDataSource.multipleBookInfo(isbns, fields);

var res = joinArrays(dbBookInfos, openLibBookInfos);
if(!ajv.validate(searchBooksResponseSchema, request)) {

var errors = ajv.errorsText(ajv.errors);
throw "Invalid response:" + errors;

}

return res;
}

}

Now comes the tricky part. Theo takes a few moments to meditate about the simplicity of
the code that implements the extended search endpoint. He thinks about how classes are
much less complex when we use them only to aggregate stateless functions that operate on
similar domain entities and then goes to work plotting the code.

var basicBookInfoSchema = {
"type": "object",
"required": ["title"],
"properties": {

"title": {"type": "string"},
"publishers": {

"type": "array",
"items": {"type": "string"}

},

Listing 11.20 Search books and enriched book information

Listing 11.21 Schema for the extended search endpoint (Open Books API part)

240 CHAPTER 11 Web services
"number_of_pages": {"type": "integer"},
"weight": {"type": "string"},
"physical_format": {"type": "string"},
"subjects": {

"type": "array",
"items": {"type": "string"}

},
"isbn_13": {

"type": "array",
"items": {"type": "string"}

},
"isbn_10": {

"type": "array",
"items": {"type": "string"}

},
"publish_date": {"type": "string"},
"physical_dimensions": {"type": "string"}

}
};

var mandatoryIsbn13 = {
"type": "object",
"required": ["isbn_13"]

};

var mandatoryIsbn10 = {
"type": "object",
"required": ["isbn_10"]

};

var bookInfoSchema = {
"allOf": [

basicBookInfoSchema,
{

"anyOf": [mandatoryIsbn13, mandatoryIsbn10]
}

]
};

var ajv = new Ajv({allErrors: true});

class OpenLibraryDataSource {
static rawBookInfo(isbn) {

var url = `https:/ /openlibrary.org/isbn/${isbn}.json`;
var jsonString = fetchResponseBody(url);
return JSON.parse(jsonString);

}

static bookInfo(isbn, requestedFields) {
var relevantFields = ["title", "full_title",

"subtitle", "publisher",
"publish_date", "weight",

Listing 11.22 Extended search endpoint (Open Books API part)

24111.6 Search result enrichment in action
"physical_dimensions", "genre",
"subjects", "number_of_pages"];

var rawInfo = rawBookInfo(isbn);
if(!ajv.validate(bookInfoSchema, rawInfo)) {

var errors = ajv.errorsText(ajv.errors);
throw "Internal error: Unexpected result from Open Books API: " +

errors;
}
var relevantInfo = _.pick(

_.pick(rawInfo, relevantFields),
requestedFields);

return _.set(relevantInfo, "isbn", isbn);
}

static multipleBookInfo(isbns, fields) {
return _.map(function(isbn) {

return bookInfo(isbn, fields);
}, isbns);

}
}

var dbClient;
var dbSearchResultSchema = {

"type": "array",
"items": {

"type": "object",
"required": ["isbn", "available"],
"properties": {

"isbn": {"type": "string"},
"available": {"type": "boolean"}

}
}

};

class CatalogDB {
static matchingBooks(title) {

var matchingBooksQuery = `
SELECT isbn, available
FROM books
WHERE title = like '%$1%';

`;
var books = dbClient.query(catalogDB, matchingBooksQuery, [title]);
if(!ajv.validate(dbSearchResultSchema, books)) {

var errors = ajv.errorsText(ajv.errors);
throw "Internal error: Unexpected result from the database: "

+ errors;
}

return books;
}

}

Listing 11.23 Extended search endpoint (database part)

242 CHAPTER 11 Web services
var searchBooksRequestSchema = {
"type": "object",
"properties": {

"title": {"type": "string"},
"fields": {

"type": "array",
"items": {

"type": [
"title",
"full_title",
"subtitle",
"publisher",
"publish_date",
"weight",
"physical_dimensions",
"number_of_pages",
"subjects",
"publishers",
"genre"

]
}

}
},
"required": ["title", "fields"]

};

var searchBooksResponseSchema = {
"type": "object",
"required": ["title", "isbn", "available"],
"properties": {

"title": {"type": "string"},
"available": {"type": "boolean"},
"publishers": {

"type": "array",
"items": {"type": "string"}

},
"number_of_pages": {"type": "integer"},
"weight": {"type": "string"},
"physical_format": {"type": "string"},
"subjects": {

"type": "array",
"items": {"type": "string"}

},
"isbn": {"type": "string"},
"publish_date": {"type": "string"},
"physical_dimensions": {"type": "string"}

}
};

class Catalog {
static enrichedSearchBooksByTitle(request) {

Listing 11.24 Schema for the implementation of the extended search endpoint

Listing 11.25 Schema for the extended search endpoint (combines the pieces)

24311.6 Search result enrichment in action
if(!ajv.validate(searchBooksRequestSchema, request)) {
var errors = ajv.errorsText(ajv.errors);
throw "Invalid request:" + errors;

}

var title = _.get(request, "title");
var fields = _.get(request, "fields");

var dbBookInfos = CatalogDataSource.matchingBooks(title);
var isbns = _.map(dbBookInfos, "isbn");

var openLibBookInfos =
OpenLibraryDataSource.multipleBookInfo(isbns, fields);

var response = joinArrays(dbBookInfos, openLibBookInfos);
if(!ajv.validate(searchBooksResponseSchema, request)) {

var errors = ajv.errorsText(ajv.errors);
throw "Invalid response:" + errors;

}
return response;

}
}

class Library {
static searchBooksByTitle(payloadBody) {

var payloadData = JSON.parse(payloadBody);
var results = Catalog.searchBooksByTitle(payloadData);
return JSON.stringify(results);

}
}

TIP Classes are much less complex when we use them as a means to aggregate state-
less functions that operate on similar domain entities.

Joe interrupts Theo’s meditation moment. After looking over the code in the previous list-
ings, he congratulates Theo.

Joe Excellent job, my friend! By the way, after reading The Power of Habit, I quit
chewing my nails.

Theo Wow! That’s terrific! Maybe I should read that book to overcome my habit of
drinking too much coffee.

Joe Thanks, and good luck with the coffee habit.

Theo I was supposed to call Nancy later today with an ETA for the Open Library
Book milestone. I wonder what her reaction will be when I tell her the feature
is ready.

Joe Maybe you should tell her it’ll be ready in a week, which would give you time to
begin work on the next milestone.

244 CHAPTER 11 Web services
Delivering on time
Joe was right! Theo recalls Joe’s story about the young woodcutter and the old man. Theo
was able to learn DOP and deliver the project on time! He’s pleased that he took the time
“to sharpen his saw and commit to a deeper level of practice.”

 NOTE If you are unable to recall the story or if you missed it, check out the opener
to part 2.

The Klafim project is a success. Nancy is pleased. Theo’s boss is satisfied. Theo got pro-
moted. What more can a person ask for?

Theo remembers his deal with Joe. As he strolls through the stores of the Westfield San
Francisco Center to look for a gift for each of Joe’s children, Neriah and Aurelia, he is
filled with a sense of purpose and great pleasure. He buys a DJI Mavic Air 2 drone for Ner-
iah, and the latest Apple Airpod Pros for Aurelia. He also takes this opportunity to buy a
necklace and a pair of earrings for his wife, Jane. It’s a way for him to thank her for having
endured his long days at work since the beginning of the Klafim project.

 NOTE The story continues in the opener of part 3.

Summary
 We build the insides of our systems like we build the outsides.
 Components inside a program communicate via data that is represented as

immutable data collections in the same way as components communicate via
data over the wire.

 In DOP, the inner components of a program are loosely coupled.
 Many parts of business logic can be implemented through generic data manipu-

lation functions. We use generic functions to
– Implement each step of the data flow inside a web service.
– Parse a request from a client.
– Apply business logic to the request.
– Fetch data from external sources (e.g., database and other web services).
– Apply business logic to the responses from external sources.
– Serialize response to the client.

 Classes are much less complex when we use them as a means to aggregate
together stateless functions that operate on similar domain entities.

Lodash functions introduced in this chapter

Function Description

keyBy(coll, f) Creates a map composed of keys generated from the results of running each ele-
ment of coll through f; the corresponding value for each key is the last element
responsible for generating the key.

Part 3

Maintainability

After a month, the Klafim project enters what Alabatross calls the mainte-
nance phase. Small new features need to be added on a weekly basis. Bugs need to be
fixed; nothing dramatic. . . .

Monica, Theo’s boss, decides to allocate Dave to the maintenance of the Klafim
project. It makes sense. Over the last few months, Dave has demonstrated a great atti-
tude of curiosity and interest, and he has solid programming skills. Theo sets up a
meeting with Joe and Dave, hoping that Joe will be willing to teach DOP to Dave so
that he can continue to advance the good work he’s already done on Klafim. Theo
and Dave place a conference call to Joe.

Theo Hi, Joe. Will you have time over the next few weeks to teach Dave the
principles of DOP?

Joe Yes, but I prefer not to.

Dave Why? Is it because I don’t have enough experience in software develop-
ment? I can guarantee you that I’m a fast learner.

Joe It has nothing to do with your experience, Dave.

Theo Why not then?

Joe Theo, I think that you could be a great mentor for Dave.

Theo But, I don’t even know all the parts of DOP!

Dave Come on! No false modesty between us, my friend.

Joe Knowledge is never complete. As the great Socrates used to say, “The more
I know, the more I realize I know nothing.” I’m confident you will be able
to learn the missing parts by yourself and maybe even invent some.

Theo How will I be able to invent missing parts?

246 PART 3 Maintainability
Joe You see, DOP is such a simple paradigm that it’s fertile material for innovation.
Part of the material I taught you I learned from others, and part of it was an
invention of mine. If you keep practicing DOP, I’m quite sure you, too, will
come up with some inventions of your own.

Theo What do you say Dave? Are you willing to learn DOP from me?

Dave Definitely!

Theo Joe, will you be continue to be available if we need your help from time to time?

Joe Of course!

Advanced data
validation
A self-made gift
As the size of a code base grows in a project that follows DOP principles, it becomes
harder to manipulate functions that receive and return only generic data. It is hard
to figure out the expected shape of the function arguments, and when we pass
invalid data, we don’t get meaningful errors.

 Until now, we have illustrated how to validate data at system boundaries. In this
chapter, we will illustrate how to validate data when it flows inside the system by
defining data schemas for function arguments and their return values. This allows
us to make explicit the expected shape of function arguments, and it eases develop-
ment. We gain some additional benefits from this endeavor, such as automatic gen-
eration of data model diagrams and schema-based unit tests.

This chapter covers
 Validating function arguments

 Validating function return values

 Data validation beyond static types

 Automatic generation of data model diagrams

 Automatic generation of schema-based unit tests
247

248 CHAPTER 12 Advanced data validation
12.1 Function arguments validation
Dave’s first task is to implement a couple of new HTTP endpoints to download the catalog
as a CSV file, search books by author, and rate the books. Once he is done with the tasks,
Dave calls Theo for a code review.

 NOTE The involvement of Dave in the Klafim project is explained in the opener for
part 3. Please take a moment to read the opener if you missed it.

Theo Was it difficult to get your head around the DOP code?

Dave Not so much. I read your notes of the meetings with Joe, and I must admit, the
code is quite simple to grasp.

Theo Cool!

Dave But there is something that I can’t get used to.

Theo What’s that?

Dave I’m struggling with the fact that all the functions receive and return generic
data. In OOP, I know the expected shape of the arguments for each and every
function.

Theo Did you validate data at system boundaries, like I have done?

Dave Absolutely. I defined a data schema for every additional user request, database
query, and external service response.

Theo Nice!

Dave Indeed, when the system runs in production, it works well. When data is valid,
the data flows through the system, and when data is invalid, we are able to dis-
play a meaningful error message to the user.

Theo What’s the problem then?

Dave The problem is that during development, it’s hard to figure out the expected
shape of the function arguments. And when I pass invalid data by mistake, I
don’t get clear error messages.

Theo I see. I remember that when Joe showed me how to validate data at system
boundaries, I raised this concern about the development phase. Joe told me
then that we validate data as it flows inside the system exactly like we validate data
at system boundaries: we separate between data schema and data representation.

Dave Are we going to use JSON Schema also?

Theo Yes.

Dave Cool. . . . I like JSON Schema.

Theo The main purpose of data validation at system boundaries is to prevent invalid
data from getting into the system, whereas the main purpose of data validation
inside the system is to make it easier to develop the system. Here, let me draw a
table on the whiteboard for you to visualize this (table 12.1).

Table 12.1 Two kinds of data validation

Kind of data validation Purpose Environment

Boundaries Guardian Production

Inside Ease of development Dev

24912.1 Function arguments validation
Dave By making it easier to develop the system, do you mean to help the developers
understand the expected shape of function arguments as in OOP?

Theo Exactly.

Dave But I’m impatient. . . . Will you help me figure out how to validate the argu-
ments of the function that implements a book search?

Theo Let me see the code of the implementation, and I’ll do my best.

Dave We have two implementations of a book search: one where library data lives
in memory from the prototype phase and one where library data lives in the
database.

Theo I think that the schema for library data in memory is going to be more interest-
ing than the schema for library data in the database, as the book search func-
tion receives catalog data in addition to the query.

Dave When you say more interesting data schema, you mean more difficult to write?

Theo More difficult to write, but it’s also more insightful.

Dave Then let’s go with library data in memory. The code for Catalog.search-
BooksByTitle from the prototype phase would look like this.

Dave pulls up some code on his laptop. He shows it to Theo.

class Catalog {
static authorNames(catalogData, book) {

var authorIds = _.get(book, "authorIds");
var names = _.map(authorIds, function(authorId) {

return _.get(catalogData, ["authorsById", authorId, "name"]);
});
return names;

}

static bookInfo(catalogData, book) {
var bookInfo = {

"title": _.get(book, "title"),
"isbn": _.get(book, "isbn"),
"authorNames": Catalog.authorNames(catalogData, book)

};
return bookInfo;

}

static searchBooksByTitle(catalogData, query) {
var allBooks = _.get(catalogData, "booksByIsbn");
var matchingBooks = _.filter(allBooks, function(book) {

return _.get(book, "title").includes(query);
});
var bookInfos = _.map(matchingBooks, function(book) {

return Catalog.bookInfo(catalogData, book);
});
return bookInfos;

}
}

Listing 12.1 The implementation of search without data validation

250 CHAPTER 12 Advanced data validation
Theo Dave, please remind me of the expected shapes for catalogData and query.

Dave Sure. query should be a string, and catalogData should be a map that con-
forms to the catalog data model.

Theo What is the catalog data model?

Dave Let me see. I have seen a diagram of it somewhere.

Dave rummages around a bit in his folder for Klafim’s Library Management System. Find-
ing what he’s looking for, he draws the diagram in figure 12.1 on the whiteboard.

 NOTE The schemas for this book use JSON Schema version 2020-12.

Theo Can you write a JSON Schema for the catalog data model?

Dave Am I allowed to use internal variables for book and author schemas, or do I
have to nest all the schemas inside the catalog schema?

Theo JSON Schema is part of the code. If you feel that using internal variables would
make the code more readable, go for it.

Dave OK. Now I need the JSON Schema gift that Joe gave you.

Theo picks up a well-worn piece of paper that is a bit torn and quite wrinkled. He gives
Dave the JSON Schema cheat sheet.

{
"type": "array",
"items": {

"type": "object",
"properties": {

Listing 12.2 JSON Schema cheat sheet

booksByIsbn: {Book}

authorsById: {Author}

C Catalog

title : String

publicationYear: Number

isbn: String

authorlds: [String]

bookltems: [Bookltem]

C Book

id: String

libld: String

purchaseDate: String

isLent: Boolean

C Bookltem

id: String

name: String

booklsbns: [String]

C Author

Figure 12.1 The catalog data model

At the root level,
data is an array.

Each element of the array is a map.

The properties of each field in the map

25112.1 Function arguments validation

m
is a
"myNumber": {"type": "number"},
"myString": {"type": "string"},
"myEnum": {"enum": ["myVal", "yourVal"]},
"myBool": {"type": "boolean"}

},
"required": ["myNumber", "myString"],
"additionalProperties": false

}
}

Dave I think I’ll start with the author schema. It seems simpler than the book schema.

Quickly composing the code, Dave shows Theo the author schema. Dave, still new to DOP,
looks for Theo’s reaction.

var authorSchema = {
"type": "object",
"required": ["id", "name", "bookIsbns"],
"properties": {

"id": {"type": "string"},
"name": {"type": "string"},
"bookIsbns": {

"type": "array",
"items": {"type": "string"}

}
}

};

Theo Well done! Let’s move on to the book schema now.

Dave I think I am going to store the book item schema in a variable.

var bookItemSchema = {
"type": "object",
"properties":{

"id": {"type": "string"},
"libId": {"type": "string"},
"purchaseDate": {"type": "string"},
"isLent": {"type": "boolean"}

},
"required": ["id", "libId", "purchaseDate", "isLent"]

};

var bookSchema = {
"type": "object",
"required": ["title", "isbn", "authorIds", "bookItems"],
"properties": {

"title": {"type": "string"},
"publicationYear": {"type": "integer"},

Listing 12.3 The author schema

Listing 12.4 The book item schema

yNumber
 number.

myString is
a string.

myEnum is an enumeration
value with two possibilities,
"myVal" and "yourVal".

myBool is a boolean.

The mandatory fields in the map
are myNumber and myString.
Other fields are optional.

We don’t allow fields that are not
explicitly mentioned in the schema.

252 CHAPTER 12 Advanced data validation
"isbn": {"type": "string"},
"authorIds": {

"type": "array",
"items": {"type": "string"}

},
"bookItems": {

"type": "array",
"items": bookItemSchema

}
}

};

TIP When you define a complex data schema, it is advisable to store nested schemas
in variables to make the schemas easier to read.

Theo Why didn’t you include publicationYear in the list of required fields in the
book schema?

Dave Because, for some books, the publication year is missing. Unlike in OOP, it will
then be easy to deal with nullable fields.

Theo Excellent! And now, please tackle the final piece, the catalog schema.

Dave Here I have a problem. The catalog should be a map with two fields, books-
ByIsbn and authorsById. Both values should be indexes, represented in the
model diagram with curly braces. I have no idea how to define the schema for
an index.

Theo Do you remember how we represent indexes in DOP?

Dave Yes, indexes are represented as maps.

Theo Right, and what’s the difference between those maps and the maps that we use
for records?

Dave For records, we use maps where the names of the fields are known and the val-
ues can have different shapes. For indexes, we use maps where the names of
the fields are unknown and the values have a common shape.

Theo Right. We call the maps for records heterogeneous maps and the maps for
indexes homogeneous maps.

TIP In DOP, records are represented as heterogeneous maps, whereas indexes are repre-
sented as homogeneous maps.

Dave Then how do we define the schema of an homogeneous map in JSON Schema?

Theo I don’t know. Let’s check the JSON Schema online documentation.

 NOTE See https://json-schema.org/ to access the online documentation for JSON
Schema version 2020-12.

After a couple of minutes of digging into the JSON Schema online documentation, Theo
finds a piece about additionalProperties. He studies the information for a while before
making up his mind.

https://json-schema.org/

25312.1 Function arguments validation
Theo I think we could use additionalProperties. Here’s the JSON Schema for an
homogeneous map where the values are numbers.

{
"type": "object",
"additionalProperties": {"type": "number"}

}

Dave I thought that additionalProperties was supposed to be a boolean and that
it was used to allow or forbid properties not mentioned in the schema.

Theo That’s correct. Usually additionalProperties is a boolean, but the documen-
tation says it could also be a map that defines a schema. In that case, it means
properties not mentioned in the schema should have the value of the schema
associated with additionalProperties.

Dave I see. But what does that have to do with homogeneous maps?

Theo Well, a homogeneous map could be seen as a map with no predefined proper-
ties, where all the additional properties are of an expected type.

Dave Tricky!

TIP In JSON Schema, homogeneous string maps have type: object with no
properties and additionalProperties associated to a schema.

Theo Indeed. Now, let me show you what the catalog schema looks like.

Theo types briefly on his laptop. He shows Dave the catalog schema.

var catalogSchema = {
"type": "object",
"properties": {

"booksByIsbn": {
"type": "object",
"additionalProperties": bookSchema

},
"authorsById": {

"type": "object",
"additionalProperties": authorSchema

}
},
"required": ["booksByIsbn", "authorsById"]

};

Dave Are we ready to plug the catalog and the query schema into the Catalog
.searchBooksByTitle implementation?

Theo We could, but I think we can do better by defining a single schema that com-
bines both the catalog and query schemas.

Dave How would we combine two schemas into a single schema?

Listing 12.5 The JSON Schema for an homogeneous map with values as numbers

Listing 12.6 The schema for catalog data

254 CHAPTER 12 Advanced data validation
Theo Do you know what a tuple is?

Dave I think I know, but I can’t define it formally.

Theo A tuple is an array where the size is fixed, and the elements can be of different
shapes.

Dave OK. So, how do we define tuples in JSON Schema?

Once again, Theo explores the JSON Schema online documentation. Fortunately, he has
bookmarked the page, and in no time at all, finds the information he needs.

Theo I found it! We use prefixItems in the definition of a tuple made of a string
and a number, for instance.

Theo types more code on his laptop. When he finishes, he shows Dave the schema for a
tuple.

{
"type": "array",
"prefixItems": [

{ "type": "string" },
{ "type": "number" }

]
}

Dave I see. And how would you define the schema for the arguments of Catalog
.searchBooksByTitle?

Theo Well, it’s a tuple of size 2, where the first element is a catalog and the second
element is a string.

Dave Something like this schema?

var searchBooksArgsSchema = {
"type": "array",
"prefixItems": [

catalogSchema,
{ "type": "string" },

]
};

Theo Exactly!

Dave Now that we have the schema for the arguments, how do we plug it into the
implementation of search books?

Theo That’s similar to the way we validate data at system boundaries. The main dif-
ference is that the data validation for data that flows inside the system should
run only at development time, and it should be disabled when the code runs in
production.

Dave Why?

Listing 12.7 The schema for a tuple made of a string and a number

Listing 12.8 The schema for the arguments of Catalog.searchBooksByTitle

25512.2 Return value validation
Theo Because that data has been already validated up front at a system boundary.
Validating it again on a function call is superfluous, and it would impact
performance.

Dave When you say development time, does that include testing and staging
environments?

Theo Yes, all the environments besides production.

Dave I see. It’s like assertions in Java. They are disabled in production code.

TIP Data validation inside the system should be disabled in production.

Theo Exactly. For now, I am going to assume that we have a dev function that returns
true when the code runs in the development environment and false when it
runs in production. Having said that, take a look at this code.

Catalog.searchBooksByTitle = function(catalogData, query) {
if(dev()) {

var args = [catalogData, query];
if(!ajv.validate(searchBooksArgsSchema, args)) {

var errors = ajv.errorsText(ajv.errors);
throw ("searchBooksByTitle called with invalid arguments: " +

errors);
}

}

var allBooks = _.get(catalogData, "booksByIsbn");
var matchingBooks = _.filter(allBooks, function(book) {

return _.get(book, "title").includes(query);
});
var bookInfos = _.map(matchingBooks, function(book) {

return Catalog.bookInfo(catalogData, book);
});

return bookInfos;
};

Dave Do you think we should validate the arguments of all the functions?

Theo No. I think we should treat data validation like we treat unit tests. We should
validate function arguments only for functions for whom we would write unit
tests.

TIP Treat data validation like unit tests.

12.2 Return value validation
Dave Do you think it would make sense to also validate the return value of functions?

Theo Absolutely.

Dave Cool. Let me try to write the JSON Schema for the return value of Catalog
.searchBooksByTitle.

Listing 12.9 Implementation of search with validation of function arguments

The implementation of dev() depends on the run-time
environment: it returns true when the code runs in dev

environments and false when it runs in production.

256 CHAPTER 12 Advanced data validation
After a few minutes, Dave comes up with the schema. Taking a deep breath, then releasing
it, he shows the code to Theo.

var searchBooksResponseSchema = {
"type": "array",
"items": {

"type": "object",
"required": ["title", "isbn", "authorNames"],
"properties": {

"title": {"type": "string"},
"isbn": {"type": "string"},
"authorNames": {

"type": "array",
"items": {"type": "string"}

}
}

}
};

Theo Well done! Now, would you like to try adding return value validation to the
code of Catalog.searchBooksByTitle?

Dave Sure.

Dave works for a bit in his IDE. A bit more confident this time, he shows the result to Theo.

Catalog.searchBooksByTitle = function(catalogData, query) {
if(dev()) {

if(!ajv.validate(searchBooksArgsSchema, [catalogData, query])) {
var errors = ajv.errorsText(ajv.errors);
throw ("searchBooksByTitle called with invalid arguments: " +

errors);
}

}

var allBooks = _.get(catalogData, "booksByIsbn");
var matchingBooks = _.filter(allBooks, function(book) {

return _.get(book, "title").includes(query);
});
var bookInfos = _.map(matchingBooks, function(book) {

return Catalog.bookInfo(catalogData, book);
});

if(dev()) {
if(!ajv.validate(searchBooksResponseSchema, bookInfos)) {

var errors = ajv.errorsText(ajv.errors);
throw ("searchBooksByTitle returned an invalid value: " +

errors);
}

}

Listing 12.10 The schema for the return value of Catalog.searchBooksByTitle

Listing 12.11 Search with data validation for both input and output

25712.3 Advanced data validation
return bookInfos;
};

Theo Excellent! Now we need to figure out how to deal with advanced data validation.

12.3 Advanced data validation
Dave What do you mean by advanced data validation?

Theo I mean going beyond static types.

Dave Could you give me an example?

Theo Sure. Take, for instance, the publication year of a book. It’s an integer, but
what else could you say about this number?

Dave It has to be positive. It would say it’s a positive integer.

Theo Come on, Dave! Be courageous, go beyond types.

Dave I don’t know. I would say it’s a number that should be higher than 1900. I
don’t think it makes sense to have a book that is published before 1900.

Theo Exactly. And what about the higher limit?

Dave I’d say that the publication year should be less than the current year.

Theo Very good! I see that JSON Schema supports number ranges. Here is how we
can write the schema for an integer that represents a year and should be
between 1900 and 2021.

var publicationYearSchema = {
"type": "integer",
"minimum": 1900,
"maximum": 2021

};

Dave Why isn’t this kind of data validation possible in OOP?

Theo I’ll let you think about that for a moment.

Dave I think have it! In DOP, data validation is executed at run time, while static
type validation in OOP is executed at compile time. At compile time, we only
have information about static types; at run time, we have the data itself. That’s
why in DOP data validation, it’s possible to go beyond types.

 NOTE Of course, it’s also possible in traditional OOP to write custom run-time data
validation. Here, though, we are comparing data schema with static types.

Theo You got it! Now, let me show you how to write the schema for a string that
should match a regular expression.

 NOTE See http://mng.bz/OGNP for the JavaScript Guide to regular expressions.

Theo Let’s take for example the book ID. I am assuming it must be a UUID.

Dave Right.

Theo Can you write the regular expression for a valid UUID?

Listing 12.12 The schema for an integer between 1900 and 2021

http://mng.bz/OGNP

258 CHAPTER 12 Advanced data validation
Dave googles “UUID regex” and finds something he thinks just might work. He shows the
regular expression to Theo.

[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}

Dave Now, how do we plug a regular expression into a JSON Schema?

Theo While you were looking for the UUID regular expression, I read about the
pattern field. Here’s how we can plug the UUID regular expression into a
JSON Schema.

var uuidSchema = {
"type": "string",
"pattern": "[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}" +

"-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"
};

Dave Nice! Let me improve the catalog schema and refine the schema for purchase-
Date, isbn, libId, and authorId with regular expressions.

Theo Before you do that, though, let me tell you something I read about regular
expressions: some of them are predefined. For example, there is a predefined
regular expression for dates.

Dave How does it work?

Theo With the help of the format field.

 NOTE According to JSON Schema specification, format is just for annotation and
doesn’t affect validation. But in practice, JSON Schema validation libraries use format
also for validation.

Theo moves to his laptop. He inputs the schema for a date and shows it to Dave.

{
"type": "string",
"format": "date"

}

TIP In DOP, data validation goes beyond static types (e.g., number ranges, regular
expressions, and so on).

Dave Very cool! Do I have all the information I need in order to refine the catalog
schema?

Theo Yes, go for it!

It takes Dave a bit of time to write the regular expressions for isbn, authorId, and libId.
But with the help of Google (again) and a bit of simplification, Dave comes up with the
schema in listings 12.16 and 12.17.

Listing 12.13 The regular expression for a valid UUID

Listing 12.14 The schema for a UUID

Listing 12.15 The schema for a date

25912.3 Advanced data validation
var isbnSchema = {
"type": "string",
"pattern": "^[0-9-]{10,20}$"

};

var libIdSchema = {
"type": "string",
"pattern": "^[a-z0-9-]{3,20}$"

};

var authorIdSchema ={
"type": "string",
"pattern": "[a-z-]{2,50}"

};

var bookItemSchema = {
"type": "object",
"additionalProperties": {

"id": uuidSchema,
"libId": libIdSchema,
"purchaseDate": {

"type": "string",
"format": "date"

},
"isLent": {"type": "boolean"}

}
};

var bookSchema = {
"type": "object",
"required": ["title", "isbn", "authorIds", "bookItems"],
"properties": {

"title": {"type": "string"},
"publicationYear": publicationYearSchema,
"isbn": isbnSchema,
"publisher": {"type": "string"},
"authorIds": {

"type": "array",
"items": authorIdSchema

},
"bookItems": bookItemSchema

}
};

var authorSchema = {
"type": "object",
"required": ["id", "name", "bookIsbns"],
"properties": {

"id": {"type": "string"},
"name": {"type": "string"},

Listing 12.16 The refined schema of the catalog data (Part 1)

Listing 12.17 The refined schema of the catalog data (Part 2)

260 CHAPTER 12 Advanced data validation
"bookIsbns": {
"items": isbnSchema

}
}

};

var catalogSchema = {
"type": "object",
"properties": {

"booksByIsbn": {
"type": "object",
"additionalProperties": bookSchema

},
"authorsById": {

"type": "object",
"additionalProperties": authorSchema

}
},
"required": ["booksByIsbn", "authorsById"]

};

12.4 Automatic generation of data model diagrams
Before going home, Theo phones Joe to tell him about how he and Dave used data valida-
tion inside the system. Joe tells Theo that that’s exactly how he recommends doing it and
suggests he come and visit Theo and Dave at the office tomorrow. He wants to show them
some cool advanced stuff related to data validation. The next day, with coffee in hand, Joe
starts the discussion.

Joe Are you guys starting to feel the power of data validation à la DOP?

Dave Yes, it’s a bit less convenient to validate a JSON Schema than it is to write the
class of function arguments, but this drawback is compensated by the fact that
JSON Schema supports conditions that go beyond static types.

Theo We also realized that we don’t have to validate data for each and every function.

Joe Correct. Now, let me show you another cool thing that we can do with JSON
Schema.

Dave What’s that?

Joe Generate a data model diagram.

Dave Wow! How does that work?

Joe There are tools that receive a JSON Schema as input and produce a diagram in
a data model format.

Dave What is a data model format?

Joe It’s a format that allows you to define a data model in plain text. After that, you
can generate an image from the text. My favorite data format is PlantUML.

 NOTE For more on PlantUML, see https://plantuml.com/.

Dave Do you know of other tools that generate data model diagrams?

Joe I have used JSON Schema Viewer and Malli.

https://plantuml.com/

26112.4 Automatic generation of data model diagrams
 NOTE You can find information on the JSON Schema Viewer at https://navneethg
.github.io/jsonschemaviewer/ and on Malli at https://github.com/metosin/malli.

Joe shows Dave and Theo the PlantUML diagram that Malli generated (listing 12.18) from
the catalog schema in listings 12.16 and 12.17.

@startuml

Entity1 *-- Entity2
Entity1 *-- Entity4

Entity2 *-- Entity3

class Entity1 {
+ booksByIsbn: {Entity2}
+ authorsById: {Entity4}

}

class Entity2 {
+ title : String

+ publicationYear: Number
+ isbn: String
+ authorIds: [String]
+ bookItems: [Entity3]

}

class Entity3 {
+ id: String

+ libId: String
+ purchaseDate: String
+ isLent: Boolean

}

class Entity4 {
+ id: String

+ name: String
+ bookIsbns: [String]

}

@enduml

Dave Is it possible to visualize this diagram?

