[image: Head First C]
Head First C

David Griffiths

Dawn Griffiths

[image: image with no caption]

Beijing • Boston • Farnham • Sebastopol • Tokyo

To Dennis Ritchie (1941–2011), the father of C.
Advance Praise for Head First C

“ Head First C could quite possibly turn out to be the best C book of all
 time. I don’t say that lightly. I could easily see this become the
 standard C textbook for every college C course. Most books on
 programming follow a fairly predictable course through keywords,
 control-flow constructs, syntax, operators, data types, subroutines,
 etc. These can serve as a useful reference, as well as a fairly academic
 introduction to the language. This book, on the other hand, takes a
 totally different approach. It teaches you how to be a real C
 programmer. I wish I had had this book 15 years ago!”
—Dave Kitabjian, Director of
 Software Development, NetCarrier Telecom

“ Head First C is an accessible,
 light-hearted introduction to C programming, in the classic Head First
 style. Pictures, jokes, exercises, and labs take the reader gently but
 steadily through the fundamentals of C—including arrays, pointers,
 structs, and functions—before moving into more advanced topics in Posix
 and Linux system programming, such as processes and threads.”
—Vince Milner, software
 developer

Praise for other Head First books

“Kathy and Bert’s Head First Java transforms
 the printed page into the closest thing to a GUI you’ve ever seen. In a
 wry, hip manner, the authors make learning Java an engaging ‘what’re
 they gonna do next?’ experience.”
—Warren Keuffel, Software
 Development Magazine

“Beyond the engaging style that drags you forward from
 know-nothing into exalted Java warrior status, Head First
 Java covers a huge amount of practical matters that other
 texts leave as the dreaded ‘exercise for the reader...’ It’s clever,
 wry, hip, and practical—there aren’t a lot of textbooks that can make
 that claim and live up to it while also teaching you about object
 serialization and network launch protocols.”
—Dr. Dan Russell, Director of User
 Sciences and Experience Research, IBM Almaden Research Center;
 artificial intelligence instructor, Stanford
 University

“It’s fast, irreverent, fun, and engaging. Be careful—you might
 actually learn something!”
—Ken Arnold, former Senior Engineer
 at Sun Microsystems; coauthor (with James Gosling, creator of Java),
 The Java Programming
 Language

“I feel like a thousand pounds of books have just been lifted off
 of my head.”
—Ward Cunningham, inventor of the
 Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in
 all of us. The right reference for practical development strategies—gets
 my brain going without having to slog through a bunch of tired, stale
 professor-speak.”
—Travis Kalanick, founder of Scour
 and Red Swoosh; member of the MIT TR100

“There are books you buy, books you keep, books you keep on your
 desk, and thanks to O’Reilly and the Head First crew, there is the
 penultimate category, Head First books. They’re the ones that are
 dog-eared, mangled, and carried everywhere. Head First
 SQL is at the top of my stack. Heck, even the PDF I have for
 review is tattered and torn.”
—Bill Sawyer, ATG Curriculum
 Manager, Oracle

“This book’s admirable clarity, humor, and substantial doses of
 clever make it the sort of book that helps even nonprogrammers think
 well about problem solving.”
—Cory Doctorow, coeditor of Boing
 Boing; author, Down and Out in the Magic Kingdom
 and Someone Comes to Town, Someone Leaves
 Town

“I received the book yesterday and started to read it...and I
 couldn’t stop. This is definitely trés ‘cool.’ It is fun, but they cover
 a lot of ground, and they are right to the point. I’m really
 impressed.”
—Erich Gamma, IBM Distinguished
 Engineer and coauthor of Design
 Patterns

“One of the funniest and smartest books on software design I’ve
 ever read.”
—Aaron LaBerge, VP Technology,
 ESPN.com

“What used to be a long trial-and-error learning process has now
 been reduced neatly into an engaging paperback.”
—Mike Davidson, CEO, Newsvine,
 Inc.

“Elegant design is at the core of every chapter here, each concept
 conveyed with equal doses of pragmatism and wit.”
—Ken Goldstein, Executive Vice
 President, Disney Online

“I ™ Head First HTML with CSS & XHTML—it
 teaches you everything you need to learn in a ‘fun coated’
 format.”
—Sally Applin, UI designer and
 artist

“Usually when reading through a book or article on design
 patterns, I’d have to occasionally stick myself in the eye with
 something just to make sure I was paying attention. Not with this book.
 Odd as it may sound, this book makes learning about design patterns
 fun.
“While other books on design patterns are saying
 ‘Bueller...Bueller...Bueller...,’ this book is on the float belting out
 ‘Shake it up, baby!’”
—Eric
 Wuehler

“I literally love this book. In fact, I kissed this book in front
 of my wife.”
—Satish
 Kumar

Other related books from
 O’Reilly
	C in a Nutshell

	Practical C Programming

	C Pocket Reference

	Algorithms with C

	Secure Programming Cookbook for C and C++

Other books in O’Reilly’s Head
 First series
	Head First Programming

	Head First Rails

	Head First Java TM

	Head First Object-Oriented Analysis and Design
 (OOA&D)

	Head First HTML5 Programming

	Head First HTML with CSS and XHTML

	Head First Design Patterns

	Head First Servlets and JSP

	Head First EJB

	Head First PMP

	Head First SQL

	Head First Software Development

	Head First JavaScript

	Head First Ajax

	Head First Statistics

	Head First 2D Geometry

	Head First Algebra

	Head First PHP & MySQL

	Head First Mobile Web

	Head First Web Design

Authors of Head First C

[image: image with no caption]

David Griffiths began programming
 at age 12, when he saw a documentary on the work of Seymour Papert. At age
 15, he wrote an implementation of Papert’s computer language LOGO. After
 studying pure mathematics at university, he began writing code for
 computers and magazine articles for humans. He’s worked as an agile coach,
 a developer, and a garage attendant, but not in that order. He can write
 code in over 10 languages and prose in just one, and when not writing,
 coding, or coaching, he spends much of his spare time traveling with his
 lovely wife—and coauthor—Dawn.
Before writing Head First C, David wrote two
 other Head First books: Head First Rails and
 Head First Programming.
You can follow David on Twitter at http://twitter.com/dogriffiths.
[image: image with no caption]

Dawn Griffiths started life as a
 mathematician at a top UK university, where she was awarded a first-class
 honors degree in mathematics. She went on to pursue a career in software
 development and has over 15 years experience working in the IT
 industry.
Before joining forces with David on Head First
 C, Dawn wrote two other Head First books (Head First
 Statistics and Head First 2D Geometry) and
 has also worked on a host of other books in the series.
When Dawn’s not working on Head First books, you’ll find her honing
 her Tai Chi skills, running, making bobbin lace, or cooking. She also
 enjoys traveling and spending time with her husband, David.
How to use this Book: Intro

[image: image with no caption]In this section, we answer the burning question: “So
 why DID they put that in a C book?”

Who is this book for?

If you can answer “yes” to all of these:
	Do you already know how to program in another programming
 language?

	Do you want to master C, create the next big thing in
 software, make a small fortune, and retire to your own private
 island?
Note
OK, maybe that one’s a little far-fetched. But, you gotta
 start somewhere, right?

	Do you prefer actually doing things and applying the stuff you
 learn over listening to someone in a lecture rattle on for hours on
 end?

this book is for you.
Who should probably back away from this book?

If you can answer “yes” to any of these:
	Are you looking for a quick introduction or reference book
 to C?

	Would you rather have your toenails pulled out by 15
 screaming monkeys than learn something new? Do you believe a C
 book should cover everything and if it bores
 the reader to tears in the process, then so much the
 better?

this book is not for
 you.
[image: image with no caption][Note from Marketing: this book is for anyone with
 a credit card... we’ll accept a check, too.]

We know what you’re thinking

“How can this be a serious C book?”
“What’s with all the graphics?”
“Can I actually learn it this way?”

We know what your brain is thinking

Your brain craves novelty. It’s always searching, scanning,
 waiting for something unusual. It was built that
 way, and it helps you stay alive.
So what does your brain do with all the routine, ordinary, normal
 things you encounter? Everything it can to stop
 them from interfering with the brain’s real
 job—recording things that matter. It doesn’t bother
 saving the boring things; they never make it past the “this is obviously
 not important” filter.
How does your brain know what’s important?
 Suppose you’re out for a day hike and a tiger jumps in front of you—what
 happens inside your head and body?
Neurons fire. Emotions crank up. Chemicals
 surge.
And that’s how your brain knows...
[image: image with no caption]

This must be important! Don’t forget
 it!
But imagine you’re at home or in a library. It’s a safe, warm,
 tiger-free zone. You’re studying. Getting ready for an exam. Or trying
 to learn some tough technical topic your boss thinks will take a week,
 ten days at the most.
Just one problem. Your brain’s trying to do you a big favor. It’s
 trying to make sure that this obviously unimportant
 content doesn’t clutter up scarce resources. Resources that are better
 spent storing the really big things. Like tigers.
 Like the danger of fire. Like how you should never have posted those
 party photos on your Facebook page. And there’s no simple way to tell
 your brain, “Hey brain, thank you very much, but no matter how dull this
 book is, and how little I’m registering on the emotional Richter scale
 right now, I really do want you to keep this stuff
 around.”
[image: image with no caption]

We think of a “Head First” reader as a learner
So what does it take to learn something?
 First, you have to get it, then make sure you
 don’t forget it. It’s not about pushing facts
 into your head. Based on the latest research in cognitive science,
 neurobiology, and educational psychology,
 learning takes a lot more than text on a page. We
 know what turns your brain on.
Some of the Head First learning
 principles:
Make it visual. Images are
 far more memorable than words alone, and make learning much more
 effective (up to 89% improvement in recall and transfer studies). It
 also makes things more understandable. Put the
 words within or near the graphics they relate to, rather
 than on the bottom or on another page, and learners will be up to
 twice as likely to solve problems related to the
 content.
Use a conversational and personalized
 style. In recent studies, students performed up to 40%
 better on post-learning tests if the content spoke directly to the
 reader, using a first-person, conversational style rather than taking
 a formal tone. Tell stories instead of lecturing. Use casual language.
 Don’t take yourself too seriously. Which would
 you pay more attention to: a stimulating
 dinner-party companion, or a lecture?
Get the learner to think more
 deeply. In other words, unless you actively flex your
 neurons, nothing much happens in your head. A reader has to be
 motivated, engaged, curious, and inspired to solve problems, draw
 conclusions, and generate new knowledge. And for that, you need
 challenges, exercises, and thought-provoking questions, and activities
 that involve both sides of the brain and multiple senses.
Get—and keep—the reader’s
 attention. We’ve all had the “I really want to learn this,
 but I can’t stay awake past page one” experience. Your brain pays
 attention to things that are out of the ordinary, interesting,
 strange, eye-catching, unexpected. Learning a new, tough, technical
 topic doesn’t have to be boring. Your brain will learn much more
 quickly if it’s not.
Touch their emotions. We now
 know that your ability to remember something is largely dependent on
 its emotional content. You remember what you care about. You remember
 when you feel something. No, we’re not talking
 heart-wrenching stories about a boy and his dog. We’re talking
 emotions like surprise, curiosity, fun, “what the...?”, and the
 feeling of “I rule!” that comes when you solve a puzzle, learn
 something everybody else thinks is hard, or realize you know something
 that “I’m more technical than thou” Bob from Engineering
 doesn’t.

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly
 and more deeply, pay attention to how you pay attention. Think about how
 you think. Learn how you learn.
Most of us did not take courses on metacognition or learning
 theory when we were growing up. We were expected to
 learn, but rarely taught to learn.
But we assume that if you’re holding this book, you really want to
 learn how to program in C. And you probably don’t want to spend a lot of
 time. If you want to use what you read in this book, you need to
 remember what you read. And for that, you’ve got to
 understand it. To get the most from this book, or
 any book or learning experience, take
 responsibility for your brain. Your brain on this
 content.
The trick is to get your brain to see the new material you’re
 learning as Really Important. Crucial to your well-being. As important
 as a tiger. Otherwise, you’re in for a constant battle, with your brain
 doing its best to keep the new content from sticking.
[image: image with no caption]

So just how DO you
 get your brain to treat programming like it was a hungry
 tiger?
There’s the slow, tedious way, or the faster, more effective way.
 The slow way is about sheer repetition. You obviously know that you
 are able to learn and remember even the dullest of
 topics if you keep pounding the same thing into your brain. With enough
 repetition, your brain says, “This doesn’t feel
 important to him, but he keeps looking at the same thing
 over and over and
 over, so I suppose it must be.”
The faster way is to do
 anything that increases brain activity,
 especially different types of brain activity. The
 things on the previous page are a big part of the solution, and they’re
 all things that have been proven to help your brain work in your favor.
 For example, studies show that putting words within
 the pictures they describe (as opposed to somewhere else in the page,
 like a caption or in the body text) causes your brain to try to makes
 sense of how the words and picture relate, and this causes more neurons
 to fire. More neurons firing = more chances for your brain to
 get that this is something worth paying attention
 to, and possibly recording.
A conversational style helps because people tend to pay more
 attention when they perceive that they’re in a conversation, since
 they’re expected to follow along and hold up their end. The amazing
 thing is, your brain doesn’t necessarily care that
 the “conversation” is between you and a book! On the other hand, if the
 writing style is formal and dry, your brain perceives it the same way
 you experience being lectured to while sitting in a roomful of passive
 attendees. No need to stay awake.
But pictures and conversational style are just the
 beginning...

Here’s what WE did

We used pictures, because
 your brain is tuned for visuals, not text. As far as your brain’s
 concerned, a picture really is worth a thousand
 words. And when text and pictures work together, we embedded the text
 in the pictures because your brain works more
 effectively when the text is within the thing it
 refers to, as opposed to in a caption or buried in the body text
 somewhere.
We used redundancy, saying
 the same thing in different ways and with different
 media types, and multiple senses, to increase the
 chance that the content gets coded into more than one area of your
 brain.
We used concepts and pictures in unexpected ways because your brain is tuned
 for novelty, and we used pictures and ideas with at least
 some emotional content,
 because your brain is tuned to pay attention to the biochemistry of
 emotions. That which causes you to feel something
 is more likely to be remembered, even if that feeling is nothing more
 than a little humor, surprise, or interest.
We used a personalized, conversational
 style, because your brain is tuned to pay more attention when
 it believes you’re in a conversation than if it thinks you’re passively
 listening to a presentation. Your brain does this even when you’re
 reading.
We included more than 80 activities, because your brain is tuned to
 learn and remember more when you do things than when you
 read about things. And we made the exercises
 challenging-yet-doable, because that’s what most people prefer.
We used multiple learning
 styles, because you might prefer
 step-by-step procedures, while someone else wants to understand the big
 picture first, and someone else just wants to see an example. But
 regardless of your own learning preference,
 everyone benefits from seeing the same content
 represented in multiple ways.
We include content for both sides of
 your brain, because the more of your brain you engage, the
 more likely you are to learn and remember, and the longer you can stay
 focused. Since working one side of the brain often means giving the
 other side a chance to rest, you can be more productive at learning for
 a longer period of time.
And we included stories and
 exercises that present more than one point
 of view, because your brain is tuned to learn more deeply
 when it’s forced to make evaluations and judgments.
We included challenges,
 with exercises, and by asking questions that don’t always have a straight
 answer, because your brain is tuned to learn and remember when it has to
 work at something. Think about it—you can’t get
 your body in shape just by
 watching people at the gym. But we did our best to
 make sure that when you’re working hard, it’s on the
 right things. That you’re not spending one extra dendrite
 processing a hard-to-understand example, or parsing difficult,
 jargon-laden, or overly terse text.
We used people. In stories,
 examples, pictures, etc., because, well, you’re a
 person. And your brain pays more attention to
 people than it does to
 things.

Here’s what YOU can do to bend your brain into submission

So, we did our part. The rest is up to you. These tips are a
 starting point; listen to your brain and figure out what works for you
 and what doesn’t. Try new things.
[image: image with no caption]Cut this out and stick it on your
 refrigerator.

	Slow down. The more you understand,
 the less you have to memorize.
Don’t just read. Stop and think. When the
 book asks you a question, don’t just skip to the answer. Imagine
 that someone really is asking the question. The
 more deeply you force your brain to think, the better chance you
 have of learning and remembering.

	Do the exercises. Write your own
 notes.
We put them in, but if we did them for you, that would be like
 having someone else do your workouts for you. And don’t just
 look at the exercises. Use a pencil. There’s plenty of evidence
 that physical activity while learning can
 increase the learning.

	Read “There Are No Dumb
 Questions.”
That means all of them. They’re not optional sidebars,
 they’re part of the core
 content! Don’t skip them.

	Make this the last thing you read
 before bed. Or at least the last challenging
 thing.
Part of the learning (especially the transfer to long-term
 memory) happens after you put the book down.
 Your brain needs time on its own, to do more processing. If you put
 in something new during that processing time, some of what you just
 learned will be lost.

	Talk about it. Out
 loud.
Speaking activates a different part of the brain. If you’re
 trying to understand something, or increase your chance of
 remembering it later, say it out loud. Better still, try to explain
 it out loud to someone else. You’ll learn more quickly, and you
 might uncover ideas you hadn’t known were there when you were
 reading about it.

	Drink water. Lots of
 it.
Your brain works best in a nice bath of fluid. Dehydration
 (which can happen before you ever feel thirsty) decreases cognitive
 function.

	Listen to your
 brain.
Pay attention to whether your brain is getting overloaded. If
 you find yourself starting to skim the surface or forget what you
 just read, it’s time for a break. Once you go past a certain point,
 you won’t learn faster by trying to shove more in, and you might
 even hurt the process.

	Feel something.
Your brain needs to know that this
 matters. Get involved with the stories. Make up
 your own captions for the photos. Groaning over a bad joke is
 still better than feeling nothing at
 all.

	Write a lot of code!
There’s only one way to learn to program in C: write a lot of code. And that’s what you’re
 going to do throughout this book. Coding is a skill, and the only
 way to get good at it is to practice. We’re going to give you a lot
 of practice: every chapter has exercises that pose a problem for you
 to solve. Don’t just skip over them—a lot of the learning happens
 when you solve the exercises. We included a solution to each
 exercise—don’t be afraid to peek at the
 solution if you get stuck! (It’s easy to get snagged on
 something small.) But try to solve the problem before you look at
 the solution. And definitely get it working before you move on to
 the next part of the book.

Read me

This is a learning experience, not a reference book. We
 deliberately stripped out everything that might get in the way of
 learning whatever it is we’re working on at that point in the book. And
 the first time through, you need to begin at the beginning, because the
 book makes assumptions about what you’ve already seen and
 learned.
We assume you’re new to C, but not to
 programming.
We assume that you’ve already done some programming. Not a lot,
 but we’ll assume you’ve already seen things like loops and variables in
 some other language, like JavaScript. C is actually a pretty advanced
 language, so if you’ve never done any programming at
 all, then you might want to read some other book before you
 start on this one. We’d suggest starting with Head First
 Programming.
You need to install a C compiler on your
 computer.
Throughout the book, we’ll be using the Gnu Compiler
 Collection (gcc) because
 it’s free and, well, we think it’s just a pretty darned good compiler.
 You’ll need to make sure you have gcc
 installed on your machine. The good news is, if you have a
 Linux computer, then you should already have
 gcc. If you’re using a Mac, you’ll
 need to install the Xcode/Developer tools. You can either download these
 from the Apple App Store or by downloading them
 from Apple. If you’re on a Windows machine, you have a couple options.
 Cygwin (http://www.cygwin.com) gives you a complete
 simulation of a UNIX environment, including
 gcc. But if you want to create
 programs that will work on Windows plain-and-simple, then you might want
 to install the Minimalist GNU for Windows (MingW)
 from http://www.mingw.org.
All the code in this book is intended to run across
 all these operating systems, and we’ve tried hard
 not to write anything that will only work on one type of computer.
 Occasionally, there will be some differences, but we’ll make sure to
 point those out to you.
We begin by teaching some basic C
 concepts, and then we start putting C to work for you right
 away.
We cover the fundamentals of C in Chapter 1. That way, by the time you
 make it all the way to Chapter 2, you are creating
 programs that actually do something real, useful, and—gulp!—fun. The
 rest of the book then builds on your C skills, turning you from
 C newbie to coding ninja
 master in no time.
The activities are NOT
 optional.
The exercises and activities are not add-ons; they’re part of the
 core content of the book. Some of them are to help with memory, some are
 for understanding, and some will help you apply what you’ve learned.
 Don’t skip the exercises.
The redundancy is intentional and
 important.
One distinct difference in a Head First book is that we want you
 to really get it. And we want you to finish the
 book remembering what you’ve learned. Most reference books don’t have
 retention and recall as a goal, but this book is about
 learning, so you’ll see some of the same concepts
 come up more than once.
The examples are as lean as
 possible.
Our readers tell us that it’s frustrating to wade through 200
 lines of an example looking for the two lines they need to understand.
 Most examples in this book are shown within the smallest possible
 context, so that the part you’re trying to learn is clear and simple.
 Don’t expect all of the examples to be robust, or even complete—they are
 written specifically for learning, and aren’t always fully
 functional.
The Brain Power exercises don’t have
 answers.
For some of them, there is no right answer, and for others, part
 of the learning experience of the Brain Power activities is for you to
 decide if and when your answers are right. In some of the Brain Power
 exercises, you will find hints to point you in the right
 direction.

The technical review team

[image: image with no caption]

[image: image with no caption]

Technical reviewers:
Dave Kitabjian has two degrees
 in electrical and computer engineering and about 20 years of experience
 consulting, integrating, architecting, and building information system
 solutions for clients from Fortune 500 firms to high-tech startups.
 Outside of work, Dave likes to play guitar and piano and spend time with
 his wife and three kids.
Vince Milner has been
 developing in C (and many other languages) on a wide variety of
 platforms for over 20 years. When not studying for his master’s degree
 in mathematics, he can be found being beaten at board games by
 six-year-olds and failing to move house.

Acknowledgments

Our editor:
Many thanks to Brian Sawyer for
 asking us to write this book in the first place. Brian believed in us
 every step of the way, gave us the freedom to try out new ideas, and
 didn’t panic too much when deadlines loomed.
[image: image with no caption]

The O’Reilly team:
A big thank you goes to the following people who helped us out
 along the way: Karen Shaner for her
 expert image-hunting skills and for generally keeping the wheels oiled;
 Laurie Petrycki for keeping us well
 fed and well motivated while in Boston; Brian
 Jepson for introducing us to the wonderful world of the
 Arduino; and the early release team
 for making early versions of the book available for download. Finally,
 thanks go to Rachel Monaghan and the
 production team for expertly steering the book through the production
 process and for working so hard behind the scenes. You guys are
 awesome.
Family, friends, and
 colleagues:
We’ve made a lot of friends on our Head First journey. A special
 thanks goes to Lou Barr, Brett McLaughlin, and Sanders Kleinfeld for teaching us so
 much.
David: My thanks to Andy
 Parker, Joe Broughton,
 Carl Jacques, and Simon Jones and the many other friends who have
 heard so little from me whilst I was busy scribbling away.
Dawn: Work on this book would have been a lot harder without my
 amazing support network of family and friends. Special thanks go to
 Mum and Dad, Carl, Steve,
 Gill, Jacqui, Joyce, and Paul. I’ve truly appreciated all your support
 and encouragement.
The without-whom
 list:
Our technical review team did a truly excellent job of keeping us
 straight and making sure what we covered was spot on. We’re also
 incredibly grateful to all the people who gave us feedback on early
 releases of the book. We think the book’s much, much better as a
 result.
Finally, our thanks to Kathy
 Sierra and Bert Bates for
 creating this extraordinary series of books.

Safari® Books Online

[image: image with no caption]

Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business. Technology professionals, software developers, web designers,
 and business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes and pricing
 programs for organizations, government agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional,
 Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
 Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
 Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
 New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and
 dozens more. For more information about Safari Books Online, please
 visit us online.

Chapter 1. Getting Started with C: Diving in

[image: image with no caption]

Want to get inside the computer’s
 head?
Need to write high-performance
 code for a new game? Program an Arduino? Or use that advanced third-party library in your iPhone app? If so,
 then C’s here to help. C works at a much lower
 level than most other languages, so understanding C gives you a
 much better idea of what’s really going
 on. C can even help you better understand other languages as
 well. So dive in and grab your compiler, and you’ll soon get started in no
 time.
C is a language for small, fast programs

 The C language is designed to create small, fast programs.
 It’s lower-level than most other languages; that means it
 creates code that’s a lot closer to what machines really
 understand.
The way C works

Computers really only understand one language: machine code, a
 binary stream of 1s and 0s. You convert your C code into machine code
 with the aid of a compiler.
[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

C is used where speed, space, and
 portability are important. Most operating systems are written in C.
 Most other computer languages are also written in C. And most game
 software is written in C.
Note
There are three C standards that you may stumble across. ANSI
 C is from the late 1980s and is used for the oldest code. A lot of
 things were fixed up in the C99 standard from 1999. And some cool
 new language features were added in the current standard, C11,
 released in 2011. The differences between the different versions
 aren’t huge, and we’ll point them out along the way.

Sharpen your pencil
Try to guess what each of these code fragments does.
[image: image with no caption]

Sharpen your pencil: Solution
Don’t worry if you don’t
 understand all of this yet. Everything is explained in
 greater detail later in the book.
[image: image with no caption]

But what does a complete C program look like?

 To create a full program, you need to enter your code into
 a C source file. C source files can be created by
 any text editor, and their filenames usually end with
 .c.
Note
This is just a convention, but you should follow it.

Let’s have a look at a typical C source file.
[image: image with no caption]

So let’s look at the main() function in a
 little more detail.
The main() Function Up Close
 The computer will start running your program from the
 main() function. The name is
 important: if you don’t have a function called main(), your program won’t be able to
 start.
The main() function has a
 return type of int. So what does this mean? Well, when the
 computer runs your program, it will need to have some way of deciding
 if the program ran successfully or not. It does this by checking the
 return value of the main() function. If you tell your main() function to return 0, this means that
 the program was successful. If you tell it to return any other value,
 this means that there was a problem.
[image: image with no caption]

The function name comes after the return type. That’s followed
 by the function parameters if there are any. Finally, we have the
 function body. The function body must be surrounded by
 braces.

Geek Bits
The printf() function is used
 to display formatted output. It
 replaces format characters with the values of variables, like
 this:
[image: image with no caption]

You can include as many parameters as you like when you call the
 printf() function, but make sure
 you have a matching % format character for each one.

Note
If you want to check the exit status of a program, type:
echo %ErrorLevel%
in Windows, or:
echo $?
in Linux or on the Mac.

Code Magnets
The College Blackjack Team was working on some code on the dorm
 fridge, but someone mixed up the magnets! Can you reassemble the code
 from the magnets?
[image: image with no caption]

Code Magnets Solution
 The College Blackjack Team was working on some code on
 the dorm fridge, but someone mixed up the magnets! You were to
 reassemble the code from the magnets.
[image: image with no caption]

There are no Dumb Questions
	Q:
	What does card_name[0] mean?

	A:
	It’s the first
 character that the user typed. So if he types 10, card_name[0] would be 1.

	Q:
	Do you always write comments
 using /* and */?

	A:
	If your compiler
 supports the C99 standard, then you can begin a comment with
 //. The compiler treats the
 rest of that line as a comment.

	Q:
	How do I know which standard my
 compiler supports?

	A:
	Check the
 documentation for your compiler. gcc supports all three standards:
 ANSI C, C99, and C11.

But how do you run the program?

 C is a compiled language. That means
 the computer will not interpret the code directly. Instead, you will
 need to convert—or compile—the human-readable
 source code into machine-readable machine
 code.
To compile the code, you need a program called a compiler. One of the most popular C compilers
 is the GNU Compiler Collection or gcc.
 gcc is available on a lot of
 operating systems, and it can compile lots of languages other than C.
 Best of all, it’s completely free.
Here’s how you can compile and run the program using gcc.
[image: image with no caption]

Geek Bits
You can compile and run your code on most machines using this
 trick:
[image: image with no caption]

This command will run the new program only if it compiles
 successfully. If there’s a problem with the compile, it will skip
 running the program and simply display the errors on the
 screen.

Do this!
You should create the
 cards.c file and compile it now. We’ll be working
 on it more and more as the chapter progresses.
Test Drive
 Let’s see if the program compiles and runs. Open up a
 command prompt or terminal on your machine and try it out.
[image: image with no caption]

The program works!

Congratulations! You have compiled and run a C program. The
 gcc compiler took the
 human-readable source code from cards.c and
 converted it into computer-readable machine code
 in the cards program. If you are
 using a Mac or Linux machine, the compiler will have created the
 machine code in a file called cards. But on Windows, all programs need
 to have a .exe extension, so the file will be
 called cards.exe.
There are no Dumb Questions
	Q:
	Why do I have to prefix the
 program with ./ when I
 run it on Linux and the Mac?

	A:
	On Unix-style
 operating systems, programs are run only if you specify the
 directory where they live or if their directory is listed in
 the PATH environment variable.

[image: image with no caption]

 The C language doesn’t
 support strings out of the box.
Note
But there are a number of C extension libraries that do give you strings.

C is more low-level than most other languages, so instead of
 strings, it normally uses something similar: an array of
 single characters. If you’ve programmed in other languages,
 you’ve probably met an array before. An array is just a list of things
 given a single name. So card_name
 is just a variable name you use to refer to the list of characters
 entered at the command prompt. You defined card_name to be a two-character
 array, so you can refer to the first and second character
 as char_name[0] and char_name[1]. To see how this works, let’s
 take a deeper dive into the computer’s memory and see how C handles
 text...
Strings Way Up Close
 Strings are just character arrays. When C sees a
 string like this:
s = "Shatner"
it reads it like it was just an array of separate
 characters:
[image: image with no caption]

Each of the characters in the string is just an element in an
 array, which is why you can refer to the individual characters in
 the string by using an index, like s[0] and s[1].
[image: image with no caption]

Don’t fall off the end of the
 string
But what happens when C wants to read the contents of the
 string? Say it wants to print it out. Now, in a lot of languages,
 the computer keeps pretty close track of the size of an array, but C
 is more low-level than most languages and can’t always work out
 exactly how long an array is. If C is going to
 display a string on the screen, it needs to know when it gets to the
 end of the character array. And it does this by adding a sentinel character.
[image: image with no caption]

The sentinel character is an additional character at the end
 of the string that has the value \0. Whenever the computer needs to read
 the contents of the string, it goes through the elements of the
 character array one at a time, until it reaches \0. That means that when the computer sees
 this:
s = "Shatner"
it actually stores it in memory like this:
[image: image with no caption]

That’s why in our code we had to define the card_name variable like this:
char card_name[3];
The card_name string is
 only ever going to record one or two characters, but because strings
 end in a sentinel character we have to allow
 for an extra character in the array.

There are no Dumb Questions
	Q:
	 Why are the
 characters numbered from 0? Why not 1?

	A:
	The index is an
 offset: it’s a measure of how far the character is from the
 first character.

	Q:
	Why?

	A:
	The computer will
 store the characters in consecutive bytes of memory. It can
 use the index to calculate the location of the character. If
 it knows that c[0] is at
 memory location 1,000,000, then it can quickly calculate
 that c[96] is at
 1,000,000 + 96.

	Q:
	Why does it need a sentinel
 character? Doesn’t it know how long the string
 is?

	A:
	Usually, it
 doesn’t. C is not very good at keeping track of how long
 arrays are, and a string is just an array.

	Q:
	It doesn’t know how long
 arrays are???

	A:
	No. Sometimes the
 compiler can work out the length of an array by analyzing
 the code, but usually C relies on you to keep track of your
 arrays.

	Q:
	Does it matter if I use single
 quotes or double quotes?

	A:
	Yes. Single quotes
 are used for individual characters, but double quotes are
 always used for strings.

	Q:
	So should I define my strings
 using quotes (″) or as explicit arrays of
 characters?

	A:
	Usually you will
 define strings using quotes. They are called string literals, and they are
 easier to type.

	Q:
	Are there any differences
 between string literals and character
 arrays?

	A:
	Only one: string
 literals are constant.

	Q:
	What does that
 mean?

	A:
	It means that you
 can’t change the individual characters once they are
 created.

	Q:
	What will happen if I
 try?

	A:
	It depends on the
 compiler, but gcc will
 usually display a bus error.

	Q:
	A bus error? What the heck’s a
 bus error?

	A:
	C will store string
 literals in memory in a different way. A bus error just
 means that your program can’t update that piece of
 memory.

Painless Operations
Not all equals signs are
 equal.
In C, the equals sign (=)
 is used for assignment. But a
 double equals sign (==) is used
 for testing equality.
[image: image with no caption]

If you want to increase or decrease a variable, then you can
 save space with the += and
 -= assignments.
[image: image with no caption]

Finally, if you want to increase or decrease a variable by 1,
 use ++ and --.
[image: image with no caption]

Two types of command

 So far, every command you’ve seen has fallen into one of
 the following two categories.
Do something

Most of the commands in C are statements. Simple statements are
 actions; they do things and
 they tell us things. You’ve met statements that
 define variables, read input from the keyboard, or display data to the
 screen.
[image: image with no caption]

Sometimes you group statements together to create
 block statements. Block statements are groups of
 commands surrounded by braces.
[image: image with no caption]

Do something only if
 something is true

Control statements such as if
 check a condition before running the code:
[image: image with no caption]

if statements typically need
 to do more than one thing when a condition is true, so they are often
 used with block statements:
[image: image with no caption]

Do you need braces?
Block statements allow you to treat a whole set of
 statements as if they were a single
 statement. In C, the if condition works like this:
if (countdown == 0)

do_this_thing();
The if condition runs a
 single statement. So what if you
 want to run several statements in an if? If you wrap a list of statements in
 braces, C will treat them as though they were just one
 statement:
if (x == 2) {

call_whitehouse();

sell_oil();

x = 0;

}
C coders like to keep their code short and snappy, so most
 will omit braces on if conditions
 and while loops. So instead of
 writing:
if (x == 2) {

puts("Do something");

}
most C programmers write:
if (x == 2)

puts("Do something");

Here’s the code so far

	/*
 * Program to evaluate face values.
 * Released under the Vegas Public License.
 * (c)2014 The College Blackjack Team.
 */
#include <stdio.h>
#include <stdlib.h>
int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 printf("The card value is: %i\n", val);
 return 0;
}

[image: image with no caption]

[image: image with no caption]

Card counting? In C?

 Card counting is a way to increase your chances of winning
 at blackjack. By keeping a running count as the cards are dealt, a
 player can work out the best time to place large bets and the best time
 to place small bets. Even though it’s a powerful technique, it’s really
 quite simple.
[image: image with no caption]

How difficult would this be to write in C? You’ve looked at how to
 make a single test, but the card-counting algorithm needs to check
 multiple conditions: you need to check that a number is >= 3 as well
 as checking that it’s <= 6.
You need a set of operations that will
 allow you to combine conditions together.

There’s more to booleans than equals...

 So far, you’ve looked at if statements that check if a single condition
 is true, but what if you want to check several conditions? Or check if a
 single condition is not true?
&& checks if two conditions are true

The and operator (&&) evaluates to true, only if
 both conditions given to it are
 true.
[image: image with no caption]

The and operator is efficient: if the first
 condition is false, then the computer won’t bother evaluating the
 second condition. It knows that if the first condition is false, then
 the whole condition must be false.

II checks if one of two
 conditions is true

The or operator (||) evaluates to true, if either condition given to it is true.
[image: image with no caption]

If the first condition is true, the computer won’t bother
 evaluating the second condition. It knows that if the first condition
 is true, the whole condition must be true.

! flips the value of a condition

! is the not operator. It reverses the
 value of a condition.
[image: image with no caption]

Geek Bits
In C, boolean values are represented by numbers. To C, the
 number 0 is the value for false. But what’s the value for true?
 Anything that is not equal to 0 is treated as true. So there is
 nothing wrong in writing C code like this:
int people_moshing = 34;
if (people_moshing)
 take_off_glasses();
In fact, C programs often use this as a shorthand way of
 checking if something is not 0.

Exercise
 You are going to modify the program so that it can be
 used for card counting. It will need to display one message if the
 value of the card is from 3 to 6. It will need to display a
 different message if the card is a 10, Jack, Queen, or King.
int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 /* Check if the value is 3 to 6 */
 if _______________________________
 puts("Count has gone up");
 /* Otherwise check if the card was 10, J, Q, or K */
 else if ______________________________
 puts("Count has gone down");
 return 0;
}

The Polite Guide to Standards
The ANSI C standard has no value for true and false. C
 programs treat the value 0 as false, and any other value as true.
 The C99 standard does allow you to use the words
 true and false in your
 programs—but the compiler treats them as the values 1 and 0
 anyway.

Exercise Solution
 You were to modify the program so that it can be used
 for card counting. It needed to display one message if the value of
 the card is from 3 to 6. It needed to display a different message if
 the card is a 10, Jack, Queen, or King.
[image: image with no caption]

There are no Dumb Questions
	Q:
	Why not just | and &?

	A:
	You can use
 & and | if you want. The & and | operators will always evaluate both conditions,
 but && and
 || can often skip the
 second condition.

	Q:
	So why do the & and | operators
 exist?

	A:
	Because they do
 more than simply evaluate logical conditions. They perform
 bitwise operations on the individual bits of a
 number.

	Q:
	Huh? What do you
 mean?

	A:
	Well, 6 & 4 is equal to 4, because if
 you checked which binary digits are common to 6 (110 in
 binary) and 4 (100 in binary, you get 4 (100).

Test Drive
Let’s see what happens when you compile and run the program
 now:
[image: image with no caption]

The code works. By combining multiple conditions with a
 boolean operator, you check for a range of values rather than a
 single value. You now have the basic structure in place for a card
 counter.
[image: image with no caption]

The Compiler Exposed
 This week’s interview: What
 Has gcc Ever Done for Us?
	Head First: May I begin by thanking you, gcc, for finding time in your very
 busy schedule to speak to us.

	gcc: That’s not a problem, my friend. A pleasure to
 help.

	Head First: gcc, you can speak
 many languages, is that true?

	gcc: I am fluent in over six million forms of
 communication...

	Head First: Really?

	gcc: Just teasing. But I do speak many languages. C,
 obviously, but also C++ and Objective-C. I can get by in
 Pascal, Fortran, PL/I, and so forth. Oh, and I have a
 smattering of Go...

	Head First: And on the hardware side, you can produce machine code
 for many, many platforms?

	gcc: Virtually any processor. Generally, when a hardware
 engineer creates a new type of processor, one of the first
 things she wants to do is get some form of me running on
 it.

	Head First: How have you achieved such incredible
 flexibility?

	gcc: My secret, I suppose, is that there are two sides to my
 personality. I have a frontend, a part of me that understands
 some type of source code.

	Head First: Written in a language such as C?

	gcc: Exactly. My frontend can convert that language into an
 intermediate code. All of my language frontends produce the
 same sort of code.

	Head First: You say there are two sides to your personality?

	gcc: I also have a backend: a system for converting that
 intermediate code into machine code that is understandable on
 many platforms. Add to that my knowledge of the particular
 executable file formats for just about every operating system
 you’ve ever heard of...

	Head First: And yet, you are often described as a mere translator.
 Do you think that’s fair? Surely that’s not all you
 are.

	gcc: Well, of course I do a little more than simple
 translation. For example, I can often spot errors in
 code.

	Head First: Such as?

	gcc: Well, I can check obvious things such as misspelled
 variable names. But I also look for subtler things, such as
 the redefinition of variables. Or I can warn the programmer if
 he chooses to name variables after existing functions and so
 on.

	Head First: So you check code quality as well, then?

	gcc: Oh, yes. And not just quality, but also performance. If
 I discover a section of code inside a loop that could work
 equally well outside a loop, I can very quietly move
 it.

	Head First: You do rather a lot!

	gcc: I like to think I do. But in a quiet way.

	Head First: gcc, thank
 you.

BE the Compiler
Each of the C files on this page represents a complete
 source file. Your job is to play compiler and determine whether each
 of these files will compile, and if not, why not. For extra bonus
 points, say what you think the output of each compiled file will be
 when run, and whether you think the code is working as
 intended.
A
#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}
B
#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 }
 return 0;
}
C
#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 } else
 puts("Ace!");
 return 0;
}
D
#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 return 0;
}

BE the Compiler Solution
Each of the C files on this page represents a complete source
 file. Your job is to play compiler and determine whether each of
 these files will compile, and if not, why not. For extra bonus
 points, say what you think the output of each compiled file will be
 when run, and whether you think the code is working as
 intended.
A
#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}
The code compiles. The program
 displays “Small card.” But it doesn’t work properly because the
 else is attached to the wrong if.

B
#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 }
 return 0;
}
The code compiles. The program
 displays nothing and is not really working properly because the
 else is matched to the wrong if.

C
#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 } else
 puts("Ace!");
 return 0;
}
The code compiles. The program
 displays “Ace!” and is properly written.

D
#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 return 0;
}
The code won’t compile because the
 braces are not matched.

What’s the code like now?

	 int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 /* Check if the value is 3 to 6 */
 if ((val > 2) && (val < 7))
 puts("Count has gone up");
 /* Otherwise check if the card was 10, J, Q, or K */
 else if (val == 10)
 puts("Count has gone down");
 return 0;
}

[image: image with no caption]

C programs often need to check the same
 value several times and then perform very similar pieces of code for
 each case.
Now, you can just use a sequence of if statements, and that will probably be just
 fine. But C gives you an alternative way of writing this kind of
 logic.
C can perform logical tests with the
 switch statement.

Pulling the ol’ switcheroo

 Sometimes when you’re writing conditional logic, you need
 to check the value of the same variable over and over again. To prevent
 you from having to write lots and lots of if statements, the C language gives you
 another option: the switch statement.
The switch statement is kind of
 like an if statement, except it can
 test for multiple values of a single
 variable:
[image: image with no caption]

When the computer hits a switch
 statement, it checks the value it was given, and then looks for a
 matching case. When it finds one, it
 runs all of the code that follows it until it
 reaches a break statement. The computer keeps going until it is told to break out of
 the switch
 statement.
Watch it!
Missing breaks can make your code
 buggy.
Most C programs have a break at the end of
 each case
 section to make the code easier to understand, even at the
 cost of some efficiency.

Sharpen your pencil
 Let’s look at that section of your cards program again:
int val = 0;
if (card_name[0] == 'K') {
 val = 10;
} else if (card_name[0] == 'Q') {
 val = 10;
} else if (card_name[0] == 'J') {
 val = 10;
} else if (card_name[0] == 'A') {
 val = 11;
} else {
 val = atoi(card_name);
}
Do you think you can rewrite this code using a switch statement? Write your answer
 below:

Sharpen your pencil: Solution
 You were to rewrite the code using a switch statement.
[image: image with no caption]

Bullet Points
	switch statements can
 replace a sequence of if
 statements.

	switch statements check a
 single value.

	The computer will start to run the code at the first
 matching case statement.

	It will continue to run until it reaches a break or gets to the end of the switch statement.

	Check that you’ve included breaks in the right places; otherwise,
 your switches will be
 buggy.

There are no Dumb Questions
	Q:
	Why would I use a switch statement instead of an
 if?

	A:
	If you are performing
 multiple checks on the same variable, you might want to use a
 switch statement.

	Q:
	What are the advantages of using
 a switch
 statement?

	A:
	There are several.
 First: clarity. It is clear that an entire block of code is
 processing a single variable. That’s not so obvious if you
 just have a sequence of if
 statements. Secondly, you can use fall-through logic to reuse
 sections of code for different cases.

	Q:
	Does the switch statement have to check a
 variable? Can’t it check a value?

	A:
	Yes, it can. The
 switch statement will
 simply check that two values are equal.

	Q:
	Can I check strings in a
 switch
 statement?

	A:
	No, you can’t use a
 switch statement to check a
 string of characters or any kind of array. The switch statement will only check a
 single value.

Sometimes once is not enough...

 You’ve learned a lot about the C language, but there are
 still some important things to learn. You’ve seen how to write programs
 for many different situations, but there is one fundamental thing that
 we haven’t really looked at yet. What if you want your program to do
 something again and again and again?
[image: image with no caption]

Using while loops in C

Loops are a special type of control statement. A control
 statement decides if a section of code will be
 run, but a loop statement decides how many times
 a piece of code will be run.
The most basic kind of loop in C is the while loop. A while loop runs code over and over
 and over as long as some condition remains true.
[image: image with no caption]

Do you do while?
There’s another form of the while loop that checks the loop condition
 after the loop body is run. That means the loop
 always executes at least once.
 It’s called the do...while loop:
do {

/* Buy lottery ticket */

} while(have_not_won);

[image: image with no caption]

Loops often follow the same structure...

 You can use the while
 loop anytime you need to repeat a piece of code, but a lot of the time
 your loops will have the same kind of structure:
	Do something simple before the loop, like set a
 counter.

	Have a simple test condition on the loop.

	Do something at the end of a loop, like update a
 counter.

For example, this is a while
 loop that counts from 1 to 10:
[image: image with no caption]

Loops like this have code that prepares variables for the loop,
 some sort of condition that is checked each time the loop runs, and
 finally some sort of code at the end of the loop that updates a counter
 or something similar.
...and the for loop makes this easy

Because this pattern is so common, the designers of C created
 the for loop to make it a little more
 concise. Here is that same piece of code written with a for loop:
[image: image with no caption]

for loops are actually used a
 lot in C—as much, if not more than, while loops. Not only do they make the code
 slightly shorter, but they’re also easier for other C programmers to
 read, because all of the code that controls the loop—the stuff that
 controls the value of the counter
 variable—is now contained in the for statement and is taken out of the loop
 body.
Every for loop needs to have something
 in the body.

You use break to break out...

 You can create loops that check a condition at the
 beginning or end of the loop body. But what if you want to escape from
 the loop from somewhere in the middle? You could always restructure your
 code, but sometimes it’s just simpler skip out of the loop immediately
 using the break statement:
[image: image with no caption]

A break statement will break
 you straight out of the current loop, skipping whatever follows it in
 the loop body. breaks can be useful
 because they’re sometimes the simplest and best way to end a loop. But
 you might want to avoid using too many, because they can also make the
 code a little harder to read.
Watch it!
The break statement is used to break out
 of loops and also switch statements.
Make sure that you know what you’re
 break ing out of when
 you break.

...and continue to continue

If you want to skip the rest of the loop body and go back to the
 start of the loop, then the continue statement is your friend:
[image: image with no caption]

Tales from the Crypt
breaks don’t break if
 statements.
On January 15, 1990, AT&T’s long-distance
 telephone system crashed, and 60,000 people lost their phone
 service. The cause? A developer working on the C code used in the
 exchanges tried to use a break to break out of
 an if
 statement. But break s don’t break out
 of if s.
 Instead, the program skipped an entire section of code and
 introduced a bug that interrupted 70 million phone calls over nine
 hours.

Writing Functions Up Close
 Before you try out your new loop mojo, let’s go on a
 detour and take a quick look at functions.
So far, you’ve had to create one function in every program
 you’ve written, the main()
 function:
[image: image with no caption]

Pretty much all functions in C follow the same format. For
 example, this is a program with a custom function that gets called
 by main():
[image: image with no caption]

The larger() function is
 slightly different from main()
 because it takes arguments or
 parameters. An argument is just a local variable that gets
 its value from the code that calls the function. The larger() function takes two arguments—
 a and b—and then it returns the value of
 whichever one is larger.

The Polite Guide to Standards
The main() function has an
 int return type, so you should
 include a return statement when
 you get to the end. But if you leave the return statement out, the code will still
 compile—though you may get a warning from the compiler. A C99 compiler will insert a return statement for you if you forget.
 Use -std=c99 to compile to the C99
 standard.

Void Functions Up Close
 Most functions in C have a return value, but sometimes
 you might want to create a function that has nothing useful to
 return. It might just do stuff rather than
 calculate stuff. Normally, functions always
 have to contain a return
 statement, but not if you give your function the return type
 void:
[image: image with no caption]

In C, the keyword void
 means it doesn’t matter. As soon as you tell
 the C compiler that you don’t care about returning a value from the
 function, you don’t need to have a return statement in your function.

There are no Dumb Questions
	Q:
	If I create a void function, does that mean it
 can’t contain a return
 statement?

	A:
	You can still
 include a return
 statement, but the compiler will most likely generate a
 warning. Also, there’s no point to including a return statement in a void function.

	Q:
	Really? Why
 not?

	A:
	Because if you try
 to read the value of your void function, the compiler will
 refuse to compile your code.

Chaining Assignments
Almost everything in C has a return value, and not just
 function calls. In fact, even things like assignments have return
 values. For example, if you look at this statement:
x = 4;
It assigns the number 4 to a variable. The interesting thing
 is that the expression “ x = 4”
 itself has the value that was assigned: 4. So
 why does that matter? Because it means you can do cool tricks, like
 chaining assignments together:
[image: image with no caption]

That line of code will set both x and
 y to the value 4. In fact, you
 can shorten the code slightly by removing the parentheses:
y = x = 4;
You’ll often see chained assignments in code that needs to set
 several variables to the same value.

Mixed Messages
A short C program is listed below. One block of the
 program is missing. Your challenge is to match the candidate block of code (on the
 left) with the output that you’d
 see if the block were inserted. Not all of the lines of output will
 be used, and some of the lines of output might be used more than
 once. Draw lines connecting the candidate blocks of code with their
 matching command-line output.
[image: image with no caption]

[image: image with no caption]

Exercise
 Now that you know how to create while loops, modify the program to keep a
 running count of the card game. Display the count after each card
 and end the program if the player types X. Display an error message
 if the player types a bad card value like 11 or 24.
[image: image with no caption]

Mixed Messages Solution
A short C program is listed below. One block of the
 program is missing. Your challenge was to match the candidate block of code (on the
 left) with the output that you’d
 see if the block were inserted. Not all of the lines of output were
 used. You were to draw lines connecting the candidate blocks of code
 with their matching command-line output.
[image: image with no caption]

[image: image with no caption]

Exercise Solution
Now that you know how to create while loops, you were to modify the
 program to keep a running count of the card game. Display the count
 after each card and end the program if the player types X. Display
 an error message if the player types a bad card value like 11 or
 24.
[image: image with no caption]

Test Drive
Now that the card-counting program is finished, it’s
 time to take it for a spin. What do you think? Will it work?
[image: image with no caption]

The card counting program
 works!
You’ve completed your first C program. By using the power of C
 statements, loops, and conditions, you’ve created a fully
 functioning card counter.
Great job!
Note
Disclaimer: Using a computer for card counting is illegal in
 many states, and those casino guys can get kinda gnarly. So don’t
 do it, OK?

[image: image with no caption]

There are no Dumb Questions
	Q:
	 Why do I need to
 compile C? Other languages like JavaScript aren’t compiled,
 are they?

	A:
	C is compiled to
 make the code fast. Even though there are languages that
 aren’t compiled, some of those—like JavaScript and
 Python—often use some sort of hidden compilation to improve
 their speed.

	Q:
	Is C++ just another version of
 C?

	A:
	No. C++ was
 originally designed as an extension of C, but now it’s a
 little more than that. C++ and Objective-C were both created
 to use object orientation with C.

	Q:
	What’s object orientation?
 Will we learn it in this book?

	A:
	Object orientation
 is a technique to deal with complexity. We won’t
 specifically look at it in this book.

	Q:
	C looks a lot like JavaScript,
 Java, C#, etc.

	A:
	C has a very
 compact syntax and it’s influenced many other
 languages.

	Q:
	What does gcc stand for?

	A:
	The Gnu Compiler
 Collection.

	Q:
	Why “collection”? Is there
 more than one?

	A:
	The Gnu Compiler
 Collection can be used to compile many languages, though C
 is probably still the language with which it’s used most
 frequently.

	Q:
	Can I create a loop that runs
 forever?

	A:
	Yes. If the
 condition on a loop is the value 1, then the loop will run
 forever.

	Q:
	Is it a good idea to create a
 loop that runs forever?

	A:
	Sometimes. An
 infinite loop (a loop that runs forever) is often used in
 programs like network servers that perform one thing
 repeatedly until they are stopped. But most coders design
 loops so that they will stop sometime.

Bullet Points
	A while loop runs code
 as long as its condition is true.

	A do-while loop is
 similar, but runs the code at least once.

	The for loop is a more
 compact way of writing certain kinds of loops.

	You can exit a loop at any time with break.

	You can skip to the loop condition at any time with
 continue.

	The return statement
 returns a value from a function.

	void functions don’t
 need return
 statements.

	Most expressions in C have values.

	Assignments have values so you can chain them together (
 x = y = 0).

Your C Toolbox

You’ve got Chapter 1 under your belt, and now
 you’ve added C basics to your toolbox. For a complete list of tooltips
 in the book, see Appendix B.
[image: image with no caption]

Chapter 2. Memory and Pointers: What are you pointing at?

[image: image with no caption]

 If you really want to kick butt
 with C, you need to understand how C handles memory.
The C language gives you a lot more control
 over how your program uses the computer’s
 memory. In this chapter, you’ll strip back the covers and see
 exactly what happens when you read and write
 variables. You’ll learn how arrays
 work, how to avoid some nasty memory
 SNAFUs, and most of all, you’ll see how mastering pointers and memory addressing is key
 to becoming a kick-ass C programmer.
C code includes pointers

Pointers are one of the most fundamental things to
 understand in the C programming language. So what’s a pointer? A
 pointer is just the address of a
 piece of data in memory.
Pointers are used in C for a couple of reasons.
To best understand pointers, go
 slowly.

	Instead of passing around a whole copy
 of the data, you can just pass a pointer.
[image: image with no caption]

	You might want two pieces of code to
 work on the same piece of data rather than a separate
 copy.
[image: image with no caption]

Pointers help you do both these things: avoid copies and share
 data. But if pointers are just addresses, why do some people find them
 confusing? Because they’re a form of
 indirection. If you’re not careful, you can quickly get lost
 chasing pointers through memory. The trick to learning how to use C
 pointers is to go slowly.
Relax
Don’t try to rush this
 chapter.
Pointers are a simple idea, but you need to take your time and
 understand everything. Take frequent breaks, drink plenty of water,
 and if you really get stuck, take a nice long bath.

Digging into memory

 To understand what pointers are, you’ll need to dig into
 the memory of the computer.
Every time you declare a variable, the computer creates space for
 it somewhere in memory. If you declare a variable
 inside a function like main(), the computer will store it in a
 section of memory called the stack.
 If a variable is declared outside any function, it
 will be stored in the globals section
 of memory.
[image: image with no caption]

The computer might allocate, say, memory location 4,100,000 in the
 stack for the x variable. If you
 assign the number 4 to the variable, the computer will store 4 at
 location 4,100,000.
If you want to find out the memory address of the variable, you
 can use the & operator:
[image: image with no caption]

The address of the variable tells you where to find the variable
 in memory. That’s why an address is also called a pointer, because it points to the variable in memory.
A variable declared inside a function is
 usually stored in the stack.

A variable declared outside a function
 is stored in globals.

Set sail with pointers

Imagine you’re writing a game in which players have to navigate
 their way around the...
[image: image with no caption]

The game will need to keep control of lots of things, like scores
 and lives and the current location of the players. You won’t want to
 write the game as one large piece of code; instead, you’ll create lots
 of smaller functions that will each do something useful in the
 game:
[image: image with no caption]

What does any of this have to do with pointers? Let’s begin coding
 without worrying about pointers at all. You’ll just use variables as you
 always have. A major part of the game is going to be navigating your
 ship around the Bermuda Rectangle, so let’s dive deeper into what the
 code will need to do in one of the navigation functions.

Set sail sou’east, Cap’n

The game will track the location of players using
 latitudes and longitudes. The
 latitude is how far north or south the player is, and the longitude is
 her position east or west. If a player wants to travel southeast, that
 means her latitude will go down, and her longitude
 will go up:
[image: image with no caption]

So you could write a go_south_east() function that takes arguments
 for the latitude and longitude, which it will then increase and
 decrease:
[image: image with no caption]

The program starts a ship at location [32, –64], so if it heads
 southeast, the ship’s new position will be [31, –63]. At least it will
 be if the code works...
Brain Power
Look at the code carefully. Do you think it will work? Why? Why
 not?

Test Drive
The code should move the ship southeast from [32, –64] to the
 new location at [31, –63]. But if you compile and run the program,
 this happens:
[image: image with no caption]

[image: image with no caption]

The ship’s location stays exactly the same
 as before.
C sends arguments as values
The code broke because of the way that C calls functions.
	Initially, the main()
 function has a local variable called longitude that had value 32.
[image: image with no caption]

	When the computer calls the go_south_east() function, it copies the value of the longitude variable to the lon argument. This is just an assignment
 from the longitude variable to
 the lon variable. When you call
 a function, you don’t send the variable as an
 argument, just its value.

	When the go_south_east()
 function changes the value of lon, the function is just changing its
 local copy. That means when the computer returns to the main() function, the longitude variable still has its
 original value of 32.
[image: image with no caption]

But if that’s how C calls functions, how can you ever write a
 function that updates a variable?
It’s easy if you use
 pointers...

Try passing a pointer to the variable

 Instead of passing the value of the
 latitude and longitude variables, what happens if you pass
 their addresses? If the longitude variable lives in the stack memory
 at location 4,100,000, what happens if you pass the location number
 4,100,000 as a parameter to the go_south_east() function?
[image: image with no caption]

[image: image with no caption]

If the go_south_east() function
 is told that the latitude value lives
 at location 4,100,000, then it will not only be able to find the current
 latitude value, but it will also be
 able to change the contents of the original latitude variable. All the function needs to
 do is read and update the contents of memory location 4,100,000.
[image: image with no caption]

Because the go_south_east()
 function is updating the original latitude variable, the computer will be able
 to print out the updated location when it returns to the main() function.
Pointers make it easier to share memory

This is one of the main reasons for using pointers—to let
 functions share memory. The data created by one
 function can be modified by another function, so long as it knows
 where to find it in memory.
Now that you know the theory of using pointers to fix the
 go_south_east()function, it’s time
 to look at the details of how you do it.
There are no Dumb Questions
	Q:
	I printed the location of the
 variable on my machine and it wasn’t 4,100,000. Did I do
 something wrong?

	A:
	You did nothing
 wrong. The memory location your program uses for the
 variables will be different from machine to machine.

	Q:
	Why are local variables stored
 in the stack and globals stored somewhere
 else?

	A:
	Local and global
 variables are used differently. You will only ever get one
 copy of a global variable, but if you write a function that
 calls itself, you might get very many instances of the same
 local variable.

	Q:
	What are the other areas of
 the memory used for?

	A:
	You’ll see what the
 other areas are for as you go through the rest of the
 book.

Using memory pointers

 There are three things
 you need to know in order to use pointers to read and write data.
[image: image with no caption]

OK, now that you know how to read and
 write the contents of a memory location, it’s time for you to fix the
 go_south_east() function.
Compass Magnets
Now you need to fix the go_south_east() function so that it uses
 pointers to update the correct data. Think carefully about what type
 of data you want to pass to the function, and what operators you’ll
 need to use to update the location of the ship.
[image: image with no caption]

Compass Magnets Solution
You needed to fix the go_south_east() function so that it uses
 pointers to update the correct data. You were to think carefully about
 what type of data you want to pass to the function, and what operators
 you’ll need to use to update the location of the ship.
[image: image with no caption]

[image: image with no caption]

Test Drive
Now if you compile and run the new version
 of the function, you get this:
[image: image with no caption]

The code works.
Because the function takes pointer arguments, it’s able to
 update the original latitude and
 longitude variables. That means
 that you now know how to create functions that not only return values,
 but can also update any memory locations that are passed to
 them.

Bullet Points
	Variables are allocated storage in memory.

	Local variables live in the stack.

	Global variables live in the globals section.

	Pointers are just variables that store memory
 addresses.

	The & operator finds
 the address of a variable.

	The * operator can read
 the contents of a memory address.

	The * operator can also
 set the contents of a memory address.

There are no Dumb Questions
	Q:
	 Are pointers actual
 address locations? Or are they some other kind of
 reference?

	A:
	They’re actual
 numeric addresses in the process’s memory.

	Q:
	What does that
 mean?

	A:
	Each process is given
 a simplified version of memory to make it look like a single
 long sequence of bytes.

	Q:
	And memory’s not like
 that?

	A:
	It’s more complicated
 in reality. But the details are hidden from the process so
 that the operating system can move the process around in
 memory, or unload it and reload it somewhere else.

	Q:
	Is memory not just a long list
 of bytes?

	A:
	The computer will
 probably structure its physical memory in a more complex way.
 The machine will typically group memory addresses into
 separate banks of memory chips.

	Q:
	Do I need to understand
 this?

	A:
	For most programs,
 you don’t need to worry about the details of how the machine
 arranges its memory.

	Q:
	Why do I have to print out
 pointers using the %p
 format string?

	A:
	You don’t have to use
 the %p string. On most
 modern machines, you can use %li—although the compiler may give
 you a warning if you do.

	Q:
	Why does the %p format display the memory address
 in hex format?

	A:
	It’s the way
 engineers typically refer to memory addresses.

	Q:
	If reading the contents of a
 memory location is called dereferencing,
 does that mean that pointers should be called
 references?

	A:
	Sometimes coders will
 call pointers references, because they
 refer to a memory location. However, C++ programmers usually
 reserve the word reference for a slightly
 different concept in C++.

	Q:
	Oh yeah, C++. Are we going to
 look at that?

	A:
	No, this book looks
 at C only.

How do you pass a string to a function?

 You know how to pass simple values as arguments to
 functions, but what if you want to send something more complex to a
 function, like a string? If you remember from the last chapter, strings
 in C are actually arrays of characters. That means if you want to pass a
 string to a function, you can do it like this:
[image: image with no caption]

[image: image with no caption]

The msg argument is defined
 like an array, but because you won’t know how long the string will be,
 the msg argument doesn’t include a
 length. That seems straightforward, but there’s
 something a little strange going on...
Honey, who shrank the string?

C has an operator called sizeof that can tell you how many
 bytes of space something takes in memory. You can either call it with
 a data type or with a piece of data:
[image: image with no caption]

But a strange thing happens if you look at the length of the
 string you’ve passed in the function:
[image: image with no caption]

Instead of displaying the full length of the string, the code
 returns just 4 or 8 bytes. What’s happened? Why does it think the
 string we passed in is shorter?
Brain Power
Why do you think sizeof(msg) is shorter than the length of
 the whole string? What is msg?
 Why would it return different sizes on different machines?

Array variables are like pointers...

 When you create an array, the array variable can be used
 as a pointer to the start of the
 array in memory. When C sees a line of code in a function like
 this:
[image: image with no caption]

The computer will set aside space on the stack for each of the
 characters in the string, plus the \0
 end character. But it will also associate the address of the first character with the
 quote variable. Every time the
 quote variable is used in the code,
 the computer will substitute it with the address of the first character
 in the string. In fact, the array variable is just like a
 pointer:
[image: image with no caption]

...so our function was passed a pointer

That’s why that weird thing happened in the fortune_cookie() code. Even though it looked
 like you were passing a string to the fortune_cookie() function, you were actually
 just passing a pointer to it:
[image: image with no caption]

And that’s why the sizeof
 operator returned a weird result. It was just returning the size of a
 pointer to a string. On 32-bit
 operating systems, a pointer takes 4 bytes of memory and on 64-bit
 operating systems, a pointer takes 8 bytes.

What the computer thinks when it runs your code

	The computer sees the
 function.
[image: image with no caption]

	Then it sees the function
 contents.
[image: image with no caption]

	The computer calls the
 function.
[image: image with no caption]

Bullet Points
	 An array variable can be used as a pointer.

	The array variable points to the first element in the
 array.

	If you declare an array argument to a function, it will be
 treated as a pointer.

	The sizeof operator
 returns the space taken by a piece of data.

	You can also call sizeof
 for a data type, such as sizeof(int).

	sizeof(a pointer) returns
 4 on 32-bit operating systems and 8 on 64-bit.

There are no Dumb Questions
	Q:
	Is sizeof a function?

	A:
	No, it’s an
 operator.

	Q:
	What’s the
 difference?

	A:
	An operator is
 compiled to a sequence of instructions by the compiler. But if
 the code calls a function, it has to jump to a separate piece
 of code.

	Q:
	So is sizeof calculated when the program
 is compiled?

	A:
	Yes. The compiler can
 determine the size of the storage at compile time.

	Q:
	Why are pointers different sizes
 on different machines?

	A:
	On 32-bit operating
 systems, a memory address is stored as a 32-bit number. That’s
 why it’s called a 32-bit system. 32 bits == 4 bytes. That’s
 why a 64-bit system uses 8 bytes to store an address.

	Q:
	If I create a pointer variable,
 does the pointer variable live in memory?

	A:
	Yes. A pointer
 variable is just a variable storing a number.

	Q:
	So can I find the address of a
 pointer variable?

	A:
	Yes—using the
 & operator.

	Q:
	Can I convert a pointer to an
 ordinary number?

	A:
	On most systems, yes.
 C compilers typically make the long data type the same size as
 a memory address. So if p
 is a pointer and you want to store it in a long variable a, you can type a = (long)p. We’ll look at this in a
 later chapter.

	Q:
	On most
 systems? So it’s not guaranteed?

	A:
	It’s not
 guaranteed.

The Mating Game
We have a classic trio of bachelors ready to play The
 Mating Game today.
Tonight’s lucky lady is going to pick one of these fine
 contestants. Who will she choose?
[image: image with no caption]

	#include <stdio.h>

int main()
{
 int contestants[] = {1, 2, 3};
 int *choice = contestants;
 contestants[0] = 2;
 contestants[1] = contestants[2];
 contestants[2] = *choice;
 printf("I'm going to pick contestant number %i\n", contestants[2]);
 return 0;
}

The Mating Game: Solution
We had a classic trio of bachelors ready to play The
 Mating Game today.
Tonight’s lucky lady picked one of these fine contestants. Who
 did she choose?
[image: image with no caption]

But array variables aren’t quite pointers

 Even though you can use an array variable as a pointer,
 there are still a few differences. To see the differences, think about
 this piece of code.
char s[] = "How big is it?";
char *t = s;
	 sizeof(an
 array) is...the size of an array.
You’ve seen that sizeof(a
 pointer) returns the value 4 or 8, because that’s the size
 of pointers on 32- and 64-bit systems. But if you call sizeof on an array variable, C is smart
 enough to understand that what you want to know is how big the array is in memory.
[image: image with no caption]

	The address of the array...is the
 address of the array.
A pointer variable is just a variable that stores a memory
 address. But what about an array variable? If you use the & operator on an array variable, the
 result equals the array variable itself.
[image: image with no caption]

If a coder writes &s,
 that means “What is the address of the s array?” The address of the s array is just... s. But if someone writes &t, that means “What is the address of
 the t variable?”

	An array variable can’t point anywhere
 else.
When you create a pointer variable, the machine will allocate
 4 or 8 bytes of space to store it. But what if you create an array?
 The computer will allocate space to store the array, but it won’t
 allocate any memory to store the array
 variable. The compiler simply plugs in the address of the start of
 the array.
But because array variables don’t have allocated storage, it
 means you can’t point them at anything else.
[image: image with no caption]

Pointer decay
Because array variables are slightly different from pointer
 variables, you need to be careful when you assign arrays to pointers.
 If you assign an array to a pointer variable, then the pointer
 variable will only contain the address of the array. The pointer doesn’t
 know anything about the size of the array, so a little information has
 been lost. That loss of information is called decay.
Every time you pass an array to a function, you’ll decay to a
 pointer, so it’s unavoidable. But you need to keep track of where
 arrays decay in your code because it can cause very subtle
 bugs.

Five-Minute Mystery
The Case of the Lethal
 List
The mansion had all the things he’d dreamed of: landscaped
 grounds, chandeliers, its own bathroom. The 94-year-old owner, Amory
 Mumford III, had been found dead in the garden, apparently of a heart
 attack. Natural causes? The doc thought it was an overdose of heart
 medication. Something stank here, and it wasn’t just the dead guy in
 the gazebo. Walking past the cops in the hall, he approached Mumford’s
 newly widowed 27-year-old wife, Bubbles.
“I don’t understand. He was always so careful with his
 medication. Here’s the list of doses.” She showed him the code from
 the drug dispenser.
int doses[] = {1, 3, 2, 1000};
“The police say I reprogrammed the dispenser. But I’m no good
 with technology. They say I wrote this code, but I don’t even think
 it’ll compile. Will it?”
She slipped her manicured fingers into her purse and handed him
 a copy of the program the police had found lying by the millionaire’s
 bed. It certainly didn’t look like it would compile...
printf("Issue dose %i", 3[doses]);
What did the expression 3[doses] mean? 3 wasn’t an array. Bubbles
 blew her nose. “I could never write that. And anyway, a dose of 3 is
 not so bad, is it?”
A dose of size 3 wouldn’t have
 killed the old guy. But maybe there was more to this code than met the
 eye...

Why arrays really start at
 0

 An array variable can be used as a pointer to the first
 element in an array. That means you can read the first element of the
 array either by using the brackets notation or
 using the * operator like
 this:
[image: image with no caption]

But because an address is just a number, that means you can do
 pointer arithmetic and actually
 add values to a pointer value and
 find the next address. So you can either use brackets to read the
 element with index 2, or you can just add 2 to the address of the first
 element:
printf("3rd order: %i drinks\n",
drinks[2]);
printf("3rd order: %i drinks\n",
*(drinks + 2));
[image: image with no caption]

In general, the two expressions drinks[i] and *(drinks + i) are equivalent. That’s why
 arrays begin with index 0. The index is just the number that’s added to
 the pointer to find the location of the element.
Sharpen your pencil
Use the power of pointer arithmetic to mend a broken heart. This
 function will skip the first six characters of the text
 message.
[image: image with no caption]

Sharpen your pencil: Solution
 You were to use the power of pointer arithmetic to mend
 a broken heart. This function skips the first six characters of the
 text message.
[image: image with no caption]

Why pointers have types

If pointers are just addresses, then why do pointer variables have
 types? Why can’t you just store all pointers in some sort of general
 pointer variable?
The reason is that pointer arithmetic is
 sneaky. If you add 1 to a char
 pointer, the pointer will point to the very next memory address. But
 that’s just because a char occupies
 1 byte of memory.
What if you have an int
 pointer? ints usually take 4 bytes of
 space, so if you add 1 to an int
 pointer, the compiled code will actually add 4 to the memory
 address.
[image: image with no caption]

int nums[] = {1, 2, 3};
printf("nums is at %p\n", nums);
printf("nums + 1 is at %p\n", nums + 1);
If you run this code, the two memory address will be
 more than one byte apart. So pointer types exist so
 that the compiler knows how much to adjust the
 pointer arithmetic.
[image: image with no caption]

Five-Minute Mystery Solved
The Case of the Lethal
 List
Last time we left our hero
 interviewing Bubbles Mumford, whose husband had been given an overdose
 as a result of suspicious code. Was Bubbles the coding culprit or just
 a patsy? To find out, read on...
He put the code into his pocket. “It’s been a pleasure, Mrs.
 Mumford. I don’t think I need to bother you anymore.” He shook her by
 the hand. “Thank you,” she said, wiping the tears from her baby blue
 eyes, “You’ve been so kind.”
“Not so fast, sister.” Bubbles barely had time to gasp before
 he’d slapped the bracelets on her. “I can tell from your hacker
 manicure that you know more than you say about this crime.” No one
 gets fingertip calluses like hers without logging plenty of time on
 the keyboard.
“Bubbles, you know a lot more about C than you let on. Take a
 look at this code again.”
int doses[] = {1, 3, 2, 1000};
printf("Issue dose %i", 3[doses]);
“I knew something was wrong when I saw the expression 3[doses]. You knew you could use an array
 variable like doses as a pointer.
 The fatal 1,000 dose could be written down like this...” He scribbled
 down a few coding options on his second-best Kleenex:
doses[3] == *(doses + 3) == *(3 + doses) == 3[doses]
“Your code was a dead giveaway, sister. It issued a dose of
 1,000 to the old guy. And now you’re going where you can never
 corruptly use C syntax again...”

Bullet Points
	Array variables can be used as pointers...

	...but array variables are not quite the same.

	sizeof is different for
 array and pointer variables.

	Array variables can’t point to anything else.

	Passing an array variable to a pointer decays it.

	Arrays start at zero because of pointer arithmetic.

	Pointer variables have types so they can adjust pointer
 arithmetic.

There are no Dumb Questions
	Q:
	Do I really need to understand
 pointer arithmetic?

	A:
	Some coders avoid
 using pointer arithmetic because it’s easy to get it wrong.
 But it can be used to process arrays of data
 efficiently.

	Q:
	Can I subtract numbers from
 pointers?

	A:
	Yes. But be careful
 that you don’t go back before the start of the allocated space
 in the array.

	Q:
	When does C adjust the pointer
 arithmetic calculations?

	A:
	It happens when the
 compiler is generating the executable. It looks at the type of
 the variable and then multiplies the pluses and minuses by the
 size of the underlying variable.

	Q:
	Go on...

	A:
	If the compiler sees
 that you are working with an int array and you are adding 2, the
 compiler will multiply that by 4 (the length of an int) and add 8.

	Q:
	Does C use the sizeof operator when it is adjusting
 pointer arithmetic?

	A:
	Effectively. The
 sizeof operator is also
 resolved at compile time, and both sizeof and the pointer arithmetic
 operations will use the same sizes for different data
 types.

	Q:
	Can I multiply
 pointers?

	A:
	No.

Using pointers for data entry

 You already know how to get the user to enter a string
 from the keyboard. You can do it with the scanf() function:
[image: image with no caption]

How does scanf() work? It
 accepts a char pointer, and in this
 case you’re passing it an array variable. By now, you might have an idea
 why it takes a pointer. It’s because
 the scanf() function is going to
 update the contents of the array. Functions that
 need to update a variable don’t want the value of the variable
 itself—they want its address.
Entering numbers with scanf()

So how do you enter data into a numeric
 field? You do it by passing a pointer
 to a number variable.
[image: image with no caption]

Because you pass the address of a number variable into the
 function, scanf() can update the
 contents of the variable. And to help you out, you can pass a format
 string that contains the same kind of format codes that you pass to
 the printf() function. You can even
 use scanf() to enter more than one
 piece of information at a time:
[image: image with no caption]

[image: image with no caption]

Be careful with scanf()

 There’s a little...problem with the scanf() function. So far, all of the code
 you’ve written has very carefully put a limit on the number of
 characters that scanf() will read
 into a function:
scanf("%39s", name);

scanf("%2s", card_name);
[image: image with no caption]

Why is that? After all, scanf()
 uses the same kind of format strings as printf(), but when we print a string with
 printf(), you just use %s. Well, if you just use %s in scanf(), there can be a problem if someone
 gets a little type-happy:
char food[5];
printf("Enter favorite food: ");
scanf("%s", food);
printf("Favorite food: %s\n", food);
[image: image with no caption]

The program crashes. The reason is because scanf() writes data way beyond the end of the
 space allocated to the food array.
[image: image with no caption]

scanf() can cause buffer overflows

If you forget to limit the length of the string that you read
 with scanf(), then any user can
 enter far more data than the program has space to store. The extra
 data then gets written into memory that has not been properly
 allocated by the computer. Now, you might get lucky and the data will
 simply be stored and not cause any problems.
But it’s very likely that buffer overflows
 will cause bugs. It might be called a segmentation
 fault or an abort trap, but whatever
 the error message that appears, the result will be a crash.

fgets() is an alternative to scanf()

 There’s another function you can use to enter text data:
 fgets(). Just like the scanf() function, it takes a char pointer, but unlike
 the scanf() function, the fgets() function must be given a maximum
 length:
[image: image with no caption]

That means that you can’t accidentally forget to set a length when
 you call fgets(); it’s right there in
 the function signature as a mandatory argument. Also, notice that the
 fgets() buffer size includes the final \0 character. So you don’t need to subtract 1
 from the length as you do with scanf().
OK, what else do you need to know about
 fgets()?
Using sizeof with fgets()

The code above sets the maximum length using the sizeof operator. Be careful with this.
 Remember: sizeof returns the amount
 of space occupied by a variable. In the code above, food is an array variable, so sizeof returns the size of the array. If
 food was just a simple pointer
 variable, the sizeof operator would
 have just returned the size of a pointer.
If you know that you are passing an array variable to fgets() function, then using sizeof is fine. If you’re just passing a
 simple pointer, you should just enter the size you want:
[image: image with no caption]

Tales from the Crypt
The fgets() function actually comes
 from an older function called gets().
Even though fgets() is seen as a
 safer-to-use function than scanf() , the truth is that the
 older gets()
 function is far more dangerous than either of them. The
 reason? The gets()
 function has no limits
 at all:
[image: image with no caption]

gets() is a
 function that’s been around for a long time. But all you really need
 to know is that you really
 shouldn’t use it.

Title Fight
 Roll up! Roll up! It’s time for the title fight we’ve
 all been waiting for. In the red corner: nimble light, flexible but
 oh-so-slightly dangerous. It’s the bad boy of data input: scanf(). And in the blue corner, he’s
 simple, he’s safe, he’s the function you’d want to introduce to your
 mom: it’s fgets()!
	 	scanf():
	fgets():

	 Round 1: Limits

	 Do you
 limit the number of characters that a user can
 enter?
	 scanf() can limit the data
 entered, so long as you remember to add the size to the
 format string.
	 fgets() has a mandatory limit.
 Nothing gets past him.

	 Result: fgets() takes
 this round on points.

	 Round 2: Multiple
 fields

	 Can you
 be used to enter more than one
 field?
	Yes! scanf() will not only allow you to
 enter more than one field, but it also allows you to enter
 structured data including
 the ability to specify what characters appear between
 fields.
	Ouch! fgets() takes this one on the
 chin. fgets() allows you
 to enter just one string into a buffer. No other data types.
 Just strings. Just one buffer.

	 Result: scanf()
 clearly wins this round.

	 Round 3: Spaces in
 strings

	 If
 someone enters a string, can it contain
 spaces?
	Oof! scanf() gets hit badly by this
 one. When scanf() reads a
 string with the %s, it
 stops as soon as it hits a space. So if you want to enter
 more than one word, you either have to call it more than
 once, or use some fancy regular expression
 trick.
	No problem with spaces at all.
 fgets() can read the
 whole string every time.