Joe Absolutely. Let me copy and paste the diagram text into the PlantText online
tool.

 NOTE See https://www.planttext.com/ for more on the PlantText online tool.

Dave opens his web browser and types the URL for PlantText. After copying and pasting
the text, he steps aside so that Theo and Dave can view the diagram that looks like the
image in figure 12.2.

Listing 12.18 A PlantUML diagram generated from the catalog data schema

https://navneethg.github.io/jsonschemaviewer/
https://navneethg.github.io/jsonschemaviewer/
https://navneethg.github.io/jsonschemaviewer/
https://github.com/metosin/malli
https://www.planttext.com/

262 CHAPTER 12 Advanced data validation
Dave That’s cool! But why are the diagram entities named Entity1, Entity2, and
so on?

Joe Because in JSON Schema, there’s no way to give a name to a schema. Malli has
to autogenerate random names for you.

Theo Also, I see that the extra information we have in the schema, like the number
range for publicationYear and string regular expression for isbn, is missing
from the diagram.

Joe Right, that extra information is not part of the data model. That’s why it’s not
included in the generated data model diagram.

Dave Anyway, it’s very cool!

Joe If you guys like the data model generation feature, I’m sure you’re going to
like the next feature.

Dave What’s it about?

Joe Automatic generation of unit tests.

Theo Wow, sounds exciting!

12.5 Automatic generation of schema-based unit tests
Joe Once you’ve defined a data schema for function arguments and for its return

value, it’s quite simple to generate a unit test for this function.

Dave How?

Joe Well, think about it. What’s the essence of a unit test for a function?

Dave A unit test calls a function with some arguments and checks whether the func-
tion returns the expected value.

Joe Exactly! Now, let’s adapt it to the context of data schema and DOP. Let’s say you
have a function with a schema for their arguments and for their return value.

booksByIsbn: {Entity2}

authorsById: {Entity3}

C Entity1

title : String

publicationYear: Number

isbn: String

authorlds: [String]

bookltems: [Entity3]

C Entity2

id: String

name: String

booklsbns: [String]

C Entity4

id: String

libld: String

purchaseDate: String

isLent: Boolean

C Entity3

Figure 12.2 A visualization of
the PlantUML diagram generated
from the catalog data schema

26312.5 Automatic generation of schema-based unit tests
Dave OK.

Joe Here’s the flow of a schema-based unit test. We call the function with random
arguments that conform to the schema of the function arguments. Then, we
check whether the function returns a value that conforms to the schema of the
return value. Here, let me diagram it.

Joe goes to the whiteboard. He draws the diagram in figure 12.3.

Dave How do you generate random data that conforms to a schema?

Joe Using a tool like JSON Schema Faker. For example, let’s start with a simple
schema: the schema for a UUID. Let me show you how to generate random
data that conforms to the schema.

 NOTE You’ll find more information about JSON Schema Faker at https://github
.com/json-schema-faker/json-schema-faker.

Joe types on the keyboard for a bit. He then shows the code to generate random data to
Dave and Theo.

var uuidSchema = {
"type": "string",
"pattern": "[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}" +

"-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"
};

JSONSchemaFaker.generate(uuidSchema);
// → "7aA8CdF3-14DF-9EF5-1A19-47dacdB16Fa9"

Dave executes the code snippet a couple of times, and indeed, on each evaluation, it returns
a different UUID.

Dave Very cool! Let me see how it works with more complex schemas like the cata-
log schema.

Listing 12.19 Generating random data that conforms to a UUID schema

Generate that conforms torandom data input schema

Execute the function

Yes No
Output conforms to output schema

Test passes Test fails

The input
is random.

Figure 12.3 The flow of
a schema-based unit test

https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker

264 CHAPTER 12 Advanced data validation
When Dave calls JSONSchemaFaker.generate with the catalog schema, he gets some
quite long random data. He’s a bit surprised by the results.

{
"booksByIsbn": {

"Excepteur7": {
"title": "elit veniam anim",
"isbn": "5419903-3563-7",
"authorIds": [

"vfbzqahmuemgdegkzntfhzcjhjrbgfoljfzogfuqweggchum",
"inxmqh-",

],
"bookItems": {

"ullamco5": {
"id": "f7dac8c3-E59D-bc2E-7B33-C27F3794E2d6",
"libId": "4jtbj7q7nrylfu114m",
"purchaseDate": "2001-08-01",
"isLent": false

},
"culpa_3e": {
"id": "423DCdDF-CDAe-2CAa-f956-C6cd9dA8054b",
"libId": "6wcxbh",
"purchaseDate": "1970-06-24",
"isLent": true

}
},
"publicationYear": 1930,
"publisher": "sunt do nisi"

},
"aliquip_d7": {

"title": "aute",
"isbn": "348782167518177",
"authorIds": ["owfgtdxjbiidsobfgvjpjlxuabqpjhdcqmmmrjb-ezrsz-u"],
"bookItems": {

"ipsum__0b": {
"id": "6DfE93ca-DB23-5856-56Fd-82Ab8CffEFF5",
"libId": "bvjh0p2p2666vs7dd",
"purchaseDate": "2018-03-30",
"isLent": false

}
},
"publisher": "ea anim ut ex id",
"publicationYear": 1928

}
},
"authorsById": {

"labore_b88": {
"id": "adipisicing nulla proident",
"name": "culpa in minim",
"bookIsbns": [

"6243029--7",
"5557199424742986"

]

Listing 12.20 Generating random data that conforms to the catalog schema

26512.5 Automatic generation of schema-based unit tests
},
"ut_dee": {

"id": "Lorem officia culpa qui in",
"name": "aliquip eiusmod",
"bookIsbns": [

"0661-8-5772"
]

}
}

}

Joe I see that you have some bugs in your regular expressions.

Theo How can you see that?

Joe Some of the generated ISBNs don’t seem to be valid ISBNs.

Dave You’re right. I hate regular expressions!

Joe Dave, I don’t think you’re the only one with that sentiment. Let me show you
how to implement the flow of a schema-based unit test for Catalog.search-
BooksByTitle.

function searchBooksTest () {
var catalogRandom = JSONSchemaFaker.generate(catalogSchema);
var queryRandom = JSONSchemaFaker.generate({ "type": "string" });
Catalog.searchBooksByTitle(catalogRandom, queryRandom);

}

Dave Wait a moment. I can’t see where you check that Catalog.searchBooksBy-
Title returns a value that conforms to the return value schema.

Theo If you look closer at the code, you’ll see it.

Dave takes a closer look at the code for Catalog.searchBooksByTitle. Now he sees it.

Catalog.searchBooksByTitle = function(catalogData, query) {
if(dev()) {

if(!ajv.validate(searchBooksArgsSchema, [catalogData, query])) {
var errors = ajv.errorsText(ajv.errors);
throw ("searchBooksByTitle called with invalid arguments: " +

errors);
}

}

var allBooks = _.get(catalogData, "booksByIsbn");
var matchingBooks = _.filter(allBooks, function(book) {

return _.get(book, "title").includes(query);
});
var bookInfos = _.map(matchingBooks, function(book) {

return Catalog.bookInfo(catalogData, book);
});

Listing 12.21 Implementation of the flow of a schema-based unit test

Listing 12.22 The implementation of Catalog.searchBooksByTitle

266 CHAPTER 12 Advanced data validation
if(dev()) {
if(!ajv.validate(searchBooksResponseSchema, bookInfos)) {

var errors = ajv.errorsText(ajv.errors);
throw ("searchBooksByTitle returned an invalid value: " +

errors);
}

}
return bookInfos;

};

Dave Of course! It’s in the code of Catalog.searchBooksByTitle. If the return
value doesn’t conform to the schema, it throws an exception, and the test fails.

Joe Correct. Now, let’s improve the code of our unit test and return false when
an exception occurs inside Catalog.searchBooksByTitle.

Joe edits the test code. He shows his changes to Theo and Dave.

function searchBooksTest () {
var catalogRandom = JSONSchemaFaker.generate(catalogSchema);
var queryRandom = JSONSchemaFaker.generate({ "type": "string" });
try {

Catalog.searchBooksByTitle(catalogRandom, queryRandom);
return true;

} catch (error) {
return false;

}
}

Dave Let me see what happens when I run the test.

Joe Before we run it, we need to fix something in your unit test.

Dave What?

Joe The catalog data and the query are random. There’s a good chance that no
books will match the query. We need to create a query that matches at least
one book.

Dave How are we going to find a query that’s guaranteed to match at least one book?

Joe Our query will be the first letter of the first book from the catalog data that is
generated.

Joe types for a bit and shows Theo and Dave his refined test. They are delighted that Joe is
taking the time to fix their unit test.

function searchBooksTest () {
var catalogRandom = JSONSchemaFaker.generate(catalogSchema);
var queryRandom = JSONSchemaFaker.generate({ "type": "string" });
try {

var firstBook = _.values(_.get(catalogRandom, "booksByIsbn"))[0];

Listing 12.23 A complete data schema-based unit test for search books

Listing 12.24 A refined data schema-based unit test for search books

26712.5 Automatic generation of schema-based unit tests
var query = _.get(firstBook, "title").substring(0,1);
Catalog.searchBooksByTitle(catalogRandom, query);
return true;

} catch (error) {
return false;

}
}

Dave I see. It’s less complicated than what I thought. Does it happen often that you
need to tweak the random data?

Joe No, usually the random data is just fine.

Dave OK, now I’m curious to see what happens when I execute the unit test.

When Dave executes the unit test, it fails. His expression is one of bewilderment. Theo is
just astonished.

searchBooksTest();
// → false

Dave I think something’s wrong in the code of the unit test.

Theo Maybe the unit test caught a bug in the implementation of Catalog.search-
BooksByTitle.

Dave Let’s check it out. Is there a way to have the unit test display the return value of
the function?

Joe Yes, here it is.

Joe once again turns to his laptop to update the code. He shows the others his new unit
test that includes the return value for Catalog.searchBooksByTitle.

function searchBooksTest () {
var catalogRandom = JSONSchemaFaker.generate(catalogSchema);
var queryRandom = JSONSchemaFaker.generate({ "type": "string" });
try {

var firstBook = _.values(_.get(catalogRandom, "booksByIsbn"))[0];
var query = _.get(firstBook, "title").substring(0,1);
Catalog.searchBooksByTitle(catalogRandom, query);
return true;

} catch (error) {
console.log(error);
return false;

}
}

Dave Now, let’s see what’s displayed when I again run the unit test.

Listing 12.25 Running the schema-based unit test

Listing 12.26 Including the return value in the unit test output

268 CHAPTER 12 Advanced data validation
searchBooksTest();
// → searchBooksByTitle returned a value that doesn\'t conform to schema:
// data[0].authorNames[0] should be string,
// data[0].authorNames[1] should be string,
// data[1].authorNames[0] should be string

Dave I think I understand what happened. In our random catalog data, the authors
of the books are not present in the authorByIds index. That’s why we have all
those undefineds in the values returned by Catalog.searchBooksByTitle,
whereas in the schema, we expect a string.

Theo How do we fix that?

Dave Simple. Have Catalog.authorNames return the string Not available when
an author doesn’t exist in the catalog. Maybe something like this.

Catalog.authorNames = function(catalogData, book) {
var authorIds = _.get(book, "authorIds");
var names = _.map(authorIds, function(authorId) {

return _.get(catalogData,
["authorsById", authorId, "name"],
"Not available");

});
return names;

};

Dave executes the unit test again. Thankfully, this time it passes.

searchBooksTest();
// → true

Joe Well done, Dave!

Dave You were right. The automatically generated unit tests were able to catch a bug
in the implementation of Catalog.searchBooksByTitle.

Joe Don’t worry. The same thing has happened to me so many times.

Dave Data validation à la DOP is really cool!

Joe That’s just the beginning, my friend. The more you use it, the more you love it!

Dave I must admit, I still miss one cool IDE feature from OOP.

Joe Which one?

Dave The autocompletion of field names in a class.

Joe For the moment, field name autocompletion for data is only available in
Clojure via clj-kondo and the integration it provides with Malli.

Listing 12.27 Running the schema-based unit test again

Listing 12.28 Fixing a bug in the search books implementation

Listing 12.29 Running the schema-based unit test again

When no value is associated with
the key ["authorsById", authorId,
"name"], we return "Not available".

26912.6 A new gift

pr

fie

is
 NOTE See https://github.com/clj-kondo/clj-kondo and https://github.com/metosin/
malli for the autocompletion feature provided by clj-kondo and its integration with Malli.

Dave Do you think that someday this functionality will be available in other program-
ming languages?

Joe Absolutely. IDEs like IntelliJ and Visual Studio Code already support JSON
Schema validation for JSON files. It’s only a matter of time before they support
JSON Schema validation for function arguments and provide autocompletion
of the field names in a map.

Dave I hope it won’t take them too much time.

12.6 A new gift
When Joe leaves the office, Dave gets an interesting idea. He shares it with Theo.

Dave Do you think we could make our own JSON Schema cheat sheet with the
advanced JSON schema features that we discovered today?

Theo Excellent idea! But you’ll have to do it on your own. I have to run to a meeting!

After his meeting, Theo comes back to Dave’s desk. When he sees Theo, Dave takes a
small package like the one Joe gave Theo a few weeks ago from the top of his desk. This
one, however, is wrapped in a light blue ribbon. With a solemn demeanor, Dave hands
Theo the gift.

When Theo undoes the ribbon, he discovers an stylish piece of paper decorated with lit-
tle computers in different colors. In the center of the paper, he reads the inscription,
“Advanced JSON Schema cheat sheet.” Theo smiles while browsing the JSON schema (see
listing 12.30). Then, he turns the paper over to find that the back is also filled with draw-
ings, this time keyboards and mice. In the center of the paper, Theo reads the inscription,
“Example of valid data” (see listing 12.31).

{
"type": "array",
"items": {

"type": "object",
"properties": {

"myNumber": {"type": "number"},
"myString": {"type": "string"},
"myEnum": {"enum": ["myVal", "yourVal"]},
"myBool": {"type": "boolean"}
"myAge": {
"type": "integer",
"minimum": 0,
"maximum": 120

},
"myBirthday": {

"type": "string",
"format": "date"

},

Listing 12.30 Advanced JSON Schema cheat sheet

At the root level,
data is an array.

Each element of the
array is a map.

The
operties
of each

ld in the
map

myNumber
 a number.

myString is
a string.

myEnum is an
enumeration value
with two possibilities,
"myVal" and "yourVal".

myBool is
a boolean.myAge is

an integer
between 0
and 120.

myBirthday is a string
conforming to the date
format.

https://github.com/clj-kondo/clj-kondo
https://github.com/metosin/malli
https://github.com/metosin/malli
https://github.com/metosin/malli

270 CHAPTER 12 Advanced data validation
"myLetters": {
"type": "string",
"pattern": "[a-zA-Z]*"

}
"myNumberMap": {
"type": "object",
"additionalProperties": {"type": "number"}

},
"myTuple": {

"type": "array",
"prefixItems": [

{ "type": "string" },
{ "type": "number" }

]
}

},
"required": ["myNumber", "myString"],
"additionalProperties": false
}
}

[
{

"myNumber": 42,
"myString": "I-love-you",
"myEnum": "myVal",
"myBool": true,
"myTuple": ["Hello", 42]

},
{

"myNumber": 54,
"myString": "Happy",
"myAge": 42,
"myBirthday": "1978-11-23",
"myLetters": "Hello",
"myNumberMap": {

"banana": 23,
"apple": 34

}
}

]

Summary
 We define data schemas using a language like JSON Schema for function argu-

ments and return values.
 Function argument schemas allow developers to figure out the expected shape of

the function arguments they want to call.
 When invalid data is passed, data validation third-party libraries give meaning-

ful errors with detailed information about the data parts that are not valid.

Listing 12.31 An example of valid data

myLetters is a string with
letters only (lowercase or
uppercase).

myNumberMap is an homogeneous
string map where all the values are
numbers.

myTuple is a tuple where the first
element is a string and the second
element is a number.

The mandatory fields in the map
are myNumber and myString.
Other fields are optional.

We don’t allow fields that
are not explicitly mentioned
in the schema.

271Summary
 Unlike data validation at system boundaries, data validation inside the system is
supposed to run only at development time and should be disabled in production.

 We visualize a data schema by generating a data model diagram out of a JSON
Schema.

 For functions that have data schemas for their arguments and return values, we
can automatically generate schema-based unit tests.

 Data validation is executed at run time.
 We can define advanced data validation conditions that go beyond static types,

like checking whether a number is within a range or if a string matches a regu-
lar expression.

 Data validation inside the system should be disabled in production.
 Records are represented as heterogeneous maps, and indexes are represented as

homogeneous maps.
 When you define a complex data schema, it is advised to store nested schemas

in variables to make the schemas easier to read.
 We treat data validation like unit tests.

Polymorphism
Playing with the animals

in the countryside
OOP is well-known for allowing different classes to be called with the same inter-
face via a mechanism called polymorphism. It may seem that the only way to have
polymorphism in a program is with objects. In fact, in this chapter, we are going to
see that it is possible to have polymorphism without objects, thanks to multimeth-
ods. Moreover, multimethods provide a more advanced polymorphism than OOP
polymorphism because they support cases where the chosen implementation
depends on several argument types (multiple dispatch) and even on the dynamic
value of the arguments (dynamic dispatch).

This chapter covers
 Mimicking objects with multimethods (single

dispatch)

 Implementing multimethod on several argument
types (multiple dispatch)

 Implementing multimethods dynamically on
several arguments (dynamic dispatch)
272

27313.1 The essence of polymorphism
13.1 The essence of polymorphism
For today’s session, Dave has invited Theo to come and visit him at his parents’ house in
the countryside. As Theo’s drive across the Golden Gate Bridge takes him from the freeway
to increasingly rural country roads, he lets himself be carried away by the beauty of the
landscape, the smell of fresh earth, and the sounds of animals in nature. This “nature
bath” puts him in an excellent mood. What a way to start the week!

Dave receives Theo in jeans and a T-shirt, a marked contrast with the elegant clothes he
wears at the office. A straw hat completes his country look. Theo says hello to Dave’s par-
ents, now retired. Dave suggests that they go pick a few oranges in the field to squeeze for
juice. After drinking a much more flavorful orange juice than they are used to in San Fran-
cisco, Theo and Dave get to work.

Dave When I was waiting for you this morning, I thought of another thing I miss
from OOP.

Theo What’s that?

Dave Polymorphism.

Theo What kind of polymorphism?

Dave You know, you define an interface, and different classes implement the same
interface in different ways.

Theo I see. And why do you think polymorphism is valuable?

Dave Because it allows us to decouple an interface from its implementations.

Theo Would you mind illustrating that with a concrete example?

Dave Sure. Because we’re in the country, I’ll use the classic OOP polymorphism
example with animals.

Theo Good idea!

Dave Let’s say that each animal has its own greeting by making a sound and saying
its name.

Theo Oh cool, like in anthropomorphic comics books.

Dave Anthro what?

Theo You know, comics books where animals can walk, speak, and so forth—like
Mickey Mouse.

Dave Of course, but I don’t know that term. Where does it come from?

Theo Anthropomorphism comes from the Greek ánthro–pos, which means human, and
morphe–, which means form.

Dave I see. So an anthropomorphic book is a book where animals have human traits.
The word sounds related to polymorphism.

Theo Absolutely. Polymorphism comes from the Greek polús, which means many, and
morphe–, which, again, means form.

Dave That makes sense. Polymorphism is the ability of different objects to imple-
ment the same method in different ways. That brings me back to my animal
example. In OOP, I’d define an IAnimal interface with a greet method, and
each animal class would implement greet in its own way. Here, I happen to
have an example.

274 CHAPTER 13 Polymorphism
interface IAnimal {
public void greet();
}

class Dog implements IAnimal {
private String name;
public void greet() {

System.out.println("Woof woof! My name is " + animal.name);
}

}

class Cat implements IAnimal {
private String name;
public void greet() {

System.out.println("Meow! I am " + animal.name);
}

}

class Cow implements IAnimal {
private String name;
public void greet() {

System.out.println("Moo! Call me " + animal.name);
}

}

Theo Let me challenge you a bit. What is the fundamental difference between OOP
polymorphism and a switch statement?

Dave What do you mean?

Theo I could, for instance, represent an animal with a map having two fields, name
and type, and call a different piece of code, depending on the value of type.

Theo pulls his laptop from its bag and fires it up. While the laptop is booting up, he enjoys
another taste of that wonderful orange juice. When the laptop is ready, he quickly types in
the example switch case. Meanwhile, Dave has finished his glass of orange juice.

function greet(animal) {
switch (animal.type) {

case "dog":
console.log("Woof Woof! My name is: " + animal.name);
break;

case "cat":
console.log("Meow! I am: " + animal.name);
break;

case "cow":
console.log("Moo! Call me " + animal.name);
break;

};
}

Listing 13.1 OOP polymorphism illustrated with animals

Listing 13.2 A switch case where behavior depends on type

27513.1 The essence of polymorphism
Dave How would animal look, exactly?

Theo Like I just said, a map with two fields: name and type. Let me input that for you.

var myDog = {
"type": "dog",
"name": "Fido"

};

var myCat = {
"type": "cat",
"name": "Milo"

};

var myCow = {
"type": "cow",
"name": "Clarabelle"

};

Dave Could you have given another name to the field that holds the animal type?

Theo Absolutely. It could be anything.

Dave I see. You’re asking me the fundamental difference between your code with a
switch statement and my code with an interface and three classes?

Theo Exactly.

Dave First of all, if you pass an invalid map to your greet function, bad things will
happen.

Theo You’re right. Let me fix that and validate input data.

var animalSchema = {
"type": "object",
"properties": {

"name": {"type": "string"},
"type": {"type": "string"}

},
"required": ["name", "type"],

};

function greet(animal) {
if(dev()) {

if(!ajv.validate(animalSchema, animal)) {
var errors = ajv.errorsText(ajv.errors);
throw ("greet called with invalid arguments: " + errors);

}
}
switch (animal.type) {

case "dog":

Listing 13.3 Representing animals with maps

Listing 13.4 Data validation

See chapter 12 about
data validation for
details.

276 CHAPTER 13 Polymorphism
console.log("Woof Woof! My name is: " + animal.name);
break;

case "cat":
console.log("Meow! I am: " + animal.name);
break;

case "cow":
console.log("Moo! Call me " + animal.name);
break;

};
}

 NOTE You should not use switch statements like this in your production code.
We use them here for didactic purposes only as a step towards distilling the essence of
polymorphism.

Dave Another drawback of your approach is that when you want to modify the
implementation of greet for a specific animal, you have to change the code
that deals with all the animals, while in my approach, you would change only a
specific animal class.

Theo I agree, and I could also fix that by having a separate function for each animal,
something like this.

function greetDog(animal) {
console.log("Woof Woof! My name is: " + animal.name);

}

function greetCat(animal) {
console.log("Meow! I am: " + animal.name);

}

function greetCow(animal) {
console.log("Moo! Call me " + animal.name);

}

function greet(animal) {
if(dev()) {

if(!ajv.validate(animalSchema, animal)) {
var errors = ajv.errorsText(ajv.errors);
throw ("greet called with invalid arguments: " + errors);

}
}
switch (animal.type) {

case "dog":
greetDog(animal);
break;

case "cat":
greetCat(animal);
break;

case "cow":
greetCow(animal);

Listing 13.5 Different implementations in different functions

27713.2 Multimethods with single dispatch
break;
};

}

Dave But what if you want to extend the functionality of greet and add a new animal?

Theo Now you got me. I admit that with a switch statement, I can’t add a new animal
without modifying the original code, whereas in OOP, I can add a new class
without having to modify the original code.

Dave Yeah, but you helped me to realize that the main benefit of polymorphism is
that it makes the code easily extensible.

TIP The main benefit of polymorphism is extensibility.

Theo I’m going to ask Joe if there’s a way to benefit from polymorphism without
objects.

Theo sends a message to Joe and asks him about polymorphism in DOP. Joe answers that
he doesn’t have time to get into a deep response because he is in a tech conference where
he is about to give a talk about DOP. The only thing he has time to tell Theo is that he
should take a look at multimethods.

Theo and Dave read some online material about multimethods. It doesn’t look too
complicated. They decide that after lunch they will give multimethods a try.

13.2 Multimethods with single dispatch
During lunch, Theo asks Dave how it feels to have grown up in the country. Dave starts
with an enthusiastic description about being in direct contact with nature and living a sim-
pler life than in the city. He’s grateful for the experience, but he admits that country life
can sometimes be hard without the conveniences of the city. But who said simple was easy?

After lunch, they decide to have coffee. Dave asks Theo if he’d like to grind the coffee
beans himself. Theo accepts with joy. Next, Dave explains how to use a French press coffee
maker to get the ideal tradeoff between bitterness and rich taste. While savoring their
French press coffee in the garden, Theo and Dave continue their exploration of polymor-
phism à la DOP.

Theo From what I read before lunch, it seems that multimethods are a software con-
struct that provide polymorphism without the need for objects.

Dave I don’t get how that’s possible.

Theo Multimethods have two parts: a dispatch function and a set of methods that
provide an implementation for each dispatched value.

Dave I’m not sure I’m clear on that. Is a dispatch function like an interface?

Theo It’s like an interface in the sense that it defines the way the function needs to
be called, but it goes beyond that. It also dispatches a value that differentiates
between the different implementations.

Dave That’s a bit abstract for me.

Theo I think I understand how to implement the animal greeting capabilities. If we
use a multimethod called greet, we need a dispatch function and three
methods. Let’s call the dispatch function greetDispatch. It dispatches the
animal type, either "dog", "cat", or "cow". Then, each dispatch value is

278 CHAPTER 13 Polymorphism
handled by a specific method: "dog" by greetDog, "cat" by greetCat, and
"cow" by greetCow.

Theo takes out his notebook and opens it to a blank piece of paper. He draws a diagram
like the one in figure 13.1.

Dave Why is there an arrow between animal and the methods, in addition to the
arrows between animal and the dispatch functions?

Theo Because the arguments of a multimethod are passed to the dispatch function
and to the methods.

TIP The arguments of a multimethod are passed to the dispatch function and to the
methods.

Dave Arguments plural? . . . I see only a single argument.

Theo You’re right. Right now our multimethod only receives a single argument, but
soon it will receive several arguments.

Dave I see. Could you show me how to write the code for the greet multimethod?

Theo For that, we need a library. For instance, in JavaScript, the arrows/multi-
method library provides an implementation of multimethods. Basically, we call
multi to create a multimethod called method to add a method.

 NOTE See http://mng.bz/nY9v for examples and documentation about this library.

Dave Where should we start?

Theo We’ll start with multimethod initialization by creating a dispatch function
greetDispatch that defines the signature of the multimethod, validates the
arguments, and emits the type of the animal. Then we’ll pass greetDispatch
to multi in order to create the greet multimethod. Our dispatch function
would then look like this.

function greetDispatch(animal) {
if(dev()) {

Listing 13.6 The dispatch function for greet multimethod

"dog"

"cow"

"cat"

animal

type, name

greetDispatch

Emit the animal type

greetDog

Greet as a dog

greetCow

Greet as a cow

greetCat

Greet as a cat

Figure 13.1 The logic flow
of the greet multimethod

Signature definition

http://mng.bz/nY9v

27913.2 Multimethods with single dispatch
if(!ajv.validate(animalSchema, animal)) {
var errors = ajv.errorsText(ajv.errors);
throw ("greet called with invalid arguments: " + errors);

}
}

return animal.type;
}

var greet = multi(greetDispatch);

TIP A multimethod dispatch function is responsible for three things: it defines the sig-
nature of the multimethod, it validates the arguments, and it emits a dispatch value.

Dave What’s next?

Theo Now we need to implement a method for each dispatched value. Let’s start
with the method that deals with dogs. We create a greetDog function that
receives an animal and then add a dog method to the greet multimethod
using the method function from the arrows/multimethod library. The method
function receives two arguments: the dispatched value and a function that cor-
responds to the dispatch value.

function greetDog(animal) {
console.log("Woof woof! My name is " + animal.name);

}
greet = method("dog", greetDog)(greet);

Dave Does the method implementation have to be in the same module as the multi-
method initialization?

Theo No, not at all! Method declarations are decoupled from multimethod initializa-
tion exactly like class definitions are decoupled from the interface definition.
That’s what make multimethods extensible.

TIP Multimethods provides extensibility by decoupling between multimethod initial-
ization and method implementations.

Dave What about cats and cows?

Theo We add their method implementations like we did for dogs.

Theo takes a moment to envision the implementation. Then he codes up two more greet
methods for cats and cows.

function greetCat(animal) {
console.log("Meow! I am " + animal.name);

}

greet = method("cat", greetCat)(greet);

Listing 13.7 Implementation of greet method for dogs

Listing 13.8 Implementation of greet method for cats

Argument validation

Dispatch value

Multimethod
initialization

Method
implementation

Method declaration

280 CHAPTER 13 Polymorphism
function greetCow(animal) {
console.log("Moo! Call me " + animal.name);

}

greet = method("cow", greetCow)(greet);

TIP In the context of multimethods, a method is a function that provides an imple-
mentation for a dispatch value.

Dave Are the names of dispatch functions and methods important?

Theo According to what I read, not really, but I like to follow a simple naming con-
vention: use the name of the multimethod (for example, greet) as a prefix for
the dispatch function (for example, greetDispatch) and the methods. Then
I’d have the Dispatch suffix for the dispatch function and a specific suffix for
each method (for example, greetDog, greetCat, and greetCow).

Dave How does the multimethod mechanism work under the hood?

Theo Internally, a multimethod maintains a hash map where the keys are the dis-
patched values, and the values are the methods. When we add a method, an
entry is added to the hash map, and when we call the multimethod, we query the
hash map to find the implementation that corresponds to the dispatched value.

Dave I don’t think you’ve told me yet how to call a multimethod.

Theo We call it as a regular function. Give me a minute, and I’ll show you an exam-
ple that calls a multimethod.

greet(myDog);
// → "Woof woof! My name is Fido"

greet(myCat);
// → "Meow! I am Milo"

greet(myCow);
// → "Moo! Call me Clarabelle"

TIP Multimethods are called like regular functions.

Dave You told me earlier that in the dispatch function, we should validate the argu-
ments. Is that mandatory or is it a best practice?

Theo It’s a best practice.

Dave What happens if the dispatch function doesn’t validate the arguments, and we
pass an invalid argument?

Theo Like when an animal has no corresponding method?

Dave Exactly!

Theo In that case, you’ll get an error. For instance, the arrows/multimethods library
throws a NoMethodError exception.

Dave That’s annoying. Is there a way to provide a default implementation?

Listing 13.9 Implementation of greet method for cows

Listing 13.10 Calling a multimethod like a regular function

28113.3 Multimethods with multiple dispatch
Theo Absolutely! In order to define a default implementation, you pass to method—
as a single argument—the function that provides the default implementation.

Theo writes the code and shows it to Dave. Dave then tests Theo’s code and seems satisfied
with the result.

function greetDefault(animal) {
console.log("My name is " + animal.name);

}
greet = method(greetDefault)(greet);

var myHorse = {
"type": "horse",
"name": "Horace"

};
greet(myHorse);
// → "My name is Horace"

TIP Multimethods support default implementations that are called when no method
corresponds to the dispatch value.

Dave Cool!

13.3 Multimethods with multiple dispatch
Theo So far, we’ve mimicked OOP by having the type of the multimethod argument

as a dispatch value. But if you think again about the flow of a multimethod,
you’ll discover something interesting. Would you like to try and draw a dia-
gram that describes the flow of a multimethod in general?

Dave Let me get a fresh napkin. The one under my glass is a bit wet.

Theo Uh, Dave, you can use my notebook.

It takes Dave a few minutes to draw a diagram like the one in figure 13.2. He pushes the
notebook back to Theo.

Listing 13.11 Defining a default implementation

Listing 13.12 Calling a multimethod when no method fits the dispatch value

Value1

Value2

Value3

args

Dispatch function

Emit a dispatch value

Method1

Handle case 1

Method2

Handle case 2

Method3

Handle case 3

Figure 13.2 The logic flow
of multimethods

282 CHAPTER 13 Polymorphism
Theo Excellent! I hope you see that the dispatch function can emit any value.

Dave Like what?

Theo Like emitting the type of two arguments!

Dave What do you mean?

Theo Imagine that our animals are polyglot.

Dave Poly what?

Theo Polyglot comes from the Greek polús, meaning much, and from glôssa, meaning
language. A polyglot is a person who can speak many languages.

Dave What languages would our animals speak?

Theo I don’t know. Let’s say English and French.

Dave OK, and how would we represent a language in our program?

Theo With a map, of course!

Dave What fields would we have in a language map?

Theo Let’s keep things simple and have two fields: type and name.

Dave Like an animal map?

Theo Not exactly. In a language map, the type field must be either fr for French or en
for English, whereas in the animal map, the type field is either dog, cat, or cow.

Dave Let me try to write the language map schema and the two language maps.

Theo gladly consents; his French press coffee is getting cold! Dave writes his implementa-
tion of the code and shows Theo.

var languageSchema = {
"type": "object",
"properties": {

"name": {"type": "string"},
"type": {"type": "string"}

},
"required": ["name", "type"],

};

var french = {
"type": "fr",
"name": "Français"

};

var english = {
"type": "en",
"name": "English"

};

Theo Excellent! Now, let’s write the code for the dispatch function and the methods
for our polyglot animals. Let’s call our multimethod, greetLang. We have one
dispatch function and six methods.

Listing 13.13 The schema of a language map

Listing 13.14 Two language maps

28313.3 Multimethods with multiple dispatch
Dave Right, three animals (dog, cat, and cow) times two languages (en and fr).
Before the implementation, I’d like to draw a flow diagram. It will help me to
make things crystal clear.

Theo You need my notebook again?

Not waiting for Dave to respond, Theo pushes his notebook across the table to Dave. Dave
draws a diagram like the one in figure 13.3 and slides the notebook back to Theo.

Theo Why did you omit the arrow between the arguments and the methods?

Dave In order to keep the diagram readable. Otherwise, there would be too many
arrows.

Theo OK, I see. Are you ready for coding?

Dave Yes!

Theo The dispatch function needs to validate its arguments and return an array with
two elements: the type of animal and the type of language.

Dave types for a bit on his laptop. He initializes the multimethod with a dispatch function
that returns the type of its arguments and then shows the code to Theo.

var greetLangArgsSchema = {
"type": "array",
"prefixItems": [animalSchema, languageSchema]

};

function greetLangDispatch(animal, language) {
if(dev()) {

Listing 13.15 Initializing a multimethod with a dispatch function

["dog", "en"]

["cat", "en"]

["cow", "en"]

args

animal, language

greetLangDispatch

Emit the animal and the language types

greetLangDogEn

Greet as a dog in English

greetLangCowEn

Greet as a cow in English

greetLangCatEn

Greet as a cat in English

greetLangDogFr

Greet as a dog in French

greetLangCowFr

Greet as a cow in French

greetLangCatFr

Greet as a cat in French

["cat", "fr"]

["dog", "fr"]

["cow", "fr"]

Figure 13.3 The logic flow of the greetLang multimethod

284 CHAPTER 13 Polymorphism
if(!ajv.validate(greetLangArgsSchema, [animal, language])) {
throw ("greetLang called with invalid arguments: " +

ajv.errorsText(ajv.errors));
}

}
return [animal.type, language.type];

};

var greetLang = multi(greetLangDispatch);

Dave Does the order of the elements in the array matter?

Theo It doesn’t matter, but it needs to be consistent with the wiring of the methods.
The implementation of greetLang would therefore look like this.

function greetLangDogEn(animal, language) {
console.log("Woof woof! My name is " +

animal.name +
" and I speak " +
language.name);

}

greetLang = method(["dog", "en"], greetLangDogEn)(greetLang);

function greetLangDogFr(animal, language) {
console.log("Ouaf Ouaf! Je m'appelle " +

animal.name +
" et je parle " +
language.name);

}

greetLang = method(["dog", "fr"], greetLangDogFr)(greetLang);

function greetLangCatEn(animal, language) {
console.log("Meow! I am " +

animal.name +
" and I speak " +
language.name);

}
greetLang = method(["cat", "en"], greetLangCatEn)(greetLang);

function greetLangCatFr(animal, language) {
console.log("Miaou! Je m'appelle " +

animal.name +
" et je parle " +
language.name);

}
greetLang = method(["cat", "fr"], greetLangCatFr)(greetLang);

function greetLangCowEn(animal, language) {
console.log("Moo! Call me " +

animal.name +
" and I speak " +

Listing 13.16 The implementation of greetLang methods

28513.3 Multimethods with multiple dispatch
language.name);
}
greetLang = method(["cow", "en"], greetLangCowEn)(greetLang);

function greetLangCowFr(animal, language) {
console.log("Meuh! Appelle moi " +

animal.name +
" et je parle " +
language.name);

}
greetLang = method(["cow", "fr"], greetLangCowFr)(greetLang);

Dave looks at the code for the methods that deal with French. He is surprised to see Ouaf
Ouaf instead of Woof Woof for dogs, Miaou instead of Meow for cats, and Meuh instead of
Moo for cows.

Dave I didn’t know that animal onomatopoeia were different in French than in
English!

Theo Ono what?

Dave Onomatopoeia, from the Greek ónoma that means name and poiéo– that means to
produce. It is the property of words that sound like what they represent; for
instance, Woof, Meow, and Moo.

Theo Yeah, for some reason in French, dogs Ouaf, cats Miaou, and cows Meuh.

Dave I see that in the array the animal type is always before the language type.

Theo Right! As I told you before, in a multimethod that features multiple dispatch,
the order doesn’t really matter, but it has to be consistent.

TIP Multiple dispatch is when a dispatch function emits a value that depends on more
than one argument. In a multimethod that features multiple dispatch, the order of
the elements in the array emitted by the dispatch function has to be consistent with
the order of the elements in the wiring of the methods.

Dave Now let me see if I can figure out how to use a multimethod that features mul-
tiple dispatch.

Dave remembers that Theo told him earlier that multimethods are used like regular func-
tions. With that in mind, he comes up with the code for a multimethod that features multi-
ple dispatch.

greetLang(myDog, french);
// → "Ouaf Ouaf! Je m\'appelle Fido et je parle Français"

greetLang(myDog, english);
// → "Woof woof! My name is Fido and I speak English"

greetLang(myCat, french);
// → "Miaou! Je m\'appelle Milo et je parle Français"

Listing 13.17 Calling a multimethod that features multiple dispatch

286 CHAPTER 13 Polymorphism
greetLang(myCat, english);
// → "Meow! I am Milo and I speak English"

greetLang(myCow, french);
// → "Meuh! Appelle moi Clarabelle et je parle Français"

greetLang(myCow, english);
// → "Moo! Call me Clarabelle and I speak English"

Theo Now do you agree that multimethods with multiple dispatch offer a more pow-
erful polymorphism that OOP polymorphism?

Dave Indeed, I do.

Theo Let me show you an even more powerful polymorphism called dynamic dis-
patch. But first, let’s get some more of that wonderful French press coffee.

Dave Great idea! While we’re in the kitchen, I think my mom made an orange Bundt
cake using the oranges from the grove.

13.4 Multimethods with dynamic dispatch
Dave refills their coffee cups as Theo takes two slices from the cake and dishes them up.
They take their coffee and cake outside to enjoy more of the fresh country air before
resuming their conversation.

Dave What is dynamic dispatch?

Theo It’s when the dispatch function of a multimethod returns a value that goes
beyond the static type of its arguments.

Dave Like what, for example?

Theo Like a number or a Boolean, for instance.

Dave Why would such a thing be useful?

Theo Imagine that instead of being polyglot, our animals would suffer from
dysmakrylexia.

Dave Suffering from what?

Theo Dysmakrylexia. It comes from the Greek dus, expressing the idea of difficulty,
makrýs meaning long, and léxis meaning diction. Therefore, dysmakrylexia is dif-
ficulty pronouncing long words.

Dave I’ve never heard of that.

Theo That’s because I just invented it.

Dave Funny. What’s considered a long word for our animals?

Theo Let’s say that when their name has more than five letters, they’re not able to
say it.

Dave A bit weird, but OK.

Theo Let’s call our multimethod dysGreet. Its dispatch function returns an array
with two elements: the animal type and a Boolean about whether the name is
long or not. Take a look at this multimethod initialization.

28713.4 Multimethods with dynamic dispatch
function dysGreetDispatch(animal) {
if(dev()) {

if(!ajv.validate(animalSchema, animal)) {
var errors = ajv.errorsText(ajv.errors);
throw ("dysGreet called with invalid arguments: " + errors);

}
}
var hasLongName = animal.name.length > 5;

return [animal.type, hasLongName];
};

var dysGreet = multi(dysGreetDispatch);

Dave Writing the dysGreet methods doesn’t seem too complicated.

As Theo reaches over to pass Dave his notebook, he accidently hits his coffee cup. Now Theo’s
notebook is completely wet, and all the diagrams are soggy! Fortunately, Dave brought an
extra napkin from the kitchen, and it’s still clean. He draws a flow diagram as in figure 13.4
and then grabs his laptop and writes the implementation of the dysGreet methods.

function dysGreetDogLong(animal) {
console.log("Woof woof! My name is " + animal.name);

}
dysGreet = method(["dog", true], dysGreetDogLong)(dysGreet);

Listing 13.18 A multimethod using a dispatch function with dynamic dispatch

Listing 13.19 The dysGreet methods

["dog", true]

["cat", true]

["cow", true]

args

animal, language

dysGreetLangDispatch

Emit the animal and the language types

dysGreetDogLong

Greet as a dog mentioning name

dysGreetCowLong

Greet as a cow mentioning name

dysGreetCatLong

Greet as a cat mentioning name

dysGreetDogShort

Greet as a dog omitting name

dysGreetCowShort

Greet as a cow omitting name

dysGreetCatShort

Greet as a cat omitting name

["cat", false]

["dog", false]

["cow", false]

Figure 13.4 The logic flow of the dysGreet multimethod

288 CHAPTER 13 Polymorphism
function dysGreetDogShort(animal) {
console.log("Woof woof!");

}
dysGreet = method(["dog", false], dysGreetDogShort)(dysGreet);

function dysGreetCatLong(animal) {
console.log("Meow! I am " + animal.name);

}
dysGreet = method(["cat", true], dysGreetCatLong)(dysGreet);

function dysGreetCatShort(animal) {
console.log("Meow!");

}
dysGreet = method(["cat", false], dysGreetCatShort)(dysGreet);

function dysGreetCowLong(animal) {
console.log("Moo! Call me " + animal.name);

}
dysGreet = method(["cow", true], dysGreetCowLong)(dysGreet);

function dysGreetCowShort(animal) {
console.log("Moo!");

}
dysGreet = method(["cow", false], dysGreetCowShort)(dysGreet);

Theo checks that the code works as expected. He compliments Dave, not only on the
method implementation but also for having the foresight to grab an extra napkin.

dysGreet(myDog);
dysGreet(myCow);
dysGreet(myCat);
//"Woof woof!"
//"Moo! Call me Clarabelle"
//"Meow!"

Theo Well done, my friend! Our exploration of multimethods has come to an end. I
think it’s time for me to drive back if I want to get home before dark and beat
the rush hour traffic.

Dave Before you leave, let’s check if multimethods are available in programming
languages other than JavaScript.

Theo That’s a question for Joe.

Dave Do you think it’s OK if I call him now?

Theo I think it’s probably better if you send him an email. He’s in a tech conference,
and I’m not sure if it’s all day. Thank you for this beautiful day in the country
and the wonderful refreshments.

Dave I enjoyed it, also, especially our discussions about etymology. I think there are
some oranges for you to take home and enjoy later.

Theo Great! I can’t wait until my wife tries one.

Listing 13.20 Testing dysGreet

28913.5 Integrating multimethods in a production system
After Theo leaves, Dave sends Joe an email. A few minutes later, Dave receives an email
from Joe with the subject, “Support for multimethods in different languages.”

13.5 Integrating multimethods in a production system
While Theo is driving back home, his thoughts take him back to the fresh air of the coun-
try. This pleasant moment is interrupted by a phone call from Nancy at Klafim.

Nancy How are you doing?

Theo Fine. I’m driving back from the countryside.

Nancy Cool. Are you available to talk about work?

Theo Sure.

Nancy I’d like to add a tiny feature to the catalog.

In the past, when Nancy qualified a feature as tiny, it scared Theo because tiny turned into
huge. What seemed easy to her always took him a surprising amount of time to develop.
But after refactoring the system according to DOP principles, now what seems tiny to
Nancy is usually quite easy to implement.

Theo What feature?

Nancy I’d like to allow librarians to view the list of authors, ordered by last name, in
two formats: HTML and Markdown.

Support for multimethods in different languages

Python has a library called multimethods (https://github.com/weissjeffm/multimeth-
ods), and Ruby has one called Ruby multimethods (https://github.com/psantacl/
ruby-multimethods). Both seem to work quite like the JavaScript arrows/multi-
method library.

In Java, there is the Java Multimethod Framework (http://igm.univ-mlv.fr/~forax/
works/jmmf/), and C# supports multimethods natively via the dynamic keyword.
However, in both Java and C#, multimethods work only with static data types and not
with generic data structures.

Language URL
Generic data structure

support

JavaScript https://github.com/caderek/arrows/tree/master/
packages/multimethod

Yes

Java http://igm.univ-mlv.fr/~forax/works/jmmf/ No

C# Native support No

Python https://github.com/weissjeffm/multimethods Yes

Ruby https://github.com/psantacl/ruby-multimethods Yes

http://igm.univ-mlv.fr/~forax/works/jmmf/
http://igm.univ-mlv.fr/~forax/works/jmmf/
http://igm.univ-mlv.fr/~forax/works/jmmf/
https://github.com/caderek/arrows/tree/master/packages/multimethod
https://github.com/caderek/arrows/tree/master/packages/multimethod
http://igm.univ-mlv.fr/~forax/works/jmmf/
https://github.com/psantacl/ruby-multimethods
https://github.com/psantacl/ruby-multimethods
https://github.com/psantacl/ruby-multimethods
https://github.com/weissjeffm/multimethods
https://github.com/psantacl/ruby-multimethods
https://github.com/weissjeffm/multimethods
https://github.com/weissjeffm/multimethods

290 CHAPTER 13 Polymorphism
Theo It doesn’t sound too complicated.

Nancy Also, I need a bit of text formatting.

Theo What kind of text formatting?

Nancy Depending on the number of books an author has written, their name should
be in bold and italic fonts.

Theo Could you send me an email with all the details. I’ll take a look at it tomorrow
morning.

Nancy Perfect. Have a safe drive!

Before going to bed, Theo reflects about today’s etymology lessons. He realizes that he
never looked for the etymology of the word etymology itself! He searches for the term etymol-
ogy online and learns that the word etymology derives from the Greek étumon, meaning true
sense, and the suffix logia, denoting the study of. During the night, Theo dreams of dogs,
cats, and cows programming on their laptops in a field of grass.

When Theo arrives at the office the next day, he opens Nancy’s email with the details
about the text formatting feature. The details are summarized in table 13.1.

Theo forwards Nancy’s email to Dave and asks him to take care of this task. Delegating
responsibility, after all, is the trait of a great manager.

Dave thinks the most difficult part of the feature lies in implementing an Author
.myName(author, format) function that receives two arguments: the author data and the
text format. He asks himself whether he can implement this function as a multimethod
and use what he learned yesterday with Theo at his parents’ home in the country. It seems
that this feature is quite similar to the one that dealt with dysmakrylexia. Instead of check-
ing the length of a string, he needs to check the length of an array.

First, Dave needs a data schema for the text format. He could represent a format as a
map with a type field like Theo did yesterday for languages, but at the moment, it seems
simpler to represent a format as a string that could be either markdown or html. He comes
up with the text format schema in listing 13.21. He already wrote the author schema with
Theo last week. It’s in listing 13.22.

var textFormatSchema = {
"name": {"type": "string"},
"type": {"enum": ["markdown", "html"]}

};

Table 13.1 Text formatting for author names according to the number of books
they have written

Number of books Italic Bold

10 or fewer Yes No

Between 11 and 50 No Yes

51 or more Yes Yes

Listing 13.21 The text format schema

29113.5 Integrating multimethods in a production system
var authorSchema = {
"type": "object",
"required": ["name", "bookIsbns"],
"properties": {

"name": {"type": "string"},
"bookIsbns": {

"type": "array",
"items": {"type": "string"}

}
}

};

Now, Dave needs to write a dispatch function and initialize the multimethod. Remember-
ing that Theo had no qualms about creating the word dysmakrylexia, he decides that he
prefers his own neologism, prolificity, over the existing nominal form prolificness. He finds it
useful to have an Author.prolificityLevel helper function that returns the level of
prolificity of the author: either low, medium, or high. Now he’s ready to code the author-
NameDispatch function.

Author.prolificityLevel = function(author) {
var books = _.size(_.get(author, "bookIsbns"));
if (books <= 10) {

return "low";
};
if (books >= 51) {

return "high";
}
return "medium";

};

var authorNameArgsSchema = {
"type": "array",
"prefixItems": [

authorSchema,
{"enum": ["markdown", "html"]}

]
};

function authorNameDispatch(author, format) {
if(dev()) {

if(!ajv.validate(authorNameArgsSchema, [author, format])) {
throw ("Author.myName called with invalid arguments: " +

ajv.errorsText(ajv.errors));
}

}

return [Author.prolificityLevel(author), format];
};

Author.myName = multi(authorNameDispatch);

Listing 13.22 The author schema

Listing 13.23 Author.myName multimethod initialization

292 CHAPTER 13 Polymorphism
Then Dave works on the methods: first, the HTML format methods. In HTML, bold text is
wrapped inside a tag, and italic text is wrapped in a <i> tag. For instance, in HTML,
three authors with different levels of prolificity would be written like this.

<i>Yehonathan Sharvit<i>
Stephen Covey
<i>Isaac Asimov</i>

With this information in hand, Dave writes the three methods that deal with HTML for-
matting. Easy!

function authorNameLowHtml(author, format) {
return "<i>" + _.get(author, "name") + "</i>";

}

Author.myName = method(["low", "html"], authorNameLowHtml)(Author.myName);

function authorNameMediumHtml(author, format) {
return "" + _.get(author, "name") + "";

}

Author.myName =
method(["medium", "html"], authorNameMediumHtml)(Author.myName);

function authorNameHighHtml(author, format) {
return "<i>" + _.get(author, "name") + "</i>";

}

Author.myName =
method(["high", "html"], authorNameHighHtml)(Author.myName);

Then, Dave moves on to the three methods that deal with Markdown formatting. In
Markdown, bold text is wrapped in two asterisks, and italic text is wrapped in a single
asterisk. For instance, in Markdown, three authors with different levels of prolificity
would be written like the code in listing 13.26. The code for the Markdown methods is in
listing 13.27.

Yehonathan Sharvit
Stephen Covey
Isaac Asimov

Listing 13.24 Examples of bold and italic in HTML

Listing 13.25 The methods that deal with HTML formatting

Listing 13.26 Examples of bold and italic in Markdown

Italic formatting for
minimally prolific authors

Bold formatting for
moderately prolific authors

Bold and italic formatting
for highly prolific authors

Italic formatting for
minimally prolific authors

Bold formatting for
moderately prolific authors

Bold and italic formatting
for highly prolific authors

29313.5 Integrating multimethods in a production system
function authorNameLowMarkdown(author, format) {
return "*" + _.get(author, "name") + "*";

}

Author.myName =
method(["low", "markdown"], authorNameLowMarkdown)(Author.myName);

function authorNameMediumMarkdown(author, format) {
return "**" + _.get(author, "name") + "**";

}

Author.myName =
method(["medium", "markdown"], authorNameMediumMarkdown)(Author.myName);

function authorNameHighMarkdown(author, format) {
return "***" + _.get(author, "name") + "***";

}

Author.myName =
method(["high", "markdown"], authorNameHighMarkdown)(Author.myName);

Dave decides to test his code by involving a mysterious author. Listing 13.28 and listing 13.29
show the tests.

var yehonathan = {
"name": "Yehonathan Sharvit",
"bookIsbns": ["9781617298578"]

};

Author.myName(yehonathan, "html");
// → "<i>Yehonathan Sharvit</i>"

Author.myName(yehonathan, "markdown");
// → "*Yehonathan Sharvit*"

Theo shows up at Dave’s desk and asks to review Dave’s implementation of the list of
authors feature. Curious, Theo asks Dave about the author that appears in the test of
Author.myName.

Theo Who is Yehonathan Sharvit?

Dave I don’t really know. The name appeared when I googled “data-oriented pro-
gramming” yesterday. He wrote a book on the topic. I thought it would be cool
to use its ISBN in my test.

Listing 13.27 The methods that deal with Markdown formatting

Listing 13.28 Testing HTML formatting

Listing 13.29 Testing Markdown formatting

294 CHAPTER 13 Polymorphism
Summary
 The main benefit of polymorphism is extensibility.
 Multimethods make it possible to benefit from polymorphism when data is repre-

sented with generic maps.
 A multimethod is made of a dispatch function and multiple methods.
 The dispatch function of a multimethod emits a dispatch value.
 Each of the methods used in a multimethod provides an implementation for a

specific dispatch value.
 Multimethods can mimic OOP class inheritance via single dispatch.
 In single dispatch, a multimethod receives a single map that contains a type field,

and the dispatch function of the multimethod emits the value of the type field.
 In addition to single dispatch, multimethods provide two kinds of advanced

polymorphisms: multiple dispatch and dynamic dispatch.
 Multiple dispatch is used when the behavior of the multimethod depends on

multiple arguments.
 Dynamic dispatch is used when the behavior of the multimethod depends on run-

time arguments.
 The arguments of a multimethod are passed to the dispatch function and to the

methods.
 A multimethod dispatch function is responsible for

– Defining the signature.
– Validating the arguments.
– Emitting a dispatch value.

 Multimethods provides extensibility by decoupling between multimethod ini-
tialization and method implementations.

 Multimethods are called like regular functions.
 Multimethods support default implementations that are called when no method

corresponds to the dispatch value.
 In a multimethod that features multiple dispatch, the order of the elements in

the array emitted by the dispatch function has to be consistent with the order of
the elements in the wiring of the methods.

Lodash functions introduced in this chapter

Function Description

size(coll) Gets the size of coll

Advanced data
manipulation

Whatever is well-conceived
is clearly said
When our business logic involves advanced data processing, the generic data manip-
ulation functions provided by the language run time and by third-party libraries
might not be sufficient. Instead of mixing the details of data manipulation with
business logic, we can write our own generic data manipulation functions and imple-
ment our custom business logic using them. Separating business logic from the inter-
nal details of data manipulation makes the business logic code concise and easy to
read for other developers.

This chapter covers
 Manipulating nested data

 Writing clear and concise code for business
logic

 Separating business logic and generic data
manipulation

 Building custom data manipulation tools

 Using the best tool for the job
295

296 CHAPTER 14 Advanced data manipulation
14.1 Updating a value in a map with eloquence
Dave is more and more autonomous on the Klafim project. He can implement most fea-
tures on his own, typically turning to Theo only for code reviews. Dave’s code quality stan-
dards are quite high. Even when his code is functionally solid, he tends to be unsatisfied
with its readability. Today, he asks for Theo’s help in improving the readability of the code
that fixes a bug Theo introduced a long time ago.

Dave I think I have a found a bug in the code that returns book information from
the Open Library API.

Theo What bug?

Dave Sometimes, the API returns duplicate author names, and we pass the dupli-
cates through to the client.

Theo It doesn’t sound like a complicated bug to fix.

Dave Right, I fixed it, but I’m not satisfied with the readability of the code I wrote.

Theo Being critical of our own code is an important quality for a developer to prog-
ress. What is it exactly that you don’t like?

Dave Take a look at this code.

function removeAuthorDuplicates(book) {
var authors = _.get(book, "authors");
var uniqAuthors = _.uniq(authors);
return _.set(book,"authors", uniqAuthors);

}

Dave I’m using _.get to retrieve the array with the author names, then _.uniq to
create a duplicate-free version of the array, and finally, _.set to create a new
version of the book with no duplicate author names.

Theo The code is tedious because the next value of authorNames needs to be based
on its current value.

Dave But it’s a common use case! Isn’t there a simpler way to write this kind of code?

Theo Your astonishment definitely honors you as a developer, Dave. I agree with you
that there must be a simpler way. Let me phone Joe and see if he’s available for
a conference call.

Joe How’s it going, Theo?

Theo Great! Are you back from your tech conference?

Joe I just landed. I’m on my way home now in a taxi.

Theo How was your talk about DOP?

Joe Pretty good. At the beginning people were a bit suspicious, but when I told
them the story of Albatross and Klafim, it was quite convincing.

Theo Yeah, adults are like children in that way; they love stories.

Joe What about you? Did you manage to achieve polymorphism with multimethods?

Theo Yes! Dave even managed to implement a feature in Klafim with multimethods.

Joe Cool!

Listing 14.1 Removing duplicates in a straightforward but tedious way

29714.1 Updating a value in a map with eloquence
Theo Do you have time to help Dave with a question about programming?

Joe Sure.

Dave Hi Joe. How are you doing?

Joe Hello Dave. Not bad. What kind of help do you need?

Dave I’m wondering if there’s a simpler way to remove duplicates inside an array
value in a map. Using _.get, _.uniq, and _.set looks quite tedious.

Joe You should build your own data manipulation tools.

Dave What do you mean?

Joe You should write a generic update function that updates a value in a map,
applying a calculation based on its current value.1

Dave What would the arguments of update be in your opinion?

Joe Put the cart before the horse.

Dave What?!

Joe Rewrite your business logic as if update were already implemented, and you’ll
discover what the arguments of update should be.

Dave I see what you mean: the horse is the implementation of update, and the cart is
the usage of update.

Joe Exactly. But remember, it’s better if you keep your update function generic.

Dave How?

Joe By not limiting it to your specific use case.

Dave I see. The implementation of update should not deal with removing duplicate
elements. Instead, it should receive the updating function—in my case,
_.uniq—as an argument.

Joe Exactly! Uh, sorry Dave, I gotta go, I just got home. Good luck!

Dave Take care, Joe, and thanks!

Dave ends the conference call. Looking at Theo, he reiterates the conversation with Joe.

Dave Joe advised me to write my own update function. For that purpose, he told me
to start by rewriting removeAuthorDuplicates as if update were already
implemented. That will allow us to make sure we get the signature of update
right.

Theo Sounds like a plan.

Dave Joe called it “putting the cart before the horse.”

Theo Joe and his funny analogies . . .

TIP The best way to find the signature of a custom data manipulation function is to
think about the most convenient way to use it.

Dave Anyway, the way I’d like to use update inside removeAuthorDuplicates is
like this.

1 Lodash provides an implementation of update, but for the sake of teaching, we are writing our own imple-
mentation.

298 CHAPTER 14 Advanced data manipulation
function removeAuthorDuplicates(book) {
return update(book, "authors", _.uniq);

}

Theo Looks good to me!

Dave Wow! Now the code with update is much more elegant than the code with
_.get and _.set!

Theo Before you implement update, I suggest that you write down in plain English
exactly what the function does.

Dave It’s quite easy: update receives a map called map, a path called path, and a
function called fun. It returns a new version of map, where path is associated
with fun(currentValue), and currentValue is the value associated with
path in map.

Thinking out loud, Dave simultaneously draws a diagram like that in figure 14.1. Theo is
becoming more and more impressed with his young protegé as he studies the figure.

TIP Before implementing a custom data manipulation function, formulate in plain
English exactly what the function does.

Theo With such a clear definition, it’s going to be a piece of cake to implement
update!

After a few minutes, Dave comes up with the code. It doesn’t take long because the plain-
English diagram helps him to organize the code.

function update(map, path, fun) {
var currentValue = _.get(map, path);
var nextValue = fun(currentValue);
return _.set(map, path, nextValue);

}

Listing 14.2 The code that removes duplicates in an elegant way

Listing 14.3 A generic update function

"income"

{
"position" : "manager",
"income" : fun(100000)

}

{
"position" : "manager",
"income" : 100000

}

update

map fun path

res Figure 14.1 The
behavior of update

29914.2 Manipulating nested data
Theo Why don’t you see if it works with a simple case such as incrementing a number
in a map?

Dave Good idea! I’ll try multiplying a value in a map by 2 with update. How’s this
look?

var m = {
"position": "manager",
"income": 100000

};
update(m, "income", function(x) {

return x * 2;
});
// → {"position": "manager", "income": 200000}

Theo Great! It seems to work.

14.2 Manipulating nested data
The next Monday, during Theo and Dave’s weekly sync meeting, they discuss the upcom-
ing features for Klafim. Theo fondly remembers another Monday where they met at Dave’s
family home in the country. Coming back to the present moment, Theo begins.

Theo Recently, Nancy has been asking for more and more administrative features.

Dave Like what?

Theo I’ll give you a few examples. . . . Let me find the email I got from Nancy yesterday.

Dave OK.

Theo Here it is. There are three feature requests for now: listing all the book author
IDs, calculating the book lending ratio, and grouping books by a physical library.

Dave What feature should I tackle first?

Theo It doesn’t matter, but you should deliver the three of these before the end of
the week. Good luck, and don’t hesitate to call me if you need help.

On Tuesday, Dave asks for Theo’s help. Dave is not pleased with how his code looks.

Dave I started to work on the three admin features, but I don’t like the code I wrote.
Let me show you the code for retrieving the list of author IDs from the list of
books returned from the database.

Theo Can you remind me what an element in a book list returned from the database
looks like?

Dave Each book is a map with an authorIds array field.

Theo OK, so it sounds like a map over the books should do it.

Dave This is what I did, but it doesn’t work as expected. Here’s my code for listing
the book author IDs.

Listing 14.4 Multiplying a value in a map by 2

300 CHAPTER 14 Advanced data manipulation
function authorIdsInBooks(books) {
return _.map(books, "authorIds");

}

Theo What’s the problem?

Dave The problem is that it returns an array of arrays of author IDs instead of an
array of author IDs. For instance, when I run authorIdsInBooks on a catalog
with two books, I get this result.

[
["sean-covey", "stephen-covey"],
["alan-moore", "dave-gibbons"]

]

Theo That’s not a big problem. You can flatten an array of arrays with _.flatten,
and you should get the result you expect.

Dave Nice! This is exactly what I need! Give me a moment to fix the code of
authorIdsInBooks. . . here you go.

function authorIdsInBooks(books) {
return _.flatten(_.map(books, "authorIds"));

}

Theo Don’t you think that mapping and then flattening deserves a function of its own?

Dave Maybe. It’s quite easy to implement a flatMap function.2 How about this?

function flatMap(coll, f) {
return _.flatten(_.map(coll,f));

}

Theo Nice!

Dave I don’t know. . . . It’s kind of weird to have such a small function.

Theo I don’t think that code size is what matters here.

Dave What do you mean?

Theo See what happens when you rewrite authorIdsInBooks using flatMap.

Dave OK, here’s how I’d use flatMap to list the author IDs.

Listing 14.5 Retrieving the author IDs in books as an array of arrays

Listing 14.6 The author IDs in an array of arrays

Listing 14.7 Retrieving the author IDs in books as an array of strings

Listing 14.8 The implementation of flatMap

2 Lodash provides an implementation of flatMap, but for the sake of teaching, we are writing our own
implementation.

30114.3 Using the best tool for the job
function authorIdsInBooks(books) {
return flatMap(books, "authorIds");

}

Theo What implementation do you prefer, the one with flatten and map (in listing
14.7) or the one with flatMap (in listing 14.9)?

Dave I don’t know. To me, they look quite similar.

Theo Right, but which implementation is more readable?

Dave Well, assuming I know what flatMap does, I would say the implementation
with flatMap. Because it’s more concise, it is a bit more readable.

Theo Again, it’s not about the size of the code. It’s about the clarity of intent and the
power of naming things.