	 Result: A fightback!
 Round to fgets().

	A good clean fight
 between these two feisty functions. Clearly, if you need to
 enter structured data
 with several fields, you’ll want to use
 scanf(). If you’re
 entering a single unstructured
 string, then fgets() is probably the way to
 go.

Anyone for three-card monte?

In the back room of the Head First Lounge, there’s a game
 of three-card monte going on. Someone shuffles three cards around, and
 you have to watch carefully and decide where you think the Queen card
 went. Of course, being the Head First Lounge, they’re not using real
 cards; they’re using code. Here’s the program
 they’re using:
[image: image with no caption]

The code is designed to shuffle the letters in the three-letter
 string “JQK.” Remember: in C, a string is just an array of characters.
 The program switches the characters around and then displays what the
 string looks like.
The players place their bets on where they think the “Q” letter
 will be, and then the code is compiled and run.
[image: image with no caption]

Oops...there’s a memory problem...

It seems there’s a problem with the card shark’s code. When the
 code is compiled and run on the Lounge’s notebook computer, this
 happens:
[image: image with no caption]

What’s more, if the guys try the same code on different machines
 and operating systems, they get a whole bunch of different
 errors:
[image: image with no caption]

What’s wrong with the
 code?
What’s Your Hunch?
It’s time to use your intuition. Don’t overanalyze. Just take a guess. Read
 through these possible answers and select only
 the one you think is correct.
What do you think the problem
 is?
	The string can’t be
 updated.
	
	We’re swapping characters outside
 the string.
	
	The string isn’t in
 memory.
	
	Something else.
	

What’s Your Hunch?: Solution
It was time to use your intuition. You were to read through these
 possible answers and select only the one you
 think is correct.
What did you think the
 problem was?
	The string can’t be
 updated.
	X

	We’re swapping characters outside
 the string.
	
	The string isn’t in
 memory.
	
	Something else.
	

String literals can never be updated

A variable that points to a string literal can’t be used to change
 the contents of the string:
[image: image with no caption]

But if you create an array from a string literal, then you
 can modify it:
char cards[] = "JQK";
It all comes down to how C uses memory...
In memory: char *cards=“JQK”
 To understand why this line of code causes a memory
 error, we need to dig into the memory of the computer and see exactly
 what the computer will do.
[image: image with no caption]

	The computer loads the string
 literal.
When the computer loads the program into memory, it puts all
 of the constant values—like the string literal “JQK”—into the
 constant memory block. This section of memory is read only.

	The program creates the cards
 variable on the stack.
The stack is the section of memory that the computer uses
 for local variables: variables inside functions. The cards
 variable will live here.

	The cards variable is set to the
 address of “JQK.”
The cards variable will contain the address of the string literal “JQK.” String literals
 are usually stored in read-only memory to prevent anyone from
 changing them.

	The computer tries to change the
 string.
When the program tries to change the contents of the string
 pointed to by the cards variable, it can’t; the string is
 read-only.
[image: image with no caption]

So the problem is that string literals like “JQK” are held in
 read only memory. They’re constants.
But if that’s the problem, how do you
 fix it?

If you’re going to change a string, make a copy

 The truth is that if you want to change the contents of a
 string, you’ll need to work on a copy. If you create a copy of the string in
 an area of memory that’s not read-only, there won’t
 be a problem if you try to change the letters it contains.
But how do you make a copy? Well, just create the string as a
 new array.
[image: image with no caption]

It’s probably not too clear why this changes anything.
 All strings are arrays. But in the old code,
 cards was just a
 pointer. In the new code, it’s an array. If you declare an array called
 cards and then set it to a string
 literal, the cards array will be a
 completely new copy. The variable isn’t just
 pointing at the string literal. It’s a brand-new
 array that contains a fresh copy
 of the string literal.
To see how this works in practice, you’ll need to look at what
 happens in memory.
[image: image with no caption]

Geek Bits
cards[] or cards*?
If you see a declaration like this, what does it
 really mean?
char cards[]
Well, it depends on where you see
 it. If it’s a normal variable declaration, then it means
 that cards is an array, and you
 have to set it to a value immediately:
[image: image with no caption]

But if cards is being
 declared as a function argument, it means that
 cards is a pointer:
[image: image with no caption]

In memory: char cards[]=“JQK”
We’ve already seen what happens with the broken
 code, but what about our new code? Let’s take a
 look.
[image: image with no caption]

	The computer loads the string
 literal.
As before, when the computer loads the program into memory,
 it stores the constant values—like the string “JQK”—into read-only
 memory.

	The program creates a new array on
 the stack.
We’re declaring an array, so the program will create one
 large enough to store the “JQK” string—four characters’
 worth.

	The program initializes the
 array.
But as well as allocating the space, the program will also
 copy the contents of the string
 literal “JQK” into the stack memory.

So the difference is that the original code used a pointer to
 point to a read-only string literal. But if you initialize an array
 with a string literal, you then have a copy of
 the letters, and you can change them as much as you like.

Test Drive
 See what happens if you construct a new array in the code.
[image: image with no caption]

The code works! Your cards variable now points to a string in an
 unprotected section of memory, so we are free to modify its
 contents.

Geek Bits
One way to avoid this problem in the future is to never write
 code that sets a simple char
 pointer to a string literal value like:
char *s = "Some string";
There’s nothing wrong with setting a pointer to a string
 literal—the problems only happen when you try to
 modify a string literal. Instead, if you want to
 set a pointer to a literal, always make sure you use the const keyword:
const char *s = "some string";
That way, if the compiler sees some code that tries to modify
 the string, it will give you a compile error:
s[0] = 'S';
monte.c:7: error: assignment of read-only location

Five-Minute Mystery
The Case of the Magic
 Bullet
He was scanning his back catalog of Guns ‘n’
 Ammo into Delicious Library when there was a knock at the
 door and she walked in: 5′ 6”, blonde, with a good laptop bag and
 cheap shoes. He could tell she was a code jockey. “You’ve gotta help
 me...you gotta clear his name! Jimmy was innocent, I tells you.
 Innocent!” He passed her a tissue to wipe the tears from her baby
 blues and led her to a seat.
It was the old story. She’d met a guy, who knew a guy. Jimmy
 Blomstein worked tables at the local Starbuzz and spent his weekends
 cycling and working on his taxidermy collection. He hoped one day to
 save up enough for an elephant. But he’d fallen in with the wrong
 crowd. The Masked Raider had met Jimmy in the morning for coffee and
 they’d both been alive:
char masked_raider[] = "Alive";
char *jimmy = masked_raider;
printf("Masked raider is %s, Jimmy is %s\n", masked_raider,
jimmy);
[image: image with no caption]

Then, that afternoon, the Masked Raider had gone off to pull a
 heist, like a hundred heists he’d pulled before. But this time, he
 hadn’t reckoned on the crowd of G-Men enjoying their weekly three-card
 monte session in the back room of the Head First Lounge. You get the
 picture. A rattle of gunfire, a scream, and moments later the villain
 was lying on the sidewalk, creating a public health hazard:
masked_raider[0] = 'D';
masked_raider[1] = 'E';
masked_raider[2] = 'A';
masked_raider[3] = 'D';
masked_raider[4] = '!';
Problem is, when Toots here goes to check in with her boyfriend
 at the coffee shop, she’s told he’s served his last orange mocha
 frappuccino:
printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);
[image: image with no caption]

So what gives? How come a single
 magic bullet killed Jimmy and the Masked Raider? What do you think
 happened?

Five-Minute Mystery Solved
The Case of the Magic
 Bullet
How come a single magic bullet
 killed Jimmy and the Masked Raider?
Jimmy, the mild-mannered barista, was mysteriously gunned down
 at the same time as arch-fiend the Masked Raider:
#include <stdio.h>
int main()
{
 char masked_raider[] = "Alive";
 char *jimmy = masked_raider;
 printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);
 masked_raider[0] = 'D';
 masked_raider[1] = 'E';
 masked_raider[2] = 'A';
 masked_raider[3] = 'D';
 masked_raider[4] = '!';
 printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);
 return 0;
}
It took the detective a while to get to the bottom of the
 mystery. While he was waiting, he took a long refreshing sip from a
 Head First Brain Booster Fruit
 Beverage. He sat back in his seat and looked across the desk
 at her blue, blue eyes. She was like a rabbit caught in the headlights
 of an oncoming truck, and he knew that he was at the wheel.
Note
Note from Marketing: ditch the product placement for the Brain
 Booster drink; the deal fell through.

“I’m afraid I got some bad news for you. Jimmy and the Masked
 Raider...were one and the same man!”
“No!”
She took a sharp intake of breath and raised her hand to her
 mouth. “Sorry, sister. I have to say it how I see it. Just look at the
 memory usage.” He drew a diagram:
[image: image with no caption]

“ jimmy and masked_raider are just aliases for the same
 memory address. They’re pointing to the same place. When the masked_raider stopped the bullet, so did
 Jimmy. Add to that this invoice from the San Francisco elephant
 sanctuary and this order for 15 tons of packing material, and it’s an
 open and shut case.”

Bullet Points
	 If you see a * in
 a variable declaration, it means the variable will be a
 pointer.

	String literals are stored in read-only memory.

	If you want to modify a string, you need to make a copy in a
 new array.

	You can declare a char
 pointer as const char * to
 prevent the code from using it to modify a string.

There are no Dumb Questions
	Q:
	Why didn’t the compiler just
 tell me I couldn’t change the string?

	A:
	Because we declared
 the cards as a simple
 char *, the compiler didn’t
 know that the variable would always be pointing at a string
 literal.

	Q:
	Why are string literals stored
 in read-only memory?

	A:
	Because they are
 designed to be constant. If you write a function to print
 “Hello World,” you don’t want some other part of the program
 modifying the “Hello World” string literal.

	Q:
	Do all operating systems enforce
 the read-only rule?

	A:
	The vast majority do.
 Some versions of gcc on
 Cygwin actually allow you to modify a string literal without
 complaining. But it is always wrong to do
 that.

	Q:
	What does const actually mean? Does it make
 the string read-only?

	A:
	String literals are
 read-only anyway. The const
 modifier means that the compiler will complain if you try to
 modify an array with that particular variable.

	Q:
	Do the different memory segments
 always appear in the same order in memory?

	A:
	They will always
 appear in the same order for a given operating system. But
 different operating systems can vary the order slightly. For
 example, Windows doesn’t place the code in the lowest memory
 addresses.

	Q:
	I still don’t understand why an
 array variable isn’t stored in memory. If it exists, surely it
 lives somewhere?

	A:
	When the program is
 compiled, all the references to array variables are replaced
 with the addresses of the array. So the truth is that the
 array variable won’t exist in the final executable. That’s OK
 because the array variable will never be needed to point
 anywhere else.

	Q:
	If I set a new array to a string
 literal, will the program really copy the contents each
 time?

	A:
	It’s down to the
 compiler. The final machine code will either copy the bytes of
 the string literal to the array, or else the program will
 simply set the values of each character every time it reaches
 the declaration.

	Q:
	You keep saying “declaration.”
 What does that mean?

	A:
	A
 declaration is a piece of code that
 declares that something (a variable, a function) exists. A
 definition is a piece of code that says what something is. If
 you declare a variable and set it to a value (e.g., int x = 4;), then the code is both a
 declaration and a definition.

	Q:
	Why is scanf() called scanf()?

	A:
	 scanf() means “scan formatted”
 because it’s used to scan formatted input.

Memory memorizer

[image: image with no caption]

 Stack
This is the section of memory used for local variable storage. Every time you call a
 function, all of the function’s local variables get created on the
 stack. It’s called the stack because it’s like a
 stack of plates: variables get added to the stack when you enter a
 function, and get taken off the stack when you leave. Weird thing is,
 the stack actually works upside down. It starts at the top of memory and
 grows downward.
Heap
This is a section of memory we haven’t really used yet. The heap
 is for dynamic memory: pieces of data
 that get created when the program is running and then hang around a long
 time. You’ll see later in the book how you’ll use the heap.
Globals
A global variable is a variable that lives outside all of the
 functions and is visible to all of them. Globals get created when the
 program first runs, and you can update them freely. But that’s
 unlike...
Constants
Constants are also created when the program
 first runs, but they are stored in read-only memory. Constants are things like
 string literals that you will need when the program
 is running, but you’ll never want them to change.
Code
Finally, the code segment. A lot of operating systems place the
 code right down in the lowest memory addresses. The code segment is also
 read-only. This is the part of the memory where the actual assembled
 code gets loaded.
[image: image with no caption]

Your C Toolbox

 You’ve got Chapter 2 under your belt,
 and now you’ve added pointers and memory to your toolbox. For a complete
 list of tooltips in the book, see Appendix B.
[image: image with no caption]

Chapter 2.5. Strings: String theory

[image: image with no caption]

 There’s more to strings than
 reading them.
You’ve seen how strings in C are actually char arrays but what does C
 allow you to do with them? That’s where string.h comes in.
 string.h is part of the C Standard Library that’s
 dedicated to string manipulation. If
 you want to concatenate strings
 together, copy one string to
 another, or compare two strings,
 the functions in string.h are there to help. In this
 chapter, you’ll see how to create an array of
 strings, and then take a close look at how to search within strings using the strstr()
 function.
Desperately seeking Susan
 Frank

There are so many tracks on the retro jukebox that people
 can’t find the music they are looking for. To help the customers, the
 guys in the Head First Lounge want you to write another program.
This is the track list:
[image: image with no caption]

[image: image with no caption]

The list is likely to get longer, so there’s just the first few
 tracks for now. You’ll need to write a C program that will ask the user
 which track she is looking for, and then get it to search through all of
 the tracks and display any that match.
Brain Power
There’ll be lots of strings in this program. How do you think
 you can record that information in C?

Create an array of arrays

 There are several track names that you need to record. You
 can record several things at once in an array. But remember:
 each string is itself an array. That means you need
 to create an array of arrays, like this:
[image: image with no caption]

The array of arrays looks something like this in memory:
[image: image with no caption]

So now that you know how to record the data in C, what do you need
 to do with it?

Find strings containing the search text

 The guys have helpfully given you a spec.
Note
Ask the user for the text she’s looking for.
Loop through all of the track names.
If a track name contains the search text, display the track
 name.

Well, you know how to record the tracks. You also know how to read
 the value of an individual track name, so it shouldn’t be too difficult
 to loop through each of them. You even know how to ask the user for a
 piece of text to search for. But how do you look to see if the track
 name contains a given piece of text?
Using string.h

The C Standard Library is a
 bunch of useful code that you get for free when you install a C
 compiler. The library code does useful stuff like opening files, or
 doing math, or managing memory. Now, chances are, you won’t want to
 use the whole of the Standard Library at once, so
 the library is broken up into several sections, and each one has a
 header file. The header file lists
 all of the functions that live in a particular section of the
 library.
So far, you have only really used the
 stdio.h header file. stdio.h
 lets you use the standard input/output functions
 like printf and scanf.
But the Standard Library also contains code to process
 strings. String processing is required by a lot of the
 programs, and the string code in the Standard Library is tested,
 stable, and fast.
[image: image with no caption]

You include the string code into your program using the
 string.h header file. You add
 it at the top of your program, just like you include
 stdio.h.
[image: image with no caption]

What’s my Purpose?
See if you can match up each string.h
 function with the description of what it does.
	 strchr()
	Concatenate two
 strings.

	 strcmp()
	Find the location of a string
 inside another string.

	 strstr()
	Find the location of a character
 inside a string.

	 strcpy()
	Find the length of a
 string.

	 strlen()
	Compare two
 strings.

	 strcat()
	Copy one string to
 another.

Sharpen your pencil
Which of the functions above should you use for the jukebox
 program? Write your answer below.

What’s my Purpose? Solution
You were to match up each string.h
 function with the description of what it does.
[image: image with no caption]

Sharpen your pencil: Solution
You were to write which of the above functions you should use
 for the jukebox program.
[image: image with no caption]

Using the strstr() function

 So how exactly does the strstr() function work? Let’s look at an
 example. Let’s say you’re looking for the string “fun” inside a larger
 string, “dysfunctional.” You’d call it like this:
[image: image with no caption]

The strstr() function will
 search for the second string in the first string.
 If it finds the string, it will return the address of the located string
 in memory. In the example here, the function would find that the
 fun substring begins at memory
 location 4,000,003.
But what if the strstr() can’t
 find the substring? What then? In that case, strstr() returns the value 0. Can you think
 why that is? Well, if you remember, C treats zero as
 false. That means you can use strstr() to check for the
 existence of one string inside another, like
 this:
char s0[] = "dysfunctional";
char s1[] = "fun";
if (strstr(s0, s1))
 puts("I found the fun in dysfunctional!");
Let’s see how we can use strstr() in the
 jukebox program.
Pool Puzzle
The guys in the Lounge had already started to write the
 code to search through the track list, but—oh no!—some of the paper
 they were writing the code on has fallen into the pool. Do you think
 you can select the correct pieces of code to complete the search
 function? It’s been a while since the pool was cleaned, so be warned:
 some of the code in the pool might not be needed for this
 program.
Note: the guys have slipped in a couple
 of new pieces of code they found in a book
 somewhere.
[image: image with no caption]

Note: each thing from the pool can be
 used only once!
[image: image with no caption]

BE the Compiler
The jukebox program needs a main() function that reads
 input from the user and calls the find_track() function on the
 opposite page. Your job is to play like you’re the compiler and say
 which of the following main() functions is the one you need for the
 jukebox program.
	int main()
{
 char search_for[80];
 printf("Search for: ");
 fgets(search_for, 80, stdin);
 search_for[strlen(search_for) - 1] = '\0';
 find_track();
 return 0;
}
	int main()
{
 char search_for[80];
 printf("Search for: ");
 fgets(search_for, 79, stdin);
 search_for[strlen(search_for) - 1] = '\0';
 find_track(search_for);
 return 0;
}

	int main()
{
 char search_for[80];
 printf("Search for: ");
 scanf("%79s", search_for);
 search_for[strlen(search_for) - 1] = '\0';
 find_track(search_for);
 return 0;
}
	int main()
{
 char search_for[80];
 printf("Search for: ");
 scanf("%80s", search_for);
 find_track(search_for);
 return 0;
}

Pool Puzzle Solution
The guys in the Lounge had already started to write the code to
 search through the track list, but—oh no!—some of the paper they were
 writing the code on has fallen into the pool. You were to select the
 correct pieces of code to complete the search function.
Note: the guys have slipped in a couple
 of new pieces of code they found in a book
 somewhere.
[image: image with no caption]

[image: image with no caption]

BE the Compiler Solution
The jukebox program needs a main() function that reads input
 from the user and calls the find_track() function on the opposite
 page. Your job was to play like you’re the compiler and say which of
 the following main() functions is the one you need for the jukebox
 program.
[image: image with no caption]

It’s time for a code review

Let’s bring the code together and review what you’ve got
 so far:
[image: image with no caption]

It’s important that you assemble the code in this order. The
 headers are included at the top so that the compiler will have all the
 correct functions before it compiles your code. Then you define the
 tracks before
 you write the functions. This is called putting the tracks array in global
 scope. A global variable is one that lives outside any
 particular function. Global variables like tracks are available to all of the functions
 in the program.
Finally, you have the functions: find_track() first, followed by main(). The find_track() function needs to come first,
 before you call it from main().
Test Drive
 It’s time to fire up the terminal and see if the code
 works.
[image: image with no caption]

And the great news is, the program
 works!
Even though this program is a little longer than any code you’ve
 written so far, it’s actually doing a lot more. It creates an array of
 strings and then uses the string library to search through all of them
 to find the music track that the user was looking for.
[image: image with no caption]

Geek Bits
For more information about the functions available in
 string.h, see http://tinyurl.com/82acwue.
If you are using a Mac or a Linux machine, you can find out more
 about each of the string.h functions like
 strstr() by typing:
man strstr

There are no Dumb Questions
	Q:
	 Why is the list of
 tracks defined as tracks[][80]? Why not tracks[5][80]?

	A:
	You
 could have defined it that way, but the
 compiler can tell there are five items in the list, so you can
 skip the [5] and just put
 [].

	Q:
	But in that case, why couldn’t
 we just say tracks[][]?

	A:
	The track names are
 all different lengths, so you need to tell the compiler to
 allocate enough space for even the largest.

	Q:
	Does that mean each string in
 the tracks array is 80
 characters, then?

	A:
	The program will
 allocate 80 characters for each string,
 even though each of them is much smaller.

	Q:
	So the tracks array takes 80 × 5 characters
 = 400 characters’ worth of space in memory?

	A:
	Yes.

	Q:
	What happens if I forget to
 include a header file like
 string.h?

	A:
	For some header
 files, the compiler will give you a warning and then include
 them anyway. For other header files, the compiler will simply
 give a compiler error.

	Q:
	Why did we put the tracks array definition outside of
 the functions?

	A:
	We put it into global
 scope. Global variables can be used by all functions in the
 program.

	Q:
	Now that we’ve created two
 functions, how does the computer know which one to run
 first?

	A:
	The program will
 always run the main()
 function first.

	Q:
	Why do I have to put the
 find_track() function
 before main()?

	A:
	C needs to know what
 parameters a function takes and what its return type is before
 it can be called.

	Q:
	What would happen if I put the
 functions in a different order?

	A:
	In that case, you’d
 just get a few warnings.

Bullet Points
	You can create an array of arrays with char strings[...][...].

	The first set of brackets is used to access the outer
 array.

	The second set of brackets is used to access the details of
 each of the inner arrays.

	The string.h header file gives you
 access to a set of string manipulation functions in the C Standard
 Library.

	You can create several functions in a C program, but the
 computer will always run main()
 first.

Code Magnets
The guys are working on a new piece of code for a game.
 They’ve created a function that will display a string backward on the
 screen. Unfortunately, some of the fridge magnets have moved out of
 place. Do you think you can help them to reassemble the code?
[image: image with no caption]

[image: image with no caption]

Code Magnets Solution
 The guys are working on a new piece of code for a game.
 They’ve created a function that will display a string backward on the
 screen. Unfortunately, some of the fridge magnets have moved out of
 place. You were to help them to reassemble the code.
[image: image with no caption]

Array of arrays vs. array of pointers

You’ve seen how to use an array of arrays to store a sequence of
 strings, but another option is to use an array
 of pointers. An array of pointers is actually what it sounds
 like: a list of memory addresses stored in an array. It’s very useful if
 you want to quickly create a list of string literals:
[image: image with no caption]

You can access the array of pointers just like you accessed the
 array of arrays.
C-Cross
Now that the guys have the
 print_reverse() function
 working, they’ve used it to create a crossword. The answers are
 displayed by the output lines in the code.
[image: image with no caption]

Across
[image: image with no caption]

C-Cross Solution
Now that the guys have the print_reverse() function working,
 they’ve used it to create a crossword. The answers are displayed by
 the output lines in the code.
[image: image with no caption]

Across
[image: image with no caption]

Your C Toolbox

 You’ve got Chapter 2.5 under your belt, and now you’ve added
 strings to your toolbox. For a complete list of tooltips in the book,
 see Appendix B.
[image: image with no caption]

Chapter 3. Creating Small Tools: Do one thing and do it well

[image: image with no caption]

Every operating system includes small
 tools.
Small tools written in C perform specialized
 small tasks, such as reading and writing files, or filtering
 data. If you want to perform more complex tasks, you can even
 link several tools together. But how are these small
 tools built? In this chapter, you’ll look at the building blocks of
 creating small tools. You’ll learn how to control command-line options, how to manage streams of information, and redirection, getting tooled up in no time.
Small tools can solve big problems

 A small tool is a C
 program that does one task and does it
 well. It might display the contents of a file on the screen
 or list the processes running on the computer. Or it might display the
 first 10 lines of a file or send it to the printer. Most operating
 systems come with a whole set of small tools that you can run from the
 command prompt or the terminal. Sometimes, when you have a
 big problem to solve, you can break it down into a
 series of small problems, and then write small
 tools for each of them.
Note
Operating systems like Linux are mostly made up of hundreds and
 hundreds of small tools.

A small tool does one task and does it
 well.

[image: image with no caption]

If one small part of your program needs to
 convert data from one format to another, that’s the perfect kind of task
 for a small tool.
Pocket Code
 Hey, who hasn’t taken a code printout on a long ride
 only to find that it soon becomes...unreadable? Sure, we all have. But
 with a little thought, you should be able to piece together the
 original version of some code.
This program can read comma-separated data from the command line
 and then display it in JSON format. See if you can figure out what the
 missing code is.
[image: image with no caption]

Pocket Code Solution
Hey, who hasn’t taken a code printout on a long ride only to
 find that it soon becomes...unreadable? Sure, we all have. But with a
 little thought, you should have been able to piece together the
 original version of some code.
This program can read comma-separated data from the command line
 and then display it in JSON format. You were to figure out what the
 missing code is.
[image: image with no caption]

Test Drive
So what happens when you compile and run this code? What will it
 do?
[image: image with no caption]

The program lets you enter GPS data at the keyboard and then it
 displays the JSON-formatted data on the screen. Problem is, the
 input and the output are all
 mixed up together. Also, there’s a lot of data. If you are writing a small tool,
 you don’t want to type in the data; you want to get large amounts of
 data by reading a file.
Also, how is the JSON data going to be used? Surely it can’t be
 much use on the screen?
So is the program running OK? Is it doing the right thing?
 Do you need to change the
 code?
[image: image with no caption]

Here’s how the program should work

	Take the GPS from the bike and
 download the data.
It creates a file called gpsdata.csv with
 one line of data for every location.
[image: image with no caption]

	The geo2json tool needs to read the
 contents of the gpsdata.csv line by line...

	...and then write that data in JSON
 format into a file called output.json.

	The web page that contains the map
 application reads the output.json file.
It displays all of the locations on the map.

But you’re not using files...

 The problem is, instead of reading and writing files, your
 program is currently reading data from the keyboard
 and writing it to the display.
[image: image with no caption]

But that isn’t good enough. The user won’t want to type in all of
 the data if it’s already stored in a file somewhere. And if the data in
 JSON format is just displayed on the screen, there’s no way the map
 within the web page will be able to read it.
You need to make the program work with files. But how do you do that? If you want to
 use files instead of the keyboard and the display,
 what code will you have to change? Will you have to change any code at
 all?
Brain Power
Is there a way of making our program use files without changing
 code? Without even recompiling it?

Geek Bits
Tools that read data line by line, process it, and write it out
 again are called filters. If you
 have a Unix machine, or you’ve installed Cygwin on Windows, you
 already have a few filter tools installed.
head: This tool displays the
 first few lines of a file.
tail: This filter displays
 the lines at the end of a file.
sed: The stream
 editor lets you do things like search and replace
 text.
You’ll see later how to combine filters together to form
 filter chains.

You can use redirection

 You’re using scanf()
 and printf() to read from the
 keyboard and write to the display. But the truth is, they don’t talk
 directly to the keyboard and display. Instead, they
 use the Standard Input and Standard
 Output. The Standard Input and
 Standard Output are created by the operating system
 when the program runs.
[image: image with no caption]

The operating system controls how data gets into and out of the
 Standard Input and Output. If you run a program from the command prompt
 or terminal, the operating system will send all of the keystrokes from
 the keyboard into the Standard Input. If the operating system reads any
 data from the Standard Output, by default it will send that data to the
 display.
The scanf() and printf() functions don’t know, or care, where
 the data comes from or goes to. They just read and write Standard Input
 and the Standard Output.
Now this might sound like it’s kind of complicated. After all, why
 not just have your program talk directly to the keyboard and screen?
 Wouldn’t that be simpler?
Well, there’s a very good reason why operating systems communicate
 with programs using the Standard Input and the Standard Output:
You can redirect the Standard Input and
 Standard Output so that they read and write data somewhere else, such as
 to and from files.

You can redirect the Standard Input with <...

 Instead of entering data at the keyboard, you can use the
 < operator to read the data from a
 file.
[image: image with no caption]

The < operator tells the
 operating system that the Standard Input of the program should be
 connected to the gpsdata.csv file instead of the
 keyboard. So you can send the program data from a file. Now you just
 need to redirect its output.
[image: image with no caption]

...and redirect the Standard Output with >

 To redirect the Standard Output to a file, you need to use
 the > operator:
[image: image with no caption]

Because you’ve redirected the Standard Output, you don’t see any
 data appearing on the screen at all. But the program has now created a
 file called output.json.
The output.json file is the one you needed to
 create for the mapping application. Let’s see if it works.
[image: image with no caption]

Test Drive
Now it’s time to see if the new data file you’ve created can be
 used to plot the location data on a map. You’ll take a copy of the web
 page containing the mapping program and put it into the same folder as
 the output.json file. Then you need to open the
 web page in a browser:
[image: image with no caption]

The map works.
The map inside the web page is able to read the data from the
 output file.
Do this!
	Download the web page from
 https://github.com/dogriffiths/HeadFirstC.

[image: image with no caption]

[image: image with no caption]

But there’s a problem with some of the data...

Your program seems to be able to read GPS data and format it
 correctly for the mapping application. But after a few days, a problem
 creeps in.
[image: image with no caption]

So what happened here? The problem is that there was some
 bad data in the GPS data file:
[image: image with no caption]

But the geo2json program
 doesn’t do any checking of the data it reads; it just reformats the
 numbers and sends them to the output.
That should be easy to fix. You need to
 validate the data.
Exercise
You need to add some code to the geo2json program that will check for bad
 latitude and longitude values. You don’t need anything fancy. If a
 latitude or longitude falls outside the expected numeric, just display
 an error message and exit the program with an error status of
 2:
[image: image with no caption]

Exercise Solution
You needed to add some code to the geo2json program to check for bad latitude
 and longitude values. If a latitude or longitude falls outside the
 expected numeric, just display an error message and exit the program
 with an error status of 2:
[image: image with no caption]

Test Drive
OK, so you now have the code in place to check that the latitude
 and longitude are in range. But will it be enough to make our program
 cope with bad data? Let’s see.
Compile the code and then run the bad data through the
 program:
[image: image with no caption]

Hmmm...that’s odd. You added the error-checking code, but when
 you run the program, nothing appears to be
 different. But now no points appear on the map at all. What
 gives?

Brain Power
Study the code. What do you
 think happened? Is the code doing what you asked it to? Why weren’t
 there any error messages? Why did the mapping program think that the
 entire output.json file was corrupt?

Code DeConstruction
 The mapping program is complaining about the
 output.json file, so let’s open it up and see
 what’s inside:
[image: image with no caption]

Once you open the file, you can see exactly
 what happened. The program saw that there was a problem with some of
 the data, and it exited right away. It didn’t process any more data
 and it did output an error message. Problem is,
 because you were redirecting the Standard
 Output into the output.json, that
 meant you were also redirecting the error message. So the program
 ended silently, and you never saw what the problem was.
Now, you could have checked the exit status
 of the program, but you really want to be able to see the error
 messages.
But how can you still display error
 messages if you are redirecting the output?

Geek Bits
If your program finds a problem in the data, it exits with a
 status of 2. But how can you check that error status after the program
 has finished? Well, it depends on what operating system you’re using.
 If you’re running on a Mac, Linux, some other kind of Unix machine, or
 if you’re using Cygwin on a Windows machine, you can display the error
 status like this:
[image: image with no caption]

If you’re using the Command Prompt in Windows, then it’s a
 little different:
[image: image with no caption]

Both commands do the same thing: they display the number
 returned by the program when it finished.

[image: image with no caption]

Introducing the Standard Error

 The Standard Output is
 the default way of outputting data from a program.
 But what if something exceptional happens, like an
 error? You’ll probably want to deal with things like error messages a
 little differently from the usual output.
That’s why the Standard Error
 was invented. The Standard Error is a second output
 that was created for sending error messages.
Human beings generally have two ears and one mouth, but processes
 are wired a little differently. Every process has one ear (the Standard Input) and two mouths (the Standard Output and the
 Standard Error).
Human
[image: image with no caption]

Process
[image: image with no caption]

Let’s see how the operating system sets
 these up.

By default, the Standard Error is sent to the display

Remember how when a new process is created, the operating
 system points the Standard Input at the keyboard and the Standard Output
 at the screen? Well, the operating system creates the Standard Error at
 the same time and, like the Standard Output, the Standard Error is sent
 to the display by default.
[image: image with no caption]

That means that if someone redirects the Standard Input and
 Standard Output so they use files, the Standard Error will continue to
 send data to the display.
[image: image with no caption]

And that’s really cool, because it means that even if the Standard
 Output is redirected somewhere else, by default, any messages sent down the Standard Error will still be
 visible on the screen.
So you can fix the problem of our hidden error messages by simply
 displaying them on the Standard Error.
But how do you do that?

fprintf() prints to a data stream

 You’ve already seen that the printf() function sends data to the Standard
 Output. What you didn’t know is that the printf() function is just a version of a more
 general function called fprintf():
[image: image with no caption]

The fprintf() function allows
 you to choose where you want to send text to. You can tell fprintf() to send text to stdout (the
 Standard Output) or stderr (the Standard Error).
There are no Dumb Questions
	Q:
	There’s a stdout and a stderr. Is there a stdin?

	A:
	Yes, and as you
 probably guessed, it refers to the Standard Input.

	Q:
	Can I print to
 it?

	A:
	No, the Standard
 Input can’t be printed to.

	Q:
	Can I read from
 it?

	A:
	Yes, by using
 fscanf(), which is just
 like scanf(), but you can
 specify the data stream.

	Q:
	So is fscanf(stdin, ...) exactly the same
 as scanf(...)?

	A:
	Yes, they’re
 identical. In fact, behind the scenes, scanf(...) just calls fscanf(stdin, ...).

	Q:
	Can I redirect the Standard
 Error?

	A:
	Yes; > redirects the Standard Output.
 But 2> redirects the
 Standard Error.

	Q:
	So I could write geo2json 2>
 errors.txt?

	A:
	Yes.

Let’s update the code to use fprintf()

With just a couple of small changes, you can get our error
 messages printing on the Standard Error.
[image: image with no caption]

That means that the code should now work in exactly the same way,
 except the error messages should appear on the
 Standard Error instead of the Standard Output.
Let’s run the code and
 see.
Test Drive
If you recompile the program and then run the corrupted GPS data
 through it again, this happens.
[image: image with no caption]

That’s excellent. This time, even though you are redirecting the
 Standard Output into the output.json file, the
 error message is still visible on the screen.
The Standard Error was created with exactly this in mind: to
 separate the error messages from the usual output. But remember:
 stderr and stdout are both just output streams. And
 there’s nothing to prevent you from using them for anything.
Let’s try out your newfound Standard
 Input and Standard Error skills.

Bullet Points
	The printf() function
 sends data to the Standard Output.

	The Standard Output goes to the display by default.

	You can redirect the Standard Output to
 a file by using > on the command
 line.

	scanf() reads data from
 the Standard Input.

	The Standard Input reads data from the keyboard by
 default.

	You can redirect the Standard Input to read a file by using
 < on the command
 line.

	The Standard Error is reserved for
 outputting error messages.

	You can redirect the Standard Error using 2>.

Top Secret
We have reason to believe that the following program has been
 used in the transmission of secret messages:
[image: image with no caption]

We have intercepted a file called
 secret.txt and a scrap of paper with
 instructions:
[image: image with no caption]

Your mission is to decode the two secret
 messages. Write your answers below.
	Message 1
	Message 2

Top Secret — solved
We have reason to believe that the following program has been
 used in the transmission of secret messages:
#include <stdio.h>

int main()
{
 char word[10];
 int i = 0;
 while (scanf("%9s", word) == 1) {
 i = i + 1;
 if (i % 2)
 fprintf(stdout, "%s\n", word);
 else
 fprintf(stderr, "%s\n", word);
 }
 return 0;
}
We have intercepted a file called
 secret.txt and a scrap of paper with
 instructions:
[image: image with no caption]

Your mission was to decode the two
 secret messages.
[image: image with no caption]

The Operating System Exposed
 This week’s interview: Does the
 Operating System Matter?
	Head First: Operating System, we’re so pleased you’ve found time for
 us today.

	O/S: Time sharing: it’s what I’m good at.

	Head First: Now you’ve agreed to appear under conditions of anonymity,
 is that right?

	O/S: Don’t Ask/Don’t Tell. Just call me O/S.

	Head First: Does it matter what kind of O/S you are?

	O/S: A lot of people get pretty heated over which operating
 system to use. But for simple C programs, we all behave pretty
 much the same way.

	Head First: Because of the C Standard Library?

	O/S: Yeah, if you’re writing C, then the basics are the same
 everywhere. Like I always say, we’re all the same with the
 lights out. Know what I’m saying?

	Head First: Oh, of course. Now, you are in charge of loading programs
 into memory?

	O/S: I turn them into processes, that’s right.

	Head First: Important job?

	O/S: I like to think so. You can’t just throw a program into
 memory and let it struggle, you know? There’s a whole bunch of
 setup. I need to allocate memory for the programs and connect
 them to their standard data streams so they can use things like
 displays and keyboards.

	Head First: Like you just did for the geo2json program?

	O/S: That guy’s a real tool.

	Head First: Oh, I’m sorry.

	O/S: No, I mean he’s a real tool: a simple, text-based
 program.

	Head First: Ah, I see. And do you deal with a lot of tools?

	O/S: Ain’t that life? It depends on the operating system.
 Unix-style systems use a lot of tools to get the work done.
 Windows uses them less, but they’re still important.

	Head First: Creating small tools that work together is almost a
 philosophy, isn’t it?

	O/S: It’s a way of life. Sometimes when you’ve got a big
 problem to solve, it can be easier to break it down into a set
 of simpler tasks.

	Head First: Then write a tool for each task?

	O/S: Exactly. Then use the operating system—that’s me—to
 connect the tools together.

	Head First: Are there any advantages to that approach?

	O/S: The big one is simplicity. If you have a set of small
 programs, they are easier to test. The other thing is that once
 you’ve built a tool, you can use it in other projects.

	Head First: Any downsides?

	O/S: Well, tools don’t look that great. They work on the
 command line usually, so they don’t have a lot of what you might
 call Eye Appeal.

	Head First: Does that matter?

	O/S: Not as much as you’d think. As long as you have a set of
 solid tools to do the important work, you can always connect
 them to a nice interface, whether it’s a desktop application or
 a website. But, hey, look at the time. Sorry, I’ve got to
 preempt you.

	Head First: Oh, well, thank you, O/S; it’s been a pleas...
 zzzzzz...

Small tools are flexible

One of the great things about small tools is their
 flexibility. If you write a program that does one thing really well,
 chances are you will be able to use it in lots of contexts. If you
 create a program that can search for text inside a file, say, then
 chances are you’re going to find that program useful in more than one
 place.
For example, think about your geo2json tool. You created it to help display
 cycling data, right? But there’s no reason you can’t use it for some
 other purpose...like investigating...the...
[image: image with no caption]

To see how flexible our tool is, let’s use it for a completely
 different problem. Instead of just displaying data on a map, let’s try
 to use it for something a little more complex. Say you want to read in a
 whole set of GPS data like before, but instead of just displaying
 everything, let’s just display the information that falls inside the
 Bermuda Rectangle.
That means you will display only data that matches these
 conditions:
((latitude > 26) && (latitude < 34))

((longitude > -76) && (longitude < -64))
So where do you need to
 begin?

Don’t change the geo2json tool

 Our geo2json tool
 displays all of the data it’s given. So what should we do? Should we
 modify geo2json
 so that it exports data and also
 checks the data?
Well, we could, but remember, a small
 tool:
does one job and does it
 well

You don’t really want to modify the geo2json tool, because you want it to do just
 one task. If you make the program do something more complex, you’ll
 cause problems for your users who expect the tool to keep working in
 exactly the same way.
[image: image with no caption]

So if you don’t want to change the
 geo2json tool, what should you do?
Tips for Designing Small Tools
Small tools like geo2json all
 follow these design principles:
	They can read data from the Standard Input.

	They can display data on the Standard Output.

	They deal with text data rather than
 obscure binary formats.

	They each perform one simple
 task.

A different task needs a different tool

If you want to skip over the data that falls outside the
 Bermuda Rectangle, you should build a separate tool that does just
 that.
So, you’ll have two tools: a
 new bermuda tool that filters out data
 that is outside the Bermuda Rectangle, and then your original geo2json tool that will convert the remaining
 data for the map.
This is how you’ll connect the programs together:
[image: image with no caption]

By splitting the problem down into two tasks, you will be able to
 leave your geo2json untouched. That
 will mean that its current users will still be able to use it. The
 question is:
How will you connect your two tools
 together?

Connect your input and output with a pipe

 You’ve already seen how to use redirection to connect the
 Standard Input and the Standard
 Output of a program file. But now you’ll connect the
 Standard Output of the bermuda
 tool to the Standard Input of the
 geo2json, like this:
The | symbol is a pipe that connects the
 Standard Output of one process to the Standard Input of another
 process.

[image: image with no caption]

That way, whenever the bermuda
 tool sees a piece of data inside the Bermuda Rectangle, it will send the
 data to its Standard Output. The pipe will send that data from the
 Standard Output of the bermuda tool
 to Standard Input of the geo2json
 tool.
The operating system will handle the details of exactly how the
 pipe will do this. All you have to do to get things running is issue a
 command like this:
[image: image with no caption]

So now it’s time to build the bermuda tool.

The bermuda tool

The bermuda tool will work in a
 very similar way to the geo2json
 tool: it will read through a set of GPS data, line by line, and then
 send data to the Standard Output.
But there will be two big differences. First, it won’t send
 every piece of data to the Standard Output, just
 the lines that are inside the Bermuda Rectangle. The second difference
 is that the bermuda tool will always
 output data in the same CSV format used to store GPS data.
This is what the pseudocode for the tool looks like:
[image: image with no caption]

Let’s turn the pseudocode into
 C.
Pool Puzzle
Your goal is to complete the
 code for the bermuda program. Take
 code snippets from the pool and place them into the blank lines below.
 You won’t need to use all the snippets of code in the pool.
#include <stdio.h>

int main()
{
 float latitude;
 float longitude;
 char info[80];
 while (scanf("%f,%f,%79[^\n]",_________, _________, _________) == 3)
 if ((_________ >_________) _________ (_________ <_________))
 if ((_________ >_________) _________ (_________ <_________))
 printf("%f,%f,%s\n",_________, _________, _________);

 return 0;
}
Note: each thing from the pool can be
 used only once!
[image: image with no caption]

Pool Puzzle Solution
Your goal was to complete the
 code for the bermuda program by
 taking code snippets from the pool and placing them into the blank
 lines below.
[image: image with no caption]

Note: each thing from the pool can be
 used only once!
[image: image with no caption]

Test Drive
Now that you’ve completed the bermuda tool, it’s time to use it with the
 geo2json tool and see if you can
 map any weird occurrences inside the Bermuda Rectangle.
Once you’ve compiled both of the tools, you can fire up a
 console and then run the two programs together like this:
[image: image with no caption]

By connecting the two programs together with a pipe, you can
 treat these two separate programs as if they were a single program, so
 you can redirect the Standard Input and Standard Output like you did
 before.
[image: image with no caption]

Excellent: the program
 works!

Do this!
	You can download the
 spooky.csv file at https://github.com/dogriffiths/HeadFirstC.

There are no Dumb Questions
	Q:
	 Why is it important
 that small tools use the Standard Input and Standard
 Output?

	A:
	Because it makes it
 easier to connect tools together with pipes.

	Q:
	Why does that
 matter?

	A:
	Small tools usually
 don’t solve an entire problem on their own, just a small
 technical problem, like converting data from one format to
 another. But if you can combine them together, then you can
 solve large problems.

	Q:
	What is a pipe,
 actually?

	A:
	The exact details
 depend on the operating system. Pipes might be made from
 sections of memory or temporary files. The important thing is
 that they accept data in one end, and send the data out of the
 other in sequence.

	Q:
	So if two programs are piped
 together, does the first program have to finish running before
 the second program can start?

	A:
	No. Both of the
 programs will run at the same time; as output is produced by
 the first program, it can be consumed by the second
 program.

	Q:
	Why do small tools use
 text?

	A:
	It’s the most open
 format. If a small tool uses text, it means that any other
 programmer can easily read and understand the output just by
 using a text editor. Binary formats are normally obscure and
 hard to understand.

	Q:
	Can I connect several programs
 together with pipes?

	A:
	Yes, just add more
 | between each program
 name. A series of connected processes is called a
 pipeline.

	Q:
	If several processes are
 connected together with pipes and then I use > and < to redirect the Standard Input
 and Output, which processes will have their input and output
 redirected?

	A:
	The < will send a file’s contents to
 the first process in the pipeline. The > will capture the Standard
 Output from the last process in the pipeline.

	Q:
	Are the parentheses really
 necessary when I run the bermuda program with geo2json?

	A:
	Yes. The parentheses
 will make sure the data file is read by the Standard Input of
 the bermuda program.

Bullet Points
	If you want to perform a different task, consider writing a
 separate small tool.

	Design tools to work with Standard Input and Standard
 Output.

	Small tools normally read and write text data.

	You can connect the Standard Output of one process to the
 Standard Input of another process using a pipe.

But what if you want to output to more than one file?

 We’ve looked at how to read data from one file and write
 to another file using redirection, but what if the program needs to do
 something a little more complex, like send data to more than one file?
Imagine you need to create another tool that will read a set of
 data from a file, and then split it into other files.
[image: image with no caption]

So what’s the problem? You can’t write to files, right? Trouble
 is, with redirection you can write to only two
 files at most, one from the Standard Output and one from the Standard
 Error. So what do you do?

Roll your own data streams

 When a program runs, the operating system gives it three
 file data streams: the Standard Input, the Standard Output, and the
 Standard Error. But sometimes you need to create other data streams on
 the fly.
[image: image with no caption]

The good news is that the operating system doesn’t limit you to
 the ones you are dealt when the program starts. You can roll your own as
 the program runs.
Each data stream is represented by a pointer to a file, and you
 can create a new data stream using the fopen() function:
[image: image with no caption]

The fopen() function takes
 two parameters: a
 filename and a mode. The mode
 can be w to write to a file, r to read
 from a file, or a to append data to the
 end of a file.
Once you’ve created a data stream, you can print to it using
 fprintf(), just like before. But
 what if you need to read from a file? Well, there’s also an fscanf()
 function to help you do that too:
The mode is:
“w” = write,
“r” = read, or
“a” = append.

fprintf(out_file, "Don't wear %s with %s", "red", "green");

fscanf(in_file, "%79[^\n]\n", sentence);
Finally, when you’re finished with a data stream, you need to
 close it. The truth is that all data streams are
 automatically closed when the program ends, but it’s still a good idea
 to always close the data stream yourself:
fclose(in_file);

fclose(out_file);
Let’s try this out now.
Sharpen your pencil
This is the code for a program to read all of the data
 from a GPS file and then write the data into one of three other files.
 See if you can fill in the blanks.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 char line[80];
 FILE *in = fopen("spooky.csv",_________);
 FILE *file1 = fopen("ufos.csv",_________);
 FILE *file2 = fopen("disappearances.csv",_________);
 FILE *file3 = fopen("others.csv",_________);
 while (________ (in, "%79[^\n]\n", line) == 1) {
 if (strstr(line, "UFO"))
 ________ (file1, "%s\n", line);
 else if (strstr(line, "Disappearance"))
 ________ (file2, "%s\n", line);
 else
 ________ (file3, "%s\n", line);
 }
 _______ (file1);
 _______ (file2);
 _______ (file3);
 fclose(in);
 return 0;
}

There are no Dumb Questions
	Q:
	How many data streams can I
 have?

	A:
	It depends on the
 operating system, but usually a process can have up to 256.
 The key thing is there’s a limited number of them, so make
 sure you close them when you’re done using them.

	Q:
	Why is FILE in uppercase?

	A:
	It’s historic.
 FILE used to be defined
 using a macro. Macros are usually given uppercase names.
 You’ll hear about macros later on.

Sharpen your pencil: Solution
This is the code for a program to read all of the data from a
 GPS file and then write the data into one of three other files. You
 were to fill in the blanks.
[image: image with no caption]

The program runs, but...

If you compile and run the program with:
[image: image with no caption]

the program will read the spooky.csv file
 and split up the data, line by line, into three other files—
 ufos.csv,
 disappearances.csv, and
 other.csv.
That’s great, but what if a user wanted to split up the data
 differently? What if he wanted to search for different words or write
 to different files? Could he do that without needing to recompile the
 program each time?

There’s more to main()

 The thing is, any program you write will need to give the
 user the ability to change the way it works. If it’s a GUI program, you
 will probably need to give it preferences. And if it’s a command-line
 program, like our categorize tool, it
 will need to give the user the ability to pass it command-line arguments:
[image: image with no caption]

Like any array in C, you need some way of knowing how long the
 array is. That’s why the main()
 function has two parameters. The argc
 value is a count of the number of elements in the array.
Command-line arguments really give your program a lot more
 flexibility, and it’s worth thinking about which things you want your
 users to tweak at runtime. It will make your
 program a lot more valuable to them.
OK, let’s see how you can add a little
 flexibility to the categorize program.
Watch it!
The first argument contains the name of
 the program as it was run by the user.
That means that the first proper command-line argument is
 argv[1].

Code Magnets
This is a modified version of the categorize program that can read the
 keywords to search for and the files to use from the command line. See
 if you can fit the correct magnets into the correct slots.
The program runs using:
[image: image with no caption]

[image: image with no caption]

Code Magnets Solution
This is a modified version of the categorize program that can read the
 keywords to search for and the files to use from the command line. You
 were to fit the correct magnets into the correct slots.
The program runs using:
[image: image with no caption]

[image: image with no caption]

Test Drive
OK, let’s try out the new version of the code. You’ll need a
 test data file called spooky.csv.
[image: image with no caption]

Now you’ll need to run the categorize program with a few command-line
 arguments saying what text to look for and what filenames to
 use:
[image: image with no caption]

When the program runs, the following files are produced:
[image: image with no caption]

[image: image with no caption]

Safety Check
 Although at Head First Labs we never make mistakes
 (cough), it’s important in real-world programs to check for problems
 when you open a file for reading or writing. Fortunately, if there’s a
 problem opening a data stream, the fopen() function will return the value 0.
 That means if you want to check for errors, you should change code
 like:
FILE *in = fopen("i_dont_exist.txt", "r");
to this:
FILE *in;
if (!(in = fopen("dont_exist.txt", "r"))) {
 fprintf(stderr, "Can't open the file.\n");
 return 1;
}

Overheard at the Head First Pizzeria

[image: image with no caption]

Chances are, any program you write is going to need
 options. If you create a chat program, it’s going to need preferences.
 If you write a game, the user will want to change the shape of the blood
 spots. And if you’re writing a command-line tool, you are probably going
 to need to add command-line
 options.
Command-line options are the little switches you often see with
 command-line tools:
[image: image with no caption]

Let the library do the work for you

 Many programs use command-line options, so there’s a
 special library function you can use to make dealing with them a little
 easier. It’s called getopt(), and each time you call
 it, it returns the next option it finds on the command line.
Let’s see how it works. Imagine you have a program that can take a
 set of different options:
[image: image with no caption]

This program needs one option that will take a value (-e = engines) and another that is simply
 on or off (-a = awesomeness). You can handle these
 options by calling getopt() in a loop
 like this:
[image: image with no caption]

Inside the loop, you have a switch statement to handle each of the valid
 options. The string ae: tells the getopt() function that a and e are
 valid options. The e is followed by a
 colon to tell getopt() that the
 -e needs to be followed by an extra
 argument. getopt() will point to that
 argument with the optarg variable.
When the loop finishes, you tweak the argv and argc variables to skip past all of the options
 and get to the main command-line arguments. That will make your argv array look like this:
[image: image with no caption]

The Polite Guide to Standards
The unistd.h header is not actually part of
 the standard C library. Instead, it gives your programs access to some
 of the POSIX libraries. POSIX was an attempt to create a common set of
 functions for use across all popular operating systems.

Watch it!
After processing the arguments, the 0th
 argument will no longer be the program name.
argv[0] will
 instead point to the first command-line argument that follows the
 options.

Pizza Pieces
Looks like someone’s been taking a bite out of the pizza code.
 See if you can replace the pizza slices and rebuild the order_pizza program.
[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

Pizza Pieces Solution
Looks like someone’s been taking a bite out of the pizza code.
 You were to replace the pizza slices and rebuild the order_pizza program.
[image: image with no caption]

[image: image with no caption]

Test Drive
Now you can try out the pizza-order program:
[image: image with no caption]

It works!
Well, you’ve learned a lot in this chapter. You got deep into
 the Standard Input, Standard Output, and Standard Error. You learned
 how to talk to files using redirection and your own custom data
 streams. Finally, you learned how to deal with command-line arguments
 and options.
A lot of C programmers spend their time creating small tools,
 and most of the small tools you see in operating systems like Linux
 are written in C. If you’re careful in how you design them, and if you
 make sure that you design tools that do one
 thing and do that one thing
 well, you’re well on course to becoming a kick-ass C
 coder.

There are no Dumb Questions
	Q:
	 Can I combine options
 like -td now instead of
 -d now
 -t?

	A:
	Yes, you can. The
 getopt() function will
 handle all of that for you.

	Q:
	What about changing the order of
 the options?

	A:
	Because of the way we
 read the options, it won’t matter if you type in -d now -t or -t -d now or -td now.

	Q:
	So if the program sees a value
 on the command line beginning with “ -”, it will treat it as an
 option?

	A:
	If it reads it before
 it gets to the main command-line arguments, it will,
 yes.

	Q:
	But what if I want to pass
 negative numbers as command-line arguments like set_temperature -c -4? Won’t it
 think that the 4 is an option, not an
 argument?

	A:
	In order to avoid
 ambiguity, you can split your main arguments from the options
 using --. So you would
 write set_temperature -c --
 -4. getopt() will
 stop reading options when it sees the --, so the rest of the line will be
 read as simple arguments.

Bullet Points
	There are two versions of the main() function—one with command-line
 arguments, and one without.

	Command-line arguments are passed to main() as an argument count and an array
 of pointers to the argument strings.

	Command-line options are command-line arguments prefixed
 with “ -”.

	The getopt() function
 helps you deal with command-line options.

	You define valid options by passing a string to getopt() like ae:.

	A “ :” (colon) following
 an option in the string means that the option takes an additional
 argument.

	getopt() will record the
 options argument using the optarg variable.

	After you have read all of the options, you should skip past
 them using the optind
 variable.

Your C Toolbox

You’ve got Chapter 3 under your belt,
 and now you’ve added small tools to your toolbox. For a complete list of
 tooltips in the book, see Appendix B.
[image: image with no caption]

Chapter 4. Using Multiple Source Files: Break it down, build it up

[image: image with no caption]

If you create a big program, you don’t want
 a big source file.
Can you imagine how difficult and time-consuming a single source
 file for an enterprise-level program would be to maintain? In this
 chapter, you’ll learn how C allows you to break your source code into
 small, manageable chunks and then
 rebuild them into one huge program.
 Along the way, you’ll learn a bit more about data
 type subtleties and get to meet your new best friend: make.
Guess the Data Type
C can handle quite a few different types of data:
 characters and whole numbers, floating-point values for everyday values,
 and floating-point numbers for really precise scientific calculations.
 You can see a few of these data types listed on the opposite page. See
 if you can figure out which data type was used in each example.
 Remember: each example
 uses a different data type.

[image: image with no caption]

[image: image with no caption]

Guess the Data Type Solution
C can handle quite a few different types of data: characters and
 whole numbers, floating-point values for everyday values, and
 floating-point numbers for really precise scientific calculations. You
 can see a few of these data types listed on the opposite page. You were
 to figure out which data type was used in each example.
 Remember: each example
 uses a different data type.

[image: image with no caption]

[image: image with no caption]

Your quick guide to data types
 char
Each character is stored in the computer’s memory as a character
 code. And that’s just a number. So when the computer sees A, to the computer it’s the same as seeing the
 literal number 65.
Note
65 is the ASCII code for A.

int
If you need to store a whole number, you can generally just use an
 int. The exact maximum size of an
 int can vary, but it’s guaranteed to
 be at least 16 bits. In general, an int can store numbers up to a few
 million.
short
But sometimes you want to save a little memory. Why use an
 int if you just want to store numbers
 up to few hundreds or thousands? That’s what a short is for. A short number usually takes up about half the
 space of an int.
long
Yes, but what if you want to store a really large count? That’s what the long data type was invented for. On some
 machines, the long data type takes up
 twice the memory of an int, and it can hold numbers up in the
 billions. But because most computers
 can deal with really large ints, on a
 lot of machines, the long data type
 is exactly the same size as an int. The maximum size of a long is guaranteed to be at least 32
 bits.
float
float is the basic data type
 for storing floating-point numbers. For most everyday floating-point
 numbers—like the amount of fluid in your orange mocha frappuccino—you
 can use a float.
double
Yes, but what if you want to get really precise? If you want to perform calculations
 that are accurate to a large number of decimal
 places, then you might want to use a double. A double takes up twice the memory of a float, and it uses that extra space to store
 numbers that are larger and more precise.

Don’t put something big into something small

 When you’re passing around values, you need to be careful
 that the type of the value matches the type of the variable you are
 going to store it in.
Different data types use different amounts of memory. So you need
 to be careful that you don’t try to store a value that’s too large for
 the amount of space allocated to a variable. short variables take up less memory than
 ints, and ints take up less memory than longs.
Now there’s no problem storing a short value inside an int or a long variable. There is plenty of space in
 memory, and your code will work correctly:
[image: image with no caption]

[image: image with no caption]

The problems start to happen if you go the other way around—if,
 say, you try to store an int value
 into a short.
[image: image with no caption]

Sometimes, the compiler will be able to spot that you’re trying to
 store a really big value into a small variable, and then give you a
 warning. But a lot of the time the compiler won’t be smart enough for
 that, and it will compile the code without complaining. In that case,
 when you try to run the code, the computer won’t be able to store a
 number 100,000 into a short variable.
 The computer will fit in as many 1s and 0s as it can, but the number
 that ends up stored inside the y
 variable will be very different from the one you
 sent it:
The value of y = -31072
Geek Bits
So why did putting a large number into a short go negative? Numbers are stored in
 binary. This is what 100,000 looks like in binary:
x <- 0001 1000 0110 1010 0000
But when the computer tried to store that value into a short, it only allowed the value a couple of
 bytes of storage. The program stored just the righthand
 side of the number:
y <- 1000 0110 1010 0000
Signed values in binary
 beginning with a 1 in highest bit are treated as negative numbers. And
 this shortened value is equal to this in decimal:
-31072

Use casting to put floats into whole numbers

 What do you think this piece of code will display?
int x = 7;
int y = 2;
float z = x / y;
printf("z = %f\n", z);
[image: image with no caption]

The answer? 3.0000. Why is
 that? Well, x and y are both integers, and if you divide
 integers you always get a rounded-off whole number—in this case,
 3.
What do you do if you want to perform calculations on whole
 numbers and you want to get floating-point results? You could store the
 whole numbers into float variables
 first, but that’s a little wordy. Instead, you can use a cast to convert the numbers on the fly:
int x = 7;
int y = 2;
float z =
(float)x /
(float)y;
printf("z = %f\n", z);
The (float) will
 cast an integer value into a float value. The calculation will then work
 just as if you were using floating-point values the entire time. In
 fact, if the compiler sees you are adding, subtracting, multiplying, or
 dividing a floating-point value with a whole number, it will
 automatically cast the numbers for you. That means you can cut down the
 number of explicit casts in your code:
[image: image with no caption]

Note
You can put some other keywords before data types to change the
 way that the numbers are interpreted:
unsigned
The number will always be positive. Because it doesn’t need to
 worry about recording negative numbers, unsigned numbers can store larger numbers
 since there’s now one more bit to work with. So an unsigned int stores numbers from 0 to a
 maximum value that is about twice as large as the maximum number that
 can be stored inside an int.
 There’s also a signed keyword, but you almost never see it, because
 all data types are signed by default.
[image: image with no caption]

long
That’s right, you can prefix a data type with the word long and make it longer. So a long int is a longer version of an int, which means it can store a larger range
 of numbers. And a long long is
 longer than a long. You can also
 use long with floating-point
 numbers.
[image: image with no caption]

Exercise
There’s a new program helping the waiters bus tables at the Head
 First Diner. The code automatically totals a bill and adds sales tax
 to each item. See if you can figure out what needs to go in each of
 the blanks.
Note: there are several data
 types that could be used for this program, but which would you use for
 the kind of figures you’d expect?
[image: image with no caption]

Exercise Solution
There’s a new program helping the waiters bus tables at the Head
 First Diner. The code automatically totals a bill and adds sales tax
 to each item. You were to figure out what needs to go in each of the
 blanks.
Note: there are several data
 types that could be used for this program, but which would you use for
 the kind of figures you’d expect?
[image: image with no caption]

Data Type Sizes Up Close
 Data types are different sizes on different platforms.
 But how do you find out how big an int is, or how many bytes a double takes up? Fortunately, the C Standard
 Library has a couple of headers with the details. This program will
 tell you about the sizes of ints
 and floats:
[image: image with no caption]

When you compile and run this code, you will see something like
 this:
[image: image with no caption]

The values you see on your particular machine will probably be
 different.
What if you want to know the details for chars or doubles? Or longs? No problem. Just replace INT and FLT with CHAR (chars), DBL (doubles), SHRT (shorts), or LNG (longs).

There are no Dumb Questions
	Q:
	 Why are data types
 different on different operating systems? Wouldn’t it be less
 confusing to make them all the same?

	A:
	C uses different data
 types on different operating systems and processors because
 that allows it to make the most out of the hardware.

	Q:
	In what way?

	A:
	When C was first
 created, most machines were 8-bit. Now, most machines are 32-
 or 64-bit. Because C doesn’t specify the exact size of its
 data types, it’s been able to adapt over time. And as newer
 machines are created, C will be able to make the most of them
 as well.

	Q:
	What do 8-bit and 64-bit
 actually mean?

	A:
	Technically, the bit
 size of a computer can refer to several things, such as the
 size of its CPU instructions or the amount of data the CPU can
 read from memory. The bit size is really the favored size of
 numbers that the computer can deal with.

	Q:
	So what does that have to do
 with the size of ints and
 doubles?

	A:
	If a computer is
 optimized best to work with 32-bit numbers, it makes sense if
 the basic data type—the int—is set at 32 bits.

	Q:
	I understand how whole numbers
 like ints work, but how are
 floats and doubles stored? How does the
 computer represent a number with a decimal
 point?

	A:
	It’s complicated.
 Most computers used a standard published by the IEEE (
 http://tinyurl.com/6defkv6).

	Q:
	Do I really need to understand
 how floating-point numbers work?

	A:
	No. The vast majority
 of developers use floats
 and doubles without
 worrying about the details.

Oh no...it’s the out-of-work actors...

Some people were never really cut out to be programmers. It seems
 that some aspiring actors are filling in their time between
 roles and making a little extra cash by cutting code, and
 they’ve decided to spend some time freshening up the code in the
 bill-totalling program.
By the time they rejiggered the code, the actors were much happier
 about the way everything looked...but there’s just a tiny
 problem.
The code doesn’t compile
 anymore.
[image: image with no caption]

Let’s see what’s happened to the code

This is what the actors did to the code. You can see they really
 just did a couple of things.
	#include <stdio.h>

float total = 0.0;
short count = 0;
/* This is 6%. Which is a lot less than my agent takes...*/
short tax_percent = 6;

int main()
{
 /* Hey - I was up for a movie with Val Kilmer */
 float val;
 printf("Price of item: ");
 while (scanf("%f", &val) == 1) {
 printf("Total so far: %.2f\n", add_with_tax(val));
 printf("Price of item: ");
 }
 printf("\nFinal total: %.2f\n", total);
 printf("Number of items: %hi\n", count);
 return 0;
}

float add_with_tax(float f)
{
 float tax_rate = 1 + tax_percent / 100.0;
 /* And what about the tip? Voice lessons ain't free */
 total = total + (f * tax_rate);
 count = count + 1;
 return total;
}

The code has had some comments added, and they also changed the order of the functions. They made
 no other changes.
So there really shouldn’t be a problem. The code should be good to
 go, right? Well, everything was great, right up until the point that
 they compiled the code...
Test Drive
If you open up the console and try to compile the
 program, this happens:
[image: image with no caption]

Bummer.
That’s not good. What does error:
 conflicting types for 'add_with_tax' mean? What is a
 previous implicit declaration? And why does it
 think the line that prints out the current total is now an int? Didn’t we design that to be floating
 point?
The compiler will ignore the changes made to the comments, so
 that shouldn’t make any difference. That means the problem must be
 caused by changing the order of the
 functions. But if the order is the problem, why doesn’t the
 compiler just return a message saying something like:
[image: image with no caption]

Seriously, why doesn’t the compiler give us a little help
 here?
To understand exactly what’s happening here, you need to get
 inside the head of the compiler for a while and look at things from
 its point of view. You’ll see that what’s happening is that the
 compiler is actually trying to be a little too
 helpful.

Compilers don’t like surprises

 So what happens when the compiler sees this line of
 code?
printf("Total so far: %.2f\n", add_with_tax(val));
	The compiler sees a call to a function
 it doesn’t recognize.
Rather than complain about it, the compiler figures that it
 will find out more about the function later in the source file. The
 compiler simply remembers to look out for the function later on in
 the file. Unfortunately, this is where the problem lies...
[image: image with no caption]

	The compiler needs to know what data
 type the function will return.
Of course, the compiler can’t know what the function will
 return just yet, so it makes an assumption. The compiler assumes it
 will return an int.
[image: image with no caption]

	When it reaches the code for the
 actual function, it returns a “conflicting types for ‘add_with_tax’”
 error.
This is because the compiler thinks it has two functions with
 the same name. One function is the real one in the file. The other
 is the one that the compiler assumed would return an int.
[image: image with no caption]

Brain Power
The computer makes an assumption that the function returns an
 int, when in reality it returns a
 float. If you were designing the C
 language, how would you fix the problem?

[image: image with no caption]

You could just put the functions back in
 the correct order and define the function before you call it in
 main().
Changing the order of the functions means that you can avoid the
 compiler ever making any dangerous assumptions about the return types of
 unknown functions. But if you force yourself to always define functions
 in a specific order, there are a couple of consequences.
Fixing function order is a pain

Say you’ve added a cool new function to your code that everyone
 thinks is fantastic:
int do_whatever(){...}
float do_something_fantastic(int awesome_level) {...}
int do_stuff() {
 do_something_fantastic(11);
}
What happens if you then decide your
 program will be even better if you add a call to
 the do_something_fantastic()
 function in the existing do_whatever() code? You will have to
 move the function earlier in the
 file. Most coders want to spend their time improving what their code
 can do. It would be better if you didn’t have to shuffle the order of
 the code just to keep the compiler happy.

In some situations, there is no correct order

OK, so this situation is kind of rare, but occasionally you
 might write some code that is mutually
 recursive:
[image: image with no caption]

If you have two functions that call each
 other, then one of them will always
 be called in the file before it’s defined.
For both of those reasons, it’s really useful to be able to
 define functions in whatever order is easiest at the time. But
 how?

Split the declaration from the definition

 Remember how the compiler made a note to itself about the
 function it was expecting to find later in the file? You can avoid the
 compiler making assumptions by explicitly
 telling it what functions it should expect. When you tell the
 compiler about a function, it’s called a function declaration:
[image: image with no caption]

The declaration is just a function signature: a record of what the function will
 be called, what kind of parameters it will accept, and what type of data it will return.
Once you’ve declared a function, the compiler won’t need to make
 any assumptions, so it won’t matter if you define the function after you
 call it.
So if you have a whole bunch of functions in your code and you
 don’t want to worry about their order in the file, you can put a list of
 function declarations at the start of your C program code:
float do_something_fantastic();
double awesomeness_2_dot_0();
int stinky_pete();
char make_maguerita(int count);
But even better than that, C allows you to take that whole set of
 declarations out of your code and put them in a
 header file. You’ve already used
 header files to include code from the C Standard Library:
[image: image with no caption]

Let’s go see how you can create your own
 header files.
[image: image with no caption]

Creating your first header file

 To create a header, you just need to do two things:
	Create a new file with a .h
 extension.
If you are writing a program called totaller, then create a file called
 totaller.h and write your declarations inside
 it:
[image: image with no caption]

You won’t need to include the main() function in the header file,
 because nothing else will need to call it.

	Include your header file in your main
 program.
At the top of your program, you should add an extra include line:
[image: image with no caption]

When you write the name of the header file, make sure you surround
 it with double quotes rather than angle brackets. Why the difference?
 When the compiler sees an include
 line with angle brackets, it assumes it will find the header file
 somewhere off in the directories where the library code lives. But
 your header file is in the same
 directory as your .c file. By
 wrapping the header filename in quotes, you are telling the compiler to
 look for a local file.
Note
Local header files can also include directory names, but you
 will normally put them in the same directory as the C file.

When the compiler reads the #include in the code, it will read the
 contents of the header file, just as if it had been typed into the
 code.
Separating the declarations into a separate header file keeps your
 main code a little shorter, and it has another big
 advantage that you’ll find out about in a few pages.
For now, let’s see if the header file fixed the mess.
#include is a preprocessor
 instruction.

Test Drive
Now when you compile the code, this happens:
[image: image with no caption]

The compiler reads the function declarations from the header
 file, which means it doesn’t have to make any guesses about the return
 type of the function. The order of the functions doesn’t
 matter.
Just to check that everything is OK, you can run the generated
 program to see if it works the same as before.
[image: image with no caption]

BE the Compiler
Look at the program below. Part of the program is missing. Your
 job is to play like you’re the compiler and say what you would do if
 each of the candidate code fragments on the right were slotted into
 the missing space.
[image: image with no caption]

[image: image with no caption]

	float mercury_day_in_earth_days();

int main()
{
 float length_of_day = mercury_day_in_earth_days();
 int hours = hours_in_an_earth_day();
 float day = length_of_day * hours;

	[image:]	You can compile the
 code.

	[image:]	You should display a
 warning.

	[image:]	The program will
 work.

	int main()
{
 float length_of_day = mercury_day_in_earth_days();
 int hours = hours_in_an_earth_day();
 float day = length_of_day * hours;

	[image:]	You can compile the
 code.

	[image:]	You should display a
 warning.

	[image:]	The program will
 work.

	float mercury_day_in_earth_days();
int hours_in_an_earth_day();

int main()
{
 int length_of_day = mercury_day_in_earth_days();
 int hours = hours_in_an_earth_day();
 float day = length_of_day * hours;

	[image:]	You can compile the
 code.

	[image:]	You should display a
 warning.

	[image:]	The program will
 work.

BE the Compiler Solution
Look at the program below. Part of the program is missing. Your
 job was to play like you’re the compiler and say what you would do if
 each of the candidate code fragments on the right were slotted into
 the missing space.
[image: image with no caption]

[image: image with no caption]

There are no Dumb Questions
	Q:
	 So I don’t need to have
 declarations for int
 functions?

	A:
	Not necessarily,
 unless you are sharing code. You’ll see more about this
 soon.

	Q:
	I’m confused. You talk about the
 compiler preprocessing? Why does the
 compiler do that?

	A:
	Strictly speaking,
 the compiler just does the compilation step: it converts the C
 source code into assembly code. But in a looser sense, all of
 the stages that convert the C source code into the final
 executable are normally called
 compilation, and the gcc tool allows you to control those
 stages. The gcc tool does
 preprocessing and compilation.

	Q:
	What is the
 preprocessor?

	A:
	Preprocessing is the
 first stage in converting the raw C source code into a working
 executable. Preprocessing creates a modified version of the
 source just before the proper compilation
 begins. In your code, the preprocessing step read the contents
 of the header file into the main file.

	Q:
	Does the preprocessor create an
 actual file?

	A:
	No, compilers
 normally just use pipes for sending the stuff through the
 phases of the compiler to make things more efficient.

	Q:
	Why do some headers have quotes
 and others have angle brackets?

	A:
	Strictly speaking, it
 depends on the way your compiler works. Usually quotes mean to
 simply look for a file using a relative path. So if you just
 include the name of a file, without including a directory
 name, the compiler will look in the current directory. If
 angle brackets are used, it will search for the file along a
 path of directories.

	Q:
	What directories will the
 compiler search when it is looking for header
 files?

	A:
	The gcc compiler knows where the
 standard headers are stored. On a Unix-style operating system,
 the header files are normally in places like
 /usr/local/include, /
 usr/include, and a few others.

	Q:
	So that’s how it works for
 standard headers like
 stdio.h?

	A:
	Yes. You can read
 through the stdio.h file on a Unix-style
 machine in /usr/include/stdio.h. If you
 have the MinGW compiler on Windows, it will probably be in
 C:\MinGW\include\stdio.h.

	Q:
	Can I create my own
 libraries?

	A:
	Yes; you’ll learn how
 to do that later in the book.

Bullet Points
	 If the compiler finds a call to a function it hasn’t
 heard of, it will assume the function returns an int.

	So if you try to call a function before you define it, there
 can be problems.

	Function declarations tell the compiler what your functions
 will look like before you define them.

	If function declarations appear at the top of your source
 code, the compiler won’t get confused about return types.

	Function declarations are often put into header
 files.

	You can tell the compiler to read the contents of a header
 file using #include.

	The compiler will treat included code the same as code that is
 typed into the source file.

This Table’s Reserved...
C is a very small language. Here is the entire set of reserved
 words (in no useful order).
Every C program you ever see will break into just these words
 and a few symbols. If you use these for names, the compiler will be
 very, very upset.
	 auto
	 if
	 break

	 int
	 case
	 long

	 char
	 register
	 continue

	 return
	 default
	 short

	 do
	 sizeof
	 double

	 static
	 else
	 struct

	 entry
	 switch
	 extern

	 typedef
	 float
	 union

	 for
	 unsigned
	 goto

	 while
	 enum
	 void

	 const
	 signed
	 volatile

If you have common features...

 Chances are, when you begin to write several programs in
 C, you will find that there are some functions and features that you
 will want to reuse from other programs. For example, look at the specs
 of the two programs on the right.
XOR encryption is a very simple way of disguising a piece of text
 by XOR-ing each character with some value. It’s not very secure, but
 it’s very easy to do. And the same code that can encrypt text can also
 be used to decrypt it. Here’s the code to encrypt some text:
[image: image with no caption]

[image: image with no caption]

...it’s good to share code

Clearly, both of those programs are going to need to use the
 same encrypt() function. So you
 could just copy the code from one program to the other, right? That’s
 not so bad if there’s just a small amount of code to copy, but what if
 there’s a really large amount of code? Or what if the way the encrypt() function works needs to change in
 the future? If there are two copies of the encrypt() function, you will have to change
 it in more than one place.
For your code to scale properly, you really need to find some
 way to reuse common pieces of code—some way of taking a set of
 functions and making them available in a bunch of different
 programs.
How would you do that?
Brain Power
Imagine you have a set of functions that you want to share
 between programs. If you had created the C programming language, how
 would you allow code to be shared?

You can split the code into separate files

If you have a set of code that you want to share among several
 files, it makes a lot of sense to put that shared code into a separate
 .c file. If the compiler can
 somehow include the shared code when it’s compiling the program, you can
 use the same code in multiple applications at once. So if you ever need
 to change the shared code, you only have to do it in one place.
[image: image with no caption]

If you want to use a separate .c file for the
 shared code, that gives us a problem. So far, you
 have only created programs from single .c source
 files. So if you had a C program called blitz_hack, you would have created it from a
 single source code file called blitz_hack.c.
But now you want some way to give the compiler a set of source code files and say, “Go make a
 program from those.” How do you do that? What syntax do you use with the
 gcc compiler? And more importantly,
 what does it mean for a compiler to create a single
 executable program from several files? How would it work? How would it
 stitch them together?
To understand how the C compiler can
 create a single program from multiple files, let’s take a look at how
 compilation works...

Compilation behind the scenes

 To understand how a compiler can compile several source
 files into a single program, you’ll need to pull back the curtain and
 see how compilation really works.
	Preprocessing: fix the
 source.
[image: image with no caption]

	Compilation: translate into
 assembly.
The C programming language probably seems pretty low level,
 but the truth is it’s not low level enough for
 the computer to understand. The computer only really understands
 very low-level machine code
 instructions, and the first step to generate machine code is to
 convert the C source code into assembly
 language symbols like this:
movq -24(%rbp), %rax
movzbl(%rax), %eax
movl %eax, %edx
[image: image with no caption]

Looks pretty obscure? Assembly language describes the
 individual instructions the central processor will have to follow
 when running the program. The C compiler has a whole set of recipes
 for each of the different parts of the C language. These recipes
 will tell the compiler how to convert an if statement or a function call into a
 sequence of assembly language instructions. But even assembly isn’t
 low level enough for the computer. That’s why it needs...

	 Assembly: generate the object
 code.
The compiler will need to assemble the
 symbol codes into machine or object code. This is the actual binary code
 that will be executed by the circuits inside the CPU.
[image: image with no caption]

[image: image with no caption]

So are you all done? After all, you’ve taken the original C
 source code and converted it into the 1s and 0s that the computer’s
 circuits need. But no, there’s still one more step. If you give the
 computer several files to compile for a program, the compiler will
 generate a piece of object code for each source file. But in order
 for these separate object files to form a single executable program,
 one more thing has to occur...

	Linking: put it all
 together.
Once you have all of the separate pieces of object code, you
 need to fit them together like jigsaw pieces to form the executable program. The compiler will
 connect the code in one piece of object code that calls a function
 in another piece of object code. Linking will also make sure that
 the program is able to call library code properly. Finally, the
 program will be written out into the executable program file using a
 format that is supported by the operating system. The file format is
 important, because it will allow the operating system to load the
 program into memory and make it run.
[image: image with no caption]

So how do you actually tell gcc that we
 want to make one executable program from several separate source
 files?