Dave I don’t get that.

Theo Let me give you an example from our day-to-day language.

Dave OK.

Theo Could you pass me that thing on your desk that’s used for writing?

It takes Dave a few seconds to get that Theo has asked him to pass the pen on the desk.
After he passes Theo the pen, he asks:

Dave Why didn’t you simply ask for the pen?

Theo I wanted you to experience how it feels when we use descriptions instead of
names to convey our intent.

Dave Oh, I see. You mean that once we use a name for the operation that maps and
flattens, the code becomes clearer.

Theo Exactly.

Dave Let’s move on to the second admin feature: calculating the book lending ratio.

Theo Before that, I think we deserve a short period for rest and refreshments, where
we drink a beverage made by percolation from roasted and ground seeds.

Dave A coffee break!

14.3 Using the best tool for the job
After the coffee break, Dave shows Theo his implementation of the book lending ratio cal-
culation. This time, he seems to like the code he wrote.

Dave I’m quite proud of the code I wrote to calculate the book lending ratio.

Theo Show me the money!

Dave My function receives a list of books from the database like this.

[
{

"isbn": "978-1779501127",

Listing 14.9 Retrieving the author IDs as an array of strings using flatMap

Listing 14.10 A list of two books with bookItems

302 CHAPTER 14 Advanced data manipulation
"title": "Watchmen",
"bookItems": [

{
"id": "book-item-1",
"libId": "nyc-central-lib",
"isLent": true

}
]

},
{

"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",
"bookItems": [

{
"id": "book-item-123",
"libId": "hudson-park-lib",
"isLent": true

},
{

"id": "book-item-17",
"libId": "nyc-central-lib",
"isLent": false

}
]

}
]

Theo Quite a nested piece of data!

Dave Yeah, but now that I’m using flatMap, calculating the lending ratio is quite
easy. I’m going over all the book items with forEach and incrementing either
the lent or the notLent counter. At the end, I return the ratio between lent
and (lent + notLent). Here’s how I do that.

function lendingRatio(books) {
var bookItems = flatMap(books, "bookItems");
var lent = 0;
var notLent = 0;
_.forEach(bookItems, function(item) {

if(_.get(item, "isLent")) {
lent = lent + 1;

} else {
notLent = notLent + 1;

}
});
return lent/(lent + notLent);

}

Theo Would you allow me to tell you frankly what I think of your code?

Dave If you are asking this question, it means that you don’t like it. Right?

Theo It’s nothing against you; I don’t like any piece of code with forEach.

Listing 14.11 Calculating the book lending ratio using forEach

30314.3 Using the best tool for the job
Dave What’s wrong with forEach?

Theo It’s too generic!

Dave I thought that genericity was a positive thing in programming.

Theo It is when we build a utility function, but when we use a utility function, we
should use the least generic function that solves our problem.

Dave Why?

Theo Because we ought to choose the right tool for the job, like in the real life.

Dave What do you mean?

Theo Let me give you an example. Yesterday, I had to clean my drone from the
inside. Do you think that I used a screwdriver or a Swiss army knife to unscrew
the drone cover?

Dave A screwdriver, of course! It’s much more convenient to manipulate.

Theo Right. Also, imagine that someone looks at me using a screwdriver. It’s quite
clear to them that I am turning a screw. It conveys my intent clearly.

Dave Are you saying that forEach is like the Swiss army knife of data manipulation?

Theo That’s a good way to put it.

TIP Pick the least generic utility function that solves your problem.

Dave What function should I use then, to iterate over the book item collection?

Theo You could use _.reduce.

Dave I thought reduce was about returning data from a collection. Here, I don’t
need to return data; I need to update two variables, lent and notLent.

Theo You could represent those two values in a map with two keys.

Dave Can you show me how to rewrite my lendingRatio function using reduce?

Theo Sure. The initial value passed to reduce is the map, {"lent": 0, "notLent": 0},
and inside each iteration, we update one of the two keys, like this.

function lendingRatio(books) {
var bookItems = flatMap(books, "bookItems");
var stats = _.reduce(bookItems, function(res, item) {

if(_.get(item, "isLent")) {
res.lent = res.lent + 1;

} else {
res.notLent = res.notLent + 1;

}
return res;

}, {notLent: 0, lent:0});
return stats.lent/(stats.lent + stats.notLent);

}

Dave Instead of updating the variables lent and notLent, now we are updating lent
and notLent map fields. What’s the difference?

Listing 14.12 Calculating the book lending ratio using reduce

304 CHAPTER 14 Advanced data manipulation
Theo Dealing with map fields instead of variables allows us to get rid of reduce in
our business logic code.

Dave How could you iterate over a collection without forEach and without reduce?

Theo I can’t avoid the iteration over a collection, but I can hide reduce behind a
utility function. Take a look at the way reduce is used inside the code of
lendingRatio. What is the meaning of the reduce call?

Dave looks at the code in listing 14.12. He thinks for a long moment before he answers.

Dave I think it’s counting the number of times isLent is true and false.

Theo Right. Now, let’s use Joe’s advice about building our own data manipulation
tool.

Dave How exactly?

Theo I suggest that you write a countByBoolField utility function that counts the
number of times a field is true and false.

Dave OK, but before implementing this function, let me first rewrite the code of
lendingRatio, assuming this function already exists.

Theo You are definitely a fast learner, Dave!

Dave Thanks! I think that by using countByBoolField, the code for calculating the
lending ratio using a custom utility function would be something like this.

function lendingRatio(books) {
var bookItems = flatMap(books, "bookItems");
var stats = countByBoolField(bookItems, "isLent", "lent", "notLent");
return stats.lent/(stats.lent + stats.notLent);

}

TIP Don’t use _.reduce or any other low-level data manipulation function inside
code that deals with business logic. Instead, write a utility function—with a proper
name—that hides _.reduce.

Theo Perfect. Don’t you think that this code is clearer than the code using _.reduce?

Dave I do! The code is both more concise and the intent is clearer. Let me see if I
can implement countByBoolField now.

Theo I suggest that you write a unit test first.

Dave Good idea.

Dave types for a bit. When he’s satisfied, he shows Theo the result.

var input = [
{"a": true},
{"a": false},
{"a": true},

Listing 14.13 Calculating the book lending ratio

Listing 14.14 A unit test for countByBoolField

30514.4 Unwinding at ease
{"a": true}
];

var expectedRes = {
"aTrue": 3,
"aFalse": 1

};

_.isEqual(countByBoolField(input, "a", "aTrue", "aFalse"), expectedRes);

Theo Looks good to me. Now, for the implementation of countByBoolField, I
think you are going to need our update function.

Dave I think you’re right. On each iteration, I need to increment the value of either
aTrue or aFalse using update and a function that increments a number by 1.

After a few minutes of trial and error, Dave comes up with the piece of code that uses
reduce, update, and inc. He shows Theo the code for countByBoolField.

function inc (n) {
return n + 1;

}

function countByBoolField(coll, field, keyTrue, keyFalse) {
return _.reduce(coll, function(res, item) {

if (_.get(item, field)) {
return update(res, keyTrue, inc);

}
return update(res, keyFalse, inc);

}, {[keyTrue]: 0,
[keyFalse]: 0});

}

Theo Well done! Shall we move on and review the third admin feature?

Dave The third feature is more complicated. I would like to use the teachings from
the first two features for the implementation of the third feature.

Theo OK. Call me when you’re ready for the code review.

14.4 Unwinding at ease
Dave really struggled with the implementation of the last admin feature, grouping books
by a physical library. After a couple of hours of frustration, Dave calls Theo for a rescue.

Dave I really had a hard time implementing the grouping by library feature.

Theo I only have a couple of minutes before my next meeting, but I can try to help
you. What’s the exact definition of grouping by library?

Dave Let me show you the unit test I wrote.

Listing 14.15 The implementation of countByBoolField

Creates a map with
keyTrue and keyFalse
associated to 0

306 CHAPTER 14 Advanced data manipulation
var books = [
{

"isbn": "978-1779501127",
"title": "Watchmen",
"bookItems": [

{
"id": "book-item-1",
"libId": "nyc-central-lib",
"isLent": true

}
]

},
{

"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",
"bookItems": [

{
"id": "book-item-123",
"libId": "hudson-park-lib",
"isLent": true

},
{

"id": "book-item-17",
"libId": "nyc-central-lib",
"isLent": false

}
]

}
];

var expectedRes =
{

"hudson-park-lib": [
{

"bookItems": {
"id": "book-item-123",
"isLent": true,
"libId": "hudson-park-lib",

},
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",

},
],
"nyc-central-lib": [

{
"bookItems": {

"id": "book-item-1",
"isLent": true,
"libId": "nyc-central-lib",

},
"isbn": "978-1779501127",
"title": "Watchmen",

},

Listing 14.16 Unit test for grouping books by a library

30714.4 Unwinding at ease
{
"bookItems": {

"id": "book-item-17",
"isLent": false,
"libId": "nyc-central-lib",

},
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",

},
],

};
_.isEqual(booksByRack(books) , expectedRes);

Theo Cool. . . . Writing unit tests before implementing complicated functions was
also helpful for me when I refactored Klafim from OOP to DOP.

Dave Writing unit tests for functions that receive and return data is much more fun
than writing unit tests for the methods of stateful objects.

TIP Before implementing a complicated function, write a unit test for it.

Theo What was difficult about the implementation of booksByLib?

Dave I started with a complicated implementation involving merge and reduce
before I remembered that you advised me to hide reduce behind a generic
function. But I couldn’t figure out what kind of generic function I needed.

Theo Indeed, it’s not easy to implement.

Dave I’m glad to hear that. I thought I was doing something wrong.

Theo The challenge here is that you need to work with book items, but the book title
and ISBN are not present in the book item map.

Dave Exactly!

Theo It reminds me a query I had to write a year ago on MongoDB, where data was
laid out in a similar way.

Dave And what did your query look like?

Theo I used MongoDB’s $unwind operator. Given a map m with a field <arr,
myArray>, it returns an array where each element is a map corresponding to m
without arr and with item associated to an element of myArray.

Dave That’s a bit abstract for me. Could you give me an example?

Theo moves to the whiteboard. He draws a diagram like the one in figure 14.2.

Theo In my case, I was dealing with an online store, where a customer cart was repre-
sented as a map with a customer-id field and an items array field. Each ele-
ment in the array represented an item in the cart. I wrote a query with unwind
that retrieved the cart items with the customer-id field.

Dave Amazing! That’s exactly what we need. Let’s write our own unwind function!

308 CHAPTER 14 Advanced data manipulation
Theo I’d be happy to pair program with you on this cool stuff, but I’m already run-
ning late for another meeting.

Dave I’m glad I’m not a manager!

When Theo leaves for his meeting, Dave goes to the kitchen and prepares himself a long
espresso as a reward for all that he’s accomplished today. He thoroughly enjoys it as he
works on the implementation of unwind.

As Joe advised, Dave starts by writing the code for booksByLib as if unwind were already
implemented. He needs to go over each book and unwind its book items using flatMap
and unwind. He then groups the book items by their libId using _.groupBy. Satisfied
with the resulting code, he finishes his espresso.

function booksByRack(books) {
var bookItems = flatMap(books, function(book) {

return unwind(book, "bookItems");
});
return _.groupBy(bookItems, "bookItems.libId")

}

Dave cannot believe that such a complicated function could be implemented so clearly
and compactly. Dave says to himself that the complexity must reside in the implementation
of unwind—but he soon finds out that he’s wrong; it is not going to be as complicated as
he thought! He starts by writing a unit test for unwind, similar to Theo’s MongoDB cus-
tomer cart scenario.

Listing 14.17 Grouping books by a library using unwind

"items"

{
"customer-id" : "joe",
// Other fields
"items" : {

"item" : "phone",
"quantity" : 1

}
}

{
"customer-id" : "joe",
// Other fields
"items" : {
"item" : "pencil",
"quantity" : 10

}
}

unwind

map path

res

{
"customer-id" : "joe",
// Other fields
"items" : [

{
"item" : "phone",
"quantity" : 1
},
{
"item" : "pencil",
"quantity" : 10
}

]
}

Figure 14.2 The behavior of unwind

30914.4 Unwinding at ease
var customer = {
"customer-id": "joe",
"items": [

{
"item": "phone",
"quantity": 1

},
{

"item": "pencil",
"quantity": 10

}
]

};

var expectedRes = [
{

"customer-id": "joe",
"items": {

"item": "phone",
"quantity": 1

}
},
{

"customer-id": "joe",
"items": {

"item": "pencil",
"quantity": 10

}
}

]

_.isEqual(unwind(customer, "items"), expectedRes)

The implementation of unwind is definitely not as complicated as Dave thought. It retrieves
the array arr associated with f in m and creates, for each element of arr, a version of m,
where f is associated with elem. Dave is happy to remember that data being immutable,
there is no need to clone m.

function unwind(map, field) {
var arr = _.get(map, field);
return _.map(arr, function(elem) {

return _.set(map, field, elem);
});

}

After a few moments of contemplating his beautiful code, Dave sends Theo a message with
a link to the pull request that implements grouping books by a library with unwind. After
that he leaves the office to go home, by bike, tired but satisfied.

Listing 14.18 A unit test for unwind

Listing 14.19 The implementation of unwind

310 CHAPTER 14 Advanced data manipulation
Summary
 Maintain a clear separation between the code that deals with business logic and

the implementation of the data manipulation.
 Separating business logic from data manipulation makes our code not only con-

cise, but also easy to read because it conveys the intent in a clear manner.
 We design and implement custom data manipulation functions in a four-step

process:
a Discover the function signature by using it before it is implemented.
b Write a unit test for the function.
c Formulate the behavior of the function in plain English.
d Implement the function.

 The best way to find the signature of a custom data manipulation function is to
think about the most convenient way to use it.

 Before implementing a custom data manipulation function, formulate in plain
English exactly what the function does.

 Pick the least generic utility function that solves your problem.
 Don’t use _.reduce or any other low-level data manipulation function inside

code that deals with business logic. Instead, write a utility function—with a proper
name—that hides _.reduce.

 Before implementing a complicated function, write a unit test for it.

Lodash functions introduced in this chapter

Function Description

flatten(arr) Flattens arr a single level deep

sum(arr) Computes the sum of the values in arr

uniq(arr) Creates an array of unique values from arr

every(coll, pred) Checks if pred returns true for all elements of coll

forEach(coll, f) Iterates over elements of coll and invokes f for each element

sortBy(coll, f) Creates an array of elements, sorted in ascending order, by the results of
running each element in coll through f

Debugging
Innovation at the museum
When our programs don’t behave as expected, we need to investigate the source
code. The traditional tool for code investigation is the debugger. The debugger
allows us to run the code, step by step, until we find the line that causes the bug.
However, a debugger doesn’t allow us to reproduce the scenario that causes the
problem.

 In DOP, we can capture the context of a scenario that causes a bug and replay
it in a separate process like a REPL or a unit test. This allows us to benefit from a
short feedback loop between our attempt to fix the code and the results of our
attempt.

This chapter covers
 Reproducing a bug in code that involves

primitive data types

 Reproducing a bug in code that involves
aggregated data

 Replaying a scenario in the REPL

 Creating unit tests from bugs
311

312 CHAPTER 15 Debugging
15.1 Determinism in programming
After a few months, Theo calls Dave to tell him that he’s leaving Albatross. After Dave
recovers from this first surprise, he’s given another, more pleasant one. Theo informs Dave
that after consulting with the management team, they have decided that Dave will be in
charge of DOP at Albatross. In addition to the farewell at the office next week, Theo invites
Dave for a last one-on-one work session at the Exploratorium Museum of Science.

During their visit, Dave particularly enjoys the Cells to Self exhibit in the Living Systems
gallery; meanwhile, Theo is having fun with the Colored Shadows exhibit in the Reflec-
tions gallery. After the visit, Theo and Dave settle in the back row of the museum’s audito-
rium and open their laptops.

Dave Why did you want our last meeting to happen here at the Museum of Science?

Theo Remember when Joe told us that someday we’d be able to innovate in DOP?

Dave Yes.

Theo Well, that day may have come. I think I have discovered an interesting connec-
tion between DOP and science, and it has implications in the way we debug a
program.

Dave I’m curious.

Theo Do you believe in determinism?

Dave You mean that everything that happens in the universe is predestined and that
free will is an illusion?

Theo No, I don’t want to get into a philosophy. This is more of a scientific question.
Do you think that the same causes always produce the same effects?

Dave I think so. Otherwise, each time I use an elevator, I’d be scared to death that
the laws of physics have changed, and the elevator might go down instead of
up, or even crash!

Theo What about determinism in programming?

Dave How would you define causes and effects in programming?

Theo Let’s say, for the sake of simplicity, that in the context of programming, causes
are function arguments and effects are return values.

Dave What about side effects?

Theo Let’s leave them aside for now.

Dave What about the program state? I mean, a function could return a different
value for the same arguments if the program state changes.

Theo That’s why we should avoid state as much as possible.

Dave But you can’t avoid state in real-life applications!

Theo Right, but we can minimize the number of modules that deal with state. In fact,
that’s exactly what DOP has encouraged us to do: only the SystemState mod-
ule deals with state, and all other modules deal with immutable data.

Dave Then, I think that in modules that deal with immutable data, determinism as
you defined it holds. For the same arguments, a function will always return the
same value.

TIP In modules that deal with immutable data, function behavior is deterministic—the
same arguments always lead to the same return values.

31315.1 Determinism in programming
Theo Perfect. Let’s give a name to the values of the function arguments that a function
is called with: the function run-time context or, in short, the function context.

Dave I think I see what you mean. In general, the function context should involve
both the function arguments and the program state. But in DOP, because we
deal with immutable data, a function context is made only of the values of the
function arguments.

TIP In DOP, the function context is made of the values of the function arguments.

Theo Exactly! Now, let’s talk about reproducibility. Let’s say that you want to capture
a function context and reproduce it in another environment.

Dave Could you be a bit more concrete about reproducing a function context in
another environment?

Theo Take, for example, a web service endpoint. You trigger the endpoint with some
parameters. Inside the program, down the stack, a function foo is called. Now,
you want to capture the context in which foo is called in order to reproduce
later the same behavior of foo.

Dave We deal with immutable data. So, if we call foo again with the same arguments,
it will behave the same.

Theo The problem is how do you know the values of the function arguments?
Remember that we didn’t trigger foo directly. We triggered the endpoint.

Dave That’s not a problem. You use a debugger and set a breakpoint inside the code of
foo, and you inspect the arguments when the program stops at the breakpoint.

Theo Let’s say foo receives three arguments: a number, a string, and a huge nested map.
How do you capture the arguments and replay foo with the same arguments?

Dave I am not sure what you mean exactly by replaying foo?

Theo I mean executing foo in the REPL.

 NOTE The REPL (Read Eval Print Loop), sometimes called language shell, is a pro-
gramming environment that takes pieces of code, executes them, and displays the
result. See table 15.1 for a list of REPLs for different programming languages.

Dave Does the REPL have to be part of the process that I’m debugging?

Theo It doesn’t have to be. Think of the REPL as a scientific lab, where developers
perform experiments. Let’s say you’re using a separate process for the REPL.

Table 15.1 REPLs per programming language

JavaScript (Browser) Browser console

Node.js Node CLI

Java JShell

C# C# REPL

Python Python interpreter

Ruby Interactive Ruby

314 CHAPTER 15 Debugging
Dave OK. For the number and the string, I can simply copy their values to the clip-
board, paste them to the REPL, and execute foo in the REPL with the same
arguments.

Theo That’s the easy part. What about the nested map?

Dave I don’t know. I don’t think I can copy a nested map from a debugger to the
clipboard!

Theo In fact, JavaScript debuggers can. For instance, in Chrome, there is a Copy
option that appears when you right-click on data that is displayed in the browser
console.

Dave I never noticed it.

Theo Even without that, you could serialize the nested map to a JSON string, copy
the string to the clipboard, and then paste the JSON string to the REPL.
Finally, you could deserialize the string into a hash map and call foo with it.

Dave Nice trick!

Theo I don’t think of it as a trick, but rather as a fundamental aspect of DOP: data is
represented with generic data structures.

Dave I see. It’s easy to serialize a generic data structure.

TIP In order to copy and paste a generic data structure, we serialize and deserialize it.

Theo You just discovered the two conditions for reproducibility in programming.

Dave The first one is that data should be immutable.

Theo Right, and the second one?

Dave It should be easy to serialize and deserialize any data.

TIP The two conditions for reproducibility in programming are immutability and
ease of (de)serialization.

15.2 Reproducibility with numbers and strings
Theo In fact, we don’t even need a debugger in order to capture a function context.

Dave But the function context is basically made of its arguments. How can you
inspect the arguments of a function without a debugger?

Theo By modifying the code of the function under investigation and printing the
serialization of the arguments to the console.

Dave I don’t get that.

Theo Let me show you what I mean with a function that deals with numbers.

Dave OK.

Theo Take for instance a function that returns the nth digit of a number.

Dave Oh no, I hate digit arithmetic!

Theo Don’t worry, we’ll find some code for it on the web.

Theo googles “nth digit of a number in JavaScript” and takes a piece of code from Stack-
Overflow that seems to work.

31515.2 Reproducibility with numbers and strings
function nthDigit(a, n) {
return Math.floor((a / (Math.pow(10, n - 1)))) % 10;

}

Dave Do you understand how it works?

Theo Let’s see, dividing a by 10n–1 is like right-shifting it n –1 places. Then we need to
get the rightmost digit.

Dave And the last digit of a number is obtained by the modulo 10 operation?

Theo Right! Now, imagine that this function is called down the stack when some
endpoint is triggered. I’m going to modify it by adding context-capturing code.

Dave What’s that?

Theo Context-capturing code is code that we insert at the beginning of a function
body to print the values of the arguments. Let me edit the nthDigit code to
give you an example.

function nthDigit(a, n) {
console.log(a);
console.log(n);
return Math.floor((a / (Math.pow(10, n - 1)))) % 10;

}

Dave It looks trivial.

Theo It is trivial for now, but it will get less trivial in a moment. Now, tell me what
happens when I trigger the endpoint.

Dave When the endpoint is triggered, the program will display the two numbers, a
and n, in the console.

Theo Exactly, and what would you have to do in order to replay the function in the
same context as when the endpoint was triggered?

Dave I would need to copy the values of a and n from the console, paste them into
the REPL, and call nthDigit with those two values.

Theo What makes you confident that when we run nthDigit in the REPL, it will
reproduce exactly what happened when the endpoint was triggered? Remem-
ber, the REPL might run in a separate process.

Dave I know that nthDigit depends only on its arguments.

Theo Good. Now, how can you be sure that the arguments you pass are the same as
the arguments that were passed?

Dave A number is a number!

Theo I agree with you. Let’s move on and see what happens with strings.

Dave I expect it to be exactly the same.

Theo It’s going to be almost the same. Let’s write a function that receives a sentence
and a prefix and returns true when the sentence contains a word that starts
with the prefix.

Listing 15.1 Calculate the nth digit of a number

Listing 15.2 Capturing a context made of numbers

316 CHAPTER 15 Debugging
Dave Why would anyone ever need such a weird function?

Theo It could be useful for the Library Management System when a user wants to
find books whose title contains a prefix.

Dave Interesting. I’ll talk about that with Nancy. Anyway, coding such a function
seems quite obvious. I need to split the sentence string into an array of words
and then check whether a word in the array starts with the prefix.

Theo How are you going to check whether any element of the array satisfies the
condition?

Dave I think I’ll use Lodash filter and check the length of the returned array.

Theo That would work but it might have a performance issue.

Dave Why?

Theo Think about it for a minute.

Dave I got it! filter processes all the elements in the array rather than stopping
after the first match. Is there a function in Lodash that stops after the first
match?

Theo Yes, it’s called find.

Dave Cool. I’ll use that. Hang on.

Dave reaches over for his laptop and write the code to check whether a sentence contains a
word that starts with a prefix. After a brief period, he shows Theo his implementation of
hasWordStartingWith using _.find.

function hasWordStartingWith(sentence, prefix) {
var words = sentence.split(" ");
return _.find(words, function(word) {

return word.startsWith(prefix);
}) != null;

}

Theo OK, now, please add the context-capturing code at the beginning of the function.

Dave Sure, let me edit this code a bit. Voilà!

function hasWordStartingWith(sentence, prefix) {
console.log(sentence);
console.log(prefix);
var words = sentence.split(" ");
return _.find(words, function(word) {

return word.startsWith(prefix);
}) != null;

}

Theo Let me inspect your code for a minute. I want to see what happens when I
check whether the sentence “I like the word reproducibility” contains a word that
starts with li.

Listing 15.3 Checking if a sentence contains a word starting with a prefix

Listing 15.4 Capturing a context made of strings

31715.2 Reproducibility with numbers and strings
Theo uses Dave’s laptop to examine Dave’s code. It returns true as expected, but it doesn’t
display to the console the text that Dave expected. He shares his surprise with Theo.

hasWordStartingWith("I like the word \"reproducibility\"", "li");
// It returns true
// It displays the following two lines:
// I like the word "reproducibility"
// li

Dave Where are the quotes around the strings? And where are the backslashes
before the quotes surrounding the word reproducibility?

Theo They disappeared!

Dave Why?

Theo When you print a string to the console, the content of the string is displayed
without quotes. It’s more human-readable.

Dave Bummer! That’s not good for reproducibility. So, after I copy and paste a
string I have to manually wrap it with quotes and backslashes.

Theo Fortunately, there is a simpler solution. If you serialize your string to JSON,
then it has the quotes and the backslashes. For instance, this code displays the
string you expected.

console.log(JSON.stringify(
"I like the word \"reproducibility\""));

// → "I like the word \"reproducibility\""

Dave I didn’t know that strings were considered valid JSON data. I thought only
objects and arrays were valid.

Theo Both compound data types and primitive data types are valid JSON data.

Dave Cool! I’ll fix the code in hasWordStartingWith that captures the string argu-
ments. Here you go.

function hasWordStartingWith(sentence, prefix) {
console.log(JSON.stringify(sentence));
console.log(JSON.stringify(prefix));
var words = sentence.split(" ");
return _.find(words, function(word) {

return word.startsWith(prefix);
}) != null;

}

Theo Great! Capturing strings takes a bit more work than with numbers, but with
JSON they’re not too bad.

Dave Right. Now, I’m curious to see if using JSON serialization for context capturing
works well with numbers.

Listing 15.5 Testing hasWordStartingWith

Listing 15.6 Displaying to the console the serialization of a string

Listing 15.7 Capturing a context made of strings using JSON serialization

318 CHAPTER 15 Debugging
Theo It works. In fact, it works well with any data, whether it’s a primitive data type or
a collection.

Dave Nice!

Theo Next, I’ll show you how to use this approach to reproduce a real scenario that
happens in the context of the Library Management System.

Dave No more digit arithmetic?

Theo No more!

15.3 Reproducibility with any data
The essence of DOP is that it treats data as a first-class citizen. As a consequence, we
can reproduce any scenario that deals with data with the same simplicity as we repro-
duce a scenario that deals with numbers and strings.

Dave I just called Nancy to tell her about the improved version of the book search,
where a prefix could match any word in the book title.

Theo And?

Dave She likes the idea.

Theo Great! Let’s use this feature as an opportunity to exercise reproducibility with
any data.

Dave Where should we start?

Theo First, we need to add context-capturing code inside the function that does the
book matching.

Dave The function is Catalog.searchBooksByTitle.

Theo What are the arguments of Catalog.searchBooksByTitle?

Dave It has two arguments: catalogData is a big nested hash map, and query is a
string.

Theo Can you edit the code and add the context-capturing piece?

Dave Sure. What about this code?

Catalog.searchBooksByTitle = function(catalogData, query) {
console.log(JSON.stringify(catalogData));
console.log(JSON.stringify(query));
var allBooks = _.get(catalogData, "booksByIsbn");
var queryLowerCased = query.toLowerCase();
var matchingBooks = _.filter(allBooks, function(book) {

return _.get(book, "title")
.toLowerCase()
.startsWith(queryLowerCased);

});
var bookInfos = _.map(matchingBooks, function(book) {

return Catalog.bookInfo(catalogData, book);
});
return bookInfos;

};

Listing 15.8 Capturing the arguments of Catalog.searchBooksByTitle

31915.3 Reproducibility with any data
Theo Perfect. Now let’s trigger the search endpoint.

Theo triggers the search endpoint with the query “Watch,” hoping to get details about
Watchmen. When the endpoint returns, Theo opens the console and Dave can see two lines
of output.

{"booksByIsbn":{"978-1982137274":{"isbn":"978-1982137274"\
,"title":"7 Habits of Highly Effective People","authorIds":\
["sean-covey","stephen-covey"]},"978-1779501127":{"isbn":\
"978-1779501127","title":"Watchmen","publicationYear":\
1987,"authorIds":["alan-moore", "dave-gibbons"]}},\
"authorsById":{"stephen-covey":{"name":"Stephen Covey",\
"bookIsbns":["978-1982137274"]},"sean-covey":{"name":"Sean Covey",\
"bookIsbns":["978-1982137274"]},"dave-gibbons":{"name":"Dave Gibbons",\
"bookIsbns":["978-1779501127"]},"alan-moore":{"name":"Alan Moore",\
"bookIsbns":["978-1779501127"]}}}

"Watch"

Dave I know that the first line contains the catalog data, but it’s really hard to read.

Theo That doesn’t matter too much. You only need to copy and paste it in order to
reproduce the Catalog.searchBooksByTitle call.

Dave Let me do that. Here.

var catalogData = {"booksByIsbn":{"978-1982137274":
{"isbn":"978-1982137274","title":"7 Habits of Highly Effective People",

"authorIds":["sean-covey","stephen-covey"]},"978-1779501127":
{"isbn":"978-1779501127","title":"Watchmen","publicationYear":1987,

"authorIds":["alan-moore","dave-gibbons"]}},"authorsById":
{"stephen-covey":{"name":"Stephen Covey","bookIsbns":

["978-1982137274"]},"sean-covey":{"name":"Sean Covey","bookIsbns":
["978-1982137274"]},"dave-gibbons":{"name":"Dave Gibbons","bookIsbns":
["978-1779501127"]},"alan-moore":{"name":"Alan Moore","bookIsbns":
["978-1779501127"]}}};

var query = "Watch";

Catalog.searchBooksByTitle(catalogData, query);

Theo Now that we have real catalog data in hand, we can do some interesting things
in the REPL.

Dave Like what?

Theo Like implementing the improved search feature without having to leave the
REPL.

TIP Reproducibility allows us to reproduce a scenario in a pristine environment.

Dave Without triggering the search endpoint?

Theo Exactly! We are going to improve our code until it works as desired, using the
short feedback loop that the console provides.

Listing 15.9 Console output when triggering the search endpoint

Listing 15.10 Reproducing a function call

320 CHAPTER 15 Debugging
Dave Cool! In the catalog, we have the book, 7 Habits of Highly Effective People. Let’s
see what happens when we search books that match the word Habit.

Theo replaces the value of the query in listing 15.10 with "Habit". The code now
returns an empty array as in listing 15.11. This is expected because the current imple-
mentation only searches for books whose title starts with the query, whereas the title
starts with 7 Habits.

Catalog.searchBooksByTitle(catalogData, 'Habit');
// → []

Theo Would you like to implement the improved search?

Dave It’s not too hard; we have already implemented hasWordStartingWith. Here’s
the improved search.

Catalog.searchBooksByTitle = function(catalogData, query) {
console.log(JSON.stringify(catalogData));
console.log(JSON.stringify(query));
var allBooks = _.get(catalogData, "booksByIsbn");
var matchingBooks = _.filter(allBooks, function(book) {

return hasWordStartingWith(_.get(book, "title"), query);
});
var bookInfos = _.map(matchingBooks, function(book) {

return Catalog.bookInfo(catalogData, book);
});
return bookInfos;

};

Theo I like it. Let’s see if it works as expected.

Dave is about to trigger the search endpoint when suddenly Theo stops him. He says with
an authoritative tone:

Theo Dave, don’t do that!

Dave Don’t do what?

Theo Don’t trigger an endpoint to test your code.

Dave Why?

Theo Because the REPL environment gives you a much quicker feedback than trig-
gering the endpoint. The main benefit of reproducibility is to be able to repro-
duce the real-life conditions in a more effective environment.

Dave executes the code from his improved search with the word Habit. This time, however,
it returns the details about the book, 7 Habits of Highly Effective People.

Listing 15.11 Testing searchBooksByTitle

Listing 15.12 An improved version of book search

32115.4 Unit tests
Catalog.searchBooksByTitle(catalogData, 'Habit');
// → [{ "title": "7 Habits of Highly Effective People", …}]

Dave It works!

Theo Let’s try more queries: abit and bit should not return any book, but habit
and 7 Habits should return only one book.

In the REPL, Dave tries the four queries that Theo suggested. For abit and bit, the code
works as expected, but for habit and 7 Habits it fails.

Dave Let me try to fix that code.

Theo I suggest that you instead write a couple of unit tests that check the various inputs.

Dave Good idea. Is there a way to use reproducibility in the context of unit tests?

Theo Absolutely!

15.4 Unit tests
Dave How do we use reproducibility in a unit test?

Theo As Joe told showed me so many times, in DOP, unit tests are really simple. They
call a function with some data, and they check that the data returned by the
function is the same as we expect.

Dave I remember that! I have written many unit tests for the Library Management
System following this approach. But sometimes, I struggled to provide input
data for the functions under test. For instance, building catalog data with all its
nested fields was not a pleasure.

Theo Here’s where reproducibility can help. Instead of building data manually, you
put the system under the conditions you’d like to test, and then capture data
inside the function under test. Once data is captured, you use it in your unit test.

Dave Nice! Let me write a unit test for Catalog.searchBooksByTitle following
this approach.

Dave triggers the search endpoint once again. Then, he opens the console and copies the
line with the captured catalog data to the clipboard. Finally, he pastes it inside the code of
the unit test.

var catalogData =
{"booksByIsbn":{"978-1982137274":{"isbn":"978-1982137274",
"title":"7 Habits of Highly Effective People","authorIds":["sean-covey",

"stephen-covey"]},"978-1779501127":{"isbn":"978-1779501127","title":
"Watchmen","publicationYear":1987,"authorIds":["alan-moore",

"dave-gibbons"]}},"authorsById":{"stephen-covey":{"name":
"Stephen Covey","bookIsbns":["978-1982137274"]},"sean-covey":
{"name":"Sean Covey","bookIsbns":["978-1982137274"]},"dave-gibbons":
{"name":"Dave Gibbons","bookIsbns":["978-1779501127"]},"alan-moore":
{"name":"Alan Moore","bookIsbns":["978-1779501127"]}}};

var query = "Habit";

Listing 15.13 Testing searchBooksByTitle again

Listing 15.14 A unit test with captured data

322 CHAPTER 15 Debugging
var result = Catalog.searchBooksByTitle(catalogData, query);
var expectedResult = [

{
"authorNames": [

"Sean Covey",
"Stephen Covey",

],
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",

}
];

_.isEqual(result, expectedResult);
// → true

Theo Well done! Now, would you like me to show you how to do the same without
copying and pasting?

Dave Definitely.

Theo Instead of displaying the captured data to the console, we’re going to write it to
a file and read data from that file inside the unit test.

Dave Where are you going to save the files that store captured data?

Theo Those files are part of the unit tests. They need to be under the same file tree
as the unit tests.

Dave There are so many files! How do we make sure a file doesn’t override an exist-
ing file?

Theo By following a simple file-naming convention. A name for a file that stores cap-
tured data is made of two parts: a context (for example, the name of the func-
tion where data was captured) and a universal unique identifier (a UUID).

Dave How do you generate a UUID?

Theo In some languages it’s part of the language, but in other languages like Java-
Script, you need a third-party library like uuid. Let me bookmark its site for you.
I also happen to have a list of libraries for UUIDs. I’ll send that table to you too.

Theo bookmarks the site for the third-party library uuid (https://github.com/uuidjs/
uuid) on Dave’s computer. Then, using his laptop, he finds his list and sends that to Dave.
Dave receives the email, and he takes a moment to quickly glance through the table 15.2
before turning his attention back to Theo.

Table 15.2 Libraries for UUID generation

Language UUID library

JavaScript https://github.com/uuidjs/uuid

Java java.util.UUID

C# Guid.NewGuid

Python uuid

Ruby SecureRandom

https://github.com/uuidjs/uuid
https://github.com/uuidjs/uuid
https://github.com/uuidjs/uuid
https://github.com/uuidjs/uuid

32315.4 Unit tests
Theo The code for the dataFilePath function that receives a context and returns a
file path is fairly simple. Check this out.

var capturedDataFolder = "test-data";
function dataFilePath(context) {

var uuid = generateUUID();
return capturedDataFolder

+ "/" + context
+ "-" + ".json";

}

Dave How do we store a piece of data in a JSON file?

Theo We serialize it and write it to disk.

Dave Synchronously or asynchronously?

Theo I prefer to write to the disk asynchronously or in a separate thread in run times
that support multithreading to avoid slowing down the real work. Here’s my
implementation of dumpData.

function dumpData(data, context) {
var path = dataFilePath(context);
var content = JSON.stringify(data);
fs.writeFile(path, content, function () {

console.log("Data for " +

context +
"stored in: " +
path);

});
}

Dave Let me see if I can use dumpData inside Catalog.searchBooksByTitle and
capture the context to a file. I think that something like this should work.

Catalog.searchBooksByTitle = function(catalogData, query) {
dumpData([catalogData, query], 'searchBooksByTitle');
var allBooks = _.get(catalogData, "booksByIsbn");
var queryLowerCased = query.toLowerCase();
var matchingBooks = _.filter(allBooks, function(book) {

return _.get(book, "title")
.toLowerCase()
.startsWith(queryLowerCased);

});
var bookInfos = _.map(matchingBooks, function(book) {

return Catalog.bookInfo(catalogData, book);
});

Listing 15.15 Computing the file path for storing captured data

Listing 15.16 Dumping data in JSON format

Listing 15.17 Capturing the context into a file

The root folder
for captured data

UUID generation is language-
dependent (see table 15.2).

Uses json as a file extension
because we serialize data to JSON

Writes asynchronously
to prevent blocking
the real work

The third argument is a
callback function, called
when write completes.

Displays a message once
data is written to the file

324 CHAPTER 15 Debugging
return bookInfos;
};

Theo Trigger the endpoint to see if it works.

Dave triggers the search endpoint once again and views the output in the console. When he
opens the file mentioned in the log message, he sees a single line that is hard to decipher.

Data for searchBooksByTitle stored in
test-data/searchBooksByTitle-68e57c85-2213-471a-8442-c4516e83d786.json

[{"booksByIsbn":{"978-1982137274":{"isbn":"978-1982137274",
"title":"7 Habits of Highly Effective People","authorIds":
["sean-covey","stephen-covey"]},"978-1779501127":{"isbn":

"978-1779501127","title":"Watchmen","publicationYear":1987,
"authorIds":["alan-moore","dave-gibbons"]}},"authorsById":

{"stephen-covey":{"name":"Stephen Covey","bookIsbns":
["978-1982137274"]},"sean-covey":{"name":"Sean Covey",

"bookIsbns":["978-1982137274"]},"dave-gibbons":
{"name":"Dave Gibbons","bookIsbns":["978-1779501127"]},
"alan-moore":{"name":"Alan Moore","bookIsbns":

["978-1779501127"]}}},"Habit"]

Dave Reading this JSON file is very difficult!

Theo We can beautify the JSON string if you want.

Dave How?

Theo By passing to JSON.stringify the number of space characters to use for
indentation. How many characters would you like to use for indentation?

Dave Two.

After adding the number of indentation characters to the code of dumpData, Dave then
opens the JSON file mentioned in the log message (it’s a different file name!). He now
sees a beautiful JSON array with two elements.

function dumpData(data, context) {
var path = dataFilePath(context);
var content = JSON.stringify(data, null, 2);

fs.writeFile(path, content, function () {
console.log("Data for " + context + "stored in: " + path);

});
}

Listing 15.18 Console output when triggering the search endpoint

Listing 15.19 The content of the JSON file that captured the context

Listing 15.20 Dumping data in JSON format with indentation

The second argument to
JSON.stringify is ignored.
The third argument to
JSON.stringify specifies the
number of characters to
use for indentation.

32515.4 Unit tests
[
{

"booksByIsbn": {
"978-1982137274": {

"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",
"authorIds": [
"sean-covey",
"stephen-covey"

]
},
"978-1779501127": {

"isbn": "978-1779501127",
"title": "Watchmen",
"publicationYear": 1987,
"authorIds": [
"alan-moore",
"dave-gibbons"

]
}

},
"authorsById": {

"stephen-covey": {
"name": "Stephen Covey",
"bookIsbns": [
"978-1982137274"

]
},
"sean-covey": {

"name": "Sean Covey",
"bookIsbns": [
"978-1982137274"

]
},
"dave-gibbons": {

"name": "Dave Gibbons",
"bookIsbns": [
"978-1779501127"

]
},
"alan-moore": {

"name": "Alan Moore",
"bookIsbns": [
"978-1779501127"

]
}

}
},
"Habit"

]

Listing 15.21 The captured context with indentation in the JSON file

326 CHAPTER 15 Debugging
Dave While looking at the contents of the JSON file, I thought about the fact that we
write data to the file in an asynchronous way. It means that data is written con-
currently to the execution of the function code, right?

Theo Right! As I told you, we don’t want to slow down the real work.

Dave I get that. What happens if the code of the function modifies the data that we
are writing? Will we write the original data to the file or the modified data?

Theo I’ll let you think about that while I get a cup of tea at the museum coffee shop.
Would you like some coffee?

Dave What, you’re not having coffee?

Theo I finally found the time to read the book The Power of Habit by Charles Duhigg.
Joe read the book and quit biting his fingernails, so I decided to read it to cut
down on my habit of going for yet another cup of coffee.

Dave That’s impressive, but I’d like an espresso, please.

While Theo goes to the coffee shop, Dave explores the Wind Arrows exhibit outside the
auditorium. He’s hoping that his mind will be inspired by the beauty of science. He takes a
few breaths to relax, and after a couple of minutes, Dave has an Aha! moment. He knows
the answer to his question about the function changing data.

Theo comes back, gingerly carrying the hot beverages, and finds Dave in the audito-
rium. Dave smiles at Theo and says:

Dave In DOP, we never mutate data. Therefore, my question is no longer a ques-
tion: the code of the function cannot modify the data while we are writing it
to the file.

Theo You’ve got it! Now, let me show you how to use data from the JSON file in a
unit test. First, we need a function that reads data from a JSON file and deseri-
alizes it, probably something like readData.

function readData(path) {
return JSON.parse(fs.readFileSync(path));

}

Dave Why are you reading synchronously and not asynchronously like you did when
we captured the data?

Theo Because readData is meant to be used inside a unit test, and we cannot run
the test before the data is read from the file.

Dave That makes sense. Using readData inside a unit test seems straightforward. Let
me use it to read our captured data.

var data = readData("test-data/" +
"searchBooksByTitle-68e57c85-2213-471a-8442-c4516e83d786.json");

var catalogData = data[0];
var query = data[1];

Listing 15.22 Reading data from a JSON file

Listing 15.23 A unit test that reads captured data from a file

32715.4 Unit tests
var result = Catalog.searchBooksByTitle(catalogData, query);
var expectedResult = [

{
"authorNames": [

"Sean Covey",
"Stephen Covey",

],
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",

}
];

_.isEqual(result, expectedResult);
// → false

Theo Do you prefer the version of the unit test with the inline data or with the data
read from the file?

Dave It depends. When data is minimal, I prefer to have the data inline because it
allows me to see the data. But when data is substantial, like the catalog data,
having the data inline makes the code hard to read.

Theo OK. Let’s fix the code of the improved search so that it works with the two que-
ries that return an empty result.

Dave I completely forgot about that. Do you remember those two queries?

Theo Yes, it was habit and 7 Habits.

Dave The first query doesn’t work because the code leaves the strings in their origi-
nal case. I can easily fix that by converting both the book title and the query to
lowercase.

Theo And what about the second query?

Dave It’s much harder to deal with because it’s made of two words. I somehow need
to check whether the title subsequently contains those two prefixes.

Theo Are you familiar with the \b regular expression metacharacter?

Dave No.

Theo \b matches a position that is called a word boundary. It allows us to perform pre-
fix matching.

Dave Cool. Can you give me an example?

Theo Sure. For instance, \bHabits and \b7 Habits match 7 Habits of Highly
Effective People, but abits won’t match.

Dave What about \bHabits of?

Theo It also matches.

Dave Excellent. This is exactly what I need! Let me fix the code of hasWordStart-
ingWith so that it does a case-insensitive prefix match.

function hasWordStartingWith(sentence, prefix) {
var sentenceLowerCase = sentence.toLowerCase();
var prefixLowerCase = prefix.toLowerCase();

Listing 15.24 A revised version of hasWordStartingWith

328 CHAPTER 15 Debugging
var prefixRegExp = new RegExp("\\b" +
prefixLowerCase);

return sentenceLowerCase.match(prefixRegExp) != null;
}

Theo Now, let me write unit tests for all the cases.

Dave One test per query?

Theo You could, but it’s more efficient to have a unit test for all the queries that
should return a book and another one for all the queries that should return no
books. Give me a minute.

Theo codes for a while and produces two unit tests. He then shows the tests to Dave and
enjoys another sip of his tea.

var data =
readData("test-data/" +

"searchBooksByTitle-68e57c85-2213-471a-8442-c4516e83d786.json");
var catalogData = data[0];
var queries = ["Habit", "habit", "7 Habit", "habits of"];
var expectedResult = [

{
"authorNames": [

"Sean Covey",
"Stephen Covey",

],
"isbn": "978-1982137274",
"title": "7 Habits of Highly Effective People",

}
];

_.every(queries, function(query) {
var result = Catalog.searchBooksByTitle(catalogData, query);
return _.isEqual(result, expectedResult);

});
// → [true, true, true, true]

var data =
readData("test-data/" +

"searchBooksByTitle-68e57c85-2213-471a-8442-c4516e83d786.json");
var catalogData = data[0];
var queries = ["abit", "bit", "7 abit", "habit of"];
var expectedResult = [];

_.every(queries, function(query) {
var result = Catalog.searchBooksByTitle(catalogData, query);
return _.isEqual(result, expectedResult);

});
// → [true, true, true, true]

Listing 15.25 A unit test for several queries that should return a book

Listing 15.26 A unit test for several queries that should return no book

When passing \b to the
RegExp constructor, we
need an extra backslash.

32915.5 Dealing with external data sources
Dave What is _.every?

Theo It’s a Lodash function that receives a collection and a predicate and returns
true if the predicate returns true for every element of the collection.

Dave Nice!

Dave runs the unit tests and they pass. He then enjoys a sip of his espresso.

Dave Now, am I allowed to trigger the search endpoint with 7 Habit in order to con-
firm that the improved search works as expected?

Theo Of course. It’s only during the multiple iterations of code improvements that I
advise you not to trigger the system from the outside in order to benefit from a
shorter feedback loop. Once you’re done with the debugging and fixing, you
must then test the system from end to end.

Dave triggers the search endpoint with 7 Habit. It returns the details about 7 Habits of
Highly Effective People as expected.

15.5 Dealing with external data sources
Dave Can we also use reproducibility when the code involves fetching data from an

external data source like a database or an external service?

Theo Why not?

Dave The function context might be exactly the same, but the behavior might be dif-
ferent if the function fetches data from a data source that returns a different
response for the same query.

Theo Well, it depends on the data source. Some databases are immutable in the
sense that the same query always returns the same response.

Dave I have never heard about immutable databases.

Theo Sometimes, they are called functional databases or append-only databases.

Dave Never heard about them either. Did you mean read-only databases?

Theo Read-only databases are immutable for sure, but they are not useful for storing
the state of an application.

Dave How could a database be both writable and immutable?

Theo By embracing time.

Dave What does time have to do with immutability?

Theo In an immutable database, a record has an automatically generated timestamp,
and instead of updating a record, we create a new version of it with a new time-
stamp. Moreover, a query always has a time range in addition to the query
parameters.

Dave Why does that guarantee that the same query will always return the same
response?

Theo In an immutable database, queries don’t operate on the database itself. Instead,
they operate on a database snapshot, which never changes. Therefore, queries
with the same parameters are guaranteed to return the same response.

330 CHAPTER 15 Debugging
Dave Are there databases like that for real?

Theo Yes. For instance, the Datomic immutable database is used by some digital
banks.

 NOTE See https://www.datomic.com for more information on the Datomic transac-
tional database.

Dave But most databases don’t provide such a guarantee!

Theo Right, but in practice, when we’re debugging an issue in our local environ-
ment, data usually doesn’t change.

Dave What do you mean?

Theo Take, for instance, Klafim’s database. In theory, between the time you trigger
the search endpoint and the time you replay the search code from the REPL
with the same context, a book might have been borrowed, and its availability
state in the database has changed. This leads to a difference response to the
search query.

Dave Exactly.

Theo But in practice, you are the only one that interacts with the system in your local
environment. Therefore, it should not happen.

Dave I see. Because we are at the Museum of Science, would you allow me an anal-
ogy with science?

Theo Of course!

Dave In a sense, external data sources are like hidden variables in quantum physics.
In theory, they can alter the result of an experiment for no obvious reason. But
in practice, our physical world looks stable at the macro level.

With today’s discussion at an end, Theo searches his bag to find a parcel wrapped with gift
wrap from the museum’s souvenir shop, which he hands to Dave with a smile. Dave opens
the gift to find a T-shirt. On one side there is an Albert Einstein avatar and his famous
quote: “God does not play dice with the universe”; on the other side, an avatar of Alan Kay
and his quote: “The last thing you want to do is to mess with internal state.”

Dave thanks Theo for his gift. Theo can feel a touch of emotion at the back of his
throat. He’s really enjoyed playing the role of mentor with Dave, a rather skilled student.

Farewell
A week after the meeting with Dave at the museum, Theo invites Joe and Nancy for his
farewell party at Albatross. This is the first time that Joe meets Nancy, and Theo takes the
opportunity to tell Nancy that if the Klafim project met its deadlines, it was thanks to Joe.
Everyone is curious about the name of the company Theo is going to work for, but no one
dares to ask him. Finally, it’s Dave who gets up the courage to ask.

Dave May I ask you what company are you going to work for?

Theo I’m going to take a break.

https://www.datomic.com

331Summary
Dave Really?

Theo Yes. I’ll be traveling around the world for a couple of months.

Dave And after that, will you go back to work in programming?

Theo I’m not sure.

Dave Do you have other projects in mind?

Theo I’m thinking of writing a book.

Dave A book?

Theo Yes. DOP has been a meaningful journey for me. I have learned some interest-
ing lessons about reducing complexity in programming, and I would like to
share my story with the community of developers.

Dave Well, if you are as good of a storyteller as you are as a teacher, I am sure your
book will be a success.

Theo Thank you, Dave!

Monica, Dave, Nancy, Joe, and all the other Albatross employees raise their glasses to
Theo’s health and exclaim together, “Cheers! Here’s to a successful book.”

Summary
 We reproduce a scenario by capturing the context in which a function is called

and replaying it either in the REPL or in a unit test. In this chapter, we call it
context capturing.

 In DOP, a function context is made only of data.
 There are various locations to capture a function context—the clipboard, the

console, a file.
 We are able to capture a function’s context because data is represented with a

generic data structure and, therefore, it is easily serializable.
 Replaying a scenario in the REPL provides a short feedback loop that allows us

to be effective when we want to fix our code.
 When we execute a function with a captured context, the behavior of the func-

tion is guaranteed to be the same as long as it only manipulates immutable data
as specified by DOP.

 In modules that deal with immutable data, function behavior is deterministic—
the same arguments always lead to the same return values.

 The function context is made of the values of the function arguments.
 The REPL (Read Eval Print Loop), sometimes called language shell, is a pro-

gramming environment that takes pieces of code, executes them, and displays
the result.

 In order to copy and paste a generic data structure, we serialize and deserialize it.

332 CHAPTER 15 Debugging
 Reproducibility allows us to reproduce a scenario in a pristine environment.
 The two conditions for reproducibility in programming are immutability and

ease of (de)serialization.

Lodash functions introduced in this chapter

Function Description

find(coll, pred) Iterates over elements of coll, returning the first element for which pred
returns true

appendix A
Principles of data-oriented

programming

Data-oriented programming (DOP) is a programming paradigm aimed at simplify-
ing the design and implementation of software systems, where information is at the
center in systems such as frontend or backend web applications and web services,
for example. Instead of designing information systems around software constructs
that combine code and data (e.g., objects instantiated from classes), DOP encour-
ages the separation of code from data. Moreover, DOP provides guidelines about
how to represent and manipulate data.

TIP In DOP, data is treated as a first-class citizen.

The essence of DOP is that it treats data as a first-class citizen. It gives developers
the ability to manipulate data inside a program with the same simplicity as they
manipulate numbers or strings. Treating data as a first-class citizen is made possible
by adhering to four core principles:

 Separating code (behavior) from data.
 Representing data with generic data structures.
 Treating data as immutable.
 Separating data schema from data representation.

When these four principles are combined, they form a cohesive whole as figure A.1
shows. Systems built using DOP are simpler and easier to understand, so the devel-
oper experience is significantly improved.

TIP In a data-oriented system, code is separated from data. Data is represented
with generic data structures that are immutable and have a separate schema.
333

334 APPENDIX A Principles of data-oriented programming
Notice that DOP principles are language-agnostic. They can be adhered to (or bro-
ken) in

 Object-oriented programming (OOP) languages such as Java, C#, C++, etc.
 Functional programming (FP) languages such as Clojure, OCaml, Haskell, etc.
 Languages that support both OOP and FP such as JavaScript, Python, Ruby,

Scala, etc.

TIP DOP principles are language-agnostic.

 NOTE For OOP developers, the transition to DOP might require more of a mind
shift than for FP developers because DOP prohibits the encapsulation of data in state-
ful classes.

This appendix succinctly illustrates how these principles can be applied or broken in
JavaScript. Mentioned briefly are the benefits of adherence to each principle, and the
costs paid to enjoy those benefits. This appendix also illustrates the principles of DOP
via simple code snippets. Throughout the book, the application of DOP principles to
production information systems is explored in depth.

Data

Representation

Schema

Generic

Specific

Mutable

Immutable

Data-oriented

programming

Code Functional

programming

Object-oriented

programming

Principle #2: Represent
data with generic data
structures.

Principle # :1

Separate code
from data.

Principle #3:
Data is
immutable.

Principle #4: Separate
data schema from data
representation.

Figure A.1 The principles of DOP

335A.1 Principle #1: Separate code from data
A.1 Principle #1: Separate code from data
Principle #1 is a design principle that recommends a clear separation between code
(behavior) and data. This may appear to be a FP principle, but in fact, one can adhere
to it or break it either in FP or in OOP:

 Adherence to this principle in OOP means aggregating the code as methods of
a static class.

 Breaking this principle in FP means hiding state in the lexical scope of a function.

Also, this principle does not relate to the way data is represented. Data representation
is addressed by Principle #2.

A.1.1 Illustration of Principle #1

Our exploration of Principle #1 begins by illustrating how it can be applied to OOP
and FP. The following sections illustrate how this principle can be adhered to or bro-
ken in a simple program that deals with:

 An author entity with a firstName, a lastName, and the number of books they
wrote.

 A piece of code that calculates the full name of the author.
 A piece of code that determines if an author is prolific, based on the number of

books they wrote.

BREAKING PRINCIPLE #1 IN OOP
Breaking Principle #1 in OOP happens when we write code that combines data and
code together in an object. The following listing demonstrates what this looks like.

class Author {
constructor(firstName, lastName, books) {

this.firstName = firstName;
this.lastName = lastName;
this.books = books;

}
fullName() {

return this.firstName + " " + this.lastName;
}
isProlific() {

return this.books > 100;
}

}

PRINCIPLE #1 Separate code from data in a way that the code resides in functions
whose behavior does not depend on data that is encapsulated in the function’s
context.

Listing A.1 Breaking Principle #1 in OOP

336 APPENDIX A Principles of data-oriented programming
var obj = new Author("Isaac", "Asimov", 500);
obj.fullName();
// → "Isaac Asimov"

BREAKING PRINCIPLE #1 IN FP
Breaking this principle without classes in FP means hiding data in the lexical scope of
a function. The next listing provides an example of this.

function createAuthorObject(firstName, lastName, books) {
return {

fullName: function() {
return firstName + " " + lastName;

},
isProlific: function () {

return books > 100;
}

};
}

var obj = createAuthorObject("Isaac", "Asimov", 500);
obj.fullName();
// → "Isaac Asimov"

ADHERING TO PRINCIPLE #1 IN OOP
Listing A.3 shows an example that adheres to Principle #1 in OOP. Compliance with
this principle may be achieved even with classes by writing programs such that:

 The code consists of static methods.
 The data is encapsulated in data classes (classes that are merely containers of

data).

class AuthorData {
constructor(firstName, lastName, books) {

this.firstName = firstName;
this.lastName = lastName;
this.books = books;

}
}

class NameCalculation {
static fullName(data) {

return data.firstName + " " + data.lastName;
}

}

class AuthorRating {
static isProlific (data) {

return data.books > 100;
}

}

Listing A.2 Breaking Principle #1 in FP

Listing A.3 Following Principle #1 in OOP

Isaac Asimov really
wrote around 500
books!

337A.1 Principle #1: Separate code from data
var data = new AuthorData("Isaac", "Asimov", 500);
NameCalculation.fullName(data);
// → "Isaac Asimov"

ADHERING TO PRINCIPLE #1 IN FP
Listing A.4 shows an example that adheres to Principle #1 in FP. Compliance with this
principle means separating code from data.

function createAuthorData(firstName, lastName, books) {
return {

firstName: firstName,
lastName: lastName,
books: books

};
}

function fullName(data) {
return data.firstName + " " + data.lastName;

}

function isProlific (data) {
return data.books > 100;

}

var data = createAuthorData("Isaac", "Asimov", 500);
fullName(data);
// → "Isaac Asimov"

A.1.2 Benefits of Principle #1

Having illustrated how to follow or break Principle #1 both in OOP and FP, let’s look
at the benefits that Principle #1 brings to our programs. Careful separation of code
from data benefits our programs in the following ways:

 Code can be reused in different contexts.
 Code can be tested in isolation.
 Systems tend to be less complex.

BENEFIT #1: CODE CAN BE REUSED IN DIFFERENT CONTEXTS

Imagine that besides the author entity, there is a user entity that has nothing to do
with authors but has two of the same data fields as the author entity: firstName and
lastName. The logic of calculating the full name is the same for authors and users—
retrieving the values of two fields with the same names. However, in traditional OOP
as in the version with createAuthorObject in listing A.5, the code of fullName cannot
be reused on a user in a straightforward way because it is locked inside the Author class.

class Author {
constructor(firstName, lastName, books) {

Listing A.4 Following Principle #1 in FP

Listing A.5 The code of fullName is locked in the Author class

338 APPENDIX A Principles of data-oriented programming
this.firstName = firstName;
this.lastName = lastName;
this.books = books;

}
fullName() {

return this.firstName + " " + this.lastName;
}
isProlific() {

return this.books > 100;
}

}

One way to achieve code reusability when code and data are mixed is to use OOP
mechanisms like inheritance or composition to let the User and Author classes use
the same fullName method. These techniques are adequate for simple use cases, but
in real-world systems, the abundance of classes (either base classes or composite
classes) tends to increase complexity.

 Listing A.6 shows a simple way to avoid inheritance. In this listing, we duplicate the
code of fullName inside a createUserObject function.

function createAuthorObject(firstName, lastName, books) {
var data = {firstName: firstName, lastName: lastName, books: books};

return {
fullName: function fullName() {

return data.firstName + " " + data.lastName;
}

};
}

function createUserObject(firstName, lastName, email) {
var data = {firstName: firstName, lastName: lastName, email: email};

return {
fullName: function fullName() {

return data.firstName + " " + data.lastName;
}

};
}

var obj = createUserObject("John", "Doe", "john@doe.com");
obj.fullName();
// → "John Doe"

In DOP, no modification to the code that deals with author entities is necessary in
order to make it available to user entities, because:

 The code that deals with full name calculation is separate from the code that
deals with the creation of author data.

 The function that calculates the full name works with any hash map that has a
firstName and a lastName field.

Listing A.6 Duplicating code in OOP to avoid inheritance

339A.1 Principle #1: Separate code from data
It is possible to leverage the fact that data relevant to the full name calculation for a
user and an author has the same shape. With no modifications, the fullName function
works properly both on author data and on user data as the following listing shows.

function createAuthorData(firstName, lastName, books) {
return {firstName: firstName, lastName: lastName, books: books};

}

function fullName(data) {
return data.firstName + " " + data.lastName;

}

function createUserData(firstName, lastName, email) {
return {firstName: firstName, lastName: lastName, email: email};

}

var authorData = createAuthorData("Isaac", "Asimov", 500);
fullName(authorData);

var userData = createUserData("John", "Doe", "john@doe.com");
fullName(userData);
// → "John Doe"

When Principle #1 is applied in OOP, code reuse is straightforward even when classes
are used. In statically-typed OOP languages like Java or C, we would have to create a
common interface for AuthorData and UserData. In a dynamically-typed language
like JavaScript, however, that is not required. The code of NameCalculation.full-
Name() works both with author data and user data as the next listing demonstrates.

class AuthorData {
constructor(firstName, lastName, books) {

this.firstName = firstName;
this.lastName = lastName;
this.books = books;

}
}

class NameCalculation {
static fullName(data) {

return data.firstName + " " + data.lastName;
}

}

class UserData {
constructor(firstName, lastName, email) {

this.firstName = firstName;
this.lastName = lastName;
this.email = email;

Listing A.7 The same code on data entities of different types (FP style)

Listing A.8 The same code on data entities of different types (OOP style)

340 APPENDIX A Principles of data-oriented programming
}
}

var userData = new UserData("John", "Doe", "john@doe.com");
NameCalculation.fullName(userData);

var authorData = new AuthorData("Isaac", "Asimov", 500);
NameCalculation.fullName(authorData);
// → "John Doe"

TIP When code is separate from data, it is straightforward to reuse code in different
contexts. This benefit is achievable both in FP and in OOP.

BENEFIT #2: CODE CAN BE TESTED IN ISOLATION

A similar benefit is the ability to test code in an isolated context. When code is not sep-
arate from data, it is necessary to instantiate an object to test its methods. For instance,
in order to test the fullName code that lives inside the createAuthorObject function,
we need to instantiate an author object as the following listing shows.

var author = createAuthorObject("Isaac", "Asimov", 500);
author.fullName() === "Isaac Asimov"
// → true

In this simple scenario, it is not overly burdensome. We only load (unnecessarily) the
code for isProlific. Although in a real-world situation, instantiating an object might
involve complex and tedious setup.

 In the DOP version, where createAuthorData and fullName are separate, we can
create the data to be passed to fullName in isolation, testing fullName in isolation as
well. The following listing provides an example.

var author = {
firstName: "Isaac",
lastName: "Asimov"

};
fullName(author) === "Isaac Asimov"
// → true

If classes are used, it is only necessary to instantiate a data object. We do not need to
load the code for isProlific, which lives in a separate class than fullName, in order
to test fullName. The next listing lays out an example of this approach.

var data = new AuthorData("Isaac", "Asimov");

NameCalculation.fullName(data) === "Isaac Asimov"
// → true

Listing A.9 Testing code when code and data are mixed

Listing A.10 Testing code in isolation (FP style)

Listing A.11 Testing code in isolation (OOP style)

341A.1 Principle #1: Separate code from data
TIP Writing tests is easier when code is separated from data.

BENEFIT #3: SYSTEMS TEND TO BE LESS COMPLEX

The third benefit of applying Principle #1 to our programs is that systems tend to be less
complex. This benefit is the deepest one but also the one that is most subtle to explain.

 The type of complexity I refer to is the one that makes systems hard to understand
as defined in the paper, “Out of the Tar Pit,” by Ben Moseley and Peter Marks (http://
mng.bz/enzq). It has nothing to do with the complexity of the resources consumed by
a program. Similarly, references to simplicity mean not complex (in other words, easy to
understand).