The shared code needs its own header file

 If you are going to share the
 encrypt.c code between programs, you need some way
 to tell those programs about the encrypt code. You do that with a header
 file.
[image: image with no caption]

Include encrypt.h in your program

You’re not using a header file here to be able to reorder the
 functions. You’re using it to tell other
 programs about the encrypt()
 function:
[image: image with no caption]

Having encrypt.h inside the main program
 will mean the compiler will know enough about the encrypt() function to compile the code. At
 the linking stage, the compiler will be able to connect the call to
 encrypt(msg) in
 message_hider.c to the actual encrypt() function in
 encrypt.c.
Finally, to compile everything together you just need to pass
 the source files to gcc:
gcc message_hider.c encrypt.c -o message_hider
Sharing variables
You’ve seen how to share functions between different files.
 But what if you want to share variables? Source code files normally
 contain their own separate variables to prevent a variable in one
 file affecting a variable in another file with the same name. But if
 you genuinely want to share variables, you should declare them in
 your header file and prefix them with the keyword extern:
extern int passcode;

Test Drive
Let’s see what happens when you compile the message_hider program:
[image: image with no caption]

The program works. Now that you have the encrypt() function in a separate file, you
 can use it in any program you like. If you ever change the encrypt() function to be something a
 little more secure, you will need to amend only the
 encrypt.c file.

Bullet Points
	You can share code by putting it into a separate C
 file.

	You need to put the function declarations in a separate
 .h header file.

	Include the header file in every C file that needs to use
 the shared code.

	List all of the C files needed in the compiler
 command.

Go Off Piste
Write your own program using the encrypt() function. Remember, you can call
 the same function to decrypt text.

[image: image with no caption]

[image: image with no caption]

It’s not rocket science...or is it?

Breaking your program out into separate source files not
 only means that you can share code between
 different programs, but it also means you can start to create
 really large programs. Why? Well, because you can
 start to break your program down into smaller self-contained pieces of code. Rather than
 being forced to have one huge source file, you can
 have lots of simpler files that are easier to
 understand, maintain, and test.
So on the plus side, you can start to create really large
 programs. The downside? The downside is...you can start to create really
 large programs. C compilers are really efficient pieces of software.
 They take your software through some very complex transformations. They
 can modify your source, link hundreds of files together without blowing
 your memory, and even optimize the code you wrote, along the way. And
 even though they do all that, they still manage to run quickly.
But if you create programs that use more than a few files, the
 time it takes to compile the code starts to become important. Let’s say
 it takes a minute to compile a large project. That might not sound like
 a lot of time, but it’s more than long enough to break your train of
 thought. If you try out a change in a single line of code, you want to
 see the result of that change as quickly as possible. If you have to
 wait a full minute to see the result of every change, that will really
 start to slow you down.
Brain Power
Think carefully. Even a simple change might mean running a
 large, slow compile to see the result. Given what you know about the
 compilation process, how could you speed up the time to recompile the
 program?

Don’t recompile every file

 If you’ve just made a change to one or two of your source
 code files, it’s a waste to recompile every source file for your
 program. Think what happens when you issue a command like this:
[image: image with no caption]

What will the compiler do? It will run the preprocessor, compiler,
 and assembler for each source code file. Even the
 ones that haven’t changed. And if the source code hasn’t changed, the
 object code that’s generated for that
 file won’t change either. So if the compiler is generating the object
 code for every file, every time, what do you need to do?
Save copies of the compiled code

If you tell the compiler to save the object code it generates
 into a file, it shouldn’t need to recreate it unless the source code
 changes. If a file does change, you can recreate
 the object code for that one file
 and then pass the whole set of object files to the compiler so they
 can be linked.
[image: image with no caption]

If you change a single file, you will have to recreate the
 object code file from it, but you won’t need to
 create the object code for any other file. Then you can pass all the
 object code files to the linker and create a new version of the
 program.
So how do you tell gcc to save the
 object code in a file? And how do you then get the compiler to link
 the object files together?

First, compile the source into object files

 You want object code for each of the source files, and you
 can do that by typing this command:
[image: image with no caption]

gcc -c will compile the code but won’t
 link it.

[image: image with no caption]

The *.c will match every C file
 in the current directory, and the -c
 will tell the compiler that you want to create an object file for each
 source file, but you don’t want to link them together into a full
 executable program.
Then, link them together

Now that you have a set of object files, you can link them
 together with a simple compile command. But instead of giving the
 compiler the names of the C source files, you tell it the names of the
 object files:
[image: image with no caption]

The compiler is smart enough to recognize the files as object
 files, rather than source files, so it will skip most of the
 compilation steps and just link them together into an executable
 program called launch.
OK, so now you have a compiled program, just like before. But
 you also have a set of object files that are ready to be linked
 together if you need them again. So if you change just one of the
 files, you’ll only need to recompile that single file and then relink
 the program:
[image: image with no caption]

Even though you have to type two commands, you’re saving a
 lot of time:
[image: image with no caption]

Long Exercise
Here is some of the code that’s used to control the engine
 management system on the craft. There’s a timestamp on each file.
 Which files do you think need to be recreated to make the ems executable up to date? Circle the
 files you think need to be updated.
[image: image with no caption]

And in the galley, they need to check that their code’s up to
 date as well. Look at the times against the files. Which of these
 files need to be updated?
[image: image with no caption]

Long Exercise Solution
Here is some of the code that’s used to control the engine
 management system on the craft. There’s a timestamp on each file.
 You were to circle the files you think need to be recreated to make
 the ems executable up to
 date.
[image: image with no caption]

And in the galley, they need to check that their code’s up to
 date as well. Look at the times against the files. Which of these
 files need to be updated?
[image: image with no caption]

It’s hard to keep track of the files

[image: image with no caption]

It’s true: partial compiles are faster,
 but you have to think more carefully to make sure you recompile
 everything you need.
If you are working on just one source file, things will be pretty
 simple. But if you’ve changed a few files, it’s pretty easy to forget to
 recompile some of them. That means the newly compiled program won’t pick
 up all the changes you made. Now, of course, when you come to
 ship the final program, you can always make sure
 you can do a full recompile of every file, but you
 don’t want to do that while you’re still developing the code.
Even though it’s a fairly mechanical
 process to look for files that need to be compiled, if you do
 it manually, it will be pretty easy to miss some changes.
Is there something we can use to automate
 the process?
[image: image with no caption]

Automate your builds with the make tool

 You can compile your applications really quickly in
 gcc, as long as you keep track of
 which files have changed. That’s a tricky thing to do, but it’s also
 pretty straightforward to automate. Imagine you have a file that is
 generated from some other file. Let’s say it’s an object file that is
 compiled from a source file:
[image: image with no caption]

[image: image with no caption]

How do you tell if the thruster.o file needs
 to be recompiled? You just look at the timestamps of the two files. If
 the thruster.o file is older than the
 thruster.c file, then the
 thruster.o file needs to be recreated. Otherwise,
 it’s up to date.
That’s a pretty simple rule. And if you have a simple rule for
 something, then don’t think about it— automate
 it...
 make is a tool that can run the
 compile command for you. The make
 tool will check the timestamps of the source files and the generated
 files, and then it will only recompile the files if things have gotten
 out of date.
But before you can do all these things, you need to tell make about your source code. It needs to know
 the details of which files depend on which files. And it also needs to
 be told exactly how you want to build the code.
What does make need to know?

Every file that make compiles
 is called a target. Strictly
 speaking, make isn’t limited to
 compiling files. A target is any file that is
 generated from some other files. So a target
 might be a zip archive that is generated from the set of files that
 need to be compressed.
For every target, make needs
 to be told two things:
	The dependencies.
Which files the target is going to be generated from.

	The recipe.
The set of instructions it needs to run to generate the
 file.

Together, the dependencies and the recipe form a rule. A rule tells make all it needs to know to create the
 target file.
[image: image with no caption]

How make works

 Let’s say you want to compile
 thruster.c into some object code in
 thruster.o. What are the dependencies and what’s
 the recipe?
[image: image with no caption]

The thruster.o file is called the target, because it’s the file you want to
 generate. thruster.c is a dependency, because it’s
 a file the compiler will need in order to create
 thruster.o. And what will the recipe be? That’s the
 compile command to convert thruster.c into
 thruster.o.
[image: image with no caption]

Make sense? If you tell the make tool about the dependencies and the
 recipe, you can leave it to make to
 decide when it needs to recompile
 thruster.o.
But you can go further than that. Once you build the
 thruster.o file, you’re going to use it to create
 the launch program. That means the
 launch file can also be set up as a
 target, because it’s a file you want to generate. The dependency files
 for launch are all of the
 .o object files. The recipe is this command:
gcc *.o -o launch
Once make has been given the
 details of all of the dependencies and rules, all you have to do is tell
 it to create the launch file.
 make will work out the
 details.
[image: image with no caption]

[image: image with no caption]

But how do you tell make about the
 dependencies and recipes? Let’s find out.
Watch it!
The make tool may have a different name on
 Windows.
Because make came from the Unix world,
 there are different flavors of it available in Windows. MinGW includes
 a version of make
 called mingw32-make and Microsoft produce
 their own version called NMAKE.

Tell make about your code with a makefile

 All of the details about the targets, dependencies, and
 recipes need to be stored in a file called either
 makefile or Makefile. To see
 how it works, imagine you have a pair of source files that together
 create the launch program:
[image: image with no caption]

The launch program is made by
 linking the launch.o and
 thruster.o files. Those files are compiled from
 their matching C and header files, but the launch.o
 file also depends on the
 thruster.h file because it contains code that will
 need to call a function in the thruster code.
This is how you’d describe that build in a makefile:
[image: image with no caption]

Watch it!
All of the recipe lines MUST begin with
 a tab character.
If you just try to indent the recipe lines with
 spaces, the build won’t work.

Test Drive
Save your make rules into a
 text file called Makefile in the same directory;
 then, open up a console and type the following:
[image: image with no caption]

You can see that make was
 able to work out the sequence of commands required to create the
 launch program. But what happens if
 you make a change to the thruster.c file and then
 run make again?
[image: image with no caption]

make is able to skip creating
 a new version of launch.o. Instead, it just
 compiles thruster.o and then relinks the
 program.

There are no Dumb Questions
	Q:
	 Is make just like ant?

	A:
	It’s probably better
 to say that build tools like ant and rake are like make. make was one of the earliest tools
 used to automatically build programs from source code.

	Q:
	This seems like a lot of work
 just to compile source code. Is it really that
 useful?

	A:
	Yes, make is amazingly useful. For small
 projects, make might not
 appear to save you that much time, but once you have more than
 a handful of files, compiling and linking code together can
 become very painful.

	Q:
	If I write a makefile for a
 Windows machine, will it work on a Mac? Or a Linux
 machine?

	A:
	Because makefiles
 calls commands in the underlying operating system, sometimes
 makefiles don’t work on different operating systems.

	Q:
	Can I use make for things other than compiling
 code?

	A:
	Yes. make is most commonly used to
 compile code. But it can also be used as a command-line
 installer, or a source control tool. In fact, you can use
 make for almost any task
 that you can perform on the command line.

Tales from the Crypt
Why indent with tabs?
It’s easy to indent recipes with spaces instead of
 tabs. So why does make
 insist on using tabs? This is a quote from
 make ’s creator, Stuart
 Feldman:
“Why the tab in column 1? ... It worked, it stayed.
 And then a few weeks later I had a user population of about a dozen,
 most of them friends, and I didn’t want to screw up my embedded base.
 The rest, sadly, is history.”

Geek Bits
make takes away a lot of the
 pain of compiling files. But if you find that even it is not automatic
 enough, take a look at a tool called autoconf:
 http://www.gnu.org/software/autoconf/
autoconf is used to generate
 makefiles. C programmers often create tools to automate the creation
 of software. An increasing number of them are available on the GNU
 website.

Make Magnets
 Hey, baby, if you don’t groove to the latest tunes, then
 you’ll love the program the guys in the Head
 First Lounge just wrote! oggswing
 is a program that reads an Ogg Vorbis music file and creates a swing
 version. Sweet! See if you can complete the makefile that compiles
 oggswing and then uses it to
 convert a .ogg file:
[image: image with no caption]

[image: image with no caption]

Make Magnets Solution
Hey, baby, if you don’t groove to the latest tunes, then you’ll
 love the program the guys in the Head First
 Lounge just wrote! oggswing is a
 program that reads an Ogg Vorbis music file and creates a swing
 version. Sweet! You were to complete the makefile that compiles
 oggswing and then uses it to
 convert a .ogg file:
[image: image with no caption]

[image: image with no caption]

Geek Bits
The make tool can do far, far
 more than we have space to discuss here. To find out more about
 make and what it can do for you,
 visit the GNU Make Manual at:
 http://tinyurl.com/yczmjx

Liftoff!
If you have a very slow
 build, make will
 really speed things up. Most developers are so used to building their
 code with make that
 they even use it for small programs. make
 is like having a really careful developer
 sitting alongside you. If you have a large amount of code,
 make will
 always take care to build just the code you need at just the time you
 need it.
And sometimes getting things done in
 time is important...
[image: image with no caption]

Bullet Points
	It can take a long time to compile a large number of
 files.

	You can speed up compilation time by storing object code in
 *.o files.

	The gcc can compile
 programs from object files as well as source files.

	The make tool can be used
 to automate your builds.

	make knows about the
 dependencies between files, so it can compile just the files that
 change.

	make needs to be told
 about your build with a makefile.

	Be careful formatting your makefile: don’t forget to indent
 lines with tabs instead of spaces.

Your C Toolbox

You’ve got Chapter 4 under your belt,
 and now you’ve added data types and header files to your toolbox. For a
 complete list of tooltips in the book, see Appendix B.
[image: image with no caption]

C Lab 1: Arduino

This lab gives you a spec that describes a program for you to
 build, using the knowledge you’ve gained over the last few
 chapters.
This project is bigger than the ones you’ve seen so far. So read
 the whole thing before you get started, and give yourself a little time.
 And don’t worry if you get stuck. There are no new C concepts in here,
 so you can move on in the book and come back to the lab later.
We’ve filled in a few design details for you, and we’ve made sure
 you’ve got all the pieces you need to write the code. You can even build
 the physical device.
It’s up to you to finish the
 job, but we won’t give you the code for the answer.
The spec: make your houseplant talk

Ever wished your plants could tell you when they need
 watering? Well, with an Arduino they can! In this lab, you’ll create
 an Arduino-powered plant monitor, all coded in C.
Here’s what you’re going to build.
[image: image with no caption]

The physical device

The plant monitor has a moisture sensor that measures how wet
 your plant’s soil is. If the plant needs watering, an LED lights up
 until the plant’s been watered, and the string “Feed me!” is
 repeatedly sent to your computer.
When the plant has been watered, the LED switches off and the
 string “Thank you, Seymour!” is sent once to your computer.
[image: image with no caption]

The Arduino

 The brains of the plant monitor is an Arduino. An Arduino is a small
 micro-controller-based open source platform for electronic
 prototyping. You can connect it to sensors that pick up information
 about the world around it, and actuators that respond. All of this
 is controlled by code you write in C.
The Arduino board has 14 digital IO pins, which can be inputs
 or outputs. These tend to be used for reading on or off values, or
 switching actuators on or off.
The board also has six analog input pins, which take voltage
 readings from a sensor.
The board can take power from your computer’s USB port.
[image: image with no caption]

The Arduino IDE

You write your C code in an Arduino IDE. The IDE allows you to
 verify and compile your code, and then upload it to the Arduino
 itself via your USB port. The IDE also has a built-in serial monitor
 so that you can see what data the Arduino is sending back (if
 any).
The Arduino IDE is free, and you can get hold of a copy from
 www.arduino.cc/en/Main/Software.
[image: image with no caption]

Build the physical device

 You start by building the physical device. While this
 bit’s optional, we really recommend that you give it a go. Your plants
 will thank you for it.
[image: image with no caption]

Build the moisture sensor

Take a long piece of jumper wire and attach it to the head of
 one of the galvanized nails. You can either wrap the wire around the
 nail or solder it in place.
Once you’ve done that, attach another long piece of jumper
 wire to the second galvanized nail.
The moisture sensor works by checking the conductivity between
 the two nails. If the conductivity is high, the moisture content
 must be high. If it’s low, the moisture content must be low.
[image: image with no caption]

Connect the LED

Look at the LED. You will see that it has one longer
 (positive) lead and one shorter (negative) lead.
Now take a close look at the Arduino. You will see that along
 one edge there are slots for 14 digital pins labeled 0–13, and
 another one next to it labeled GND. Put the long positive lead of
 the LED into the slot labeled 13, and the shorter negative lead into
 the slot labeled GND.
This means that the LED can be controlled through digital pin
 13.
[image: image with no caption]

Connect the moisture sensor

Connect the moisture sensor as shown below:
	Connect a short jumper wire from the GND pin on the
 Arduino to slot D15 on the breadboard.

	Connect the 10K Ohm resistor from slot C15 on the
 breadboard to slot C10.

	Connect a short jumper wire from the 0 analog input pin to
 slot D10 on the breadboard.

	Take one of the galvanized nails, and connect the wire
 attached to it to slot B10.

	Connect a short jumper wire from the 5V pin on the Arduino
 to slot C5 on the breadboard.

	Take the other galvanized nail, and connect the wire
 attached to it to slot B5.

[image: image with no caption]

That’s the physical Arduino built. Now
 for the C code...

Here’s what your code should do

 Your Arduino C code should do the following.
Read from the moisture sensor

The moisture sensor is connected to an analog input pin. You
 will need to read analog values from this pin.
Here at the lab, we’ve found that our plants generally need
 watering when the value goes below 800, but your plant’s
 requirements may be different—say, if it’s a cactus.
[image: image with no caption]

Write to the LED

The LED is connected to a digital pin.
When the plant doesn’t need any more water, write to the
 digital pin the LED is connected to, and get it to switch off the
 LED.
When the plant needs watering, write to the digital pin and
 get it to switch on the LED. For extra credit, get it to flash. Even
 better, get it to flash when the conditions are borderline.
[image: image with no caption]

Write to the serial port

When the plant needs watering, repeatedly write the string
 “Feed me!” to the computer serial port.
When the plant has enough water, write the string “Thank you,
 Seymour!” to the serial port once.
Assume that the Arduino is plugged in to the computer USB
 socket.
[image: image with no caption]

Here’s what your C code should look like

An Arduino C program has a specific structure. Your program
 must implement the following:
[image: image with no caption]

The easiest way of writing the Arduino C code is with the
 Arduino IDE. The IDE allows you to verify and compile your code, and
 then upload your completed program to the Arduino board, where
 you’ll be able to see it running.
The Arduino IDE comes with a library of Arduino functions and
 includes lots of handy code examples. Turn the page to see a list of
 the functions you’ll find most useful when creating Arduino.

Here are some useful Arduino functions

 You’ll need some of these to write the program.
	 void
 pinMode(int pin, int mode)
	Tells the Arduino whether the digital pin is an input or output. mode can be either INPUT or OUTPUT.

	 int
 digitalRead(int pin)
	Reads the value from the digital pin. The return value can
 be either HIGH or LOW.

	 void
 digitalWrite(int pin, int value)
	Writes a value to a digital pin. value can be either
 HIGH or LOW.

	 int analogRead(int
 pin)
	Reads the value from an analog pin. The return value is
 between 0 and 1023.

	 void
 analogWrite(int pin, int value)
	Writes an analog value to a pin. value is between 0 and
 255.

	 void
 Serial.begin(long speed)
	Tells the Arduino to start sending and receiving serial
 data at speed bits per second. You
 usually set speed to 9600.

	 void
 Serial.println(val)
	Prints data to the serial port. val can be any data
 type.

	 void
 delay(long interval)
	Pauses the program for interval
 milliseconds.

The finished product

 You’ll know your Arduino project is complete when you
 put the moisture sensor in your plant’s soil, connect the Arduino to
 your computer, and start getting status updates about your
 plant.
[image: image with no caption]

If you have a Mac and want to make
 your plant really talk, you can download a script from the Head
 First Labs website that will read out the stream of serial
 data:
 www.headfirstlabs.com/books/hfc

Chapter 5. Structs, Unions, and Bitfields: Roll your own structures

[image: image with no caption]

 Most things in life are more
 complex than a simple number.
So far, you’ve looked at the basic data types of the C language, but
 what if you want to go beyond numbers and pieces of text, and model things in the real world? structs allow
 you to model real-world complexities by
 writing your own structures. In this chapter, you’ll learn how to
 combine the basic data types into
 structs, and even handle life’s uncertainties with unions. And
 if you’re after a simple yes or no, bitfields may be just what you need.
Sometimes you need to hand around a lot of data

You’ve seen that C can handle a lot of different types of
 data: small numbers and large numbers, floating-point numbers,
 characters, and text. But quite often, when you are recording data about
 something in the real world, you’ll find that you need to use more than
 one piece of data. Take a look at this example. Here you have two
 functions that both need the same set of data,
 because they are both dealing with the same real-world
 thing:
[image: image with no caption]

[image: image with no caption]

Now that’s not really so bad, is it? But even though you’re just
 passing four pieces of data, the code’s starting to look a little
 messy:
[image: image with no caption]

[image: image with no caption]

So how do you get around this problem? What can you do to avoid
 passing around lots and lots of data if you’re really only using it to
 describe a single thing?

Cubicle conversation

[image: image with no caption]

	Joe: Sure, it’s four pieces of data now, but
 what if we change the system to record another piece of data for
 the fish?

	Frank: That’s only one more parameter.

	Jill: Yes, it’s just one piece of data, but we’ll have to add that
 to every function that needs data about a
 fish.

	Joe: Yeah, for a big system, that might be
 hundreds of functions. And all because we add
 one more piece of data.

	Frank: That’s a good point. But how do we get around it?

	Joe: Easy, we just group the data into a single
 thing. Something like an array.

	Jill: I’m not sure that would work. Arrays normally store a list
 of data of the same type.

	Joe: Good point.

	Frank: I see. We’re recording strings and ints. Yeah, we can’t put those into the
 same array.

	Jill: I don’t think we can.

	Joe: But come on, there must be some way of doing this in C.
 Let’s think about what we need.

	Frank: OK, we want something that lets us refer to a whole set of
 data of different types all at once, as if it were a single piece
 of data.

	Jill: I don’t think we’ve seen anything like that yet, have
 we?

What you need is something that will let
 you record several pieces of data into one large piece of
 data.

Create your own structured data types with a struct

 If you have a set of data that you need to bundle together
 into a s ingle thing, then you can use a struct. The
 word struct is short for structured data type. A struct will let you take all of those
 different pieces of data into the code and wrap them up into one large
 new data type, like this:
struct fish {

const char *name;

const char *species;

int teeth;

int age;

};
[image: image with no caption]

This will create a new custom data type that is made up of a
 collection of other pieces of data. In fact, it’s a little bit like an
 array, except:
	It’s fixed length.

	The pieces of data inside the struct
 are given names.

But once you’ve defined what your new struct looks like, how do you create pieces of
 data that use it? Well, it’s quite similar to creating a new array. You
 just need to make sure the individual pieces of data are in the order
 that they are defined in the struct:
[image: image with no caption]

There are no Dumb Questions
	Q:
	Hey, wait a minute. What’s that
 const char thing
 again?

	A:
	 const char * is used for strings
 that you don’t want to change. That means it’s often used to
 record string literals.

	Q:
	OK. So does this struct store the
 string?

	A:
	In this case, no. The
 struct here just stores a
 pointer to a string. That means it’s just recording an
 address, and the string lives somewhere else in memory.

	Q:
	But you can store the whole
 string in there if you want?

	A:
	Yes, if you define a
 char array in the struct,
 like char name[20];.

Just give them the fish

 Now, instead of having to pass around a whole collection
 of individual pieces of data to the functions, you can just pass your
 new custom piece of data:
/* Print out the catalog entry */

void catalog(struct fish f)

{

...

}

/* Print the label for the tank */

void label(struct fish f)

{

...

}
Looks a lot simpler, doesn’t it? Not only does it mean the
 functions now only need a single piece of data, but
 the code that calls them is easier to read:
struct fish snappy = {"Snappy", "Piranha", 69, 4};

catalog(snappy);

label(snappy);
So that’s how you can define your custom data type, but how do you
 use it? How will our functions be able to read the
 individual pieces of data stored inside the struct?
Wrapping parameters in a struct makes
 your code more stable.

Why the fish is good for you
[image: image with no caption]

One of the great things about data passing around inside
 structs is that you can change the
 contents of your struct without
 having to change the functions that use it. For example, let’s say you
 want to add an extra field to fish:
struct fish {
 const char *name;
 const char *species;
 int teeth;
 int age;

int favorite_music;
};
All the catalog() and
 label() functions have been told is
 they they’re going to be handed a fish. They don’t know (and don’t care) that
 the fish now contains more data, so
 long as it has all the fields they need.
That means that structs don’t
 just make your code easier to read, they also make it better able to
 cope with change.

Read a struct’s fields with the “.” operator

 Because a struct’s a
 little like an array, you might think you can read its fields like an
 array:
[image: image with no caption]

But you can’t. Even though a struct stores fields like an array, the only
 way to access them is by name.
 You can do this using the “.” operator. If you’ve used another language,
 like JavaScript or Ruby, this will look familiar:
[image: image with no caption]

OK, now that you know a few things about
 using structs, let’s see if you can go back and update that
 code...
Pool Piranha
 Puzzle
Your job is to write a new version of the catalog() function using the fish struct. Take fragments of code from the
 pool and place them in the blank lines below. You may not use the same
 fragment more than once, and you won’t need to use all the
 fragments.
void catalog(struct fish f)
{
 printf("%s is a %s with %i teeth. He is %i\n",
 ___ .____, ____ .____, ____ .____, ____ ._____);
}

int main()
{
 struct fish snappy = {"Snappy", "Piranha", 69, 4};
 catalog(snappy);
 /* We're skipping calling label for now */
 return 0;
}
Note: each thing from the pool can be
 used only once!
[image: image with no caption]

Piranha Pool Puzzle
 Solution
Your job was to write a new version of the catalog() function using the fish struct. You were to take fragments of
 code from the pool and place them in the blank lines below.
[image: image with no caption]

[image: image with no caption]

Test Drive
 You’ve rewritten the catalog() function, so it’s pretty easy to
 rewrite the label() function as
 well. Once you’ve done that, you can compile the program and check
 that it still works:
[image: image with no caption]

That’s great. The code works the same as it did before, but now
 you have really simple lines of code that call the two
 functions:
catalog(snappy);

label(snappy);
Not only is the code more readable, but if you ever decide to
 record some extra data in the struct, you won’t have to change anything in
 the functions that use it.

There are no Dumb Questions
	Q:
	So is a struct just an
 array?

	A:
	No, but
 like an array, it groups a number of
 pieces of data together.

	Q:
	An array variable is just a
 pointer to the array. Is a struct variable a pointer to a
 struct?

	A:
	No, a struct variable is a name for the
 struct itself.

	Q:
	I know I don’t have to, but
 could I use [0], [1],... to access the fields of a
 struct?

	A:
	No, you can only
 access fields by name.

	Q:
	Are structs like classes in other
 languages?

	A:
	They’re similar, but
 it’s not so easy to add methods to structs.

Structs In Memory Up Close
 When you define a struct, you’re not telling the computer to
 create anything in memory. You’re just giving it a template for how you want a new type of data
 to look.
struct fish {
 const char *name;
 const char *species;
 int teeth;
 int age;
};
But when you define a new variable, the computer will need to
 create some space in memory for an instance of the struct. That space in memory will need to be
 big enough to contain all of the fields within the struct:
[image: image with no caption]

So what do you think happens when you assign a struct to another variable? Well, the
 computer will create a brand-new copy of the
 struct. That means it will need to allocate another piece
 of memory of the same size, and then copy over each of the
 fields.
[image: image with no caption]

Remember: when you’re assigning struct
 variables, you are telling the computer to copy
 data.

Watch it!
The assignment copies the pointers to
 strings, not the strings themselves.
When you assign one struct to another, the contents of
 the struct
 will be copied. But if, as here, that includes pointers, the assignment will just copy the
 pointer values. That means the name and species fields of
 gnasher and
 snappy both point to the
 same strings.

Can you put one struct inside another?

 Remember that when you define a struct, you’re actually creating a
 new data type. C gives us lots of built-in data
 types like ints and shorts, but a struct lets us combine existing types together
 so that you can describe more complex objects to
 the computer.
But if a struct creates a data
 type from existing data types, that means you can also create structs from
 other structs. To see how
 this works, let’s look at an example.
[image: image with no caption]

This code tells the computer one struct will contain another struct. You can then create variables using
 the same array-like code as before, but now you can include the data for
 one struct inside
 another:
[image: image with no caption]

Once you’ve combined structs
 together, you can access the fields using a chain
 of “.” operators:
printf("Snappy likes to eat %s",
snappy.care.food);
printf("Snappy likes to exercise for %f hours",
snappy.care.exercise_hours);
OK, let’s try out your new struct
 skillz...
Why nest structs?
Why would you want to do this? So you can cope with complexity. structs give us bigger building
 blocks of data. By combining structs together, you can create larger and
 larger data structures. You might have to begin with just ints and shorts, but with structs, you can describe hugely complex
 things, like network streams or
 video images.

Long Exercise
The guys at the Head First Aquarium are starting to record lots
 of data about each of their fish guests. Here are their structs:
struct exercise {
 const char *description;
 float duration;
};

struct meal {
 const char *ingredients;
 float weight;
};

struct preferences {
 struct meal food;
 struct exercise exercise;
};

struct fish {
 const char *name;
 const char *species;
 int teeth;
 int age;
 struct preferences care;
};
This is the data that will be recorded for one of the
 fish:
Name: Snappy
Species: Piranha
Food ingredients: meat
Food weight: 0.2 lbs
Exercise description: swim in the jacuzzi
Exercise duration 7.5 hours
Question 0: How would you
 write this data in C?
struct fish snappy = ______________________________
Question 1: Complete the code
 of the label() function so it
 produces output like this:
Name:Snappy
Species:Piranha
4 years old, 69 teeth
Feed with 0.20 lbs of meat and allow to swim in the jacuzzi for 7.50 hours

void label(struct fish a)
{
 printf("Name:%s\nSpecies:%s\n%i years old, %i teeth\n",
 a.name, a.species, a.teeth, a.age);
 printf("Feed with %2.2f lbs of %s and allow to %s for %2.2f hours\n",
 _______________________________, _______________________________,
 _______________________________, _______________________________);
}

Long Exercise Solution
The guys at the Head First Aquarium are starting to record lots
 of data about each of their fish guests. Here are their structs:
struct exercise {
 const char *description;
 float duration;
};

struct meal {
 const char *ingredients;
 float weight;
};

struct preferences {
 struct meal food;
 struct exercise exercise;
};

struct fish {
 const char *name;
 const char *species;
 int teeth;
 int age;
 struct preferences care;
};
This is the data that will be recorded for one of the
 fish:
Name: Snappy
Species: Piranha
Food ingredients: meat
Food weight: 0.2 lbs
Exercise description: swim in the jacuzzi
Exercise duration 7.5 hours
Question 0: How would you
 write this data in C?
[image: image with no caption]

Question 1: Complete the code
 of the label() function so it
 produces output like this:
[image: image with no caption]

[image: image with no caption]

 You can give your struct a proper
 name using typedef.
When you create variables for built-in data types, you can use
 simple short names like int or
 double, but so far, every time you’ve
 created a variable containing a struct you’ve had to include the struct keyword.
struct cell_phone {
 int cell_no;
 const char *wallpaper;
 float minutes_of_charge;
};
...
struct cell_phone p = {5557879, "sinatra.png", 1.35};
But C allows you to create an alias for any struct that you create. If you add the word
 typedef before
 the struct keyword, and a type name after the
 closing brace, you can call the new type whatever you like:
[image: image with no caption]

typedefs can shorten your code
 and make it easier to read. Let’s see what your code will look like if
 you start to add typedefs to
 it...
What should I call my new type?
If you use typedef to create
 an alias for a struct, you will
 need to decide what your alias
 will be. The alias is just the name of your type. That means there are
 two names to think about: the name of the
 struct (struct cell_phone) and the name of the
 type (
 phone). Why have two
 names? You usually don’t need both. The compiler is quite happy for
 you to skip the struct name, like
 this:
typedef struct {
 int cell_no;
 const char *wallpaper;
 float minutes_of_charge;
}
phone;
phone p = {5557879, "s.png", 1.35};
This is the alias.

Exercise
It’s time for the scuba diver to make his daily round of the
 tanks, and he needs a new label on his suit. Trouble is, it looks like
 some of the code has gone missing. Can you work out what the missing
 words are?
#include <stdio.h>

 _____________ struct {
 float tank_capacity;
 int tank_psi;
 const char *suit_material;
} ______________;

 _____________ struct scuba {
 const char *name;
 equipment kit;
} diver;

void badge(______________ d)
{
 printf("Name: %s Tank: %2.2f(%i) Suit: %s\n",
 d.name, d.kit.tank_capacity, d.kit.tank_psi, d.kit.suit_material);
}

int main()
{
 ______________ randy = {"Randy", {5.5, 3500, "Neoprene"}};
 badge(randy);
 return 0;
}

Exercise Solution
It’s time for the scuba diver to make his daily round of the
 tanks, and he needs a new label on his suit. Trouble is, it looks like
 some of the code has gone missing. Could you work out what the missing
 words were?
[image: image with no caption]

Bullet Points
	A struct is a data type
 made from a sequence of other data types.

	structs are fixed
 length.

	struct
 fields are accessed by name, using the <
 struct>.<
 field name>
 syntax (aka dot notation).

	struct fields are stored
 in memory in the same order they appear in the code.

	You can nest structs.

	typedef creates an
 alias for a data type.

	If you use typedef with a
 struct, then you can skip
 giving the struct a
 name.

There are no Dumb Questions
	Q:
	Do struct fields get placed next to
 each other in memory?

	A:
	Sometimes there are
 small gaps between the fields.

	Q:
	Why’s that?

	A:
	The computer likes
 data to fit inside word boundaries. So if a computer uses
 32-bit words, it won’t want a short, say, to be split over a
 32-bit boundary.

	Q:
	So it would leave a gap and
 start the short in the next
 32-bit word?

	A:
	Yes.

	Q:
	Does that mean each field takes
 up a whole word?

	A:
	No. The computer
 leaves gaps only to prevent fields from splitting across word
 boundaries. If it can fit several fields into a single word,
 it will.

	Q:
	Why does the computer care so
 much about word boundaries?

	A:
	It will read complete
 words from the memory. If a field was split across more than
 one word, the CPU would have to read several locations and
 somehow stitch the value together.

	Q:
	And that’d be
 slow?

	A:
	That’d be
 slow.

	Q:
	In languages like Java, if I
 assign an object to a variable, it doesn’t copy the object, it
 just copies a reference. Why is it different in
 C?

	A:
	In C,
 all assignments copy data. If you want to
 copy a reference to a piece of data, you should assign a
 pointer.

	Q:
	I’m really confused about
 struct names. What’s the
 struct name and what’s the
 alias?

	A:
	The struct name is the word that follows
 the struct keyword. If you
 write struct peter_parker { ...
 }, then the name is peter_parker, and when you create
 variables, you would say struct
 peter_parker x.

	Q:
	And the alias?

	A:
	Sometimes you don’t
 want to keep using the struct keyword when you declare
 variables, so typedef
 allows you to create a single word alias. In typedef struct peter_parker { ... }
 spider_man;, spider_man is the alias.

	Q:
	So what’s an anonymous struct?

	A:
	One without a name.
 So typedef struct { ... }
 spider_man; has an alias of spider_man, but no name. Most of the
 time, if you create an alias, you don’t need a name.

How do you update a struct?

A struct is really just
 a bundle of variables, grouped together and treated like a single piece
 of data. You’ve already seen how to create a struct object, and how to access its values
 using dot notation. But how do you change the value
 of a struct that already exists?
 Well, you can change the fields just like any other variable:
[image: image with no caption]

That means if you look at this piece of code, you should be able
 to work out what it does, right?
#include <stdio.h>

typedef struct {
 const char *name;
 const char *species;
 int age;
} turtle;

void happy_birthday(turtle t)
{
 t.age = t.age + 1;
 printf("Happy Birthday %s! You are now %i years old!\n",
 t.name, t.age);
}

int main()
{
 turtle myrtle = {"Myrtle", "Leatherback sea turtle", 99};
 happy_birthday(myrtle);
 printf("%s's age is now %i\n", myrtle.name, myrtle.age);
 return 0;
}
[image: image with no caption]

But there’s something odd about this
 code...
Test Drive
This is what happens when you compile and run the code.
[image: image with no caption]

Something weird has
 happened.
The code creates a new struct
 and then passes it to a function that was
 supposed to increase the value of one of the
 fields by 1. And that’s exactly what the code
 did...at least, for a while.
Inside the happy_birthday()
 function, the age field was
 updated, and you know that it worked because the printf() function displayed the new
 increased age value. But that’s
 when the weird thing happened. Even though the age was updated by the function, when the
 code returned to the main()
 function, the age seemed to reset
 itself.

Brain Power
This code is doing something weird. But you’ve already been
 given enough information to tell you exactly what happened. Can you work out what it
 is?

The code is cloning the turtle

 Let’s take a closer look at the code that called the
 happy_birthday() function:
[image: image with no caption]

When you assign a struct, its values get
 copied to the new struct.
In C, parameters are passed to functions by value. That means that when you call a
 function, the values you pass into it are assigned
 to the parameters. So in this code, it’s almost as if you had written
 something like this:
turtle t = myrtle;
But remember: when you assign structs in C, the values are copied. When you
 call the function, the parameter t
 will contain a copy of the myrtle struct. It’s as if the function
 has a clone of the original
 turtle. So the code inside the function
 does update the age of the turtle, but it’s a different turtle.
What happens when the function returns? The t parameter disappears, and the rest of the
 code in main() uses the myrtle struct. But the value of myrtle was never changed by the code. It was
 always a completely separate piece of data.
So what do you do if you want pass a
 struct to a function that needs to update it?
[image: image with no caption]

You need a pointer to the struct

 When you passed a variable to the scanf() function, you couldn’t pass the
 variable itself to scanf(); you had
 to pass a pointer:
scanf("%f", &length_of_run);
Why did you do that? Because if you tell the scanf() function where the variable lives in
 memory, then the function will be able to update the data stored at that
 place in memory, which means it can update the variable.
And you can do just the same with structs. If you want a function to update a
 struct variable, you can’t just pass
 the struct as a parameter because
 that will simply send a copy of the data to the
 function. Instead, you can pass the address of the struct:
[image: image with no caption]

Sharpen your pencil
See if you can figure out what expression
 needs to fit into each of the gaps in this new version of the happy_birthday() function.
Be careful. Don’t forget that
 t is now a pointer variable.
void happy_birthday(turtle *t)
{
 ______ .age =______ .age + 1;
 printf("Happy Birthday %s! You are now %i years old!\n",
 _____ .name,______ .age);
}

Sharpen your pencil: Solution
 You were to figure out what
 expression needs to fit into each of the gaps in
 this new version of the happy_birthday() function.
[image: image with no caption]

(*t).age vs. *t.age

So why did you need to make sure that *t was wrapped in parentheses? It’s because
 the two expressions, (*t).age and
 *t.age, are very different.
[image: image with no caption]

So the expression *t.age is really the same as
 *(t.age). Think about that
 expression for a moment. It means “the contents of the memory location
 given by t.age.” But t.age isn’t a memory location.
So be careful with your parentheses when
 using structs—parentheses really matter.
Test Drive
 Let’s check if you got around the bug:
[image: image with no caption]

That’s great. The function now
 works.
By passing a pointer to the struct, you allowed the function to update
 the original data rather than taking a local
 copy.
t->age means
 (*t).age

[image: image with no caption]

Yes, there is another struct pointer
 notation that is more readable.
Because you need to be careful to use parentheses in the right
 way when you’re dealing with pointers, the inventors of the C language
 came up with a simpler and easier-to-read piece of syntax. These two
 expressions mean the same thing:
[image: image with no caption]

So, t->age means, “The
 age field in the struct that t points to,” That means you can also write
 the function like this:
void happy_birthday(turtle *a)
{
 a->age = a->age + 1;
 printf("Happy Birthday %s! You are now %i years old!\n",
 a->name, a->age);
}

Safe Cracker
Shhh...it’s late at night in the bank vault. Can you spin the
 correct combination to crack the safe? Study these pieces of code and
 then see if you can find the correct combination that will allow you
 to get to the gold. Be careful! There’s a swag type and a
 swag field.
[image: image with no caption]

The bank created its safe like this:
	swag gold = {"GOLD!", 1000000.0};
combination numbers = {&gold, "6502"};
safe s = {numbers, "RAMACON250"};

What combination will get you to the string “GOLD!”? Select one
 symbol or word from each column to assemble the expression.
[image: image with no caption]

There are no Dumb Questions
	Q:
	Why are values copied to
 parameter variables?

	A:
	The computer will
 pass values to a function by assigning values to the
 function’s parameters. And all assignments copy values.

	Q:
	Why isn’t *t.age just read as (*t).age?

	A:
	Because the computer
 evaluates the dot operator before it evaluates the *.

Safe Cracker Solution
Shhh...it’s late at night in the bank vault. You were to spin
 the correct combination to crack the safe. You needed to study these
 pieces of code and then find the correct combination that would allow
 you to get to the gold.
[image: image with no caption]

The bank created its safe like this:
	swag gold = {"GOLD!", 1000000.0};
combination numbers = {&gold, "6502"};
safe s = {numbers, "RAMACON250"};

What combination will get you to the string “GOLD!”? You were to
 select one symbol or word from each column to assemble the
 expression.
[image: image with no caption]

So you can display the gold in the safe with:
printf(“Contents = %s\n”,
 s.numbers.swag->description);

Bullet Points
	When you call a function, the values are copied to the parameter
 variables.

	You can create pointers to structs, just like any other
 type.

	pointer->field is the
 same as (*pointer).field.

	The -> notation cuts
 down on parentheses and makes the code more readable.

Sometimes the same type of thing needs different types of
 data

 structs enable you to
 model more complex things from the real world. But there are pieces of
 data that don’t have a single data type:
[image: image with no caption]

So if you want to record, say, a quantity of
 something, and that quantity might be a count, a weight, or a volume, how would you do that? Well, you
 could create several fields with a struct, like this:
typedef struct {
 ...
 short count;
 float weight;
 float volume;
 ...
} fruit;
But there are a few reasons why this is not a good idea:
	It will take up more space in
 memory.

	Someone might set more than one
 value.

	There’s nothing called
 “quantity.”

It would be really useful if you could
 specify something called quantity in
 a data type and then decide for each particular piece of data whether
 you are going to record a count, a weight, or a volume against
 it.
In C, you can do just that by using a
 union.

A union lets you reuse memory space

 Every time you create an instance of a struct, the computer will lay out the fields
 in memory, one after the other:
[image: image with no caption]

A union is different. A union will use the space for just one of the
 fields in its definition. So, if you have a union called quantity, with fields called count, weight, and volume, the computer will give the union enough space for its largest field, and
 then leave it up to you which value you will store in there. Whether you
 set the count, weight, or volume field, the data will go into the same
 space in memory:
[image: image with no caption]

How do you use a union?

 When you declare a union variable, there are a few ways of
 setting its value.
C89 style for the first field

If the union is going to
 store a value for the first field,
 then you can use C89 notation. To give the union a value for its first field, just wrap
 the value in braces:
[image: image with no caption]

Designated initializers set other values

A designated initializer sets
 a union field value by name, like this:
[image: image with no caption]

Set the value with dot notation

The third way of setting a union value is by creating the variable on
 one line, and setting a field value on another line:
quantity q;

q.volume = 3.7;
Remember: whichever way you
 set the union’s value, there will
 only ever be one piece of data
 stored. The union just
 gives you a way of creating a variable that supports several different data types.
There are no Dumb Questions
	Q:
	Why is a union always set to the size of
 the largest field?

	A:
	The computer needs
 to make sure that a union
 is always the same size. The only way it can do that is by
 making sure it is large enough to contain any of the
 fields.

	Q:
	Why does the C89 notation only
 set the first field? Why not set it to the first float if I pass it a
 float
 value?

	A:
	To avoid ambiguity.
 If you had, say, a float
 and a double field,
 should the computer store {2.1} as a float or a double? By always storing the
 value in the first field, you know exactly how the data will
 be initialized.

The Polite Guide to Standards
Designated initializers allow you to set
 struct and union fields by name and are part of the
 C99 C standard. They are supported by most modern compilers, but be
 careful if you are using some variant of the C
 language. For example, Objective C supports
 designated initializers, but C++ does not.

[image: image with no caption]

 Yes, designated initializers
 can be used to set the initial values of fields in structs as
 well.
They can be very useful if you have a struct that contains a large number of
 fields and you initially just want to set a few of them. It’s also a
 good way of making your code more readable:
[image: image with no caption]

unions are often used with structs

Once you’ve created a union,
 you’ve created a new data type. That means you
 can use its values anywhere you would use another data type like an
 int or a struct. For example, you can combine them
 with structs:
typedef struct {

const char *name;

const char *country;

quantity amount;

} fruit_order;
And you can access the values in the struct/ union combination using the dot or -> notation you used before:
[image: image with no caption]

Mixed-Up Mixers
It’s Margarita Night at the Head First Lounge, but after one
 too many samples, it looks like the guys have mixed up their
 recipes. See if you can find the matching code fragments for the
 different margarita mixes.
Here are the basic ingredients:
typedef union {
 float lemon;
 int lime_pieces;
} lemon_lime;

typedef struct {
 float tequila;
 float cointreau;
 lemon_lime citrus;
} margarita;
Here are the different margaritas:
[image: image with no caption]

And finally, here are the different mixes and the drink
 recipes they produce. Which of the margaritas need to be added to
 these pieces of code to generate the correct recipes?

printf("___%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila
1.0 measures of cointreau
2.0 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila
1.0 measures of cointreau
0.5 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%i pieces
 of lime\n", m.tequila, m.cointreau, m.citrus.lime_pieces);

2.0 measures of tequila
1.0 measures of cointreau
1 pieces of lime

BE the Compiler
One of these pieces of code compiles; the other doesn’t. Your
 job is to play like you’re the compiler and say which one compiles,
 and why the other one doesn’t.
margarita m = {2.0, 1.0, {0.5}};

margarita m;
m = {2.0, 1.0, {0.5}};

Mixed-Up Mixers Solution
It’s Margarita Night at the Head First Lounge, but after one
 too many samples, it looks like the guys have mixed up their
 recipes. You were to find the matching code fragments for the
 different margarita mixes.
Here are the basic ingredients:
typedef union {
 float lemon;
 int lime_pieces;
} lemon_lime;

typedef struct {
 float tequila;
 float cointreau;
 lemon_lime citrus;
} margarita;
Here are the different margaritas:
[image: image with no caption]

And finally, here are the different mixes and the drink
 recipes they produce. Which of the margaritas need to be added to
 these pieces of code to generate the correct recipes?
[image: image with no caption]

BE the Compiler Solution
One of these pieces of code compiles; the other doesn’t. Your
 job is to play like you’re the compiler and say which one compiles,
 and why the other one doesn’t.
[image: image with no caption]

[image: image with no caption]

 That’s a really good point: you
 can store lots of possible values in a union, but you have
 no way of knowing what type it was once it’s
 stored.
The compiler won’t be able to keep track of the fields that are
 set and read in a union, so there’s
 nothing to stop us setting one field and reading another. Is that a
 problem? Sometimes it can be a BIG
 PROBLEM.
[image: image with no caption]

You need some way, then, of keeping track of the values we’ve
 stored in a union. One trick that
 some C coders use is to create an enum.

An enum variable stores a symbol

 Sometimes you don’t want to store a number or a piece of
 text. Instead, you want to store something from a list of symbols. If you want to record a day of the
 week, you only want to store MONDAY, TUESDAY, WEDNESDAY, etc. You don’t
 need to store the text, because there are only ever going to be seven
 different values to choose from.
That’s why enums were invented.
enum lets you create a list of
 symbols, like this:
[image: image with no caption]

Any variable that is defined with a type of enum colors
 can then only be set to one of the keywords in the list. So you might
 define an enum colors variable like
 this:
enum colors favorite = PUCE;
Under the covers, the computer will just assign numbers to each of
 the symbols in your list, and the enum will just store a number. But you don’t
 need to worry about what the numbers are; your C code can just refer to
 the symbols. That’ll make your code easier to read, and it will prevent
 storing values like REB or PUSE:
[image: image with no caption]

So that’s how enums work, but how do they
 help you keep track of unions? Let’s look at an
 example...
Watch it!
structs and unions separate items with
 semicolons (;), but enums use commas.

Code Magnets
 Because you can create new data types with enums, you can store them inside structs and unions. In this program, an enum is being used to track the kinds of
 quantities being stored. Do you think you can work out where the
 missing pieces of code go?
[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

Code Magnets Solution
Because you can create new data types with enums, you can store them inside structs and unions. In this program, an enum is being used to track the kinds of
 quantities being stored. Were you able to work out where the missing
 pieces of code go?
[image: image with no caption]

[image: image with no caption]

When you run the program, you get
 this:
[image: image with no caption]

[image: image with no caption]

	union: ...so I said to the code, “Hey, look. I don’t care
 if you gave me a float or not.
 You asked for an int. You got
 an int.”

	struct: Dude, that was totally uncalled for.

	union: That’s what I said. It’s totally uncalled for.

	struct: Everyone knows you only have one storage location.

	union: Exactly. Everything is one. I’m, like, Zen that
 way...

	enum: What happened, dude?

	struct: Shut up, enum. I mean,
 the guy was crossing the line.

	union: I mean, if he had just left a record. You know, said, I
 stored this as an int. It just
 needed an enum or
 something.

	enum: You want me to do what?

	struct: Shut up, enum.

	union: I mean, if he’d wanted to store several things at once, he
 should have called you, am I right?

	struct: Order. That’s what these people don’t grasp.

	enum: Ordering what?

	struct: Separation and sequencing. I keep several things alongside
 each other. All at the same time, dude.

	union: That’s just my point.

	struct: All. At. The. Same. Time.

	enum: (Pause) So has there been a problem?

	union: Please, enum? I mean
 these people just need to make a decision. Wanna store several
 things, use you. But store just one thing with different possible
 types? Dude’s your man.

	struct: I’m calling him.

	union: Hey, wait...

	enum: Who’s he calling, dude?

	struct/union: Shut up, enum.

	union: Look, let’s not cause any more problems here.

	struct: Hello? Could I speak to the Bluetooth service,
 please?

	union: Hey, let’s just think about this.

	struct: What do you mean, he’ll give me a callback?

	union: I’m just. This doesn’t seem like a good idea.

	struct: No, let me leave you a message, my friend.

	union: Please, just put the phone down.

	enum: Who’s on the phone, dude?

	struct: Be quiet, enum. Can’t you
 see I’m on the phone here? Listen, you just tell him that if he
 wants to store a float and an
 int, he needs to come see me.
 Or I’m going to come see him. Understand me? Hello? Hello?

	union: Easy, man. Just try to keep calm.

	struct: On hold? They put me on ^*&^ing hold!

	union: They what? Pass me the phone... Oh...that...man. The Eagles!
 I hate the Eagles...

	enum: So if you pack your fields, is that why you’re so
 fat?

	struct: You are entering a world of pain, my friend.

Sometimes you want control at the bit level

 Let’s say you need a struct that will contain a lot of yes/no
 values. You could create the struct with a series of shorts or ints:
[image: image with no caption]

[image: image with no caption]

And that would work. The problem? The short fields will take up a lot more space
 than the single bit that you need for true/false values. It’s wasteful. It would be
 much better if you could create a struct that could hold a sequence of single
 bits for the values.
That’s why bitfields were created.
Geek Binary Digits
[image: image with no caption]

When you’re dealing with binary value, it would be great if you
 had some way of specifying the 1s and 0s in a literal, like:
int x = 01010100;
Unfortunately, C doesn’t support binary
 literals, but it does support
 hexadecimal literals. Every time C
 sees a number beginning with 0x, it treats the number as base 16:
[image: image with no caption]

But how do you convert back and forth between hexadecimal and
 binary? And is it any easier than converting binary and decimal? The good news is that you can
 convert hex to binary one digit at a
 time:
[image: image with no caption]

Each hexadecimal digit matches a binary digit of length 4. All
 you need to learn are the binary patterns for the numbers 0–15, and
 you will soon be able to convert binary to hex and back again in your
 head within seconds.

Bitfields store a custom number of bits

 A bitfield lets you
 specify how many bits an individual field will
 store. For example, you could write your struct like this:
[image: image with no caption]

If you have a sequence of bitfields, the computer can squash them together to save space. So if you
 have eight single-bit bitfields, the computer can store them in a single
 byte.
Let’s see how how good you are at using
 bitfields.
Watch it!
Bitfields can save space if they are
 collected together in a struct.
But if the compiler finds a single bitfield on its
 own, it might still have to pad it out to the size of a word. That’s
 why bitfields are usually grouped together.

How many bits do I need?
Bitfields can be used to store a sequence of true/false values,
 but they’re also useful for other short-range values, like months of
 the year. If you want to store a month number in a struct, you know it will have a value of,
 say, 0–11. You can store those values in 4
 bits. Why? Because 4 bits let you store 0–15, but 3 bits
 only store 0–7.
...

unsigned int month_no:4;

...

Exercise
Back at the Head First Aquarium, they’re creating a
 customer satisfaction survey. Let’s see if you can use bitfields to
 create a matching struct.
[image: image with no caption]

[image: image with no caption]

Exercise Solution
Back at the Head First Aquarium, they’re creating a
 customer satisfaction survey. You were to use bitfields to create a
 matching struct.
[image: image with no caption]

[image: image with no caption]

There are no Dumb Questions
	Q:
	 Why doesn’t C support
 binary literals?

	A:
	Because they take up
 a lot of space, and it’s usually more efficient to write hex
 values.

	Q:
	Why do I need 4 bits to store a
 value up to 10?

	A:
	Four bits can store
 values from 0 to binary 1111, which is 15. But 3 bits can only
 store values up to binary 111, which is 7.

	Q:
	So what if I try to put the
 value 9 into a 3-bit field?

	A:
	The computer will
 store a value of 1 in it, because 9 is 1001 in binary, so the
 computer transfers 001.

	Q:
	Are bitfields really just used
 to save space?

	A:
	No. They’re important
 if you need to read low-level binary information.

	Q:
	Such as?

	A:
	If you’re reading or
 writing some sort of custom binary file.

Bullet Points
	A union allows you to
 store different data types in the same memory location.

	A designated initializer sets a field value by name.

	Designated initializers are part of the C99 standard. They
 are not supported in C++.

	If you declare a union
 with a value in {braces}, it will be stored with the type of the
 first field.

	The compiler will let you store one field in a union and read a completely different
 field. But be careful! This can cause bugs.

	enums store
 symbols.

	Bitfields allow you to store a field with a custom number of
 bits.

	Bitfields should be declared as unsigned int.

Your C Toolbox

You’ve got Chapter 5 under your belt,
 and now you’ve added structs, unions, and bitfields to your toolbox. For
 a complete list of tooltips in the book, see Appendix B.
[image: image with no caption]

Chapter 6. Data Structures and Dynamic Memory: Building bridges

[image: image with no caption]

Sometimes, a single struct is simply not
 enough.
To model complex data requirements, you often need to link structs
 together. In this chapter, you’ll see how to use struct
 pointers to connect custom data types into large, complex data structures. You’ll explore
 key principles by creating linked lists. You’ll also see how to make your
 data structures cope with flexible amounts of data by dynamically allocating memory on the heap, and
 freeing it up when you’re done. And if good housekeeping becomes tricky,
 you’ll also learn how valgrind can help.
Do you need flexible storage?

[image: image with no caption]

 You’ve looked at the different kinds of data that you can
 store in C, and you’ve also seen how you can store multiple pieces of
 data in an array. But sometimes you need to be a little more
 flexible.
Imagine you’re running a travel company that arranges flying tours
 through the islands. Each tour contains a sequence of short flights from
 one island to the next. For each of those islands, you will need to
 record a few pieces of information, such as the name of the island and
 the hours that its airport is open. So how would you record that?
You could create a struct to
 represent a single island:
typedef struct {
 char *name;
 char *opens;
 char *closes;
} island;
Now if a tour passes through a sequence of
 islands, that means you’ll need to record a list of islands, and you can
 do that with an array of islands:
[image: image with no caption]

But there’s a problem. Arrays
 are fixed length, which means they’re not very
 flexible. You can use one if you know exactly how long a tour
 will be. But what if you need to change the tour? What if you want to
 add an extra destination to the middle of the tour?
To store a flexible amount of data, you
 need something more extensible than an array. You need a
 linked list.

Linked lists are like chains of data

A linked list is an
 example of an abstract data
 structure. It’s called an abstract data
 structure because a linked list is general: it can
 be used to store a lot of different kinds of data.
To understand how a linked list works, think back to our tour
 company. A linked list stores a piece of data, and a link to
 another piece of data.
Sharpen your pencil
In a linked list, as long as you know where the list starts, you
 can travel along the list of links, from one piece of data to the
 next, until you reach the end of the list. Using a pencil, change the
 list so that the tour includes a trip to Skull Island between Craggy
 Island and Isla Nublar.
[image: image with no caption]

Sharpen your pencil: Solution
In a linked list, as long as you know where the list starts, you
 can travel along the list of links, from one piece of data to the
 next, until you reach the end of the list. Using a pencil, you were to
 change the list so that the tour includes a trip to Skull Island
 between Craggy Island and Isla Nublar.
[image: image with no caption]

Linked lists allow inserts

With just a few changes, you were able to add an extra step to the
 tour. That’s another advantage linked lists have over arrays: inserting data is very quick. If you wanted to
 insert a value into the middle of an array, you
 would have to shuffle all the pieces of data that follow it along by
 one:
[image: image with no caption]

So linked lists allow you to store a variable amount of data, and they make it
 simple to add more data.
But how do you create a linked list in
 C?

Create a recursive structure

 Each one of the structs
 in the list will need to connect to the one next to it. A struct that contains a link to another
 struct of the same type is called a
 recursive structure.
[image: image with no caption]

Recursive structures contain pointers to other structures of the
 same type. So if you have a flight schedule for the list of islands that
 you’re going to visit, you can use a recursive structure for each
 island. Let’s look at how that works
 in more detail:
[image: image with no caption]

How do you store a link from one struct to the next? With a pointer. That way,
 the island data will contain the
 address of the next island that we’re going to visit. So, whenever
 our code is at one island, it will
 always be able to hop over to the next island.
Let’s write some code and start island
 hopping.
Watch it!
Recursive structures need
 names.
If you use the typedef command, you can normally
 skip giving the struct
 a proper name. But in a recursive structure, you need to
 include a pointer to the same type. C syntax won’t let you use
 the typedef
 alias, so you need to give the struct a proper name. That’s why
 the struct
 here is called struct
 island.

Create islands in C...

Once you have defined an island
 data type, you can create the first set of islands like this:
[image: image with no caption]

[image: image with no caption]

Did you notice that we originally set the next field in each island to NULL? In C, NULL actually has the value 0, but it’s set
 aside specially to set pointers to 0.
...and link them together to form a tour

Once you’ve created each island, you can then connect them
 together:
amity.next = &craggy;
craggy.next = &isla_nublar;
isla_nublar.next = &shutter;
You have to be careful to set the next field in each island to the address
 of the next island. You’ll use
 struct variables for each of the
 islands.
So now you’ve created a complete island tour in C, but what if
 you want to insert an excursion to Skull Island between Isla Nublar
 and Shutter Island?
[image: image with no caption]

Inserting values into the list

You can insert islands
 just like you did earlier, by changing the values of the pointers
 between islands:
[image: image with no caption]

In just two lines of code, you’ve inserted a new value into the
 list. If you were using an array, you’d write a lot more code to shuffle
 items along the array.
OK, you’ve seen how to create and use
 linked lists. Now let’s try out your new skills...
Code Magnets
Oh, no, the code for the display() function was on the fridge door,
 but someone’s mixed up the magnets. Do you think you can reassemble
 the code?
[image: image with no caption]

Code Magnets Solution
 Oh, no, the code for the display() function was on the fridge door,
 but someone’s mixed up the magnets. Were you able to reassemble the
 code?
[image: image with no caption]

There are no Dumb Questions
	Q:
	Other languages, like Java, have
 linked lists built in. Does C have any data
 structures?

	A:
	C doesn’t really come
 with any data structures built in. You have to create them
 yourself.

	Q:
	What if I want to use the 700th
 item in a really long list? Do I have to start at the first
 item and then read all the way through?

	A:
	Yes, you do.

	Q:
	That’s not very good. I thought
 a linked list was better than an array.

	A:
	You shouldn’t think
 of data structures as being better or
 worse. They are either
 appropriate or
 inappropriate for what you want to use
 them for.

	Q:
	So if I want a data structure
 that lets me insert things quickly, I need a linked list, but
 if I want direct access I might use an
 array?

	A:
	Exactly.

	Q:
	You’ve shown a struct that contains a pointer to
 another struct. Can a
 struct contain a whole
 recursive struct inside
 itself?

	A:
	No.

	Q:
	Why not?

	A:
	C needs to know the
 exact amount of space a struct will occupy in memory. If it
 allowed full recursive copies of the same struct, then one piece of data would
 be a different size than another.

Test Drive
Let’s use the display()
 function on the linked list of islands and compile the code together into a
 program called tour.
[image: image with no caption]

Excellent. The code creates a linked list of islands, and you can insert items with very
 little work.
OK, so now that you know the basics of how to work with
 recursive structs and lists, you
 can move on to the main program. You need to read the tour data from a
 file that looks like this:
[image: image with no caption]

The folks at the airline are still creating the file, so you
 won’t know how long it is until runtime. Each line in the file is the
 name of an island. It should be pretty straightforward to turn this
 file into a linked list. Right?

The Polite Guide to Standards
The code on this page declares a new variable, skull, right in the middle of the code. This
 is allowed only in C99 and C11. In ANSI C, you need to declare all
 your local variables at the top of a function.

[image: image with no caption]

 Yes, you need some way to create
 dynamic storage.
All of the programs you’ve written so far have used static
 storage. Every time you wanted to store something, you’ve added a
 variable to the code. Those variables have generally been stored in the
 stack. Remember: the stack is the area of memory set aside for storing
 local variables.
So when you created the first four islands, you did it like
 this:
island amity = {"Amity", "09:00", "17:00", NULL};
island craggy = {"Craggy", "09:00", "17:00", NULL};
island isla_nublar = {"Isla Nublar", "09:00", "17:00", NULL};
island shutter = {"Shutter", "09:00", "17:00", NULL};
Each island struct needed its
 own variable. This piece of code will always create exactly four
 islands. If you wanted the code to
 store more than four islands, you
 would need another local variable. That’s fine if you know how much data
 you need to store at compile time, but quite often, programs don’t know
 how much storage they need until runtime. If you’re writing a web
 browser, for instance, you won’t know how much data you’ll need to store
 a web page until, well, you read the web page. So C programs need some
 way to tell the operating system that they need a little extra storage,
 at the moment that they need it.
Programs need dynamic
 storage.
[image: image with no caption]

Use the heap for dynamic storage

 Most of the memory you’ve been using so far has been in
 the stack. The stack is the area of
 memory that’s used for local variables. Each piece of data is stored in
 a variable, and each variable disappears as soon as you leave its
 function.
The trouble is, it’s harder to get more storage on the stack at
 runtime, and that’s where the heap
 comes in. The heap is the place where a program stores data that will
 need to be available longer term. It won’t automatically get cleared
 away, so that means it’s the perfect place to store data structures like
 our linked list. You can think of heap storage as being a bit like
 reserving a locker in a locker room.
[image: image with no caption]

First, get your memory with malloc()

Imagine your program suddenly finds it has a large amount of
 data that it needs to store at runtime. This is a bit like asking for
 a large storage locker for the data, and in C you do that with a
 function called malloc(). You tell the malloc() function exactly how much memory
 you need, and it asks the operating system to set that much memory
 aside in the heap. The malloc()
 function then returns a pointer to
 the new heap space, a bit like getting a key to the locker. It allows
 you access to the memory, and it can also be used to keep track of the
 storage locker that’s been allocated.
[image: image with no caption]

[image: image with no caption]

Give the memory back when you’re done

 The good news about heap memory is that you can keep hold
 of it for a really long time. The bad news is...you can keep hold of it
 for a really long time.
When you were just using the stack, you didn’t need to worry about
 returning memory; it all happened automatically. Every time you leave a
 function, the local storage is freed from the stack.
The heap is different. Once you’ve asked for space on the heap, it
 will never be available for anything else until you tell the C Standard
 Library that you’re finished with it. There’s only so much heap memory
 available, so if your code keeps asking for more and more heap space,
 your program will quickly start to develop memory leaks.
A memory leak happens when a program asks for more and more memory
 without releasing the memory it no longer needs. Memory leaks are among
 the most common bugs in C programs, and they can be really hard to track
 down.
The heap has only a fixed amount of
 storage available, so be sure you use it wisely.

Free memory by calling the free() function

The malloc() function
 allocates space and gives you a pointer to it. You’ll need to use this
 pointer to access the data and then, when you’re finished with the
 storage, you need to release the memory using the free()
 function. It’s a bit like handing your locker key back to the
 attendant so that the locker can be reused.
[image: image with no caption]

Every time some part of your code requests heap storage with the
 malloc() function, there should be
 some other part of your code that hands the storage back with the
 free() function. When your program
 stops running, all of its heap storage will be released automatically,
 but it’s always good practice to explicitly call free() on every piece of dynamic memory
 you’ve created.
Let’s see how malloc() and free()
 work.

Ask for memory with malloc()...

 The function that asks for memory is called malloc() for memory
 allocation. malloc() takes
 a single parameter: the number of bytes that you need. Most of the time,
 you probably don’t know exactly how much memory you need in bytes, so
 malloc() is almost always used with
 an operator called sizeof, like
 this:
[image: image with no caption]

sizeof tells you how many bytes
 a particular data type occupies on your system. It might be a struct, or it could be some base data type,
 like int or double.
The malloc() function sets
 aside a chunk of memory for you, then returns a pointer containing the
 start address. But what kind of pointer will that be? malloc() actually returns a
 general-purpose pointer, with type void*.
[image: image with no caption]

...and free up the memory with free()

Once you’ve created the memory on the heap, you can use it for
 as long as you like. But once you’ve finished, you need to release the
 memory using the free()
 function.
free() needs to be given the
 address of the memory that malloc()
 created. As long as the library is told where the chunk of memory
 starts, it will be able to check its records to see how much memory to
 free up. So if you wanted to free the memory you allocated above,
 you’d do it like this:
[image: image with no caption]

OK, now that we know more about dynamic
 memory, we can start to write some code.
Remember: if you allocated memory with
 malloc() in one part of your program, you should always release it
 later with the free() function.

Oh, no! It’s the out-of-work actors...

The aspiring actors are currently between jobs, so they’ve found
 some free time in their busy schedules to help you out with the coding.
 They’ve created a utility function to create a new island struct with a name that you pass to it.
 The function looks like this:
[image: image with no caption]

That’s a pretty cool-looking function. The actors have spotted
 that most of the island airports have the same opening and closing
 times, so they’ve set the opens and
 closes fields to default values. The
 function returns a pointer to the newly created struct.
[image: image with no caption]

Brain Power
Look carefully at the code for the create() function. Do you think there might
 be any problems with it? Once you’ve thought about it good and hard,
 turn the page to see it in action.

Five-Minute Mystery
 The Case of the Vanishing
 Island
Captain’s Log. 11:00. Friday.
 Weather clear. A create() function
 using dynamic allocation has been written, and the coding team says it
 is ready for air trials.
island* create(char *name)
{
 island *i = malloc(sizeof(island));
 i->name = name;
 i->opens = "09:00";
 i->closes = "17:00";
 i->next = NULL;
 return i;
}
14:15. Weather cloudy. Northwest headwind 15kts near Bermuda.
 Landing at first stop. Software team on board providing basic code.
 Name of island entered at the command line.
[image: image with no caption]

14:45. Take off from landing strip rocky due to earth tremors.
 Software team still on board. Supplies of Jolt running low.
15:35. Arrival at second island. Weather good. No wind. Entering
 details into new program.
[image: image with no caption]

17:50 Back at headquarters tidying up on paperwork. Strange
 thing. The flight log produced by the test program appears to have a
 bug. When the details of today’s flight are logged, the trip to the
 first island has been mysteriously renamed. Asking software team to
 investigate.
[image: image with no caption]

 What happened to the name of
 the first island? Is there a bug in the create() function? Does the way it
 was called give any clues?

Five-Minute Mystery Solved
 The Case of the Vanishing
 Island
What happened to the name of the
 first island?
Look at the code of the create() function again:
island* create(char *name)
{
 island *i = malloc(sizeof(island));
 i->name = name;
 i->opens = "09:00";
 i->closes = "17:00";
 i->next = NULL;
 return i;
}
When the code records the name of the island, it doesn’t take a
 copy of the whole name string; it
 just records the address where the name string lives in memory. Is that
 important? Where did the name
 string live? We can find out by looking at the code that was calling
 the function:
char name[80];
 fgets(name, 80, stdin);
 island *p_island0 = create(name);
 fgets(name, 80, stdin);
 island *p_island1 = create(name);
The program asks the user for the name of each island, but
 both times it uses the name local char array to store the name. That means
 that the two islands share the same name string. As soon as the local
 name variable gets updated with the
 name of the second island, the name of the first island changes as
 well.

String Copying Up Close
 In C, you often need to make copies of strings. You
 could do that by calling the malloc() function to create a little space
 on the heap and then manually copying each character from the string
 you are copying to the space on the heap. But guess what? Other
 developers got there ahead of you. They created a function in the
 string.h header called
 strdup().
Let’s say that you have a pointer to a character array that you
 want to copy:
[image: image with no caption]

The strdup() function can reproduce a
 complete copy of the string somewhere on the heap:
char *copy = strdup(s);
	The strdup() function works out how
 long the string is, and then calls the malloc() function to
 allocate the correct number of characters on the
 heap.
[image: image with no caption]

	It then copies each of the
 characters to the new space on the heap.
[image: image with no caption]

That means that strdup()
 always creates space on the heap.
 It can’t create space on the stack because that’s for local
 variables, and local variables get cleared away too
 often.
But because strdup() puts new
 strings on the heap, that means you must always remember to release their storage with the
 free() function.

Let’s fix the code using the strdup() function

 You can fix up the original create() function using the strdup() function, like this:
island* create(char *name)
{
 island *i = malloc(sizeof(island));
 i->name =
strdup(name);
 i->opens = "09:00";
 i->closes = "17:00";
 i->next = NULL;
 return i;
}
You can see that we only need to put the strdup() function on the name field. Can you figure out why that
 is?
It’s because we are setting the opens and closes fields to string
 literals. Remember way back when you saw where things were
 stored in memory? String literals are stored in a read-only area of memory set aside for
 constant values. Because you always
 set the opens and closes fields to constant values, you don’t
 need to take a defensive copy of them, because they’ll never change. But
 you had to take a defensive copy of the name array, because something might come and
 update it later.
So does it fix the code?

To see if the change to the create() function fixed the code, let’s run
 your original code again:
[image: image with no caption]

Now that code works. Each time the user enters the name of an
 island, the create() function is
 storing it in a brand-new string.
OK, now that you have a function to
 create island data, let’s use it to create a linked list from a
 file.
There are no Dumb Questions
	Q:
	If the island struct had a name array
 rather than a character pointer, would I need to use
 strdup()
 here?

	A:
	No. Each island struct would store its own
 copy, so you wouldn’t need to make your own copy.

	Q:
	So why would I want to use
 char pointers rather than
 char arrays in my data
 structures?

	A:
	 char pointers won’t limit the
 amount of space you need to set aside for strings. If you
 use char arrays, you will
 need to decide in advance exactly how long your strings
 might need to be.

Pool Puzzle
Catastrophe! The code to create an island tour has
 fallen into the pool! Your job is
 to take code snippets from the pool and place them into the blank
 lines in the code below. Your goal is to reconstruct the program so that
 it can read a list of names from Standard Input and then connect
 them together to form a linked list. You may not use the same code snippet more than
 once, and you won’t need to use all the pieces of code.
island *start = NULL;
island *i = NULL;
island *next = NULL;
char name[80];
for(;_________________ != __________________; i = __________________) {
 next = create(name);
 if (start == NULL)
 start = _________________;
 if (i != NULL)
 i ___________________________________ = next;
}
display(start);
Note: each thing from the pool can be
 used only once!
[image: image with no caption]

Pool Puzzle Solution
Catastrophe! The code to create an island tour has fallen into
 the pool! Your job was to take
 code snippets from the pool and place them into the blank lines in
 the code below. Your goal was to
 reconstruct the program so that it can read a list of names from
 Standard Input and then connect them together to form a linked
 list.
[image: image with no caption]

Note: each thing from the pool can be
 used only once!
[image: image with no caption]

Sharpen your pencil
 But wait! You’re not done yet. Don’t forget that if
 you ever allocate space with the
 malloc() function, you need to
 release the space with the
 free() function. The program
 you’ve written so far creates a linked list of islands in heap
 memory using malloc(), but now
 it’s time to write some code to release that space once you’re done
 with it.
Here’s a start on a function called release() that will release all of the
 memory used by a linked list, if you pass it a pointer to the first
 island:
void release(island *start)
{
 island *i = start;
 island *next = NULL;
 for (; i != NULL; i = next) {
 next = ____________;
 ____________;
 ____________;
 }
}
Think very carefully. When you release the memory, what will
 you need to free? Just the island, or something more? In what
 sequence should you free them?

Sharpen your pencil: Solution
But wait! You’re not done yet. Don’t forget that if you ever
 allocate space with the malloc() function, you need to release the space with the free() function. The program you’ve
 written so far creates a linked list of islands in heap memory using
 malloc(), but now it’s time to
 write some code to release that space once you’re done with
 it.
Here’s a start on a function called release() that will release all of the
 memory used by a linked list, if you pass it a pointer to the first
 island:
[image: image with no caption]

When you release the memory, what will you need to free? Just
 the island, or something more? In
 what sequence should you free them?

Free the memory when you’re done

Now that you have a function to free the linked list, you’ll need
 to call it when you’ve finished with it. Your program only needs to
 display the contents of the list, so once you’ve done that, you can
 release it:
display(start);
release(start);
Once that’s done, you can test the
 code.
Test Drive
So, if you compile the code and then run the file through it,
 what happens?
[image: image with no caption]

It works. Remember: you had no way of knowing how long that file
 was going to be. In this case, because you are just printing out the
 file, you could have simply printed it out
 without storing it all in memory. But because you
 do have it in memory, you’re free to manipulate
 it. You could add in extra steps in the tour, or remove them. You
 could reorder or extend the tour.
Dynamic memory allocation lets you
 create the memory you need at RUNTIME. And the way you access dynamic
 heap memory is with malloc() and
 free().

Fireside Chats
 Tonight’s Talk: Stack and Heap
 Discuss Their Differences
	Stack:
	Heap:

	Heap? Are you there? I’m
 home.
	
	 	Don’t see you too often this time of
 day. Got a little something going on?

	Deep regression. Oops...excuse me...
 Just tidy that up...
	
	 	What’re you doing?

	The code just exited a function.
 Just need to free up the storage from those local
 variables.
	
	 	You should take life a little
 easier. Relax a little...

	Perhaps you’re right. Mind if I
 sit?
	
	 	Beer? Don’t worry about the cap;
 throw it anywhere.

	I...think this is
 yours?
	
	 	Hey, you found the pizza! That’s
 great. I’ve been looking for that all week.

	You really should consider getting
 somebody in to take care of this place.
	
	 	Don’t worry about it. That online
 ordering application left it lying around. It’ll probably be
 back for it.

	How do you know? I mean, how do you
 know it hasn’t just forgotten about it?
	
	 	He’d have been back in touch. He’d
 have called free().

	Hmmm? Are you sure? Wasn’t it
 written by the same woman who wrote that dreadful
 Whack-a-bunny game? Memory leaks everywhere. I could barely
 move for rabbit structs.
 Droppings everywhere. It was terrible.
	
	 	Hey, it’s not my responsibility to
 clear up the memory. Someone asks me for space, I give him
 space. I’ll leave it there until he tells me to clean it
 up.

	That’s irresponsible.
	
	 	Yeah, maybe. But I’m easy to use.
 Not like you and your...fussing.

	Fussing? I don’t fuss! You might
 want to use a napkin...
	
	 	<belches>What? I’m just saying
 you’re difficult to keep track of.

	I just believe that memory should be
 properly maintained.
	
	 	Whatever. I’m a live-and-let-live
 type. If a program wants to make a mess, it’s not my
 responsibility.

	You’re messy.
	
	 	I’m easygoing.

	Why don’t you do garbage
 collection?!
	
	 	Ah, here we go
 again...

	I mean, just a little...tidying up.
 You don’t do anything!!!
	
	 	Easy, now.

	<crying>I’m sorry. I just
 can’t cope with this level of disorganization.
	
	 	Hey, you’re overflowing. Take
 this...

	<blows nose>Thank you. Wait,
 what is this?
	
	 	It’s the high score table from
 Whack-a-Bunny. Don’t worry; I don’t think the program needs it
 anymore.

There are no Dumb Questions
	Q:
	 Why is the heap called
 the heap?

	A:
	Because the computer
 doesn’t automatically organize it. It’s just a big heap of
 data.

	Q:
	What’s garbage
 collection?

	A:
	Some languages track
 when you allocate data on a heap and then, when you’re no
 longer using the data, they free the data from the
 heap.

	Q:
	Why doesn’t C contain garbage
 collection?

	A:
	C is quite an old
 language; when it was invented, most languages didn’t do
 automatic garbage collection.

	Q:
	I understand why I needed to
 copy the name of the
 island in the example. Why
 didn’t I need to copy the opens and closes values?

	A:
	The opens and closes values are set to string
 literals. String literals can’t be updated, so it doesn’t
 matter if several data items refer to the same string.

	Q:
	Does strdup() actually call the malloc() function?

	A:
	It will depend on how
 the C Standard Library is implemented, but most of the time,
 yes.

	Q:
	Do I need to free all my data
 before the program ends?

	A:
	You don’t have to;
 the operating system will clear away all of the memory when
 the program exits. But it’s good practice to always explicitly
 free anything you’ve created.

Bullet Points
	Dynamic data structures allow you to store a variable number
 of data items.

	A linked list is a data structure that allows you to easily
 insert items.

	Dynamic data structures are normally defined in C with
 recursive structs.

	A recursive struct
 contains one or more pointers to a similar struct.

	The stack is used for local variables and is managed by the
 computer.

	The heap is used for long-term storage. You allocate space
 with malloc().

	The sizeof operator will
 tell you how much space a struct needs.