 NOTE Complex in the context of this book means hard to understand.

Keep in mind that complexity and simplicity (like hard and easy) are not absolute but
relative concepts. The complexity of two systems can be compared to determine
whether system A is more complex (or simpler) than system B. When code and data
are kept separate, the system tends to be easier to understand for two reasons:

 The scope of a data entity or a code entity is smaller than the scope of an entity that com-
bines code and data. Each entity is therefore easier to understand.

 Entities of the system are split into disjoint groups: code and data. Entities therefore
have fewer relations to other entities.

This insight is illustrated in a class diagram of our fictitious Library Management Sys-
tem, where code and data are mixed. It is not necessary to know the details of the
classes of this system to see that the diagram in figure A.2 represents a complex system;

* *

*

*
*

*

LibrarianCBookC

AuthorC

BookItemC

CatalogC

BookLendingC

LibraryC

MemberC

UserC

Figure A.2 A class
diagram overview for the
Library Management
System

http://mng.bz/enzq
http://mng.bz/enzq

342 APPENDIX A Principles of data-oriented programming
this in the sense that it is hard to understand. The system is hard to understand because
there are many dependencies between the entities that compose the system.

 The most complex entity of the system in figure A.2 is the Librarian entity, which
is connected via six relations to other entities. Some relations are data relations (asso-
ciation and composition), and some relations are code relations (inheritance and
dependency). But in this design, the Librarian entity mixes code and data, and there-
fore, it has to be involved in both data and code relations. If each entity of the system
is split into a code entity and a data entity without making any further modification to the
system, the result (see figure A.3) is made of two disconnected parts:

 The left part is made only of data entities and data relations: association and
composition.

 The right part is made only of code entities and code relations: dependency
and inheritance.

The new system, where code and data are separate, is easier to understand than the
original system, where code and data are mixed. Thus, the data part of the system and
the code part of the system can each be understood on its own.

TIP A system made of disconnected parts is less complex than a system made of a sin-
gle part.

One could argue that the complexity of the original system, where code and data are
mixed, is due to a bad design and that an experienced OOP developer would have
designed a simpler system using smart design patterns. That is true, but in a sense, it is

AuthorDataC

LibrarianDataC CatalogCodeC

LibrarianCodeC

MemberCodeC

UserCodeC BookItemC

BookItemCodeC

*

*

*

*

*

*

*

BookDataC

BookItemDataC

BookLendingDataC

BookLendingCodeC

LibraryDataC

CatalogDataCMemberDataC

Figure A.3 A class diagram where every class is split into code and data entities

343A.1 Principle #1: Separate code from data
irrelevant. The point of Principle #1 is that a system made of entities that do not com-
bine code and data tends to be simpler than a system made of entities that do combine
code and data.

 It has been said many times that simplicity is hard. According to the first principle of
DOP, simplicity is easier to achieve when separating code and data.

TIP Simplicity is easier to achieve when code is separated from data.

A.1.3 Cost for Principle #1

This section looks at the cost involved when we implement Principle #1. The price we
pay in order to benefit from the separation between code and data is threefold:

 There is no control on what code can access what data.
 There is no packaging.
 Our systems are made from more entities.

COST #1: THERE IS NO CONTROL ON WHAT CODE CAN ACCESS WHAT DATA

When code and data are mixed, it is easy to understand what pieces of code can access
what kinds of data. For example, in OOP, the data is encapsulated in an object, which
guarantees that the data is accessible only by the object’s methods. In DOP, data
stands on its own. It is transparent if you like, and as a consequence, it can be accessed
by any piece of code.

 When refactoring the shape of some data, every place in our code that accesses this
kind of data must be known. Moreover, without the application of Principle #3 (enforc-
ing data immutability), which we discuss later, accessing data by any piece of code is
inherently unsafe. In that case, it would be hard to guarantee the validity of our data.

TIP Data safety is ensured by another principle (Principle #3) that enforces data
immutability.

COST #2: THERE IS NO PACKAGING

One of the benefits of mixing code and data is that when you have an object in hand,
it is a package that contains both the code (via methods) and the data (via members).
As a consequence, it is easy to discover how to manipulate the data: you look at the
methods of the class.

 In DOP, the code that manipulates the data could be anywhere. For example,
createAuthorData might be in one file and fullName in another file. This makes it
difficult for developers to discover that the fullName function is available. In some sit-
uations, it could lead to wasted time and unnecessary code duplication.

COST #3: OUR SYSTEMS ARE MADE FROM MORE ENTITIES

Let’s do simple arithmetic. Imagine a system made of N classes that combine code and
data. When you split the system into code entities and data entities, you get a system
made of 2N entities. This calculation is not accurate, however, because usually when
you separate code and data, the class hierarchy tends to get simpler as we need less

344 APPENDIX A Principles of data-oriented programming
class inheritance and composition. Therefore, the number of classes in the resulting
system will probably be somewhere between N and 2N.

 On one hand, when adhering to Principle #1, the entities of the system are sim-
pler. On the other hand, there are more entities. This cost is mitigated by Principle
#2, which guides us to represent our data with generic data structures.

TIP When adhering to Principle #1, systems are made of simpler entities, but there
are more of them.

A.1.4 Summary of Principle #1

DOP requires the separation of code from data. In OOP languages, aggregate code in
static methods and data in classes with no methods. In FP languages, avoid hiding data
in the lexical scope of functions.

 Separating code from data comes at a price. It reduces control over what pieces of
code access our data and can cause our systems to be made of more entities. But it’s
worth paying the price because, when adhering to this principle, our code can be
reused in different contexts in a straightforward way and tested in isolation. Moreover,
a system made of separate entities for code and data tends to be easier to understand.

DOP Principle #1: Separate code from data
To follow this principle, we separate code from data in such a way that the code
resides in functions whose behavior does not depend on data that is encapsulated
in the function’s context. The following diagram provides a visual representation
of this.

 Benefits include
– Code can be reused in different contexts.
– Code can be tested in isolation.
– Systems tend to be less complex.

 The cost for implementing Principle #1 includes
– No control on what code accesses which data.
– No packaging.
– More entities.

System

Code

Data

FP

OOP

DOP Principle #1: Separate code from data

345A.2 Principle #2: Represent data with generic data structures
A.2 Principle #2: Represent data with generic data
structures
When adhering to Principle #1, code is separated from data. DOP is not opinionated
about the programming constructs to use for organizing the code, but it has a lot to
say about how the data should be represented. This is the theme of Principle #2.

 The most common generic data structures are maps (aka dictionaries) and arrays
(or lists). But other generic data structures (e.g., sets, trees, and queues) can be used
as well. Principle #2 does not deal with the mutability or the immutability of the data.
That is the theme of Principle #3.

A.2.1 Illustration of Principle #2

In DOP, data is represented with generic data structures (like maps and arrays)
instead of instantiating data via specific classes. In fact, most of the data entities that
appear in a typical application can be represented with maps and arrays (or lists). But
there exist other generic data structures (e.g., sets, lists, queues, etc.) that might be
required in some use cases. Let’s look at the same simple example we used to illustrate
Principle #1 (data that represents an author).

 An author is a data entity with a firstName, a lastName, and the number of books
they have written. Principle #2 is broken when we use a specific class to represent an
author as this listing reveals.

class AuthorData {
constructor(firstName, lastName, books) {

this.firstName = firstName;
this.lastName = lastName;
this.books = books;

}
}

Principle #2 is followed when using a map (a dictionary or an associative array) as a
generic data structure that represents an author. The following listing illustrates how
we can follow this principle in OOP.

function createAuthorData(firstName, lastName, books) {
var data = new Map;
data.firstName = firstName;
data.lastName = lastName;

PRINCIPLE #2 Represent application data with generic data structures.

Listing A.12 Breaking Principle #2 in OOP

Listing A.13 Following Principle #2 in OOP

346 APPENDIX A Principles of data-oriented programming
data.books = books;
return data;

}

In a language like JavaScript, we can also instantiate a map via a data literal, which is a
bit more convenient. The following listing shows an example.

function createAuthorData(firstName, lastName, books) {
return {

firstName: firstName,
lastName: lastName,
books: books

};
}

A.2.2 Benefits of Principle #2

Using generic data structures to represent data has multiple benefits. We cover these
benefits in greater detail in the following sections:

 The ability to use generic functions that are not limited to our specific use case
 A flexible data model

USING FUNCTIONS THAT ARE NOT LIMITED TO A SPECIFIC USE CASE

Using generic data structures to represent data makes it possible to manipulate data
with a rich set of functions that are available on those data structures natively in our
programming language. Additionally, third-party libraries also provide more of these
functions. For instance, JavaScript natively provides some basic functions on maps and
arrays, and third-party libraries like Lodash (https://lodash.com/) extend the func-
tionality with even more functions. There is a famous quote by Alan Perlis that sum-
marizes this benefit:

It is better to have 100 functions operate on one data structure than to have 10 functions
operate on 10 data structures.

—Alan Perlis (“Epigrams on Programming,” 1982)

When an author is represented as a map, the author can be serialized into JSON
using JSON.stringify(), which is part of JavaScript. The following listing provides
an example.

var data = createAuthorData("Isaac", "Asimov", 500);
JSON.stringify(data);
// → "{\"firstName\":\"Isaac\",\"lastName\":\"Asimov\",\"books\":500}"

Serializing author data without the number of books can be accomplished via Lodash’s
_.pick() function. The following listing uses _.pick() to create an object with a sub-
set of keys.

Listing A.14 Following Principle #2 with map literals

Listing A.15 Data serialization comes for free when adhering to Principle #2

https://lodash.com/

347A.2 Principle #2: Represent data with generic data structures
var data = createAuthorData("Isaac", "Asimov", 500);
var dataWithoutBooks = _.pick(data, ["firstName", "lastName"]);
JSON.stringify(dataWithoutBooks);
// → "{\"firstName\":\"Isaac\",\"lastName\":\"Asimov\"}"

TIP When adhering to Principle #2, a rich set of functionality is available for data
manipulation.

FLEXIBLE DATA MODEL

When using generic data structures, the data model is flexible, and data is not forced
into a specific shape. Data can be created with no predefined shape, and its shape can
be modified at will.

 In classic OOP, when not adhering to Principle #2, each piece of data is instanti-
ated via a class and must follow a rigid shape. When a slightly different data shape is
needed, a new class must be defined. Take, for example, AuthorData, a class that rep-
resents an author entity made of three fields: firstName, lastName, and books. Sup-
pose that you want to add a field called fullName with the full name of the author. If
we fail to adhere to Principle #2, a new class, AuthorDataWithFullName, must be
defined. However, when using generic data structures, fields can be added to (or
removed from) a map on the fly as the following listing shows.

var data = createAuthorData("Isaac", "Asimov", 500);
data.fullName = "Isaac Asimov";

TIP Working with a flexible data model is particularly useful in applications where
the shape of the data tends to be dynamic (e.g., web apps and web services).

Part 1 of the book explores in detail the benefits of a flexible data model in real-world
applications. Next, let’s explore the cost for adhering to Principle #2.

A.2.3 Cost for Principle #2

As with any programming principle, using this principle comes with its own set of trade-
offs. The price paid for representing data with generic data structures is as follows:

 There is a slight performance hit.
 No data schema is required.
 No compile-time check that the data is valid is necessary.
 In some statically-typed languages, type casting is needed.

COST #1: PERFORMANCE HIT

When specific classes are used to instantiate data, retrieving the value of a class mem-
ber is fast because the compiler knows how the data will look and can do many optimi-
zations. With generic data structures, it is harder to optimize, so retrieving the value

Listing A.16 Manipulating data with generic functions

Listing A.17 Adding a field on the fly

348 APPENDIX A Principles of data-oriented programming
associated to a key in a map, for example, is a bit slower than retrieving the value of a
class member. Similarly, setting the value of an arbitrary key in a map is a bit slower
than setting the value of a class member. In most programming languages, this perfor-
mance hit is not significant, but it is something to keep in mind.

TIP Retrieving and storing the value associated to an arbitrary key from a map is a bit
slower than with a class member.

COST #2: NO DATA SCHEMA

When data is instantiated from a class, the information about the data shape is in the
class definition. Every piece of data has an associated data shape. The existence of
data schema at a class level is useful for developers and for IDEs because

 Developers can easily discover the expected data shape.
 IDEs provide features like field name autocompletion.

When data is represented with generic data structures, the data schema is not part of
the data representation. As a consequence, some pieces of data might have an associ-
ated data schema and other pieces of data do not (see Principle #4).

TIP When generic data structures are used to store data, the data shape is not part of
the data representation.

COST #3: NO COMPILE-TIME CHECK THAT THE DATA IS VALID

Look again at the fullName function in the following listing, which was created to
explore Principle #1. This function receives the data it manipulates as an argument.

function fullName(data) {
return data.firstName + " " + data.lastName;

}

When data is passed to fullName that does not conform to the shape fullName
expects, an error occurs at run time. With generic data structures, mistyping the field
storing the first name (e.g., fistName instead of firstName) does not result in a
compile-time error or an exception. Rather, firstName is mysteriously omitted from
the result. The following listing shows this unexpected behavior.

fullName({fistName: "Issac", lastName: "Asimov"});
// → "undefined Asimov"

When we instantiate data via classes with a rigid data shape, this type of error is caught
at compile time. This drawback is mitigated by the application of Principle #4 that
deals with data validation.

Listing A.18 Declaring the fullName function

Listing A.19 Unexpected behavior with invalid data

349A.2 Principle #2: Represent data with generic data structures
TIP When data is represented with generic data structures, data shape errors are
caught only at run time.

COST #4: THE NEED FOR EXPLICIT TYPE CASTING

In some statically-typed languages, explicit type casting is needed. This section takes a
look at explicit type casting in Java and at dynamic fields in C#.

 In a statically-typed language like Java, author data can be represented as a map
whose keys are of type string and whose values are of types Object. For example, in
Java, author data is represented by a Map<String, Object> as the following listing
illustrates.

var asimov = new HashMap<String, Object>();

asimov.put("firstName", "Isaac");
asimov.put("lastName", "Asimov");
asimov.put("books", 500);

Because the information about the exact type of the field values is not available at
compile time, when accessing a field, an explicit type cast is required. For instance, in
order to check whether an author is prolific, the value of the books field must be type
cast to an integer as the next listing shows.

class AuthorRating {
static boolean isProlific (Map<String, Object> data) {

return (int)data.get("books") > 100;
}

}

Some Java JSON serialization libraries like Gson (https://github.com/google/gson)
support serialization of maps of type Map<String, Object>, without requiring the user
to do any type casting. All the magic happens behind the scenes!

 C# supports a dynamic data type called dynamic (see http://mng.bz/voqJ), which
allows type checking to occur at run time. Using this feature, author data is repre-
sented as a dictionary, where the keys are of type string, and the values are of type
dynamic. The next listing provides this representation.

var asimov = new Dictionary<string, dynamic>();
asimov["name"] = "Isaac Asimov";
asimov["books"] = 500;

The information about the exact type of the field values is resolved at run time. When
accessing a field, no type cast is required. For instance, when checking whether an

Listing A.20 Author data as a string map in Java

Listing A.21 Type casting is required when accessing a field in Java

Listing A.22 Author data as a dynamic string map in C#

https://github.com/google/gson
http://mng.bz/voqJ

350 APPENDIX A Principles of data-oriented programming
author is prolific, the books field can be accessed as though it were declared as an
integer as in this listing.

class AuthorRating {
public static bool isProlific (Dictionary<String, dynamic> data) {

return data["books"] > 100;
}

}

A.2.4 Summary of Principle #2

DOP uses generic data structures to represent data. This might cause a (small) perfor-
mance hit and impose the need to manually document the shape of data because the
compiler cannot validate it statically. Adherence to this principle enables the manipu-
lation of data with a rich set of generic functions (provided by the language and by
third-party libraries). Additionally, our data model is flexible. At this point, the data
can be either mutable or immutable. The next principle (Principle #3) illustrates the
value of immutability.

Listing A.23 Type casting is not needed when accessing dynamic fields in C#

DOP Principle #2: Represent data with generic data structures
To comply with this principle, we represent application data with generic data struc-
tures, mostly maps and arrays (or lists). The following diagram shows a visual repre-
sentation of this principle.

 Benefits include
– Using generic functions that are not limited to our specific use case
– A flexible data model

 The cost for implementing this principle includes
– There is a slight performance hit.
– No data schema is required.
– No compile time check that the data is valid is necessary.
– In some statically-typed languages, explicit type casting is needed.

Data

Generic

Specific

DOP Principle #2: Represent data with generic data structures

351A.3 Principle #3: Data is immutable
A.3 Principle #3: Data is immutable
With data separated from code and represented with generic data structures, how are
changes to the data managed? DOP is very strict on this question. Mutation of data is
not allowed! In DOP, changes to data are accomplished by creating new versions of
the data. The reference to a variable may be changed so that it refers to a new version of
the data, but the value of the data itself must never change.

A.3.1 Illustration of Principle #3

Think about the number 42. What happens to 42 when you add 1 to it? Does it
become 43? No, 42 stays 42 forever! Now, put 42 inside an object: {num: 42}. What
happens to the object when you add 1 to 42? Does it become 43? It depends on the
programming language.

 In Clojure, a programming language that embraces data immutability, the value
of the num field stays 42 forever, no matter what.

 In many programming languages, the value of the num field becomes 43.

For instance, in JavaScript, mutating the field of a map referred by two variables has
an impact on both variables. The following listing demonstrates this.

var myData = {num: 42};
var yourData = myData;

yourData.num = yourData.num + 1;
console.log(myData.num);
// → 43

Now, myData.num equals 43. According to DOP, however, data should never change!
Instead of mutating data, a new version of it is created. A naive (and inefficient) way
to create a new version of data is to clone it before modifying it. For instance, in list-
ing A.25, there is a function that changes the value of a field inside an object by clon-
ing the object via Object.assign, provided natively by JavaScript. When changeValue
is called on myData, myData is not affected; myData.num remains 42. This is the essence
of data immutability!

function changeValue(obj, k, v) {
var res = Object.assign({}, obj);
res[k] = v;

PRINCIPLE #3 Data is immutable.

Listing A.24 Mutating data referred by two variables impact both variables

Listing A.25 Data immutability via cloning

352 APPENDIX A Principles of data-oriented programming
return res;
}

var myData = {num: 42};
var yourData = changeValue(myData, "num", myData.num + 1);
console.log(myData.num);
// → 43

Embracing immutability in an efficient way, both in terms of computation and mem-
ory, requires a third-party library like Immutable.js (https://immutable-js.com/), which
provides an efficient implementation of persistent data structures (aka immutable
data structures). In most programming languages, libraries exist that provide an effi-
cient implementation of persistent data structures.

 With Immutable.js, JavaScript native maps and arrays are not used, but rather,
immutable maps and immutable lists are instantiated via Immutable.Map and Immutable
.List. An element of a map is accessed using the get method. A new version of the
map is created when a field is modified with the set method.

 Listing A.26 shows how to create and manipulate immutable data efficiently with a
third-party library. In the output, yourData.get("num") is 43, but myData.get("num")
remains 42.

var myData = Immutable.Map({num: 42})
var yourData = myData.set("num", 43);
console.log(yourData.get("num"));
// → 43
console.log(myData.get("num"));
// → 42

TIP When data is immutable, instead of mutating data, a new version of it is created.

A.3.2 Benefits of Principle #3

When programs are constrained from mutating data, we derive benefit in numerous
ways. The following sections detail these benefits:

 Data access to all with confidence
 Predictable code behavior
 Fast equality checks
 Concurrency safety for free

BENEFIT #1: DATA ACCESS TO ALL WITH CONFIDENCE

According to Principle #1 (separate code from data), data access is transparent. Any
function is allowed to access any piece of data. Without data immutability, we must be
careful when passing data as an argument to a function. We can either make sure the
function does not mutate the data or clone the data before it is passed to the function.
When adhering to data immutability, none of this is required.

Listing A.26 Creating and manipulating immutable data

https://immutable-js.com/

353A.3 Principle #3: Data is immutable
TIP When data is immutable, it can be passed to any function with confidence
because data never changes.

BENEFIT #2: PREDICTABLE CODE BEHAVIOR

As an illustration of what is meant by predictable, here is an example of an unpredictable
piece of code that does not adhere to data immutability. Take a look at the piece of
asynchronous JavaScript code in the following listing. When data is mutable, the behav-
ior of asynchronous code is not predictable.

var myData = {num: 42};
setTimeout(function (data){

console.log(data.num);
}, 1000, myData);
myData.num = 0;

The value of data.num inside the timeout callback is not predictable. It depends on
whether the data is modified by another piece of code during the 1,000 ms of the
timeout. However, with immutable data, it is guaranteed that data never changes and
that data.num is always 42 inside the callback.

TIP When data is immutable, the behavior of code that manipulates data is predictable.

BENEFIT #3: FAST EQUALITY CHECKS

With UI frameworks like React.js, there are frequent checks to see what portion of the
UI data has been modified since the previous rendering cycle. Portions that did not
change are not rendered again. In fact, in a typical frontend application, most of the
UI data is left unchanged between subsequent rendering cycles.

 In a React application that does not adhere to data immutability, it is necessary to
check every (nested) part of the UI data. However, in a React application that follows
data immutability, it is possible to optimize the comparison of the data for the case
where data is not modified. Indeed, when the object address is the same, then it is cer-
tain that the data did not change.

 Comparing object addresses is much faster than comparing all the fields. In part 1
of the book, fast equality checks are used to reconcile between concurrent mutations
in a highly scalable production system.

TIP Immutable data enables fast equality checks by comparing data by reference.

BENEFIT #4: FREE CONCURRENCY SAFETY

In a multi-threaded environment, concurrency safety mechanisms (e.g., mutexes)
are often used to prevent the data in thread A from being modified while it is accessed
in thread B. In addition to the slight performance hit they cause, concurrency safety
mechanisms impose a mental burden that makes code writing and reading much
more difficult.

Listing A.27 Unpredictable asynchronous code when data is mutable

354 APPENDIX A Principles of data-oriented programming
TIP Adherence to data immutability eliminates the need for a concurrency mecha-
nism. The data you have in hand never changes!

A.3.3 Cost for Principle #3

As with the previous principles, applying Principle #3 comes at a price. The following
sections look at these costs:

 Performance hit
 Required library for persistent data structures

COST #1: PERFORMANCE HIT

As mentioned earlier, implementations of persistent data structures exist in most pro-
gramming languages. But even the most efficient implementation is a bit slower than
the in-place mutation of the data. In most applications, the performance hit and the
additional memory consumption involved in using immutable data structures is not
significant. But this is something to keep in mind.

COST #2: REQUIRED LIBRARY FOR PERSISTENT DATA STRUCTURES

In a language like Clojure, the native data structures of the language are immutable. How-
ever, in most programming languages, adhering to data immutability requires the inclu-
sion a third-party library that provides an implementation of persistent data structures.

 The fact that the data structures are not native to the language means that it is dif-
ficult (if not impossible) to enforce the usage of immutable data across the board.
Also, when integrating with third-party libraries (e.g., a chart library), persistent data
structures must be converted into equivalent native data structures.

A.3.4 Summary of Principle #3

DOP considers data as a value that never changes. Adherence to this principle results
in code that is predictable even in a multi-threaded environment, and equality checks
are fast. However, a non-negligible mind shift is required, and in most programming
languages, a third-party library is needed to provide an efficient implementation of
persistent data structures.

DOP Principle #3: Data is immutable
To adhere to this principle, data is represented with immutable structures. The fol-
lowing diagram provides a visual representation of this.

Data

Mutable

Immutable

DOP Principle #3: Data is immutable

355A.4 Principle #4: Separate data schema from data representation
A.4 Principle #4: Separate data schema from data
representation
With data separated from code and represented with generic and immutable data
structures, now comes the question of how do we express the shape of the data? In
DOP, the expected shape is expressed as a data schema that is kept separated from the
data itself. The main benefit of Principle #4 is that it allows developers to decide
which pieces of data should have a schema and which pieces of data should not.

A.4.1 Illustration of Principle #4

Think about handling a request for the addition of an author to the system. To keep things
simple, imagine that such a request contains only basic information about the author:
their first name and last name and, optionally, the number of books they have written. As
seen in Principle #2 (represent data with generic data structures), in DOP, request data
is represented as a string map, where the map is expected to have three fields:

 firstName—a string
 lastName—a string
 books—a number (optional)

In DOP, the expected shape of data is represented as data that is kept separate from the
request data. For instance, JSON schema (https://json-schema.org/) can represent the
data schema of the request with a map. The following listing provides an example.

var addAuthorRequestSchema = {
"type": "object",
"required": ["firstName", "lastName"],

 Benefits include
– Data access to all with confidence
– Predictable code behavior
– Fast equality checks
– Concurrency safety for free

 The cost for implementing Principle #3 includes
– A performance hit
– Required library for persistent data structures

PRINCIPLE #4 Separate data schema from data representation.

Listing A.28 The JSON schema for an addAuthor request data

Data is expected to be a map (in JSON,
a map is called an object).

Only firstName and
lastName fields are
required.

https://json-schema.org/

356 APPENDIX A Principles of data-oriented programming

e
"properties": {
"firstName": {"type": "string"},
"lastName": {"type": "string"},
"books": {"type": "integer"}

}
};

A data validation library is used to check whether a piece of data conforms to a data
schema. For instance, we could use Ajv JSON schema validator (https://ajv.js.org/) to
validate data with the validate function that returns true when data is valid and
false when data is invalid. The following listing shows this approach.

var validAuthorData = {
firstName: "Isaac",
lastName: "Asimov",
books: 500

};

ajv.validate(addAuthorRequestSchema,
validAuthorData); //

// → true

var invalidAuthorData = {
firstName: "Isaac",
lastNam: "Asimov",
books: "five hundred"

};

ajv.validate(addAuthorRequestSchema,
invalidAuthorData);

// → false

When data is invalid, the details about data validation failures are available in a human
readable format. The next listing shows this approach.

var invalidAuthorData = {
firstName: "Isaac",
lastNam: "Asimov",
books: "five hundred"

};

var ajv = new Ajv({allErrors: true});
ajv.validate(addAuthorRequestSchema, invalidAuthorData);
ajv.errorsText(ajv.errors);
// → "data should have required property 'lastName',
// → data.books should be number"

Listing A.29 Data validation with Ajv

Listing A.30 Getting details about data validation failure

firstName must
be a string.

lastName must
be a string.

books must be a number
(when it is provided).

Data is
valid.

Data has lastNam instead
of lastName, and books is a
string instead of a number.

By default, Ajv stores only
the first data validation
error. Set allErrors: true
to store all errors.

Data validation errors are
stored internally as an
array. In order to get a
human readable string, us
the errorsText function.

https://ajv.js.org/

357A.4 Principle #4: Separate data schema from data representation
A.4.2 Benefits of Principle #4

Separation of data schema from data representation provides numerous benefits. The
following sections describe these benefits in detail:

 Freedom to choose what data should be validated
 Optional fields
 Advanced data validation conditions
 Automatic generation of data model visualization

BENEFIT #1: FREEDOM TO CHOOSE WHAT DATA SHOULD BE VALIDATED

When data schema is separated from data representation, we can instantiate data with-
out specifying its expected shape. Such freedom is useful in various situations. For
example,

 Rapid prototyping or experimentation
 Code refactoring and data validation

Consider rapid prototyping. In classic OOP, we need to instantiate every piece of data
through a class. During the exploration phase of coding, when the final shape of our
data is not yet known, being forced to update the class definition each time the data
model changes slows us down. DOP enables a faster pace during the exploration
phase by delaying the data schema definition to a later phase.

 One common refactoring pattern is split phase refactoring (https://refactoring
.com/catalog/splitPhase.html), where a single large function is split into multiple
smaller functions with private scope. We call these functions with data that has already
been validated by the larger function. In DOP, it is not necessary to specify the shape
of the arguments of the inner functions, relying on the data validation that has
already occurred.

 Consider how to display some information about an author, such as their full name
and whether they are considered prolific. Using the code shown earlier to illustrate
Principle #2 to calculate the full name and the prolificity level of the author, one
might come up with a displayAuthorInfo function as the following listing shows.

class NameCalculation {
static fullName(data) {

return data.firstName + " " + data.lastName;
}

}

class AuthorRating {
static isProlific (data) {

return data.books > 100;
}

}

var authorSchema = {
"type": "object",

Listing A.31 Displaying author information

https://refactoring.com/catalog/splitPhase.html
https://refactoring.com/catalog/splitPhase.html
https://refactoring.com/catalog/splitPhase.html

358 APPENDIX A Principles of data-oriented programming
"required": ["firstName", "lastName"],
"properties": {

"firstName": {"type": "string"},
"lastName": {"type": "string"},
"books": {"type": "integer"}

}
};

function displayAuthorInfo(authorData) {
if(!ajv.validate(authorSchema, authorData)) {

throw "displayAuthorInfo called with invalid data";
};
console.log("Author full name is: ",

NameCalculation.fullName(authorData));
if(authorData.books == null) {

console.log("Author has not written any book");
} else {

if (AuthorRating.isProlific(authorData)) {
console.log("Author is prolific");

} else {
console.log("Author is not prolific");

}
}

}

Notice that the first thing done inside the body of displayAuthorInfo is to validate
that the argument passed to the function. Now, apply the split phase refactoring pat-
tern to this simple example and split the body of displayAuthorInfo into two inner
functions:

 displayFullName displays the author’s full name.
 displayProlificity displays whether the author is prolific or not.

The next listing shows the resulting code.

function displayFullName(authorData) {
console.log("Author full name is: ",

NameCalculation.fullName(authorData));
}

function displayProlificity(authorData) {
if(authorData.books == null) {

console.log("Author has not written any book");
} else {

if (AuthorRating.isProlific(authorData)) {
console.log("Author is prolific");

} else {
console.log("Author is not prolific");

}
}

}

Listing A.32 Application of split phase refactoring pattern

359A.4 Principle #4: Separate data schema from data representation
function displayAuthorInfo(authorData) {
if(!ajv.validate(authorSchema, authorData)) {

throw "displayAuthorInfo called with invalid data";
};
displayFullName(authorData);
displayProlificity(authorData);

}

Having the data schema separated from data representation eliminates the need to
specify a data schema for the arguments of the inner functions displayFullName and
displayProlificity. It makes the refactoring process a bit smoother. In some cases,
the inner functions are more complicated, and it makes sense to specify a data schema
for their arguments. DOP gives us the freedom to choose!

BENEFIT #2: OPTIONAL FIELDS

In OOP, allowing a class member to be optional is not easy. For instance, in Java one
needs a special construct like the Optional class introduced in Java 8 (http://mng.bz/
4jWa). In DOP, it is natural to declare a field as optional in a map. In fact, in JSON
Schema, by default, every field is optional.

 In order to make a field not optional, its name must be included in the required
array as, for instance, in the author schema in listing A.33, where only firstName and
lastName are required, and books is optional. Notice that when an optional field is
defined in a map, its value is validated against the schema.

var authorSchema = {
"type": "object",
"required": ["firstName", "lastName"],
"properties": {

"firstName": {"type": "string"},
"lastName": {"type": "string"},
"books": {"type": "number"}

}
};

Let’s illustrate how the validation function deals with optional fields. A map without a
books field is considered to be valid as listing A.34 shows. Alternatively, a map with a
books field, where the value is not a number, is considered to be invalid as listing A.35
shows.

var authorDataNoBooks = {
"firstName": "Yehonathan",
"lastName": "Sharvit"

};

ajv.validate(authorSchema, authorDataNoBooks);
// → true

Listing A.33 A schema with an optional field

Listing A.34 A valid map without an optional field

books is not included
in required, as it is an
optional field.

When present, books
must be a number.

The validation
passes, as books is
an optional field.

http://mng.bz/4jWa
http://mng.bz/4jWa

360 APPENDIX A Principles of data-oriented programming
var authorDataInvalidBooks = {
"firstName": "Albert",
"lastName": "Einstein",
"books": "Five"

};

validate(authorSchema, authorDataInvalidBooks);
// → false

BENEFIT #3: ADVANCED DATA VALIDATION CONDITIONS

In DOP, data validation occurs at run time. It allows the definition of data validation
conditions that go beyond the type of a field. For example, validating that a field is not
only a string, but a string with a maximal number of characters or a number com-
prised in a range of numbers as well.