	Data will stay on the heap until you release it with
 free().

What’s my data structure?
You’ve seen how to create a linked list in C. But linked
 lists aren’t the only data structures you might need to build. Below
 are some other example data structures. See if you can match up the
 data structure with the description of how it can be used.
Data structures
[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

Descriptions
1. I can be used to store a sequence of items, and I make it
 easy to insert new items. But you can process me in only one
 direction.
2. Each item I store can connect to up to two other items. I am
 useful for storing hierarchical information.
3. I can be used to associate two different types of data. For
 example, you could use me to associate people’s names to their
 phone numbers.
4. Each item I store connects to up to two other items. You can
 process me in two directions.

What’s my data structure?: Solution
 You’ve seen how to create a linked list in C. But linked
 lists aren’t the only data structures you might need to build. Below
 are some other example data structures. You were to match up the data
 structure with the description of how it can be used.
[image: image with no caption]

Data structures are useful, but be careful!
You need to be careful when you create these data structures
 using C. If you don’t keep proper track of the data you are storing,
 there’s a risk that you’ll leave old dead data on the heap. Over time,
 this will start to eat away at the memory on your machine, and it
 might cause your program to crash with memory errors. That means it’s really important that you learn to track
 down and fix memory leaks in your code...

Top Secret
Federal Bureau of Investigations United States Department of
 Justice, Washington, D. C.
From: J. Edgar Hoover, Director
Subject: SUSPECTED LEAK IN GOVERNMENT EXPERT SYSTEM
Our Cambridge, MA, office advised that there is a suspected leak
 somewhere inside the new Suspicious Persons Identification Expert
 System (SPIES). Our sources and informants familiar with software
 matters advise that the supposed leak is the result of shoddy coding
 by person or persons unknown.
An informant who has furnished reliable information in the past
 and who claims to be close to the people concerned has advised that
 the leak is the result of careless management of data in the area of
 memory known to the hacker fraternity as “The Heap.”
You are hereby given access to the expert system source code and
 have, by my order, been given access to the full resources of the
 FBI’s software engineering lab. Consider the evidence and analyze the
 details of the case carefully. I want this leak found, and I want this
 leak fixed.
Failure is not an option.
Very truly yours,
[image: image with no caption]

Exhibit A: the source code

What follows is the source code for the Suspicious Persons
 Identification Expert System (SPIES). This software can be used to
 record and identify persons of interest. You are not required to read
 this code in detail now, but please keep a copy in your records so that
 you may refer to it during the ongoing investigation.
	#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct node {
 char *question;
 struct node *no;
 struct node *yes;
} node;

int yes_no(char *question)
{
 char answer[3];
 printf("%s? (y/n): ", question);
 fgets(answer, 3, stdin);
 return answer[0] == 'y';
}

node* create(char *question)
{
 node *n = malloc(sizeof(node));
 n->question = strdup(question);
 n->no = NULL;
 n->yes = NULL;
 return n;
}

void release(node *n)
{
 if (n) {
 if (n->no)
 release(n->no);
 if (n->yes)
 release(n->yes);
 if (n->question)
 free(n->question);
 free(n);
 }
}

int main()
{
 char question[80];
 char suspect[20];
 node *start_node = create("Does suspect have a mustache");
 start_node->no = create("Loretta Barnsworth");
 start_node->yes = create("Vinny the Spoon");

 node *current;
 do {
 current = start_node;
 while (1) {
 if (yes_no(current->question))
 {
 if (current->yes) {
 current = current->yes;
 } else {
 printf("SUSPECT IDENTIFIED\n");
 break;
 }
 } else if (current->no) {
 current = current->no;
 } else {

 /* Make the yes-node the new suspect name */
 printf("Who's the suspect? ");
 fgets(suspect, 20, stdin);
 node *yes_node = create(suspect);
 current->yes = yes_node;

 /* Make the no-node a copy of this question */
 node *no_node = create(current->question);
 current->no = no_node;

 /* Then replace this question with the new question */
 printf("Give me a question that is TRUE for %s but not for %s? ", suspect,
 current->question);
 fgets(question, 80, stdin);
 current->question = strdup(question);

 break;
 }
 }
 } while(yes_no("Run again"));
 release(start_node);
 return 0;
}

An overview of the SPIES system

The SPIES program is an expert system that learns how to identify
 individuals using distinguishing features. The more people you enter
 into the system, the more the software learns and the smarter it
 gets.
The program builds a tree of suspects

The program records data using a binary
 tree. A binary tree allows each piece
 of data to connect to two other pieces of data like this:
[image: image with no caption]

This is what the data looks like when the program starts. The
 first item (or node) in the tree
 stores a question: “Does the suspect have a mustache?” That’s linked
 to two other nodes: one if the answer’s yes, and another if the answer’s
 no. The
 yes and no nodes store the
 name of a suspect.
The program will use this tree to ask the user a series of
 questions to identify a suspect. If the program can’t find the
 suspect, it will ask the user for the name of the new suspect and some
 detail that can be used to identify him or her. It will store this
 information in the tree, which will gradually grow as it learns more
 things.
[image: image with no caption]

Let’s see what the program looks like in
 action.
Test Drive
This is what happens if an agent compiles the SPIES program
 and then takes it on a test run:
[image: image with no caption]

The first time through, the program fails to identify the
 suspect Hayden Fantucci. But once the suspect’s details are entered,
 the program learns enough to identify Mr. Fantucci on the second
 run.
Pretty smart. So what’s the
 problem?
Someone was using the system for a few hours in the lab and
 noticed that even though the program appeared to be working
 correctly, it was using almost twice the
 amount of memory it needed.
That’s why you have been
 called in. Somewhere deep in the source code, something is
 allocating memory on the heap and never freeing
 it. Now, you could just sit and read through all of the
 code and hope that you see what’s causing the problem. But memory
 leaks can be awfully difficult to track down.
So maybe you should pay a trip to the
 software lab...

Software forensics: using valgrind

 It can take an achingly long time to track down bugs in
 large, complex programs like SPIES. So C hackers have written tools that
 can help you on your way. One tool used on the Linux operating system is called valgrind.
valgrind can monitor the pieces
 of data that are allocated space on the heap. It works by creating its
 own fake version of malloc(). When your program wants
 to allocate some heap memory, valgrind will intercept your calls to malloc() and free() and run its own versions of those
 functions. The valgrind version of
 malloc() will take note of which
 piece of code is calling it and which piece of memory it allocated. When
 your program ends, valgrind will
 report back on any data that was left on the heap and tell you where in
 your code the data was created.
[image: image with no caption]

Prepare your code: add debug info

You don’t need to do anything to your code
 before you run it through valgrind.
 You don’t even need to recompile it. But to really get the most out of
 valgrind, you need to make sure
 your executable contains debug
 information. Debug information is extra data that gets
 packed into your executable when it’s compiled—things like the line
 number in the source file that a particular piece of code was compiled
 from. If the debug info is present, valgrind will be able to give you a lot more
 details about the source of your memory leak.
To add debug info into your executable, you need to recompile
 the source with the -g
 switch:
[image: image with no caption]

Just the facts: interrogate your code

To see how valgrind works,
 let’s fire it up on a Linux box and use it to interrogate the SPIES
 program a couple times.
Note
You can find out if valgrind is available on your operating
 system and how to install it at http://valgrind.org.

The first time, use the program to identify one of the built-in
 suspects: Vinny the Spoon. You’ll start valgrind on the command line with the
 --leak-check=full option and then
 pass it the program you want to run:
[image: image with no caption]

Use valgrind repeatedly to gather more evidence

When the SPIES program exited, there was nothing left on the heap.
 But what if you run it a second time and teach the program about a new
 suspect called Hayden Fantucci?
[image: image with no caption]

This time, valgrind found a memory leak

It looks like there were 19 bytes of information left on the
 heap at the end of the program. valgrind is telling you the following
 things:
	19 bytes of memory were allocated
 but not freed.

	Looks like we allocated new pieces
 of memory 11 times, but freed only 10 of them.

	Do these lines give us any
 clues?

	Why 19 bytes? Is that a
 clue?

That’s quite a few pieces of information. Let’s take these facts
 and analyze them.

Look at the evidence

OK, now that you’ve run valgrind, you’ve collected quite a few pieces
 of evidence. It’s time to analyze that evidence and see if you can draw
 any conclusions.
[image: image with no caption]

1. Location

You ran the code two times. The first time,
 there was no problem. The memory leak only happened when you entered a
 new suspect name. Why is that significant? Because that means the leak
 can’t be in the code that ran the first time. Looking back at the
 source code, that means the problem lies in this section of the
 code:
[image: image with no caption]

2. Clues from valgrind

When you ran the code through valgrind and added a single suspect, the
 program allocated memory 11 times, but only released memory 10 times.
 What does that tell you?
valgrind told you that there
 were 19 bytes of data left on the heap when the program ended. If you
 look at the source code, what piece of data is likely to take up 19
 bytes of space?
Finally, what does this output from valgrind tell you?
[image: image with no caption]

The Big Questions
Consider the evidence carefully, then answer these
 questions.
	How many pieces of data were left on the heap?

	What was the piece of data left on the heap?

	Which line or lines of code caused the leak?

	How do you plug the leak?

The Big Answers
You were to consider the evidence carefully and answer these
 questions.
	How many pieces of data were left on the heap?
[image: image with no caption]

	What was the piece of data left on the heap?
[image: image with no caption]

	Which line or lines of code caused the leak?
[image: image with no caption]

	How do you plug the leak?
[image: image with no caption]

The fix on trial

Now that you’ve added the fix to the code, it’s time to run the
 code through valgrind again.
[image: image with no caption]

The leak is fixed

You ran exactly the same test data through the program, and this
 time the program cleared everything away from the heap.
How did you do? Did you crack the case? Don’t worry if you
 didn’t manage to find and fix the leak this time. Memory leaks are
 some of the hardest bugs to find in C programs. The truth is that many
 of the C programs available probably have some memory bugs buried deep
 inside them, but that’s why tools like valgrind are important.
	Spot when leaks
 happen.

	Identify the location where they
 happen.

	Check to make sure the leak is
 fixed.

There are no Dumb Questions
	Q:
	 valgrind said the leaked memory
 was created on line 46, but the leak was fixed on a
 completely different line. How come?

	A:
	The “Loretta...”
 data was put onto the heap on line 46, but the leak happened
 when the variable pointing to it (current->question) was
 reassigned without freeing it. Leaks don’t happen when data
 is created; they happen when the program loses all
 references to the data.

	Q:
	Can I get valgrind on my Mac/Windows/FreeBSD
 system?

	A:
	Check
 http://valgrind.org for
 details on the latest release.

	Q:
	How does valgrind intercept calls to
 malloc() and free()?

	A:
	The malloc() and free() functions are contained in
 the C Standard Library. But valgrind contains a library with
 its own versions of malloc() and free(). When you run a program
 with valgrind, your
 program will be using valgrind’s functions, rather than
 the ones in the C Standard Library.

	Q:
	Why doesn’t the compiler
 always include debug information when it compiles
 code?

	A:
	Because debug
 information will make your executable larger, and it may
 also make your program slightly slower.

	Q:
	Where did the name valgrind come
 from?

	A:
	Valgrind is the
 name of the entrance to Valhalla. valgrind (the program) gives you
 access to the computer’s heap.

Bullet Points
	valgrind checks for
 memory leaks.

	valgrind works by
 intercepting the calls to malloc() and free().

	When a program stops running, valgrind prints details of what’s left
 on the heap.

	If you compile your code with debug information, valgrind can give you more
 information.

	If you run your program several times, you can narrow the
 search for the leak.

	valgrind can tell you
 which lines of code in your source put the data on the
 heap.

	valgrind can be used to
 check that you’ve fixed a leak.

Your C Toolbox

You’ve got Chapter 6 under your belt,
 and now you’ve added data structures and dynamic memory to your toolbox.
 For a complete list of tooltips in the book, see Appendix B.
[image: image with no caption]

Chapter 7. Advanced Functions: Turn your functions up to 11

[image: image with no caption]

 Basic functions are great, but
 sometimes you need more.
So far, you’ve focused on the basics, but what if you need even more
 power and flexibility to achieve
 what you want? In this chapter, you’ll see how to up your code’s IQ by passing functions as parameters. You’ll find out
 how to get things sorted with comparator
 functions. And finally, you’ll discover how to make your code
 super stretchy with variadic
 functions.
Looking for Mr. Right...

You’ve used a lot of C functions in the book so far, but the truth
 is that there are still some ways to make your C functions a lot more
 powerful. If you know how to use them correctly, C functions can make
 your code do more things but
 without writing a lot more code.
To see how this works, let’s look at an example. Imagine you have
 an array of strings that you want to filter down, displaying some
 strings and not displaying others:
int NUM_ADS = 7;
char *ADS[] = {
 "William: SBM GSOH likes sports, TV, dining",
 "Matt: SWM NS likes art, movies, theater",
 "Luis: SLM ND likes books, theater, art",
 "Mike: DWM DS likes trucks, sports and bieber",
 "Peter: SAM likes chess, working out and art",
 "Josh: SJM likes sports, movies and theater",
 "Jed: DBM likes theater, books and dining"
};
[image: image with no caption]

Let’s write some code that uses string
 functions to filter this array down.
Code Magnets
 Complete the find()
 function so it can track down all the sports fans in the list who
 don’t also share a passion for
 Bieber.
Beware: you might not need
 all the fragments to complete the function.
[image: image with no caption]

Code Magnets Solution
You were to complete the find() function so it can track down all the
 sports fans in the list who don’t
 also share a passion for Bieber.
[image: image with no caption]

Test Drive
Now, if you take the function and the data, and wrap everything
 up in a program called find.c, you
 can compile and run it like this:
[image: image with no caption]

And sure enough, the find()
 function loops through the array and finds the matching strings. Now
 that you have the basic code, it would be easy to create
 clones of the function that could perform
 different kinds of searches.
[image: image with no caption]

Exactly right. If you clone the
 function, you’ll have a lot of duplicated code.
C programs often have to perform tasks that are almost
 identical except for some small detail. At the moment, the
 find() function runs through each
 element of the array and applies a simple test to each string to look
 for matches. But the test it makes is hardwired. It will always perform the same
 test.
Now, you could pass some strings into the function so that it
 could search for different substrings. The trouble is, that wouldn’t
 allow find() to check for
 three strings, like “arts,” “theater,” or
 “dining.” And what if you needed something wildly different?
You need something a little more
 sophisticated...

Pass code to a function

What you need is some way of passing the code for the test to the find() function. If you had some
 way of wrapping up a piece of code and handing that code to the
 function, it would be like passing the find() function a testing
 machine that it could apply to each piece of data.
[image: image with no caption]

This means the bulk of the find() function would stay exactly the same. It would still contain the
 code to check each element in an array and display the same kind of
 output. But the test it applies against each element in the array would
 be done by the code that you pass to it.

You need to tell find() the name of a function

Imagine you take our original search condition and rewrite
 it as a function:
int sports_no_bieber(char *s)
{
 return strstr(s, "sports") && !strstr(s, "bieber");
}
[image: image with no caption]

Now, if you had some way of passing the
 name of the function to find() as a parameter,
 you’d have a way of injecting the
 test:
[image: image with no caption]

If you could find a way of passing a function name to find(), there would be no limit to the kinds
 of tests that you could make in the future. As long as you can write a
 function that will return true or
 false to a string, you can reuse the same find() function.
find(sports_no_bieber);
find(sports_or_workout);
find(ns_theater);
find(arts_theater_or_dining);
But how do you say that a parameter stores
 the name of a function? And if you have a function name, how do you use
 it to call the function?

Every function name is a pointer to the function...

You probably guessed that pointers would come into this
 somewhere, right? Think about what the name of a
 function really is. It’s a way of
 referring to the piece of code. And that’s just
 what a pointer is: a way of referring to
 something in memory.
That’s why, in C, function names are also pointer variables. When
 you create a function called go_to_warp_speed(int speed), you are also
 creating a pointer variable called go_to_warp_speed that contains the address of
 the function. So, if you give find()
 a parameter that has a function pointer type, you
 should be able to use the parameter to call the function it points
 to.
[image: image with no caption]

[image: image with no caption]

Let’s look at the C syntax you’ll need to
 work with function pointers.

...but there’s no function data type

 Usually, it’s pretty easy to declare pointers in C. If you
 have a data type like int, you just
 need to add an asterisk to the end of the data type name, and you
 declare a pointer with int *.
 Unfortunately, C doesn’t have a function data type, so you can’t declare a
 function pointer with anything like function
 *.
[image: image with no caption]

Why doesn’t C have a function data type?

C doesn’t have a function
 data type because there’s not just one type of
 function. When you create a function, you can vary a lot of things,
 such as the return type or the list of parameters it takes. That
 combination of things is what defines the type of
 the function.
[image: image with no caption]

So, for function pointers, you’ll need to use slightly more
 complex notation...

How to create function pointers

 Say you want to create a pointer variable that can store
 the address of each of the functions on the previous page. You’d have to
 do it like this:
[image: image with no caption]

That looks pretty complex, doesn’t it?
Unfortunately, it has to be, because you need to tell C the return
 type and the parameter types the function will take. But once you’ve
 declared a function pointer variable, you can use it like any other
 variable. You can assign values to it, you can add it to arrays, and you
 can also pass it to functions...
...which brings us back to your find() code...
There are no Dumb Questions
	Q:
	What does char** mean? Is it a typing
 error?

	A:
	 char** is a pointer normally used to
 point to an array of strings.

Exercise
Take a look at those other types of searches that people
 have asked for. See if you can create a function for each type of
 search. Remember: the first is already written.
[image: image with no caption]

Then, see if you can complete the find() function:
[image: image with no caption]

Exercise Solution
You were to take a look at those other types of searches that
 people have asked for and create a function for each type of
 search.
[image: image with no caption]

Then, you were to complete the find() function:
[image: image with no caption]

Test Drive
Let’s take those functions out on the road and see how they
 perform. You’ll need to create a program to call find() with each function in turn:
[image: image with no caption]

Each call to the find()
 function is performing a very different search. That’s why function
 pointers are one of the most powerful features in C: they allow you to
 mix functions together. Function pointers let you build programs with
 a lot more power and a lot
 less code.

The Hunter’s Guide to Function Pointers
 When you’re out in the reeds, identifying those function
 pointers can be pretty tricky. But this simple, easy-to-carry guide
 will fit in the ammo pocket of any C user.
[image: image with no caption]

There are no Dumb Questions
	Q:
	If function pointers are just
 pointers, why don’t you need to prefix them with a * when you call the
 function?

	A:
	You can. In the
 program, instead of writing match(ADS[i]), you could have
 written (*match)(ADS[i]).

	Q:
	And could I have used & to get the address of a
 method?

	A:
	Yes. Instead of
 find(sports_or_workout),
 you could have written find(&sports_or_workout).

	Q:
	Then why didn’t
 I?

	A:
	Because it makes the
 code easier to read. If you skip the * and &, C will still understand what
 you’re saying.

Get it sorted with the C Standard Library

 Lots of programs need to sort data. And if the data’s
 something simple like a set of numbers, then sorting is pretty easy.
 Numbers have their own natural order. But it’s not so easy with other
 types of data.
Imagine you have a set of people. How would you put them in order?
 By height? By intelligence? By hotness?
[image: image with no caption]

When the people who wrote the C Standard Library wanted to create
 a sort function, they had a problem:
How could a sort function sort any type of
 data at all?

Use function pointers to set the order

 You probably guessed the solution: the C Standard Library
 has a sort function that accepts a pointer to a comparator function, which will be used to
 decide if one piece of data is the same
 as, less than, or
 greater than another piece of
 data.
This is what the qsort()
 function looks like:
[image: image with no caption]

The qsort() function compares
 pairs of values over and over again, and if they are in the wrong order,
 the computer will switch them.
And that’s what the comparator function is for. It will tell
 qsort() which order a pair of
 elements should be in. It does this by returning three different
 values:
[image: image with no caption]

To see how this works in practice, let’s
 look at an example.
Sorting ints Up Close
 Let’s say you have an array of integers and you want to
 sort them in increasing order. What does the comparator function look
 like?
int scores[] = {543,323,32,554,11,3,112};
If you look at the signature
 of the comparator function that qsort() needs, it takes two void pointers given by void*.
 Remember void* when we used
 malloc()? A void pointer can store
 the address of any kind of data,
 but you always need to cast it to something more
 specific before you can use it.
The qsort() function works by
 comparing pairs of elements in the array and then placing them in the
 correct order. It compares the values by calling the comparator
 function that you give it.
A void pointer void* can store a
 pointer to anything.

int compare_scores(const void* score_a, const void* score_b)

{

...

}
Values are always passed to the function as pointers, so the
 first thing you need to do is get the integer values from the
 pointers:
[image: image with no caption]

Then you need to return a positive, negative, or zero value,
 depending on whether a is greater
 than, less than, or equal to b. For
 integers, that’s pretty easy to do—you just subtract one number from
 the other:
[image: image with no caption]

[image: image with no caption]

And this is how you ask qsort() to sort the array:
qsort(scores, 7, sizeof(int), compare_scores);

Long Exercise
 Now it’s your turn. Look at these different sort
 descriptions. See if you can write a comparator function for each one.
 To get you started, the first one is already completed.
[image: image with no caption]

[image: image with no caption]

And finally: if you already had the compare_areas() and compare_names() functions, how would you
 write these two comparator functions?
[image: image with no caption]

Long Exercise Solution
Now it’s your turn. You were to look at these different sort
 descriptions and write a comparator function for each one.
[image: image with no caption]

[image: image with no caption]

And finally: if you already had the compare_areas() and compare_names() functions, how did you write
 these two comparator functions?
[image: image with no caption]

Relax
Don’t worry if this exercise caused you
 a few problems.
It involved pointers, function pointers, and even a little math.
 If you found it tough, take a break, drink a little water, and then
 try it again in an hour or two.

Test Drive
Some of the comparator functions were really pretty gnarly, so
 it’s worth seeing how they run in action. This is the kind of code you
 need to call the functions.
[image: image with no caption]

 If you compile and run this code, this is what you
 get:
[image: image with no caption]

Do this!
Great, it works.
Now try writing your own example code. The sorting functions can
 be incredibly useful, but the comparator functions they need can be
 tricky to write. But the more practice you get, the easier they
 become.
There are no Dumb Questions
	Q:
	I don’t understand the
 comparator function for the array of strings. What does
 char**
 mean?

	A:
	Each item in a string
 array is a char pointer (
 char*). When qsort() calls the comparator
 function, it sends pointers to two elements in the arrays.
 That means the comparator receives two
 pointers-to-pointers-to-char. In C notation, each value is a
 char**.

	Q:
	OK, but when I call the strcmp() function, why does the code
 say strcmp(*a, *b)? Why not
 strcmp(a,
 b)?

	A:
	 a and b are of type char**. The strcmp() function needs values of
 type char*.

	Q:
	Does
 qsort() create a
 sorted version of an array?

	A:
	It doesn’t make a
 copy, it actually modifies the original array.

	Q:
	Why does my head
 hurt?

	A:
	Don’t worry about it.
 Pointers are really difficult to use sometimes. If you
 don’t find them a little confusing, it
 probably means you aren’t thinking hard enough about
 them.

Automating the Dear John letters

Imagine you’re writing a mail-merge program to send out
 different types of messages to different people. One way of creating the
 data for each response is with a struct like this:
[image: image with no caption]

The enum gives you the names
 for each of the three types of response you’ll be sending out, and that
 response type can be recorded against each response. Then you’ll be able
 to use your new response data type by
 calling one of these three functions for each type of response:
void dump(response r)
{
 printf("Dear %s,\n", r.name);
 puts("Unfortunately your last date contacted us to");
 puts("say that they will not be seeing you again");
}

void second_chance(response r)
{
 printf("Dear %s,\n", r.name);
 puts("Good news: your last date has asked us to");
 puts("arrange another meeting. Please call ASAP.");
}

void marriage(response r)
{
 printf("Dear %s,\n", r.name);
 puts("Congratulations! Your last date has contacted");
 puts("us with a proposal of marriage.");
}
So, now that you know what the data looks like, and you have the
 functions to generate the responses, let’s see how complex the code is
 to generate a set of responses from an array of data.
Pool Puzzle
Take code fragments from the pool and place them into the blank
 lines below. Your goal is to piece together the main() function so that it can generate a
 set of letters for the array of response data. You may not use the same code fragment more than
 once.
int main()
{
 response r[] = {
 {"Mike", DUMP}, {"Luis", SECOND_CHANCE},
 {"Matt", SECOND_CHANCE}, {"William", MARRIAGE}
 };
 int i;
 for (i = 0; i < 4; i++) {
 switch(_____________) {
 case _____________:
 dump(_____________);
 break;
 case______________:
 second_chance(_____________);
 break;
 default:
 marriage(_____________);
 }
 }
 return 0;
}
Note: each thing from the pool can be
 used only once!
[image: image with no caption]

Pool Puzzle Solution
Take code fragments from the pool and place them into the blank
 lines below. Your goal was to piece together the main() function so that it can generate a
 set of letters for the array of response data.
[image: image with no caption]

Note: each thing from the pool can be
 used only once!
[image: image with no caption]

Test Drive
When you run the program, sure enough, it generates the correct
 response for each person:
[image: image with no caption]

Well, it’s good that it worked, but there is quite a lot of code
 in there just to call a function for each piece of response data. Every time you need call a
 function that matches a response type, it will look like this:
switch(r.type) {
case DUMP:
 dump(r);
 break;
case SECOND_CHANCE:
 second_chance(r);
 break;
default:
 marriage(r);
}
And what will happen if you add a fourth response type? You’ll have to change
 every section of your program that looks like this. Soon, you will
 have a lot of code to maintain, and it might go wrong.
Fortunately, there is a trick that you can use in C, and it
 involves arrays...
[image: image with no caption]

Create an array of function pointers

 The trick is to create an array of function pointers that
 match the different response types. Before seeing how that works, let’s
 look at how to create an array of function pointers. If you had an array
 variable that could store a whole bunch of function names, you could use
 it like this:
replies[] = {dump, second_chance, marriage};
But that syntax doesn’t quite work in C. You have to tell the
 compiler exactly what the functions will look like that you’re going to
 store in the array: what their return types will be and what parameters
 they’ll accept. That means you have to use this much more complex syntax:
[image: image with no caption]

But how does an array help?

Look at that array. It contains a set of function names that are
 in exactly the same order as the types in the
 enum:
enum response_type {
DUMP, SECOND_CHANCE, MARRIAGE};
This is really important, because when C
 creates an enum, it gives each of
 the symbols a number starting at 0. So DUMP
 == 0, SECOND_CHANCE == 1,
 and MARRIAGE == 2. And that’s
 really neat, because it means you can get a pointer to one of your
 sets of functions using a response_type:
[image: image with no caption]

Let’s see if you can use the function
 array to replace your old main() function.
Sharpen your pencil
OK, this exercise is quite a tough one. But take your time
 with it, and you should be fine. You already have all the
 information you need to complete the code. In this new version of
 the main() function, the whole
 switch/case statement used before
 has been removed and needs to be replaced with a single line of code. This line of code will
 find the correct function name from the replies array and then use it to call the function.
void (*replies[])(response) = {dump, second_chance, marriage};

int main()
{
 response r[] = {
 {"Mike", DUMP}, {"Luis", SECOND_CHANCE},
 {"Matt", SECOND_CHANCE}, {"William", MARRIAGE}
 };
 int i;
 for (i = 0; i < 4; i++) {

 }
 return 0;
}

Sharpen your pencil: Solution
OK, this exercise was quite a tough one. In this new version
 of the main() function, the whole
 switch/case statement used before
 was removed, and you needed to replace it. This line of code will
 find the correct function name from the replies array and then use it to call the function.
[image: image with no caption]

Let’s break that
 down.
[image: image with no caption]

Test Drive
Now, when you run the new version of the program, you get
 exactly the same output as before:
[image: image with no caption]

The difference? Now, instead of an entire switch statement, you just have
 this:
(replies[r[i].type])(r[i]);
If you have to call the response functions at several places
 in the program, you won’t have to copy a lot of code. And if you
 decide to add a new type and a new function, you can just add it to
 the array:
[image: image with no caption]

Arrays of function pointers can make your code much easier to
 manage. They are designed to make your code
 scalable by making it shorter and easier to
 extend. Even though they are quite difficult to understand at first,
 function pointer arrays can really crank up your C programming
 skills.

Bullet Points
	Function pointers store the addresses of
 functions.

	The name of each function is actually a function
 pointer.

	If you have a function shoot(), then shoot and &shoot are both pointers to that
 function.

	You declare a new function pointer with return-type(*var-name)(param-types).

	If fp is a function
 pointer, you can call it with fp(params, ...).

	Or, you can use (*fp)(params,...). C will work the
 same way.

	The C Standard Library has a sorting function called
 qsort().

	qsort() accepts a
 pointer to a comparator function that can
 test for (in)equality.

	The comparator function will be passed pointers to two items in the array
 being sorted.

	If you have an array of data, you can associate functions
 with each data item using function pointer arrays.

There are no Dumb Questions
	Q:
	Why is the function pointer
 array syntax so complex?

	A:
	Because when you
 declare a function pointer, you need to say what the return
 and parameter types are. That’s why there are so many
 parentheses.

	Q:
	This looks a little like the
 sort of object-oriented code in other languages. Is
 it?

	A:
	It’s similar.
 Object-oriented languages associate a set of functions
 (called methods) with pieces of data.
 In the same way, you can use function pointers to associate
 functions with pieces of data.

	Q:
	Hey, so does that mean that C
 is object oriented? Wow, that’s awesome.

	A:
	No. C is not object
 oriented, but other languages that are built on C, like
 Objective-C and C++, create a lot of their object-oriented
 features by using function pointers under the covers.

Make your functions streeeeeetchy

 Sometimes, you want to write C functions that are really
 powerful, like your find() function that could search using
 function pointers. But other times, you just want to write functions
 that are easy to use. Take the printf() function. The printf() function has one really cool feature
 that you’ve used: it can take a variable number
 of arguments:
[image: image with no caption]

So how can YOU do that?

And you’ve got just the problem that needs it. Down in the Head
 First Lounge, they’re finding it a little difficult to keep track of
 the drink totals. One of the guys has tried to make life easier by
 creating an enum with the list of
 cocktails available and a function that returns the prices for each
 one:
enum drink {
 MUDSLIDE, FUZZY_NAVEL, MONKEY_GLAND, ZOMBIE
};

double price(enum drink d)
{
 switch(d) {
 case MUDSLIDE:
 return 6.79;
 case FUZZY_NAVEL:
 return 5.31;
 case MONKEY_GLAND:
 return 4.82;
 case ZOMBIE:
 return 5.89;
 }
 return 0;
}
And that’s pretty cool, if the Head First Lounge crew just wants
 the price of a drink. But what they want to do is get the price of a
 total drinks order:
[image: image with no caption]

They want a function called total() that will accept a count of the
 drinks and then a list of drink names.
Variadic Functions Up Close
A function that takes a variable number of parameters is
 called a variadic function. The C
 Standard Library contains a set of macros that can help you create your own
 variadic functions. To see how they work, you’ll create a function
 that can print out series of ints:
Note
You can think of macros as a special type of function that
 can modify your source code.

[image: image with no caption]

Here’s the code:
[image: image with no caption]

 Let’s break it down and take a look at it, step by
 step.
[image: image with no caption]

Geek Bits
 Functions vs.
 macros
A macro is used to rewrite
 your code before it’s compiled. The macros you’re using here (
 va_start, va_arg, and va_end) might look like functions, but
 they actually hide secret instructions that tell the
 preprocessor how to generate lots of extra
 smart code inside your program, just before compiling it.

There are no Dumb Questions
	Q:
	Wait, why are va_end and va_start called
 macros? Aren’t they
 just normal functions?

	A:
	No, they are
 designed to look like ordinary functions, but they actually
 are replaced by the preprocessor with other code.

	Q:
	And the preprocessor
 is?

	A:
	The preprocessor
 runs just before the compilation step. Among other things,
 the preprocessor includes the headers into the code.

	Q:
	Can I have a function with
 just variable
 arguments, and no fixed arguments at all?

	A:
	No. You need to
 have at least one fixed argument in order to pass its name
 to va_start.

	Q:
	What happens if I try to read
 more arguments from va_arg than have been
 passed in?

	A:
	Random errors will
 occur.

	Q:
	That sounds
 bad.

	A:
	Yep, pretty
 bad.

	Q:
	What if I try to read an
 int argument as a
 double, or
 something?

	A:
	Random errors will
 occur.

Exercise
 OK, now it’s over to you. The guys in the Head First
 Lounge want to create a function that can return the total cost of a
 round of drinks, like this:
[image: image with no caption]

Using the price() from a
 few pages back, complete the code for total():
double total(int args, ...)
{
 double total = 0;

 return total;
}

Exercise Solution
OK, now it’s over to you. The guys in the Head First Lounge
 want to create a function that can return the total cost of a round
 of drinks, like this:
[image: image with no caption]

Using the price() from a
 few pages back, you were to complete the code for total():
[image: image with no caption]

Test Drive
If you create a little test code to call the function,
 you can compile it and see what happens:
[image: image with no caption]

Your code works!
Now you know how to use variable arguments to make your code
 simpler and more intuitive to use.
[image: image with no caption]

Bullet Points
	Functions that accept a variable number of arguments are
 called variadic
 functions.

	To create variadic functions, you need to include the
 stdarg.h header file.

	The variable arguments will be stored in a va_list.

	You can control the va_list using va_start(), va_arg(), and va_end().

	You will need at least one fixed
 parameter.

	Be careful that you don’t try to read more parameters than
 you’ve been given.

	You will always need to know the data type of every
 parameter you read.

Your C Toolbox

You’ve got Chapter 7 under your belt,
 and now you’ve added advanced functions to your toolbox. For a complete
 list of tooltips in the book, see Appendix B.
[image: image with no caption]

Chapter 8. Static and Dynamic Libraries: Hot-swappable code

[image: image with no caption]

 You’ve already seen the power of
 standard libraries.
Now it’s time to use that power for your own
 code. In this chapter, you’ll see how to create your own libraries and reuse
 the same code across several programs. What’s more, you’ll
 learn how to share code at runtime with dynamic
 libraries. You’ll learn the secrets of the coding
 gurus. And by the end of the chapter, you’ll be able to write
 code that you can scale and manage simply and efficiently.
Code you can take to the bank

 Do you remember the encrypt() function you wrote a while back that
 encrypted the contents of a string? It was in a separate source code
 file that could be used by several programs:
[image: image with no caption]

Somebody else has written a function called checksum() that can be used to check if the
 contents of a string have been modified. Encrypting data and checking if
 data has been modified are both important for security. Separately, the two functions are
 useful, but together they could form the basis of a security library.
[image: image with no caption]

[image: image with no caption]

Sharpen your pencil
The guy at the bank has written a test program to see how the
 two functions work. He put all of the source into the same directory
 on his machine and then began to compile it.
He compiled the two security files into object files, and then
 wrote a test program:
[image: image with no caption]

And that’s when the problems started. When he compiled the
 program, something went badly wrong...
[image: image with no caption]

Using a pencil, highlight which command or code made the compile
 fail.

Sharpen your pencil: Solution
 The problem is in the test program. All of the source
 files are stored in the same directory, but the test program includes
 the encrypt.h and checksum.h
 headers using angle brackets (
 < >).
[image: image with no caption]

Angle brackets are for standard
 headers

If you use angle brackets in an #include statement, the compiler won’t look
 for the headers in the current directory; instead,
 it will search for them in the standard header directories.
To get the program to compile with the local header files, you need to switch the
 angle brackets for simple quotes ("
 "):
[image: image with no caption]

[image: image with no caption]

Where are the standard header directories?
 So, if you include headers using angle brackets, where
 does the compiler go searching for the header files? You’ll need to
 check the documentation that came with your compiler, but typically on
 a Unix-style system like the Mac or a Linux machine, the compiler will
 look for the files under these directories:
[image: image with no caption]

And if you’re using the MinGW version of the gcc compiler, it will normally look
 here:
C:\MinGW\include

But what if you want to share code?

Sometimes you want to write code that will be available to lots of
 programs, in different folders, all over your computer. What do you do
 then?
[image: image with no caption]

There are two sets of files that you want to share between
 programs: the .h header files and the .o object
 files. Let’s look at how you can share each type.

Sharing .h header files

 There are a few ways of sharing header files between
 different C projects:
	Store them in a standard
 directory.
If you copy your header files into one of the standard
 directories like /usr/local/include, you can
 include them in your source code using angle brackets.
[image: image with no caption]

	Put the full pathname in your include
 statement.
If you want to store your header files somewhere else, such as
 /my_header_files, you can add
 the directory name to your include statement:
[image: image with no caption]

	You can tell the compiler where to
 find them.
The final option is to tell the compiler where it can find
 your header files. You can do this with the
 -I option on gcc:
[image: image with no caption]

The -I option tells the
 gcc compiler that there’s another
 place where it can find header files. It will still search in all
 the standard places, but first it will check the directory names in
 the -I option.

Share .o object files by using the full pathname

Now you can always put your .o object files
 into some sort of shared directory. Once you’ve
 done that, you can then just add the full path to the object files when
 you’re compiling the program that uses them:
gcc -I/my_header_files test_code.c

/my_object_files/encrypt.o

/my_object_files/checksum.o -o test_code
Note
Using the full pathname to the object files means you don’t need
 a separate copy for each C project.

Note
/my_object_files is like a central
 store for your object files.

[image: image with no caption]

If you compile your code with the full
 pathname to the object files you want to use, then
 all your C programs can share the same
 encrypt.o and checksum.o
 files.
[image: image with no caption]

Yes, if you create an archive of object
 files, you can tell the compiler about a whole set of object files all
 at once.
An archive is just a bunch of
 object files wrapped up into a single file. By creating a single archive
 file of all of your security code, you can make it a lot easier to share
 the code between projects.
Let’s see how to do
 it...

An archive contains .o
 files

Ever used a .zip or a
 .tar file? Then you know how easy it is to create a
 file that contains other files. That’s exactly what
 a .a archive file is: a file containing other
 files.
Open up a terminal or a command prompt and change into one of the
 library directories. These are the directories like
 /usr/lib or C:\MinGW\lib that
 contain the library code. In a library directory, you’ll find a whole
 bunch of .a archives. And there’s a command called
 nm that you can use to look inside
 them:
[image: image with no caption]

[image: image with no caption]

The nm command lists the
 names that are stored inside the
 archive. The libl.a archive shown here contains two
 object files: libmain.o and
 libyywrap.o. What these two object files are used
 for doesn’t really matter; the point is that you can take a whole set of
 object files and turn them into a single archive file that you can use
 with gcc.
Before you see how to compile programs using
 .a, let’s see how to store our
 encrypt.o and checksum.o files
 in an archive.

Create an archive with the ar command...

The archive command (ar) will
 store a set of object files in an archive file:
[image: image with no caption]

Did you notice that all of the .a files have
 names like lib<something>.a? That’s the standard
 way of naming archives. The names begin with lib
 because they are static libraries.
 You’ll see what this means later on.
...then store the .a in a library directory

Once you have an archive, you can store it in a library
 directory. Which library directory should you store it in? It’s up to
 you, but you have a couple of choices:
	You can put your .a file in a
 standard directory like /usr/local/lib.
Some coders like to install archives into a standard
 directory once they are sure it’s working. On Linux, on Mac, and
 in Cygwin, the /usr/local/lib directory is a
 good choice because that’s the directory set aside for your own
 local custom libraries.

	Put the .a file in some other
 directory.
If you are still developing your code, or if you don’t feel
 comfortable installing your code in a system directory, you can
 always create your own library directory. For example:
 /my_lib.
Note
On most machines, you need to be an administrator to put
 files in /usr/local/lib.

Watch it!
Make sure you always name your
 archives
 lib<something>.a.
If you don’t name them this way, your compiler will
 have problems tracking them down.

Finally, compile your other programs

The whole point of creating a library archive was so you could use
 it with other programs. If you’ve installed your archive in a standard
 directory, you can compile your code using the -l switch:
[image: image with no caption]

Can you see now why it’s so important to name your archive
 lib<something>.a? The name that follows the
 -l option needs to match
 part of the archive name. So if your archive is
 called libawesome.a, you can compile your program
 with the -lawesome switch.
But what if you put your archive somewhere else, like
 /my_lib? In that case, you will need to use the
 -L option to say which directories to
 search:
gcc test_code.c -L/my_lib -lhfsecurity -o test_code
[image: image with no caption]

Geek Bits
The contents of the library directories can be
 very different from one machine to another. Why
 is that? It’s because different operating systems have different
 services available. Each of the
 .a files is a separate library. There’ll be
 libraries for connecting to the network, or creating GUI
 applications.
Try running the nm command on
 a few of the .a files. A lot of the names listed
 in each module will match compiled functions that you can use:
[image: image with no caption]

The nm command will tell you
 the name of each .o object file and then list the
 names that are available within the object file. If you see a
 T next to a name, that means it’s
 the name of a function within the object file.

Make Magnets
The security guy is having trouble compiling one of the bank
 programs against the new security library. He has his source code as
 well as the encrypt and checksum source code in the same directory.
 For now, he wants to create the libhfsecurity.a
 archive in the same directory and then use it to compile his own
 program. Can you help him fix his makefile?
Note: the bank_vault program uses these #include statements:
#include <encrypt.h>
#include <checksum.h>
This is the makefile:
encrypt.o: encrypt.c

 gcc_________________ encrypt.c -o encrypt.o

checksum.o: checksum.c

 gcc_________________ checksum.c -o checksum.o

libhfsecurity.a: encrypt.o_______________________

 ar -rcs__________________ encrypt.o

bank_vault: bank_vault.c ________________________

 gcc_ _______________ -I________ -L________ __________________ -o bank_vault
[image: image with no caption]

Make Magnets Solution
The security guy is having trouble compiling one of the bank
 programs against the new security library. He has his source code, as
 well as the encrypt and checksum source code in the same directory.
 For now, he wants to create the libhfsecurity.a
 archive in the same directory and then use it to compile his own
 program. You were to help him fix his makefile.
Note: the bank_vault program uses these #include statements:
[image: image with no caption]

This is the makefile:
[image: image with no caption]

Bullet Points
	Headers in angle brackets (<
 >) are read from the standard directories.

	Examples of standard header directories are
 /usr/include and
 C:\MinGW\include.

	A library archive contains several object files.

	You can create an archive with ar
 -rcs libarchive.a file0.o file1.o....

	Library archive names should begin lib.
 and end .a.

	If you need to link to an archive called
 libfred.a, use -lfred.

	The -L flag should appear
 after the source files in the gcc command.

There are no Dumb Questions
	Q:
	How do I know what the standard
 library directories are on my machine?

	A:
	You need to check the
 documentation for your compiler. On most Unix-style machines,
 the library directories include /usr/lib
 and /usr/local/lib.

	Q:
	When I try to put a library
 archive into my /usr/lib directory, it
 won’t let me. Why is that?

	A:
	Almost certainly
 security. Many operating systems will prevent you from writing
 files to the standard directories in case you accidentally
 break one of the existing libraries.

	Q:
	Is the ar format the same on all
 systems?

	A:
	No. Different
 platforms can have slightly different archive formats. And the
 object code the archive contains will be completely different
 for different operating systems.

	Q:
	If I’ve created a library
 archive, can I see what’s inside it?

	A:
	Yes. ar -t <
 filename > will list the contents of the
 archive.

	Q:
	Are the object files in the
 archive linked together like an executable?

	A:
	No. The object files
 are stored in the archive as distinct files.

	Q:
	Can I put any kind of file in a
 library archive?

	A:
	No. The ar command will check the file type
 before including it.

	Q:
	Can I extract a single object
 file from an archive?

	A:
	Yes. To extract the
 encrypt.o file from
 libhfsecurity.a, use ar -x libhfsecurity.a
 encrypt.o.

	Q:
	Why is it called “static”
 linking?

	A:
	Because it can’t
 change once it’s been done. When two files are linked together
 statically, it’s like mixing coffee with milk: you can’t
 separate them afterward.

	Q:
	Should I use the HF security
 library to secure the data at my bank?

	A:
	That’s probably not a
 good idea.

The Linker Exposed
This week’s interview: What Exactly Do
 You Do?
	Head First: Linker, thank you so much for making time for us
 today.

	Linker: It’s a pleasure.

	Head First: I’d like to begin by asking if you ever feel overlooked by
 developers. Perhaps they don’t understand exactly what it is you
 do?

	Linker: I’m a very quiet person. A lot of people don’t talk to me
 directly with the ld
 command.

	Head First: ld?

	Linker: Yes? See, that’s me.

	Head First: That’s a lot of options on my screen.

	Linker: Exactly. I have a lot of options. A lot of ways of joining
 programs together. That’s why some people just use the gcc command.

	Head First: So the compiler can link files together?

	Linker: The compiler works out what needs to be done to join some
 files together and then calls me. And I do it. Quietly. You’d
 never know I was there.

	Head First: I do have another question...

	Linker: Yes?

	Head First: I hate to sound foolish, but what exactly is it you
 do?

	Linker: That’s not a foolish question. I stitch pieces of compiled
 code together, a bit like a telephone operator.

	Head First: I don’t follow.

	Linker: The old telephone operators would patch calls from one
 location to another so the two parties could talk. An object
 file is like that.

	Head First: How so?

	Linker: An object file might need to call a function that’s stored
 in some other file. I link together the point in one file where
 the function call is made to the point in another file where the
 function lives.

	Head First: You must have a lot of patience.

	Linker: I like that kind of thing. I make lace in my spare
 time.

	Head First: Really?

	Linker: No.

	Head First: Linker, thank you.

The Head First Gym is going global

The guys at the Head First Gym are going to spread their business
 worldwide. They are opening up
 outlets on four continents, and each one will contain their trademarked
 Blood, Sweat, and Gears™ gym equipment. So they’re
 writing software for their ellipticals, treadmills, and exercise bikes.
 The software will read data from the sensors that are fitted on each
 device and then display information on a small LCD screen that will tell
 users what distance they’ve covered and how many calories they’ve
 burned.
[image: image with no caption]

That’s the plan, anyway, but the guys need
 a little help. Let’s look into the code in a little more
 detail.

Calculating calories

The team is still working on the software, but they’ve got one of
 the key modules ready. The
 hfcal library will generate the main data for the
 LCD display. If the code is told the user’s weight, the virtual distance
 she’s traveled on the machine, and then a special
 coefficient, it will generate the basic LCD details
 on the Standard Output:
[image: image with no caption]

The team hasn’t yet written the main code for each piece of
 equipment. When they do, there will be separate programs for the
 ellipticals, treadmills, and exercise bikes. Until then, they’ve created
 a test program that will call the
 hfcal.c code with some example data:
[image: image with no caption]

Sharpen your pencil
Now that you’ve seen the source code for the test program and
 the hfcal library, it’s time to build the
 code.
Let’s see how well you remember the commands.
	Start by creating an object file called
 hfcal.o. The hfcal.h
 header is going to be stored in
 ./includes.

	Next, you need to create an object file called
 elliptical.o from the
 elliptical.c test program.

	Now, you need to create an archive library from
 hfcal.o and store it in
 ./libs.

	Finally, create the elliptical executable using
 elliptical.o and the
 hfcal archive.

Sharpen your pencil: Solution
Now that you’ve seen the source code for the test program and
 the hfcal library, it’s time to build the
 code.
Let’s see how well you remembered the commands.
	Start by creating an object file called
 hfcal.o. The hfcal.h
 header is going to be stored in
 ./includes:
[image: image with no caption]

	Next, you need to create an object file called
 elliptical.o from the
 elliptical.c test program:
[image: image with no caption]

	Now, you need to create an archive library from
 hfcal.o and store it in .
 /libs:
[image: image with no caption]

	Finally, create the elliptical executable using
 elliptical.o and the
 hfcal archive:
[image: image with no caption]

[image: image with no caption]

But things are a bit more complex...

Turns out, there’s a problem. The Head First Gyms are expanding
 everywhere, in different countries that use
 different languages and different measures. For example, in England, the
 machines need to report information in kilograms and kilometers:
[image: image with no caption]

[image: image with no caption]

The gyms have lots of different types of equipment. If they have
 20 different types of machines, and they have gyms in 50 countries, that
 means there will be 1,000
 different versions of the software. That’s a lot of
 different versions.
And then there are other problems too:
	If an engineer upgrades the sensors used on a machine, she
 might need to upgrade the code that talks to them.

	If the displays ever change, the engineers might need to
 change the code that generates the output.

	Plus many, many other variations.

If you think about it, you get the same kinds of problems when you
 write any software. Different machines might require different
 device driver code, or they might need to talk to
 different databases or different
 graphical user interfaces. You probably won’t be
 able to build a version of your code that will work on
 every machine, so what should you do?

Programs are made out of lots of pieces...

You’ve already seen that you can build programs using different
 pieces of object code. You’ve created
 .o files and .a archives, and
 you’ve linked them together into single executables.
[image: image with no caption]

...but once they’re linked, you can’t change them

The problem is that if you build programs like this, they are
 static. Once you’ve created a
 single executable file from those separate pieces of object code, you
 really have no way of changing any of the
 ingredients without rebuilding the whole program.
[image: image with no caption]

The program is just a large chunk of object code. There’s no way
 to separate the display code from
 the sensor code; it’s all lost in
 the mix.
[image: image with no caption]

Dynamic linking happens at runtime

The reason you can’t change the different pieces of object code in
 an executable file is because, well, they are all contained in a single
 file. They were statically linked
 together when the program was compiled.
[image: image with no caption]

But if your program wasn’t just a single file—if your program was
 made up of lots of separate files that only joined together when the
 program was run—you would avoid the problem.
[image: image with no caption]

The trick, then, is to find a way of storing pieces of object code
 in separate files and then dynamically
 linking them together only when the program runs.
[image: image with no caption]

Can you link .a at runtime?

So you need to have separate files containing separate pieces of
 object code. But you’ve already got separate files containing object
 code: the .o object files and the
 .a archive files. Does that mean you just need to
 tell the computer not to link the .o files until
 you run the program?
Sadly, it’s not that easy. Simple object files and archives don’t
 have quite enough information in them to be linked together at runtime.
 There are other things our dynamic library files
 will need, like the names of the other files they need to link
 to.
Dynamic libraries are object files on steroids

So, dynamic libraries are similar to those
 .o object files you’ve been creating for a while,
 but they’re not quite the same. Like an archive file, a dynamic
 library can be built from several .o object
 files, but unlike an archive, the object files are properly linked
 together in a dynamic library to form a single piece of object
 code.
[image: image with no caption]

So how do you create your own dynamic
 libraries? Let’s see.

First, create an object file

If you’re going to convert the hfcal.c code
 into a dynamic library, then you need to begin by compiling it into a
 .o object file, like this:
[image: image with no caption]

Did you spot the difference? You’re creating the
 hfcal.o exactly the same as before
 except you’re adding an extra flag: -fPIC. This
 tells gcc that you want to create
 position-independent code. Some
 operating systems and processors need to build libraries from
 position-independent code so that they can decide at runtime where they
 want to load it into memory.
Position-independent code can be moved
 around in memory.

Now, the truth is that on most systems you
 don’t need to specify this option. Try it out on your system. If it’s
 not needed, it won’t do any harm.
Geek Bits
So, what is position-independent
 code?
Position-independent code is code that doesn’t mind where the
 computer loads it into memory. Imagine you had a dynamic library that
 expected to find the value of some piece of global data 500 bytes away
 from where the library is loaded. Bad things would happen if the
 operating system decided to load the library somewhere else in memory.
 If the compiler is told to create position-independent code, it will
 avoid problems like this.
Some operating systems, like Windows, use a technique called
 memory mapping when loading dynamic
 libraries, which means all code is effectively position-independent.
 If you compile your code on Windows, you might find that gcc will give you a warning that the
 -fPIC option is not needed. You can
 either remove the -fPIC flag, or
 ignore the warning. Either way, your code will be fine.

What you call your dynamic library depends on your
 platform

Dynamic libraries are available on most operating systems, and
 they all work in pretty much the same way. But what they’re
 called can vary a lot. On Windows, dynamic
 libraries are usually called dynamic link
 libraries and they have the extension .dll. On Linux and Unix, they’re shared object files (.so), and on the Mac, they’re just called
 dynamic libraries (.dylib). But even though the files have
 different extensions, you can create them in very similar ways:
[image: image with no caption]

The -shared option tells
 gcc that you want to convert a
 .o object file into a dynamic library. When the
 compiler creates the dynamic library, it will store the name of the
 library inside the file. So, if you create a library called
 libhfcal.so on a Linux machine, the
 libhfcal.so file will remember that its library
 name is hfcal. Why is that important? It means that
 if you compile a library with one name, you can’t just rename the file
 afterward.
If you need to rename a library, recompile it with the new
 name.
Watch it!
On some older Mac systems, the -shared
 flag is not available.
But don’t worry, on those machines, if you just
 replace it with -dynamiclib, everything will work
 exactly the same way.

Compiling the elliptical program

Once you’ve created the dynamic library, you can use it just
 like a static library. So, you can build the elliptical program like this:
gcc -I\include -c elliptical.c -o elliptical.o
gcc elliptical.o -L\libs -lhfcal -o elliptical
Even though these are the same commands you would use if
 hfcal were a static archive, the compile will
 work differently. Because the library’s dynamic, the compiler won’t
 include the library code into the executable file. Instead, it will
 insert some placeholder code that will track down the library and link
 to it at runtime.
Now, let’s see if the program
 runs.
Library names in MinGW and Cygwin
Both MinGW and Cygwin let you use several name formats for
 dynamic libraries. The hfcal library can have
 any of these names:
libhfcal.dll.a
libhfcal.dll
hfcal.dll

Test Drive
You’ve created the dynamic library in the
 /libs directory and built the elliptical test
 program. Now you need to run it. Because hfcal
 isn’t in one of the standard library directories, you’ll need to
 make sure the computer can find the library when you run the
 program.
On a Mac
On the Mac, you can just run the program. When the program is
 compiled on the Mac, the full path to the
 /libs/libhfcal.dylib file is stored inside the
 executable, so when the program starts, it knows exactly where to
 find the library.
[image: image with no caption]

On Linux
That’s not quite what happens on Linux.
On Linux, and most versions of Unix, the compiler just records
 the filename of the libhfcal.so library,
 without including the path name. That means if
 the library is stored outside the standard library directories (like
 /usr/lib), the program won’t have any way of
 finding the hfcal library. To get around this,
 Linux checks additional directories that are stored in the LD_LIBRARY_PATH variable. If you make sure
 your library directory is added to the LD_LIBRARY_PATH—and if you make sure you
 export it—then elliptical will find
 libhfcal.so.
[image: image with no caption]

On Windows
Now let’s take a look at how to run code that’s been compiled
 using the Cygwin and MinGW versions of the gcc compiler. Both compilers create
 Windows DLL libraries and Windows executables. And just like Linux,
 Windows executables store the name of the hfcal
 library without the name of the directory where
 it’s stored.
But Windows doesn’t use a LD_LIBRARY_PATH variable to hunt the
 library down. Instead, Windows programs look for the library in the
 current directory, and if they don’t find it there, the programs
 search for it using the directories stored in the PATH variable.
Using Cygwin
If you’ve compiled the program using Cygwin, you can run the
 program from the bash shell like this:
[image: image with no caption]

Using MinGW
And if you’ve compiled the program using the MinGW compiler,
 you can run it from the command prompt like
 this:
[image: image with no caption]

Does this seem a little complex? It is, which is why most
 programs that use dynamic libraries store them in one of the
 standard directories. That means on Linux and the Mac, they are
 normally in directories like /usr/lib or
 /usr/local/lib; and in Windows, developers
 normally keep .DLLs stored in the same
 directory as the executable.

Long Exercise
The guys at the Head First Gym are about to ship a treadmill
 over to England. The embedded server is running Linux, and it
 already has the US code installed.
The tech guys installed the library in
 /usr/local/lib.
[image: image with no caption]

And this machine also has the header file for the
 hfcal library installed in
 /usr/local/include:
[image: image with no caption]

The tech guys like to install libraries using these
 directories because it’s a little more standard. The machine is all
 configured for use in the US, but things need to change.
The system needs to be updated for use in the gym it is being
 shipped to in England. That means the treadmill’s display code needs
 to be switched from miles and pounds to kilometers and
 kilograms.
[image: image with no caption]

The software that’s already installed on the machine needs to
 use this new version of the code. Because the applications connect
 to this code as a dynamic library, all you need to do is compile it
 into the /usr/local/lib directory.
Assuming that you are already in the same directory as the
 hfcal_UK.c file and that you have write
 permissions on all the directories, what commands would you need to
 type to compile this new version of the library?

If the treadmill’s main application is called
 /opt/apps/treadmill, what would you need to
 type in to run the program?

Long Exercise Solution
The guys at the Head First Gym are about to ship a treadmill
 over to England. The embedded server is running Linux, and it
 already has the US code installed.
The tech guys installed the library in
 /usr/local/lib.
[image: image with no caption]

And this machine also has the header file for the
 hfcal library installed in
 /usr/local/include:
[image: image with no caption]

The tech guys like to install libraries using these
 directories because it’s a little more standard. The machine is all
 configured for use in the US, but things need to change.
The system needs to be updated for use in the gym it is being
 shipped to in England. That means the treadmill’s display code needs
 to be switched from miles and pounds to kilometers and
 kilograms.
[image: image with no caption]

The software that’s already installed on the machine needs to
 use this new version of the code. Because the applications connect
 to this code as a dynamic library, all you need to do is compile it
 into the /usr/local/lib directory.
Assuming that you are already in the same directory as the
 hfcal_UK.c file and that you have write
 permissions on all the directories, what commands would you need to
 type to compile this new version of the library?
[image: image with no caption]

If the treadmill’s main application is called
 /opt/apps/treadmill, what would you need to
 type in to run the program?
[image: image with no caption]

Test Drive
Now that you’ve updated the library on the English treadmill,
 let’s try it against an American
 machine. This is one of the unaltered US treadmills using the
 original version of libhfcal.so library:
[image: image with no caption]

The treadmill application
 starts when the machine boots up, so after using the machine for a
 while the display shows this:
[image: image with no caption]

The treadmill program on
 the US. machine is dynamically linking itself to the version of the
 libhfcal.so library that was compiled from the
 US version of the hfcal
 program.
[image: image with no caption]

But what about the treadmill in
 England?
The English machine has the
 same treadmill program installed,
 but on this machine you recompiled the
 libhfcal.so library from the source code in the
 hfcal_UK.c file.
[image: image with no caption]

[image: image with no caption]

When the runner has been on the treadmill for a similar
 distance, the display looks like this:
[image: image with no caption]

It worked.
Even though the treadmill
 program was never recompiled, it was able to pick up the code from
 the new library dynamically.
Dynamic libraries make it easier to change code at runtime. You can update an application
 without needing to recompile it. If you have several programs that
 share the same piece of code, you can update them all at
 the same time. Now that you know how to create dynamic
 libraries, you’ve become a much more powerful C developer.

Fireside Chats
Tonight’s talk: Two renowned
 proponents of modular software discuss the pros and cons of static
 and dynamic linking.
	Static:
	Dynamic:

	Well, I think we can both agree
 that creating code in smaller modules is a good
 idea.
	
	 	Absolutely.

	It makes so much sense, doesn’t
 it?
	
	 	Yes.

	Keeps the code
 manageable.
	
	 	Yes.

	Nice, large
 programs.
	
	 	Large?

	Yes. Nice BIG programs with their
 dependencies fixed.
	
	 	That doesn’t sound like a good
 idea.

	What do you mean, old
 friend?
	
	 	I think programs should be made of
 lots of small files that link together only when the program
 is run.

	Well... <laughs>...that’s a
 very...but no, seriously.
	
	 	I’m being serious.

	What? Lots of separate files?
 Joined together
 willy-nilly?!
	
	 	I prefer the term
 dynamically to
 willy-nilly.

	But that’s...that’s...a recipe for
 chaos!
	
	 	It means I can change my mind
 later.

	You should get things right in the
 first place.
	
	 	But that’s not always possible.
 All large programs should use dynamic
 linking.

	 All
 programs?
	
	 	I think so.

	What about the Linux kernel, hmmm?
 That large enough? And I believe that’s...
	
	 	...statically linked. Yeah, I
 know. That’s your one.

	Static linking might not be as
 loose and
 informal, but you know what? Static
 programs are simple to use. Single files. Want to install
 one? Just copy the executable. No need for DLL
 hell.
	
	 	Look, we’ll just have to agree to
 disagree.

	I can’t change your
 mind?
	
	 	No.

	So, you’re telling me your mind is
 statically linked?
	

Bullet Points
	Dynamic libraries are linked to programs at
 runtime.

	Dynamic libraries are created from one or more object
 files.

	On some machines, you need to compile them with the
 -fPIC option.

	-fPIC makes the object
 code position-independent.

	You can skip -fPIC on
 many systems.

	The -shared compiler
 option creates a dynamic library.

	Dynamic libraries have different names on different
 systems.

	Life is simpler if your dynamic libraries are stored in
 standard directories.

	Otherwise, you might need to set PATH and LD_LIBRARY_PATH variables.

There are no Dumb Questions
	Q:
	Why are dynamic libraries so
 different on different operating systems?

	A:
	Operating systems
 like to optimize the way they load dynamic libraries, so
 they’ve each evolved different requirements for dynamic
 libraries.

	Q:
	I tried to change the name of
 my library by renaming the file, but the compiler couldn’t
 find it anymore. Why not?

	A:
	When the compiler
 creates a dynamic library, it stores the name of the library
 inside the file. If you rename the file, it will then have
 the wrong name inside the file and will get confused. If you
 want to change its name, you should recompile the
 library.

	Q:
	Why does Cygwin support so
 many different naming conventions for dynamic library
 files?

	A:
	Cygwin makes it
 easy to compile Unix software on a Windows machine. Because
 Cygwin creates a Unix-style environment, it borrows a lot of
 Unix conventions. So it prefers to give libraries
 .a extensions, even if they’re dynamic
 DLLs.

	Q:
	Are Cygwin dynamic libraries
 real DLLs?

	A:
	Yes. But because
 they depend on the Cygwin system, you’ll need to do a little
 work before non-Cygwin code can use them.

	Q:
	Why does the MinGW compiler
 support the same dynamic library name format as
 Cygwin?

	A:
	Because the two
 projects are closely associated and share a lot of code. The
 big difference is that MinGW programs can run on machines
 that don’t have Cygwin installed.

	Q:
	Why doesn’t Linux just store
 library pathnames in executables? That way, you wouldn’t
 need to set LD_LIBRARY_PATH.

	A:
	It was a design
 choice. By not storing the pathname, it gives you a lot more
 control over which version of a library a program can
 use—which is great when you’re developing new
 libraries.

	Q:
	Why doesn’t Cygwin use
 LD_LIBRARY_PATH to find
 libraries?

	A:
	Because it needs to
 use Windows DLLs. Windows DLLs are loaded using the PATH variable.

	Q:
	Which is better? Static or
 dynamic linking?

	A:
	It depends. Static
 linking means you get a small, fast executable file that is
 easier to move from machine to machine. Dynamic linking
 means that you can configure the program at runtime
 more.

	Q:
	If different programs use the
 same dynamic library, does it get loaded more than once? Or
 is it shared in memory?

	A:
	That depends on the
 operating system. Some operating systems will load separate
 copies for each process. Others load shared copies to save
 memory.

	Q:
	Are dynamic libraries the best
 way of configuring an application?

	A:
	Usually, it’s
 simpler to use configuration files. But if you’re going to
 connect to some external device, you’d normally need
 separate dynamic libraries to act as drivers.

Your C Toolbox

You’ve got Chapter 8 under your belt,
 and now you’ve added static and dynamic libraries to your toolbox. For a
 complete list of tooltips in the book, see Appendix B.
[image: image with no caption]

C Lab 2: OpenCV

This lab gives you a spec that describes a program for you to
 investigate and build, using the knowledge you’ve gained over the last
 few chapters.
This project is bigger than the ones you’ve seen so far. So read
 the whole thing before you get started, and give yourself a little time.
 And don’t worry if you get stuck; there are no new C concepts in here,
 so you can move on in the book and come back to the lab later.
It’s up to you to finish the
 job, but we won’t give you the code for the answer.
The spec: turn your computer into an intruder detector

 Imagine if your computer could keep an eye on your house
 while you’re out and tell you who’s been prowling around. Well, using
 its default webcam and the cleverness of OpenCV,
 it can!
Here’s what you’re going to create.
The intruder detector

Your computer will constantly survey its surroundings using
 its webcam. When it detects movement, it will write the current
 webcam image to a file. And if you store this file on a network
 drive or use a file synchronization service such as Dropbox, you’ll
 have instant evidence of any intruders.
[image: image with no caption]

OpenCV

 OpenCV is an open source computer vision library. It
 allows you to take input from your computer camera, process it, and
 analyze real-time image data and make decisions based on what your
 computer sees. What’s more, you can do all of this using C
 code.
OpenCV is available on Window, Linux, and Mac
 platforms.
You can find the OpenCV wiki here:
 http://opencv.willowgarage.com/wiki/FullOpenCVWiki

Installing OpenCV

You can install OpenCV on Windows, Linux, or Mac. The install
 guide is here, and includes links to the latest stable
 releases:
 http://opencv.willowgarage.com/wiki/InstallGuide
Once you’ve installed OpenCV, you should see a folder on your
 computer labeled samples. It’s worth taking a
 look at these. There are also links to tutorials on the OpenCV wiki.
 You’ll need to investigate OpenCV in order to complete this
 lab.
If you want to get deep into OpenCV, we recommend the book
 Learning OpenCV by Gary Bradski and Adrian
 Kaehler (O’Reilly).
[image: image with no caption]

What your code should do

 Your C code should do the following.
Take input from your computer camera

You need to work with real-time data that comes in from your
 computer camera, so the first thing you need to do is capture that
 data. There’s an OpenCV function that will help you with this called
 cvCreateCameraCapture(0). It
 returns a pointer to a CvCapture
 struct. This pointer is your hotline to the webcam device,
 and you’ll use it to grab images.
Remember to check for errors in case your computer can’t find
 a camera. If you can’t contact the webcam, you’ll receive a NULL pointer from cvCreateCameraCapture(0).
[image: image with no caption]

Grab an image from the webcam

You can read the latest image from the webcam using the
 cvQueryFrame() function. It takes
 the CvCapture pointer as a
 parameter. The cvQueryFrame()
 function returns a pointer to the latest image, so your code will
 probably start with something a little like this:
[image: image with no caption]

If you decide that there’s a thief in the image, you can save
 the image to a file with:
[image: image with no caption]

Detect an intruder

 Now you come to the really clever part of the code.
 How do you decide if there’s an intruder in the frame?
One way is to check for movement in the image. OpenCV has
 functions to create a Farneback optical
 flow. An optical flow compares two images and tells you
 how much movement there’s been at each pixel.
This part, you’ll need to research
 yourself. You’ll probably want to use the cvCalcOpticalFlowFarneback() to compare
 two consecutive images from the webcam and create the optical flow.
 From that, you’ll need to write some code that measures the amount
 of movement between the two frames. If the movement’s above a
 threshold level, you’ll know that something large is moving in front
 of the webcam.
[image: image with no caption]

Make a clean getaway

When you start the program, you don’t want the camera to
 record you walking away, so you might want to add a delay to give
 you time to leave the room.

Optional: show the current webcam output

During our tests here at the lab, we found it useful to check
 on the current images the program is seeing. To do this, we opened a
 window and displayed the current webcam output.
You can easily create a window in OpenCV with:
cvNamedWindow("Thief", 1);
To display the current image in the window, use this:
cvShowImage("Thief", image);

The finished product

 You’ll know your OpenCV project is complete when your
 computer is able to automatically take pictures of people trying to
 sneak up on it.
[image: image with no caption]

Why stop there? We’re sure you have
 all kinds of exciting ideas for what you could do with OpenCV. Drop
 us a line at Head First Labs and let us know how OpenCV is working
 out for you.

It’s time to become a C ninja...

The final part of the book covers advanced topics.
As you’re going to be digging into some of the more advanced
 functions in C, you’ll need to make sure that you have all of these
 features available on your computer. If you’re using Linux or Mac,
 you’ll be fine, but if you’re using Windows, you need to have Cygwin
 installed.
Once you’re ready, turn the page and enter the gate...
[image: image with no caption]

Chapter 9. Processes and System Calls: Breaking boundaries

[image: image with no caption]

It’s time to think outside the
 box.
You’ve already seen that you can build complex applications by
 connecting small tools together on the command line. But what if you want
 to use other programs from inside your own code? In
 this chapter, you’ll learn how to use system
 services to create and control processes. That will give your programs
 access to email, the Web, and
 any other tool you’ve got installed. By the end of
 the chapter, you’ll have the power to go beyond C.
System calls are your hotline to the OS

 C programs rely on the operating system for pretty much
 everything. They make system calls if
 they want to talk to the hardware. System calls are just functions that
 live inside the operating system’s kernel. Most of the code in the C Standard
 Library depends on them. Whenever you call printf() to display something on the command
 line, somewhere at the back of things, a system call will be made to the
 operating system to send the string of text to the screen.
[image: image with no caption]

Let’s look at an example of a system call. We’ll begin with one
 called (appropriately) system().
system() takes a single string
 parameter and executes it as if you had typed it on the command
 line:
[image: image with no caption]

The system() function is an
 easy way of running other programs from your code—particularly if you’re
 creating a quick prototype and you’d sooner call external programs
 rather than write lots and lots of C code.
Code Magnets
This is a program that writes timestamped text to the end of a
 logfile. It would have been perfectly possible to write this entire
 program in C, but the programmer has used a call to system() as a quick way of dealing with the
 file handling.
See if you can complete the code that creates the operating
 system command string that displays the text comment, followed by the
 timestamp.
[image: image with no caption]

Code Magnets Solution
This is a program that writes timestamped text to the end of a
 logfile. It would have been perfectly possible to write this entire
 program in C, but the programmer has used a call to system() as a quick way of dealing with the
 file handling.
You were to complete the code that creates the operating system
 command string that displays the text comment, followed by the
 timestamp.
[image: image with no caption]

Test Drive
Let’s compile the program and then watch it in
 action:
[image: image with no caption]

Now, when you look in the same directory as the program, there’s
 a new file that’s been created called
 reports.log:
[image: image with no caption]

The program worked. It read a comment from the command line and
 called the echo command to add the
 comment to the end of the file.
Even though you could have written the whole program in C, by
 using system(), you simplified the
 program and got it working with very little work.

There are no Dumb Questions
	Q:
	Does the system() function get compiled into
 my program?

	A:
	No. The system() function—like all system
 calls—doesn’t live in your program. It lives in the main
 operating system.

	Q:
	So, when I make a system call,
 I’m making a call to some external piece of code, like a
 library?

	A:
	Kind of. But the
 details depend on the operating system. On some operating
 systems, the code for a system call lives inside the kernel of
 the operating system. On other operating systems, it might
 simply be stored in some dynamic library.

Then someone busted into the system...

 There’s a downside to the system() function. It’s quick and easy to use,
 but it’s also kinda sloppy. Before getting into the problems with
 system(), let’s see what it takes to
 break the program.
The code worked by stitching together a string containing a
 command, like this:
[image: image with no caption]

[image: image with no caption]

But what if someone entered a comment like this?
[image: image with no caption]

By injecting some command-line code into the
 text, you can make the program run whatever code
 you like:
[image: image with no caption]

Is this a big problem? If a user can run guard_log, she can just as easily run some
 other program. But what if your code has been called from a
 web server? Or if it’s processing data from a
 file?

Security’s not the only problem

 This example injects a piece of code to list the contents
 of the root directory, but it could have deleted
 files or launched a virus. But you
 shouldn’t just worry about security.
	What if the comments contain
 apostrophes?
That might break the quotes in the command.

	What if the PATH variable causes the
 system() function to call the wrong program?

	What if the program we’re calling
 needs to have a specific set of environment variables set up
 first?

The system() function is easy
 to use, but most of the time, you’re going to need something more
 structured—some way of calling a specific program,
 with a set of command-line arguments and maybe even some
 environment variables.
Geek Bits
What’s the kernel?
On most machines, system calls are functions that live inside
 the kernel of the operating system.
 But what is the kernel? You never actually see
 the kernel on the screen, but it’s always there, controlling your
 computer. The kernel is the most important program on your computer,
 and it’s in charge of three
 things:
Processes
No program can run on the system without the kernel loading it
 into memory. The kernel creates processes and makes sure they get the
 resources they need. The kernel also watches for processes that become
 too greedy or crash.
Memory
Your machine has a limited supply of memory, so the kernel has
 to carefully ration the amount of memory each process can take. The
 kernel can increase the virtual memory
 size by quietly loading and unloading sections of memory to
 disk.
Hardware
The kernel uses device
 drivers to talk to the equipment that’s plugged into the
 computer. Your program can use the keyboard and the screen and the
 graphics processor without knowing too much about them, because the
 kernel talks to them on your behalf.
System calls are the functions that your
 program uses to talk to the kernel.

The exec() functions give you more control

 When you call the system() function, the operating system has to
 interpret the command string and decide which programs to run and how to
 run them. And that’s where the problem is: the operating system needs to
 interpret the string, and you’ve already seen how
 easy it is to get that wrong. So, the solution is to remove the
 ambiguity and tell the operating
 system precisely which program you want to run. That’s what the
 exec() functions are for.
exec() functions replace the current process

A process is just a program running in memory. If you type
 taskmgr on Windows or ps -ef on
 most other machines, you’ll see the processes running on your system.
 The operating system tracks each process with a number called the
 process identifier (PID).
The exec() functions
 replace the current process by
 running some other program. You can say which command-line
 arguments or environment variables to
 use, and when the new program starts it will have exactly the same PID
 as the old one. It’s like a relay race, where your program hands over
 its process to the new program.
A process is a program running in
 memory.

[image: image with no caption]

There are many exec() functions

 Over time, programmers have created several different
 versions of exec(). Each version has
 a slightly different name and its own set of parameters. Even though
 there are lots of versions, there are really just two groups of exec() functions: the list functions and the array functions.
The exec() functions are in
 unistd.h.

The list functions: execl(), execlp(), execle()

The list functions accept command-line arguments as a list of
 parameters, like this:
	The program.
This might be the full pathname of the program— execl()/ execle()—or just a command name to
 search for— execlp()—but the
 first parameter tells the exec() function what program it will
 run.

	The command-line
 arguments.
You need to list one by one the command-line arguments you
 want to use. Remember: the first command-line argument is always
 the name of the program. That means the first two parameters
 passed to a list version of exec() should always be the same string.

	NULL.
That’s right. After the last command-line argument, you need
 a NULL. This tells the function
 that there are no more arguments.

	Environment variables
 (maybe).
If you call an exec()
 function whose name ends with ...e(), you can also pass an array of
 environment variables. This is just an array of strings like
 "POWER=4", "SPEED=17", "PORT=OPEN",

[image: image with no caption]

Watch it!
Spaces in command line arguments can
 confuse MinGW.
If you pass two arguments “I like” and “turtles,”
 MinGW programs might send three arguments: “I,” “like,” and
 “turtles.”

The array functions: execv(), execvp(), execve()

 If you already have your command-line arguments stored in
 an array, you might find these two versions easier to use:
[image: image with no caption]

The only difference between these two functions is that execvp will
 search for the program using the PATH
 variable.
How to remember the exec() functions
You can figure out which exec() function you need by constructing the
 name. Each exec() function can be
 followed by one or two characters that must be l,
 v,
 p, or e. The
 characters tell you which feature you want to use. So, for the
 execle() function:
execle = exec + l + e = LIST of
 arguments + an ENVIRONMENT

The l and v characters always come before p and e,
 and the p and e characters are optional.
	Uses
	Character

	List of args
	l

	Array/vector of args
	v

	Search the path
	p

	Environment vars
	e

[image: image with no caption]

Passing environment variables

 Every process has a set of environment
 variables. These are the values you see when you type
 set or env on the command line, and they usually tell
 the process useful information, such as the location of the home
 directory or where to find the commands. C programs can read environment
 variables with the getenv() system call. You can see
 getenv() being used in the diner_info program on the right.
If you want to run a program using command-line arguments
 and environment variables, you can do it like
 this:
[image: image with no caption]

[image: image with no caption]

The execle() function will set
 the command-line arguments and environment variables and then replace
 the current process with diner_info.
[image: image with no caption]

But what if there’s a problem?

If there’s a problem calling the program, the existing process
 will keep running. That’s useful, because it means that if you can’t
 start that second process, you’ll be able to recover from the error
 and give the user more information on what went wrong. And luckily,
 the C Standard Library provides some built-in code to help you with
 that.
Watch it!
If you’re passing an environment on
 Cygwin, be sure to include a PATH variable.
On Cygwin, the PATH variable is needed when
 programs are loaded. So, if you’re passing environment variables on
 Cygwin, be sure to include PATH=/usr/bin.

Most system calls go wrong in the same way

 Because system calls depend on something
 outside your program, they might go wrong in some
 way that you can’t control. To deal with this problem, most system calls
 go wrong in the same way.
Take the execle() call, for
 example. It’s really easy to see when an exec() call goes wrong. If an exec() call is successful, the current program
 stops running. So, if the program runs anything
 after the call to exec(), there must
 have been a problem:
[image: image with no caption]

[image: image with no caption]

But just telling if a system call worked is
 not enough. You normally want to know why a system
 call failed. That’s why most system calls follow the golden rules of failure.
The Golden Rules of Failure
	Tidy up as much as you can.

	Set the errno variable to an error value.

	Return –1.

The errno variable is a global variable
 that’s defined in errno.h, along with a whole bunch
 of standard error values, like:
[image: image with no caption]

Now you could check the value of errno against each of these values, or you
 could look up a standard piece of error text using a function in
 string.h called strerror():
[image: image with no caption]

So, if the system can’t find the program you are running and it
 sets the errno variable to ENOENT, the above code will display this
 message:
No such file or directory
Exercise
 Different machines have different commands to tell you
 about their network configuration. On Linux and Mac machines, there’s
 the /sbin/ifconfig program, and on
 Windows there’s a command called ipconfig that’s stored somewhere on the
 command path.
This program tries to run the /sbin/ifconfig program and, if that fails,
 it will try the ipconfig command.
 There’s no need to pass arguments to either command. Think carefully.
 What type of exec() commands will
 you need?
[image: image with no caption]

Exercise Solution
Different machines have different commands to tell you about
 their network configuration. On Linux and Mac machines, there’s the
 /sbin/ifconfig program, and on
 Windows there’s a command called ipconfig that’s stored somewhere on the
 command path.
This program tries to run the /sbin/ifconfig program and, if that fails,
 it will try the ipconfig command.
 There’s no need to pass arguments to either command. Think carefully.
 What type of exec() commands will
 you need?
[image: image with no caption]

There are no Dumb Questions
	Q:
	 Isn’t system() just easier to use than
 exec()?

	A:
	Yes. But because the
 operating system needs to interpret the string you pass to
 system(), it can be a bit
 buggy. Particularly if you create the command string
 dynamically.

	Q:
	Why are there so many exec() functions?

	A:
	Over time, people
 wanted to create processes in different ways. The different
 versions of exec() were
 created for more flexibility.

	Q:
	Do I always have to check the
 return value of a system call? Doesn’t it make the program
 really long?

	A:
	If you make system
 calls and don’t check for errors, your code will be shorter.
 But it will probably also have more bugs. It is better to
 think about errors when you first write code. It will make it
 much easier to catch bugs later on.

	Q:
	If I call an exec() function, can I do anything
 afterward?

	A:
	No. If the exec() function is successful, it
 will change the process so that it runs the new program
 instead of your program. That means the program containing the
 exec() call will stop as
 soon as it runs the exec()
 function.

Bullet Points
	System calls are functions that live in the operating
 system.

	When you make a system call, you are calling code outside
 your program.

	system() is a system call
 to run a command string.

	system() is easy to use,
 but it can cause bugs.

	The exec() system calls
 let you run programs with more control.

	There are several versions of the exec() system call.

	System calls usually, but not always, return –1 if there’s a
 problem.

	They will also set the errno variable to an error
 number.

Mixed Messages
 The guys over at Starbuzz have come up with a new
 order-generation program that they call
 coffee:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 char *w = getenv("EXTRA");
 if (!w)
 w = getenv("FOOD");
 if (!w)
 w = argv[argc - 1];
 char *c = getenv("EXTRA");
 if (!c)
 c = argv[argc - 1];
 printf("%s with %s\n", c, w);
 return 0;
}
To try it out, they’ve created this test program. Can you match
 up these code fragments to the output they produce?
[image: image with no caption]

[image: image with no caption]

Mixed Messages Solution
The guys over at Starbuzz have come up with a new
 order-generation program that they call
 coffee:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 char *w = getenv("EXTRA");
 if (!w)
 w = getenv("FOOD");
 if (!w)
 w = argv[argc - 1];
 char *c = getenv("EXTRA");
 if (!c)
 c = argv[argc - 1];
 printf("%s with %s\n", c, w);
 return 0;
}
To try it out, they’ve created this test program. Can you match
 up these code fragments to the output they produce?
[image: image with no caption]

[image: image with no caption]

Read the news with RSS

 RSS feeds are a common way for websites to publish their
 latest news stories. Each RSS feed is just an XML file containing a
 summary of stories and links. Of course, it’s possible to write a C
 program that will read RSS files straight off the Web, but it involves a
 few programming ideas that you haven’t seen yet. But that’s not a
 problem if you can find another program that will handle the RSS
 processing for you.
Do this!
	Download RSS Gossip from
 https://github.com/dogriffiths/rssgossip/zipball/master.
 Also, if you don’t have Python installed, you can get it here:
 http://www.python.org/.

RSS Gossip is a small Python script that can search RSS feeds for
 stories containing a piece of text. To run the script, you will need
 Python installed. Once you have Python and
 rssgossip.py, you can search for stories like
 this:
[image: image with no caption]

Exercise
The editor wants a program on his machine that can
 search a lot of RSS feeds all at the same time. You could do that if
 you ran the rssgossip.py several times for
 different RSS feeds. Fortunately, the out-of-work actors have made a start on the
 program for you. Trouble is, they’re having problems creating the call
 to exec() the
 rssgossip.py script. Think carefully about what
 you need to do to run the script, and then complete the newshound
 code.
[image: image with no caption]

And for extra bonus
 points...
What will the program do when it runs?

Exercise Solution
 The editor wants a program on his machine that can
 search a lot of RSS feeds all at the same time. You could do that if
 you ran the rssgossip.py several times for
 different RSS feeds. Fortunately, the out-of-work actors have made a start on the
 program for you. Trouble is, they’re having problems creating the call
 to exec() the
 rssgossip.py script. You were to think carefully
 about what you need to do to run the script, and then complete the
 newshound code.
[image: image with no caption]

But what will the program do when you
 run it?

Test Drive
When you compile and run the program, it looks like it
 works:
[image: image with no caption]

The newshound program has the
 rssgossip.py script using data from the array of
 RSS feeds.
[image: image with no caption]

Actually there is a
 problem.
Although the newshound
 program managed to run the rssgossip.py script,
 it looks like it didn’t manage to run the script for all of
 the feeds. In fact, the only news it displayed came from
 the first feed on the list. That
 meant the other news stories matching the search terms were
 missed.

Brain Power
Look at the code of the newshound program again and think about how
 it works. Why do you think it failed to run the
 rssgossip.py script for any of the other
 newsfeeds?

exec() is the end of the line for your program

 The exec() functions
 replace the current function by running a new
 program. But what happens to the original program? It terminates, and it
 terminates immediately. That’s why
 the program only ran the rssgossip.py script for
 the first newsfeed. After it had called execle() the first time, the newshound program terminated.
[image: image with no caption]

[image: image with no caption]

But if you want to start another process and
 keep your original process running, how do you do it?
fork() will clone your process

You’re going to get around this problem by using a system call
 named fork().
fork() makes a complete
 copy of the current process. The
 brand-new copy will be running the same program, on the same line
 number. It will have exactly the same variables that contain exactly
 the same values. The only difference is that the copy process will
 have a different process identifier from the original.
The original process is called the parent process, and the newly created copy is
 called the child process.
But how can cloning the current process fix the problems with
 exec()? Let’s see.
[image: image with no caption]

Watch it!
Unlike Linux and the Mac, Windows
 doesn’t support fork()
 natively.
To use fork() on a Windows machine, you
 should first install Cygwin.

Running a child process with fork() + exec()

 The trick is to only call an exec() function on a child
 process. That way, your original parent process will be able
 to continue running. Let’s look at the process step by step.
1. Make a copy

Begin by making a copy of your current process by calling the
 fork() system call.
The processes need some way of telling which of them is the
 parent process and which is the child, so the fork() function returns 0 to the child
 process, and it will return a nonzero value to the parent process.
[image: image with no caption]

2. If you’re the child process, call exec()

At this point, you have two identical processes running, both of
 them using identical code. But the child process (the one that
 received a 0 from the fork() call)
 now needs to replace itself by calling exec():
[image: image with no caption]

Now you have two separate processes: the child process is
 running the rssgossip.py script, and the original
 parent process is free to continue doing something else.
Code Magnets
It’s time to update the newshound program. The code needs to run
 the rssgossip.py script in a separate process
 for each of the RSS feeds. The code is reduced, so you only have to
 worry about the main loop. Be careful to check for errors, and don’t
 get the parent and child processes mixed!
[image: image with no caption]

[image: image with no caption]

What the fork()?
 You call fork()
 like this:
pid_t pid = fork();
fork() will actually return
 an integer value that is 0 for the child process and positive for
 the parent process. The parent process will receive the process
 identifier of the child process.
But what is pid_t? Different operating
 systems use different kinds of integers to store process IDs: some
 might use shorts and some might
 use ints. So pid_t is always set to the type that the
 operating system uses.

Code Magnets Solution
It’s time to update the newshound program. The code needs to run
 the rssgossip.py script in a separate process
 for each of the RSS feeds. The code is reduced, so you only had to
 worry about the main loop. Be careful to check for errors, and don’t
 get the parent and child processes mixed!
[image: image with no caption]

Test Drive
Now, if you compile and run the code, this happens:
[image: image with no caption]

[image: image with no caption]

By fork-ing a copy of
 itself and then exec-ing the
 Python script in a separate process, the newshound program is able to run a
 separate process for each of the RSS feeds. And the great thing is
 that these processes will all run at the
 same time.
[image: image with no caption]

That’s a lot faster than reading the newsfeeds one at a time.
 By learning how to create and run separate processes with fork() and exec(), not only can you make the most of
 your existing software, but you can also improve the performance of
 your code.

There are no Dumb Questions
	Q:
	 Does system() run programs in a
 separate process?

	A:
	Yes. But system() gives you less control
 over exactly how the program runs.

	Q:
	Isn’t fork-ing processes really
 inefficient? I mean, it copies an entire process, and then a
 moment later we replace the child process by doing an
 exec()?

	A:
	Operating systems
 use lots of tricks to make fork-ing processes really quick.
 For example, the operating system cheats and avoids making
 an actual copy of the parent process’s data. Instead, the
 child and parent processes share the same data.

	Q:
	But what if one of the
 processes changes some data in memory? Won’t that screw
 things up?

	A:
	It would, but the
 operating system will catch that a piece of memory is going
 to change, and then it will make a separate copy of that
 piece of memory for the child process.

	Q:
	That technique sounds quite
 cool. Does it have a name?

	A:
	Yes; it’s called
 “copy-on-write.”

	Q:
	Is a pid_t just an int?

	A:
	It depends on the
 platform. The only thing you know is that it will be some
 integer type.

	Q:
	I stored the result of a
 fork() call in an
 int, and it worked just
 fine.

	A:
	It’s best to always
 use pid_t to store
 process IDs. If you don’t, you might cause problems with
 other system calls or if your code is compiled on another
 machine.

	Q:
	Why doesn’t Windows support
 the fork() system
 call?

	A:
	Windows manages
 processes very differently from other operating systems, and
 the kinds of tricks fork() needs to do in order to
 work efficiently are very hard to do on Windows. This may be
 why there isn’t a version of fork() built in.

	Q:
	But Cygwin lets me do fork()s on Windows,
 right?

	A:
	Yes. The gurus who
 work on Cygwin did a lot of work to make Windows processes
 look like processes that are used on Unix, Linux, and the
 Mac. But because they still need to rely on Windows to
 create the underlying processes, fork() on Cygwin can be a little
 slower than fork() on
 other platforms.

	Q:
	So, if I’m just interested in
 writing code to work on Windows, is there something else I
 should use instead?

	A:
	Yes. There’s a
 function called CreateProcess() that’s like an
 enhanced version of system(). To find out more, go to
 http://msdn.microsoft.com and
 search for “CreateProcess.”

	Q:
	Won’t the output of the
 various feeds get mixed up?

	A:
	The operating
 system will make sure that each string is printed
 completely.

Bullet Points
	System calls are functions that live in the kernel.

	The exec() functions
 give you more control than system().

	The exec() functions
 replace the current process.

	The fork() function
 duplicates the current process.

	System calls usually return –1 if they fail.

	Failed system calls set the errno variable to the error
 number.

Your C Toolbox

 You’ve got Chapter 9 under your belt,
 and now you’ve added processes and system calls to your toolbox. For a
 complete list of tooltips in the book, see Appendix B.
[image: image with no caption]

Chapter 10. Interprocess Communication: It’s good to talk

[image: image with no caption]

 Creating processes is just half the
 story.
What if you want to control the process once
 it’s running? What if you want to send it data? Or
 read its output? Interprocess
 communication lets processes work together to get the
 job done. We’ll show you how to multiply the power of your code by letting it talk to other programs on your system.
Redirecting input and output

 When you run programs from the command line, you can
 redirect the Standard Output to a file using the > operator:
[image: image with no caption]

The Standard Output is one of the three default data streams. A data
 stream is exactly what it sounds like: a stream of data that
 goes into, or comes out of, a process. There are data streams for the
 Standard Input, Output, and Error, and there are also data streams for
 other things, like files or network connections. When you redirect the
 output of a process, you change where the data is sent. So, instead of
 the Standard Output sending data to the screen, you can make it send the
 data to a file.
Redirection is really useful on the command line, but is there a
 way of making a process redirect
 itself?

A look inside a typical process

 Every process will contain the program it’s running, as
 well as space for stack and heap data. But it will also need somewhere
 to record where data streams like the Standard Output are connected.
 Each data stream is represented by a file
 descriptor, which, under the surface, is just a number. The
 process keeps everything straight by storing the file descriptors and
 their data streams in a descriptor
 table.
A file descriptor is a number that
 represents a data stream.

[image: image with no caption]

The descriptor table has one column for each of the file
 descriptor numbers. Even though these are called file descriptors, they might not be connected
 to an actual file on the hard disk. Against every file descriptor, the
 table records the associated data stream. That data stream might be a
 connection to the keyboard or screen, a file pointer, or a connection to
 the network.
The first three slots in the table are always the same. Slot 0 is
 the Standard Input, slot 1 is the Standard Output, and slot 2 is the
 Standard Error. The other slots in the table are either empty or
 connected to data streams that the process has opened. For example,
 every time your code opens a file for reading or writing, another slot
 is filled in the descriptor table.
When the process is created, the Standard Input is connected to
 the keyboard, and the Standard Output and Error are connected to the
 screen. And they will stay connected that way until something redirects
 them somewhere else.
File descriptors don’t necessarily refer
 to files.

Redirection just replaces data streams

 The Standard Input, Output, and Error are always fixed in
 the same places in the descriptor table. But the data streams they point
 to can change.
[image: image with no caption]

That means if you want to redirect the Standard Output, you just
 need to switch the data stream against descriptor 1 in the table.
All of the functions, like printf(), that send data to the Standard
 Output will first look in the descriptor table to see where descriptor 1
 is pointing. They will then write data out to the correct data
 stream.
Processes can redirect themselves

Every time you’ve used redirection so far, it’s been from the
 command line using the > and
 < operators. But processes can
 do their own redirection by rewiring the descriptor table.
Geek Bits
So, that’s why it’s 2>
 ...
You can redirect the Standard Output and Standard Error on the
 command line using the > and 2> operators:
./myprog > output.txt 2> errors.log
Now you can see why the Standard Error is redirected with
 2>. The 2 refers to the number of the Standard
 Error in the descriptor table. On most operating systems, you can
 use 1> as an alternative way
 of redirecting the Standard Output, and on Unix-based systems you
 can even redirect the Standard Error to the same place as the
 Standard Output like this:
[image: image with no caption]

fileno() tells you the descriptor

 Every time you open a file, the operating system registers
 a new item in the descriptor table. Let’s say you open a file with
 something like this:
FILE *my_file = fopen("guitar.mp3", "r");
The operating system will open the guitar.mp3
 file and return a pointer to it, but it will also skim through the
 descriptor table until it finds an empty slot and register the new file
 there.
[image: image with no caption]

But once you’ve got a file pointer, how do you find it in the
 descriptor table? The answer is by calling the
 fileno() function.
[image: image with no caption]

fileno() is one of the few
 system functions that doesn’t return –1 if it fails. As long as you pass
 fileno() the pointer to an open file,
 it should always return the descriptor number.
dup2() duplicates data streams

Opening a file will fill a slot in the descriptor table, but
 what if you want to change the data stream
 already registered against a descriptor? What if you want to change
 file descriptor 3 to point to a different data stream? You can do it
 with the dup2() function. dup2() duplicates a data stream from one
 slot to another. So, if you have a file pointer to
 guitar.mp3 plugged in to file descriptor 4, the
 following code will connect it to file descriptor 3 as well.
[image: image with no caption]

There’s still just one guitar.mp3 file, and
 there’s still just one data stream connected to it. But the data
 stream (the FILE*) is now
 registered with file descriptors 3 and 4.
Now that you know how to find and change
 things in the descriptor table, you should be able to redirect the
 Standard Output of a process to point to a file.
Does your error code worry you?
 Do you find that you’re writing duplicate
 error-handling code every time you make a system call? Then fear no
 more! Using our patented method, we’ll show you how to make the most
 out of your error code without writing the same thing over and
 over.
[image: image with no caption]

Look at these two troublesome pieces of code:
[image: image with no caption]

Is there some way of removing the duplicated code block?
 Why, yes, there is! By creating a
 simple fire-and-forget error() function, you’ll make your duplicated
 code a thing of the past.
What’s that, you say? How do you handle that troublesome
 return statement? After all, you can’t move that into a function, can you?
There’s no need! The exit() system call is the fastest way to
 stop your program in its tracks. No more worrying about returning to
 main(); just call exit(), and your program’s history!
This is how it works. First, remove all of your error code
 into a separate function called error() and replace that tricky
 return with a call to exit().
Note
To ensure you have the exit system call available, you need
 to include stdlib.h.

[image: image with no caption]

Now you can replace that troublesome error-checking code with
 something much simpler:
pid_t pid = fork();
if (pid == -1) {
 error("Can't fork process");
}

if (execle(...) == -1) {
 error("Can't run script");
}
Warning: offer limited to one exit()
 call per program execution. Do not operate exit() if you have a fear
 of sudden program termination.

Sharpen your pencil
 This is a program that saves the output of the
 rssgossip.py script into a file called
 stories.txt. It’s similar to the newshound program, except it searches
 through a single RSS feed only. Using what you’ve learned about the
 descriptor table, see if you can find the missing line of code that
 will redirect the Standard Output
 of the child process to the stories.txt
 file.
[image: image with no caption]

Sharpen your pencil: Solution
This is a program that saves the output of the
 rssgossip.py script into a file called
 stories.txt. It’s similar to the newshound program, except it searches
 through a single RSS feed only. Using what you’ve learned about the
 descriptor table, you were to find the missing line of code that
 will redirect the Standard Output
 of the child process to the stories.txt
 file.
[image: image with no caption]

Did you get the right
 answer? The program will change the descriptor table in
 the child script to look like this:
That means that when the rssgossip.py
 script sends data to the Standard Output, it should appear in the
 stories.txt file.
	#
	Data Stream

	0
	The keyboard

	1
	File stories.txt

	2
	The screen

	3
	File stories.txt

Test Drive
This is what happens when the program is compiled and
 run:
[image: image with no caption]

What happened?
When the program opened the stories.txt
 file with fopen(), the operating
 system registered the file f in
 the descriptor table. fileno(f)
 was the descriptor number it used. The dup2() function set the Standard Output
 descriptor (1) to point to the same file.
[image: image with no caption]

[image: image with no caption]

Brain Power
Assuming you’re searching for stories that exist on the feed,
 why was stories.txt empty after the program
 finished?

Sometimes you need to wait...

 The newshound2 program
 fires off a separate process to run the
 rssgossip.py script. But once that child process
 gets created, it’s independent of its
 parent. You could run the newshound2
 program and still have an empty stories.txt, just
 because the rssgossip.py isn’t finished yet. That
 means the operating system has to give you some way of waiting for the child process to
 complete.
[image: image with no caption]

The waitpid() function

The waitpid() function won’t return
 until the child process dies. That means you can add a little code to
 your program so that it won’t exit until the
 rssgossip.py script has stopped running:
[image: image with no caption]

Waitpid() Up Close
 waitpid() takes
 three parameters:
[image: image with no caption]

	pid
This is the process ID that the parent process was given
 when it forked the
 child.

	pid_status
This will store exit information
 about the process. waitpid()
 will update it, so it needs to be a pointer.

	options
There are several options you can pass to waitpid(), and typing man waitpid will give you more info.
 If you set the options to 0, the function waits until
 the process finishes.

What’s the status?
When the waitpid() function
 has finished waiting, it stores a value in pid_status that tells you how the process
 did. To find the exit status of the child
 process, you’ll have to pass the pid_status value through a macro called
 WEXITSTATUS():
[image: image with no caption]

Why do you need the macro? Because the pid_status contains several pieces of
 information, and only the first 8 bits represent the exit status.
 The macro tells you the value of just those 8 bits.

Test Drive
Now, when you run the newshound2 program, it checks that the
 rssgossip.py script finishes before newshound2 itself ends:
[image: image with no caption]

Adding a waitpid() to the
 program was easy to do and it made the program more reliable.
 Before, you couldn’t be sure that the subprocess had finished
 writing, and that meant there was no way you could use the newshound2 program as a proper tool. You
 couldn’t use it in scripts and you couldn’t create a GUI frontend
 for it.
Redirecting input and output, and making processes wait for
 each other, are all simple forms of interprocess communication. When processes
 are able to cooperate—by sharing data or by waiting for each
 other—they become much more powerful.
[image: image with no caption]

Bullet Points
	exit() is a quick way
 of ending a program.

	All open files are recorded in the descriptor
 table.

	You can redirect input and output by changing the
 descriptor table.

	fileno() will find a
 descriptor in the table.

	dup2() can be used to
 change the descriptor table.

	waitpid() will wait for
 processes to finish.

There are no Dumb Questions
	Q:
	 Does exit() end the program faster than
 just returning from main()?

	A:
	No. But if you call
 exit(), you don’t need to
 structure your code to get back to the main() function. As soon as you
 call exit(), your program
 is dead.

	Q:
	Should I check for –1 when I
 call exit(), in case it
 doesn’t work?

	A:
	No. exit() doesn’t return a value,
 because exit() never
 fails. exit() is the only
 function that is guaranteed never to return a value and
 never to fail.

	Q:
	Is the number I pass to
 exit() the exit
 status?

	A:
	Yes.

	Q:
	Are the Standard Input,
 Output, and Error always in slots 0, 1, and 2 of the
 descriptor table?

	A:
	Yes, they
 are.

	Q:
	So, if I open a new file, it
 is automatically added to the descriptor
 table?

	A:
	Yes.

	Q:
	Is there a rule about which
 slot it gets?

	A:
	New files are
 always added to the available slot with the lowest number.
 So, if slot number 4 is the first available one, that’s the
 one your new file will use.

	Q:
	How big is the descriptor
 table?

	A:
	It has slots from 0
 to 255.

	Q:
	The descriptor table seems
 kinda complicated. Why is it there?

	A:
	Because it allows
 you to rewire the way a program works. Without the
 descriptor table, redirection isn’t possible.

	Q:
	Is there a way of sending data
 to the screen without using the Standard
 Output?

	A:
	On some systems.
 For example, on Unix-based machines, if you open
 /dev/tty, it will send data directly to
 the terminal.

	Q:
	Can I use waitpid() to wait for any process?
 Or just the processes I started?

	A:
	You can use
 waitpid() to wait for any
 process.

	Q:
	Why isn’t the pid_status in waitpid(..., &pid_status, ...)
 just an exit status?

	A:
	Because the
 pid_status contains other
 information.

	Q:
	Such as?

	A:
	For example,
 WIFSIGNALED (pid_status)
 will be false if a process ended naturally, or true if
 something killed it off.

	Q:
	How can an integer variable
 like pid_status contain
 several pieces of information?

	A:
	It stores different
 things in different bits. The first 8 bits store the exit
 status. The other information is stored in the other
 bits.

	Q:
	So, if I can extract the first
 8 bits of the pid_status
 value, I don’t have to use WEXITSTATUS()?

	A:
	It is always best
 to use WEXITSTATUS().
 It’s easier to read and it will work on whatever the native
 int size is on the
 platform.

	Q:
	Why is WEXITSTATUS() in
 uppercase?

	A:
	Because it is a
 macro rather than a function. The compiler replaces macro
 statements with small pieces of code at runtime.

Stay in touch with your child

 You’ve seen how to run a separate process using exec() and fork(), and you know how to redirect the
 output of a child process into a file. But what if you want to listen to
 a child process directly? Is that possible? Rather than waiting for a
 child process to send all of its data into a file and then reading the
 file afterward, is there some way to start a process running and read
 the data it generates in real
 time?
Reading story links from rssgossip

As an example, there’s an option on the
 rssgossip.py script that allows you to display
 the URLs for any stories that it finds:
[image: image with no caption]

Now, you could run the script and save its
 output to a file, but that would be slow. It would be much better if
 the parent and child process could talk to each other while the child
 process is still running.
[image: image with no caption]

Connect your processes with pipes

 You’ve already used something that makes live connections
 between processes: pipes.
[image: image with no caption]

Pipes are used on the command line to connect the output of one process with the input of another process. In the example here,
 you’re running the rssgossip.py script manually and
 then passing its output through a command called grep. The
 grep command finds all the lines
 containing http.
Piped commands are parents and children

Whenever you pipe commands together on the
 command line, you are actually connecting them together as parent and
 child processes. So, in the above example, the grep command is the parent of the
 rssgossip.py script.
	The command line creates the parent
 process.
[image: image with no caption]

	The parent process forks the
 rssgossip.py script in a child process.
[image: image with no caption]

	The parent connects the output of
 the child with the input of the parent using a
 pipe.
[image: image with no caption]

	The parent process execs the grep
 command.
[image: image with no caption]

Pipes are used a lot on the command line to allow users to
 connect processes together. But what if you’re just using C code? How
 do you connect a pipe to your child process so that you can read its
 output as soon as it’s generated?

Case study: opening stories in a browser

 Let’s say you want to run the
 rssgossip.py script and then open the stories it
 finds in a web browser. Your program will run in the parent process and
 rssgossip.py will run in the child. You need to
 create a pipe that connects the output of
 rssgossip.py to the input of your program.
But how do you create a
 pipe?
pipe() opens two data streams

Because the child is going to send data to the parent, you need
 a pipe that’s connected to the Standard Output of the child and the
 Standard Input of the parent. You’ll create the pipe using the
 pipe() function. Remember how we
 said that every time you open a data stream to something like a file,
 it gets added to the descriptor table? Well, that’s exactly what the
 pipe() functions does: it creates
 two connected streams and adds them to the table. Whatever is written
 into one stream can be read from the other.
[image: image with no caption]

[image: image with no caption]

When pipe() creates the two
 lines in the descriptor table, it will store their file descriptors in
 a two-element array:
[image: image with no caption]

The pipe() command creates a
 pipe and tells you two descriptors: fd[1] is the descriptor that writes to the pipe, and fd[0] is the descriptor that reads from the pipe. Once you’ve got the
 descriptors, you’ll need to use them in the parent and child
 processes.
fd[1] writes to the pipe; fd[0] reads
 from it.

In the child

In the child process, you need to close the fd[0] end of the pipe and then change the
 child process’s Standard Output to point to the same stream as
 descriptor fd[1].
[image: image with no caption]

That means that everything the child sends to the Standard Output
 will be written to the pipe.

In the parent

In the parent process, you need to close the fd[1] end of the pipe (because you won’t be
 writing to it) and then redirect the parent process’s Standard Input to
 read its data from the same place as descriptor fd[0]:
[image: image with no caption]

Everything that the child writes to the pipe will be read through
 the Standard Input of the parent process.

Opening a web page in a browser

 Your program will need to open up a web page using the
 machine’s browser. That’s kind of hard to do, because different
 operating systems have different ways of talking to programs like web
 browsers.
Fortunately, the out-of-work actors have hacked together some code
 that will open web pages on most systems. It looks like they were in a
 rush to go do something else, so they’ve put together something pretty
 simple using system():
[image: image with no caption]

[image: image with no caption]

Ready-Bake Code
[image: image with no caption]

The code runs three separate
 commands to open a URL: that’s one command each for the Mac,
 Windows, and Linux. Two of the commands will always fail, but as long as
 the third command works, that’ll be fine.
Go Off Piste
Think you can write better code than the out-of-work actors?
 Then why not rewrite the code to use fork() and exec() for your favorite operating
 system?

Exercise
It looks like most of the program is already written. All you
 need to do is complete the code that connects the
 parent and child processes
 to a pipe. To save space, the #include lines and the error() and open_url() functions have been removed.
 Remember, in this program the child is going to
 talk to the parent, so make sure that pipe’s
 connected the right way!
[image: image with no caption]

Exercise Solution
It looks like most of the program is already written. You were
 to complete the code that connects the parent and
 child processes to a pipe. To save space, the
 #include lines and the error() and open_url() functions have been
 removed.
[image: image with no caption]

Test Drive
 When you compile and run the code, this happens:
[image: image with no caption]

That’s great. It
 worked.
The news_opener program ran
 the rssgossip.py in a separate process and told
 it to display URLs for each story it found. All of the output of the
 screen was redirected through a pipe that was connected to the news_opener parent process. That meant the
 news_opener process could search
 for any URLs and then open them in the browser.
Pipes are a great way of connecting processes together. Now, you
 have the ability to not only run
 processes and control their
 environments, but you also have a way of capturing their output. That opens up a huge
 amount of functionality to you. Your C code can now use and control
 any program that you can use
 from the command line.

Go Off Piste
Now that you know how to control
 rssgossip.py, why not try controlling some of
 these programs? You can get all of them for Unix-style machines or any
 Windows machine using Cygwin:
curl/wget
These programs let you talk to web servers. If you call them
 from C code, you can write programs that can talk to the Web.
mail/mutt
These programs let you send email from the command line. If
 they’re on your machine, it means your C programs can send mail
 too.
convert
This command can convert one image format to another image
 format. Why not create a C program that outputs SVG charts in text
 format, and then use the convert command to create PNG images from
 them?

There are no Dumb Questions
	Q:
	 Is a pipe a
 file?

	A:
	It’s up to the
 operating system how it creates pipes, but pipes created with
 the pipe() function are not
 normally files.

	Q:
	So pipes
 might be files?

	A:
	It is possible to
 create pipes based on files, which are normally called
 named pipes or FIFO
 (first-in/first-out) files.

	Q:
	Why would anyone want a pipe
 that uses a file?

	A:
	Pipes based on files
 have names. That means they are useful if two processes need
 to talk to each other and they are not parent and child
 processes. As long as both processes know the name of the
 pipe, they can talk with it.

	Q:
	Great! So how do I use named
 pipes?

	A:
	Using the mkfifo() system call. For more
 information, see http://tinyurl.com/cdf6ve5.

	Q:
	If most pipes are not files,
 what are they?

	A:
	Usually, they are
 just pieces of memory. Data is written at one point and read
 at another.

	Q:
	What happens if I try to read
 from a pipe and there’s nothing in there?

	A:
	Your program will
 wait until something is there.

	Q:
	How does the parent know when
 the child is finished?

	A:
	When the child
 process dies, the pipe is closed and the fgets() command receives an
 end-of-file, which means the fgets() function returns 0, and the
 loop ends.

	Q:
	Can parents speak to
 children?

	A:
	Absolutely. There is
 no reason why you can’t connect your pipes the other way
 around, so that the parent sends data to the child
 process.

	Q:
	Can you have a pipe that works
 in both directions at once? That way, my parent and child
 processes could have a two-way conversation.

	A:
	No, you can’t do
 that. Pipes always work in only one direction. But you can
 create two pipes: one from the parent to the child, and one
 from the child to the parent.

Bullet Points
	Parent and child processes can communicate using
 pipes.

	The pipe() function
 creates a pipe and two descriptors.

	The descriptors are for the read and write ends of the
 pipe.

	You can redirect Standard Input and Output to the
 pipe.

	The parent and child processes use different ends of the
 pipe.

The death of a process

 You’ve seen how processes are created, how their
 environments are configured, and even how processes talk to each other.
 But what about how processes die? For example, if your program is
 reading data from the keyboard and the user hits Ctrl-C, the program
 stops running.
How does that happen? You can tell from the output that the
 program never got as far as running the second printf(), so the Ctrl-C didn’t just stop the
 fgets() command. Instead, the whole
 program just stopped in its tracks. Did the operating system just unload
 the program? Did the fgets() function
 call exit()? What happened?
[image: image with no caption]

The O/S controls your program with signals

The magic all happens in the operating system. When you call the
 fgets() function, the operating
 system reads the data from the keyboard, and when it sees the user hit
 Ctrl-C, sends an interrupt signal to the program.
[image: image with no caption]

A signal is just a short message: a single integer value. When
 the signal arrives, the process has to stop whatever it’s doing and go
 deal with the signal. The process looks at a table of signal
 mappings that link each signal with a function called the
 signal handler. The default signal
 handler for the interrupt signal just calls the exit() function.
So, why doesn’t the operating system just kill the program?
 Because the signal table lets you run your own code when your process receives a
 signal.
[image: image with no caption]

Catching signals and running your own code

 Sometimes you’ll want to run your own code if someone
 interrupts your program. For example, if your process has files or
 network connections open, it might want to close things down and tidy up
 before exiting. But how do you tell the computer to run your code when
 it sends you a signal? You can do it with
 sigactions.
A sigaction is a function wrapper

A sigaction is a struct that contains a pointer to a
 function. sigactions are used to
 tell the operating system which function it should call when a signal
 is sent to a process. So, if you have a function called diediedie() that you want the operating
 system to call if someone sends an interrupt
 signal to your process, you’ll need to wrap the diediedie() function up as a sigaction.
This is how you create a sigaction:
[image: image with no caption]

The function wrapped by a sigaction is called the handler, because it will be used to deal with
 (or handle) a signal that’s sent to it. If you
 want to create a handler, it will need to be written in a certain
 way.

All handlers take signal arguments

Signals are just integer values, and if you create a custom
 handler function, it will need to accept an int argument, like this:
[image: image with no caption]

Because the handler is passed the number of the signal, you can
 reuse the same handler for several signals. Or,
 you can have a separate handler for each signal. How you choose to
 program it is up to you.
Handlers are intended to be short, fast pieces of code. They
 should do just enough to deal with the signal
 that’s been received.
Watch it!
Be careful when writing to Standard
 Output and Error in handler functions.
Even though the example code you’ll use will display
 text on the Standard Output, be careful about doing that in more
 complex programs. Signals can arrive because something bad has
 happened to the program. That might mean that Standard Output isn’t
 available, so be careful.

sigactions are registered with sigaction()

Once you’ve create a sigaction, you’ll need to tell the operating
 system about it. You do that with the sigaction() function:
sigaction(signal_no, &new_action, &old_action);
sigaction() takes three
 parameters:
	The signal number.
The integer value of the signal you want to handle. Usually,
 you’ll pass one of the standard signal symbols, like SIGINT or SIGQUIT.
Note
You’ll find out more about the standard signals in a
 while.

	The new action.
This is the address of the
 new sigaction you want to
 register.

	The old action.
If you pass a pointer to another sigaction, it will be filled with details
 of the current handler that you’re about to
 replace. If you don’t care about the existing signal handler, you
 can set this to NULL.

The sigaction() function will
 return –1 if it fails and will also set the errno variable. To keep the code short, some
 of the code you’ll see in this book will skip checking for errors, but
 you should always check for
 errors in your own code.
[image: image with no caption]

Ready-Bake Code
This is a function that will make it a little easier to register
 functions as signal handlers:
[image: image with no caption]

This function will allow you to set a signal handler by calling
 catch_signal() with a signal number
 and a function name:
catch_signal(SIGINT, diedieie)

Rewriting the code to use a signal handler

You now have all the code to make your program do something if
 someone hits the Ctrl-C key:
[image: image with no caption]

The program will ask for the user’s name and then wait for her to
 type. But if instead of typing her name, the user just hits the Ctrl-C
 key, the operating system will automatically send the process an
 interrupt signal (SIGINT). That interrupt signal will be handled
 by the sigaction that was registered
 in the catch_signal() function. The
 sigaction contains a pointer to the
 diediedie() function. This will then
 be called, and the program will display a message and exit().
Test Drive
When you run the new version of the program and press
 Ctrl-C, this happens:
[image: image with no caption]

[image: image with no caption]

The operating system received the Ctrl-C and sent a SIGINT signal to the process, which then ran
 your diediedie() function.

What’s my Purpose?
There are a bunch of different signals the operating system can
 send to your process. Match each signal to its cause.
	 SIGINT
	The process was
 interrupted.

	 SIGQUIT
	The terminal window changed
 size.

	 SIGFPE
	The process tried to access illegal
 memory.

	 SIGTRAP
	Someone just asked the kernel to
 kill the process.

	 SIGSEGV
	The process wrote to a pipe that
 nothing’s reading.

	 SIGWINCH
	Floating-point error.

	 SIGTERM
	Someone asked the process to stop
 and dump the memory in a core dump file.

	 SIGPIPE
	The debugger asks where the process
 is.

What’s my Purpose? Solution
 There are a bunch of different signals the operating
 system can send to your process. You were to match each signal to its
 cause.
[image: image with no caption]

There are no Dumb Questions
	Q:
	If the interrupt handler didn’t
 call exit(), would the
 program still have ended?

	A:
	No.

	Q:
	So, I could write a program that
 completely ignores interrupts?

	A:
	You could, but it’s
 not a good idea. In general, if your program receives an error
 signal, it’s best to exit with an error, even if you run some
 of your own code first.

Use kill to send
 signals

 If you’ve written some signal-handling code, how do you
 test it? Fortunately, on Unix-style systems, there’s a command called
 kill. It’s called kill because it’s normally used to kill off
 processes, but in fact, kill just
 sends a signal to a process. By default, the command sends a SIGTERM signal to the process, but you can use
 it to send any signal you like.
Note
Including Cygwin on Windows

To try it out, open two terminals. In one
 terminal, you can run your program. Then, in the second terminal, you
 can send signals to your program with the kill command:
[image: image with no caption]

Each of these kill commands
 will send signals to the process and run whatever handler the process
 has configured. The exception is the SIGKILL signal. The SIGKILL signal can’t be caught by code, and it
 can’t be ignored. That means if you have a bug in your code and it is
 ignoring every signal, you can always
 stop the process with kill
 -KILL.
Note
SIGSTOP can’t be ignored either. It’s used to pause your
 process.

kill -KILL <pid> will always kill
 your program.

Send signals with raise()

Sometimes you might want a process to send a signal to itself,
 which you can do with the raise()
 command.
raise(SIGTERM);
Normally, the raise() command
 is used inside your own custom signal handlers. It means your code can
 receive a signal for something minor and then choose to raise a more
 serious signal.
This is called signal
 escalation.

Sending your code a wake-up call

 The operating system sends signals to a process when
 something has happened that the process needs to know about. It might be
 that the user has tried to interrupt the process, or someone has tried
 to kill it, or even that the process has tried to do something it
 shouldn’t have, like trying to access a restricted piece of
 memory.
But signals are not just used when things go wrong. Sometimes a
 process might actually want to generate its own signals. One example of
 that is the alarm signal, SIGALRM.
 The alarm signal is usually created by the process’s interval timer. The interval timer is like an
 alarm clock: you set it for some time in the future, and in the meantime
 your program can go and do something else:
[image: image with no caption]

[image: image with no caption]

But even though your program is busy doing other things, the timer
 is still running in the background. That means that when the 120 seconds
 are up...
...the timer fires a SIGALRM signal

When a process receives a signal, it stops doing everything else and handles the
 signal. But what does a process do with an alarm signal by default? It
 stops the process. It’s really
 unlikely that you would ever want a timer to kill your program for
 you, so most of the time you will set the handler to do something
 else:
[image: image with no caption]

Alarm signals let you multitask. If you need to run a particular
 job every few seconds, or if you want to limit the amount of time you
 spend doing a job, then alarm signals are a great way of getting a
 program to interrupt
 itself.
Watch it!
Don’t use alarm() and sleep() at the
 same time.
The sleep() function puts your
 program to sleep for a few seconds, but it works by using the same
 interval timer as the alarm() function, so if you try
 to use the two functions at the same time, they will interfere with
 each other.

Resetting and Ignoring Signals Up Close
 You’ve seen how to set custom signal handlers, but
 what if you want to restore the default signal handler? Fortunately,
 the signal.h header has a special symbol
 SIG_DFL, which means handle it the default way.
catch_signal(SIGTERM, SIG_DFL);
[image: image with no caption]

Also, there’s another symbol,
 SIG_IGN, that tells
 the process to completely ignore
 a signal.
catch_signal(SIGINT, SIG_IGN);
[image: image with no caption]

But you should be very careful before you
 choose to ignore a signal. Signals are an important way of
 controlling—and stopping—processes. If you ignore them, your program
 will be harder to stop.

There are no Dumb Questions
	Q:
	Can I set an alarm for less
 than a second?

	A:
	Yes, but it’s a
 little more complicated. You need to use a different
 function called setitimer(). It lets you set the
 process’s interval timer directly in either seconds or
 fractions of a second.

	Q:
	How do I do
 that?

	A:
	Go to
 http://tinyurl.com/3o7hzbm
 for more details.

	Q:
	Why is there only one timer
 for a process?

	A:
	The timers have to
 be managed by the operating system kernel, and if processes
 had lots of timers, the kernel would go slower and slower.
 To prevent this from happening, the operating system limits
 each process to one timer.

	Q:
	Timers let me multitask?!
 Great, so I can use them to do lots of things at
 once?

	A:
	No. Remember, your
 process will always stop whatever it’s doing when it handles
 a signal. That means it is still only doing one thing at a
 time. You’ll see later how you can really make your code do
 more than one thing at a time.

	Q:
	What happens if I set one
 timer and it had already been set?

	A:
	Whenever you call
 the alarm() function, you
 reset the timer. That means if you set the alarm for 10
 seconds, then a moment later you set it for 10 minutes, the
 alarm won’t fire until 10 minutes are up. The original
 10-second timer will be lost.

Long Exercise
 This is the source code for a program that tests the
 user’s math skills. It asks the user to work the answer to a simple
 multiplication problem and keeps track of how many answers he got
 right. The program will keep running forever, unless:
	The user presses Ctrl-C, or

	The user takes more than five
 seconds to answer the question.

When the program ends, it will display the final score and set
 the exit status to 0.
[image: image with no caption]

[image: image with no caption]

Long Exercise Solution
This is the source code for a program that tests the user’s
 math skills. It asks the user to work the answer to a simple
 multiplication problem and keeps track of how many answers he got
 right. The program will keep running forever, unless:
	The user presses Ctrl-C, or

	The user takes more than five
 seconds to answer the question.

When the program ends, it will display the final score and set
 the exit status to 0.
[image: image with no caption]

[image: image with no caption]

Test Drive
To see if the program works, you need to run it a couple of
 times.
Test 1: hit Ctrl-C
The first time, you’ll answer a few questions and then hit
 Ctrl-C.
Ctrl-C sends the process an interrupt signal (SIGINT) that makes the program display the
 final score and then exit().
[image: image with no caption]

Test 2: wait five
 seconds
The second time, instead of hitting Ctrl-C, wait for at least
 five seconds on one of the answers and see what happens.
The alarm signal (SIGALRM)
 fires. The program was waiting for the user to enter an answer, but
 because he took so long, the timer signal was sent; the process
 immediately switches to the times_up() handler function. The handler
 displays the “TIME’S UP!” message and then escalates the signal to a
 SIGINT that causes the program to
 display the final score.
[image: image with no caption]

Signals are a little complex, but incredibly useful. They
 allow your programs to end gracefully, and the interval timer can
 help you deal with tasks that are taking too long.

There are no Dumb Questions
	Q:
	 Are signals always
 received in the same order they are sent?

	A:
	Not if they are
 sent very close together. The operating system might choose
 to reorder the signals if it thinks one is more important
 than the others.

	Q:
	Is that always
 true?

	A:
	It depends on the
 platform. On most versions of Cygwin, for example, the
 signals will always be sent and received in the same order.
 But in general, you shouldn’t rely on it.

	Q:
	If I send the same signal
 twice, will it be received twice by the
 process?

	A:
	Again, it depends.
 On Linux and the Mac, if the same signal is repeated very
 quickly, the kernel might choose to only send the signal
 once to the process. On Cygwin, it will always send both
 signals. But again, you should not assume that just because
 you sent the same signal twice, it will be received
 twice.

Bullet Points
	The operating system talks to processes using
 signals.

	Programs are normally stopped using signals.

	When a process receives a signal, it runs a
 handler.

	For most error signals, the default handler stops the
 program.

	Handlers can be replaced with the signal() function.

	You can send signals to yourself with raise().

	The interval timer sends SIGALRM signals.

	The alarm() function
 sets the interval timer.

	There is one timer per process.

	Don’t use sleep() and
 alarm() at the same
 time.

	kill sends signals to a
 process.

	kill -KILL will always
 kill a process.

Your C Toolbox

You’ve got Chapter 10 under your belt,
 and now you’ve added interprocess communication to your toolbox. For a
 complete list of tooltips in the book, see Appendix B.
[image: image with no caption]

Chapter 11. Sockets and Networking: There’s no place like 127.0.0.1

[image: image with no caption]

 Programs on different machines need
 to talk to each other.
You’ve learned how to use I/O to communicate with files and how
 processes on the same machine can communicate with each other. Now you’re
 going to reach out to the rest of the world, and
 learn how to write C programs that can talk to other programs across the network and across the world. By the end of this chapter, you’ll be
 able to create programs that behave as
 servers and programs that behave as
 clients.
The Internet knock-knock server

 C is used to write most of the low-level networking code
 on the Internet. Most networked applications need two separate programs:
 a server and a client.
You’re going to build a server in C that tells jokes over the
 Internet. You’ll be able to start the server on one machine like
 this:
[image: image with no caption]

Other than telling you it’s running, the server won’t display
 anything else on the screen. However, if you open a second console,
 you’ll be able to connect to the server using a client program called
 telnet. Telnet takes two parameters:
 the address of the server, and the
 port the server is running on. If you are running
 telnet on the same machine as the server, you can use 127.0.0.1
 for the address:
[image: image with no caption]

Watch it!
You’ll be using telnet quite a lot in
 this chapter to test our server code.
If you try to use the built-in Windows telnet, you
 might have problems because of the way it communicates with the
 network. If you install the Cygwin version of telnet, you should be
 fine.

Do this!
	You will need a telnet program in order to connect to
 the server. Most systems come with telnet already installed. You
 can check that you have telnet by typing:

	 telnet

	on the command line.

	If you don’t have
 telnet, you can install it in one of these ways:

	 Cygwin:

	Run the setup.exe program for Cygwin and
 search for telnet.

	 Linux:

	Search for telnet
 in your package manager. On many systems, the package manager is
 called Synaptic.

	 Mac:

	If you don’t have telnet, you can
 install it from www.macports.org
 or www.finkproject.org.

Knock-knock server overview

 The server will be able to talk to several clients at
 once. The client and the server will have a structured
 conversation called a protocol. There are different protocols used on
 the Internet. Some of them are low-level protocols,
 like the internet protocol (IP), which are used to
 control how binary 1s and 0s are sent around the Internet. Other
 protocols are high-level protocols, like the
 hypertext transfer protocol (HTTP), which controls
 how web browsers talk to web servers. The joke server is going to use a
 custom high-level protocol called the Internet knock-knock
 protocol (IKKP).
A protocol is a structured
 conversation.

[image: image with no caption]

The client and the server will exchange messages like this:
[image: image with no caption]

A protocol always has a strict
 set of rules. As long as the client and the server both follow those
 rules, everything is fine. But if one of them breaks the rules, the
 conversation usually stops pretty abruptly.
[image: image with no caption]

BLAB: how servers talk to the Internet

 When C programs need to talk to the outside world, they
 use data streams to read and write
 bytes. You’ve used data streams that are connected to the files or
 Standard Input and Output. But if you’re going to write a program to
 talk to the network, you need a new kind of data stream called a
 socket.
[image: image with no caption]

Before a server can use a socket to talk to a client program, it
 needs to go through four stages that you can remember with the acronym
 BLAB: Bind,
 Listen, Accept, Begin.
Bind to a port.
Listen.
Accept a connection.
Begin talking.

1. Bind to a port

A computer might need to run several server programs at once. It
 might be sending out web pages, posting email, and running a chat
 server all at the same time. To prevent the different conversations
 from getting confused, each server uses a different port. A port is just like a channel on a TV.
 Different ports are used for different network services, just like
 different channels are used for different content.
When a server starts up, it needs to tell the operating system
 which port it’s going to use. This is called binding the port. The knock-knock server
 is going to use port 30000, and to bind it you’ll need two things: the
 socket descriptor and a socket name. A socket name is just a struct that means “Internet port
 30000.”
[image: image with no caption]

[image: image with no caption]

2. Listen

 If your server becomes popular, you’ll probably get lots
 of clients connecting to it at once. Would you like the clients to
 wait in a queue for a connection? The listen() system call tells the operating
 system how long you want the queue to be:
[image: image with no caption]

Calling listen() with a queue
 length of 10 means that up to 10 clients can try to connect to the
 server at once. They won’t all be immediately answered, but they’ll be
 able to wait. The 11th client will be told the server is too
 busy.
[image: image with no caption]

3. Accept a connection

Once you’ve bound a port and set up a listen queue, you then
 just have to...wait. Servers spend most of their lives waiting for
 clients to contact them. The accept() system call waits until a client
 contacts the server, and then it returns a second socket descriptor that you can use to
 hold a conversation on.
[image: image with no caption]

This new connection
 descriptor (connect_d)
 is the one that the server will use to...
Begin talking.

Brain Barbell
Why do you think the accept() system call creates the
 descriptor for a new socket? Why don’t servers just use the socket
 they created to listen to the port?

A socket’s not your typical data stream

 So far, data streams have all been the same. Whether
 you’re connected to files or Standard Input/Output, you’ve been able to
 use functions like fprintf() and
 fscanf() to talk to them. But sockets
 are a little different. A socket is two way: it can
 be used for input and output. That means it needs
 different functions to talk to it.
If you want to output data on a socket, you can’t use fprintf(). Instead, you use a function called
 send():
[image: image with no caption]

Remember: it’s important to
 always check the return value of system calls like send(). Network errors are really common, and
 your servers will have to cope with them.
Geek Bits
What port should I
 use?
You need to be careful when you choose a port number for a
 server application. There are lots of different servers available, and
 you need to make sure you don’t use a port number that’s normally used
 for some other program. On Cygwin and most Unix-style machines, you’ll
 find a file called /etc/services that lists the ports used
 by most of the common servers. When you choose a port, make sure there
 isn’t another application that already uses the same one.
Port numbers can be between 0 and 65535, and you need to decide
 whether you want to use a low number (< 1024) or a high one. Port
 numbers that are lower than 1024 are usually only available to the
 superuser or administrator on most systems. This is because the low
 port numbers are reserved for well-known services, like web servers
 and email servers. Operating systems restrict these ports to
 administrators only, to prevent ordinary users from starting unwanted
 services.
Most of the time, you’ll probably want
 to use a port number greater than 1024.

Sharpen your pencil
This server generates random advice for any client that
 connects to it, but it’s not quite complete. You need to fill in the
 missing system calls. Also, this version of the code will send back a
 single piece of advice and then end. Part of the code needs to be
 inside a loop. Which part?
[image: image with no caption]

And for a bonus point, if you add in the missing #include statements, the program will work.
 But what has the programmer missed out? Hint:
 look at the system calls.
The programmer has forgotten to

Sharpen your pencil: Solution
This server generates random advice for any client that
 connects to it, but it’s not quite complete. You needed to fill in the
 missing system calls. Also, this version of the code will send back a
 single piece of advice and then end. Part of the code needs to be
 inside a loop. Which part?
[image: image with no caption]

And for a bonus point, if you add in the missing #include statements, the program will work.
 But what has the programmer missed out? Hint:
 look at the system calls.
[image: image with no caption]

Test Drive
Let’s compile the advice server and see what happens.
[image: image with no caption]

Then, while the server is still running, open a second console
 and connect to the server using telnet a couple of times.
[image: image with no caption]

That’s great, the server works. Here, you’re using 127.0.0.1 as
 the IP address, because the client is running on the same machine as
 the server. But you could have connected to the server from anywhere
 on the network and we’d have gotten the same response.
[image: image with no caption]

Sometimes the server doesn’t start properly

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

The server looks like it’s starting correctly
 the second time, but the client can’t get any response from it. Why is
 that?
Remember that the code was written without
 any error checking. Let’s add a little error check into the
 code and see if we can figure out what’s happening.

Why your mom always told you to check for errors

If you add an error check on the line that binds the
 socket to a port:
[image: image with no caption]

Then you’ll get a little more information from the server if it is
 stopped and restarted quickly:
[image: image with no caption]

If the server has responded to a client and then gets stopped and
 restarted, the call to the bind system call fails. But because the
 original version of the program never checked for errors, the rest of
 the server code ran even though it couldn’t use the server port.
Bound ports are sticky

When you bind a socket to a port, the operating system will
 prevent anything else from rebinding to it for the next 30 seconds or
 so, and that includes the program that bound the port in the first
 place. To get around the problem, you just need to set an option on
 the socket before you bind it:
 ALWAYS check for errors on system
 calls.

[image: image with no caption]

This code makes the socket reuse the
 port when it’s bound. That means you can stop and restart
 the server and there will be no errors when you bind the port a second
 time.

Reading from the client

 You’ve learned how to send data to the client, but what
 about reading from the client? In the same way that
 sockets have a special send()
 function to write data, they also have a
 recv() function to read
 data.
<bytes read> = recv(<descriptor>, <buffer>, <bytes to read>, 0);
If someone types in a line of text into a client and hits return,
 the recv() function stores the text
 into a character array like this:
[image: image with no caption]

There are a few things to remember:
	The characters are not terminated with
 a \0 character.

	When someone types text in telnet, the
 string always ends \r\n.

	The recv() will return the number of
 characters, or –1 if there’s an error, or 0 if the client has closed
 the connection.

	You’re not guaranteed to receive all
 the characters in a single call to recv().

This last point is important. It means you might have to call
 recv() more than once:
[image: image with no caption]

That means recv() can be tricky
 to use. It’s best to wrap recv() in a
 function that stores a simple \0-terminated string in the array it’s given.
 Something like this:
[image: image with no caption]

Go Off Piste
This is one way of simplifying recv(), but could you
 do better? Why not write your own version of read_in() and let us know at
 headfirstlabs.com.

[image: image with no caption]

 Ready-Bake Code
Here are some other functions that are useful when you are writing
 a server. Do you understand how each of them works?
[image: image with no caption]

Now that you have a set of server
 functions, let’s try them out...
Long Exercise
Now it’s time to write the code for the Internet knock-knock server. You’re going to
 write a little more code than usual, but you’ll be able to use the
 ready-bake code from the previous page. Here’s the start of the
 program.
[image: image with no caption]

[image: image with no caption]

Now it’s over to you to write the main function. You’ll need to
 create a new server socket and store it in listener_d. The socket will be bound to port
 30000, and the queue depth should be set to 10. Once that’s done, you
 need to write code that works like this:
[image: image with no caption]

Try to check error codes and if the user says the wrong thing,
 just send an error message, close the connection, and then wait for
 another client.
Good luck!

Long Exercise Solution
Now it’s time to write the code for the Internet knock-knock server. You were to
 write a little more code than usual, but you’ll be able to use the
 ready-bake code from the previous page. Here’s the start of the
 program.
[image: image with no caption]

[image: image with no caption]

This is the kind of code you should have written. Is yours
 similar? It doesn’t matter if the code is exactly
 the same. The important thing is that your code can tell the joke in
 the right way, and cope with errors.
[image: image with no caption]

Test Drive
Now that you’ve written the knock-knock server, it’s time to
 compile it and fire it up.
[image: image with no caption]

The server’s waiting for a connection, so open a separate
 console and connect to it with telnet:
[image: image with no caption]

The server can tell you a joke, but what happens if you break
 the protocol and send back an invalid response?
[image: image with no caption]

The server is able to validate the data you send it and close
 the connection immediately. Once you’re done running the server, you
 can switch back to the server window and hit Ctrl-C to close it down
 neatly. It even sends you a farewell message:
[image: image with no caption]

That’s great! The server does everything you need it to
 do.
Or does it?

The server can only talk to one person at a time

There’s a problem with the current server code. Imagine
 someone connects to it and he is a little slow with his
 responses:
[image: image with no caption]

Then, if someone else tries to get through to the server, she
 can’t; it’s busy with the first guy:
[image: image with no caption]

The problem is that the server is still busy talking to the first
 guy. The main server socket will keep the client waiting until the
 server calls the accept() system call
 again. But because of the guy already connected, it will be some time
 before that happens.
Brain Power
The server can’t respond to the second user, because it is busy
 dealing with the first. What have you learned that might help you deal
 with both clients at
 once?

You can fork() a process for each client

 When the clients connect to the server, they start to have
 a conversation on a separate, newly created socket. That means the main
 server socket is free to go and find another client. So let’s do
 that.
When a client connects, you can fork() a separate child process to deal with
 the conversation between the server and the client.
[image: image with no caption]

While the client is talking to the child process, the server’s
 parent process can go connect to the next client.
[image: image with no caption]

The parent and child use different sockets

One thing to bear in mind is that the parent server process will
 only need to use the main listener socket. That’s because the main
 listener socket is the one that’s used to accept() new connections. On the other hand,
 the child process will only ever need to deal with the secondary
 socket that gets created by the accept() call. That means once the parent
 has forked the child, the parent
 can close the secondary socket and the child can close the main
 listener socket.
[image: image with no caption]

There are no Dumb Questions
	Q:
	If I create a new process for
 each client, what happens if hundreds of clients connect?
 Will my machine create hundreds of
 processes?

	A:
	Yes. If you think
 your server will get a lot of clients, you need to control
 how many processes you create. The child can signal you when
 it’s finished with a client, and you can use that to
 maintain a count of current child processes.

Sharpen your pencil
This is a version of the server code that has been
 changed to fork a separate child
 process to talk to each client...except it’s not quite finished. See
 if you can figure out the missing pieces of code.
[image: image with no caption]

Sharpen your pencil: Solution
This is a version of the server code that has been changed to
 fork a separate child process to
 talk to each client—except it’s not quite finished. You were to
 figure out the missing pieces of code.
[image: image with no caption]

Test Drive
Let’s try the modified version of the server. You can compile
 and run it in the same way:
[image: image with no caption]

If you open a separate console and start telnet, you can
 connect, just like you did before:
[image: image with no caption]

Everything seems the same, but if you leave the client running
 with the joke half-told, you should be able to see what’s
 changed.
If you open a third console, you will see that there are now
 two processes for the server: one for the parent and one for the
 child:
[image: image with no caption]

That means you can connect, even while the first client is
 still talking to the server:
[image: image with no caption]

Now that you’ve built an Internet
 server, let’s go look at what it takes to build a client, by writing
 something that can read from the Web.

Writing a web client

 What if you want to write your own client program? Is it
 really that different from a server? To see the
 similarities and differences, you’re going to write a web client for the hypertext transfer protocol
 (HTTP).
HTTP is a lot like the Internet knock-knock protocol you coded
 earlier. All protocols are structured
 conversations. Every time a web client and server talk, they
 say the same kind of things. Open telnet and see how to download
 http://en.wikipedia.org/wiki/O’Reilly_Media.
Do this!
[image: image with no caption]

When your program connects to the web server, it will need to send
 at least three things:
Note
Most web clients actually send a lot more information, but
 you’ll just send the minimum amount.

	A GET command
GET /wiki/O'Reilly_Media HTTP/1.1

	The hostname
Host: en.wikipedia.org

	A blank line

But before you can send any data at all to
 the server, you need to make a connection from the client. How do you do
 that?

Clients are in charge

 Clients and servers communicate using sockets, but the way
 that each gets hold of a socket is a little different. You’ve already
 seen that servers use the BLAB
 sequence:
	Bind a port.

	Listen.

	Accept a
 conversation.

	Begin talking.

A server spends most of its life waiting for a fresh connection
 from a client. Until a client connects, a server really can’t do
 anything. Clients don’t have that problem. A client can connect and
 start talking to a server whenever it likes. This is the sequence for a
 client:
	Connect to a remote
 port.

	Begin talking.

[image: image with no caption]

Remote ports and IP addresses

When a server connects to the network, it just has to decide
 which port it’s going to use. But clients need to know a little more:
 they need to know the port of the remote server, but they also need to
 know its internet protocol (IP)
 address:
[image: image with no caption]

Internet addresses are kind of hard to remember, which is why
 most of the time human beings use domain
 names. A domain name is just an easier-to-remember piece of
 text like:
 www.oreilly.com
Even though human beings prefer domain names, the actual packets
 of information that flow across the network only use the numeric IP
 address.

Create a socket for an IP address

 Once your client knows the address and port number of the
 server, it can create a client
 socket. Client sockets and server sockets are created the
 same way:
[image: image with no caption]

The difference between client and server code is what they do with
 sockets once they’re created. A server will bind the socket to a local
 port, but a client will connect the
 socket to a remote port:
[image: image with no caption]

[image: image with no caption]

The above code works only for numeric IP
 addresses.
To connect a socket to a remote domain name, you’ll need a
 function called getaddrinfo().

getaddrinfo() gets addresses for domains

 The domain name system is a huge
 address book. It’s a way of converting a domain name like
 www.oreilly.com
 into the kinds of numeric IP addresses that computers need to address
 the packets of information they send across the network.
[image: image with no caption]

Create a socket for a domain name

Most of the time, you’ll want your client code to use the DNS
 system to create sockets. That way, your users won’t have to look up
 the IP addresses themselves. To use DNS, you need to construct your
 client sockets in a slightly different way:
[image: image with no caption]

The getaddrinfo() constructs
 a new data structure on the heap
 called a naming resource. The naming resource
 represents a port on a server with a given domain name. Hidden away
 inside the naming resource is the IP address that the computer will
 need. Sometimes very large domains can have several IP addresses, but
 the code here will simply pick one of them. You can then use the
 naming resource to create a socket.
[image: image with no caption]

Finally, you can connect to the remote socket. Because the
 naming resource was created on the heap, you’ll need to tidy it away
 with a function called freeaddrinfo():
[image: image with no caption]

Once you’ve connected a socket to a remote port, you can read
 and write to it using the same recv() and send() functions you used for the server.
 That means you should have enough information now to write a web
 client...
Code Magnets
Here is the code for a web client that will download
 the contents of a page from Wikipedia and display it on the screen.
 The web page will be passed as an argument to the program. Think
 carefully about the data you need to send to a web server running
 HTTP.
[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

Code Magnets Solution
Here is the code for a web client that will download the
 contents of a page from Wikipedia and display it on the screen. The
 web page will be passed as an argument to the program. You were to
 think carefully about the data you need to send to a web server
 running HTTP.
[image: image with no caption]

[image: image with no caption]

Test Drive
If you compile and run the web client, you make it
 download a page from Wikipedia like this:
[image: image with no caption]

It works!
The client took the name of the page from the command line and
 then connected to Wikipedia to download the page. Because it’s
 constructing the path to the file, you need to
 make sure that the you replace any spaces in the page name with
 underscore (_) characters.

Go Off Piste
Why not update the code to automatically replace characters
 like spaces for you? For more details on how to replace characters
 for web addresses, see:
 http://www.w3schools.com/tags/ref_urlencode.asp

There are no Dumb Questions
	Q:
	 Should I create
 sockets with IP addresses or domain names?

	A:
	Most of the time,
 you’ll want to use domain names. They’re easier to remember,
 and occasionally some servers will change their numeric
 addresses but keep the same domain names.

	Q:
	So, do I even need to know how
 to connect to a numeric address?

	A:
	Yes. If the server
 you are connecting to is not registered in the domain name
 system, such as machines on your home network, then you will
 need to know how to connect by IP.

	Q:
	Can I use getaddrinfo() with a numeric
 address?

	A:
	Yes, you can. But
 if you know that the address you are
 using is a numeric IP, the first version of the client
 socket code is simpler.

Bullet Points
	A protocol is a structured conversation.

	Servers connect to local ports.

	Clients connect to remote ports.

	Clients and servers both use sockets to
 communicate.

	You write data to a socket with send().

	You read data from a socket with recv().

	HTTP is the protocol used on the Web.

Your C Toolbox

 You’ve got Chapter 11 under your belt,
 and now you’ve added sockets and networking to your toolbox. For a
 complete list of tooltips in the book, see Appendix B.
[image: image with no caption]

Chapter 12. Threads: It’s a parallel world

[image: image with no caption]

 Programs often need to do several
 things at the same time.
POSIX threads can make your code more responsive by spinning off several pieces of code to run in
 parallel. But be careful! Threads are powerful tools, but you
 don’t want them crashing into each other. In this chapter, you’ll learn
 how to put up traffic signs and
 lane markers that will prevent a code pileup. By the end, you will
 know how to create POSIX threads and
 how to use synchronization mechanisms
 to protect the integrity of sensitive
 data.
Tasks are sequential...or not...

Imagine you are writing something complex like a game in
 C. The code will need to perform several different tasks:
[image: image with no caption]

Not only will your code need to do all of these things, but it
 will need to do them all at the same
 time. That’s going to be true for many different programs.
 Chat programs will need to read text from the network and send data to
 the network at the same time. Media players will need to stream video to
 the display as well as watch for input from the user controls.
How can your code perform several
 different tasks at once?

...and processes are not always the answer

You’ve already learned how to make the computer do several
 things at once: with processes.
 In the last chapter, you built a network server that could deal with
 several different clients at once. Each time a new user connected, the
 server created a new process to handle the new session.
Does that mean that whenever you want to do several things at
 once, you should just create a separate process? Well, not really, and
 here’s why.
	 Processes
 take time to create

	Some machines take a little while to
 create new processes. Not much time, but some. If the extra task
 you want to perform takes just a few hundredths of a second,
 creating a process each time won’t be very
 efficient.

	 Processes
 can’t share data easily

	When you create a child process, it
 automatically has a complete copy of all the data from the
 parent process. But it’s a copy of the data. If the child needs
 to send data back to the parent, then you need something like a
 pipe to do that for you.

	 Processes are
 just plain difficult

	You need to create a chunk of code to
 generate processes, and that can make your programs long and
 messy.

You need something that starts a separate task quickly, can share
 all of your current data, and won’t need a huge amount of code to
 build.
You need
 threads.

Simple processes do one thing at a time

 Say you have a task list with a set of things that you
 need to do:
[image: image with no caption]

You can’t do all of the tasks at the same time, not by yourself.
 If someone comes into the shop, you’ll need to stop stocking the
 shelves. If it looks like rain, you might stop bookkeeping and get on
 the roof. If you work in a shop alone, you’re like a simple process: you
 do one thing after another, but always one thing at a time. Sure, you
 can switch between tasks to keep everything going, but what if there’s a
 blocking operation? What if you’re
 serving someone at the checkout and the phone rings?
All of the programs you’ve written so far have had a single thread of execution. It’s like there’s
 only been one person working inside the program’s process.
[image: image with no caption]

Employ extra staff: use threads

A multithreaded program
 is like a shop with several people working in it. If one person is
 running the checkout, another is filling the shelves, and someone else
 is waxing the surfboards, then everybody can work without interruptions.
 If one person answers the phone, it won’t stop the other people in the
 shop.
[image: image with no caption]

In the same way that several people can work in the same shop, you
 can have several threads living inside the same process. All of the
 threads will have access to the same piece of heap memory. They will all
 be able to read and write to the same files and talk on the same network
 sockets. If one thread changes a global variable, all of the other
 threads will see the change immediately.
That means you can give each thread a separate task and they’ll
 all be performed at the same time.
[image: image with no caption]

How do you create threads?

 There are a few thread libraries, and you’re going to use
 one of the most popular: the POSIX thread
 library, or pthread. You can use the pthread library on Cygwin, Linux, and the
 Mac.
Let’s say you want to run these two functions in separate
 threads:
[image: image with no caption]

Did you notice that both functions return a void
 pointer? Remember, a void pointer can be used to point to any
 piece of data in memory, and you’ll need to make sure that your thread
 functions have a void* return type.
You’re going to run each of these functions inside its own
 thread.
[image: image with no caption]

You’ll need to run both of these functions in parallel in separate
 threads. Let’s see how to do that.

Create threads with pthread_create

 To run these functions, you’ll need a little setup code,
 like some headers and maybe an error() function that you can call if there’s
 a problem.
[image: image with no caption]

But then you can start the code for your main function. You’re
 going to create two threads, and each one needs to have its info stored
 in a pthread_t data structure. Then you
 can create and run a thread with pthread_create().
[image: image with no caption]

That code will run your two functions in separate threads. But
 you’ve not quite finished yet. If your program just ran this and then
 finished, the threads would be killed when the program ended. So you
 need to wait for your threads to finish:
[image: image with no caption]

The pthread_join() also
 receives the return value of your thread function and stores it in a
 void pointer variable. Once both threads have finished, your program can
 exit smoothly.
Let’s see if it works.
Test Drive
 Because you’re using the pthread library, you’ll need to make sure
 you link it when you compile your program, like this:
[image: image with no caption]

When you run the code, you’ll see both functions running at the
 same time:
[image: image with no caption]

There are no Dumb Questions
	Q:
	If both functions are running at
 the same time, why don’t the letters in the messages get mixed
 up? Each message is on its own line.

	A:
	That’s because of the
 way the Standard Output works. The text from puts() will all get output at
 once.

	Q:
	I removed the sleep() function, and the output
 showed all the output from one function and then all the
 output from the other function. Why is that?

	A:
	Most machines will
 run the code so quickly that without the sleep() call, the first function
 will finish before the second thread starts running.

Beer Magnets
It’s time for a really BIG party. This code runs 20
 threads that count the number of beers down from 2,000,000. See if you
 can spot the missing code, and if you get the answer right, celebrate
 by cracking open a couple of cold ones yourself.
[image: image with no caption]

Beer Magnets Solution
It’s time for a really BIG party. This code runs 20 threads that
 count the number of beers down from 2,000,000. You were to spot the
 missing code.
[image: image with no caption]

Test Drive
Let’s take a closer look at that last program. If you compile
 and run the code a few times, this happens:
[image: image with no caption]

The code usually doesn’t reduce the
 beers variable to zero.
That’s really odd. The beers
 variable begins with a value of 2 million. Then 20 threads each try to
 reduce the value by 100,000. Shouldn’t that mean that the beers variable always
 goes to zero?

Brain Power
Look carefully at the code again, and try to imagine what will
 happen if several threads are running it at the same time. Why is the
 result unpredictable? Why doesn’t the beers variable get set to zero when all the
 threads have run? Write your answer below.

The code is not thread-safe

The great thing about threads is that lots of different
 tasks can run at the same time and have access to the same data. The
 downside is that all those different threads have access to the same
 data...
Unlike the first program, the threads in the second program are
 all reading and changing a shared piece of memory: the beers variable. To understand what’s going on,
 let’s see what happens if two threads try to reduce the value of
 beers using this line of code:
[image: image with no caption]

	First of all, both threads will need
 to read the current value of the beers variable.
[image: image with no caption]

	Then, each thread will subtract 1 from
 the number.
[image: image with no caption]

	Finally, each thread stores the value
 for beers–1 back into the beers variable.
[image: image with no caption]

Even though both of the threads were trying to reduce the value of
 beers by 1, they didn’t succeed.
 Instead of reducing the value by 2, they only decreased it by 1. That’s
 why the beers variable didn’t get
 reduced to zero—the threads kept getting in the way of each
 other.
And why was the result so unpredictable? Because the threads
 didn’t always run the line of code at exactly the same time. Sometimes
 the threads didn’t crash into each other, and sometimes they did.
Watch it!
Be careful to look out for code that
 isn’t thread-safe.
How will you know? Usually, if two threads read and
 write to the same variable, it’s not.

You need to add traffic signals

[image: image with no caption]

 Multithreaded programs can be powerful, but they can also
 behave in unpredictable ways, unless you put some controls in
 place.
Imagine two cars want to pass down the same narrow stretch of
 road. To prevent an accident, you can add traffic signals. Those traffic
 signals prevent the cars from getting access to a shared resource (the
 road) at the same time.
It’s the same thing when you want two or more threads to access a
 shared data resource: you need to add traffic signals so that no two
 threads can read the data and write it back at the same time.
[image: image with no caption]

The traffic signals that prevent threads from crashing into each
 other are called mutexes, and they
 are one of the simplest ways of making your code thread-safe.
Note
Mutexes are sometimes just called locks.

MUT-EX = MUTually
 EXclusive.

Use a mutex as a traffic signal

 To protect a section of code, you will need to create a
 mutex lock like this:
pthread_mutex_t a_lock = PTHREAD_MUTEX_INITIALIZER;
The mutex needs to be visible to all of the threads that might
 crash into each other, so that means you’ll probably want to create it
 as a global variable.
PTHREAD_MUTEX_INITIALIZER is
 actually a macro. When the compiler sees that, it will insert all of the
 code your program needs to create the mutex lock properly.
	Red means stop.
At the beginning of your sensitive code section, you need to
 place your first traffic signal. The pthread_mutex_lock() will let only
 one thread get past. All the
 other threads will have to wait when they get to it.
[image: image with no caption]

	Green means go.
When the thread gets to the end of the sensitive code, it
 makes a call to pthread_mutex_unlock(). That sets the
 traffic signal back to green, and another thread is allowed onto the
 sensitive code:
[image: image with no caption]

/* ...End of sensitive code */

pthread_mutex_unlock(&a_lock);

Now that you know how to create locks in your code, you have a lot
 of control over exactly how your threads will work.
Passing Long Values to Thread Functions Up Close
 Thread functions can accept a single void pointer
 parameter and return a single void pointer value. Quite often, you
 will want to pass and return integer values to a thread, and one trick
 is to use long values. longs can be stored in void pointers because
 they are the same size.
[image: image with no caption]

Long Exercise
 There’s no simple way to decide where to put the locks
 in your code. Where you put them will change the way the code
 performs. Here are two versions of the drink_lots() function that lock the code in
 different ways.
Version A
	pthread_mutex_t beers_lock = PTHREAD_MUTEX_INITIALIZER;
void* drink_lots(void *a)
{
 int i;
 pthread_mutex_lock(&beers_lock);
 for (i = 0; i < 100000; i++) {
 beers = beers - 1;
 }
 pthread_mutex_unlock(&beers_lock);
 printf("beers = %i\n", beers);
 return NULL;
}

Version B
	pthread_mutex_t beers_lock = PTHREAD_MUTEX_INITIALIZER;
void* drink_lots(void *a)
{
 int i;
 for (i = 0; i < 100000; i++) {
 pthread_mutex_lock(&beers_lock);
 beers = beers - 1;
 pthread_mutex_unlock(&beers_lock);
 }
 printf("beers = %i\n", beers);
 return NULL;
}

Both pieces of code use a mutex to protect the beers variable, and each now displays the
 value of beers before they exit,
 but because they are locking the code in different places, they
 generate different output on the screen.
Can you figure out which version produced each of these two
 runs?
[image: image with no caption]

Long Exercise Solution
There’s no simple way to decide where to put the locks in your
 code. Where you put them will change the way the code performs. Here
 are two versions of the drink_lots() function that lock the code in
 different ways.
[image: image with no caption]

Both pieces of code use a mutex to protect the beers variable, and each now displays the
 value of beers before they exit,
 but because they are locking the code in different places, they
 generate different output on the screen.
You were to figure out which version produced each of these two
 runs.

Congratulations! You’ve (almost) reached the end of the book.
 Now it’s time to crack open one of those 2,000,000 bottles of beer and
 celebrate!
 You’re now in a great position to decide what
 kind of C coder you want to be. Do you want to be
 a Linux hacker using pure C? Or a
 maker writing embedded C in small
 devices like the Arduino? Maybe you want to go on to be a games developer in C++? Or a Mac and iOS programmer in Objective-C?
Whatever you choose to do, you’re now part of the community that
 uses and loves the language that has created more software than any
 other. The language behind the Internet and almost every operating
 system. The language that’s used to write almost all the
 other languages. And the language that can write for almost
 every processor in existence, from watches and phones to planes and
 satellites.
New C Hacker, we salute
 you!

There are no Dumb Questions
	Q:
	Does my machine have to have
 multiple processors to support threads?

	A:
	No. Most machines
 have processors with multiple cores, which means that their CPUs
 contain miniprocessors that can do several things at once. But
 even if your code is running on a single core/single
 processor, you will still be able to run threads.

	Q:
	How?

	A:
	The operating system
 will switch rapidly between the threads and make it appear
 that it is running several things at once.

	Q:
	Will threads make my programs
 faster?

	A:
	Not necessarily.
 While threads can help you use more of the processors and
 cores on your machine, you need to be careful about the amount
 of locking your code needs to do. If your threads are locked
 too often, your code may run as slowly as single-threaded
 code.

	Q:
	How can I design my thread code
 to be fast?

	A:
	Try to reduce the
 amount of data that threads need to access. If threads don’t
 access a lot of shared data, they won’t need to lock each
 other out so often and will be much more efficient.

	Q:
	Are threads faster than separate
 processes?

	A:
	They usually are,
 simply because it takes a little more time to create processes
 than it does to create extra threads.

	Q:
	I’ve heard that mutexes can lead
 to “deadlocks.” What are they?

	A:
	Say you have two
 threads, and they both want to get mutexes A and B. If the
 first thread already has A, and the second thread already has
 B, then the threads will be deadlocked. This is because the
 first thread can’t get mutex B and the second thread can’t get
 mutex A. They both come to a standstill.

Your C Toolbox

 You’ve got Chapter 12 under your belt, and
 now you’ve added threads to your toolbox. For a complete list of
 tooltips in the book, see Appendix B.
[image: image with no caption]

C Lab 3: Blasteroids

 This lab gives you a spec that describes a program for you
 to build, using the knowledge you’ve gained over the last few
 chapters.
This project is bigger than the ones you’ve seen so far. So read
 the whole thing before you get started, and give yourself a little time.
 And don’t worry if you get stuck; there are no new C concepts in here,
 so you can move on in the book and come back to the lab later.
We’ve filled in a few design details for you, and we’ve made sure
 you’ve got all the pieces you need to write the code.
It’s up to you to finish the
 job, but we won’t give you the code for the answer.
Write the arcade game Blasteroids

Of course, one of the real reasons
 people want to learn C is so they can write games. In this lab, you’re going to pay
 tribute to one of the most popular and long-lived video games of them
 all. It’s time to write Blasteroids!
[image: image with no caption]

Your mission: blast the asteroids without getting hit

Sinister. Hollow. And all strangely similar. The
 asteroids are the bad guys in this game. They float and rotate slowly
 across the screen, promising instant death to any passing space
 traveler who happens to meet them.
[image: image with no caption]

Welcome to the starship Vectorize! This is
 the ship that you will fly around the screen using your keyboard. It’s
 armed with a cannon that can fire at passing asteroids.
If an asteroid is hit by a blast from the spaceship’s cannon, it
 immediately splits into two, and the player’s score increases by 100
 points. Once an asteroid has been hit a couple of times, it’s removed
 from the screen.
[image: image with no caption]

If the ship gets hit by an asteroid, you lose a life. You have
 three lives, and when you lose the last one, that’s the end of the
 game.
[image: image with no caption]

Allegro

 Allegro is an open source game development library that
 allows you to create, compile, and run game code across different
 operating systems. It works with Windows, Linux, Mac OS, and even
 phones.
Allegro is pretty straightforward to use, but just because it’s
 a simple library doesn’t mean it lacks power. Allegro can deal with
 sound, graphics, animation, device handling, and even 3D graphics if
 your machine supports OpenGL.
Note
OpenGL is an open standard for graphics processors. You
 describe your 3D objects to OpenGL, and it handles (most) of the
 math for you.