 JSON Schema supports many other advanced data validation conditions such as
regular expression validation for string fields or number fields that should be a multi-
ple of a given number. The author schema in listing A.36 expects firstName and
lastName to be strings of less than 100 characters, and books to be a number between
0 and 10,000.

var authorComplexSchema = {
"type": "object",
"required": ["firstName", "lastName"],
"properties": {

"firstName": {
"type": "string",
"maxLength": 100

},
"lastName": {

"type": "string",
"maxLength": 100

},
"books": {

"type": "integer",
"minimum": 0,
"maximum": 10000

}
}

};

BENEFIT #4: AUTOMATIC GENERATION OF DATA MODEL VISUALIZATION

With the data schema defined as data, we can use several tools to generate data model
visualizations. With tools like JSON Schema Viewer (https://navneethg.github.io/
jsonschemaviewer/) and Malli (https://github.com/metosin/malli), a UML diagram
can be generated from a JSON schema.

Listing A.35 An invalid map with an invalid optional field

Listing A.36 A schema with advanced data validation conditions

The validation fails,
as books is not a
number.

https://navneethg.github.io/jsonschemaviewer/
https://navneethg.github.io/jsonschemaviewer/
https://github.com/metosin/malli

361A.4 Principle #4: Separate data schema from data representation
 For instance, the JSON schema in listing A.37 defines the shape of a bookList
field, which is an array of books where each book is a map, and in figure A.4, it is visu-
alized as a UML diagram. These tools generate the UML diagram from the JSON
schema.

{
"type": "object",
"required": ["firstName", "lastName"],
"properties": {

"firstName": {"type": "string"},
"lastName": {"type": "string"},
"bookList": {

"type": "array",
"items": {

"type": "object",
"properties": {
"title": {"type": "string"},
"publicationYear": {"type": "integer"}

}
}

}
}

}

A.4.3 Cost for Principle #4

Applying Principle #4 comes with a price. The following sections look at these costs:

 Weak connection between data and its schema
 Small performance hit

COST #1: WEAK CONNECTION BETWEEN DATA AND ITS SCHEMA

By definition, when data schema and data representation are separated, the connec-
tion between data and its schema is weaker than when data is represented with classes.
Moreover, the schema definition language (e.g., JSON Schema) is not part of the

Listing A.37 A JSON schema with an array of objects

firstName: String

lastName: String

bookList: <Book>

C Author

title : String

publicationYear: Int

C Book

Figure A.4 A UML visualization of the
JSON schema in listing A.37

362 APPENDIX A Principles of data-oriented programming
programming language. It is up to the developer to decide where data validation is
necessary and where it is superfluous. As the idiom says, with great power comes great
responsibility.

COST #2: LIGHT PERFORMANCE HIT

As mentioned earlier, implementations of JSON schema validation exist in most
programming languages. In DOP, data validation occurs at run time, and it takes
some time to run the data validation. In OOP, data validation usually occurs at com-
pile time.

 This drawback is mitigated by the fact that, even in OOP, some parts of data valida-
tion occur at run time. For instance, the conversion of a request JSON payload into an
object occurs at run time. Moreover, in DOP, it is quite common to have some data val-
idation parts enabled only during development and to disable them when the system
runs in production. As a consequence, this performance hit is not significant.

A.4.4 Summary of Principle #4

In DOP, data is represented with immutable generic data structures. When additional
information about the shape of the data is required, a data schema can be defined
(e.g., using JSON Schema). Keeping the data schema separate from the data repre-
sentation gives us the freedom to decide where data should be validated.

 Moreover, data validation occurs at run time. As a consequence, data validation
conditions that go beyond the static data types (e.g., the string length) can be expressed.
However, with great power comes great responsibility, and it is up to the developer to
remember to validate data.

DOP Principle #4: Separate between data schema and data representation
To adhere to this principle, separate between data schema and data representation.
The following diagram illustrates this.

 Benefits include
– Freedom to choose what data should be validated
– Optional fields
– Advanced data validation conditions
– Automatic generation of data model visualization

Data

Representation

Schema

DOP Principle #4: Separate between data

schema and data representation

363Conclusion
Conclusion
DOP simplifies the design and implementation of information systems by treating
data as a first-class citizen. This is made possible by adhering to four language-agnostic
core principles (see figure A.5):

 Separating code from data.
 Representing application data with generic data structures.
 Treating data as immutable.
 Separating data schema from data representation.

This appendix has illustrated how each principle can be applied both in FP and OOP
languages. It also describes at a high level the benefits of each principle and the costs
of adherence to it.

 The cost for implementing Principle #4 includes
– Weak connection between data and its schema
– A small performance hit

Data

Representation

Schema

Generic

Specific

Mutable

Immutable

Data-oriented

programming

Code Functional

programming

Object-oriented

programming

Principle #2: Represent
data with generic data
structures.

Principle # :1

Separate code
from data.

Principle #3:
Data is
immutable.

Principle #4: Separate
data schema from data
representation.

Figure A.5 The principles of DOP

appendix B
Generic data access in

statically-typed languages

Representing data with generic data structures fits naturally in dynamically-typed
programming languages like JavaScript, Ruby, or Python. However, in statically-
typed programming languages like Java or C#, representing data as string maps
with values of an unspecified type is not natural for several reasons:

 Accessing map fields requires a type cast.
 Map field names are not validated at compile time.
 Autocompletion and other convenient IDE features are not available.

This appendix explores various ways to improve access to generic data in statically-
typed languages. We’ll look at:

 Value getters for maps to avoid type casting when accessing map fields
 Typed getters for maps to benefit from compile-time checks for map field

names
 Generic access for classes using reflection to benefit from autocompletion

and other convenient IDE features

B.1 Dynamic getters for string maps
Let’s start with a refresher about the approach we presented in part 1. Namely, we
represented records as string maps and accessed map fields with dynamic getters
and type casting.

 NOTE Most of the code snippets in this appendix use Java, but the approaches
illustrated can be applied to other object-oriented statically-typed languages like C#
or Go.
364

365B.1 Dynamic getters for string maps
B.1.1 Accessing non-nested map fields with dynamic getters

Throughout this appendix, we will illustrate various ways to provide generic data access
using a book record. Our record is made of these parts:

 title (a string)
 isbn (a string)
 publicationYear (an integer)

Listing B.1 shows the representation of two books, Watchmen and Seven Habits of Highly
Effective People, in Java. These string maps contain values that are of type Object.

Map watchmenMap = Map.of(
"isbn", "978-1779501127",
"title", "Watchmen",
"publicationYear", 1987

);

Map sevenHabitsMap = Map.of(
"isbn", "978-1982137274",
"title", "7 Habits of Highly Effective People",
"publicationYear", 2020

);

The map fields can be accessed generically using a dynamic getter. The following list-
ing shows the implementation.

class DynamicAccess {
static Object get(Map m, String k) {

return (m).get(k);
}

}

The drawback of dynamic getters is that a type cast is required to manipulate the value
of a map field. For instance, as shown in listing B.3, a cast to String is needed to call
the toUpperCase string method on the title field value.

((String)DynamicAccess.get(watchmenMap, "title")).toUpperCase();
// → "WATCHMEN"

Dynamic getters provide generic data access in the sense that they do not require spe-
cific knowledge of the type of data the string map represents. As a consequence, the
name of the field can be received dynamically (e.g., from the user) as listing B.4
shows. This works because, in order to access a book data field in a string map, it is not
necessary to import the class that defines the book.

Listing B.1 Two books represented as maps

Listing B.2 The implementation of dynamic getter for map fields

Listing B.3 Accessing map fields with a dynamic getter and type casting

366 APPENDIX B Generic data access in statically-typed languages
var books = List.of(watchmenMap, sevenHabitsMap);
var fieldName = "title";

books.stream()
.map(x -> DynamicAccess.get(x, fieldName))
.map(x -> ((String)x).toUpperCase())
.collect(Collectors.toList())
// → ["WATCHMEN", "7 HABITS OF HIGHLY EFFECTIVE PEOPLE"]

Another aspect of the genericity of dynamic getters is that they work on any type of
data. For instance, the dynamic getter for title works not only on books, but on any
piece of data that has a title field.

B.1.2 Accessing nested map fields with dynamic getters

Listing B.5 presents an example of search results. Suppose that the search results rep-
resent as a string map, where

 Keys are book ISBNs.
 Values are book data represented as string maps as in the previous section.

Map searchResultsMap = Map.of(
"978-1779501127", Map.of(

"isbn", "978-1779501127",
"title", "Watchmen",
"publicationYear", 1987

),
"978-1982137274", Map.of(

"isbn", "978-1982137274",
"title", "7 Habits of Highly Effective People",
"publicationYear", 2020

)
);

Book fields are nested in the search result map. In order to access nested map fields, a
get method is added to the DynamicAccess class in listing B.6. This get method
receives a list of strings that represents the information path of the nested map field.

class DynamicAccess {
static Object get(Map m, String k) {

return (m).get(k);
}

static Object get(Map m, List<String> path) {
Object v = m;
for (String k : path) {

Listing B.4 Mapping a map field with a dynamic getter and type casting

Listing B.5 Search results represented as a map

Listing B.6 The implementation of dynamic getter for nested map fields

367B.2 Value getters for maps
v = get((Map)v, k);
if (v == null) {

return null;
}

}
return v;

}
}

As with non-nested map fields in the previous section, type casting is required to manip-
ulate a nested map field. Listing B.7 shows how to access these nested map fields. In
the next section, we will look at how to avoid type casting when manipulating values in
string maps.

((String)DynamicAccess.get(searchResultsMap,
List.of("978-1779501127", "title"))).toUpperCase();

// → "WATCHMEN"

B.2 Value getters for maps
The simplest way to avoid type casting when manipulating the value of a string map
field is to use a dynamic data type (see appendix A). Dynamic data types are sup-
ported in languages like C#, but not in languages like Java. Next, we’ll illustrate how
value getters make it possible to avoid type casting.

B.2.1 Accessing non-nested map fields with value getters

In this section, books are still represented as string maps with values of type Object.
The following listing shows this representation.

Map watchmenMap = Map.of(
"isbn", "978-1779501127",
"title", "Watchmen",
"publicationYear", 1987

);

Map sevenHabitsMap = Map.of(
"isbn", "978-1982137274",
"title", "7 Habits of Highly Effective People",
"publicationYear", 2020

);

The idea of value getters is quite simple. Instead of doing the type casting outside the
getter, it is done inside the getter. A value getter is required for every type: getAs-
String for strings, getAsInt for integers, getAsFloat for float numbers, getAsBoolean
for Boolean values, and so forth.

Listing B.7 Nested map fields with a dynamic getter and type casting

Listing B.8 Two books represented as maps

368 APPENDIX B Generic data access in statically-typed languages
 The value getter approach is used by Java libraries like Apache Wicket (http://
mng.bz/wnqQ) and Gson (https://github.com/google/gson). Listing B.9 shows an
implementation for getAsString that retrieves a map field value as a string.

class DynamicAccess {
static Object get(Map m, String k) {

return (m).get(k);
}

static String getAsString(Map m, String k) {
return (String)get(m, k);

}
}

A map field can be accessed without type casting. For instance, we can use getAsString
to manipulate a book title as in the next listing.

DynamicAccess.getAsString(watchmenMap, "title").toUpperCase();
// → "WATCHMEN"

Mapping over books with a value getter is a bit more convenient without type casting.
Look at the following listing, for example.

var books = List.of(watchmenMap, sevenHabitsMap);

books.stream()
.map(x -> DynamicAccess.getAsString(x, "title"))
.map(x -> x.toUpperCase())
.collect(Collectors.toList())
// → ["WATCHMEN", "7 HABITS OF HIGHLY EFFECTIVE PEOPLE"]

B.2.2 Accessing nested map fields with value getters

The value getter approach applies naturally to nested map fields. As in the dynamic
getter section, suppose that search results are represented as a string map as in list-
ing B.12. Book fields are nested in the search results map, where

 Keys are book ISBNs.
 Values are book data represented as string maps as in the previous section.

Map searchResultsMap = Map.of(
"978-1779501127", Map.of(

Listing B.9 The implementation of value getter for map fields

Listing B.10 Accessing non-nested fields with value getter

Listing B.11 Mapping over a list of maps with a value getter

Listing B.12 Search results represented as a map

http://mng.bz/wnqQ
http://mng.bz/wnqQ
https://github.com/google/gson

369B.2 Value getters for maps
"isbn", "978-1779501127",
"title", "Watchmen",
"publicationYear", 1987

),
"978-1982137274", Map.of(

"isbn", "978-1982137274",
"title", "7 Habits of Highly Effective People",
"publicationYear", 2020

)
);

In order to access nested map fields without type casting, we added a getAsString
method to the DynamicAccess class. This class receives a list of strings that represents
the information path of the nested map field as in the following listing.

class DynamicAccess {
static Object get(Map m, String k) {

return (m).get(k);
}

static Object get(Map m, List<String> p) {
Object v = m;
for (String k : p) {

v = get((Map)v, k);
if (v == null) {

return null;
}

}
return v;

}

static String getAsString(Map m, String k) {
return (String)get(m, k);

}

static String getAsString(Map m, List<String> p) {
return (String)get(m, p);

}
}

With the nested value getter, book titles can be manipulated inside search results with-
out type casting. The following listing demonstrates this.

var informationPath = List.of("978-1779501127", "title");

DynamicAccess.getAsString(searchResultsMap, informationPath)
.toUpperCase();
// → "WATCHMEN"

Listing B.13 The implementation of value getter for nested map fields

Listing B.14 Accessing nested map fields with value getter

370 APPENDIX B Generic data access in statically-typed languages
Value getters make data access a bit more convenient when avoiding type casting. The
next section shows how typed getters make it possible to benefit from compile-time
checks, even when data is represented as string maps.

B.3 Typed getters for maps
The typed getter approach is applicable in statically-typed languages that support generic
types like Java and C#. In this section, we will illustrate the typed getter approach in Java.

B.3.1 Accessing non-nested map fields with typed getters

As in the previous sections, we’ll use the representation of two books, Watchmen and
Seven Habits of Highly Effective People, in Java as string maps. The following listing shows
the maps, whose values are of type Object.

Map watchmenMap = Map.of(
"isbn", "978-1779501127",
"title", "Watchmen",
"publicationYear", 1987

);

Map sevenHabitsMap = Map.of(
"isbn", "978-1982137274",
"title", "7 Habits of Highly Effective People",
"publicationYear", 2020

);

The idea of typed getters is to create a generic object. This object would then contain
information about:

 The field name
 The type of the field value

Now, we can use this object on a string map to retrieve the typed value of the field in
the map. For example, in listing B.16, there is a typed getter named TITLE that
retrieves the value of a field named title as a string. The implementation of typed
getter is in listing B.17.

Getter<String> TITLE = new Getter("title");
TITLE.get(watchmenMap).toUpperCase();
// → "WATCHMEN"

class Getter <T> {
private String key;

Listing B.15 Two books represented as maps

Listing B.16 Accessing map fields with a typed getter

Listing B.17 The implementation of a typed getter

371B.3 Typed getters for maps
public <T> Getter (String k) {
this.key = k;

}

public T get (Map m) {
return (T)(DynamicAccess.get(m, key));

}
}

TIP Typed getters are generic objects. Unlike value getters from the previous section,
it is not necessary to provide an implementation for every type.

In a sense, typed getters support compile-time validation and autocompletion. If the
name of the typed getter TITLE is misspelled, the compiler throws an error. Typing the
first few letters of TITLE into an IDE provides autocompletion of the symbol of the typed
getter. However, when you instantiate a typed getter, the field name must be passed as a
string, and neither compile-time checks nor autocompletion are available. Mapping over
a list of maps with a typed getter is quite simple as you can see in the following listing.

var books = List.of(watchmenMap, sevenHabitsMap);

books.stream()
.map(x -> TITLE.get(x))
.map(x -> x.toUpperCase())
.collect(Collectors.toList())
// → ["WATCHMEN", "7 HABITS OF HIGHLY EFFECTIVE PEOPLE"]

B.3.2 Accessing nested map fields with typed getters

The typed getter approach extends well to nested map fields. As in the value getter
section, suppose that search results, presented in listing B.19, are represented as a
string map, where

 Keys are book ISBNs.
 Values are book data represented as string maps as in the previous section.

Map searchResultsMap = Map.of(
"978-1779501127", Map.of(

"isbn", "978-1779501127",
"title", "Watchmen",
"publicationYear", 1987

),
"978-1982137274", Map.of(

"isbn", "978-1982137274",
"title", "7 Habits of Highly Effective People",
"publicationYear", 2020

)
);

Listing B.18 Mapping over a list of maps with a typed getter

Listing B.19 Search results represented as a map

372 APPENDIX B Generic data access in statically-typed languages
In order to support nested map fields, a constructor is added to the Getter class,
which receives a list of strings that represents the information path. The following list-
ing shows this implementation.

class Getter <T> {
private List<String> path;
private String key;
private boolean nested;

public <T> Getter (List<String> path) {
this.path = path;
nested = true;

}

public <T> Getter (String k) {
this.key = k;
nested = false;

}

public T get (Map m) {
if(nested) {

return (T)(DynamicAccess.get(m, path));
}
return (T)(DynamicAccess.get(m, key));

}
}

Nested map fields are manipulated with typed getters without any type casting. The
following listing provides an example.

var informationPath = List.of("978-1779501127",
"title");

Getter<String> NESTED_TITLE = new Getter(informationPath);
NESTED_TITLE.get(searchResultsMap).toUpperCase();
// → "WATCHMEN"

Why use typed getters? Typed getters provide several benefits:

 No required type casting
 No need for implementing a getter for each and every type
 Compile-time validation at usage time
 Autocompletion at usage time

However, at creation time, map fields are accessed as strings. The next section illus-
trates how to provide generic access when data is represented not as string maps but
as classes.

Listing B.20 A nested typed getter

Listing B.21 Accessing nested map fields with typed getter

373B.4 Generic access to class members
B.4 Generic access to class members
Providing generic access to class members is a totally different approach. With this
technique, we represent data with classes as in traditional OOP and use reflection in
order to provide generic data access.

 NOTE The generic access to class members approach is applicable in statically-
typed languages that support reflection like Java and C#. This section illustrates the
approach in Java.

B.4.1 Generic access to non-nested class members

Instead of representing data as string maps, data can be represented as classes with
data members only, providing generic access to the class members via reflection. This
approach is interesting as only read data access is needed. However, when creating
new versions of data or adding new data fields, it is better to represent data with maps
as in part 1 of the book.

 NOTE The approach presented in this section is applicable only for read data access.

Here are a few guidelines in order to represent a book as a class. Make sure that

 The class has only data members (no methods).
 The members are public.
 The members are immutable.
 The hashCode(), equals() and toString() methods are properly implemented.

For instance, in Java, mark the members with public and final as in listing B.22. In
the listing, the implementation of the hashCode(), equals(), and toString() meth-
ods are omitted for the sake of simplicity.

public class BookData {
public final String isbn;
public final String title;
public final Integer publicationYear;
public BookData (

String isbn,
String title,
Integer publicationYear) {

this.isbn = isbn;
this.title = title;
this.publicationYear = publicationYear;

}

public boolean equals(Object o) {
// Omitted for sake of simplicity

}

Listing B.22 Representing books with a class

374 APPENDIX B Generic data access in statically-typed languages
public int hashCode() {
// Omitted for sake of simplicity

}

public String toString() {
// Omitted for sake of simplicity

}
}

Since Java 14, there is a simpler way to represent data using data records (http://
mng.bz/q2q2) as listing B.23 displays. Data records provide

 Private final fields
 Public read accessors
 A public constructor, whose signature is derived from the record component list
 Implementations of equals() and hashCode() methods, which specify that two

records are equal if they are of the same type and their record components
are equal

 Implementation of toString(), which includes the string representation of the
record components with their names

public record BookData (String isbn,
String title,
Integer publicationYear

) {}

Let’s create two objects (or records) for Watchmen and Seven Habits of Highly Effective
People. The following listing provides the code for the two objects.

BookData watchmenRecord = new BookData(
"978-1779501127",
"Watchmen",
1987

);

BookData sevenHabitsRecord = new BookData(
"978-1982137274",
"7 Habits of Highly Effective People",
2020

);

The traditional way to access a data member is via its accessor (e.g., watchmen
.title() to retrieve the title of Watchmen). In order to access a data member whose
name comes from a dynamic source like a variable (or as part of a request payload),
we need to use reflection. In Java, accessing the title field in a book looks like the code
snippet in the following listing.

Listing B.23 Representing books with a record

Listing B.24 Two book records

http://mng.bz/q2q2
http://mng.bz/q2q2

375B.4 Generic access to class members
watchmenRecord
.getClass()
.getDeclaredField("title")
.get(watchmenRecord)
// → "watchmen"

Listing B.26 shows how reflection can be used to provide access to any data member. The
listing provides the implementation of dynamic access to non-nested class members.

class DynamicAccess {
static Object get(Object o, String k) {

if(o instanceof Map) {
return ((Map)o).get(k);

}
try {

return (o.getClass().getDeclaredField(k).get(o));
} catch (IllegalAccessException | NoSuchFieldException e) {

return null;
}

}

static String getAsString(Object o, String k) {
return (String)get(o, k);

}
}

Now, data members are accessible with the same genericity and dynamism as fields in
a string map. The code in the next listing shows how this is done.

((String)DynamicAccess.get(watchmenRecord, "title")).toUpperCase();
// → "WATCHMEN"

Without any code modification, value getters (presented earlier in this appendix in
the context of string maps) can now work with classes and records. The following list-
ing uses value getters in this way.

DynamicAccess.getAsString(watchmenRecord, "title").toUpperCase();
// → "WATCHMEN"

It is possible to map over a list of objects without having to import the class definition
of the objects we map over. This is shown in the following listing.

Listing B.25 Accessing a data member via reflection

Listing B.26 Accessing non-nested class members dynamically

Listing B.27 Accessing a class member dynamically

Listing B.28 Accessing a class member with a value getter

376 APPENDIX B Generic data access in statically-typed languages
var books = List.of(watchmenRecord, sevenHabitsRecord);

books.stream()
.map(x -> DynamicAccess.getAsString(x, "title"))
.map(x -> x.toUpperCase())
.collect(Collectors.toList())
// → ["WATCHMEN", "7 HABITS OF HIGHLY EFFECTIVE PEOPLE"]

The typed getters we introduced earlier in the appendix can be used on objects. Take
a look at the following listing to see how this is carried out.

var books = List.of(watchmenRecord, sevenHabitsRecord);

books.stream()
.map(x -> TITLE.get(x))
.map(x -> x.toUpperCase())
.collect(Collectors.toList())
// → ["WATCHMEN", "7 HABITS OF HIGHLY EFFECTIVE PEOPLE"]

B.4.2 Generic access to nested class members

The previous section showed how to provide the same data access to classes as we used
for string maps. This becomes powerful when we combine classes and maps. For
example, listing B.31 represents search results as a map, where

 Keys are book ISBNs (strings).
 Values are book data represented as data classes (or records) as in the previous

section.

Map searchResultsRecords = Map.of(
"978-1779501127", new BookData(

"978-1779501127",
"Watchmen",
1987

),
"978-1982137274", new BookData(

"978-1982137274",
"7 Habits of Highly Effective People",
2020

)
);

For this implementation, it is necessary to add two additional methods. We need to
declare the static get and getAsString() methods that receive a list of strings as the
next listing shows.

Listing B.29 Mapping over a list of objects with a value getter

Listing B.30 Mapping over a list of objects with a typed getter

Listing B.31 Search results represented as a map of records

377B.4 Generic access to class members
class DynamicAccess {
static Object get(Object o, String k) {

if(o instanceof Map) {
return ((Map)o).get(k);

}
try {

return (o.getClass().getDeclaredField(k).get(o));
} catch (IllegalAccessException | NoSuchFieldException e) {

return null;
}

}

static Object get(Object o, List<String> p) {
Object v = o;
for (String k : p) {

v = get(v, k);
}
return v;

}

static String getAsString(Object o, String k) {
return (String)get(o, k);

}

static String getAsString(Object o, List<String> p) {
return (String)get(o, p);

}
}

Now, a data member that is nested inside a string map can be accessed through its
information path as, for instance, in listing B.6. The following listing provides the
code to access the data member with a value getter.

var informationPath = List.of("978-1779501127", "title");
DynamicClassAccess
.getAsString(searchResultsRecords, informationPath)
.toUpperCase();
// → "WATCHMEN"

There is a second kind of nested data member when a data member is itself an object.
For instance, listing B.34 shows how a bookAttributes field can be made from a
BookAttributes class, and listing B.35 shows an example of the nested class.

public class BookAttributes {
public Integer numberOfPages;
public String language;
public BookAttributes(Integer numberOfPages, String language) {

Listing B.32 The implementation of value getter for nested class members

Listing B.33 Accessing a member of a class nested in a map

Listing B.34 Representing book attributes with a nested class

378 APPENDIX B Generic data access in statically-typed languages
this.numberOfPages = numberOfPages;
this.language = language;

}
}

public class BookWithAttributes {
public String isbn;
public String title;
public Integer publicationYear;
public BookAttributes attributes;
public Book (

String isbn,
String title,
Integer publicationYear,
Integer numberOfPages,
String language) {

this.isbn = isbn;
this.title = title;
this.publicationYear = publicationYear;
this.attributes = new BookAttributes(numberOfPages, language);

}
}

BookData sevenHabitsNestedRecord = new BookWithAttributes(
"978-1982137274",
"7 Habits of Highly Effective People",
2020,
432,
"en"

);

Value getters work without any modification on nested data members. We can do this
with the code in the following listing.

var informationPath = List.of("attributes",
"language");

DynamicClassAccess.getAsString(sevenHabitsNestedRecord, informationPath)
.toUpperCase();
// → "EN"

B.4.3 Automatic JSON serialization of objects

An approach similar to the one illustrated in the previous section is used by JSON seri-
alization libraries like Gson (https://github.com/google/gson) in order to serialize
objects to JSON automatically. Gson uses reflection to go over the class members, gen-
erating a JSON representation of each member value. Listing B.37 displays an exam-
ple of Gson in action.

Listing B.35 An instance of a nested class

Listing B.36 Accessing a nested class member with a value getter

https://github.com/google/gson

379B.4 Generic access to class members
import com.google.gson.*;
var gson = new Gson();

BookData sevenHabitsRecord = new BookData(
"978-1982137274",
"7 Habits of Highly Effective People",
2020

);

System.out.println(gson.toJson(sevenHabitsRecord));
// → {"title":"7 Habits of Highly Effective People", …}

Listing B.38 shows how it also works with objects nested in maps. Listing B.39 then
provides an example with objects nested in objects.

Map searchResultsRecords = Map.of(
"978-1779501127", new BookData(

"978-1779501127",
"Watchmen",
1987

),
"978-1982137274", new BookData(

"978-1982137274",
"7 Habits of Highly Effective People",
2020

)
);

System.out.println(gson.toJson(searchResultsRecords));
// → {"978-1779501127":{"isbn":"978-1779501127","title":"Watchmen", …}}

BookData sevenHabitsNestedRecord = new BookWithAttributes(
"978-1982137274",
"7 Habits of Highly Effective People",
2020,
432,
"en"

);

System.out.println(gson.toJson(sevenHabitsNestedRecord));
// → {"isbn":"978-1982137274",
// → "title":"7 Habits of Highly Effective People", …}

Listing B.37 JSON serialization of an object with Gson

Listing B.38 JSON serialization of objects nested in a map with Gson

Listing B.39 JSON serialization of an object nested in an object with Gson

380 APPENDIX B Generic data access in statically-typed languages
Summary
This appendix has presented various ways to provide generic data access in statically-
typed programming languages. Table B.1 summarizes the benefits and drawbacks of
each approach. As you incorporate DOP practices in your programs, remember that
data can be represented either as string maps or as classes (or records) and benefits
from generic data access via:

 Dynamic getters
 Value getters
 Typed getters
 Reflection

Table B.1 Various ways to provide generic data access in statically-typed programming languages

Approach Representation Benefits Drawbacks

Dynamic getters Map Generic access Requires type casting

Value getters Map No type casting Implementation per type

Typed getters Map Compile-time validation on
usage

No compile-time validation
on creation

Reflection Class Full compile-time validation Not modifiable

appendix C
Data-oriented programming:

A link in the chain of
programming paradigms

Data-oriented programming (DOP) has its origins in the 1950s with the invention
of the programming language Lisp. DOP is based on a set of best practices that can
be found in both functional programming (FP) and object-oriented programming
(OOP). However, this paradigm has only been applicable in production systems at
scale since the 2010s with the implementation of efficient persistent data struc-
tures. This appendix traces the major ideas and discoveries which, over the years,
have led to the emergence of DOP (see figure C.1).

C.1 Time line

C.1.1 1958: Lisp

With Lisp, John McCarthy had the ingenious idea to represent data as generic
immutable lists and to invent a language that made it natural to create lists and to
access any part of a list. That’s the reason why Lisp stands for LISt Processing.

 In a way, Lisp lists are the ancestors of JavaScript object literals. The idea that it
makes sense to represent data with generic data structures (DOP Principle #2) defi-
nitely comes from Lisp.

 The main limitation of Lisp lists is that when we update a list, we need to create
a new version by cloning it. This has a negative impact on performance both in
terms of CPU and memory.
381

382 APPENDIX C Data-oriented programming: A link in the chain of programming paradigms
C.1.2 1981: Values and objects

In a short and easy-to-read paper, named “Values and Objects in Programming Lan-
guages,” Bruce MacLennan clarifies the distinction between values and objects. In a
nutshell,

 Values (for instance, numbers) are timeless abstractions for which the concepts
of updating, sharing, and instantiation have no meaning.

 Objects (for instance, an employee object in a human resource software system)
exist in time and, hence, can be created, destroyed, copied, shared, and updated.

 NOTE The meaning of the term object in this paper is not exactly the same as in the
context of OOP.

The author explains why it’s much simpler to write code that deals with values than to
write code that deals with objects. This paper has been a source of inspiration for DOP
as it encourages us to implement our systems in such a way that most of our code deals
with values. You can read the full text of this paper at http://mng.bz/7WNy.

LISP

John McCarthy invents a

language designed for

processing immutable lists.

1958

1981

2000

2006

2007

2009

Values and Objects

In his beautiful paper “Values and Objects

in Programming Languages,” Bruce

MacLennan clarifies the distinction between

values (immutable) and objects (stateful).

Out of the Tar Pit

Ben Moseley and Peter Marks define

complexity as “what makes a system

hard to understand” and suggest

various ways to reduce complexity in

software systems.

Immutability for all

Persistent data structures

are ported from Clojure to

other languages.

Ideal Hash Trees

Phil Bagwell invents a data

structure with nearly ideal

characteristics.

Clojure

Rich Hickey invents a

language designed for reducing

complexity of information

systems with immutability

at its core.

Figure C.1 DOP time line

http://mng.bz/7WNy

383C.2 DOP principles as best practices
C.1.3 2000: Ideal hash trees

Phil Bagwell invented a data structure called Hash Array Mapped Trie (HAMT). In his
paper, “Ideal Hash Trees,” he used HAMT to implement hash maps with nearly ideal
characteristics both in terms of computation and memory usage. As we illustrated in
chapter 9, HAMT and ideal hash trees are the foundation of efficient persistent data
structures. See https://lampwww.epfl.ch/papers/idealhashtrees.pdf to read his tech-
nical paper.

C.1.4 2006: Out of the Tar Pit

In their paper, “Out of the Tar Pit,” Ben Moseley and Peter Marks claim that complex-
ity is the single major difficulty in the development of large-scale software systems. In
the context of their paper, complexity means “that which makes large systems hard to
understand.”

 The main insight of the authors is that most of the complexity of software systems
in not essential but accidental: the complexity doesn’t come from the problem we
have to solve but from the software constructs we use to solve the problem. They sug-
gest various ways to reduce complexity of software systems.

 In a sense, DOP is a way to get us out of the tar pit. See http://mng.bz/mxq2 to
download a copy of this term paper.