Installing Allegro

You can get the source for Allegro over at the Allegro
 SourceForge website:
[image: image with no caption]

You can download, build, and install the latest code from the
 source repository. There are instructions on the site that will tell
 you exactly how to do that for your operating system.

You may need CMake

When you build the code, you will probably also need to
 install an extra tool called CMake. CMake is a build tool that makes it a
 little easier to build C programs on different operating systems. If
 you need CMake, you will find all
 you need over at http://www.cmake.org.
Watch it!
The code we’ve supplied in this lab
 is for version 5 of Allegro.
If you download and install a newer version, you
 may need to make a few changes.

What does Allegro do for you?

The Allegro library deals with several things:
	GUIs
Allegro will create a simple window to contain your game.
 This might not seem like a big deal, but different operating
 systems have very different ways of creating
 windows and then allowing them to interact with the keyboard and
 the mouse.

	Events
Whenever you hit a key, move a mouse, or click on something,
 your system generates an event.
 An event is just a piece of data that says what happened. Events
 are usually put onto queues and then sent to applications. Allegro
 makes it simple to respond to events so that you can easily, say,
 write code that will run if a user fires her canyon by hitting the
 spacebar.

	Timers
You’ve already looked at timers at the system level. Allegro
 provides a straightforward way to give your game a heartbeat. All games have some sort of
 heartbeat that runs so many times a second to make sure the game
 display is continuously updated. Using a timer, you can create a
 game that, for example, displays a fresh version of the screen at
 60 frames per second (FPS).

	Graphics buffering
To make your game run smoothly, Allegro uses double buffering. Double buffering is a
 game-development technique that allows you to draw all of your
 graphics in an offscreen buffer before displaying it on the
 screen. Because an entire frame of animation is displayed all at
 once, your game will run much more smoothly.

	Graphics and
 transformations
Allegro comes with a set of built-in graphics primitives that allow you to draw lines,
 curves, text, solids, and pictures. If you have an OpenGL driver
 for your graphics card, you can even do 3D. In addition to all of
 this, Allegro also supports transformations. Transformations allow
 you to rotate, translate, and scale the graphics on the screen,
 which makes it easy to create animated spaceships and floating
 rocks that can move and turn on the screen.

	Sounds
Allegro has a full sound library that will allow you to
 build sounds into your game.

Building the game

You’ll need to decide how you’re going to structure your
 source code. Most C programmers would probably break down the code
 into separate source files. That way, not only will you be able to
 recompile your game quicker, but you’ll also be dealing with smaller
 chunks of code at a time. That will make the whole process a lot less
 confusing.
There are many, many ways of splitting up your code, but one way
 is to have a separate source file for each element that will be
 displayed in the game:
[image: image with no caption]

The spaceship

 When you’re controlling lots of objects on a screen,
 it’s useful to create a struct for
 each one. Use this for the spaceship:
[image: image with no caption]

What the spaceship looks like

If you set up your code to draw around the origin (discussed later), then you could
 draw the ship using code like this:
The variable s is a pointer
 to a Spaceship struct. Make the
 ship green.
[image: image with no caption]

	al_draw_line(-8, 9, 0, -11, s->color, 3.0f);
al_draw_line(0, -11, 8, 9, s->color, 3.0f);
al_draw_line(-6, 4, -1, 4, s->color, 3.0f);
al_draw_line(6, 4, 1, 4, s->color, 3.0f);

Collisions

If your spaceship collides with a rock, it dies immediately
 and the player loses a life. For the first five seconds after a new
 ship is created, it doesn’t check for collisions. The new ship
 should appear in the center of the screen.

Spaceship behavior

 The spaceship starts the game stationary in the center
 of the screen. To make it move around the screen, you need to make
 it respond to keypresses:
[image: image with no caption]

Make sure the ship doesn’t accelerate too much. You probably
 don’t want the spaceship to move forward more than a couple hundred
 pixels per second. The spaceship should never go into
 reverse.

Reading keypresses

 The C language is used to write code for almost every
 piece of computer hardware in the world. But the strange thing is,
 there’s no standard way to read a keypress using C. All of the
 standard functions, like fgets(),
 read only the keys once the return key has been pressed. But Allegro
 does allow you to read keypresses. Every event
 that’s sent to an Allegro game comes in via a
 queue. That’s just a list of data that
 describes which keys have been pressed, where the mouse is, and so
 on. Somewhere, you’ll need a loop that waits for an event to appear
 on the queue.
Note
Even functions such as getchar() tend to buffer any
 characters you type until you hit return.

[image: image with no caption]

Once you receive an event, you need to decide if it represents
 a keypress or not. You can do that by reading its type.
[image: image with no caption]

The blast

 Take that, you son of a space pebble! The spaceship’s
 cannon can fire blasts across the screen, and it’s your job to make
 sure they move across the screen. This is the struct for a blast:
	typedef struct {
 float sx;
 float sy;
 float heading;
 float speed;
 int gone;
 ALLEGRO_COLOR color;
} Blast;

Blast appearance

The blast is a dashed line. If the user hits the fire key
 rapidly, the blasts will overlay each other and the line will look
 more solid. That way, rapid firing will give the impression of
 increased firepower.
[image: image with no caption]

Blast behavior

Unlike the other objects you’ll be animating, blasts that
 disappear off the screen won’t reappear. That means you’ll need to
 write code that can easily create and destroy blasts. Blasts are
 always fired in the direction the ship is heading, and they always
 travel in a straight line at a constant speed—say, three times the
 maximum speed of the ship. If a blast collides with an asteroid, the
 asteroid will divide into two.

The asteroid

 Use this struct for
 each asteroid:
[image: image with no caption]

Asteroid appearance

This is the code to draw an asteroid around the origin:
	al_draw_line(-20, 20, -25, 5, a->color, 2.0f);
al_draw_line(-25, 5, -25, -10, a->color, 2.0f);
al_draw_line(-25, -10, -5, -10, a->color, 2.0f);
al_draw_line(-5, -10, -10, -20, a->color, 2.0f);
al_draw_line(-10, -20, 5, -20, a->color, 2.0f);
al_draw_line(5, -20, 20, -10, a->color, 2.0f);
al_draw_line(20, -10, 20, -5, a->color, 2.0f);
al_draw_line(20, -5, 0, 0, a->color, 2.0f);
al_draw_line(0, 0, 20, 10, a->color, 2.0f);
al_draw_line(20, 10, 10, 20, a->color, 2.0f);
al_draw_line(10, 20, 0, 15, a->color, 2.0f);
al_draw_line(0, 15, -20, 20, a->color, 2.0f);

How the asteroid moves

Asteroids move in a straight line across the screen.
 Even though they move in a straight line, they continually rotate
 about their centers. If an asteroid drifts off one side of the
 screen, it immediately appears on the other.
[image: image with no caption]

When the asteroid is hit by a blast

If an asteroid is hit by a blast from the spaceship’s cannon,
 it immediately splits into two. Each of these parts will be half the
 size of the original asteroid. Once an asteroid has been hit/split a
 couple of times, it is removed from the screen. The player’s score
 increases with each hit by 100 points. You will need to decide how
 you will record the set of asteroids on the screen. Will you create
 one huge array? Or will you use a linked list?
[image: image with no caption]

The game status

There are a couple of things you need to display on the screen:
 the number of lives you have left and the current score. When you’ve
 run out of lives, you need to display “Game Over!” in big, friendly
 letters in the middle of the screen.

Use transformations to move things around

 You’ll need to animate things around the screen. The
 spaceship will need to fly, and the asteroids will need to rotate,
 drift, and even change size. Rotations, translations, and scaling
 require quite a lot of math to work out. But Allegro comes with a
 whole bunch of transformations built in.
When you’re drawing an object, like a spaceship, you should
 probably just worry about drawing it around the origin. The origin is the top-left corner of
 the screen and has coordinates (0, 0). The x-coordinates go across the
 screen, and the y-coordinates go down. You can use transformations to
 move the origin to where the object needs to be on the screen and then
 rotate it to point the correct way. Once that’s all done, all you need
 to do is draw your object at the origin and everything will be in the
 right place.
For example, this is one way you might draw the spaceship on the
 screen:
	void draw_ship(Spaceship* s)
{
 ALLEGRO_TRANSFORM transform;
 al_identity_transform(&transform);
 al_rotate_transform(&transform, DEGREES(s->heading));
 al_translate_transform(&transform, s->sx, s->sy);
 al_use_transform(&transform);
 al_draw_line(-8, 9, 0, -11, s->color, 3.0f);
 al_draw_line(0, -11, 8, 9, s->color, 3.0f);
 al_draw_line(-6, 4, -1, 4, s->color, 3.0f);
 al_draw_line(6, 4, 1, 4, s->color, 3.0f);
}

The finished product

When you’re done, it’s time to play
 Blasteroids!
[image: image with no caption]

There are lots of other things you
 could do to enhance the game. As an example, why not try to get it
 working with OpenCV? Let us know how you get on at Head First
 Labs.

Leaving town...

[image: image with no caption]

It’s been great having you here in Cville!

We’re sad to see you leave,
 but there’s nothing like taking what you’ve learned and putting it to
 use. There are still a few more gems for you in the back of the book
 and an index to read through, and then it’s time to take all these new
 ideas and put them into practice. We’re dying to hear how things go,
 so drop us a line at the Head
 First Labs website, www.headfirstlabs.com,
 and let us know how C is paying off for YOU!

Appendix A. Leftovers: The top ten things (we didn’t cover)

[image: image with no caption]

Even after all that, there’s still a bit
 more.
There are just a few more things we think you need to know. We
 wouldn’t feel right about ignoring them, even though they need only a
 brief mention, and we really wanted to give you a book you’d be able to
 lift without extensive training at the local gym. So before you put the
 book down, read through these
 tidbits.
#1. Operators

 We’ve used a few operators in this book, like the basic
 arithmetic operators +, -,
 *, and /, but there are many other operators
 available in C that can make your life easier.
Increments and decrements

An increment and a
 decrement increase and decrease a number by 1.
 That’s a very common operation in C code, particularly if you have a
 loop that increments a counter. The C language gives you four simple
 expressions that simplify increments and decrements:
[image: image with no caption]

Each of these expressions will change the value of i. The position of the ++ and --
 say whether or not to return the original value of i or its new value. For example:
[image: image with no caption]

The ternary operator

What if you want one value if some condition is true, and a
 different value if it’s false?
if (x == 1)
 return 2;
else
 return 3;
C has a ternary operator that allows you to
 compress this code right down to the following:
[image: image with no caption]

Bit twiddling

 C can be used for low-level programming, and it has a
 set of operators that let you calculate a new series of bits:
	Operator
	Description

	 ~a
	The value of a with all the bits
 flipped

	 a&b
	AND the bits of a and b together

	 a |
 b
	OR the bits of a and b together

	 a^b
	XOR the bits of a and b together

	 <<
	Shift bits to the left
 (increase)

	 >>
	Shift bits to the right
 (decrease)

The << operator can be
 used as a quick way of multiplying an integer by 2. But be careful
 that numbers don’t overflow.

Commas to separate expressions

You’ve seen for loops that
 perform code at the end of each loop:
[image: image with no caption]

But what if you want to perform more than one operation at the
 end of a loop? You can use the comma operator:
[image: image with no caption]

The comma operator exists because there are times when you don’t
 want to separate expressions with semicolons.

#2. Preprocessor directives

 You use a preprocessor directive every time you compile a
 program that includes a header file:
[image: image with no caption]

The preprocessor scans through your C source file and generates a
 modified version that will be compiled. In the case of the #include directive, the preprocessing inserts
 the contents of the stdio.h file. Directives always
 appear at the start of a line, and they always begin with the hash (
 #) character. The next most common
 directive after #include is #define:
#define DAYS_OF_THE_WEEK 7

...
printf("There are %i days of the week\n", DAYS_OF_THE_WEEK);
The #define directive creates a
 macro. The preprocessor will scan through the C
 source and replace the macro name with the macro’s value. Macros aren’t
 variables because they can never change at runtime. Macros are replaced
 before the program even compiles. You can even
 create macros that work a little like functions:
[image: image with no caption]

The preprocessor will replace ADD_ONE(3) with ((3)
 + 1) before the program is compiled.
Conditions

You can also use the preprocessor for conditional compilation. You can make it
 switch parts of the source code on or off:
[image: image with no caption]

This code will be compiled differently if there is (or isn’t) a
 macro called SPANISH
 defined.

#3. The static keyword

 Imagine you want to create a function that works like a
 counter. You could write it like this:
[image: image with no caption]

What’s the problem with this code? It uses a global variable
 called count. Any other function can
 change the value of count because
 it’s in the global scope. If you start to write large programs, you need
 to be careful that you don’t have too many global variables because they
 can lead to buggy code. Fortunately, C lets you create a
 global variable that is available only inside the
 local scope of a function:
[image: image with no caption]

The static keyword will store
 the variable inside the global area of memory, but the compiler will
 throw an error if some other function tries to access the count variable.
static can also make things private

You can also use the static
 keyword outside of functions. static in this case means “only code in this
 .c file can use this.” For example:
[image: image with no caption]

The static keyword controls the scope of something. It will
 prevent your data and functions from being accessed in ways that they
 weren’t designed to be.

#4. How big stuff is

 You’ve seen that the sizeof operator can tell you how much memory a
 piece of data will occupy. But what if you want to know what range of values it will hold? For example, if
 you know that an int occupies 4 bytes
 on your machine, what’s the largest positive number you can store in it?
 Or the largest negative number? You could, theoretically, work that out
 based on the number of bytes it uses, but that can be tricky.
Instead, you can use the macros defined in the limits.h header. Want to know what the
 largest long value you can use is?
 It’s given by the LONG_MAX macro. How
 about the most negative short? Use
 SHRT_MIN. Here’s an example program
 that shows the ranges for ints and
 shorts:
[image: image with no caption]

The macro names come from the data types: INT (int),
 SHRT (short), LONG (long), CHAR
 (char), FLT (float), DBL
 (double). Then, you either add
 _MAX (most positive) or _MIN (most negative). You can optionally add
 the prefix U (unsigned), S (signed), or L (long)
 if you are interested in a more specific data type.

#5. Automated testing

 It’s always important to test your code, and life becomes
 a lot simpler if you automate the tests. Automated
 tests are now used by virtually all developers, and there are many, many
 testing frameworks used by C programmers. One that’s popular at Head
 First Labs is called AceUnit:
 http://aceunit.sourceforge.net/
AceUnit is very similar to the xUnit
 frameworks in other languages (like nUnit and jUnit).
If you’re writing a command-line tool and you have a Unix-style
 command shell, then another great tool is called shunit2.
 http://code.google.com/p/shunit2/
shunit2 lets you create shell
 scripts that test scripts and commands.

#6. More on gcc

 You’ve used the GNU Compiler
 Collection (gcc)
 throughout this book, but you’ve only scratched the surface of what this
 compiler can do for you. gcc is like
 a Swiss Army knife. It has an immense number of features that give you a
 tremendous amount of control over the code it produces.
[image: image with no caption]

Optimization

gcc can do a huge amount to
 improve the performance of your code. If it sees that you’re assigning
 the same value to a variable every time a loop runs, it can move that
 assignment outside the loop. If you have a small function that is used
 only in a few places, it can convert that function into a piece of
 inline code and insert it into the right places
 in your program.
It can do lots of optimizations, but most of them are switched
 off by default. Why? Because optimizations take time for the compiler
 to perform, and while you’re developing code you normally want your
 compiles to be fast. Once your code is ready for
 release, you might want to switch on more optimization. There are four
 levels of optimization:
	Flag
	Description

	 -O
	If you add a -O (letter O) flag to your gcc command, you will get the first
 level of optimizations.

	 -O2
	For even more optimizations and a
 slower compile, choose -O2.

	 -O3
	For yet more
 optimizations, choose -O3.
 This will include all of the optimization checks from -O and -O2, plus a few
 extras.

	 -Ofast
	The maximum amount of optimization
 is done with -Ofast. This
 is also the slowest one to compile. Be careful with -Ofast because the code it produces
 is less likely to conform to the C standards.

Warnings

 Warnings are displayed if the code is technically valid
 but does something suspicious, like assign a value to a variable of
 the wrong type. You can increase the number of warning checks with
 -Wall:
gcc fred.c
-Wall -o fred
The -Wall option means “All
 warnings,” but for historic reasons is doesn’t
 actually display all of the warnings. For that,
 you should also include -Wextra:
gcc fred.c -Wall
-Wextra -o fred
Also, if you want to have really strict
 compilation, you can make the compile fail if there are any warnings
 at all with -Werror:
[image: image with no caption]

-Werror is useful if several
 people are working on the same code because it will help maintain code
 quality.
For more gcc options,
 see:
 http://gcc.gnu.org/onlinedocs/gcc

#7. More on make

 make is an incredibly
 powerful tool for building C applications, but you’ve only had a very
 simple introduction to it in this book. For more details on the amazing
 things you can do with make, see
 Robert Mecklenburg’s Managing Projects with GNU
 Make:
 http://shop.oreilly.com/product/9780596006105.do
For now, here are just a few of its features.
Variables

Variables are a great way of shortening your makefiles. For
 example, if you have a standard set of command-line options you want
 to pass to gcc, you can define them
 with a variable:
CFLAGS = -Wall -Wextra -v

fred: fred.c
 gcc fred.c
$(CFLAGS) -o fred
You define a variable using the equals sign (=) and then read its value with $(...).

Using %, ^, and @

Most of the time, a lot of your compile commands are going to
 look pretty similar:
fred: fred.c
gcc fred.c -Wall -o fred
In which case, you might want to use the % symbol to write a more general
 target/recipe:
[image: image with no caption]

This looks a little weird because of all the symbols. If you
 want to make a file called fred, this rule tells
 make to look for a file called
 fred.c. Then, the recipe will run a gcc command to create the target fred (given by the special symbol $@) using the given dependency (given by
 $@).

Implicit rules

The make tool knows
 quite a lot about C compilation, and it can use implicit
 rules to build files without you telling it exactly how.
 For example, if you have a file called fred.c,
 you can compile it without a
 makefile by typing:
[image: image with no caption]

That’s because make comes
 with a bunch of built-in recipes. For more on make, see:
 http://www.gnu.org/software/make/

#8. Development tools

 If you’re writing C code, you probably care a lot about
 performance and stability. And if you’re using the GNU
 Compiler Collection to compile your code, you’ll probably
 want to take a look at some of the other GNU tools
 that are available.
gdb

The GNU Project Debugger (gdb) lets you study your compiled program
 while it’s running. This is invaluable if you’re trying to chase down
 some pesky bug. gdb can be used
 from the command line or using an integrated development
 environment like Xcode or
 Guile.
 http://sourceware.org/gdb/download/onlinedocs/gdb/index.html

gprof

If your code isn’t as fast as you’d hoped, it might be worth
 profiling it. The GNU
 Profiler (gprof) will
 tell you which parts of your program are the slowest so that you can
 tune the code in the most appropriate way. gprof lets you compile a modified version of
 your program that will dump a performance report when it’s finished.
 Then the gprof command-line tool
 will let you analyze the performance report to track down the slow
 parts of your code.
 http://sourceware.org/binutils/docs-2.22/gprof/index.html

gcov

Another profiling tool is GNU Coverage (
 gcov). But while gprof is normally used to check the
 performance of your code, gcov is
 used to check which parts of your code did or didn’t run. This is
 important if you’re writing automated tests, because you’ll want to be
 sure that your tests are running all of the code you’re expecting them
 to.
 http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

#9. Creating GUIs

 You haven’t created any graphical user
 interface (GUI) programs in any of the main chapters of this
 book. In the labs, you used the Allegro and
 OpenCV libraries to write a couple of programs that
 were able to display very simple windows. But GUIs are usually written
 in very different ways on each operating system.
Linux — GTK

Linux has a number of libraries that are used to create GUI
 applications, and one of the most popular is the GIMP
 toolkit (GTK+):
 http://www.gtk.org/
GTK+ is available on Windows and the Mac, as well as Linux,
 although it’s mostly used for Linux apps.

Windows

Windows has very advanced GUI libraries built-in. Windows
 programming is a really specialized area, and you will probably need
 to spend some time learning the details of the Windows
 application programming interfaces (APIs) before
 you can easily build GUI applications. An increasing number of Windows
 applications are written in languages based on C, such as C# and C++.
 For an online introduction to Windows programming, see:
 http://www.winprog.org/tutorial/

The Mac — Carbon

The Macintosh uses a GUI system called
 Aqua. You can create GUI programs in C on the Mac
 using a set of libraries called Carbon. But the more modern way of
 programming the Mac is using the Cocoa libraries, which are programmed
 using another C-derived language called
 Objective-C. Now that you’ve reached the end of
 this book, you’re in a very good position to learn
 Objective-C. Here at Head First Labs, we
 love the books and courses on Mac programming
 available at the Big Nerd Ranch:
 http://www.bignerdranch.com/

#10. Reference material

 Here’s a list of some popular books and websites on C
 programming.
Brian W. Kernighan and Dennis M. Ritchie,
 The C Programming Language (Prentice Hall; ISBN
 978-0-131-10362-7)
This is the book that defined the original C
 programming language, and almost every C programmer on Earth has a
 copy.
Samuel P. Harbison and Guy L. Steele Jr.,
 C: A Reference Manual (Prentice Hall; ISBN
 978-0-130-89592-9)
This is an excellent C reference book that you will want by your
 side as you code.
Peter van der Linden, Expert C
 Programming (Prentice Hall; ISBN
 978-0-131-77429-2)
For more advanced programming, see Peter van der Linden’s
 excellent book.
Steve Oualline, Practical C
 Programming (O’Reilly; ISBN
 978-1-565-92306-5)
This book outlines the practical details of C development.
Websites

For standards information, see:
 http://pubs.opengroup.org/onlinepubs/9699919799/
For additional C coding tutorials, see:
 http://www.cprogramming.com/
For general reference information, see:
 http://www.cprogrammingreference.com/
For a general C programming tutorial, see:
 http://www.crasseux.com/books/ctutorial/

Appendix B. C Topics: Revision roundup

[image: image with no caption]

Ever wished all those great C facts were in
 one place?
This is a roundup of all the C topics and principles we’ve covered
 in the book. Take a look at them, and see if you can remember them all.
 Each fact has the chapter it came from alongside it, so it’s easy for you
 to refer back if you need a reminder. You might even want to cut these
 pages out and tape them to your wall.
Basics

	 Chapter 1

	Simple statements are
 commands.

	 Chapter 1

	if statements run code if something is
 true.

	 Chapter 1

	You can combine conditions together
 with && and ||.

	 Chapter 1

	#include includes external code for
 things like input and output.

	 Chapter 1

	Block statements are surrounded by {
 and }.

	 Chapter 1

	switch statements efficiently check
 for multiple values of a variable.

	 Chapter 1

	Every program needs a main
 function.

	 Chapter 1

	Your source files should have a name
 ending in .c.

	 Chapter 1

	You need to compile your C program
 before you run it.

	 Chapter 1

	You can use the && operator on
 the command line to only run your program if it
 compiles.

	 Chapter 1

	count++ means add 1 to
 count.

	 Chapter 1

	while repeats code as long as a
 condition is true.

	 Chapter 1

	for loops are a more compact way of
 writing loops.

	 Chapter 1

	gcc is the most popular C
 compiler.

	 Chapter 1

	-o specifies the output
 file.

	 Chapter 1

	count-- means subtract 1 from
 count.

	 Chapter 1

	do-while loops run code at least
 once.

Pointers and memory

	 Chapter 2

	scanf(“%i”, &x) will allow a user
 to enter a number x directly.

	 Chapter 2

	Initialize a new array with a string,
 and it will copy it.

	 Chapter 2

	&x returns the address of
 x.

	 Chapter 2

	Read the contents of an address a with
 *a.

	 Chapter 2

	Local variables are stored on the
 stack.

	 Chapter 2

	A char pointer variable x is declared
 as char *x.

	 Chapter 2

	&x is called a pointer to
 x.

	 Chapter 2

	Array variables can be used as
 pointers.

	 Chapter 2

	fgets(buf, size, stdin) is a simpler
 way to enter text.

Strings

	 Chapter 2

	Literal strings are stored in
 read-only memory.

	 Chapter 2.5

	An array of strings is an array of
 arrays.

	 Chapter 2.5

	strstr(a, b) will return the address
 of string b in string a.

	 Chapter 2.5

	strcat() concatenates two strings
 together.

	 Chapter 2.5

	strcpy() copies one string to
 another.

	 Chapter 2.5

	The string.h header contains useful
 string functions.

	 Chapter 2.5

	You create an array of arrays using
 char strings [...][...].

	 Chapter 2.5

	strcmp() compares two
 strings.

	 Chapter 2.5

	strchr() finds the location of a
 character inside a string.

	 Chapter 2.5

	strlen() finds the length of a
 string.

Data streams

	 Chapter 3

	C functions like printf() and scanf()
 use the Standard Output and Standard Input to
 communicate.

	 Chapter 3

	The Standard Input reads from the
 keyboard by default.

	 Chapter 3

	The Standard Error is a separate
 output intended for error messages.

	 Chapter 3

	You can create custom data streams
 with fopen(“filename”, mode).

	 Chapter 3

	The Standard Output goes to the
 display by default.

	 Chapter 3

	You can change where the Standard
 Input, Output, and Error are connected to using
 redirection.

	 Chapter 3

	You can print to the Standard Error
 using fprintf(stderr,...).

	 Chapter 3

	The mode can be “w” to write, “r” to
 read, or “a” to append.

	 Chapter 3

	Command-line arguments are passed to
 main() as an array of string pointers.

	 Chapter 3

	The getopt() function makes it easier
 to read command-line options.

Data types

	 Chapter 4

	chars are numbers.

	 Chapter 4

	Use shorts for small whole
 numbers.

	 Chapter 4

	ints are different sizes on different
 machines.

	 Chapter 4

	Use doubles for really precise
 floating points.

	 Chapter 4

	Use longs for really big whole
 numbers.

	 Chapter 4

	Use ints for most whole
 numbers.

	 Chapter 4

	Use floats for most floating
 points.

Multiple files

	 Chapter 4

	Split function declarations from
 definitions.

	 Chapter 4

	#include <> for library
 headers.

	 Chapter 4

	Save object code into files to speed
 up your builds.

	 Chapter 4

	Put declarations in a header
 file.

	 Chapter 4

	#include “” for local
 headers.

	 Chapter 4

	Use make to manage your
 builds.

Structs

	 Chapter 5

	A struct combines data types
 together.

	 Chapter 5

	You can intialize structs with {array,
 like, notation}.

	 Chapter 5

	typedef lets you create an alias for a
 data type.

	 Chapter 5

	You can read struct fields with dot
 notation.

	 Chapter 5

	-> notation lets you easily update
 fields using a struct pointer.

	 Chapter 5

	Designated initializers let you set
 struct and union fields by name.

Unions and bitfields

	 Chapter 5

	unions can hold different data types
 in one location.

	 Chapter 5

	Bitfields give you control over the
 exact bits stored in a struct.

	 Chapter 5

	enums let you create a set of
 symbols.

Data structures

	 Chapter 6

	Dynamic data structures use recursive
 structs.

	 Chapter 6

	A linked list is a dynamic data
 structure.

	 Chapter 6

	A linked list is more extensible than
 an array.

	 Chapter 6

	Recursive structs contain one or more
 links to similar data.

	 Chapter 6

	Data can be inserted easily into a
 linked list.

Dynamic memory

	 Chapter 6

	The stack is used for local
 variables.

	 Chapter 6

	malloc() allocates memory on the
 heap.

	 Chapter 6

	strdup() will create a copy of a
 string on the heap.

	 Chapter 6

	valgrind can help you track down
 memory leaks.

	 Chapter 6

	Unlike the stack, heap memory is not
 automatically released.

	 Chapter 6

	free() releases memory on the
 heap.

	 Chapter 6

	A memory leak is allocated memory you
 can no longer access.

Advanced functions

	 Chapter 7

	Function pointers let you pass
 functions around as if they were data.

	 Chapter 7

	The name of every function is a
 pointer to the function.

	 Chapter 7

	Each sort function needs a pointer to
 a comparator function.

	 Chapter 7

	Arrays of function pointers can help
 run different functions for different types of
 data.

	 Chapter 7

	Function pointers are the only
 pointers that don’t need the * and & operators, but you can
 use them if you want to.

	 Chapter 7

	qsort() will sort an
 array.

	 Chapter 7

	Comparator functions decide how to
 order two pieces of data.

	 Chapter 7

	Functions with a variable number of
 arguments are called “variadic.”

	 Chapter 7

	stdarg.h lets you create variadic
 functions.

Static and dynamic
 libraries

	 Chapter 8

	#include <> looks in standard
 directories such as /usr/include.

	 Chapter 8

	-l<name> links to a file in
 standard directories such as /usr/lib.

	 Chapter 8

	The ar command creates a library
 archive of object files.

	 Chapter 8

	Library archives are statically
 linked.

	 Chapter 8

	-L<name> adds a directory to the
 list of standard library directories.

	 Chapter 8

	-I<name> adds a directory to the
 list of standard include directories.

	 Chapter 8

	Library archives have names like
 libsomething.a.

	 Chapter 8

	“gcc -shared” converts object files
 into dynamic libraries.

	 Chapter 8

	Dynamic libraries are linked at
 runtime.

	 Chapter 8

	Dynamic libraries have .so, .dylib,
 .dll, or .dll.a extensions.

	 Chapter 8

	Dynamic libraries have different names
 on different operating systems.

Processes and
 communication

	 Chapter 9

	system() will run a string like a
 console command.

	 Chapter 9

	fork() + exec() creates a child
 process.

	 Chapter 10

	Processes can communicate using
 pipes.

	 Chapter 10

	exit() stops the program
 immediately.

	 Chapter 9

	fork() duplicates the current
 process.

	 Chapter 9

	execl() = list of args.

 execle() = list of args + environment.

 execlp() = list of args + search on path.

 execv() = array of args.
 execve() = array of
 args + environment.
 execvp() = array of args +
 search on path.

	 Chapter 10

	pipe() creates a communication
 pipe.

	 Chapter 10

	waitpid() waits for a process to
 finish.

	 Chapter 10

	fileno() finds the
 descriptor.

	 Chapter 10

	Signals are messages from the
 O/S.

	 Chapter 10

	A program can send signals to itself
 with raise().

	 Chapter 10

	The kill command sends a
 signal.

	 Chapter 10

	dup2() duplicates a data
 stream.

	 Chapter 10

	sigaction() lets you handle
 signals.

	 Chapter 10

	alarm() sends a SIGALRM after a few
 seconds.

	 Chapter 12

	Simple processes do one thing at a
 time.

Sockets and networking

	 Chapter 11

	telnet is a simple network
 client.

	 Chapter 11

	Servers BLAB:
 B =
 bind()
 L = listen()
 A =
 accept()
 B = Begin talking.

	 Chapter 11

	DNS = Domain name
 system.

	 Chapter 11

	Create sockets with the socket()
 function.

	 Chapter 11

	Use fork() to cope with several
 clients at once.

	 Chapter 11

	getaddrinfo() finds addresses by
 domain.

Threads

	 Chapter 12

	Threads allow a process to do more
 than one thing at the same time.

	 Chapter 12

	POSIX threads (pthread) is a threading
 library.

	 Chapter 12

	pthread_join() will wait for a thread
 to finish.

	 Chapter 12

	If two threads read and update the
 same variable, your code will be unpredictable.

	 Chapter 12

	pthread_mutex_lock() creates a mutex
 on code.

	 Chapter 12

	Threads are “lightweight
 processes.”

	 Chapter 12

	pthread_create() creates a thread to
 run a function.

	 Chapter 12

	Threads share the same global
 variables.

	 Chapter 12

	Mutexes are locks that protect shared
 data.

	 Chapter 12

	pthread_mutex_unlock() releases the
 mutex.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	! (exclamation mark), not operator, There’s more to booleans than equals...
	
	# (hash mark), beginning preprocessor directives, #2. Preprocessor directives
	
	$ (dollar sign), $%, $^, and $@ compiler commands for
 makefiles, #7. More on make
	
	% (percent sign)
		%li format string, Using memory pointers
	
	%p format string, Using memory pointers, Using memory pointers
	

	& (ampersand)
		&& (logical AND) operator, There’s more to booleans than equals..., ! flips the value of a condition
	
	bitwise AND operator, ! flips the value of a condition, Bit twiddling
	
	reference operator, Digging into memory, Using memory pointers
	

	() (parentheses), caution with, when using
 structs, You need a pointer to the struct
	
	* (asterisk)
		accessing array elements, Why arrays really start at
 0
	
	in variable declarations, If you’re going to change a string, make a copy
	
	indirection operator, Using memory pointers
	

	+ (plus sign)
		++ (increment) operator, The program works!, #1. Operators
	
	+= (addition and assignment)
 operators, The program works!
	

	, (comma)
		separating expressions, Bit twiddling
	
	separating values in enums, An enum variable stores a symbol
	

	- (minus sign)
		-- (decrement) operator, The program works!, #1. Operators
	
	-= (subtraction and assignment)
 operator, The program works!
	
	negative numbers and command-line
 arguments, Let the library do the work for you
	
	prefacing command-line options, Let the library do the work for you
	

	-> pointer notation, (*t).age vs. *t.age, (*t).age vs. *t.age
	
	. (dot) operator, reading struct fields, Read a struct’s fields with the “.” operator
	
	. dot notation, setting value of unions, How do you use a union?
	
	... (ellipsis), So how can YOU do that?
	
	/ (slash)
		/* and */ surrounding comments, But what does a complete C program look like?
	
	// beginning comments, But what does a complete C program look like?
	

	32-bit operating systems, Use casting to put floats into whole numbers
		size of pointers, Array variables are like pointers...
	

	64-bit operating systems, Use casting to put floats into whole numbers
		size of pointers, Array variables are like pointers...
	

	8-bit operating systems, Use casting to put floats into whole numbers
	
	; (semicolon), separating values in structs and
 unions, An enum variable stores a symbol
	
	< > (angle brackets)
		>> (bitwise shift left) operator, Bit twiddling
	
	in header files, Creating your first header file, Code you can take to the bank
	
	redirecting Standard Input with <, You can redirect the Standard Input with <...
	
	redirecting Standard Output with >, ...and redirect the Standard Output with >, Redirecting input and output
	
	redirection using > and 2> operators, Redirection just replaces data streams
	

	= (equals sign)
		== (equality) operator, The program works!
	
	assignment operator, The program works!
	

	? (question mark), #1. Operators
		?: (ternary) operator, #1. Operators
	

	[] (square brackets)
		array subindex operator, Why arrays really start at
 0
	
	creating arrays and accessing
 elements, It’s time for a code review
	
	in variable declarations, If you’re going to change a string, make a copy
	

	\0 sentinel character, The program works!
	
	^ (caret), bitwise XOR operator, Bit twiddling
	
	_ (underscore), replacing spaces in web page
 name, Create a socket for a domain name
	
	{ } (curly braces)
		enclosing function body, But what does a complete C program look like?
	
	enclosing statements, Two types of command
	

	| (pipe symbol)
		bitwise OR operator, ! flips the value of a condition, Bit twiddling
	
	connecting input and output with a pipe, Connect your input and output with a pipe
	
	|| (logical OR) operator, There’s more to booleans than equals..., ! flips the value of a condition
	

	~ (tilde), bitwise complement operator, Bit twiddling
	
	‘’ (quotation marks, single) in
 strings, The program works!
	
	“” (quotation marks, double)
		enclosing strings, The program works!
	
	in header files, Creating your first header file, Code you can take to the bank
	

A
	accept() function, 2. Listen
	
	AceUnit framework, #5. Automated testing
	
	alarm signal, SIGALRM, Sending your code a wake-up call
	
	alarm() function, Sending your code a wake-up call
		calls to, resetting the timer, ...the timer fires a SIGALRM signal
	
	sleep() function and, Sending your code a wake-up call
	

	Allegro library, Allegro
		creation of game elements, What does Allegro do for you?
	

	AND operator (&&), There’s more to booleans than equals..., ! flips the value of a condition
	
	AND operator (&), ! flips the value of a condition, Bit twiddling
	
	animation, using transformations, Use transformations to move things around
	
	ANSI C, C is a language for small, fast programs
	
	Arduino
		Arduino board, The Arduino
	
	building the physical device, Build the physical device
	
	C code for, what it does, Here’s what your code should do
	
	finished product, The finished product
	
	plant monitor and moisture sensor, The spec: make your houseplant talk
	
	useful functions, Here are some useful Arduino functions
	
	writing C code in Arduino IDE, The Arduino
	

	args parameter, So how can YOU do that?
	
	arguments, function, ...and continue to continue
		fixed argument in variadic functions, So how can YOU do that?, So how can YOU do that?
	

	array functions, execv(), execvp(), and execve(
), The array functions: execv(), execvp(), execve()
	
	array variables
		differences from pointers, But array variables aren’t quite pointers
	
	use as pointers, Array variables are like pointers...
	

	arrays, The program works!
		array of arrays versus array of pointers, It’s time for a code review
	
	assigned to pointers, pointer decay and, But array variables aren’t quite pointers
	
	char pointers versus char arrays in data
 structure, Let’s fix the code using the strdup() function
	
	creating array of arrays, Create an array of arrays, It’s time for a code review
	
	fixed length of, Do you need flexible storage?
	
	indexes, The program works!, Why arrays really start at
 0
	
	length of, The program works!
	
	linked lists versus, Inserting values into the list
	
	of function pointers, Create an array of function pointers
	
	strings as character arrays, The program works!
	
	structs versus, Create your own structured data types with a struct, Read a struct’s fields with the “.” operator
	
	using to copy string literals, If you’re going to change a string, make a copy
	
	variables declared as, If you’re going to change a string, make a copy
	

	Assembly language, translation of C code into, Compilation behind the scenes
	
	assignments
		= (assignment) operator, The program works!
	
	chaining, ...and continue to continue
	
	compound assignment operators, The program works!
	
	struct assigned to another variable, Read a struct’s fields with the “.” operator
	
	struct to another struct, The code is cloning the turtle
	

	associated arrays or maps, Free the memory when you’re done
	
	asteroids (Blasteroids game), The asteroid
	
	autoconf tool, Tell make about your code with a makefile
	
	automated testing, #5. Automated testing
	
	automating builds with make tool, Automate your builds with the make tool
	

B
	binary literals, not supported in C, Sometimes you want control at the bit level, Bitfields store a custom number of bits
	
	binary numbers, Don’t put something big into something small
	
	binary trees, Free the memory when you’re done
	
	binary values, converting between hexadecimal and, Sometimes you want control at the bit level
	
	binding to a port, BLAB: how servers talk to the Internet
	
	bit size of computers, Use casting to put floats into whole numbers
	
	bitfields, Bitfields store a custom number of bits, Bitfields store a custom number of bits, Unions and bitfields
		using to construct customer satisfaction survey
 (example), Bitfields store a custom number of bits
	

	bits, operators for manipulation of, Bit twiddling
	
	bitwise AND operator (&), ! flips the value of a condition, Bit twiddling
	
	bitwise complement operator (~), Bit twiddling
	
	bitwise OR operator (|), ! flips the value of a condition, Bit twiddling
	
	bitwise shift left operator (<<), Bit twiddling
	
	bitwise XOR operator (^), Bit twiddling
	
	BLAB: Bind, Listen, Accept, Begin, BLAB: how servers talk to the Internet
	
	Blasteroids game (see game, Blasteroids project)
	
	blasts fired by spaceship (Blasteroids game), The blast
	
	block statements, Two types of command
	
	body of a function, But what does a complete C program look like?
	
	boolean operators, There’s more to booleans than equals...
	
	boolean values, representation in C, There’s more to booleans than equals...
	
	bound port, reuse by socket, Why your mom always told you to check for errors
	
	break statements, Pulling the ol’ switcheroo, Pulling the ol’ switcheroo, ...and continue to continue
		exiting loops, You use break to break out...
	
	not breaking out of if statements, You use break to break out...
	

	buffer overflows caused by scanf() function, Be careful with scanf()
	
	build tools, Tell make about your code with a makefile
		CMake, Allegro
	

	bus errors, The program works!
	

C
	C
		basics of, Basics
	
	how it works, C is a language for small, fast programs
	
	reference materials for programming, #10. Reference material
	
	similarities to and influence on other
 languages, ...and continue to continue
	

	C Standard Library, Let’s update the code to use fprintf()
	
	C++, ...and continue to continue
	
	C11 standard, C is a language for small, fast programs
	
	c89 notation for first field of a union, How do you use a union?
	
	C99 standard, C is a language for small, fast programs
	
	cameras
		grabbing image from webcam, What your code should do
	
	showing current webcam output, Detect an intruder
	
	taking input from computer camera, What your code should do
	

	Carbon libraries, #9. Creating GUIs
	
	card counting, Card counting? In C?
		modifying program to keep running count of card
 game, ...and continue to continue
	
	program for, writing in C, Card counting? In C?, ! flips the value of a condition
	
	testing program, ...and continue to continue
	

	case statements, Pulling the ol’ switcheroo, Pulling the ol’ switcheroo
	
	casting floats to whole numbers, Use casting to put floats into whole numbers
	
	chaining assignments, ...and continue to continue
	
	char type, Using Multiple Source Files: Break it down, build it up, Using Multiple Source Files: Break it down, build it up
		arithmetic with, If you have common features...
	
	char pointers versus char arrays in data
 structure, Let’s fix the code using the strdup() function
	
	defined, Using Multiple Source Files: Break it down, build it up
	

	char** pointer, How to create function pointers, Use function pointers to set the order
	
	checksum() function, Code you can take to the bank
	
	child process, exec() is the end of the line for your program, Opening a web page in a browser
		clients talking to server, You can fork() a process for each client
	
	listening to directly, Stay in touch with your child
	
	piped commands on command line, Connect your processes with pipes
	
	redirecting Standard Output to file, dup2() duplicates data streams
	
	running with fork() and exec(), Running a child process with fork() + exec()
	

	classes, structs versus, Read a struct’s fields with the “.” operator
	
	CMake, Allegro
	
	Cocoa libraries, #9. Creating GUIs
	
	collisions, The spaceship
	
	comma (,), separating expressions, Bit twiddling
	
	comma-separated data, reading and displaying in JSON
 format, Small tools can solve big problems
	
	command line, piping commands together on, Connect your processes with pipes
	
	command path, Most system calls go wrong in the same way
	
	command-line arguments
		avoiding ambiguity by splitting main arguments
 from options using --, Let the library do the work for you
	
	execl(), execlp(), and execle() functions, There are many exec() functions
	
	main() function with, There’s more to main()
	

	command-line options, Overheard at the Head First Pizzeria
		questions and answers on, Let the library do the work for you
	
	using getopt() function for, Let the library do the work for you
	

	commands, types of, Two types of command
	
	comments, But what does a complete C program look like?
		formatting, But what does a complete C program look like?
	

	comparator functions, Use function pointers to set the order
		writing for different sort descriptions, Use function pointers to set the order
	

	compilation, C is a language for small, fast programs
		automating builds with make tool, Automate your builds with the make tool
	
	behind-the-scenes look at, Compilation behind the scenes
	
	compiling a program using gcc, But how do you run the program?
	
	partial compiles, First, compile the source into object files
	
	precompilation and, Creating your first header file
	
	reason for compiling C, ...and continue to continue
	
	speeding up for programs in multiple source
 files, It’s not rocket science...or is it?
	

	compiled code, saving copies of, Don’t recompile every file
	
	compilers, But how do you run the program?
		(see also gcc)
	
	BE the Compiler exercise, ! flips the value of a condition
	
	C standard supported by, But what does a complete C program look like?
	
	debug information from, The leak is fixed
	
	finding standard header file directories, Angle brackets are for standard
 headers
	
	interview with gcc, ! flips the value of a condition
	

	conditional compilation, #2. Preprocessor directives
	
	connection, accepting from client, 2. Listen
	
	const char, Sometimes you need to hand around a lot of data, Create your own structured data types with a struct
	
	const keyword, If you’re going to change a string, make a copy, If you’re going to change a string, make a copy
	
	constants
		defined, Memory memorizer
	
	string literals as, String literals can never be updated
	

	continue statements, You use break to break out..., ...and continue to continue
	
	control statements, Two types of command
	
	convert command, Opening a web page in a browser
	
	count variable, #3. The static keyword
	
	create() function, using dynamic allocation, Oh, no! It’s the out-of-work actors..., Oh, no! It’s the out-of-work actors...
		fixing with strdup() function, Let’s fix the code using the strdup() function
	

	CreateProcess() function (Windows
 systems), 2. If you’re the child process, call exec()
	
	Ctrl-C, stopping programs, The death of a process
	
	curl/wget programs, Opening a web page in a browser
	
	cvCalcOpticalFlowFarneback() function, Detect an intruder
	
	cvCreateCameraCapture() function, What your code should do
	
	cvNamedWindow() function, Detect an intruder
	
	cvQueryFrame() function, What your code should do
	
	cvShowImage() function, Detect an intruder
	
	Cygwin, Opening a web page in a browser
		fork() function and, 2. If you’re the child process, call exec()
	
	including PATH variable when passing environment
 variables on, Passing environment variables
	
	installing before calling fork() on Windows, exec() is the end of the line for your program
	
	telnet program, The Internet knock-knock server
	

D
	data entry
		capabilities of scanf() versus fgets(), Using sizeof with fgets()
	
	fgets() as alternative to scanf(), fgets() is an alternative to scanf()
	
	using pointers for, Using pointers for data entry
	

	data streams
		creating your own, Roll your own data streams
	
	duplication with dup2() function, fileno() tells you the descriptor
	
	handling in a typical process, A look inside a typical process
	
	opening, checking for problems with, There’s more to main()
	
	printing to, fprintf() prints to a data stream
	
	replacement by redirection, Redirection just replaces data streams
	
	sockets, BLAB: how servers talk to the Internet
	
	summary of important points, Data streams
	
	typical data streams versus sockets, A socket’s not your typical data stream
	

	data structures
		questions and answers about, Inserting values into the list
	
	summary of important points, Data structures
	
	types other than linked lists, Free the memory when you’re done
	

	data types, Using Multiple Source Files: Break it down, build it up
		bytes in memory occupied by, getting with
 sizeof, Ask for memory with malloc()...
	
	casting floats to whole numbers, Use casting to put floats into whole numbers
	
	data not having single type, Sometimes the same type of thing needs different types of
 data
	
	errors caused by conflicting types in example
 program, Let’s see what’s happened to the code
	
	macros determining size of, #4. How big stuff is
	
	matching type of value to type of variable it’s stored
 in, Don’t put something big into something small
	
	no function data type in C, ...but there’s no function data type
	
	parameters in variadic functions, So how can YOU do that?
	
	pointer variables, Why arrays really start at
 0
	
	prefixing with unsigned or long keywords, Use casting to put floats into whole numbers
	
	process ID, 2. If you’re the child process, call exec()
	
	quick guide to, Using Multiple Source Files: Break it down, build it up
	
	size of, Use casting to put floats into whole numbers
	
	sizes on different operating
 systems, Use casting to put floats into whole numbers
	
	structs, Create your own structured data types with a struct
	
	summary of, Data types
	
	unions, Set the value with dot notation
	
	values stored in unions, unions are often used with structs
	

	deadlocks, Use a mutex as a traffic signal
	
	debugger, gdb, #8. Development tools
	
	decay, But array variables aren’t quite pointers
	
	decimal point numbers, Using Multiple Source Files: Break it down, build it up
		(see also floating-point numbers; float type)
	
	computers’ representation of, Use casting to put floats into whole numbers
	

	declarations
		defined, If you’re going to change a string, make a copy
	
	function, splitting from definition, Split the declaration from the definition, Multiple files
	

	decrement operator (--), The program works!, #1. Operators
	
	#define directive, #2. Preprocessor directives
	
	definitions, function, splitting from declaration, Split the declaration from the definition, Multiple files
	
	dependencies, Automate your builds with the make tool
		identifying for make tool, How make works
	

	dereferencing, Using memory pointers, Using memory pointers
	
	descriptor table
		important points about, The waitpid() function
	
	Standard Input, Output, and Error in, Redirection just replaces data streams
	

	design tips for small tools, Don’t change the geo2json tool
	
	designated initializers, How do you use a union?, Bitfields store a custom number of bits
		setting initial values of struct fields, Set the value with dot notation
	

	/dev/tty program, The waitpid() function
	
	development tools, #8. Development tools
	
	device drivers, Security’s not the only problem
	
	DNS (domain name system), getaddrinfo() gets addresses for domains
	
	do-while loops, Sometimes once is not enough..., ...and continue to continue
	
	domain names, Clients are in charge
		connecting client socket to remote domain
 name, Create a socket for an IP address
	
	creation of sockets with IP addresses or
 domain names, Create a socket for a domain name
	

	double type, Using Multiple Source Files: Break it down, build it up, Using Multiple Source Files: Break it down, build it up
		defined, Using Multiple Source Files: Break it down, build it up
	

	doubly linked lists, Free the memory when you’re done
	
	dup2() function, fileno() tells you the descriptor
	
	dynamic libraries, Static and Dynamic Libraries: Hot-swappable code, Static and dynamic
 libraries
	
	dynamic memory, Dynamic memory
	
	dynamic storage, Inserting values into the list, Free the memory when you’re done
		using the heap, Use the heap for dynamic storage
	

E
	echo command, System calls are your hotline to the OS
	
	ellipsis (...), So how can YOU do that?
	
	email, sending from command line, Opening a web page in a browser
	
	encrypt() function, Code you can take to the bank
	
	encryption, XOR, If you have common features...
	
	enums, An enum variable stores a symbol, An enum variable stores a symbol
		responses in mail merge program (example), Automating the Dear John letters
	
	tracking values stored in structs and
 unions, An enum variable stores a symbol
	

	environment variables
		parameters for execv(), execvp(), and execve()
 functions, The array functions: execv(), execvp(), execve()
	
	parameters for exel(), execlp(), and execle()
 functions, There are many exec() functions
	
	reading and passing to functions, Passing environment variables
	

	equality operator (==), The program works!
	
	errno variable, Most system calls go wrong in the same way
	
	error handling, avoiding writing duplicate code for
 system calls, dup2() duplicates data streams
	
	error messages
		converting errno into, Most system calls go wrong in the same way
	
	displaying when Standard Output is
 redirected, But there’s a problem with some of the data...
	
	Standard Error, Introducing the Standard Error
	

	/etc/services file, A socket’s not your typical data stream
	
	.exe files (Windows), But how do you run the program?
	
	exec() functions, The exec() functions give you more control, Your C Toolbox
		array functions, execv(), execvp(), and execve(
), The array functions: execv(), execvp(), execve()
	
	failures of calls to, Most system calls go wrong in the same way
	
	important points about, Most system calls go wrong in the same way
	
	list functions, execl(), execlp(), and execle(
), There are many exec() functions
	
	many versions of, There are many exec() functions
	
	order-generation program, Starbuzz coffee
 (example), Most system calls go wrong in the same way
	
	program searching many RSS feeds at once
 (example), Read the news with RSS
	
	program termination after call to, exec() is the end of the line for your program
	
	running /sbin/ifconfig or ipconfig
 (example), Most system calls go wrong in the same way
	
	running child process with fork() and exec(
), Running a child process with fork() + exec()
	

	execle() function, Passing environment variables
		failures of, Most system calls go wrong in the same way
	
	program searching many RSS feeds at once
 (example), Read the news with RSS
	

	executables, C is a language for small, fast programs, Compilation behind the scenes
	
	exit status of child process, The waitpid() function
	
	exit() function, dup2() duplicates data streams
		called by default signal handler for interrupt
 signal, The death of a process
	
	important points about, The waitpid() function
	

	extern keyword, The shared code needs its own header file
	

F
	Feldman, Stuart, Tell make about your code with a makefile
	
	fgets() function, Opening a web page in a browser, The death of a process
		as alternative to scanf(), fgets() is an alternative to scanf()
	
	using for data input, scanf() versus, Using sizeof with fgets()
	

	file descriptors, A look inside a typical process
		descriptor tables, The waitpid() function
	

	fileno() function, fileno() tells you the descriptor
	
	files, making program work with, But you’re not using files...
	
	filters, But you’re not using files...
	
	find() function, Looking for Mr. Right...
		other types of searches, How to create function pointers
	

	float type, Using Multiple Source Files: Break it down, build it up
		casting to whole numbers, Use casting to put floats into whole numbers
	
	defined, Using Multiple Source Files: Break it down, build it up
	
	finding size of, Use casting to put floats into whole numbers
	

	floating-point numbers, Using Multiple Source Files: Break it down, build it up
		handling with floats and doubles, Use casting to put floats into whole numbers
	

	fopen() function, Roll your own data streams
		problem opening data stream, There’s more to main()
	

	for loops, Loops often follow the same structure..., ...and continue to continue
	
	fork() function, exec() is the end of the line for your program, Your C Toolbox
		creating a process for each client, You can fork() a process for each client
	
	important points about, 2. If you’re the child process, call exec()
	
	running child process with fork() + exec(), Running a child process with fork() + exec()
		calling fork(), 2. If you’re the child process, call exec()
	

	format strings, passing to scanf() function, Using pointers for data entry
	
	formatted output, display by printf() function, But what does a complete C program look like?
	
	fprintf() function, fprintf() prints to a data stream
		updating example mapping program to use, Let’s update the code to use fprintf()
	

	free() function, Give the memory back when you’re done
		call interception by valgrind, The leak is fixed
	
	releasing memory with, Ask for memory with malloc()...
	
	tracking calls to with valgrind, Software forensics: using valgrind
	

	freeaddrinfo() function, getaddrinfo() gets addresses for domains
	
	fscanf() function, fprintf() prints to a data stream
	
	functions, But what does a complete C program look like?, Advanced Functions: Turn your functions up to 11
		advanced, summary of important points, Advanced functions
	
	Arduino, Here are some useful Arduino functions
	
	find() function, Looking for Mr. Right...
	
	macros versus, So how can YOU do that?
	
	main() function, But what does a complete C program look like?
	
	no function data type in C, ...but there’s no function data type
	
	operators versus, What the computer thinks when it runs your code
	
	order in a program, Compilers don’t like surprises
	
	order of running in a program, It’s time for a code review
	
	passing as parameter to another function, You need to tell find() the name of a function
		creating function pointers, How to create function pointers
	
	identifying function pointers, How to create function pointers
	

	passing code to, Pass code to a function
	
	passing pointer to variable as function
 parameter, Try passing a pointer to the variable
	
	passing strings to, How do you pass a string to a function?
	
	passing struct to function that updates
 struct, The code is cloning the turtle
	
	sorting data, Get it sorted with the C Standard Library
		using function pointers to set sort order, Use function pointers to set the order
	

	splitting declaration from definition, Split the declaration from the definition, Multiple files
	
	variables declared inside, Digging into memory
	
	variadic, Make your functions streeeeeetchy
		writing example function, So how can YOU do that?
	

	void return type, ...and continue to continue
	
	writing, ...and continue to continue
	

G
	game, Blasteroids project, C Lab 3: Blasteroids
		Allegro library, Allegro
	
	asteroids, The asteroid
	
	blasting asteroids without being hit, Your mission: blast the asteroids without getting hit
	
	blasts fired by spaceship, The blast
	
	building the game, Building the game
	
	finished product, The finished product
	
	game status, How the asteroid moves
	
	reading key presses, Reading keypresses
	
	spaceship, The spaceship
	
	spaceship behavior, Spaceship behavior
	
	using transformations, Use transformations to move things around
	
	writing arcade game, Write the arcade game Blasteroids
	

	garbage collection, C and, Free the memory when you’re done
	
	gcc, But how do you run the program?
		-I option, Sharing .h header files
	
	finding standard header file directories, Angle brackets are for standard
 headers
	
	GNU Compiler Collection, ...and continue to continue
	
	interview with, ! flips the value of a condition
	
	optimizations, #6. More on gcc
	
	standards supported, But what does a complete C program look like?
	
	warnings, Warnings
	

	gcov (GNU Coverage), #8. Development tools
	
	gdb (GNU Project Debugger), #8. Development tools
	
	GET command, Writing a web client
	
	getaddrinfo() function, getaddrinfo() gets addresses for domains
	
	getenv() function, Passing environment variables
	
	getopt() function, Let the library do the work for you, Let the library do the work for you
	
	gets() function, reasons not to use, fgets() is an alternative to scanf()
	
	global variables, It’s time for a code review
		count, #3. The static keyword
	
	errno, Most system calls go wrong in the same way
	
	storage in memory, Try passing a pointer to the variable
	

	globals
		defined, Memory memorizer
	
	variables declared outside of functions, Digging into memory
	

	GNU Compiler Collection (see gcc)
	
	GNU Coverage (gcov), #8. Development tools
	
	GNU Profiler (gprof), #8. Development tools
	
	GNU Project Debugger (gdb), #8. Development tools
	
	golden rules of failure, Most system calls go wrong in the same way
	
	gprof (GNU Profiler), #8. Development tools
	
	grep command, Connect your processes with pipes
	
	GTK library, #9. Creating GUIs
	
	GUIs (graphical user interfaces), creating, #9. Creating GUIs
	

H
	hardware, kernel and, Security’s not the only problem
	
	header files
		angle brackets in, Code you can take to the bank
	
	creating, Creating your first header file
	
	for shared code, The shared code needs its own header file
	
	forgetting to include, It’s time for a code review
	
	function declarations in, Split the declaration from the definition
	
	quotes and angle brackets in, Creating your first header file
	
	sharing between programs, Angle brackets are for standard
 headers
	

	heap
		allocating and releasing memory, So does it fix the code?
	
	allocating storage for string copy, Oh, no! It’s the out-of-work actors...
	
	defined, Memory memorizer
	
	differences from the stack, Free the memory when you’re done
	
	important points about, Free the memory when you’re done
	
	releasing memory when you’re done, Give the memory back when you’re done
	
	using for dynamic storage, Use the heap for dynamic storage
	

	hex format, memory addresses, Using memory pointers, Using memory pointers
	
	hexadecimal literals, Sometimes you want control at the bit level
	
	hexadecimals, converting between binary and, Sometimes you want control at the bit level
	
	.h files (see header files)
	
	hostname, Writing a web client
	
	HTTP (Hypertext Transfer Protocol), Knock-knock server overview, Writing a web client
	

I
	I/O (input/output)
		connecting input and output with a pipe, Connect your input and output with a pipe
	
	displaying error messages when output is
 redirected, But there’s a problem with some of the data...
	
	output to more than one file, But what if you want to output to more than one file?
	
	redirecting, Redirecting input and output
	
	redirecting output from display to files, But you’re not using files...
	
	redirecting Standard Input with < operator, You can redirect the Standard Input with <...
	
	redirecting Standard Output with >
 operator, ...and redirect the Standard Output with >
	
	redirection, You can use redirection
	

	IDE, Arduino, The Arduino
	
	if statements, Two types of command
		break statements and, You use break to break out...
	
	checking same value repeatedly, What’s the code like now?
	
	replacing sequence of switch statement, Pulling the ol’ switcheroo
	

	ignoring signals, ...the timer fires a SIGALRM signal
		interrupt signal, Rewriting the code to use a signal handler
	

	images
		converting image formats, Opening a web page in a browser
	
	grabbing image from webcam, What your code should do
	

	#include directive, Compilation behind the scenes, #2. Preprocessor directives
		angle brackets in, Code you can take to the bank
	
	header files at different locations, Sharing .h header files
	
	including header file in main program, Creating your first header file
	

	includes section, C programs, But what does a complete C program look like?
	
	increment operator (++), The program works!, #1. Operators
	
	indexes, array, The program works!
		starting at 0, Why arrays really start at
 0
	

	indirection operator (*), Using memory pointers
	
	infinite loops, ...and continue to continue
	
	int type, Using Multiple Source Files: Break it down, build it up
		compiler assumption as return type for unknown
 functions, Compilers don’t like surprises, Creating your first header file
	
	defined, Using Multiple Source Files: Break it down, build it up
	
	finding size of, Use casting to put floats into whole numbers
	

	integers, Using Multiple Source Files: Break it down, build it up
	
	interprocess communication, Interprocess Communication: It’s good to talk
		avoiding duplicate error-handling code for each
 system call, dup2() duplicates data streams
	
	catching signals and running your own code, Catching signals and running your own code
	
	connecting processes with pipes, Connect your processes with pipes
	
	death of a process, The death of a process
	
	duplicating data streams with dup2(), fileno() tells you the descriptor
	
	examining a typical process, A look inside a typical process
	
	finding RSS news stories and opening them in a
 browser, Case study: opening stories in a browser
	
	getting descriptor with fileno(), fileno() tells you the descriptor
	
	listening to child process directly, Stay in touch with your child
	
	processes redirecting themselves, Redirection just replaces data streams
	
	program saving output of rssgossip.py script to
 file, dup2() duplicates data streams
	
	program testing math skills (example), ...the timer fires a SIGALRM signal
	
	questions and answers about, The waitpid() function
	
	redirecting input and output, Redirecting input and output
	
	redirection replacing data streams, Redirection just replaces data streams
	
	resetting and ignoring signals, ...the timer fires a SIGALRM signal
	
	sending alarm signal to processes, Sending your code a wake-up call
	
	summary of important points, Processes and
 communication
	
	using kill command to send signals, Use kill to send
 signals
	
	using raise() to send signals, Use kill to send
 signals
	
	waitpid() function, Sometimes you need to wait...
	

	interrupt signal, The death of a process
		ignoring, Rewriting the code to use a signal handler
	

	intruder detector, The spec: turn your computer into an intruder detector
		finished product, The finished product
	

	IP (Internet Protocol), Knock-knock server overview
	
	IP (Internet Protocol) addresses, Clients are in charge
		converting domain names to, getaddrinfo() gets addresses for domains
	
	creating socket for an IP address, Create a socket for an IP address
	
	creation of sockets with IP addresses or
 domain names, Create a socket for a domain name
	

	ipconfig, Most system calls go wrong in the same way
	

J
	JSON, displaying comma-separated data as, Small tools can solve big problems
	

K
	kernel, Security’s not the only problem
	
	keypresses, reading, Reading keypresses
	
	kill command, using to send signals, Use kill to send
 signals
	

L
	LED
		C code writing to, Here’s what your code should do
	
	connecting to Arduino board, Build the physical device
	

	libraries
		Allegro game development library, Allegro
	
	GUI (graphical user interface), #9. Creating GUIs
	
	static and dynamic, Static and dynamic
 libraries
	

	limits.h header, macros defined in, #4. How big stuff is
	
	linked lists, Linked lists are like chains of data
		creating, Create a recursive structure
	
	creating and releasing heap memory, So does it fix the code?
	
	inserting values into, Inserting values into the list
	

	linking object code files, Compilation behind the scenes, First, compile the source into object files
	
	Linux, Opening a web page in a browser
		(see also operating systems)
	
	GTK GUI library, #9. Creating GUIs
	

	list functions, execl(), execlp(), and execle(
), There are many exec() functions
	
	listen queue for clients, 2. Listen
	
	listen() function, 2. Listen
	
	local variables, storage in stack, Try passing a pointer to the variable, Use the heap for dynamic storage
	
	locks, You need to add traffic signals
		creating a mutex lock, Use a mutex as a traffic signal
	
	deciding where to put locks in code
 (example), Use a mutex as a traffic signal
	

	long keyword, Use casting to put floats into whole numbers
	
	long type, Using Multiple Source Files: Break it down, build it up, Using Multiple Source Files: Break it down, build it up
		defined, Using Multiple Source Files: Break it down, build it up
	
	passing long values to thread functions, Use a mutex as a traffic signal
	

	LONG_MAX macro, #4. How big stuff is
	
	loops
		breaking out of with break statement, You use break to break out...
	
	continue statement in, You use break to break out...
	
	running forever, infinite loops, ...and continue to continue
	
	structure of, Loops often follow the same structure...
	

M
	Mac computers, Opening a web page in a browser
		(see also operating systems)
	
	Carbon library for GUIs, #9. Creating GUIs
	
	script for talking to plants, The finished product
	

	machine code, C is a language for small, fast programs, Compilation behind the scenes
	
	macros, Roll your own data streams
		creating, #2. Preprocessor directives
	
	functions versus, So how can YOU do that?
	

	mail/mutt programs, Opening a web page in a browser
	
	main() function, But what does a complete C program look like?
		ending program with exit() instead
 of, The waitpid() function
	
	with command-line arguments, There’s more to main()
	

	make tool, Automate your builds with the make tool, Read a struct’s fields with the “.” operator
		additional features, #7. More on make
	
	automating builds with, Automate your builds with the make tool
	
	converting Ogg Vorbis music file to Swing
 version, Tell make about your code with a makefile
	
	different name on Windows, How make works
	
	how it works, How make works
	
	implicit rules to build files, Implicit rules
	
	uses other than compiling code, Tell make about your code with a makefile
	

	makefiles, Tell make about your code with a makefile
		generation with autoconf tool, Tell make about your code with a makefile
	
	on different operating systems, Tell make about your code with a makefile
	

	malloc() function, Use the heap for dynamic storage
		asking for memory with, Ask for memory with malloc()...
	
	call by strdup() function, Free the memory when you’re done
	
	call interception by valgrind, The leak is fixed
	
	tracking calls to with valgrind, Software forensics: using valgrind
	

	memory, Memory and Pointers: What are you pointing at?, Dynamic memory
		addresses, Try passing a pointer to the variable
	
	allocating heap memory and releasing it, So does it fix the code?
	
	and pointers, Pointers and memory
	
	C toolbox, Your C Toolbox
	
	differences between the stack and the heap, Free the memory when you’re done
	
	freeing by calling free() function, Give the memory back when you’re done, Ask for memory with malloc()...
	
	getting with malloc() function, Use the heap for dynamic storage
	
	kernel control over, Security’s not the only problem
	
	order of segments in, If you’re going to change a string, make a copy
	
	overview of computer memory, Digging into memory
	
	questions and answers about, Using memory pointers
	
	requesting with malloc() function, Ask for memory with malloc()...
	
	reuse of space with unions, A union lets you reuse memory space
	
	string literals stored in read-only memory, String literals can never be updated
	
	structs stored in, Read a struct’s fields with the “.” operator
	
	summary of segments, Memory memorizer
	

	memory leaks, Give the memory back when you’re done
		avoding when using data structures, Free the memory when you’re done
	
	tracking and fixing using valgrind tool, Software forensics: using valgrind
	

	MinGW, spaces in command-line arguments, There are many exec() functions
	
	mingw32-make, How make works
	
	mkfifo() function, Opening a web page in a browser
	
	moisture sensor
		building, Build the physical device
	
	C code reading from, Here’s what your code should do
	
	connecting to Arduino, Connect the moisture sensor
	

	movement, detecting, Detect an intruder
	
	mutexes, You need to add traffic signals
		causing deadlocks, Use a mutex as a traffic signal
	
	creating a mutex lock, Use a mutex as a traffic signal
	

N
	named pipes, Opening a web page in a browser
	
	nested structs, Can you put one struct inside another?
	
	network configuration, commands for, Most system calls go wrong in the same way
	
	networking (see sockets and networking)
	
	NMAKE tool, How make works
	
	not operator (!), There’s more to booleans than equals...
	
	NULL value, following last command-line argument in exec()
 function parameters, There are many exec() functions
	

O
	object code, Compilation behind the scenes
		saving copies into files, Don’t recompile every file
	

	object files, sharing between programs, Angle brackets are for standard
 headers
	
	object orientation, ...and continue to continue
	
	Objective-C, ...and continue to continue, #9. Creating GUIs
	
	.o files, Angle brackets are for standard
 headers
		(see also object code)
	

	Ogg Vorbis music file, converting to Swing
 version, Tell make about your code with a makefile
	
	OpenCV
		C code, what it should do, What your code should do
	
	defined, OpenCV
	
	finished product, The finished product
	
	installing, OpenCV
	
	intruder detector, The spec: turn your computer into an intruder detector
	

	operating systems
		commands to open a URL, Opening a web page in a browser
	
	controlling programs with signals, The death of a process
	
	different sizes of data types on, Use casting to put floats into whole numbers, Use casting to put floats into whole numbers
	
	GUI libraries for, #9. Creating GUIs
	
	interview with, Let’s update the code to use fprintf()
	
	kernel, Security’s not the only problem
	
	listing processes running on system, The exec() functions give you more control
	
	makefiles and, Tell make about your code with a makefile
	
	network configuration commands, Most system calls go wrong in the same way
	
	OpenCV, OpenCV
	
	registering new item in file descriptor table, fileno() tells you the descriptor
	
	Standard Input and Standard Output, You can use redirection
	
	system calls, System calls are your hotline to the OS
	
	telnet program, The Internet knock-knock server
	

	operators, #1. Operators
		functions versus, What the computer thinks when it runs your code
	
	precedence of, You need a pointer to the struct, (*t).age vs. *t.age
	

	optarg variable, Let the library do the work for you, Let the library do the work for you
	
	optimization, #6. More on gcc
	
	optind variable, Let the library do the work for you
	
	OR operator (|), ! flips the value of a condition, Bit twiddling
	
	OR operator (||), There’s more to booleans than equals..., ! flips the value of a condition
	

P
	parameters, function, But what does a complete C program look like?, ...and continue to continue
		passing by value, The code is cloning the turtle
	

	parent process, exec() is the end of the line for your program, Opening a web page in a browser
		piped command on command line, Connect your processes with pipes
	
	server, You can fork() a process for each client
	

	partial compiles, First, compile the source into object files
	
	PATH variable, The array functions: execv(), execvp(), execve()
		including when passing environment variables on
 Cygwin, Passing environment variables
	

	performance, analyzing with gprof, #8. Development tools
	
	PIDs (Process Identifiers), The exec() functions give you more control
		pid_status parameter of waitpid()
 function, The waitpid() function
	
	pid_t in call to fork(), 2. If you’re the child process, call exec()
	
	waitpid() function parameters, The waitpid() function
	

	pipe() function, Opening a web page in a browser
		connecting Standard Output of child and Standard Input of
 parent processes, Case study: opening stories in a browser
	

	pipes
		connecting input and output, Connect your input and output with a pipe
	
	connecting output of rssgossip.py to input of
 program, Case study: opening stories in a browser
	
	connecting processes with, Connect your processes with pipes
	
	important points about, Opening a web page in a browser
	

	pointer arithmetic
		and array index starting at 0, Why arrays really start at
 0
	
	and data types of pointer variables, Why arrays really start at
 0
	
	important points about, Why pointers have types
	

	pointer notation with structs, (*t).age vs. *t.age
	
	pointers, C code includes pointers
		address of variable in memory, Digging into memory
	
	and structs assigned to another variable, Read a struct’s fields with the “.” operator
	
	array of arrays versus array of pointers, It’s time for a code review
	
	array variables as, Array variables are like pointers...
	
	C toolbox, Your C Toolbox
	
	char pointers versus char arrays in data
 structure, Let’s fix the code using the strdup() function
	
	conversion to ordinary number, What the computer thinks when it runs your code
	
	differences of array variables from, But array variables aren’t quite pointers
	
	file, fileno() tells you the descriptor
	
	function, Every function name is a pointer to the function..., How to create function pointers, Advanced functions
		arrays of, Create an array of function pointers
	
	creating, ...but there’s no function data type
	
	summary of important points, But how does an array help?
	
	using to set sort order, Use function pointers to set the order
	

	in recursive structures, Create a recursive structure
	
	making it easier for functions to share
 memory, Try passing a pointer to the variable
	
	passing pointer to variable as function
 parameter, Try passing a pointer to the variable
	
	questions and answers about, Using memory pointers
	
	set to string literals, avoiding, If you’re going to change a string, make a copy
	
	sizes on different computers, What the computer thinks when it runs your code
	
	summary of important points, Pointers and memory
	
	to structs, You need a pointer to the struct
	
	types assigned to pointer variables, Why arrays really start at
 0
	
	using for data entry, Using pointers for data entry
	
	using to read and write data, Using memory pointers
	
	variables declared as function arguments, If you’re going to change a string, make a copy
	
	void, How do you create threads?
	

	port number for server application, caution in
 choosing, A socket’s not your typical data stream
	
	port, binding to, BLAB: how servers talk to the Internet
	
	POSIX libraries, Let the library do the work for you
	
	POSIX thread library (pthread), How do you create threads?
		linking, Create threads with pthread_create
	

	precompilation, Creating your first header file
	
	preprocessing, Creating your first header file
		fixing the source, Compilation behind the scenes
	

	preprocessor directives, #2. Preprocessor directives
	
	printf() function, But what does a complete C program look like?
		reading from keyboard and writing to display, You can use redirection
	
	variable number of arguments, Make your functions streeeeeetchy
	

	printing to data stream with fprintf() function, fprintf() prints to a data stream
	
	private scope, #3. The static keyword
	
	Process Identifiers (see PIDs)
	
	processes, Interprocess Communication: It’s good to talk
		(see also interprocess communication)
	
	cloning with fork() function, exec() is the end of the line for your program
	
	communication, summary of important
 points, Processes and
 communication
	
	control by kernel, Security’s not the only problem
	
	examining a typical process, A look inside a typical process
	
	redirecting themselves, Redirection just replaces data streams
	
	replacement of current process using exec()
 functions, The exec() functions give you more control
	
	running child process with fork() + exec(), Running a child process with fork() + exec()
	
	server and client, creating processes for clients with
 fork(), You can fork() a process for each client
	
	simple, doing one thing at a time, Simple processes do one thing at a time
	
	speed of, threads versus, Use a mutex as a traffic signal
	
	using for simultaneous tasks, limitations of, ...and processes are not always the answer
	

	profiling tools, #8. Development tools
	
	programs
		compiling and running, But how do you run the program?
	
	complete C program, But what does a complete C program look like?
	
	exercise, matching candidate block of code with
 possible output, ...and continue to continue, ...and continue to continue
	

	protocols, Knock-knock server overview, Writing a web client
	
	ps -ef command, The exec() functions give you more control
	
	pthread (POSIX thread) library, How do you create threads?
		linking, Create threads with pthread_create
	

	pthread_create() function, Create threads with pthread_create
	
	pthread_join() function, Create threads with pthread_create
	
	PTHREAD_MUTEX_INITIALIZER macro, Use a mutex as a traffic signal
	
	pthread_mutex_lock() function, Use a mutex as a traffic signal
	
	pthread_mutex_unlock() function, Use a mutex as a traffic signal
	
	Python
		installing, Read the news with RSS
	
	RSS Gossip script, Read the news with RSS
	

Q
	qsort() function, Use function pointers to set the order
	

R
	raise() command, sending signals with, Use kill to send
 signals
	
	recursive structures, Free the memory when you’re done, Data structures
		creating, Create a recursive structure
	

	recv() function, Reading from the client, getaddrinfo() gets addresses for domains
	
	redirection, You can use redirection
		child process output to file, dup2() duplicates data streams
	
	descriptor table and, The waitpid() function
	
	displaying error messages when output is
 redirected, But there’s a problem with some of the data...
	
	output from display to files, But you’re not using files...
	
	processes redirecting themselves, Redirection just replaces data streams
	
	programs run from command line, Redirecting input and output
	
	replacement of data streams, Redirection just replaces data streams
	
	several processes connected with
 pipes, The bermuda tool
	
	Standard Input, using < operator, You can redirect the Standard Input with <...
	
	Standard Output, using > operator, ...and redirect the Standard Output with >
	

	reference operator (&), Digging into memory, Using memory pointers
	
	references, pointers versus, Using memory pointers
	
	reserved words in C, Creating your first header file
	
	return statements in functions, ...and continue to continue, ...and continue to continue
	
	return type, But what does a complete C program look like?
		compiler assumptions for unknown functions, Compilers don’t like surprises
	
	void return type for thread functions, How do you create threads?
	

	return values, assignments, ...and continue to continue
	
	reusing code, If you have common features...
	
	RSS feeds
		program saving output of rssgossip.py script to
 file, dup2() duplicates data streams
	
	program searching many feeds at once
 (example), Read the news with RSS
		running rssgossip.py in separate process for each
 feed, 2. If you’re the child process, call exec()
	

	reading news with, Read the news with RSS
	
	reading story links from rssgossip.py script, Stay in touch with your child
	
	running rsscossip.py script and opening stories in
 browser, Case study: opening stories in a browser
	

	RSS Gossip (Python script), Read the news with RSS
	
	running programs, But how do you run the program?
	

S
	/sbin/ifconfig program, Most system calls go wrong in the same way
	
	ifconfig program, Most system calls go wrong in the same way
	
	scanf() function, Using pointers for data entry, If you’re going to change a string, make a copy
		causing buffer overflows, Be careful with scanf()
	
	fgets() function as alternative to, fgets() is an alternative to scanf()
	
	passing pointer to variable to scanf(), You need a pointer to the struct
	
	using for data input, fgets() versus, Using sizeof with fgets()
	

	screen, redirecting data to, without using
 Standard Output, The waitpid() function
	
	security, system calls and, Then someone busted into the system...
	
	send() function, A socket’s not your typical data stream, getaddrinfo() gets addresses for domains
	
	sentinel character \0, The program works!
	
	serial port, writing to (C code in Arduino), Here’s what your code should do
	
	setitimer() function, ...the timer fires a SIGALRM signal
	
	sharing code, If you have common features..., Angle brackets are for standard
 headers
		.h header files, Sharing .h header files
	

	short type, Using Multiple Source Files: Break it down, build it up, Using Multiple Source Files: Break it down, build it up
		defined, Using Multiple Source Files: Break it down, build it up
	

	SHRT_MIN macro, #4. How big stuff is
	
	shunit2 tool, testing scripts and commands, #5. Automated testing
	
	sigaction structs, Catching signals and running your own code
	
	sigaction() function, sigactions are registered with sigaction()
	
	SIGALRM signal, Sending your code a wake-up call
	
	SIGKILL signal, Use kill to send
 signals
	
	signals, The death of a process
		catching and running your own code, Catching signals and running your own code
	
	ignoring, ...the timer fires a SIGALRM signal
	
	matching to cause (example), Rewriting the code to use a signal handler
	
	order of sending and receiving, ...the timer fires a SIGALRM signal
	
	program testing math skills (example), ...the timer fires a SIGALRM signal
	
	resetting to default handler, ...the timer fires a SIGALRM signal
	
	sending using kill command, Use kill to send
 signals
	
	sending using raise(), Use kill to send
 signals
	

	signed values in binary, Don’t put something big into something small
	
	SIGTERM signal, Use kill to send
 signals
	
	single statement, Two types of command
	
	size limits for data types, macros determining, #4. How big stuff is
	
	sizeof operator, How do you pass a string to a function?, What the computer thinks when it runs your code
		getting bytes in memory occupied by particular data
 type, Ask for memory with malloc()...
	
	use on pointers and array variables, But array variables aren’t quite pointers
	
	using with fgets() function, fgets() is an alternative to scanf()
	

	sleep() function, Create threads with pthread_create
		alarm() function and, Sending your code a wake-up call
	

	small tools
		connecting input and output with a pipe, Connect your input and output with a pipe
	
	converting data from one format to another, Small tools can solve big problems
	
	designing, tips for, Don’t change the geo2json tool
	
	different tasks need different tools, A different task needs a different tool
	
	flexibility of, Small tools are flexible
	
	output to multiple files, But what if you want to output to more than one file?
	

	sockets and networking, Sockets and Networking: There’s no place like 127.0.0.1
		C toolbox, Your C Toolbox
	
	client sockets, creating socket for a domain
 name, getaddrinfo() gets addresses for domains
	
	client sockets, creation and connection to remote
 port, Create a socket for an IP address
	
	clients obtaining a socket and communicating, Clients are in charge
	
	creation of sockets with IP addresses or
 domain names, Create a socket for a domain name
	
	fork() a process for each client, You can fork() a process for each client
	
	how servers talk to the Internet, BLAB: how servers talk to the Internet
	
	Internet knock-knock server (example), The Internet knock-knock server
	
	other useful server functions, Reading from the client
	
	reading from the client, Reading from the client
	
	server can only talk to one client at a time, The server can only talk to one person at a time
	
	server code changed to fork child process for each
 client, The parent and child use different sockets
	
	server generating random advice for clients
 (example), A socket’s not your typical data stream
	
	sockets not your typical data streams, A socket’s not your typical data stream
	
	summary of important points, Sockets and networking
	
	writing a web client, Writing a web client, Create a socket for a domain name
	
	writing code for Internet knock-knock server
 (example), Reading from the client
	

	sorting, Get it sorted with the C Standard Library
		using function pointers to set sort order, Use function pointers to set the order
	
	writing comparator functions for different
 sorts, Use function pointers to set the order
	

	source files, C is a language for small, fast programs
		compiling and running, But how do you run the program?
	
	multiple files for code, Multiple files
	

	spaceship (Blasteroids game), The spaceship
		behavior of, Spaceship behavior
	

	stack, Digging into memory
		defined, Memory memorizer
	
	differences from the heap, Free the memory when you’re done
	
	storage in, Use the heap for dynamic storage
	

	Standard Error, Introducing the Standard Error, Data streams
		default output to display, By default, the Standard Error is sent to the display
	
	in descriptor table, Redirection just replaces data streams
	
	redirecting with 2>, fprintf() prints to a data stream, Redirection just replaces data streams
	

	standard header directories, Angle brackets are for standard
 headers
	
	standard header files, Creating your first header file
	
	Standard Input, fprintf() prints to a data stream, Data streams
		connecting to Standard Output of another
 process, Connect your input and output with a pipe
	
	in descriptor table, Redirection just replaces data streams
	
	redirecting, You can use redirection
	
	redirecting with < operator, You can redirect the Standard Input with <...
	

	Standard Output, Data streams
		connecting to Standard Input of another
 process, Connect your input and output with a pipe
	
	in descriptor table, Redirection just replaces data streams
	
	redirecting child process output to file, dup2() duplicates data streams
	
	redirecting to file, ...and redirect the Standard Output with >, Redirecting input and output
	

	standards, C is a language for small, fast programs
		compiler support of, But what does a complete C program look like?
	
	designated initializers, How do you use a union?
	
	POSIX libraries, Let the library do the work for you
	
	return statements in functions, ...and continue to continue
	

	statements, Two types of command
	
	static keyword, #3. The static keyword
	
	static libraries, Static and Dynamic Libraries: Hot-swappable code, Static and dynamic
 libraries
	
	stdarg.h header, So how can YOU do that?
	
	storage, flexible, Do you need flexible storage?
	
	strcmp() function, Use function pointers to set the order, Use function pointers to set the order
	
	strdup() function, Oh, no! It’s the out-of-work actors...
		calling malloc() function, Free the memory when you’re done
	
	fixing create() function that uses dynamic
 allocation, Let’s fix the code using the strdup() function
	

	strerror() function, Most system calls go wrong in the same way
	
	string literals, The program works!
		char pointer set to, avoiding, If you’re going to change a string, make a copy
	
	important points about, If you’re going to change a string, make a copy
	
	inability to update, Oops...there’s a memory problem...
	

	string.h header file, Find strings containing the search text
		more information about functions in, It’s time for a code review
	

	strings, The program works!, Strings: String theory
		array of arrays versus array of pointers, It’s time for a code review
	
	arrays of, char** pointer to, How to create function pointers
	
	as character arrays, The program works!
	
	BE the Compiler exercise, jukebox program
 (example), Using the strstr() function
	
	C toolbox, Your C Toolbox
	
	changing, using copy for, If you’re going to change a string, make a copy
	
	code shuffling letters in, Anyone for three-card monte?
	
	copying, Oh, no! It’s the out-of-work actors...
	
	creating array of arrays, Create an array of arrays
	
	crossword puzzle (example), Array of arrays vs. array of pointers
	
	displaying string backward on screen, It’s time for a code review
	
	ending with sentinel character \0, The program works!
	
	passing to functions, How do you pass a string to a function?
	
	searching, Desperately seeking Susan
 Frank, Find strings containing the search text
		Pool Puzzle example, Using the strstr() function
	
	review of jukebox program (example), It’s time for a code review
	
	testing jukebox program (example), It’s time for a code review
	

	Standard Library, string.h, Find strings containing the search text
	
	summary of important points, Strings
	
	using strstr() function, Using the strstr() function
	

	strstr() function, Using the strstr() function
	
	structs, Structs, Unions, and Bitfields: Roll your own structures, An enum variable stores a symbol, Inserting values into the list
		arrays versus, Create your own structured data types with a struct, Read a struct’s fields with the “.” operator
	
	assignment, The code is cloning the turtle
	
	benefits of using, Just give them the fish
	
	bitfields collected in, Bitfields store a custom number of bits
	
	creating aliases for with typedef, Can you put one struct inside another?
	
	designated initializers setting initial value of
 fields, Set the value with dot notation
	
	enums tracking values stored in, An enum variable stores a symbol
	
	holding sequence of single bits for yes/no
 values, Sometimes you want control at the bit level
	
	in memory, Read a struct’s fields with the “.” operator
	
	nesting, Can you put one struct inside another?
	
	pointer notation, (*t).age vs. *t.age
	
	pointers to, You need a pointer to the struct
	
	reading fields with . (dot) operator, Read a struct’s fields with the “.” operator
	
	recursive structures, Create a recursive structure, Free the memory when you’re done
	
	summary of important points, Structs
	
	updating, How do you update a struct?
	
	using bitfields in customer satisfaction survey
 (example), Bitfields store a custom number of bits
	
	using with unions, Set the value with dot notation
	
	values separated with semicolon (;), An enum variable stores a symbol
	
	wrapping parameters in, Just give them the fish
	

	structured data types (see structs)
	
	switch statements, Pulling the ol’ switcheroo
		rewriting code to replace sequence of if
 statements, Pulling the ol’ switcheroo
	
	summary of important points about, Pulling the ol’ switcheroo
	

	symbols, storing in enums, An enum variable stores a symbol
	
	system calls, System calls are your hotline to the OS, Your C Toolbox
		accept() function, 2. Listen
	
	avoiding writing duplicate code for error
 handling, dup2() duplicates data streams
	
	checking for errors on, A socket’s not your typical data stream
	
	exec() functions, The exec() functions give you more control
		failures of, Most system calls go wrong in the same way
	
	order-generation program, Starbuzz coffee
 (example), Most system calls go wrong in the same way
	
	program searching many RSS feeds at once
 (example), Read the news with RSS
	

	fork() function, cloning processes with, exec() is the end of the line for your program
	
	getenv() function, reading environment
 variables, Passing environment variables
	
	important points about, Most system calls go wrong in the same way
	
	listen() function, 2. Listen
	
	mkfifo() function, Opening a web page in a browser
	
	running child process with fork() and exec(
), Running a child process with fork() + exec()
	
	security breaches, Then someone busted into the system...
	

	system() function, System calls are your hotline to the OS, 2. If you’re the child process, call exec(), Your C Toolbox
		exec() function versus, Most system calls go wrong in the same way
	
	opening a web page in a browser, Opening a web page in a browser
	

T
	tab character, beginning recipe lines for
 makefiles, Tell make about your code with a makefile, Tell make about your code with a makefile
	
	target files, Automate your builds with the make tool
		describing in makefiles, Tell make about your code with a makefile
	

	taskmgr command (Windows), The exec() functions give you more control
	
	tasks, sequential or parallel, Tasks are sequential...or not...
	
	telnet program, The Internet knock-knock server
	
	ternary operator (?:), #1. Operators
	
	testing, automated, #5. Automated testing
	
	threads, Threads: It’s a parallel world
		C toolbox, Your C Toolbox
	
	creating, How do you create threads?
		using pthread_create(), Create threads with pthread_create
	

	deciding where to put locks in code
 (example), Use a mutex as a traffic signal
	
	important points about, Use a mutex as a traffic signal
	
	multithreaded programs, Employ extra staff: use threads
	
	mutexes, You need to add traffic signals
	
	passing long values to thread functions, Use a mutex as a traffic signal
	
	program counting down beers (example), Create threads with pthread_create
	
	single threads of execution, Simple processes do one thing at a time
	
	summary of important points, Advance Praise for Head First C
	
	thread safety in code, The code is not thread-safe
	
	using mutex to control execution, Use a mutex as a traffic signal
	

	timers for processes, ...the timer fires a SIGALRM signal
	
	transformations, Use transformations to move things around
	
	true and false values, ! flips the value of a condition
	
	typedef command
		creasting aliases for structs, Can you put one struct inside another?
	
	recursive structures and, Create a recursive structure
	

U
	unions, Sometimes the same type of thing needs different types of
 data, An enum variable stores a symbol, Unions and bitfields
		enums tracking values stored in, An enum variable stores a symbol
	
	important points about, Bitfields store a custom number of bits
	
	reuse of memory space, A union lets you reuse memory space
	
	setting value of, How do you use a union?
	
	using with structs, Set the value with dot notation
	
	values separated with semicolon (;), An enum variable stores a symbol
	
	values stored in, data types of, unions are often used with structs
	

	unistd.h header, Let the library do the work for you
	
	unsigned keyword, prefixing data types with, Use casting to put floats into whole numbers
	
	URLs, opening on various operating systems in web
 browser, Opening a web page in a browser
	

V
	valgrind tool, using to find memory leaks, Software forensics: using valgrind
	
	values
		copied when assigning structs, The code is cloning the turtle
	
	matching data type to type of variable it’s stored
 in, Don’t put something big into something small
	
	parameters passed to functions, The code is cloning the turtle
	
	storing short-range values in bitfields, Bitfields store a custom number of bits
	

	variables
		matching data type for value stored in, Don’t put something big into something small
	
	sharing among code files, The shared code needs its own header file
	
	storage in memory, Digging into memory
	
	using to shorten makefiles, #7. More on make
	

	variadic functions, Make your functions streeeeeetchy
		writing example function, So how can YOU do that?
	

	virtual memory size, Security’s not the only problem
	
	void functions, ...and continue to continue, ...and continue to continue
	
	void pointers, Use function pointers to set the order, How do you create threads?
	

W
	waitpid() function, Sometimes you need to wait...
		important points about, The waitpid() function
	
	parameters, The waitpid() function
	

	warnings, gcc, Warnings
	
	web browsers, opening a web page in, Opening a web page in a browser
	
	websites for C, #10. Reference material
	
	WEXITSTATUS() macro, The waitpid() function
	
	while loops, Sometimes once is not enough...
		modifying in card counting program to keep running
 count, ...and continue to continue, ...and continue to continue
	
	structure of, Loops often follow the same structure...
	
	summary of important points, ...and continue to continue
	

	window, creating in OpenCV, Detect an intruder
	
	Windows systems, Opening a web page in a browser
		(see also operating systems)
	
	.exe files, But how do you run the program?
	
	CreateProcess() function instead of fork(
), 2. If you’re the child process, call exec()
	
	fork() function and, exec() is the end of the line for your program, 2. If you’re the child process, call exec()
	
	GUI libraries, #9. Creating GUIs
	
	ipconfig command, Most system calls go wrong in the same way
	
	listing processes running on system, The exec() functions give you more control
	
	make tools, How make works
	
	telnet program, built-in versus Cygwin
 versions, The Internet knock-knock server
	

X
	XOR encryption, If you have common features...
	
	XOR operator, bitwise XOR (^), Bit twiddling
	

About the Authors
David Griffiths began programming at age 12, after being inspired by a documentary on the work of Seymour Papert. At age 15 he wrote an implementation of Papert's computer language LOGO. After studying Pure Mathematics at University, he began writing code for computers and magazine articles for humans and he is currently an agile coach with Exoftware in the UK, helping people to create simpler, more valuable software. He spends his free time traveling and time with his lovely wife, Dawn.
Dawn Griffiths started life as a mathematician at a top UK university where she was awarded a First-Class Honours degree in Mathematics. She went on to pursue a career in software development, and has over 15 years experience working in the IT industry. Dawn has written several books, including Head First C, Head First Statistics and Head First 2D Geometry.

Head First C

David Griffiths

Dawn Griffiths

Editor
Brian Sawyer

Copyright © 2012 David Griffiths and Dawn Griffiths

Head First C
by David Griffiths and Dawn Griffiths

All rights reserved.

O’Reilly Media books may be purchased for educational, business,
 or sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com). For more
 information, contact our corporate/institutional sales department: (800)
 998-9938 or
 corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Brian Sawyer

Cover Designer: Karen Montgomery

Production Editor: Teresa Elsey

Production Services: Rachel Monaghan

Indexer: Ellen Troutman Zaig

Page Viewers: Mum and Dad, Carl

Printing History:

April 2012: First Edition.

[image: image with no caption]

[image: image with no caption]

The O’Reilly logo is a registered trademark of O’Reilly Media,
 Inc. The Head First series designations,
 Head First C, and related trade dress are
 trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of
 a trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and the authors assume no responsibility for errors
 or omissions, or for damages resulting from the use of the information
 contained herein.

No kittens were harmed in the making of this book. Really.
[image:] This book uses RepKover™, a durable and flexible
 lay-flat binding.

978-1-449-39991-7

[M]

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2016-10-20T10:10:10-07:00

OEBPS/httpatomoreillycomsourceoreillyimages2261280.png.jpg
if (WEXITSTATUS (pid_status))€— |f the exit stabus is not zeve

puts ("Error status non-zero");

OEBPS/httpatomoreillycomsourceoreillyimages2261240.png.jpg
exetl) = list of args.

exeleQ) = list of args + environment.
exetlpO) = list of args + searth on path.
exeev) = arvay of args.

exeeve() = arvay of args + environment.

exetvO) = areay of avgs + searth on path

SorkO
duplicates
the turvent

¢hild process.

OEBPS/httpatomoreillycomsourceoreillyimages2260814.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260612.png.jpg
) S E——
T\

N

Fix the end of the
vive 4o the head
the nail-

OEBPS/httpatomoreillycomsourceoreillyimages2261278.png

OEBPS/httpatomoreillycomsourceoreillyimages2261242.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260156.png.jpg
msg is actually a pointer vaviable
e

void fortune_cookie (char msg[])
(

printf ("Message reads: $s\n", msg);

msq points to the message

printf("msg occupies $i bytes\n", sizeof (msg));

}
quz(my s ﬁf the

sz o po

OEBPS/httpatomoreillycomsourceoreillyimages2260566.png.jpg
Wouldrit it be dreamy if there were
atool that could automatically recompile
just the source that's changed? But T
know it's just a fantasy...

OEBPS/httpatomoreillycomsourceoreillyimages2261038.png.jpg
| Root directory

.I my_object files
oor
1..1.,.3
[feaor
o

encrypt.o

oot
ol
—ooten

checksum.o

OEBPS/httpatomoreillycomsourceoreillyimages2261546.png.jpg
pthread mutex_Look (a_Lock) ; & On ne tvead ak 3 ime wll g pst ths

P,

OEBPS/httpatomoreillycomsourceoreillyimages2261556.png.jpg
Threads allow

a protess to do
more than one
thing at the
same time. Threads ¢
— gt
POSIX theeads processes”
(pthread) is
a threading
libeary.
phhread_create) Threads
treates a thread shave the
4o vun a funetion. same global
AT variables.
Y""“‘\\":& vy 1t threag

vead and updat,

he same Variable,
Your tode will be
unpredietable,

3 thvead ¥
Linish-

v(;hrud_"-“h*—l"d‘()
treates a mubex on tode:

Mubexes ave
locks that Phvead_mubex_unlotk()
F:Lme shaved veleases the mubex.
data.

—

OEBPS/httpatomoreillycomsourceoreillyimages2260808.png.jpg
Wouldrit it be dreamy if there were a
way to allocate as much space as T needed
with code at runtime? But I know that's
just a fantasy...

OEBPS/httpatomoreillycomsourceoreillyimages2261294.png.jpg
N

OEBPS/httpatomoreillycomsourceoreillyimages2261238.png.jpg
This s your

newshound
process.
£ vuns separate —
protesses for eath of X
the three newskeeds 4
-
newshound

The ehild protesses al —=>
vun at the same time

OEBPS/httpatomoreillycomsourceoreillyimages2260810.png.jpg
Heap storage is lie saving
valuables in 3 locker-

OEBPS/httpatomoreillycomsourceoreillyimages2261074.png.jpg
File Edt_Window Heip _SilencelnTheLlbrar

> ./elliptical
Now that you've built the elliptical — —) ST TUREEIPTIR IS
. Distance: 11.30 miles
program, you tan vun it on the console: [P PORI RETITIETY

>

OEBPS/httpatomoreillycomsourceoreillyimages2261072.png.jpg
—Ihteal tells the compiler to look for libhfeal.a.

ace. elipkicalo ~L./lbs —Ihfeal - eliptical

A
You've building the program maj/—' ~L/libs Hells the comiler where the library is stored.
elliptical.o and the library.

OEBPS/httpatomoreillycomsourceoreillyimages2261172.png.jpg
LT . /guard log
EIE PR © 55 1s /s echo '

run any command

i Applications System dev private
the “‘f onthe ey Users etc sbin WThisis a
Computer Library Volumes home tmp listing of

Network bin mach_kernel usr the voot
Space Paranoids Source cores net var dwcf.{o\ry
-

OEBPS/httpatomoreillycomsourceoreillyimages2261168.png.jpg
ALERT! ALERT! Main
system security has
been breached!

OEBPS/httpatomoreillycomsourceoreillyimages2261512.png.jpg
¢ 1F one thread has 4o vait for
p s 5 something, the other threads
fou £an vun eacl sh
mide 3 separate thread. —

can keep vunning.

Al of the threads ean
vun mside 3 sigle protess

OEBPS/httpatomoreillycomsourceoreillyimages2261540.png.jpg
Thread | 7 & reers

— Theead 2

OEBPS/httpatomoreillycomsourceoreillyimages2260384.png
#include <stdio.h>

int main ()
{
float latitude;
float longitude;
char info[80];
while (scanf("$f,%f,%79["\n]"
iE (0L
if ((
printf("%£, 3£,

&datitude. .
5.2)8k (.

s\,

return 07

OEBPS/httpatomoreillycomsourceoreillyimages2260154.png.jpg
You tan use “quote” as
3 pointer varizble, even
Ehough s an arvay.

printf("The quote string is stored at: $p\n", quote);

s T e T
I£ you write a test program — EUTT IS MUY
to display the addvess, you The quote string is stored at: 0x7£££69d4bdd7

will see something like his >

OEBPS/httpatomoreillycomsourceoreillyimages2261542.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261036.png.jpg
gee -I/my header files test code.c ... -o test_code

This 4ell the compiler 4o look
in /my_header_§iles as well

35 +he standavd diveetories.

OEBPS/httpatomoreillycomsourceoreillyimages2260090.png
#include <stdio.h>

int main()
{
int x = 0;
int y = 0;
while (x < 5)

printf ("$i%i ",

x=x+1;
}

return 0;

Candidake code goes here
|

OEBPS/httpatomoreillycomsourceoreillyimages2260630.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260092.png.jpg
Candidates: Possible output:

y=x- 22 46
11 34 59

y=y+2;

e (o 03 02 14 26 38
02 14 36 48

x=x+1;

7 =i 5 00 11 21 32 42

if (v <9 (

11 21 32 42 53

00 11 23 36 410

x
"

y=y+2; 02 14 25 36 47

OEBPS/httpatomoreillycomsourceoreillyimages2260948.png.jpg
el int compare scores(const void* score a, const void* score b)

scores, ith (
the smallesy int a = *(int*)score_a;
Sirst. int b = *(int*)score b;

return a - b;

int compare_scores_desc(const void* score_a, const void* score b)
sort inteoer (
scores, with
{\'va\argesi
Sirst.

typedef struct { &~ Tisis the
int width; vettangle type.

int height;

} rectangle;

int compare_areas(const void* a, const void* b)

{

OEBPS/httpatomoreillycomsourceoreillyimages2261232.png.jpg
for

(1 = 0; 1 < times; 1++) {
char var[255];
sprintf (var, "RSS_FEED=%s", feeds[i]);

char *vars(] = {var, NULL};

Fiest, ¢all fork() to clone the process

Pid_t pid = fory)

1€ £ork() veturned -I, there was a problem cloning he protess

fprintf(stderr, "Can't fork process: $s\n", strerror(errno));

return 1;

1€ £ork) veturned a O, the tode is
0). & running in the ¢hild protess

This is the same as if (pid

4
1€ You aet here, you're the ehild protess,

50 we should exec() the seript

n,on ossip-PY"/
B i «, “/usz/bin/python", "./zss3
if (execle(/"“/m;‘gi::?nmn, vars) = -1) {

tf (stderr, "Can

Tun script: %s\n", strerror(errno)

OEBPS/httpatomoreillycomsourceoreillyimages2260620.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261234.png
File Edit_Wir

> ./newshound 'pajama death'
Pajama Death ex-drummer tells all.

New Pajama Death album due next month.

Photos from the surprise Pajama Death concert.
Official Pajama Death pajamas go on sale.

"When Pajama Death jumped the shark" by HenryW.
Breaking News: Pajama Death attend premiere.

OEBPS/httpatomoreillycomsourceoreillyimages2261292.png.jpg
WML

N

P

OEBPS/httpatomoreillycomsourceoreillyimages2261618.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260382.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261522.png.jpg
e The void pointer veturned from each function will be stored heve.

void* result;
if (pthread join(t0, &result)
error("Can't join thread t0");
if (pthread join(tl, sresult)
error("Can't join thread t1");:

5
S The pthresd_join0) function
) waits for a thread 4o Finish

OEBPS/httpatomoreillycomsourceoreillyimages2261602.png.jpg
for (i = i < 10; i++, j++)€<—Intrementiand j

OEBPS/httpatomoreillycomsourceoreillyimages2260618.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260232.png
Masked raider is Alive, Jimmy is Alive

OEBPS/httpatomoreillycomsourceoreillyimages2261034.png.jpg
| Root directory

= #include "/my_header_files/encrypt.h"

checksum h

OEBPS/httpatomoreillycomsourceoreillyimages2261028.png.jpg
/ust/local/include & [t vil theck /usr/lotal/include firsk

/usr/include
fuse/lotal/include is often Yuse/include is ormally
wsed for header Files for wsed for operating

thivd—party libraries system header files

OEBPS/httpatomoreillycomsourceoreillyimages2260398.png
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main ()

{
char 1line[80];
FILE *in = fopen ("spooky.csv",
FILE *filel = fopen ("ufos.csv",
FILE *file2 = fopen("disappearances.f%v",
FILE *file3 = fopen ("others.csv", L);

while (‘&C&J,,(in, "$79["\n]\n", line) ==
if

(strstr(line, "UFO"))

...... t“ (filel, "%s\n", line);
(strstr(line, "Disappearance"))
file2, "%$s\n", line);

file3, "%$s\n", line);

fclose (in);

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2261180.png.jpg
Take a list of srg;mtnﬁ

All exec) Functions
begin vith exet.
N

Take 3 vettor/avedy [y Top
of arguments gl
N

Use an avray
environment

strings.
V/

OEBPS/httpatomoreillycomsourceoreillyimages2261032.png.jpg
You ean use angle brackets it your header
#include <encrypt.h> & Liles ave in a standard divectory.

OEBPS/httpatomoreillycomsourceoreillyimages2261184.png.jpg
Eath variable in the . The last item in the
ot envivonment is rame=value. arvay must be NULL.
sct of eniromment char +my_env(] = ("JUICE=peach and apple", NULL);
variables 35 an arvay -
of string pointers

execle ("diner_info", "diner_info", "4", NULL, my_env);

execle passes a list of arquments and an envivonment my_env tontains the environment.

OEBPS/httpatomoreillycomsourceoreillyimages2260794.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260798.png.jpg
void display(island *start)
[

island *i = start;

Name: 35 open: is-is\n",

) B =)

OEBPS/httpatomoreillycomsourceoreillyimages2260616.png.jpg
the other gaamized
nail is attached o

this wive.

d
One salvarize
nail is attathed
4o Lhis wive.

The moisture sensor is connetted
to analog input Pin O, whith means

we ean vead analog data from the
sensor via this pin

OEBPS/httpatomoreillycomsourceoreillyimages2260086.png.jpg
Mateh each
eandidate with
one of the
possible autputs.

Candidates:

y=x-y
y=y+x
y=y+2;
if (y > @)
y=y-1;

y=y+x;
if (y < 5)
x=x
if (y

A+

il
3)
o= s

Possible output:

22

11

02

02

00

11

00

02

46

34

14

14

21

14

59

26

36

21

32

23

25

38

a8

32

a2

36

36

a2

53

a10

47

OEBPS/httpatomoreillycomsourceoreillyimages2261606.png.jpg
% is @ pavameter to the matvo.

| e
#define ADD_ONE (x) ((x) + 1)< Be careful to use paventheses with matvos

printf("The answer is %i\n", ADD ONE(3)); <€—This is will output “The answer is &

OEBPS/httpatomoreillycomsourceoreillyimages2261236.png.jpg
Hey! That's
great! Tl send my

photographers down
to the premiere.

OEBPS/httpatomoreillycomsourceoreillyimages2261250.png.jpg
= YPLog. 226

r
25> means “vedivett Zt £l means “to the
Standard Evror Standard Input.”

OEBPS/httpatomoreillycomsourceoreillyimages2261604.png.jpg
#include <stdio .n>@ This is a preprotessor diveetive.

OEBPS/httpatomoreillycomsourceoreillyimages2261182.png.jpg
#include <stdio.h>

#include <stdlib.h>

int main(int argc,

{

char *argv(])

printf("Diners: %s\n",
printf ("Juice:

argv([1]);
$s\n", getenv("JUICE"));

! retuen 07 geben) i stdlibh leks you

vead envivonment variables

[y

diner info.c

OEBPS/httpatomoreillycomsourceoreillyimages2261600.png.jpg
for (i = 05 i < 10; i++)<c—This imcrement will happen at the end of eath loop.

OEBPS/httpatomoreillycomsourceoreillyimages2261598.png.jpg
157 Finaly, the vlue 1 the condition s falc

return (x == 1) ? 2 :

First, the condition Next comes the value if the condit 4
TR

OEBPS/httpatomoreillycomsourceoreillyimages2261596.png.jpg
int 1 =

int § =

OEBPS/httpatomoreillycomsourceoreillyimages2261516.png.jpg
void* does_not (void *a)

{

ez

Thre,
ad 5
\ void* does_too(void *a)

U

{

Main program

OEBPS/httpatomoreillycomsourceoreillyimages2260614.png.jpg
| Inserk the long LED
lead into the slot
Lor digital pin 12

Insert the short |
LED lead into the
slot labeled GND.

OEBPS/httpatomoreillycomsourceoreillyimages2260380.png.jpg
Read the \au{ude, \or\a\(ude,
and othe, data §or €ach jine:

i€ the latitude is by
36 and 34, then:

Ctween

display the latitude,
Play
longitudee,

»nd othe, data

OEBPS/httpatomoreillycomsourceoreillyimages2261518.png.jpg
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <pthread.h> & Thi is the header for the pthresd library,

These are the headers for the main part of the tode

void error(char *msg)

{

fprintf(stderr, "%s: $s\n", msg, strerror(errno));
exit(1);

OEBPS/httpatomoreillycomsourceoreillyimages2260356.png.jpg
printf ("I like Turtles!"

When you 3l
pintf0, & AN These tuo ealls ave eivalent
achually calls

FrenthO

fprintf (stdout, "I like Turtles!");

This will end data 4o 7

the data stream. stdout is the Standard I\Thm is the data that will be

Oubput data sbream sent.

OEBPS/httpatomoreillycomsourceoreillyimages2261534.png.jpg
[magine two threads are vunning this
beers - 1;&— | of s ot the same time.

beers

OEBPS/httpatomoreillycomsourceoreillyimages2260342.png

OEBPS/httpatomoreillycomsourceoreillyimages2261176.png.jpg
exeel = 3 LIST of arguments These are the avguments.
el

execl ("/home/f1lynn/clu", /"/home/flynn/clu", "paranoids", "contract", NULL)
The second

erl e o ié’;ﬂﬁg arquments These are the avauments. !:; e
hould be o Ty i
1‘\:‘3&7»6 as W execlp (clur, Melu", "parancids", "contract", NULL) <— with ML
the first

These ave the arguments.
ik

execle("/home/flynn/clu", /" /home/flynn/clu", "parancids", "contract", NULL, env_vars)

~
exetLE = a LIST of arquments env_vars is an arvay of strings
+ ENVIRONMENT variables.

containing emvivonment, variables

OEBPS/httpatomoreillycomsourceoreillyimages2260386.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260078.png.jpg
#include <stdio.h>
Returns an int value
int larger(int a, int b)

! .
T function takes o arguments

if (a > b) 2 and b. Both arquments are ints

return a;

return b;

int main()
§
int greatest = larger (100, 1000);

Calling the function heve

printf("$i is the greatest!\n", greatest);
return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2261222.png.jpg
The fork() system call will The new protess

¢lone the turvent rroun;?e\ is called the

ehild process.

OEBPS/httpatomoreillycomsourceoreillyimages2260080.png.jpg
The void return

bie ”a:t;: > void complain()

funetion won't

retuen anything. puts("I'm really not happy");

b N There's vo need for 3 veburn
<batement betause it's a void funttion.

OEBPS/httpatomoreillycomsourceoreillyimages2260622.png.jpg
Thank you,
Seymour!

OEBPS/httpatomoreillycomsourceoreillyimages2260790.png
island
island
island

island

This tode will eveate island
strutks for cath of the islands

¢

amity = {"Amity", "09:00", "17:00", NULL};

craggy = {"Craggy", "09:00", "17:00", NULL};
isla_nublar = {"Isla Nublar", "09:00", "17:00", NULL};
shutter = {"Shutter", "09:00", "17:00", NULL);

OEBPS/httpatomoreillycomsourceoreillyimages2261374.png.jpg
L]
Server

A client and sevver have
a struttured conversation

Telnet client s

Telnet client
The server will talk to \/

several clients at once.

Telnet client

OEBPS/httpatomoreillycomsourceoreillyimages2261366.png.jpg
filenol)

finds the
deseriptor.
T — dup 20
duplicates 3
waitpid() data stream-
waits for &
process to
Linish.
Signals are
0 9
Tt
5 messages
Maffma*iﬂ" Srom the
L\:c- o sigattion()
e Protesses can T cts You
Communicate handle signals.
using pipes.
A program ean
send signals
to itself with
vaise().
The kill — alavm() sends
command 2 SIGALRM
alter a few

sends 3 signal-

seconds-

OEBPS/httpatomoreillycomsourceoreillyimages2261156.png.jpg
system("dir D:"); 4— This ill print out the contents of the D: drive.

system("gedit") ; &—This wil launch an editor on Linux.

system("say 'End of line'") ;& This vill vead to you on the Mat.

OEBPS/httpatomoreillycomsourceoreillyimages2261026.png.jpg
Now the code ompiles corvectly.
I£ encryps the test string o
something unreadable

T Ea Vinou ol
> gcc test _code.c encrypt.o chefksum.o -o test code
> ./test_code W

Encrypted to 'Loz~t?ymvzq{?~q{?zqkzm'

Checksum is 89561741

Decrypted back to 'Speak friend and enter’

Checksum is 89548156)

>

Calling the enceypt0) funttion a setond

The cheeksum veturns diffevent Eime veburns the original sbring,

ilues for diffevent, sbrings

OEBPS/httpatomoreillycomsourceoreillyimages2261558.png.jpg
€ are the number of
have left.
en You o

ip, fiving at 2
voiding getting hit

Firing bullet

ou shoot.

OEBPS/httpatomoreillycomsourceoreillyimages2261030.png.jpg
Yeah, I gotta get security
added to all these different
programs. T don't want a

separate copy of the security
code for each one...

OEBPS/httpatomoreillycomsourceoreillyimages2260422.png.jpg
isplay all the processes
T Eﬂ,‘:‘,?ﬂ {heir enironments

tail -f logfile.out &\Duyhllo.(end of the file, but wait for new
data to be added to the end of the file.

OEBPS/httpatomoreillycomsourceoreillyimages2260548.png.jpg
e

Souree files

Object File
4

OEBPS/httpatomoreillycomsourceoreillyimages2260454.png.jpg
shore x This vl say that y = 15
int y = x:

printf ("The value of y = %$i\n", y);

OEBPS/httpatomoreillycomsourceoreillyimages2260550.png.jpg
ST R SRR I v of C sourte kiles, list
ol ammindsr S T © the object Files.

ve used bef This wil
you've used before. is will match all the object files in the divectory.

OEBPS/httpatomoreillycomsourceoreillyimages2260428.png.jpg
Brasilia Tokyo London

This is argul0). This is avqul]]. This is argul2

OEBPS/httpatomoreillycomsourceoreillyimages2260016.png.jpg
/Tm is how you define an avvay in C.

OEBPS/httpatomoreillycomsourceoreillyimages2260632.png.jpg
“eonst thar *” just means You've

i skring literals.
/* Print out the catalog entry */ ‘/9""6*"\"“ g

/vcld catalog(const char *name, const char *species, int teeth, int age)
{
Both . a§E i . . "

printf("$s is a $s with %i teeth. He is %i\n",

of these

firctions name, species, teeth, age);
take the ¥

same set of

pavameters. /+ Print the label for the tank */
void label (const char *name, const char *species, int teeth, int age)
{
printf ("Name:$s\nSpecies:$s\n%i years old, %i teeth\n",
name, species, teeth, age);

OEBPS/httpatomoreillycomsourceoreillyimages2260554.png.jpg
eefore
a mins 30 secs
bsecs

Now, you've
Compling only the
ehanged file.

Compile time:
Link time:

The link time is
Before, you weve compiling every file The build is 95% faster. still b seconds.

OEBPS/httpatomoreillycomsourceoreillyimages2261090.png.jpg
You need to join these files together
cach time the program vurs.

OEBPS/httpatomoreillycomsourceoreillyimages2261356.png.jpg
void times_up(int sig)
{
puts ("\nTIME'S UP!");

raise(

Raise what?
void error(char *msg)
{

fprintf (stderr, "$s: %s\n", msg, strerror(errno));

exit(1);

}

int main()

(What will the
catch_signal (SIGALRM, T € oo sgalld
catch_signal (SIGINT, ';M Lunckions do?

This makes sure - s .
you get d-N«m{a srandom (time (0));
vandom numbers while(1) {
eath e int a = random() % 11; €
! a and b il be vandom numbers from O to 10.

int b = random() % 11; &
char txt[4]; [Hmvnm, what line is missing? Need to check the spec...

printf("\nWhat is %i times %i? ", a, b);
fgets (txt, 4, stdin);

int answer = atoi (txt);

if (answer == a * b)
score++;
else
printf("\nWrong! Score: %i\n", score);
}

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260796.png.jpg
This line ereates — jsland skull = {"Skull", "09:00", "17:00", NULL};
Skl [sland. isla nublar.next = skull; <o This comnects lsla Nublar £o Skul
skull.next = gshutter; &~This comnetts Skull to Shutter [sland.

OEBPS/httpatomoreillycomsourceoreillyimages2261354.png
What should

happen once
the store is

displayed?

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>

#include <string.h>
#include <errno.h>

#include <signal.h>

int score = 0;

void end_game (int sig)

{

printf ("\nFinal score: %i\n", score);

}

int catch_signal(int sig, void (*handler) (int))
{

struct sigaction action;

action.sa_handler = handler;

sigemptyset (saction.sa_mask) ;

action.sa_flags = 0;

return sigaction (sig, &action, NULL);

OEBPS/httpatomoreillycomsourceoreillyimages2259986.png.jpg
Don't you just love the
deep blue C? Come on
in—the water's lovelyl

OEBPS/httpatomoreillycomsourceoreillyimages2260788.png.jpg
You must give the struet a name.

You'll vecord

th i

ﬁo:s:af:b " typedef struct island {
sland char *name;

\sland. airport

{ - .
Aty | cher Topens

on char *closes;
opeas I struct island *next;
Closes: sPm { } island;
{
Next island: Craoy |

For each island, you'll also vetord +he next island.

Youl e
e
Hhe i
and openin
e

You store 3
poinker £o the
next island in
the sbruct

OEBPS/httpatomoreillycomsourceoreillyimages2261364.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261230.png.jpg
strerror (errno)

an't fork process: $s\n’

fprintf (stderr,

fprintf "Can’
p: (stderr, "Can't run script: s\n", strerror (errno)) ;

o in/python", "./£ssgossiP-PY"
§ " ‘bin/python", /usz/bin/py’
if (execle("/usz/ ‘thise' NOLL, vars) == -1)

OEBPS/httpatomoreillycomsourceoreillyimages2261218.png.jpg
Onte the newshound program hands over
the protess o the rssgossippy program
newshound quits.

OEBPS/httpatomoreillycomsourceoreillyimages2261024.png.jpg
stdio h is

stored in #include <stdio.h>
one of the

#include "encrypt.h"
standard TYP
header #include "checksum.h"
diveetories

enteypbh and chetksumh ave in
the same divectory as Ehe program

OEBPS/httpatomoreillycomsourceoreillyimages2260140.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261088.png.jpg
Each of these pieces ok

Ladz ives in 3 sevarah file.
Treadmill
sensor
2 Elliptical, d!SPlny
sensor.
ﬂﬁl’lﬂy

OEBPS/httpatomoreillycomsourceoreillyimages2261554.png.jpg
Version A

pth

ad_mutex_t b READ_M

mutex_t beers Lo

void drink lots(void

5 < 100000; i+4)

pthread_mutex_l

pthread mutex |
)

printe (“beecs = 4i\n", beers)s

o

00 bottles of beer on the wall
2000000 bottles of beer

beozs
beers
beers
Beers
beers
boors
beers
beers
beers
beers
boers
boers
beers
beers
beers
beers
beers
beers
beers
beers
There

1500000

tles of beer on the wall

> . /boor_fixed strategy 2
2000000 Bottles of bear on tha wall
2000000 bottles of beer

beers
beers
beers

= 63082

51
a
36

15
1
0

are now 0 bottles of beer on

Matkeh the cede o
e outpt

OEBPS/httpatomoreillycomsourceoreillyimages2260142.png.jpg
This is Fle EGtTindow Heo Sy

> gcc southeast.c -o southeast
> ./southeast
Avast! Now at: [31, -63]

Wind in the
sails, capnl

Arrl Spring

OEBPS/httpatomoreillycomsourceoreillyimages2260418.png.jpg
Elvis has left the building

OEBPS/httpatomoreillycomsourceoreillyimages2260420.png.jpg
Anchovy and pineapple,
thick crust! Make it
snappy; we reed it for
immediate delivery.

OEBPS/httpatomoreillycomsourceoreillyimages2260476.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260770.png.jpg
typedet struct {

I bit can stove 2.

unsigned int first_visit:
values: drue/false

unsigned int come_again:

unsigned int fingers_lost 4 bits are needed

unsigned int shark_attack o store up 4o 10,
unsigned int days_a week: 3 ;
} survey; =3 bits can store

abeisup o 1.

OEBPS/httpatomoreillycomsourceoreillyimages2259988.png.jpg
#include <stdio.h>

int main()

{

puts ("C Rocks!™);

return 0;

rocks.c

e

Source

You start off by
creating a source
file, The source file

contains huma
readable C code.

OEBPS/httpatomoreillycomsourceoreillyimages2259984.png.jpg
nnnnnnnnnn

OEBPS/httpatomoreillycomsourceoreillyimages2260628.png.jpg
struct tea qu
(“tealeaves”, “milk",
“sugar”, "water", “tequila");

OEBPS/httpatomoreillycomsourceoreillyimages2260624.png
void setup()
(

/*This is called when the program starts. It
basically sets up the board. Put any initialization
code here.*/

}

void loop ()
{

/*This is where your main code goes. This function
loops over and over, and allows you to respond to
input from your sensors. It only stops running when
the board is switched off*/

}

You tan add
extra funttions
and declavations
if you like, but
without these
+wo functions
the tode won't
wark

OEBPS/httpatomoreillycomsourceoreillyimages2260164.png.jpg
Contestant |
Contestant 3 T going to pick o -

Contestant 2 N comtestart nber) (7 e
3 answer here
°

OEBPS/httpatomoreillycomsourceoreillyimages2260162.png.jpg
£l = “honas;

okie (quote) ;

So quote’s an array and T've got to pass
the quote variable to fortune_cookie().

Tl set the msq argument fo the address
where the quote array starts in memory.

OEBPS/httpatomoreillycomsourceoreillyimages2261166.png
echo ' <comment>l ' <t1mestamp>' v reports.log.

OEBPS/httpatomoreillycomsourceoreillyimages2261550.png.jpg
void* do_stuff (void* param)a— A thread function can attept a single
. wid poker parameker.
long thread no = (long)param;&—— Convert it back to a long
printf("Thread number 3ld\n", thread no);

return (void*) (thread no + 1);e=— Cast it batk to a void pointer
i when its vetuened.

int main()

{

pthread_t threads[20];

B o o a void pointer.
pthread_create (sthreads([t], NULL, do_stuff, (void*)t);

}

void* result;

t <37t |

for 4t =

t< 3t i
long before using it
pthread_join(threads[t], &result);

printf("Thread $ld returned $ld\n", t, (long)result);
}

return 0;

long t; Convert the long + value

Convert the veturn value o 3

e Edi Vindov Help DoniLoseThe Thread
> ./param test

Eath thread veceives it: — 2 [tqri el

ool her Thread 0 returned 1
Thread number 1

Thread number 2

Eath thread vetuens its Thread 1 returned 2

thread number + | Thread 2 returned 3
>

OEBPS/httpatomoreillycomsourceoreillyimages2260626.png.jpg
This end gets plugged
into the computer.

y

K7
Our £ully assembled Avduino

OEBPS/httpatomoreillycomsourceoreillyimages2261018.png
#include <stdio.h> h
#include <encrypt.h>
#include <checksum.h>

i Ea Tindon el

> gce -c encrypt.c -o encrypt.o
> gee -c checksum.c -o checksum.o
>

int main ()
{

char s[] "Speak friend and enter";

encrypt (s) ;
printf ("Encrypted to 'ss'\n", s);
printf("Checksum is $i\n", checksum(s));
encrypt (s) ;

printf ("Decrypted back to '$s'\n", s);
printf("Checksum is $i\n", checksum(s));

enceypt0) will encrypt your
data. I you call it again,
it vill deerypt it

X

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2261092.png.jpg
A dynamic library contains extra
inkormation that the operating system vl

Sz/l,/ veed & ik the lbrary o other things
AL the heart of a dynamic

Is it a bird? [s it

a plane? No, it's a
relotatable object
file with metadsta

libravy is a single piece of
object code.

A

The library s built from

one or more o files.

OEBPS/httpatomoreillycomsourceoreillyimages2261096.png.jpg
MinGW on Windows
C:\libs\hfcal.dll =

/libs/libhfcal.dll.a < CYovin o
/libs/libhfcal.so &— Linux or Unix
/libs/libhfcal.dylib € pae

Windows
gee -shared hfcal.o -o

OEBPS/httpatomoreillycomsourceoreillyimages2260546.png.jpg
This will eveate object The operating system will veplace
tode fov every B 2950 @ e R TR R

OEBPS/httpatomoreillycomsourceoreillyimages2260414.png.jpg
> categorize UFO aliens.csv Elvis elvises.csv the rest.csv

OEBPS/httpatomoreillycomsourceoreillyimages2260560.png.jpg
— — g

— —
=, o === _—
— Xt =S
= — == e
TS =z

thruster.c turbo.
.c
11:43 12:15 graticule.c servo.c
" 14:52 13:47
araticuleo needs o be

servoo needs o be
vecompiled, because i¥'s
older than its source

N

vecomiled, because it's
older than the latest

vevsion of its sourte.

b

graticule.o
14:25

Betause youse thanged gratieulee
b o ol eed o el
The ems exceutable as wel

OEBPS/httpatomoreillycomsourceoreillyimages2261170.png
\NEEd ////,/

echo '** ' && 1s / && echo " ' <t1mestamp>' ' >> reports. log'

79311 1vy v~

OEBPS/httpatomoreillycomsourceoreillyimages2261552.png.jpg
e Edit Window
> . /beer
2000000 bottles of beer on the wall
2000000 bottles of beer
beers = 1900000
beers = 1800000
beers = 1700000
beers = 1600000
beers = 1500000
beers = 1400000
beers = 1300000
beers = 1200000
beers = 1100000
beers = 1000000
beers = 900000
beers = 800000
beers = 700000
beers = 600000
beers = 500000
beers = 400000
beers = 300000
=g s e oo
beers = 0 the output
There are now 0 bottles of beer on the wall
s Edit_Window Help_DontLoseTheThr
> ./beer_fixed strategy 2

2000000 bottles of beer on the wall
2000000 bottles of beer

beers = 63082

beers = 123

beers = 104

beers = 102

beers = 96

beers = 75

beers = 67

beers = 66

beers 65

beers = 62

beers = 58

beers = 56

beers = 51

beers = 41

beers 36

beers = 30

beers = 28

beers = 15

beers = 14

beers = 0
There are now 0 bottles of beer on the wall
>

OEBPS/httpatomoreillycomsourceoreillyimages2260544.png.jpg
conpiler WS —>

Object
code file
o
=) i
‘Compiler —>%—> I
C source Object a Executable
file zode e You il still need to vun the linker, but
If Hhis source most, of the files wil still be the same.
ile thanges, =3 [
Wetheoly [=) —> @l QY) € e compler vl wiste

o the dbjerk code that's

one You need G source oeet
to vecompile. file codefile stored in 3 ile

OEBPS/httpatomoreillycomsourceoreillyimages2260224.png.jpg
int my_function()

{
tards is > char cards[] = "JOK";
an arvay.

) There's no arvay size given, so fou have

o sck it bo somebhing mmediately

OEBPS/httpatomoreillycomsourceoreillyimages2260754.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261372.png.jpg
30000 is the number of the network port

P Ea o Tty VST
Use 127001 if You're vunning Pad > telnet 127.0.0.1 30000

T 127.0.0.1...
the server on the same machine. [FUANAINANOAR SRS

Escape character is '*]'.
Internet Knock-Knock Protocol Server
The sever has vesponded. — ‘éﬁzillz?nl(ic-\zk'
> Who's there?
Oscar
You type in these vesponses. Z RSN
Oscar silly question, you get a silly answer
Connection closed by foreign host.

>

OEBPS/httpatomoreillycomsourceoreillyimages2260222.png.jpg
This sbring is in read-only memry,

J

Q

K

0

a—

J

Q

K

0

so make a eopy of the string in 3
<etkion of memory that tan be amended

OEBPS/httpatomoreillycomsourceoreillyimages2261376.png.jpg
Server: Client:

Knock knock!

Who's there?
Oscar.

Oscar who?

Oscar silly question, you
get asilly answer.

OEBPS/httpatomoreillycomsourceoreillyimages2259982.png.jpg
Brian Sanper

*

OEBPS/httpatomoreillycomsourceoreillyimages2260756.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261158.png.jpg
#1include <stdio.h>
#include <stdlib.h>
#include <time.h>
sz moet) € T e b
i
time_t t;
time (&t);
return asctime(localtime (&t));

/* Master Control Program utility.
Records guard patrol check-ins. */
int main()

{

char comment [80];
char cmd[120];

system(cnd) ;
return 0;

}

"echo '%s %s' >> reports.log" a0 ' tdin -

OEBPS/httpatomoreillycomsourceoreillyimages2260158.png.jpg
har msgl])

Hmmm..looks like they infend o pass
an array to this function. That means
the function will receive the value of the
array variable, which will be an address,
so msg will be a pointer 1o a char.

OEBPS/httpatomoreillycomsourceoreillyimages2260564.png.jpg
T thought the whole point of saving time
was so I didn't have to get distracted.

Now the compile is faster, but T have to
think a lot harder about how to compile
my code. Where's the sense in that?

OEBPS/httpatomoreillycomsourceoreillyimages2261164.png.jpg
Checked in Crom - a compound interest program.

(——Thvs is the
Thu Oct 29 11:25:53 2015 veportslog file
These are the £he proaram
timestanps. Blue Leader reports breach in jet walls. = Greatéd
Thu Oct 29 11:26:06 2015 =

OEBPS/httpatomoreillycomsourceoreillyimages2260160.png.jpg
sizeof (msq)) ;

T can print the message because I know
it starts at location msg. sizeof(msg).

‘That's a pointer variable, so the answer is
8 bytes because that's how much memory
it takes for me fo store a pointer.

OEBPS/httpatomoreillycomsourceoreillyimages2261150.png.jpg
ny

OEBPS/httpatomoreillycomsourceoreillyimages2261094.png.jpg
—¢ means “Don't link the tode.”

gee -I/includes -£fPIC -c hfcal.c -o hfcal.o

AN

The hbcalh header is in Zintludes. What does —£PIC mean?

OEBPS/httpatomoreillycomsourceoreillyimages2261346.png.jpg
Tick, tick, tick,

Jjust a couple of
minutes...

N\ £ Callng alarn(120) sets
)< the alavm for 120
seeonds in the future

OEBPS/httpatomoreillycomsourceoreillyimages2260300.png.jpg
‘Someone’s written me a
map web application, and T'd
love o publish my route data
with it. Trouble is, the format
of the data coming from my
6PS is wrong.

This is the data from the eyelist’s
4PS. I¥'s a comma-separated format

This is 3 latitude. This is a longitude.
14 ¥

42.363400,-71.098465, Speed = 21
42.363327,-71.097588, Speed = 23
42.363255,-71.096710, Speed

This is the data format the
map needs. [£s in JavaSeript
Object Notation, or JSON.

data=[
{latitude: 42.363400, longitude: -71.098465, inf

"speed = 21'},

Thtd#ﬂ"b{ (latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},
::i?;:at': {latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},
a little

different.

OEBPS/httpatomoreillycomsourceoreillyimages2260752.png
typeder struct {
short low_pass_vcf;

hort filter coupler;\ Fath of these filds

Short LILET_COUPLERT Yy il contain | for

short reverb; true or O for false
short sequential;

* S There are a lot more fields that follow this.

} synth;
\/ Each F.eu will use many bits. —\

0000000000000001 | 0000000000000001 | 0000000000000001

OEBPS/httpatomoreillycomsourceoreillyimages2260194.png.jpg
SECURTTY ALERT!
SECURTTY ALERT!
SECURTTY ALERTI

OEBPS/httpatomoreillycomsourceoreillyimages2261524.png.jpg
This will link the
Pthread lbrary.

i £ Viow Felp DorLoseTheTioad
> gcc argument.c -lpthread -o argument

This is your program

OEBPS/httpatomoreillycomsourceoreillyimages2260854.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261510.png.jpg
g\nop—n—wr%

People, more than
one thing an be
done at onte.

OEBPS/httpatomoreillycomsourceoreillyimages2261506.png.jpg
Shop-n-gurg
Run the cash register,
Stock the. shop.
Rewax the surfboards,
finswer the phones,

Fix the roof,

T

&— Alternats

S et

OEBPS/httpatomoreillycomsourceoreillyimages2260242.png.jpg
seanblC, 9 \

will allow 3 :

er o enter 1;"2:,’;

A b .

i bt Y el

e on different 2 pointer
mchings, Do

A thar pointer

variable is L)

Ao variables are

har ¥x. stored on

. Strm ke ot
are stored

in vead-only
memory.

Arvay
Variables ¢3
used a5
Pointers.

Read the

contents of

an addvess 3

N foets(buf, size,
stdin) is @

simpler way to
enter text.

OEBPS/httpatomoreillycomsourceoreillyimages2260860.png
Associated array or map

¢ connects key
information to

value information.

Doubly linked list
—> —>
<—{ [<—

] A
s like a normal linked list, but i
has connections going both vays

Linked list

e N |

Binary tree

Pescription

I can be used to store a sequence of items,
and | make it easy to insert new items. But
you can process me in only one direction

Each item | store can connect to up to
two other items. | am useful for storing
hierarchical information.

I can be used to associate two different
types of data. For example, you could use
to me to associate people’s names to their
phone numbers.

Each item | store connects to up to two
other items. You can process me in two
directions.

OEBPS/httpatomoreillycomsourceoreillyimages2260848.png.jpg
void release(island *start)
{
island *i = start;
island *next = NULL;

for (; i != NULL; i = next) {

First, you need 4o free— Lo
the name string that you 14
ereated with strdup(). cevveeveni & Only after freeing the name
) should }TW free the island struct
) 1£ you'd freed the island first, you might not

have been able +o reach the name to free it

OEBPS/httpatomoreillycomsourceoreillyimages2260746.png
else if (

printf("$2.2f lbs of $s\n", order.amount.weight, order.name);

else

printf("#i %s\n", order.amount , order.name) ;

int main ()

(
fruit_order apples = {"apples", "England”, .amount.count=144, ;
fruit_order strawberries = {"strawberries", "Spain", .amount 17.6, POUNDS};
fruit_order oj = {"orange juice”, "U.S.A.", .amount.volume=10.5,

display (apples);
display (strawberries);
display(0j) ;

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260758.png.jpg
4 This is not decimal 54
int x 0x54;

OEBPS/httpatomoreillycomsourceoreillyimages2261344.png.jpg
This will make the timer

e in 120 setonds. > 2L2ER120) 7
do_important_busy_work () ;

Meanvhile, your eode I

does something else. do_more_busy_work () ;

OEBPS/httpatomoreillycomsourceoreillyimages2260748.png
> gcc enumtest.c -o enumtest

This order contains 144 apples

This order contains 17.60 lbs of strawberries
This order contains 10.50 pints of orange juice

OEBPS/httpatomoreillycomsourceoreillyimages2260492.png.jpg
s no body code:
A dedlavation has no
The declaration Lells the compil k_—
Pler 3 £1oat add with_tax() ;¢ & jusk ends with 3 ;

what, veturn value bo expect

(semicolon).

OEBPS/httpatomoreillycomsourceoreillyimages2260206.png.jpg
#include <stdio.h>

int main()

(
char *cards = "JQK";
char a_card = cards(2];
cards(2) = cards(1];
cards(1] = cards(0];
cards[0] = cards(2];
cards[2] = cards[1];

cards(1] = a_card;

puts (cards) ; Find the Gueen
return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260256.png.jpg
finclude <stdio.h> kYl ue both stdioh and
#include <string.h> stringh in your jukebox progeam.

OEBPS/httpatomoreillycomsourceoreillyimages2260190.png.jpg
e Enter an integer.

4 Enter up 4o 29 eharackers (+\0),

Enter a Floating-point. rumber

OEBPS/httpatomoreillycomsourceoreillyimages2260200.png
This is the —\ char food[5];
same Evoﬁram

as before, printf ("Enter favorite food: ");

fgets (food, sizeof(food), stdin);

™ Ny
Fiest, it takes 3 /\ .)) stdin just means the
9 neluded). Lrom the keyboard: <— move about
stdin later.

OEBPS/httpatomoreillycomsourceoreillyimages2260192.png
char first name([20];

This veads a char last_name[20];
fiest name, then printf ("Enter first and last name B
a spate, then the

~ scanf("$19s $19s", first name, last_name);
setond name = !

printf ("First: s Last:is\n", first name, last name);

The first and last names are

> ./n
/name_test stored in separate arvays.

Enter first and last name: Sanders Kleinfeld

First: Sanders Last: Kleinfeld
>

OEBPS/httpatomoreillycomsourceoreillyimages2261508.png.jpg
Well, T can't do
everything all at once.
Who do you thirk I am?

OEBPS/httpatomoreillycomsourceoreillyimages2261362.png.jpg
|File Edit Window Help

> ./math_master

What is 0 times
What is 6 times
What is 4 times

What is 2 times

What is 7 times
The wser hit Cirl-C here. - [N

Sl : 5
The program displayed the final store before ending. <7 Sma seoxe

OEBPS/httpatomoreillycomsourceoreillyimages2261360.png.jpg
Vvold times_up(lnt sig)
{
puts ("\nTIME'S UP!");

raise(SIGINT.

Raising SIGINT will make the program
display the final store in end_game()

void error(char *msg)
{
fprintf(stderr, "¥s: ¥s\n", msg, strerror(errno));

exit(1l);

int main()
{
 Thesignal0
)7 € funetions set
)7 & the handlers.

catch_signal (SIGALRM,

catch_signal (SIGINT,
This makes sure o

Jou et d#mnt/) srandom (time (0));
vandom mumbers while (1) {
each time. int a = random() % 11;

int b = random() % 11;
char txt[4];
Set the alaem to —> alaym(%)
fiven 5 seeonds " printe("\nihat is 3i times 32 ", a, b):
fgets(txt, 4, stdin);

s long as you int answer = atoi(txt);
go bhrough

The loop in less if (answer == a * b)
than 5 seconds, score++;

the timer will

else

be veset and it

will never Five. printf ("\nWrong! Score: $i\n", score);

}

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260698.png.jpg
ST THI

#include <stdio.h>

pedef struct {

const char *description;
float value;

swag;

typedef struct {

swag *swag;

const char *sequence;
} combination;

typedef struct {
combination numbers;
const char *make;

} safe;

OEBPS/httpatomoreillycomsourceoreillyimages2261352.png.jpg
Ctrl-C? Talk
+o the hand; Tm
doing nothing.

OEBPS/httpatomoreillycomsourceoreillyimages2261350.png.jpg
OK, soif I receive
TERM signal, T
should just exit()
like before..

OEBPS/httpatomoreillycomsourceoreillyimages2260240.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260710.png.jpg
quantity (might be a float or a short)

A union looks like a struct RF

, ’ e IF a flost takes 4 bykes, and a shor bakes

£ uses the snion keyword. "i—:_\{\ 2, then this space vill be & bykes long
ypedef union {

short count;

float weight;
Eath of these fields will bzﬁ z

: float volume;
stoved in the same space. 3 ity
These ave all diffevent. types:
bk they're all quantities

Measure juice.
Count oranges. b sure jui

OEBPS/httpatomoreillycomsourceoreillyimages2260490.png.jpg
Over to

you, Cecill

float ping{) { float pong() {
There is no way A
4o veorder these

Lunctions.

pong ()7 ping();

OEBPS/httpatomoreillycomsourceoreillyimages2260732.png.jpg
#include <stdio.h>
typedef union {
float weight;

int count;

} cupcake;
By mistake, the
Programmer has set the
int main() weight, not the count.

{
cupcake order = {2);
printf("Cupcakes quantity:

return 0;

That's 3 lot of eupeakes.

Ghe sek the weight, but
<he's veading the tourt

%i\n",

order.count) ;

This is what the program did.

o Wk R
> gce badunion.c
Cupcakes quantit:

badunion && ./badunion
1073741824

OEBPS/httpatomoreillycomsourceoreillyimages2261084.png.jpg
Wouldn't it be dreamy if there
were away to run a program using
switchable pieces of object code?
But T guess that's just a fantasy..

OEBPS/httpatomoreillycomsourceoreillyimages2261504.png.jpg
It will need to

calculate the Jatest
It will need to update Tocations of the
the graphics on the objects that are

moving in the game.

P 1t might need
It will need to read to communicate

y
control information | > with the disk
b [EEEEEREEN () oot
controller or

loyboard. . "

OEBPS/httpatomoreillycomsourceoreillyimages2260168.png.jpg
This is the s —>.
array
sizeof is

5.

This veturns 1%

H

o ||w

... NO siQ/zeof(s)

*

& Thisis the ¢ pointer

sizeof is & or 8.

This veburns 4 or 6. > S12601(t)

OEBPS/httpatomoreillycomsourceoreillyimages2261370.png.jpg
e Edt_Window Help KnockKnock
> ./ikkp_server
Waiting for connection

OEBPS/httpatomoreillycomsourceoreillyimages2260964.png.jpg
These are the three types of messages
that vill be sent to people

enum response_type {DUMP, SECOND_CHANCE, MARRIAGE);
typedef struct {
char *name;

enum response_type type; <—Youll vetord a vesponse type with
} response; each piece of vesponse data.

OEBPS/httpatomoreillycomsourceoreillyimages2260690.png.jpg
I am the age
of the turtle
pointed to by t.

[£ 4 is a pointer to 2
turtle struck, then this
is m age of the turtle

[age #

T am the contents of
the memory location
given by t.age.

[

*t.age
78

16 £i5 3 pointer 4o a
burtle struct, then this

expression is wrong,

OEBPS/httpatomoreillycomsourceoreillyimages2260966.png.jpg
liltype

RUA rlil.name

il
u i SECOND_CHANCE
il rlil.name

dump. rlil.name
second_chance

OEBPS/httpatomoreillycomsourceoreillyimages2260246.png.jpg
Teatks from the new album ‘Little Known Sinatra”

<
% 1St myheart inHorvard med schoo!
.
=

- Da‘cmlj with 3 Dork

E’ From here 1o maternity

S
=B e girl Srom wo Jima
=
>
The guys say that theve will be lots more

=»
> racks in the future, but. they l never be
&P more than M characters long,

<

OEBPS/httpatomoreillycomsourceoreillyimages2260244.png.jpg
stremp() says T thought it
were identical. called you short
and said your butt
was bigger.

OEBPS/httpatomoreillycomsourceoreillyimages2261086.png.jpg
Raisin and anchovy cake —>
Very difficult to vemove just the vaisins 22

OEBPS/httpatomoreillycomsourceoreillyimages2260236.png
BAsked ralcer ~ &

Simmy —

OEBPS/httpatomoreillycomsourceoreillyimages2260694.png.jpg
T can see how the new code works. But the
stuff about parentheses and * notation doesn't
make the code all that readable. T wonder if
there's something that would help with that.

OEBPS/httpatomoreillycomsourceoreillyimages2260970.png.jpg
rlil.name

rlil.name

dump rlil.name P

OEBPS/httpatomoreillycomsourceoreillyimages2261348.png.jpg
This will cateh the—> catch_signal (SIGALRM, pour coffee);

signal wing the -
function you treated 212 (12007

earlier.

Breriiiiiinnnng!

Ah, sweet,
sweet coffee..

OEBPS/httpatomoreillycomsourceoreillyimages2261078.png.jpg
Wer6HT: 53.25 K6
Distance: 15.13 K

Cararias RURNED: 750412 cAL

But in
England,
measivements
need to be in
kg and ks

Vv

OEBPS/httpatomoreillycomsourceoreillyimages2260166.png.jpg
Contestant |
4 T'm going to pick
Contestant 2 contestant number

¥include <stdio.h>

“ehaite” is now the addvess of the

int main() “tontestants” rvay.
int contestants(] = {1, 2, 3}; contestants[2]
int *choice = contest == *ehaice
contestants(0) = 2; == tontestants(0]
contestants[1] = contestants[2];
contestants(2] = *choice;

printf("I'm going to pick contestant number $i\n", contestants

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2261080.png.jpg
Raisins, flour,
butter, anchovies.

m
1)
i
o

20

OEBPS/httpatomoreillycomsourceoreillyimages2260208.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261082.png.jpg
Hmmmm...maybe T
should have used
cranberries.

OEBPS/httpatomoreillycomsourceoreillyimages2261142.png.jpg
CvCapture® webcam = cvCreateCameraCapture (U);
1f (lwebcam) <—This means “Couldn't find the webcam.”
/* Exit with an error */
while (1) { <~ Loop forever.
Read an imade —, 151 1nage* image = cvQueryFrame (webcam) ;
om the webtam
if (image) {

& I you vead an image, you'l need to protess it heve
}

OEBPS/httpatomoreillycomsourceoreillyimages2261148.png.jpg
BBBBBB

OEBPS/httpatomoreillycomsourceoreillyimages2261326.png.jpg
Signal mappings
N

This is the
intervupt signal ~)| SIGURG

[slomvt |
SIGINT has
the value 2.

The default handler calls exitO).

OEBPS/httpatomoreillycomsourceoreillyimages2260842.png.jpg
fgets(name, 80, stdin)

NULL

OEBPS/httpatomoreillycomsourceoreillyimages2261334.png
tandlers
have void

vebuen bypes:)

#include <stdio.h>
#include <signal.h>€— You need to include the signalh header-
#include <stdlib.h>
 This our new signal handler e
The operating system passe
:rom diediedie (int sig) 4"&6 sv;il o the handler.
puts ("Goodbye cruel world
exit(1);

! This is the funckion bo vegister a handler.

%4

int catch_signal(int sig, void (*handler) (int))
{

struct sigaction action;

action.sa_handler = handler;

sigemptyset (¢action.sa_mask)

action.sa_flags = 0;

return sigaction (sig, &action, NULL);

-\n");

SIGINT means we ave capturing This sets the intervupt handler to
int main() the interrupt signal the handle_intervupt() function
{

if (catch_signal (SIGINT, handle_interrupt) == -1) {
fprintf (stderr, "Can't map the handler");
exit(2);

}

char name[30];

printf ("Enter your name: ");
fgets (name, 30, stdin);
printf ("Hello s\n", name);
return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2261328.png.jpg
Create a new attion.

. This is the name of the functio
struct sigaction action; You vant the computer 4o call "

T:;.‘Z dvesome action.sa_handler = diediedie;
Yot The funckion that the sigaction
weaps i called handler

You ¢an just set

them fvera” M action.sa_flags = 0;
The mask is a vay of filtering the
signals that the sigaction will handle

sigemptyset (saction.sa_mask) ;

You'l usually want 4o use an
emphy mask, like heve.

OEBPS/httpatomoreillycomsourceoreillyimages2260836.png.jpg
That's 10 characters from
position s to the \O character,
and malloc(10) tells me T've got
space starting on the heap at
location 2,500,000,

OEBPS/httpatomoreillycomsourceoreillyimages2260962.png.jpg
> ./test drive
These are the scores in order

Score = 554

Score = 543

Score = 323

Score = 112

Score = 32

Score = 11

Score = 3

These are the names in order:
Brett

Karen

Mark

Molly
>

OEBPS/httpatomoreillycomsourceoreillyimages2261146.png.jpg
Maybe if T move
reeeaaadlly slooooowly,
it won't spot me.

OEBPS/httpatomoreillycomsourceoreillyimages2260074.png.jpg
while(feeling hungry) {
if (not_lunch_yet) (
/* Go back to the loop condition */

continue; continie” Lakes you back
) £ the start of e loop.

eat_cake ();

OEBPS/httpatomoreillycomsourceoreillyimages2260692.png
File Edit L
> gcc happy birthday_turtle works.c -o happy birthday_turtle works

Happy Birthday Myrtle! You are now 100 years old!
Myrtle's age is now 100

>

OEBPS/httpatomoreillycomsourceoreillyimages2260076.png.jpg
This is the name of the function-

This funcl
et " Pint main) Nobiog b B ot The body of the Fnction

int value. { the part that does stuff
The body of —> puts("Too young to die; too beautiful to live");

the funttion is return 0; <

m’*"d LN When you've done, you veturn a value.

OEBPS/httpatomoreillycomsourceoreillyimages2260960.png.jpg
#include <stdio.h>

#include <string.h>
#include <stdlib.h>

The comparator
functions go here. —>

int main()
{
int scores[] = {543,323,32,554,11,3,112};

| &
This is the line e
Lhat sorks the ——> gsort (scores, 7, sizeof(int), compare_scores_desc);

stoves. puts ("These are the scores in order:™); '\

.) agort() ehanges
Tor (i = 0; i < 7; i++) (B ordes-of B
This will print out { printf("score = si\n", scores[il); elements in the avvay.
the arvay once ,

it's been sorted.
char *names[] = {"Karen", "Mark", "Brett", "Molly"};

This sorts —% qsort (names, 4, sizeof (char*), compare_names);

the names.
,l\ puts ("These are the names in order:");
Remember: an for (i = 0; i < 4; i++) {
arvay of names printf("ss\n", names(i]); < This prints the sorted names out
i sk am arvay :
oFhar panter
50 the size Eetuca 07
cath item is

sizeof(ehar¥).

OEBPS/httpatomoreillycomsourceoreillyimages2261520.png.jpg
This vecords all the information about the thread.

» pthread_t t0; does_not is the name of the function the thread will vun

This pthread t t1;

tresbes — i ¢ (pthread _create(st0, NULL, does_not, NULL) == -1) &— Alays theek
the error("Can't create thread t0"); for ervors.
thread. if (pthread _create(stl, NULL, does_too, NULL) == -1)

error("Can't create 'Jt\hm\w e

data structure that vill store
e bhiead ks

OEBPS/httpatomoreillycomsourceoreillyimages2261514.png
(T Theead hunctions

need to
void* does_not (void *a) pea

vaid# vetun type
{ {

int i = 07 int i =

void* does_too(void *a)

for (i = 0; i < 5; i+4) { for (i = 0; i < 5; i+4) {
sleep(1); sleep(1);
puts ("Does not!"); puts ("Does too!");

) i

return NULL; Nothing useful return NULL;

4o veburn so
just use NULL.

OEBPS/httpatomoreillycomsourceoreillyimages2260378.png.jpg
is the
The operating " e
system will vun bermuda | geo2json
both programs at 2

the same time. The outpet of bermuda vill become £he inpuct of aealjson.

OEBPS/httpatomoreillycomsourceoreillyimages2261138.png.jpg
e found the book A
Learning OpenCV/
inspivational-

Compider Visom i
B Cpen iy

OEBPS/httpatomoreillycomsourceoreillyimages2260084.png.jpg
#include <stdio.h>

int main()
{
int x = 0;
int y = 0;
while (x < 5) (

T Candidate code gocsbere

printf("$i%i ",
x=x+1;

3

return 0;

¥

OEBPS/httpatomoreillycomsourceoreillyimages2260688.png.jpg
vold happy birthday(turtle *t)

You need bo puk a ¥ before the varidble rame,
{

because you wank £he value i points o
kD) Lage = (KB .age + 1;

printf ("Happy Birthday $s! You are now %i years old!\n",

LR name, | (K) .age):

The paventheses are veally important.
] S SR i s i e el

OEBPS/httpatomoreillycomsourceoreillyimages2260134.png.jpg
© Get the address of a variable.
You've already seen that you can find where a variable is stored in
memory using the & operator:

The %p Format will

prin out. the location in
hex (base 16) Fowhit printf ("x lives at %p\n", &x);

int x = 4;

Butonce you've got the address of a variable, you may want o store it
somewhere. To do that, you will need a pointer variable. A poi § 21661000
variable s just a variable that stores a memory address. When you

declare a pointer variable, you need to say what kind of data is stored 7\

atthe address it will point t: % vill find the

b

This is a pointer variable for . addvess of
o address that stores an mtﬁ int *address_of x = &x; The vaviable:
4,100,000.

© Read the contents of an address.
When you have a memory address, you will want o read the data
that’s stored there. You do that with the * operator This will vead the contents at
the memory address given by
int value_stored = *addrass_of_x;(——\audvmjz) This will be set
4o 4 the value originally skored

The + and & operators are opposites. The & operator takes a piecce ™ the % variable.

of data and tells you where ics stored. The * operator takes an
address and tells you what's stored there. Because pointers are
sometimes called references, the * operator is said o dereference
a pointer.

© Change the contents of an address.
If you have a pointer variable and you want © change the data
at the address where the variable’s pointing, you can just use the *
operator again. But this ime you need to use it on the lefe side of
assignment

*address_of_x = 99; x

This will change the contents of
+the original % variable £o 99.

OEBPS/httpatomoreillycomsourceoreillyimages2261324.png.jpg
Hey! He hit Ctrl-c.
Run your interrupt
handler.

o [
Someone hits Ctrl-C.
\': /\/\/\
e
Interrupt
signal

The operating
sstem sends an The proces v
intervupt sgral i debale bt process

operating system handler and calls exit().

OEBPS/httpatomoreillycomsourceoreillyimages2261322.png.jpg
#include <stdio.h>

int main()

(
char name[30];
printf ("Enter your name: ");
fgets (name, 30, stdin);
printf("Hello $s\n", name);
return 0;

e —
> ./greetings
Enter your name
>

I£ ou press Clel-C, the program
shops vunning. But why?

OEBPS/httpatomoreillycomsourceoreillyimages2260832.png.jpg
[will display the details — i sp1ay (p_isiando) ;
of the list, of islands using the

function we treated earlier

N tohuarshlTslanG
2222 open: 09:00-17:00
What haprened to Atlantis Nena it oranr riraTand

open: 09:00-17:00

The first island now
has the same name 3¢
the second islangill

OEBPS/httpatomoreillycomsourceoreillyimages2261140.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260122.png.jpg
Arrl We be
writin' a bad
Amazon review!

becalmed,
caprl

OEBPS/httpatomoreillycomsourceoreillyimages2260696.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260070.png.jpg
This is the text condition chetked

before the loop vuns each time This is the ode that
int counter; N1 will vun after eath loop.
abnes 97 (counter = 1; counter < 11; counterts) (
i mtializes the
.Ir:;;»;n:bl:“ printf("si green bottles, hanging on a wall\n", counter

1
R Because there's only one line in the loop body, you could actually have skipped these braces.

OEBPS/httpatomoreillycomsourceoreillyimages2261536.png.jpg
— Thread 2

OEBPS/httpatomoreillycomsourceoreillyimages2260396.png.jpg
This will eveate a This is the name of the file.
data sromm b N /This is the mode: “v” means “vead.”
read from 3 File /> FILE *in_file = fopen(input.txt", "z");

This ill ereate 2 This is the name of the fie

e " \p1ze +out_file = fopen(toutput. txer, wiy; " O mode: " means “write”
weite 4o 3 Lile. Hexty Wik

OEBPS/httpatomoreillycomsourceoreillyimages2260840.png.jpg
> ./test_flight
Atlantis
Titchmarsh Island

Name: Atlantis
open: 09:00-17:00
Name: Titchmarsh Island
open: 09:00-17:00

OEBPS/httpatomoreillycomsourceoreillyimages2260120.png.jpg
A2t WTF? The ship retarvondow T
is still in the > gec southeast.c -o southeast
same place. > _/southeast.

B vast! Now at: [32, -64]
Where's The >
Fightin?

OEBPS/httpatomoreillycomsourceoreillyimages2260686.png.jpg
e ing to
d happy_birthday (turtle *t) i o “Someone is going 14
;’°1 i &,5‘.; me 3 painter to @ struet

Remember: an addvess is a painter

This means You will pass the addvess of
the myrtle variable to the funttion.

happy birthday (smyrtle) ;

OEBPS/httpatomoreillycomsourceoreillyimages2261288.png.jpg
Since I created
You, you never write,
you never phone..

T Child protess

Pavent protess

OEBPS/httpatomoreillycomsourceoreillyimages2261342.png.jpg
ps displays your P Vi o
turvent protesses. Y > ps

77868 ttys003 0:00.02 bash This is the program we want 0
ILTECCOSCIIZ U 76222 ttys003 0:00.01 ./testprog send sigpals 4o 18222 is the
PR e > kill 78222

> kill -INT 78222
This sends SIGINT_ 7 (RIS or o)
1o the program. > kill -KILL 78222

This sends SIGSEGV
to the progeam

process [D.

This sends SIGKILL, which ean't be ignored.

OEBPS/httpatomoreillycomsourceoreillyimages2260066.png.jpg
H
i

while

balls

eep_juggling

OEBPS/httpatomoreillycomsourceoreillyimages2261530.png.jpg
int beers = 20000007
void* drink lots(void *a)
(

int i;

for i < 100000; i++) {

beers = beers - 1;
}
return NULL;
b
int main ()
(
pthread_t threads[20];
int t;
printf("%i bottles of beer on the wall\n%i bottles of beer\n", beers, beers);

for (t = 0; t < 20; t++) { To save space, we've skipped testing
for ervors—but don't you do that!
¥

I‘mmﬂdsrcl ' , NULL, .
void* result;

for (t = 0; t < 207 t++) {
. _(threads[t], &result);
1

printf ("There are now %i bottles of beer on the wall\n", beers);

th;
| Pthread create | (NULL) ;

return 0;

e

OEBPS/httpatomoreillycomsourceoreillyimages2260392.png.jpg
=
S =

ufos.csv
M
A
y- 4
Pooft”. >
2 = N =0 i
categorize — 1= ol
Qgg (8T 8 o) | =4
spooky.csv {("f% disappearances.csv
&

"oy 2 7

Gy
other.csv

OEBPS/httpatomoreillycomsourceoreillyimages2261532.png.jpg
> ./beer

2000000 bottles of beer on the wall

2000000 bottles of beer

There are now 0 bottles of beer on the wall

> ./beer

2000000 bottles of beer on the wall

2000000 bottles of beer

R There are now 883988 bottles of beer on the wall

> ./beer

2000000 bottles of beer on the wall

2000000 bottles of beer

LSBT There are now 945170 bottles of beer on the wall
>

he 20 threads have veduced —
the beevs variable to 0.