C.1.5 2007: Clojure

Rich Hickey, an OOP expert, invented Clojure to make it easier to develop informa-
tion systems at scale. Rich Hickey likes to summarize Clojure’s core value with the
phrase, “Just use maps!” By maps, he means immutable maps to be manipulated effi-
ciently by generic functions. Those maps were implemented using the data structures
presented by Phil Bagwell in his paper, “Ideal Hash Trees.”

 Clojure has been the main source of inspiration for DOP. In a sense, this book is a
formalization of the underlying principles of Clojure and how to apply them in other
programming languages.

C.1.6 2009: Immutability for all

Clojure’s efficient implementation of persistent data structures has been attractive for
developers from other programming languages. In 2009, these structures were ported
to Scala. Over the years, they have been ported to other programming languages as
well, either by organizations like Facebook for Immutable.js, or by individual contrib-
utors like Glen Peterson for Paguro in Java. Nowadays, DOP is applicable in virtually
any programming language!

C.2 DOP principles as best practices
The principles of DOP as we have presented them through the book (and formalized
in appendix A) are not new. They come from best practices that are well known
among software developers from various programming languages. The innovation of

https://lampwww.epfl.ch/papers/idealhashtrees.pdf
http://mng.bz/mxq2

384 APPENDIX C Data-oriented programming: A link in the chain of programming paradigms
DOP is the combination of those principles into a cohesive whole. In this section, we
put each of the four DOP principles into its broader scope.

C.2.1 Principle #1: Separate code from data

Separating code from data used to be the main point of contention between OOP and
FP. Traditionally, in OOP we encapsulate data together with code in stateful objects,
while in FP, we write stateless functions that receive data they manipulate as an explicit
argument.

 This tension has been reduced over the years as it is possible in FP to write stateful
functions with data encapsulated in their lexical scope (https://developer.mozilla
.org/en-US/docs/Web/JavaScript/Closures). Moreover, OOP languages like Java and
C# have added support for anonymous functions (lambdas).

C.2.2 Principle #2: Represent data with generic data structures

One of the main innovations of JavaScript when it was released in December 1995
was the ease of creating and manipulating hash maps via object literals. The increas-
ing popularity of JavaScript over the years as a language used everywhere (frontend,
backend, and desktop) has influenced the developer community to represent data
with hash maps when possible. It feels more natural in dynamically-typed program-
ming languages, but as we saw in appendix B, it is applicable also in statically-typed
programming languages.

C.2.3 Principle #3: Data is immutable

Data immutability is considered a best practice as it makes the behavior of our pro-
gram more predictable. For instance, in the book Effective Java (O’Reilly, 2017; http://
mng.bz/5K81), Joshua Bloch mentions “minimize mutability” as one of Java best prac-
tices. There is a famous quote from Alan Kay, who is considered by many as the inven-
tor of OOP, about the value of immutability:

The last thing you wanted any programmer to do is mess with internal state even if presented
figuratively. Instead, the objects should be presented as sites of higher level behaviors more
appropriate for use as dynamic components. . . . It is unfortunate that much of what is called
"object-oriented programming" today is simply old style programming with fancier constructs.
Many programs are loaded with “assignment-style” operations now done by more expensive
attached procedures.

—Alan C. Kay (“The Early History of Smalltalk,” 1993)

Unfortunately, until 2007 and the implementation of efficient persistent data struc-
tures in Clojure, immutability was not applicable for production applications at scale.
As we mentioned in chapter 9, nowadays, efficient persistent data structures are avail-
able in most programming languages. These are summarized in table C.1.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
http://mng.bz/5K81
http://mng.bz/5K81

385C.3 DOP and other data-related paradigms
In addition, many languages provide support for read-only objects natively. Java added
record classes in Java 14 (http://mng.bz/q2q2). C# introduced a record type in C# 9.
There is a ECMAScript proposal for supporting immutable records and tuples in
JavaScript (https://github.com/tc39/proposal-record-tuple). Finally, Python 3.7 intro-
duced immutable data classes (https://docs.python.org/3/library/dataclasses.html).

C.2.4 Principle #4: Separate data schema from data representation

One of the more virulent critiques against dynamically-typed programming languages
was related to the lack of data validation. The answer that dynamically-typed lan-
guages used to give to this critique was that you trade data safety for data flexibility.
Since the development of data schema languages like JSON Schema (https://json-
schema.org/), it is natural to validate data even when data is represented as hash
maps. As we saw in chapters 7 and 12, data validation is not only possible, but in some
sense, it is more powerful than when data is represented with classes.

C.3 DOP and other data-related paradigms
In this section, we clarify the distinction between DOP and two other programming
paradigms whose names also contain the word data : data-oriented design and data-
driven programming.

There are only two hard things in Computer Science: cache invalidation and naming things.

—Phil Karlton

Each paradigm has a its own objective and pursues it by focusing on a different aspect
of data. Table C.2 summarizes the objectives, and we’ll dive into each a bit more in the
following sections.

Table C.1 Persistent data structure libraries

Language Library

Java Paguro (https://github.com/GlenKPeterson/Paguro)

C# Provided by the language (http://mng.bz/y4Ke)

JavaScript Immutable.js (https://immutable-js.com/)

Python Pyrsistent (https://github.com/tobgu/pyrsistent)

Ruby Hamster (https://github.com/hamstergem/hamster)

Table C.2 Data-related paradigms: Objectives and main data aspect focus

Paradigm Objective Main data aspect focus

Data-oriented design Increase performance Data layout

Data-driven programming Increase clarity Behavior described by data

Data-oriented programming Reduce complexity Data representation

https://github.com/GlenKPeterson/Paguro
http://mng.bz/y4Ke
https://immutable-js.com/
https://github.com/tobgu/pyrsistent
https://github.com/hamstergem/hamster
http://mng.bz/q2q2
https://github.com/tc39/proposal-record-tuple
https://docs.python.org/3/library/dataclasses.html
https://json-schema.org/
https://json-schema.org/

386 APPENDIX C Data-oriented programming: A link in the chain of programming paradigms
C.3.1 Data-oriented design

Data-oriented design is a program optimization approach motivated by efficient usage
of the CPU cache. It’s used mostly in video game development. This approach focuses
on the data layout, separating and sorting fields according to when they are needed,
and encourages us to think about data transformations. In this context, what’s import-
ant is how the data resides in memory. The objective of this paradigm is to improve
the performance of the system.

C.3.2 Data-driven programming

Data-driven programming is the idea that you create domain specific languages (DSLs)
made out of descriptive data. It is a branch of declarative programming. In this context,
what’s important is to describe the behavior of a program in terms of data. The objective
of this paradigm is to increase code clarity and to reduce the risk of bugs related to mis-
takes in the implementation of the expected behavior of the program.

C.3.3 Data-oriented programming (DOP)

As we have illustrated in this book, DOP is a paradigm that treats system data as a first-
class citizen. Data is represented by generic immutable data structures like maps and
vectors that are manipulated by general-purpose functions like map, filter, select, group,
sort, and so forth. In this context, what’s important is the representation of data by the
program. The objective of this paradigm is to reduce the complexity of the system.

Summary
In this appendix, we have explored the ideas and trends that have inspired DOP. We
looked at the discoveries that made it applicable in production systems at scale in
most programming languages.

appendix D
Lodash reference

Throughout the book, we have used Lodash (https://lodash.com/) to illustrate
how to manipulate data with generic functions. But there is nothing unique about
Lodash. The exact same approach could be implemented via other data manipula-
tion libraries or custom code.

 Moreover, we used Lodash FP (https://github.com/lodash/lodash/wiki/FP-
Guide) to manipulate data without mutating it. By default, the order of the argu-
ments in immutable functions is shuffled. The code in listing D.1 is needed when
configuring Lodash in order to ensure the signature of the immutable functions is
exactly the same as the mutable functions.

_ = fp.convert({
"cap": false,
"curry": false,
"fixed": false,
"immutable": true,
"rearg": false

});

This short appendix lists the 28 Lodash functions used in the book to help you, in
case you are looking at a code snippet in the book that uses a Lodash function that
you want to understand. The functions are split in to three categories:

 Functions on maps in table D.1
 Functions on arrays in table D.2
 Function on collections (both arrays and maps) in table D.3

Listing D.1 Configuring immutable functions
387

https://lodash.com/
https://github.com/lodash/lodash/wiki/FP-Guide
https://github.com/lodash/lodash/wiki/FP-Guide

388 APPENDIX D Lodash reference
Each table has three columns:

 Function shows the function with its signature.
 Description provides a brief description of the function.
 Chapter is the chapter number where the function appears for the first time.

Table D.1 Lodash functions on maps

Function Description Chapter

at(map, [paths]) Creates an array of values corresponding to paths
of map

10

get(map, path) Gets the value at path of map 3

has(map, path) Checks if map has a field at path 3

merge(mapA, mapB) Creates a map resulting from the recursive merges
between mapA and mapB

3

omit(map, [paths]) Creates a map composed of the fields of map not in
paths

10

set(map, path, value) Creates a map with the same fields as map with the
addition of a field <path, value>

4

values(map) Creates an array of values of map 3

Table D.2 Lodash functions on arrays

Function Description Chapter

concat(arrA, arrB) Creates an new array that concatenates arrA and
arrB

5

flatten(arr) Flattens arr a single level deep 14

intersection(arrA,
arrB)

Creates an array of unique values both in arrA and
arrB

5

nth(arr, n) Gets the element at index n in arr 10

sum(arr) Computes the sum of the values in arr 14

union(arrA, arrB) Creates an array of unique values from arrA and
arrB

5

uniq(arr) Creates an array of unique values from arr 14

389APPENDIX D Lodash reference
Table D.3 Lodash functions on collections (both arrays and maps)

Function Description Chapter

every(coll, pred) Checks if pred returns true for all elements of coll 14

filter(coll, pred) Iterates over elements of coll, returning an array of all
elements for which pred returns true

3

find(coll, pred) Iterates over elements of coll, returning the first ele-
ment for which pred returns true

15

forEach(coll, f) Iterates over elements of coll and invokes f for each
element

14

groupBy(coll, f) Creates a map composed of keys generated from the
results of running each element of coll through f. The
corresponding value for each key is an array of elements
responsible for generating the key.

10

isEmpty(coll) Checks if coll is empty 5

keyBy(coll, f) Creates a map composed of keys generated from the
results of running each element of coll through f. The
corresponding value for each key is the last element
responsible for generating the key.

11

map(coll, f) Creates an array of values by running each element in
coll through f

3

reduce(coll, f,
initVal)

Reduces coll to a value which is the accumulated result
of running each element in coll through f, where each
successive invocation is supplied the return value of the
previous

5

size(coll) Gets the size of coll 13

sortBy(coll, f) Creates an array of elements, sorted in ascending order by
the results of running each element in coll through f

14

isEqual(collA, collB) Performs a deep comparison between collA and
collB

6

isArray(coll) Checks if coll is an array 5

isObject(coll) Checks if coll is a collection 5

index
A

AddBookItemController class 19
addMember mutation 84
aggregateField function 216
allErrors options 159
association 7
Atom class 167
AtomicReference generic class 168
atoms 163

state management with 172–174
thread-safe cache with 170–172
thread-safe counter with 165–170

Author class 5, 337–338
AuthorData class 347
AuthorDataWithFullName class 347
Author entities 46–47
Author.myName(author, format) function

290
authorNameDispatch function 291
authorNames function 59, 63
Author objects 7, 11
Author.prolificityLevel helper function 291
authorsById index 46–47, 55, 268
automatic generation of data model

diagrams 260–262
automatic generation of schema-based unit

tests 262–269

B

BookAttributes class 377
Book class 5, 7, 11, 51–52
Book entities 46–47
bookInfo function 60, 63
BookInfo record 58, 60

bookInfo schema 151, 155
BookInSearchResults class 52
BookItem class 5, 11–12, 51
BookItemQuery class 19
BookItemResult class 19
bookItems member 52
BookLending class 5, 10, 12
Book records 49–51, 60, 77
booksByIsbn index 46–47, 55, 77
boundaries of systems 143

C

Catalog.authorNames function 115, 121
Catalog.bookInfo function 114, 121
Catalog class 5, 7, 10–11
catalogData map 116–117
Catalog entity 46–47
Catalog index 47
Catalog module 35, 39, 62–63
Catalog record 54, 62
Catalog.searchBooksByTitle function 318
class inheritance 8
class members, generic access to 373–380

automatic JSON serialization of objects
378–380

nested class members 376–378
non-nested class members 373–376

code modules 31–36
collections, reducing 97–98
CombinedBook class 231
commit function 88, 173
commit phase 72, 93
compareAndSet() method 168
complexity 13, 27, 164, 198, 341
composition 7
391

INDEX392
concurrency control 91–92, 163
complexity of locks 164–165
implementation of reconciliation

algorithm 106–108
optimistic concurrency control 92–93
reconciliation between concurrent

mutations 94–97
reducing collections 97–98
state management with atoms 172–174
structural difference 99–106
thread-safe cache with atoms 170–172
thread-safe counter with atoms 165–170

containsKey() method 185
convertJDBCResultSetToListOfMaps function 204
countByBoolField utility function 304
createAuthorObject function 340
createUserObject function 338
current system state 95

D

database operations
data manipulation

advanced 211–218
simple 207–211

fetching data from database 198–204
storing data in the database 204–206

data-driven programming 385–386
data entities 29–31, 38
dataFilePath function 323
data manipulation 43–44

best tools for 301–305
manipulating data with generic functions 54–57
manipulating nested data 299–301
representing records as maps 48–54

data model diagrams, automatic generation
of 260–262

data models, designing 44–48
data-oriented design 385–386
data-oriented programming. See DOP
data safety 82–83
data validation 141

advanced 257–258
data validation failures 158–161
function argument validation 248–255
return value validation 255–257

data validation failures 158–161
DBBook class 231
debugging

determinism 312–314
external data sources 329–330
reproducibility with any data 318–321
reproducibility with numbers and strings

314–318
unit tests 321–329

deepFreeze() function 177
design phase, OOP 4–5
determinism 312–314
displayAuthorInfo function 357
displayFullName function 358–359
displayProlificity function 358–359
DOP (data-oriented programming) 26–27,

386
concurrency control

advanced 163
basic 91–109

data-driven programming vs. 386
data manipulation 43–70
data-oriented design vs. 386
data validation 141
definition 386
easy to understand 36–38
flexibility 38–42
history of 381–383

1958: Lisp 381
1981: Values and objects 382
2000: Ideal hash trees 383
2006: Out of the Tar Pit 383
2007: Clojure 383
2009: Immutability for all 383

parts of 27–29
code modules 31–36
data entities 29–31

state management 71–90
unit tests 110

DOP (data-oriented programming) principles
data is immutable 351–355

as best practice 384–385
benefits of 352–354
cost for 354
illustration of 351–352

represent data with generic data structures
345–350

as best practice 384
benefits of 346–347
cost for 347–350
illustration of 345–346

separate code from data 335–344
as best practice 384
benefits of 337–343
cost for 343–344
illustration of 335–337

separate data schema from data
representation 355–363

as best practice 385
benefits of 357–361
cost for 361–362
illustration of 355–356

DSLs (domain specific languages) 386
DynamicAccess class 366, 369

INDEX 393
dynamic data type 56, 349
dynamic getters 380
dynamic keyword 289
dynamic type 349
dysGreet multimethod 286–288

E

enum 146
equals() method 373
errorsText function 159, 356
external data sources, debugging 329–330

F

feature fields 67
fetchResponseBody function 230
fields array 160
fields property 145
FP (functional programming) 13, 28, 59, 75,

336–337, 381
fullName function 338–339, 343, 348
function arguments, validation of 248–255

G

generic functions, manipulating data with 54–57
getAsString() method 369, 376
getBookLendings function 39
getBookLendings method 34
getIn function 188
Getter class 372
greetDispatch dispatch function 278
greetDog method 280
greet function 275
greetLang multimethod 282, 284
greet method 273, 279
greet multimethod 280

H

HAMT (Hash Array Mapped Trie) 383
handle method 19
hashCode() method 373–374
Hash map 96
heterogeneous maps 49, 252
homogeneous maps 49, 252

I

IAnimal interface 273
Immutable.fromJS() function 186
immutable functions 76
Immutable.set() map 187
Immutable.setIn() map 187

Immutable.stringify() function 192
implementation phase, OOP 12
indexes 46
inheritance 7
innovation 384
isLibrarian function 39
isSuperMember function 40
items property 145

J

Java, persistent data structures and 184–186
JavaScript, persistent data structures and

186–188
java.util.concurrent.atomic package 168
JDBC (Java database connectivity) 202
joinArrays function 237
JSON.parse function 122
JSON schema 143–149

automatic serialization of objects
378–380

schema composition 154–157
schema flexibility and strictness

149–153
JSON.stringify() function 53, 192

K

keyList 206

L

late binding 203
lendingRatio function 303
lent variable 303
Librarian::blockMember method 8
Librarian class 5, 10–11, 22
Librarian entity 342
Librarian record type 68
librariansByEmail index 65
librariansByEmail map 66
librarians hash maps 79
Librarian user type 65
Library.addMember function 79, 127
Library class 5, 9–10, 33, 126
libraryData.catalog data object 40
libraryData map 187
libraryData.userManagement data object 40
Library hash map 78
Library module 33–36, 39, 62–63
Library object 7, 10
Library record 62
Library root class 9
LISP (LISt Processing) 381
List static factory method 51

INDEX394
Lodash functions
at 205–206, 388
concat 388
every 389
filter 188, 201, 389
find 389
flatMap 300–301
flatten 388
forEach 389
get 55–57, 61, 166, 173, 185, 188, 352,

366, 376, 388
groupBy 389
has 388
intersection 105, 388
isArray 389
isEmpty 389
isEqual 111, 188, 389
isObject 389
keyBy 236–237, 389
map 59, 188–189, 389
merge 388
nth 388
omit 388
pick 346
reduce 188, 389
set 75–76, 80, 185, 388
set method 166, 173, 352
size 185, 389
sortBy 389
sum 388
union 193, 388
uniq 388
update 297, 305
values 388

M

many-to-many association relation 8
maps

dynamic getters for string maps 364–367
accessing nested map fields 366–367
accessing non-nested map fields 365–366

representing client requests as 225–227
representing records as 48–54
representing server responses as 227–231
typed getters for 370–372

accessing nested map fields 371–372
accessing non-nested map fields 370–371

updating values in 296–299
value getters for 367–370

accessing nested map fields 368–370
accessing non-nested map fields

367–368
Map static factory method 51
Map<String, Object> type 349

Member class 5, 10–11, 15
MemberCode entity 15
MemberData entity 15
Member objects 7, 10
Member record type 68
membersByEmail index 65
Member user type 65
multimethod library 278–280, 289
multimethods

integrating in production systems 289–293
with dynamic dispatch 286–289
with multiple dispatch 281–286
with single dispatch 277–281

multipleBookInfo function 235
multiple dispatch 285
mutations 71

calculation phase of 72, 93
commit phase of 83–85
definition 72
reconciliation between concurrent 94–97
unit tests for 126–133
writing with persistent data structures

191–192
mutexes 163
Mutex object 165

N

nested data
accessing nested map fields

with dynamic getters 366–367
with typed getters 371–372
with value getters 368–370

manipulating 299–301
nested class members 376–378

NoMethodError exception 280

O

object, meaning of term 382
object data type 144
Object.freeze() function 177
Object type 349, 365, 367
OOP (object-oriented programming) 3–4, 334,

381
project example 4–12

design phase 4–5
implementation phase 12
UML class diagram 6–12

separating code from data 335–336
sources of complexity 13–24

complex class hierarchies 20–24
many relations between classes 14–16
not trivial data serialization 18–20
unpredictable code behavior 16–18

INDEX 395
OpenLibraryBook class 231
optimistic concurrency control strategy 92
Optional class 359

P

persistent data structures
efficiency of 178–183
libraries for 184–188

Java 184–186
JavaScript 186–188

need for 175–178
serialization and deserialization 192
structural diff 193–195
writing mutations with 191–192
writing queries with 188–189

polymorphism 273–277
positional collection 46
previous states, restoring 86–89
previousSystemData references 87
previous system state 95

Q

queries
unit tests for 121–125
writing with persistent data structures

188–189

R

reconciliation algorithm 106–108
record, definition 48
record type 385
reflection 374, 380
RegExp constructor 328
renameResultKeys function 209
REPL (Read Eval Print Loop) 313
reproducibility

with any data 318–321
with numbers and strings 314–318

return values, validation of 255–257

S

schema-based unit tests, automatic generation
of 262–269

schema composition 154–157
schema flexibility and strictness

149–153
searchBooksByTitle function 60, 62–63
search method 19
SearchQuery object 19
SearchResult object 19
search results, calculating 58–64

simplicity 13, 341, 343
state management 71–72

commit phase of mutations 83–85
data safety 82–83
ensuring system state integrity 85–86
multiple versions of system data 72–74
restoring previous states 86–89
structural sharing 74–81
with atoms 172–174

statically-typed languages, data access in
dynamic getters for string maps 364–367

accessing nested map fields 366–367
accessing non-nested map fields

365–366
generic access to class members 373–380

automatic JSON serialization of objects
378–380

nested class members 376–378
non-nested class members 373–376

typed getters for maps 370–372
accessing nested map fields 371–372
accessing non-nested map fields

370–371
value getters for maps 367–370

accessing nested map fields 368–370
accessing non-nested map fields

367–368
strict mode, JavaScript 177
string maps 44
structural difference 99–106, 193–195
structural sharing 72, 74–81
SuperMembersByEmail index 66
swap method 166, 172–173
switch statements 276
System.addMember function 127
System class 84–85, 126
SystemConsistency class 106–108
SystemData class 108, 172–173
SystemState class 84–86, 88, 127
SystemState.commit function 127
SystemState.commit method 85
SystemState.get function 127
system state integrity, ensuring

85–86
SystemState object 132–133

T

toJS() method 187
toJSON() method 192
toString() method 373
toUpperCase string method 365
tree of function calls 113–115
Typed getters Approach 380
TypeError exception 177

INDEX396
U

UML class diagrams 6–12
unit tests 110

automatic generation of 262–269
debugging 321–329
for data manipulation code 112–121

tree of function calls 113–115
for mutations 126–133
for queries 121–125
simplicity of data-oriented test cases 110–112

unit tests for data manipulation 112–121
UnSupportedOperationException exception 179,

185
unwind function 307
unwind operator 305–309
updating values in maps eloquently 296–299
usage relations 8
User class 5, 10–11, 20, 24, 338
UserManagement.addMember function 127
UserManagement class 67, 126
UserManagement hash map 78
UserManagement.isLibrarian function 66
UserManagement module 35, 39–40, 67

UserManagement record 65–66
User record type 68
uuid third-party library 322
UUID (universal unique identifier) 322

V

validate function 147, 158, 356
value getters 380
valueSeq method 189
VIPMember class 22
VIPMembersByEmail index 66

W

web services
internals of 222–224
passing information forward 231–234
representing client requests as maps 225–227
representing server responses as maps

227–231
search result enrichment 234–243

while loop 170
word boundaries regular expression 327

From

Object-Oriented

to

Data-Oriented

* *

*
*

*

*

*

LibrarianC BookC

AuthorC

BookItemC

CatalogC

BookLendingC

LibraryC

MemberC

UserC

LibraryCodeS

CatalogCodeS

LibrarianCodeS

MemberCodeS

BookItemCodeS

BookLendingCodeS

*

**

*

*
*

*

LibraryDataD

CatalogDataD LibrarianDataD

BookDataDMemberDataD

BookItemDataD AuthorDataD

BookLendingDataD

From OOP to DOP

 Yehonathan Sharvit
Forewords by Michael T. Nygard and Ryan Singer

ISBN-13: 978-1-61729-857-8

C
ode that combines behavior and data, as is common in
object-oriented designs, can introduce almost unmanage-
able complexity for state management. Th e Data-oriented

programming (DOP) paradigm simplifi es state management by
holding application data in immutable generic data structures
and then performing calculations using non-mutating general-
purpose functions. Your applications are free of state-related bugs
and your code is easier to understand and maintain.

Data-Oriented Programming teaches you to design software using
the groundbreaking data-oriented paradigm. You’ll put DOP into
action to design data models for business entities and imple-
ment a library management system that manages state without
data mutation. Th e numerous diagrams, intuitive mind maps,
and a unique conversational approach all help you get your head
around these exciting new ideas. Every chapter has a lightbulb
moment that will change the way you think about programming.

What’s Inside
● Separate code from data
● Represent data with generic data structures
● Manage state without mutating data
● Control concurrency in highly scalable systems
● Write data-oriented unit tests
● Specify the shape of your data

For programmers who have experience with a high-level pro-
gramming language like JavaScript, Java, Python, C#, Clojure,
or Ruby.

Yehonathan Sharvit has over twenty years of experience as a
software engineer. He blogs, speaks at conferences, and leads
Data-Oriented Programming workshops around the world.

Register this print book to get free access to it online and in three ebook
formats. Visit https://www.manning.com/freebook

Data-Oriented Programming

SOFTWARE ENGINEERING

M A N N I N G

“Reach the next level of
enlightenment…Reduce acci-
dental complexity and raise
the level of abstraction.”—From the Foreword by
Michael T. Nygard, author of
Release It!: Design and Deploy

Production-Ready Software

“After I saw the examples,
I couldn’t unsee it. I didn’t

need a new language;
I needed to approach

 programming diff erently!”—From the Foreword by Ryan
Singer, author of

Shape Up: Stop Running in Circles
and Ship Work that Matters

“If you have to deal with
data in your code, you should

know about DOP!”—Michael Aydinbas, Exxeta

“Th e principles are
straightforward and

 universally applicable.”
—Seth MacPherson

QuoteFactory

See first page

	Data-Oriented Programming
	brief contents
	contents
	forewords
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	dramatis personae
	Part 1—Flexibility
	1 Complexity of object- oriented programming
	1.1 OOP design: Classic or classical?
	1.1.1 The design phase
	1.1.2 UML 101
	1.1.3 Explaining each piece of the class diagram
	1.1.4 The implementation phase

	1.2 Sources of complexity
	1.2.1 Many relations between classes
	1.2.2 Unpredictable code behavior
	1.2.3 Not trivial data serialization
	1.2.4 Complex class hierarchies

	Summary

	2 Separation between code and data
	2.1 The two parts of a DOP system
	2.2 Data entities
	2.3 Code modules
	2.4 DOP systems are easy to understand
	2.5 DOP systems are flexible
	Summary

	3 Basic data manipulation
	3.1 Designing a data model
	3.2 Representing records as maps
	3.3 Manipulating data with generic functions
	3.4 Calculating search results
	3.5 Handling records of different types
	Summary

	4 State management
	4.1 Multiple versions of the system data
	4.2 Structural sharing
	4.3 Implementing structural sharing
	4.4 Data safety
	4.5 The commit phase of a mutation
	4.6 Ensuring system state integrity
	4.7 Restoring previous states
	Summary

	5 Basic concurrency control
	5.1 Optimistic concurrency control
	5.2 Reconciliation between concurrent mutations
	5.3 Reducing collections
	5.4 Structural difference
	5.5 Implementing the reconciliation algorithm
	Summary

	6 Unit tests
	6.1 The simplicity of data-oriented test cases
	6.2 Unit tests for data manipulation code
	6.2.1 The tree of function calls
	6.2.2 Unit tests for functions down the tree
	6.2.3 Unit tests for nodes in the tree

	6.3 Unit tests for queries
	6.4 Unit tests for mutations
	Moving forward
	Summary

	Part 2—Scalability
	7 Basic data validation
	7.1 Data validation in DOP
	7.2 JSON Schema in a nutshell
	7.3 Schema flexibility and strictness
	7.4 Schema composition
	7.5 Details about data validation failures
	Summary

	8 Advanced concurrency control
	8.1 The complexity of locks
	8.2 Thread-safe counter with atoms
	8.3 Thread-safe cache with atoms
	8.4 State management with atoms
	Summary

	9 Persistent data structures
	9.1 The need for persistent data structures
	9.2 The efficiency of persistent data structures
	9.3 Persistent data structures libraries
	9.3.1 Persistent data structures in Java
	9.3.2 Persistent data structures in JavaScript

	9.4 Persistent data structures in action
	9.4.1 Writing queries with persistent data structures
	9.4.2 Writing mutations with persistent data structures
	9.4.3 Serialization and deserialization
	9.4.4 Structural diff

	Summary

	10 Database operations
	10.1 Fetching data from the database
	10.2 Storing data in the database
	10.3 Simple data manipulation
	10.4 Advanced data manipulation
	Summary

	11 Web services
	11.1 Another feature request
	11.2 Building the insides like the outsides
	11.3 Representing a client request as a map
	11.4 Representing a server response as a map
	11.5 Passing information forward
	11.6 Search result enrichment in action
	Delivering on time
	Summary

	Part 3—Maintainability
	12 Advanced data validation
	12.1 Function arguments validation
	12.2 Return value validation
	12.3 Advanced data validation
	12.4 Automatic generation of data model diagrams
	12.5 Automatic generation of schema-based unit tests
	12.6 A new gift
	Summary

	13 Polymorphism
	13.1 The essence of polymorphism
	13.2 Multimethods with single dispatch
	13.3 Multimethods with multiple dispatch
	13.4 Multimethods with dynamic dispatch
	13.5 Integrating multimethods in a production system
	Summary

	14 Advanced data manipulation
	14.1 Updating a value in a map with eloquence
	14.2 Manipulating nested data
	14.3 Using the best tool for the job
	14.4 Unwinding at ease
	Summary

	15 Debugging
	15.1 Determinism in programming
	15.2 Reproducibility with numbers and strings
	15.3 Reproducibility with any data
	15.4 Unit tests
	15.5 Dealing with external data sources
	Farewell
	Summary

	Appendix A—Principles of data-oriented programming
	A.1 Principle #1: Separate code from data
	A.1.1 Illustration of Principle #1
	A.1.2 Benefits of Principle #1
	A.1.3 Cost for Principle #1
	A.1.4 Summary of Principle #1

	A.2 Principle #2: Represent data with generic data structures
	A.2.1 Illustration of Principle #2
	A.2.2 Benefits of Principle #2
	A.2.3 Cost for Principle #2
	A.2.4 Summary of Principle #2

	A.3 Principle #3: Data is immutable
	A.3.1 Illustration of Principle #3
	A.3.2 Benefits of Principle #3
	A.3.3 Cost for Principle #3
	A.3.4 Summary of Principle #3

	A.4 Principle #4: Separate data schema from data representation
	A.4.1 Illustration of Principle #4
	A.4.2 Benefits of Principle #4
	A.4.3 Cost for Principle #4
	A.4.4 Summary of Principle #4

	Conclusion

	Appendix B—Generic data access in statically-typed languages
	B.1 Dynamic getters for string maps
	B.1.1 Accessing non-nested map fields with dynamic getters
	B.1.2 Accessing nested map fields with dynamic getters

	B.2 Value getters for maps
	B.2.1 Accessing non-nested map fields with value getters
	B.2.2 Accessing nested map fields with value getters

	B.3 Typed getters for maps
	B.3.1 Accessing non-nested map fields with typed getters
	B.3.2 Accessing nested map fields with typed getters

	B.4 Generic access to class members
	B.4.1 Generic access to non-nested class members
	B.4.2 Generic access to nested class members
	B.4.3 Automatic JSON serialization of objects

	Summary

	Appendix C—Data-oriented programming: A link in the chain of programming paradigms
	C.1 Time line
	C.1.1 1958: Lisp
	C.1.2 1981: Values and objects
	C.1.3 2000: Ideal hash trees
	C.1.4 2006: Out of the Tar Pit
	C.1.5 2007: Clojure
	C.1.6 2009: Immutability for all

	C.2 DOP principles as best practices
	C.2.1 Principle #1: Separate code from data
	C.2.2 Principle #2: Represent data with generic data structures
	C.2.3 Principle #3: Data is immutable
	C.2.4 Principle #4: Separate data schema from data representation

	C.3 DOP and other data-related paradigms
	C.3.1 Data-oriented design
	C.3.2 Data-driven programming
	C.3.3 Data-oriented programming (DOP)

	Summary

	Appendix D—Lodash reference
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