Hey vait

Wheve's The Froth?

OEBPS/httpatomoreillycomsourceoreillyimages2260394.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260838.png.jpg
2,500,000 is an
M: 2,500,001 is
anO; ..

OEBPS/httpatomoreillycomsourceoreillyimages2261526.png.jpg
on tLose The Threac

When you vun the code, the—7" g

messages might come out in 3

different order than this.

OEBPS/httpatomoreillycomsourceoreillyimages2261124.png.jpg
WeiGHT: 117.10 18S
Distance: 9.40 MiLes

Cawaries BURNED: 750.42 CAL

OEBPS/httpatomoreillycomsourceoreillyimages2261144.png.jpg
% The image You vead

The name of the image file from the webeam 10 You vant a

cvSaveImage ("somefile.jpg", image, 0); Jorsle inae, et
I~ this flag 45 0.

OEBPS/httpatomoreillycomsourceoreillyimages2261284.png.jpg
That's great. Now
T'll never miss
another story again.

OEBPS/httpatomoreillycomsourceoreillyimages2260844.png.jpg
1sland *start = NULL:

island *i = NULL; 3% the end of eath
. ey oo, set 1 £ the next
io1and TREKE = NULLY | i s tvimg from dhe Standard byt sl e crested.

char name([80]; v
for(; _fgets(name, 80, stdin) ! NULL ii= next) 1

This trestes pnext = create (name);

4 ;
an island. We'l keep looping until we dor't et any more strings.

The first time through, start s set 4o
NULL, so set. it to the First island.

if (start

NULL)
start = next

if (i != NULL)

i = next;

}

display(start); Dent forget: i is a pointer, so
we'll use —> notation

OEBPS/httpatomoreillycomsourceoreillyimages2260072.png.jpg
while (feeling hungry) {
eat_cake ();
if (feeling_queasy) {
/* Break out of the while loop */

break;

}

“preak” skips ovt of
drink_coffee();

Ehe loop immediately.

OEBPS/httpatomoreillycomsourceoreillyimages2260148.png.jpg
On most. machines, this — gizeof (int) This will vetuen 9, which is 8
will veturn the value 4.~ g3 za0f ("Turtlestm) E— chavacers plus the \O end havacter.

OEBPS/httpatomoreillycomsourceoreillyimages2260684.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261126.png.jpg
US heal
library

OEBPS/httpatomoreillycomsourceoreillyimages2261330.png.jpg
void diediedie (int sig) This is the signal number
(IR the handler has caught

puts ("Goodbye cruel world....\n");
exit(1);

OEBPS/httpatomoreillycomsourceoreillyimages2260144.png
vold fortune cookie (char msgll)

(The funetion will be passed a char avvay.

printf("Message reads: $s\n", msg);

char quote[] = "Cookies make you fat";
fortune cookie (quote) ;

OEBPS/httpatomoreillycomsourceoreillyimages2260146.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260682.png.jpg
void happy_birthday(turtle t)
{

This is the turtle that ve are
passing o the function

happy_birthday (myrtle);

X The myrtle struct il be

eoried to this parameter.

OEBPS/httpatomoreillycomsourceoreillyimages2261528.png.jpg
int beers = 2000000; & Degin with 2 million beers
void* drink_lots (void *a)
(A Eaeh thread vl vun s funchion.
int i;
for (i = 0; i < 100000; i++) {
beers = beers = 1i S—The function will vedute the
) bees vaviable by 100,000.
return NULL;
)
int main()
(
pthread t threads(20];
int t;

printf("$i bottles of beer on the wall\n%i bottles of beer\n", beers, beers);

for (t = 0; t < 20; t++) { &— Youll treate 20 threads To save space, this example skips
Ehat vun the function sty for ervors, bt don't you d
that/

.o NULL, ..o NULL);

}
void* result;
for (t = 0; t < 207 t++) {

This code waits for all the
 (threads[t], &result); <= (s hveads o Finith

}
printf ("There are now %i bottles of beer on the wall\n", beers);
return 0;

}

=
&threads(¢)

OEBPS/httpatomoreillycomsourceoreillyimages2260862.png.jpg
A

OEBPS/httpatomoreillycomsourceoreillyimages2260866.png
Has a mustache?

vill sbore new —3
One gold t00th? | informstion m the | Facial scar?

tree like his.

Cliffy Five Fingers Vinny the Spoon

Hayden Fantucei Loretta Barnsworth

T
e The g‘m Tames ahiays appear 3t

the ends of the tree

OEBPS/httpatomoreillycomsourceoreillyimages2261468.png.jpg
Most web sevvers vun on port 80

This is the mameric
address of Wikipedia.
You might aet 2 slintly - R L
,;pﬂfht aﬁddrm 5k (AP Trying 91.198.174.225
it - Connected to wikipedia-1b.esams.wikimedia.org.
You try i Escape character is '~]'.
(VRYITROR Y CET /wiki/O'Reilly Media http/1.1 <— Thisis the path that follows
[RETOIEAPRIWI{ Host: en.wikipedia.org +the hostname in the URL.

x In HTTR/L, you need 4o say
what. hostname you are using

HTTP/1.0 200 OK
Server: Apache

And then you need to

st "http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
The sevver Yirs! <html lang=en" dir="ltr" class="client-nojs"

vesponds with some xmlns="http: //www.w3.0rg/1999/xhtml">

exbra details about <head>

the web page <title>0'Reilly Media - Wikipedia, the free encyclopedia</title>

I And this s the HTML. for he weh Page.

hit veturn and leave 2 77 [N
blank line. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

OEBPS/httpatomoreillycomsourceoreillyimages2260310.png.jpg
This is the GPS it

used to track the \A ¢ /—\ _

el gl 1 —The data F downloaded
T into this File
—_—

P

gpsdata.csv

\I/
O

& Reading this file

This i o gecdjion ool ~y

I
%
Q‘%
A
Writing this file
S .
Your tool ill //
four tool will writ .
bt = // £—The mapping aplication
—

autput jion and displays it
on 3 map inside 2 web page.

s veads the data from

output json

OEBPS/httpatomoreillycomsourceoreillyimages2261304.png.jpg
The destriptors will be
stored in this arvay
‘ﬁ« pass the name int £d[2];
the arvay 4o — 1 ¢ 23] s
bhe pred Bcban 7 - (BiRE(ED !¢

error("Can't create the pipe");

OEBPS/httpatomoreillycomsourceoreillyimages2261358.png
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>

#include <string.h>
#include <errno.h>

#include <signal.h>

int score = 0

void end_game (int sig)

{

printf("\nFinal score: $i\n", score);

You need to S (n):
e it S5 et

h:oandg(,,, }

int catch_signal(int sig, void (*handler) (int))
{

struct sigaction action;

action.sa_handler = handler;

sigemptyset (saction.sa_mask);

action.sa_flags = 0;

return sigaction (sig, &action, NULL);

OEBPS/httpatomoreillycomsourceoreillyimages2260870.png.jpg
2
ool

inoiod ~ malloc()
lootor x

] wlapind
pes. intertepts
¢alls to the
malloe)

and free()
Lunttions.

L

valgyind vill keep track of data
that is allocated but not freed.

OEBPS/httpatomoreillycomsourceoreillyimages2260468.png
#include <stdio.h>

. total = 0.0;

.. count = 0;

tax_percent

. add_with_tax(float f)

_tax_rate = 1 + tax_percent / 100 ...
total = total + (£ * tax rate);

count = count + 1;

return total;

int main()
{

val;

printf ("Price of item

while (scanf("$£", &val)

o
printf("Total so far: $.2f\n", add_with_tax(val));

princt ("Price of item: "); “~%yf Formats a flosting-point
) number £o tuo detimal plates
printf("\nFinal total: :.2f\n", total);
printf ("Number of items: $hiln", count);
return 0;

} %hi is used 4o format shorts.

OEBPS/httpatomoreillycomsourceoreillyimages2261012.png.jpg
#include "encrypt.h"

void encrypt(char *message)

(void encrypt (char *message);

while (*message) {

iy

*message = *message " 31;

encrypth

message++;

OEBPS/httpatomoreillycomsourceoreillyimages2261470.png.jpg
I was taught
never o speak
until T'm spoken to.

Sevver —

OEBPS/httpatomoreillycomsourceoreillyimages2260880.png
} else if (current->no) {

current = current->no;

} else {

/* Make the yes-node the new suspect name */
printf ("Who's the suspect? ");

fgets (suspect, 20, stdin);

node *yes_node = create (suspect);

current->yes = yes_node;

/* Make the no-node a copy of this question */

node *no_node = create (current->question);

current->no = no_node;

/* Then replace this question with the new question */

printf("Give me a question that is TRUE for %s but not for %s? ",
suspect, current->question);

fgets(question, 80, stdin);

current->question = strdup(question);

break;

OEBPS/httpatomoreillycomsourceoreillyimages2260674.png.jpg
finclude <stdio.h>

Aypedef.

float tank_capacity;

..struct {

int tank _psi;
const char *suit_material;

) equipment.

typedef _struct scuba {
const char *name; 7‘
Squ-pnent it/ The coder detided o give the struck the name

} divers € “seubd’ here. But youll st se bhe diver ype rame

void badge (_diver. o d)
{
printf("Name: $s Tank: $2.2f(%i) Suit: %s\n",

d.name, d.kit.tank capacity, d.kit.tank psi, d.kit.suit _material);

int main ()
(
diver. randy = {"Randy", (5.5, 3500, "Neoprene"}};

badge (randy) ;

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2259992.png.jpg
Qutput

The compiler creates a new
file called an executable.
file contains machine code,

his

astream of 1s and Os that

the computer understands,

And that’s the program you
o

OEBPS/httpatomoreillycomsourceoreillyimages2260608.png.jpg
The IDE lets you upload ¢ode
to the Arduino hoard ‘

ARDUINO

and see what data's being me
EE&(ey

OEBPS/httpatomoreillycomsourceoreillyimages2260360.png.jpg
e —
> gce geo2json.c -o geo2json

> ./geo2json-page21 < gpsdata.csv > output.json
Invalid latitude: 423.631805

OEBPS/httpatomoreillycomsourceoreillyimages2260480.png.jpg
Dude, the order

of the functions
is busted. Fix it.

2]

OEBPS/httpatomoreillycomsourceoreillyimages2260678.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260672.png.jpg
typedet
means you
“>typedef struct cell_phone (

are going
to give int cell no;

the stuet const char *wallpaper;
type a new

float minutes_of_charge;

} phone; €— phone will betome an alas for
“struct eell_phone”

name.

phone p = (5557879, "sinatra.png", 1.35);

Now, when the copler sees “phone;” it vill
Lreat it like “struck cell_phone”

OEBPS/httpatomoreillycomsourceoreillyimages2259996.png
it Card_count = 115 A integer is 3 whole pumbey, .CrE3EE.an integer variable and set it to II.

if (card_count > 10)

puts("The deck is hot. Increase bet."];

Ths displays 3 string on the command prompt or terminal

block statement,

puts("I must not write code in class")}

int ¢ = 10; o The braces define 5 Create an inteaer variable and set it to 10,
{

c=c-

/* Bssume name shorter than 20 chars. */

char ex[20];

ts("Enter boyfriend's name: ");
) £eThis means “hore everything the
user types into the ex arvay.

$s.\n\n\tYou're history.\n", ex);

This will insert. 4
characters here

printf("Dea

Place of the %s.

ar suit = 'H';
| A suiteh statement checks
SO S izl for diffment e

switcl

case 'D

puts ("Diamonds”) ;
b,

case 'H':

puts ("Hearts"

brea

fault

puts ("Spades

OEBPS/httpatomoreillycomsourceoreillyimages2260680.png.jpg
—c—
> gce turtle.c -o turtle & ./turtle

Happy Birthday Myrtle! You are now 100 years old!
Myrtle's age is now 99

>

Wicked
Turtle
Feet

OEBPS/httpatomoreillycomsourceoreillyimages2260740.png
else if (-)
printf("32.2 1bs of is\n", order.amount.weight, order.name);

else

printf("ti $s\n", order.amount. + order.name) ;

int main()

£ruit_order apples - ("apples”, "England”, .amount.count=144,

fruit_order strawberries = {"strawberries”, "Spain”, .amount. ..=17.6, POUNDS};

fruit_order of = ("orange juice”, "U.S.A.", .amount.volume=10.5, in

display (apples) ;
display (strauberries);
display (o) ;

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2261472.png.jpg
208.201.239.100 <—— Addvesses with four digits are in [P version & format. Most
will eventually be veplaced with longer version b addvesses.

OEBPS/httpatomoreillycomsourceoreillyimages2260610.png.jpg
We
/e used an Avduino Uno.

You will need’

1 Avduine
I dotess breado™

| L\ZD

| 10K Ovm "“‘W

7 ?\wwud

3 dhork et i o e
D etz o 37T e

OEBPS/httpatomoreillycomsourceoreillyimages2260864.png.jpg
& This is the fivst question

Has a mustache?

Yes, Vinny has 2 mustache. No, Lovetta does not. have a mustache
- <

Vinny the Spoon Loretta Barnsworth

OEBPS/httpatomoreillycomsourceoreillyimages2260606.png.jpg
n
Arduino
board >

Analos
inpuct
pins O
%

OEBPS/httpatomoreillycomsourceoreillyimages2260486.png.jpg
A function called add_with_tax() that
returns a float??? But in my notes it says we've
already got one of these returning an int.

OEBPS/httpatomoreillycomsourceoreillyimages2261306.png.jpg
This will tlose the vead end of the pipe
The ez.u wor't
read from the pipe. —>cLose (£4[01) ; ,— The ehild then comnecks the write
dup2 (£d[1] 1,./ end to the Standard Output

[# [Datastream]
[0 [standardimpst |

Thi £ The ¢ehild
the e o Binpdandioutpat Weito-ond of tho pipe [vor't vead
of the pipe ~ | standard error Seom the pipe

[menavomiomivaptes
Write-end of the pipe
0

but will
write.

This is £dC13, the write end
of the pipe.

OEBPS/httpatomoreillycomsourceoreillyimages2260604.png.jpg
Th'\: Plant status is
shown on Your computer.

The LED lights up when
the plank needs vatering

Feed me!

Feed me! USB eable

Feed me!

The moisture sensor
dekects whether or not
Lhe plant needs watering

Solderless

breadboard

OEBPS/httpatomoreillycomsourceoreillyimages2260736.png.jpg
Nope: I'm not
compiling that;

The computer will spot £hat this is iv4 not on my lis,

not 3 legal value, so it won't compile.

enum colors favorite = PUSE;

OEBPS/httpatomoreillycomsourceoreillyimages2261302.png.jpg
=5 w &an be vead from here

OEBPS/httpatomoreillycomsourceoreillyimages2261466.png.jpg
B BT T B
> telnet 127.0.0.1 30000
Trying 127.0.0.1.

Connected to localhost.
LA ¢ cape character is 'A'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
>

OEBPS/httpatomoreillycomsourceoreillyimages2260364.png.jpg
THE BUY SUBMARINE
SIX WILL EGGS
SURFACE AND AT

SOME NINE MILK PM

————

Run with:

> vill vedivect the Standard Output

secret_messages < secretixt > messagelbx 3 messageadd

2> vill vediveet the Standard Evvor.

OEBPS/httpatomoreillycomsourceoreillyimages2260466.png.jpg
long double d; longlenyis CTi
and Cll only
A veally REALLY

precise number.

OEBPS/httpatomoreillycomsourceoreillyimages2260470.png
You need
#include <stdio.h>

3ol
»::::5;?«%& £0tal = 0.0; Tyve wor'k be many items on 3n
" ; .0; e ot be man
bbal he ca” . count = 0; = order 5o well choose 3 short
. tax_percent = 6;
) add with_tax(float £) L We've veturning 3 swall cash value, so i1l be 3 float.

Afloat il (
be ofvfo; ——>4float__tax rate = 1 + tax_percent / 100 .0.. ;
s faction o1~ total + (£ * tax_rate)s gf‘“‘"ﬂ 0, you mke the

count = count + 1; ealeulation work as 3 float: 1

return total; left it as 100, it weuld
Yo vebrned a vhele number

1+ tax_peveent. / 100;

int main()) would veBurn the vale |
. - Bath picewil casly it in 3 float betause /100 =m0 in
bt inteaer arithmetic

printf ("Price of item: ");
while (scanf("3£", &val) == 1) {

printf("Total so far: $.2f\n", add_with_tax(val));
"

printf("Price of item:
)

printf("\nFinal total: %.2f\n", total);
printf ("Number of items: $hi\n", count);

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260370.png.jpg
This is longibude —76°

— e Thisis
latitude 26°

This is longitude —64°

OEBPS/httpatomoreillycomsourceoreillyimages2259998.png
© | ¢ programs normally begin with a comment.
T'he comment describes the purpose of the code in the file, and might
include some license or copy

ght information. There’s no absolute need

w0 include a comment here-—or anywhere else in the file—but it good
practice and what most C programmers will expect to find

The omment, starts vith /% > /*

* Program to calculate the number of cards in the shoe.

These s are optional. They'e
orly there to make it look pretty.) * This code is released under the Vegas Public License.

* (c)2014, The College Blackjack Team.
*/

e Next comes the —3 4include <stdio.h>
include section.

Cisavery, very small

The eomment. ends vith %/,

language and it can do int main()
almost nothing without (

the use of external
libraries. You will need
to tell the compiler what puts ("Enter a number of decks");

external code to use by scanf ("$i", &decks);

including header fles 9 (D & 8 4

int decks;

for the relevant libraries.

The header you will see puts ("That is not a valid number of decks
more than any other return 1;

is stdio.f. The stdio

library contains code D

that allows you (o read printf ("There are %i cards\n", (decks * 52));
and write data from and st @8

to the terminal.

@ The last thing you find in a source file are the functions.

All C code runs inside functions. The most important function you will
find in any C program is called the main () fanction. The nain ()
function is the starting point for all of the code in your program.

OEBPS/httpatomoreillycomsourceoreillyimages2260668.png
Name :Snappy
Species:Piranha

4 years old, 69 teeth

Feed with 0.20 1bs of meat and allow to swim in the jacuzzi for 7.50 hours

void label (struct fish a)
(
printf ("Name:$s\nSpecies:$s\nti years old, %i teeth\n",
a.name, a.species, a.teeth, a.age);
printf("Feed with $2.2f lbs of %s and allow to s for %2.2f hours\n",
i3h)
atave.exertise.destription o atareexercise duration)i

OEBPS/httpatomoreillycomsourceoreillyimages2261336.png.jpg
L indow Help
> ./greetings
Enter your name: “CGoodbye cruel world....

>

OEBPS/httpatomoreillycomsourceoreillyimages2260316.png.jpg
42.36

71.098465,

42.363327,-71.097588, Speed = 23

This is the file containing the
data from the GPS device

4
6
42.362965,-71.093201, Speed = 18
42.362892,-71.09: 2

3,Speed = 2

47,-71.090569, Speed = 23
5,-71.089691, Speed = 14
2,-71.088814, Speed = 19
087936, Speed = 1.
71.087053,

This i tellng the operating

syt tosnd the dota oam Yo dortt hve o b n e
the File into the Standard 6PS data, so you den't see '
Infut. of the program. e up vith the avtpt

> ./geo2json < gpsdata.csv

data=[

{latitude: 42.363400, longitude: .098465
{latitude: 42.363327, longitude: 097588,
{latitude: 42.363255, longitude: 096710,

N i cee the—> [EETEREE 363182, longitude 095833,
bl bl {latitude 363110, longitude 094955,
JSON data coming {latitude: 42.363037, longitude: 094078,

from the program

{latitude: 42.362385, longitude: .086182,

1
>

OEBPS/httpatomoreillycomsourceoreillyimages2261298.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260324.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261338.png.jpg
Goodbye,
cruel world...

OEBPS/httpatomoreillycomsourceoreillyimages2260320.png
Now you ave vedivecting both
the Standard Input and the
Standard Output.

> ./gec23son < gpsdata.csv > output.json
>

The output of the program will
now be written to au::u{ joon.

data=
{latitude: 42.363400, longitude: -71.098465,
{latitude: 42.363327, tude: -71

*speed
*Speed

{latitude: 42.363255, tude: -71 *speed
{latitude: 42.363182, longitude: -71.095833, *speed
There's no avtpt {latitude: 42.363110, 0. Speed
on e display at all {latitude: 42.363037, 094078, *Speed
s all qone to the {latitude: 42.362965, longitude: -71.09 *speed
outpu.json file. {latitude: 42.362892, tude: -71.092323, 'Speed
{latitude: 081446, *speed
{latitude: 090569, *speed
(latitude: 08969 Speed
{atitude: 08881 *Speed

{latitude:
{1atitude:
{latitude:
1

longitude: -71.087936,
087059,
086162,

*speed
Speed
'Speed =

Lon

output.json

OEBPS/httpatomoreillycomsourceoreillyimages2261340.png
SIGINT ~———— 7 Ihe process was nterrupted.

The terminal window changed size.

SIGQUIT

‘The process tried to access llegal memory.
SIGFPE

Someone just asked the kernel to kill the
SIGTRAP process.

The process wrote to a pipe that nothing’s
SIGSEGY reading
SIGWINCH Floating-point error.
R Someone asked the process to stop and dump

the memory in a core dump file:

SIGPIPE The debugger asks where the proc

OEBPS/httpatomoreillycomsourceoreillyimages2260484.png.jpg
Meh. I bet the function
returns an int. Most do.

OEBPS/httpatomoreillycomsourceoreillyimages2261300.png.jpg
T want a program
that opens stories in
my browser as soon
as they'e found.

Standard input
Standard output
Standard error
Read-end of the pipe
Write-end of the pipe

This is $d[01. -3
This is £d013.—>{4]

Calling pipel) ereates these two destripors.

OEBPS/httpatomoreillycomsourceoreillyimages2260488.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261296.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2259980.png.jpg
Vince Milner

OEBPS/httpatomoreillycomsourceoreillyimages2260042.png.jpg
We've alveady got
code that does this.

We can just use @

How do we check that
varizble for this: ———y lncre&ge ©

s >= 3 and <= b7
s that dwo cheeks?
We've got 4o cheek for a few

values here..or do we?

OEBPS/httpatomoreillycomsourceoreillyimages2260036.png.jpg
£ (dealer_card

6 {

double_HoWR) i S BOTH of these tomminds will
B80T & vunif the condibion & brue
The commands are arouped
inside single blotk shopement.

OEBPS/httpatomoreillycomsourceoreillyimages2260656.png.jpg
ey, look, someone’s

Bl > nake pool puzzle && ./pool_puzzle

gee pool_puzzle.c -o pool puzzle
This line is printed out Snappy iS a Piranha with 69 teeth. He is 4
by the catalog() funttion z Name : Snappy

using make

Species:Piranha
QLIPS © voars old, 69 teeth
>

by the label) funckion

OEBPS/httpatomoreillycomsourceoreillyimages2260130.png.jpg
Instead of jasm'-a

Un: walue
. £ aviable s s
update locker peter

4,100,000

OEBPS/httpatomoreillycomsourceoreillyimages2260872.png.jpg
gcc -g sples.c -0 spiles

The g switeh tells the compiler
4o vecord the line numbers
against the tode it compiles.

OEBPS/httpatomoreillycomsourceoreillyimages2261332.png.jpg
The sigpal number A pointer to the handler funttior

int catch_signal (int sig, void (*handler) (int))
{
struct sigaction action;

action.sa_handler = handler; < Set the action’s handler to
the handler function that

was passed in.

£ Create an attion

Use an empty mask. —> Sigemptyset (saction.sa mask) ;
action.sa flags = 0;

return sigaction (sig, &action, NULL);

Return the value of sigaction),

50 You ¢an theek for ervors.

OEBPS/httpatomoreillycomsourceoreillyimages2260868.png.jpg
> gcc spies.c -o spies && ./spies

Does suspect have a mustache? (y/nm): n

Loretta Barnsworth? (y/n): n

Who's the suspect? Hayden Fantucci

Give me a question that is TRUE for Hayden Fantucci
but not for Loretta Barnsworth? Has a facial scar
Run again? (y/n): y

Does suspect have a mustache? (y/m): n

Has a facial scar

? (y/n): y
Hayden Fantucci
? (y/m): y

SUSPECT IDENTIFIED
Run again? (y/n): n
>

OEBPS/httpatomoreillycomsourceoreillyimages2261272.png.jpg
il Bt Window Help headAlAboutit
N . > ./newshound2 'pajama death'
odats in the A

filez wTF2le -

Wheve's The Faets?

OEBPS/httpatomoreillycomsourceoreillyimages2260106.png.jpg
But T prefer
‘this one—it's

You were supposed fo
Sign the birthday card we
left in the lunch room.

OEBPS/httpatomoreillycomsourceoreillyimages2261276.png.jpg
You need to include

#include <sys/wait.h>
the sys/waith ﬁ|. ~ —— A
header.

This variable is used to store
information about the process.

This new tode goes
at the end of the
newshound program.

This is a pointer " i
int pid_status; Pointer &0 an int.

if (waitpid(pid, &pid_status, 0) == -1) { You tan add

options heve.
error ("Error |waiting for child process");

¥

The
return 0; ¢ process D

newshound?2.c

OEBPS/oreilly_large.png.jpg
OREILLY®

OEBPS/httpatomoreillycomsourceoreillyimages2260034.png.jpg
i ondition.
if (value_of hand <= 16) & This is the &

BAt ()7 € Run this statement if the condition is true.
else

stand () ; — Run this statement if the condition is false.

OEBPS/httpatomoreillycomsourceoreillyimages2260112.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260110.png.jpg
#xis the addvess of x.

printf("x is stored at_tp\n", &x);

This is what the i format addvesses
code vill print Tiedte
x is stored at O0x3E8FAQ \{ "
oIl probably get
i hloopoon T IR It act
hex (base 16) format on Your machine.

OEBPS/httpatomoreillycomsourceoreillyimages2260366.png.jpg
THE BUY SUBMARINE

Run with:
SIX WILL EGGS

SURFACENaNDPAT secret_messages secretixt > messagelbd 4> messageadd

SOME NINE MILK PM

OEBPS/httpatomoreillycomsourceoreillyimages2260038.png.jpg
Tve had a thought.
Could this check if
acard value is ina
particular range? That
might be handy.

OEBPS/httpatomoreillycomsourceoreillyimages2260482.png.jpg
Hey, here's a call to a function Tve
never heard of. But Tl keep a note of it
for now and find out more later.

OEBPS/httpatomoreillycomsourceoreillyimages2260362.png.jpg
finclude <stdio.h>

int main()
{
char word[10];
int i = 0;
while (scanf("$9s", word)

i

% 2 means “The e

vemainder thn\xffu 5 2 . - .
ide by 2" printf (stdout, "$s\n", word);

you dvide by else

fprintf(stderr, "$s\n", word);
¥

return 0;

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages2261460.png.jpg
Lo W-" B TR W T
> gec ikkp_server.c -o ikkp_server
ISl > - /ikkp _server

Waiting For connection

OEBPS/httpatomoreillycomsourceoreillyimages2260308.png.jpg
We really don't want the output
on the screen. We need it ina file
S0 we can use it with the mapping
application. Here, let me show you

OEBPS/httpatomoreillycomsourceoreillyimages2260024.png.jpg
teeth {o
the wlueatee"h = 4
by
teeth == 4;
Test if teeth has

the value &.

OEBPS/httpatomoreillycomsourceoreillyimages2260852.png
YEY

OEBPS/httpatomoreillycomsourceoreillyimages2260294.png.jpg
int main()
{

ch:

*Juices(] = {

"dragonfrui

"waterberry", “sharonfruit", "uglifruit",

“rumberry", “kiwifrui !

"mulberry’ auberry",

"blueberry", "blackberry

puts(juices(6]);
rint_reverse (juices(7]);

a = juices[2];

Down

() ruts (Suices(2]);
() print_reverse(juices(9]);

juices(1] = juices(3);

puts(juices[10]);
print_reverse (juices(1]);

return 0;

juices(2] = juices(8];

juices[8] = a;

puts (Juices(8]) ;
print_reverse (juices((18 + 7) / 51);

OEBPS/httpatomoreillycomsourceoreillyimages2260896.png.jpg
My go_on_date()
is awesome now
that I've discovered
variadic functions.

OEBPS/httpatomoreillycomsourceoreillyimages2260876.png.jpg
File Edit W

> valgrind --leak-chec] 2
==2750== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
Does suspect have a mustache? (y/n): n

Loretta Barnsworth? (y/n): n

Who's the suspect? Hayden Fantucci

Give me a question that is TRUE for Hayden Fantucci

but not for Loretta Barnsworth? Has a facial scar "':E' allocated new pieces
Run again? (y/n): n 19 bykes was left on the heap. memory Il Limes, but
HEAP SUMMARY : 'z

only freed 10 of them.
in use at exit: 19 bytes in 1 blocks k= ! e
total heap usage: 11 allocs, 10 frees, 154 bytes allocated
19 bytes in 1 blocks are definitely lost in loss record 1 of 1
at 0x4026864: malloc (vg_replace malloc.c:236)
by 0x40B3AOF: strdup (strdup c,Azy‘—\T
by 0x8048587: create (spies.c:22)
by 0x804863D: main (spies.c:46) (,5>
LEAK SUMMARY:
definitely lost: 19 bytes in 1 blocks

n
Why 19 bykes? s that a clue?

Do these lines gjve us any elues?

OEBPS/httpatomoreillycomsourceoreillyimages2260372.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261270.png.jpg
I think there might be a
problem with the program.
See, T just tried the same thing,
but on my machine the file was
empty. So what happened?

OEBPS/httpatomoreillycomsourceoreillyimages2261454.png.jpg
After forking the

Onte the child gets
child, the pavent L&close(comect a;

ereated, it can
tlose this socket. close(listener_d) ; tlose Lhis sotket.

OEBPS/httpatomoreillycomsourceoreillyimages2260726.png
1217

margarita m = {2.0, 1.0,

measures Of tequila\ns2.lf measures of cointreau\n$2.1f
measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures

of tequila
1.0 measures of cointreau
2.0 measures of juice

margarita m = {2.0, 1.0,

{0.5}};

printf("%2.1f measures of tequila\n:2.lf measures of cointreau\n%2.1lf
measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila
1.0 measures of cointreau
0.5 measures of juice

margarita m = {2.0, 1.0, {.lime_pieces=1}};

printf(":2.1f measures of tequila\ns2.lf measures of cointreau\nti pieces
of lime\n", m.tequila, m.cointreau, m.citrus.lime pieces);

2.0 measures of tequila
1.0 measures of cointreau
1 pieces of lime

OEBPS/httpatomoreillycomsourceoreillyimages2261274.png.jpg
Can you save these
stories to the file?

Might take
auwhile.

That's OK,
T can wait.

AW

newshound child process

OEBPS/httpatomoreillycomsourceoreillyimages2261456.png
while (1) {
int connect_d = accept (listener d, (struct sockaddr *)sclient_addr,

saddress_size);

-1)
error("Can't open secondary socket");

if (connect d

if (.

close(

if (say(connect_d,
"Internet Knock-Knock Erotocol Server\r\nVersion 1.0\r\nKnock! Knock!\r\n> ")
=-1) {

read_in(connect d, buf, sizeof (buf));

if (strncasecmp("Who's there?", buf, 12))
say (connect_d, "You should say 'Who's there?'!");
else {

if (say(connect_d, "Oscar\r\n> ") -1

read_in(connect d, buf, sizeof (buf));

if (strncasecmp("Oscar who?", buf, 10)
say (connect_d, "You should say 'Oscar who?'!\r\n");
else

say (connect_d, "Oscar silly question, you get a silly answer\r\n");

.. % What should the ehild do when the conversation is done?

OEBPS/httpatomoreillycomsourceoreillyimages2260722.png
margarita m = {2.0, 1.0, {0.5}};

margarita m = {2.0, 1.0, .citrus.lemon=2};

margarita m = {2.0, 1.0, 0.5};

margarita m = {2.0, 1.0, {.lime_pieces=1}}; '
margarita m = {2.0, 1.0, {1}}; .

margarita m = {2

0 1.0, {2});

OEBPS/httpatomoreillycomsourceoreillyimages2260292.png.jpg
=]~ =] [+]

a
MM!HEHEE

OEBPS/httpatomoreillycomsourceoreillyimages2260022.png.jpg
Slhjlaltnlelr|\]
S PP

O is the ASCII eharacter
vith valve O

C coders ofter call this
the NULL. character.

OEBPS/httpatomoreillycomsourceoreillyimages2260312.png.jpg
The data is being vead —>
Srom the keyboard
the keyboat S =
©

3
&

Our tool eonverts th
iyl

The data is then sent to the
display, ret to 2 File

OEBPS/httpatomoreillycomsourceoreillyimages2260026.png.jpg
Adds 2 to teeth.
teeth += 2;

teeth -= 2;

Takes away 2 teeth

OEBPS/httpatomoreillycomsourceoreillyimages2261264.png
The #includes and the evror() function
have been removed to save space.

<

int main(int argc, char *argv(])

{

char *phrase = argv(1];

char *vars[] = {"RSS_FEED=http://www.cnn.com/rss/celebs.xml", NULL};

FILE *f = fopen("stories.txt", "w");
LE (16) { < If we tan't write to storiestxt, then £ will be zevo

error("Can't open stories.txt"); <— Well report ervors using the ervor()
) function we wrote earlier.

pid_t pid = fork();
if (pid == -1) {
error("Can't fork process");
)
Lhink goes here?
if (1pid) (y What do you Ehink g0

if ()) d

error("Can't redirect Standard Output");
¥

if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",

phrase, NULL, vars)

error("Can't run script"

-1 {

}

return 0;

s

newshound? c

OEBPS/httpatomoreillycomsourceoreillyimages2261268.png.jpg
Flie Edt Window HelpReadAlAboutit
This vuns the program. | > ./newshound? 'pajama death'

ies are
w > cat stories.txt The stories
This dsglays the LOETL =y P oiin o oS AL, saved in the
of the stories xt &le New Pajama Death album due next month onies bt Ble

1€ You've on a Windows mathine,

youll need o be vunning Cyavin

OEBPS/httpatomoreillycomsourceoreillyimages2261266.png
int main(int arge, char *argv(l)
{

char *phrase

argv(1l;

char *vars[] = {"RSS_FEED=http: //www.cnn.com/rss/celebs.xml", NULL};
FILE *f = fopen("stories.txt", "av) ;4 This opens stories txt for writing

if (16) { < I§ £ vas zevo, we couldn't open the ile

error("Can't open stories.txt");

}
pid_t pid = fork();
if (pid -1) {
error("Can't fork ptocetss"):l
! - BZ::ACJ::BE)‘:;‘.‘: o This poks destripkor #1
if (!pid) { = {o the stories txt file
if (, dup2(fileno(£), 1) == -1) {
error ("Can't redirect Standard Output"”);
)
if (execle("/usr/bin/python”, "/usr/bin/python", "./rssgossip.py",
phrase, NULL, vars) -1) {
error ("Can't run script");
)
}
return 0; =L

newshound?.c

OEBPS/httpatomoreillycomsourceoreillyimages2261462.png.jpg
> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
TS APRRR | Escape character is '°]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
> Who's there?
Oscar
x>

OEBPS/httpatomoreillycomsourceoreillyimages2261482.png
This eveates a
name vesourte

for port 80 on

wwworeilly.com — N getaddrinfo ("www.oreilly.com",

) You'll need to intlude this header
#include <netdb.h> & L0 Lyt function

struct addrinfo *res;

struct addrinfo hints;

memset (shints, 0, sizeof (hints)); yeisddvinfel) expects
hints.ai_family = PF_UNSPEC; Ehe port 4o be string
hints.ai_socktype = SOCK_STREAM;

80", shints, &res);:

OEBPS/httpatomoreillycomsourceoreillyimages2260376.png.jpg
This is a pipe. >
A yipe can be used to comnett the A

Standard Output of one process to the
Standard Input of another process

s ko the input of aeolion

OEBPS/httpatomoreillycomsourceoreillyimages2260374.png.jpg
L—Youll feed all of our data
into the bermuda ool

N This data includes events inside and
outside the Bermuda Rectangle

The ol il only pass on data that
£ Bl imide the gmm Reckange.

oS you will oy pass Bermda
Rettangle data to geo2json.

geoljson

A

aeojson vill vork exaetly >
he same as before

=8 . You vill produce a map
= containing only Bermuda
= Reckangle data

OEBPS/httpatomoreillycomsourceoreillyimages2261464.png.jpg
The ps tommand shows LR
vunning protesses in 58
Unix and Cyguin. PID TTY TIME CMD

14324 ttys002 0:00.00 ./ikkp_server
- 14212 ttys002 0:00.00 ./ikkp server <l ehild process

vy e TosiCutons.

The parent process

OEBPS/httpatomoreillycomsourceoreillyimages2261448.png.jpg
File Edit_Vndow Help _I'mAnotherClient

> telnet knockknockster.com 30000 oh T can'

Trying knockknockster.com. . great! I can't get
Connected to localhost through to the server and T
Escape character is '~ can't even Ctrl-C my way out
of telnet. What gives?

OEBPS/httpatomoreillycomsourceoreillyimages2260274.png
You still need stdioh for the
peintf0 and seanfO) functions.

#include <stdio.h> [‘(ou vill also need the stringh
#include <string.h> header, so you ¢an searth
with the sbrste() funetion.
char tracks[][80] = {
"I left my heart in Harvard Med School",
"Newark, Newark - a wonderful town",
"Dancing with a Dork",
"From here to maternity",
"The girl from Iwo Jima",

You'll set the tracks arra
outside of the main() andy
find_track() funetions; that
way, the tracks will be wsable
everywhere in the program.

Yi

This is your new find_track()
funttion. You'll need {o:cclare i{o . . _—
it trom main(). it+ means “intreas
bere before you cal int 1; l—/l the value of i by I.”
for (i = 0; i < 5; i++) |
This eode will disyla\/ all ——> if (strstr(tracks[i], search_for))
the matching tracks. printf ("Track %i: '$s'\n", i, tracks[i]);

}

void find_track(char search_for[])

}

And this is your main() function,
which is the starting point of
the program.

int main()

{ Jonlve asking for the

char search for[801; ;= L\ "text heve
printf ("Search for: ");

scanf ("%79s", search for); .
search_for([strlen(search_for) - 1] = '\0';
find_track(search_for); Now you call your new
return 0; =——find_trackO function and
display the matehing tracks

OEBPS/httpatomoreillycomsourceoreillyimages2260600.png.jpg
Use longs
for veally big

whole numbers.

from
dekimbiors o n
declarations Save °5,ju\‘.
in 3 header Ctode into
e Hintlude Files £ speed
Hinelude <> “ for lotal P your builds.
for library headers:
headers. Vst ke ko
wanage YO

puilds-

OEBPS/httpatomoreillycomsourceoreillyimages2260874.png.jpg
ull ./spies
Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
Does suspect have a mustache? (y/n): y

Vinny the Spoon? (y/n): y

SUSPECT IDENTIFIED

Run again? (y/n): n

==1754== All heap blocks were freed -- no leaks are possible

OEBPS/httpatomoreillycomsourceoreillyimages2260266.png.jpg
“Sinatra”

tracks(i]

search_for way tracksi]

OEBPS/httpatomoreillycomsourceoreillyimages2260728.png
margarita m = {2.0, 1.0, {0.3}};

This one compiles perfectly. [£'s
actually just one of the drinks abovel

margarita m;

m = {2.0, 1.0, {0.5}};

This one doesn L compile because the ompiler will only know
that {2.0, 10, [0S vepresents a sbruct if it's used on the
<ame line that 3 struct is detlaved. When it's on 3 separate
line, the compiler thinks it's an array.

OEBPS/httpatomoreillycomsourceoreillyimages2260368.png
Message 1 Message 2

OEBPS/httpatomoreillycomsourceoreillyimages2260270.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260858.png

OEBPS/httpatomoreillycomsourceoreillyimages2259994.png
Destribe what you think W),M does.

(card_count > 10)

puts("The deck is hot. Increase bet.");

int c = 10;
while (c > 0) {
puts ("I must not write code in class");

c=c-1

/* hssume name shorter than 20 chars. */

char ex[20];

puts ("Enter boyfriend's name: ");
scanf ("819s", ex);

"Dear $s.\n\n\tYou're history.\n", ex);

char suit = 'H';

switch (suit) {

case 'C':

puts ("Clubs") ;

break;

case 'D':

puts ("Diamonds") ;
break;

case 'H':
puts ("Hearts") ;
break;

default:

puts ("Spades™) ;

OEBPS/httpatomoreillycomsourceoreillyimages2260000.png.jpg
Czin m will start heve.
Ths s e vebrn 1~ sy Bt the frtion s caled " Ehe progra
D

should always be int Yor the . ’
e i s 1€ we had any pavameters, they'd be mentioned here.
puts ("Enter a number of decks™);
scanf ("$i", &decks);
The body of the if (decks < 1) (
Hunction is ahays

puts("That is not a valid number of decks");
surrounded by braces

return 1;
1
printf("There are i cards\n", (decks * 52));

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260988.png
printf("%1i bottles of beer on the wall, %1 bottles of beer\n", 93, 399);
printf("Take one down and pass it around, ");

printf("$i bottles of beer on the wall\n", 98); You can pass the print£0) as many
vquments 35 you need 4o print.

OEBPS/httpatomoreillycomsourceoreillyimages2260302.png.jpg
Finclude cotdlio. by

¢ main()

float latitude;
float longitude; The seanf0)
char info[80]; funttion vebuens
int starced = : What ill these vales the runber of
We've using seank) b:;v&zr be? Remember: scanf() values it was able
ce of data ahays uses poim o vead
puts ("data=["); \["”‘0““ one e ‘/iyx\“ s ¢

while (scanf("%f,%£,379("\n]",

; ; 3
if (started) N This is jut way of saying, “Give me every
intf (", \n"); ¢haracter up to the end of the line.”
£~ Be eaveful how you set “started”
printf("{latitude: $f, longitude: $f, info: '$s'}", . . ., .. et)
]
puts ("\n]") 5 What values need £o be displayed?

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260856.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260978.png.jpg
[t's equal to the name
Y i share
Fochon

This is your “replies” —¥ replies[SECOND_CHANCE] == second_chance
aveay of funttions.

SECOND CHANCE has the value |

OEBPS/httpatomoreillycomsourceoreillyimages2260934.png
char** (*names fn) (char*, int)

1

This s the name of the
\arisble you've detlaving

OEBPS/httpatomoreillycomsourceoreillyimages2261434.png.jpg
This will
store the

main listener —2>int listener_d;

socket for
the sevver.

void handle_shutdown(int sig)
{

,‘ £ someone hits Ctrl-C when the sevver
4k (stensnd) is voming, this funckion vill Close the

close (listener_d); sotket before the program ends.

fprintf(stderr, "Bye!\n");

exit (0);

OEBPS/httpatomoreillycomsourceoreillyimages2261436.png
{

}

int main(int arge, char ¥arqull)

if (eateh_signal(SIGINT, handle_shutdown) == 1)
ervor(*Can't set the intervupt handler”); <— This vill call handle_shutdown() if Cérl-C is it
listener_d = open_listener_sotket();
bind_to_portllistener_d, 30000); <— Create a sotket on port 20000
if (listen(listener_d, 10) == 1) €— Set. the listen—queve length to 10
eveor(“Can't listen);
struet sotkaddv_storage client_addr;
unsigned int addvess_size = sizeof(elient_addv);
puts(‘Waiting for conneetion’);
:;:l: ‘a‘f’?’ssl Listen for a Lomt!.{:lon
int conneet_d = acceptllistener_d, (struet sockaddr %)éclient_addv, faddvess_size);
if (eommeet_d == —I)
ervor(“Can't open secondary socket”); Send data to the clent
if (sayleonneet_d, ¥
“Internet Knoek—Knotk Prototol Sevver\r\nVersion |.0N\nKnotk! Knotk/Ne\n>) 1= —1) {
vead_in(conneet_d, buf, sizeof(buf)); €—— Read data from the client.
if (strneaseemp(“Who's there?”, buf, 12))
say(connett_d, “You should say Who's theve?'!"); <— Checking the user’s answers.
else {
if (ayleomeet_d, “Osear\e\n>) I= 1) {
vead_in(eonneet_d, buf, sizeof(buf));
if (sbentaseemp(“Osear who?”, buf, 10)
sayleonneet_d, “You should say ‘Osear who?’\e\n");
else

sayleonneet_d, “Ostar silly question, you get a silly answer\e\n;
}

}
}

close(tonnett_d);

}
veturn 0;

& Close the setondary socket we uied for the conversation

OEBPS/httpatomoreillycomsourceoreillyimages2260708.png.jpg
This is space for the age as an int.

This is 3 char pointer
This is a float 4,

to the name.
>[char *name | int age | floatweight |¢— store the weight.

Dog d = {("Biff", 2, 98.5};

OEBPS/httpatomoreillycomsourceoreillyimages2260930.png
void find(_int (¥mateh)(char¥))
{

int i;

puts ("Search results:");

puts ("~ -
for (i = 0; i < NUM ADS; i++) {
if (match(aDS(il)) {
printf("ss\n", ADS[i]);

OEBPS/httpatomoreillycomsourceoreillyimages2260184.png.jpg
ToE3F o e Remember, these ted
s > _/print_nums addeesses are prinke
) F R bytes nums is at Ox7£££66ccedac £ o Sormat

avay From rums nums + 1 is at Ox7£££66ccedb0

OEBPS/httpatomoreillycomsourceoreillyimages2260890.png
freeleurvent—>question);

turvent=>question =. strduplauestion); ..

OEBPS/httpatomoreillycomsourceoreillyimages2260936.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261394.png
The intludes ave removed

\/ 1o save space

int main(int argc, char *argv(])

(

char *advice(] = {
"Take smaller bites\r\n",
"Go for the tight jeans. No they do NOT make you look fat.\r\n",
"One word: inappropriate\r\n",
"Just for today, be homest. Tell your boss what you *really* think\r\n",
"You might want to rethink that haircut\r\n"
bi
int listener d

PF_INET, SOCK_STREAM, 0);

struct sockaddr_in name;

name.sin_family = PF_INET;

name.sin_port = (in_port_t)htons (30000);

name.sin_addr.s_addr = htonl (INADDR_ANY) ;

_(listener d, (struct sockaddr *) &name, sizeof (name));

X _(listener_d, 10);
puts ("Waiting for connection”);

struct sockaddr_storage client_addr;
unsigned int address_size = sizeof (client_addr);
int connect d =

char *msg = advice[rand() % 5];

. _(connect_d, msg, strlen(msg), 0);
close (connect_d) ;

return 0;

(listener_d, (struct sockaddr *)&client_addr, &address_size);

OEBPS/httpatomoreillycomsourceoreillyimages2261578.png
if (event.type ALLEGRO_EVENT_KEY_DOWN) {
switch (event.keyboard. keycode) {

case ALLEGRO_KEY_LEFT: <&~ Turn the ship left.

break;

case ALLEGRO_KEY RIGHT: &— T, vight.

break;

case ALLEGRO_KEY_ SPACE: < Firel

break;

OEBPS/httpatomoreillycomsourceoreillyimages2260932.png
int main()

{

find (sports_no_bieber);
find(sports_or_workout);

find(ns_theater);

find(arts_theater_or_dining); [Faed Wedor el Fremiesses

return 0;

William: SBM GSOH likes sports, TV, dining
SJM likes sports, movies and theater

This is find(sports_no_bicber)

William: SBM GSOH likes sports, TV, dining
This is £in Mike: DWM DS likes trucks, sports and bieber
s is find(sports_or_workout). > out T Pt working out and art

SJM likes sports, movies and theater

This is find(ns_theater). —3y

This is fmd(av{;_{hea{:v_m_d.my

William: SBM GSOH likes sports, TV, dining
Matt: SWM NS likes art, movies, theater
SLM ND likes books, theater, art

SaM likes sports, movies and theater
Jed: DBM likes theater, books and dining

OEBPS/httpatomoreillycomsourceoreillyimages2261432.png.jpg
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <arpa/inet.h>

#include <unistd.h>

#include <signal.h>

— The ready-bake funttions Srom the previous page g0 heve

OEBPS/httpatomoreillycomsourceoreillyimages2259957.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260044.png.jpg
if ((dealer_up card == 6% (hand == 111) 2> Both of these condbions need bo be

frue for this piece of tode fo vun.

double down () ;

OEBPS/httpatomoreillycomsourceoreillyimages2260900.png
void find()
1

int i;

puts("Search results

puts ("~ 5

ro(i=0; 1)

fo!

printf("is\n", ADS[il);

puts ("~

OEBPS/httpatomoreillycomsourceoreillyimages2261396.png
int main{int argc, char *argv(])
l
char *advice(] = {
"Take smaller bites\r\n",
"Go for the tight jeans. No they do NOT make you look fat.\r\n",
"One word: inappropriate\r\n",
"Just for today, be homest. Tell your boss what you *really* think\r\n",
"You might want to rethink that haircut\r\n"
bi

int listener_d PF_INET, SOCK_STREAM, 0); & Creste a sotket

struct sockaddr_in name;
name.sin_family = PF_INET;
name.sin_port = (in_port_t)htons (30000) ; Bind the sotket +o port 30000.

name.sin_addr.s_addr = htonl (INADDR_ANY);

d
listen (Listener d, 10y; €— Set to the listen queve depth to IO

puts ("Waiting for connection");
while () { € You need to loop the accept/begin talking section.
struct sockaddr_storage client_addr;
unsigned int address_size = sizeof (client_addr);
_.ateept.

char *msg = advicelzand() % 51; " Aecept a comection from a client

_(listener d, (struct sockaddr *) &name, sizeof (name));

int comnect_d .(listener d, (struct sockaddr *)sclient_addr, saddress_size);

(connect_d, msg, strlen(msg), 0);

close (connect_d) ;

) N Begin £alking 4o 4he cliont,

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2261398.png.jpg
The programmer has forgottento _eheek for evvors. & You should always cheek i socket, bind, listen,
B k aceept, or send vetuen |

OEBPS/httpatomoreillycomsourceoreillyimages2260704.png.jpg
con| @wag]) o value

- @ description = swag
numbers swag, value I@

Swap) = gold = sequence gold

OEBPS/httpatomoreillycomsourceoreillyimages2260928.png.jpg
int sports_no_bieber (char *s)

{
Someone who likes /

sports but not Bieber

return strstr(s, "sports") && !strstr(s, "bieber");

int sports_or_workout (char *s)

int ns_theater (char *s)
{
ebwen shoshels, ‘NS £ sheshels, “theater”)

' want a non-
Smoker who
likes the
theater,

int arts_theater_or_dining(char *s)

{

Find. someone
who likes the
arts, theater,
or din‘\r\%

OEBPS/httpatomoreillycomsourceoreillyimages2261566.png.jpg
The Web gets updated more otiz:' thar
http:/ / alleg.. books, so this URL. might be di ent.
e/ Jallsgsowreforgenet/ S e e et e

OEBPS/httpatomoreillycomsourceoreillyimages2260884.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260040.png.jpg
1 CAN WARE Y00 RN
AT LIV !

The Eddie Rich blackjack correspondence school

Hey, howe It going? You ook
o me like & smart £uy. And I

Yenow, cause I'm a ATt £

tool Listen, I'm onto a sure
thing here, and I'm a nice
guy, soT'm goiag to et you
fnon it. See, I'm an expert
in card counting. The Gapo
i tuts capl. Whats card
‘counting, you say? Well,to
e, i's career!

valuo of your bet
Seriously, caxd counting s i AN
‘s way of improving the 0dds y . fow o83 o
Sttt satour>counts1 whacked by & pilboss

Dlakiack, o there are plenty
of high-value cards lof in
Sho shos, then the odds are
Clanted i vor of the pIaYer.
Thavs you!

Gard counting helps yOu
Keep track of the number of
high-valu cards lef. 58y
you start with a count of .

Then the dealer leads with,
‘aQueen—that's 2 high card.
Thavs one less avatlable in
the deck, so you reduce the

count by one:

1vs a queen > count - 1

Butifiws alow card, ke a4,

the count goes up by one:

Fiigh cards are 103 and the

fae cards (Jack, Queen.

King). Low oards are 35, 45,

65,and 6s.

You keep doing this for €Very Blacigack Correspondence
Jow card and every high

‘oard until the count geta Teal
high, then you lay on cash.

in your next bet and barda-
bing Soon youlll have more
‘money than my third wife!
1f you'd liko to learn more,
then enoll today In 1Y
‘Binckjack Correspondence
Sehool. Learn more about.
card counting as viell a5
« Howto use the Kelly
Griterion to maximize the

+ Howto got cannoll salns.
offa silk sult

+ Things to wear with plaid

‘For more information,
‘ontact Coustn Vinny o/0 the.

School.

OEBPS/httpatomoreillycomsourceoreillyimages2260542.png.jpg
Skipping a few filenames heve

gcc reaction control.c pitch motor.c ... engine.c -o launch

OEBPS/httpatomoreillycomsourceoreillyimages2260888.png

OEBPS/httpatomoreillycomsourceoreillyimages2260716.png.jpg
Those designated initializers look like
they could be useful for structs as well.
T wonder if I can use them there.

OEBPS/httpatomoreillycomsourceoreillyimages2260734.png.jpg
The values are separated by tommas.
Possible eolors N
n Your enum. enum colors {RED, GREEN, PUCE};

L\

You eould have given the type a proper name with typedef.

OEBPS/httpatomoreillycomsourceoreillyimages2260298.png.jpg
It's all about picking
the right ool for the

right job.

OEBPS/httpatomoreillycomsourceoreillyimages2261440.png.jpg
File Edit_Window Help TmTheClient
> telnet 127.0.0.1 30000

Trying 127.0.0.1.
Connected to localhost.
Escape character is '*]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
> Who's there?

Oscar

> Oscar who?

Oscar silly question, you get a silly answer
Connection closed by foreign host.

OEBPS/httpatomoreillycomsourceoreillyimages2260434.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260008.png
Save the code from the Code Magnets exercise on the [—

— 8 1 C sourte Liles usually end &
opposite page in a file called cards.c. =

Compile with gcc cards.c -o cards at a command
prompt or terminal.

Te EaR Window Felp_Complle

> gcc cards.c -o cards — 7]
s =1 |uer
Compile tardst > = = it
+o a file called cards. = o
cards.c cards
T

Run by typing cards on Windows, or ./cards on Mac, ',fhls will be cards.exe
Linux, and Cygwin. i et o S

cards
Enter the card name:

OEBPS/httpatomoreillycomsourceoreillyimages2260404.png
/categorize mermaid mermaid.csv Elvis elvises.csv the rest.csv

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int arge, char *argv(])

char line[80];

i)t
fprintf (stderr, "You need to give 5 arguments\n");

o 1;

FILE *in = fopen("spooky.csv",

FILE *filel

fopent | o

FILE *file? = fopen(;o)

FILE *file3

fopent(_ L

while (fscanf(in, "$79["\nl\n", line)

f (strstr(line, 1
forintf(filel, "$s\n", line);

else if (strstr(line,)
forintf(file2, "ts\n", line);
else
fprintf(file3, "Ss\n", line);
folose (filel);
folose (file2);

felose (file3);
fclose (in)
return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260436.png.jpg
int main(int arge, char *argv(])

(
char *delivery =

The & s followed by a eolon
betause it akes an araument.

>

L

)

while ((ch = getopt(arge, argv,

switch (ch) {

case 'd':

L il ponk the delvery varible o the
:’:5“,:& wppled vith he ‘d optien

Remember: in C, setting someEhin
hilent o sty by a1

nown option: '$s'\n", optarg);

return |

1= EOF)

OEBPS/httpatomoreillycomsourceoreillyimages2260536.png.jpg
You need to compile the code
with both sourte files

P Vi o S v
\ > gcc message hider.C encrypt.c -o message hider
> _/message_hider

When you vun the program,
You ¢an enter text and

see the encrypted vevsion I am a secret message
V2~r2?~?1z|mzk?rzll~xz

oo can even pass it the —_, [e Y

tonkents of the encrypth

ipv{?zq|mfok7 |w~m5?rz11~xz6$
>

file o enerypt i

The message_hider program is wsing the
eneryptO) funttion from encrypt. .

OEBPS/httpatomoreillycomsourceoreillyimages2260724.png.jpg
margarita m = (2.0, 1.0, .citrus.lemon=2};

margarita m = {2.0, 1.0, 0.5}; ' ’\

None of these

lines was used.

iy

margarita m = {2.0, 1.0, {1}}/

OEBPS/httpatomoreillycomsourceoreillyimages2261564.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260400.png.jpg
goc categorize.c -o categorize && ./categorize

T Vi

OEBPS/httpatomoreillycomsourceoreillyimages2260540.png.jpg
1€ You change even one line in one £ile,
it ean take the compler a long time
o vecompile .;H the source Files.

ool
ol
2 oolor
= =
= — oy R aunch
= =3 foxo
= = X oo
ptonte [o >
retrog """‘”"
=
Zi
=
—\
=
engne®
=
=
Modyle, o

OEBPS/httpatomoreillycomsourceoreillyimages2261568.png.jpg
= L e containing all of the sourte code 4o track

and display the latest.position of an astercid
=
==
asteroid.c
= £ The spateship vl be able o Five its camon at
B passing asteroids, so you will need tode o draw
— and move a tannon blast across the sereen
blast.c
= The hevo of your game, the plucky little spaceship
T4 S Lok it the askeroids, you vill probably veed
= 45 manage only one of these 3t a time.
spaceship.c
T £ 1t shuays good o have a separate source file 4o
— deal with the eore of the game. The code in heve
—

will need to listen for keypresses, vun a timer, and
also tell all of the other spaceships, votks, and

blasts 4o draw themselves on the sreen
blasteroids.c

OEBPS/httpatomoreillycomsourceoreillyimages2260048.png.jpg
if (!brad_on_ phone)

answer_phone () ;

OEBPS/httpatomoreillycomsourceoreillyimages2260402.png
This is the fivst word 4o filker for. All of the mermaid 4253 7y 30 o, yan i
e first word 4o Filter cm i‘n e s Fie ‘2 eans ou want 4o thetk for Elis.
z & Everything

-/categorize mermaid mermaid.csv Elvis elvises.csv the_rest.csv™ [V,
o Fie

But how do you read command-line arguments from within the All the Evis sightings
program? So far, every time you've created amain () fncion, you've will be stored here
written it without any arguments. But the trud i, there are actually fo

function we can use. This is the second version:

forms of the mai

int main(int arge, char *argv(])
i

. Do stuff....

)

The main () fanction can read the command-line arguments as
an array of strings. Actually, of course, because C doesn't really
have strings builtin, it reads them as an array of character pointers 1o
strings. Like this:

"./categorize” 'mermaid" ‘"mermaid.csv" 'Elvi

T A ~

This is argv[0]. Thisis avgulld. Thisis argul2]. This is argl3). This is argu4]. This is argul5]

elvises.csv" "the rest.csv"

The fivst argument is actually the
name of the program being vun.

OEBPS/httpatomoreillycomsourceoreillyimages2261442.png.jpg
File Edt_Window Help TmTt

> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is 'A]'.

Internet Knock-Knock Protocol Server
Version 1.0

Knock! Knock!

> Come in
You should say 'Who's there?'!Connection closed by foreign host.
>

OEBPS/httpatomoreillycomsourceoreillyimages2260714.png.jpg
i This will set the
antits = .weight=1.5};
pantity q = {.weig V3T iom for 3 floating-

point weight value

OEBPS/httpatomoreillycomsourceoreillyimages2260408.png
./categorize

#include
#include

#include
int main(
{
char
if
fprin
retur;
FILE *i
FILE

£

FILE *f

fpr

se

pr
else
fpr.
}
felose(
felose(
felose(
felose
return

mermaid mermaid.csv Elvis elvises.csv the rest.csv

<stdio.h>
<stdlib.h>
<string.h>

int arge, char *argv(])

ine[801;

tf(stderr, "You need to give 5 arguments\n");

n 17

n = fopen("spooky.csv", "r"

ilel = fopen(| 27gvi2l I oy ;
i1e2 - fopen(|argvial |, ey,
ile3 = fopen({29V ' .
in, "$79["\nl\n", line) (

tr(line, n
intf(filel, "$s\n", line};
if (strstr(line, n

intf(file2, "3s\n",

intf(file3, "¥s\n",

Line)

le3);
(in);
0

OEBPS/httpatomoreillycomsourceoreillyimages2261392.png.jpg
This is the message You've going
4o send over the network

char *msg = "Internet Knock-Knock Protocol Server\r\nVersion 1.0\r\nKnock! Knock!\r\n> ";
-1)

if (send(connect d, msg, strlen(msg), 0)

ermor("send ; tev is wsed for advanced
his s Eh The Final parameter i
TR e Thsis bhemesane kT o be left 250

and its | h.
e, dilest

OEBPS/httpatomoreillycomsourceoreillyimages2261390.png
elient_addr vill store details about

struct sockaddr_storage client_addr; £ e clent who's just cometked

unsigned int address_size = sizeof (client_addr) ;

int connect_d = accept(listener_d, (struct sockaddr *)&client addr, saddress_size);

if (connect_d == -1)

S [PCan 'L cosl BEGonARTY Bodke k") -

OEBPS/httpatomoreillycomsourceoreillyimages2261400.png.jpg
R S
> gcc advice server.c -o advice_server
> ./advice_server

Waiting for connection

OEBPS/httpatomoreillycomsourceoreillyimages2261220.png.jpg
The loop will vun only onte.

for (i = 0; i < times; i++) {

if (execle("/usr/bin/python”, "/usr/bin/python",
Onte exetlel) “_/\ ", /rssgossip.py", phrase, NULL, vars)
talled, the whole
progyam quits.

}
}

OEBPS/httpatomoreillycomsourceoreillyimages2261216.png.jpg
Worked!? Worked?!? It didn't work! What about
the announcement of the surprise concert? That
was on every other news site! I coulda sent my

photographers down there. As it is, T was beaten
to the story by everyone else in town!

OEBPS/httpatomoreillycomsourceoreillyimages2260712.png.jpg
quantity q = {4}; <— This means the quantity
o sounk.

OEBPS/httpatomoreillycomsourceoreillyimages2260002.png.jpg
The fivst parameter will be inserted here as a string, First pavameter
printf ("ss says the count is %i", "Ben", 21);

The setond pavameter vill be inserted herd as an inteer. Setond pAFamERE”

OEBPS/httpatomoreillycomsourceoreillyimages2261560.png.jpg
@@63(:9

OEBPS/httpatomoreillycomsourceoreillyimages2260006.png.jpg
ogram to evaluate

the Vegas Public L.

* Released us

12014 The College Blacl

e vy

int

jack Team.

.main()

char card_name[3];
puts("Enter the card mame: "};

scanf card_name) ;
int val = 0;

)

if (card_name(0]
val = 10;
} else if (card name[0] ==

} else if (card_name(0]

val = 10;
1

0 Rccacs (card_name
val = 11 ' l

} else (

val = atoi (card_nare) ;
}
printf("The card value is: $i\n", val);

OEBPS/httpatomoreillycomsourceoreillyimages2260426.png.jpg
You vill need to — #include <unistd.h>
include this header.

This means “The a option is
valid; so is the ¢ option”
N
The tode o handle

while ((ch = getopt(argc, argv, "ae:")) != EOF)

cath opbion socs here. > switch(ch) (N The * means that the ¢
e ek e e e aption needs an argument
"Smcntﬁw the engine_count = optarg;
“e” option here. - ber of

3 i sors e omber o
These final b ines i s vead From the comnd
make sure we skip past

aigs = optEdr e o aek past the opbions

the options we vead- argv += optind;

OEBPS/httpatomoreillycomsourceoreillyimages2260556.png.jpg
— — —
= = e =
-]] —

thruster.c turbo.c gratioule.c servo.c
11:43 12:15 14:52 13:47

thruster.o
11:48

ems
14:26

OEBPS/httpatomoreillycomsourceoreillyimages2261444.png.jpg
> gce ikkp_server.c -o ikkp_server
> ./ikkp_server

Waiting for connection

ACBye!

>

Cerver tonsole —F

OEBPS/httpatomoreillycomsourceoreillyimages2260538.png.jpg
one file, it

takes an age fo recompile! And
T'm working on a schedule.

g
£
z
2

simple change in

W
/@,,M,_/Av

e e
> \GF% [

OEBPS/httpatomoreillycomsourceoreillyimages2261438.png.jpg
> gcc ikkp_server.c -o ikkp_server
SISl > - /ikkp _server
Waiting For connection

OEBPS/httpatomoreillycomsourceoreillyimages2260004.png.jpg
f*

* Program to evaluate face values.

* Released under the Vegas Publ

¢ License.
()2014 The College Blac

jack Team.
*/

_main()

char card_name([3];

puts("Enter the card_name: ")
Enter buo characters ~,

scanf("$2s", card_name);
or the card name.

int val = 0;
if (card_name[0

PR
val = 10;

} else if (card name[0

val = 10;

== (
) else { Tris converts the
val = atoi'lcard name]; text into 8 number-
)
("The card value is: $i\n", vall;

OEBPS/httpatomoreillycomsourceoreillyimages2260432.png
arge -= optind;
argv += optind;

if (thick)
puts ("Thick crust.

if (delivery[0])
printf("To be delivered is.\n", delivery);

puts ("Ingredients:");

for (count = 5 count < i counts+)
puts (argvlcount]);
return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260532.png
void encrypt(char *message);

encrypth

You'll include the header

inside encrypt.c. \

{

while
*message
message++;

¥

#include "encrypt.h"

void encrypt (char *message)

(*message) {

*message ~ 31;

OEBPS/httpatomoreillycomsourceoreillyimages2260424.png.jpg
Use four engines. Awesomeness mode enabled.

rocket to -e 4 -a Brasilia Tokyo London

OEBPS/httpatomoreillycomsourceoreillyimages2260430.png
#include <stdio.h>
#include <unistd.h>

int main(int arge, char *argv(])
{
char *delivery
int thick = 0
int count = 0;

char ch;
while ((ch = getopt(argc, argv,
switeh (ch) (
case 'd
break;
case 't

break;
default:
£printf (stderr, "Unknown option:

return

d

"8s'\n", optarg);

.y

EOF)

OEBPS/httpatomoreillycomsourceoreillyimages2261562.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261208.png.jpg
I want all the latest
stories on Pajama Death.

This is vunning in 3
Unix envivonment.
You need to ereate M
an environment This isn'k 3

veal feed
You should

variable containing > export RSS_FEED=http://www.cnn.com/rss/celebs.xml s
the addvess of an > python rssgossip.py 'pajama death' 3

RSS feed. Pajama Death launch own range of kitchen appliances. veplace it
Lead singer of Pajama Death has new love interest. L
This vuns the "I never ate the bat" says Pajama Death's Hancock. 2” d""f Yo
ind online

vssaossip seript
with a search
sbring

Ooh, I just had a great idea.
Why not write a program that
can search a lot of RSS feeds
all at once! Can you do that?

OEBPS/httpatomoreillycomsourceoreillyimages2261214.png
80 EGR_Viindow Help ReadAlAboutit

> ./newshound 'pajama death
Pajama Death ex-drummer tells all.
New Pajama Death album due next month.

OEBPS/httpatomoreillycomsourceoreillyimages2260952.png.jpg
int compare_areas_desc(const void* a, void* b)

{

sort the
ra(:{ang\es

in area order,
largest Sirst. }

Sort a list o int compare_names_desc(const void* a, const void* b)
names in reverse {

alphabetical

order. Case-

sensitive,

OEBPS/httpatomoreillycomsourceoreillyimages2261610.png.jpg
int count = 0; g— Use this to count the ealls
int counter ()
{
return ++count; < Intrement the count each time

OEBPS/httpatomoreillycomsourceoreillyimages2260578.png.jpg
launch.o

launch

@

thruster.o

launch ¢

launch h

thruster h thruster c

OEBPS/httpatomoreillycomsourceoreillyimages2260478.png
> gec totaller.c -o totaller & ./totaller
totaller.c: In function "main":
totaller.c:14: warning: format "%.2f" expects type
"double", but argument 2 has type "int"

totaller.c: At top level:

totaller.c:23: error: conflicting types for "add with tax"
totaller.c:14: error: previous implicit declaration of

OEBPS/httpatomoreillycomsourceoreillyimages2260950.png.jpg
Wavning: this one is veally tricky.

int compare names(const void* a, const void* b)

Sort a list

of names in
alphabetica)
order. Case~
sensitive,

{{

Nit susigia pointer 0.3
il what il 3 pointer o i bt

<beemp(“Abe”, “Def”) < O

OEBPS/httpatomoreillycomsourceoreillyimages2260032.png.jpg
1
These comminds Sorm
a block statement
betause they ave
surrounded by braces. cards_in_hand = 2;

deal first card();

deal_second card();

OEBPS/httpatomoreillycomsourceoreillyimages2260580.png.jpg
So I've got to compile the
launch program? Hrm.

First T'll need to recompile
thruster.o, because it's out
of date; then T just need
to relink launch.

OEBPS/httpatomoreillycomsourceoreillyimages2260584.png.jpg
A target is a File that is
This it arget, £ aoing ko be generated

launch.o: launch.c launch.h thruster.h
gee -c launch.c

launch.o depends on these
There e theee fils.

three RULES" 3 thruster.o: thruster.h thruster.c

goe -c thruster.c €—— Ty is a vetipe for
ereting thrustero

launch: launch.o thruster.o
Qgcc launch.o thruster.o -o launch

R The vetipes MUST begin vith 4ab chavacker.

OEBPS/httpatomoreillycomsourceoreillyimages2261608.png.jpg
difder spanzsn& |£ 4he SPANISH matro exists..
char *greeting = "Holan; k—-indhde dhis code

#else

char *greeting = "Hello"; <— If not, intlude this code

tandif

OEBPS/httpatomoreillycomsourceoreillyimages2260030.png.jpg
split hand() ; ¢— This is a simple statement

OEBPS/httpatomoreillycomsourceoreillyimages2260028.png.jpg
teetht++; & Increase by |

teeth==; € Decrease by |

OEBPS/httpatomoreillycomsourceoreillyimages2261192.png.jpg
EPERM=1 Operation not permitted

ENOENT=2
ESRCH=3
EMULLET=81

No such file or directory

No such process
Bad haircut

This value is
ot available
on all systems

OEBPS/httpatomoreillycomsourceoreillyimages2261418.png.jpg
veev() will veturn the

B[wlue 14, because there

ave 14 chavacters sent
Lrom the tlient.

OEBPS/httpatomoreillycomsourceoreillyimages2261420.png.jpg
[\

B

You .,,5».{(need to call
o vees0'a few times bo
act all the charatters

OEBPS/httpatomoreillycomsourceoreillyimages2261212.png
int main(int arge, char *argv[])

{

char *feeds[] = {"http://www.cnn.com/rss/celebs.xml",
"http://www.rollingstone.com/rock.xml",

"http://eonline.com/gossip.xml"};
int times = 3;

char *phrase = argv[1];
int i;
for (i = 0; i < times; i++) (

char var([255];

sprintf(var, "RSS_FEED=%s", feeds[il);

char *vars[] = {var, NULL};

Yo w if (] le___("/usr/bin/python”, "/usr/bin/python",
aLISTof | =7) == -1) {
HEV'%@R:;‘N“" fprintf(stderr;\"Can't ruh\scrip strerror (errno));
MENT, so TeTUrn 17 Thigis ghe This is the Pass the
it's exetLE.) name of the search phrase, envivonment

) Python seript, 35 3 Command— s an extra

line avgument. parameter.
return 0; ’

newshound.c

OEBPS/httpatomoreillycomsourceoreillyimages2260946.png.jpg
The comparator
function refurned the
value -21. That means 11
needs fo be before 32

OEBPS/httpatomoreillycomsourceoreillyimages2260104.png.jpg
This is a eopy of
the information
oo & v

T've got the
answer you need;
it's right here in
the Encyclopedia
Britannica.

you need

o

Or you could
just look at
page 241.

This is a pointer
the loeation
the information

OEBPS/httpatomoreillycomsourceoreillyimages2260108.png.jpg
(T Variable y will v in the

int y = 1;

int main()

t

}

int x = 4;

return 0;

abals seetion

Memory address 1,000,000

Value |

Variable x wil live in the stack
Memory addvess 4,100,000,

Value 4.

‘ : émmns
= A“yl-m in globale.
(‘()NQ
////////

_—.J

OEBPS/httpatomoreillycomsourceoreillyimages2260576.png.jpg
gcc -c thruster.c €< 2;:;:'&:&1

OEBPS/httpatomoreillycomsourceoreillyimages2260944.png.jpg
return a - b; &= [k a> b, this is positive. [f 2 < b, this is
negative. £ a and b ave equal, this is zevo

OEBPS/httpatomoreillycomsourceoreillyimages2261616.png
#include <stdio.h>

#include <limits.h>

int main()

{
printf("On this machine an int takes up %lu bytes\n", sizeof(int));
printf("And ints can store values from %i to %i\n", INT_MIN, INT_MAX);
printf("And shorts can store values from %i to %#i\n", SHRT_MIN, SHRT_MAX);

return 0;

Pl Ear Viidon Top FovBigkEs
On this machine an int takes up 4 bytes
And ints can store values from -2147483648 to 2147483647
And shorts can store values from -32768 to 32767

OEBPS/httpatomoreillycomsourceoreillyimages2261190.png.jpg
1§ exetle)) worked, execle("diner_info", "diner_info", "4", NULL, my_env);

this line of code

\ puts{"Dude - the diner_info code must be busted");
would never vun. -

OEBPS/httpatomoreillycomsourceoreillyimages2261188.png.jpg
Guaranteed - ¢
Standard of
Failure

OEBPS/httpatomoreillycomsourceoreillyimages2261204.png
#include <string.h>
#include <stdio.h>
#include <errno.h>

Candidate tode goes here
int main(int argc, char *argv([]){ {

OEBPS/httpatomoreillycomsourceoreillyimages2261200.png
#include <string.h>
#include <stdio.h>
#include <errno.h>

Candidate tode goes here
int main(int argc, char *argv(])({ \[

OEBPS/httpatomoreillycomsourceoreillyimages2260252.png
Eath song Litle will be allocated
80 chavatters

mg
Tacks [0][a][0][c][5]

[o][m][[n]
[ell]Lel

tra/.ka’]LHT

évam[‘f]‘

That means that youll be able to find an individual track name.

fke this: This s e §i6bh sbring &—Remenber: arvays begin 3 zevo

This has this value.
v N £
tracks[4] —_— "The girl from Iwo Jima"

But you can also read the individual characters of each of the
strings if you want to:

tracks[41(6] ——> 'r' & Thisis the seventh character in the fibth
string,

OEBPS/httpatomoreillycomsourceoreillyimages2261620.png.jpg
&—This means “treat warnings 3 ervors”

L e ane— o 1

OEBPS/httpatomoreillycomsourceoreillyimages2260254.png.jpg
[\searchmaﬂ' ¢
f\lsli;}ea ”

ittle pi

A\'ﬂ le pieces

focre v lnky of ather cxtiing things i i
for you o play with 8

Comtpare two sirings <~ N\
to each other

W,

igke a copy of a strng

OEBPS/httpatomoreillycomsourceoreillyimages2261206.png
Candidates: Possible output:

char *my env[] = {"FOOD=coffee", NULL};
if (execle("./coffee", "./coffee", "donuts", NULL, my_env) == -1){

fprintf (stderr,"Can't run process 0: $s\n", strerror(errno)); coffee with donuts
return 1;

}

char *my env[] = {"FOOD=donuts", NULL};

if (execle("./coffee", "./coffee", "cream", NULL, my_env) == -1){
f£printf (stderr,"Can't run process 0: %s\n", strerror(errno)); cream with donuts
return 1;

}

if (execl ("./coffee", "coffee", NULL) == -1){

fprintf (stderr,"Can't run process 0: %s\n", strerror(errno));
donuts with coffee
return 1;

b

char *my_env[] = {"FOOD=donuts", NULL};
if (execle("./coffee", "coffee", NULL, my_env) == -1){

fprint (stderr,"Can't run process 0: ¥s\n", strerror(errno)); coffee with coffee
return 1;

OEBPS/httpatomoreillycomsourceoreillyimages2259968.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2259964.png.jpg
>
Dawn Griffith

OEBPS/httpatomoreillycomsourceoreillyimages2259962.png.jpg
David Grikiths

OEBPS/httpatomoreillycomsourceoreillyimages2259959.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260956.png.jpg
int compare_names(const void* a, const void* b)

Sorta list

ointers
of names in { A stringis 2 pointer o 3 char, S0 the p
siphabetical har ko sa = (char k)5S yove gen ave pointers 4o panters.
order. Case~
sensitive,

i INC e v 4o s the * cperator
o Find the achual sbrings
Here's a hint:

<heemp(“Abc”, “Def”) < O

OEBPS/httpatomoreillycomsourceoreillyimages2261186.png.jpg
Lil! indow He
> ./my_exec_program
Diners: 4

Juice: peach and apple
>

OEBPS/httpatomoreillycomsourceoreillyimages2260954.png.jpg
int compare scores(const void* score a, const void* score b)
(

int a = *(int*)score_a;

Sort inteqer
Scores, with
the Smallest
Sirst.

This is the one done before

int b = *(int*)score_b;

return a - b;

int compare_scores_desc(const void* score_a, const void* score_b)

sort inteoer (
scores, with int
the \argesi .
Sirst.

KlintF)seore,_a;

} R You subtract the numbers the other way
around, you'l veverse the order of the final sort.

typedef struct { &~ Tisis the

5D int width; veckangle by
ecang)e® int height;
@aredo 0 |y rectangle;

aesk St

int compare_areas(const void* a, const void* b)

{
First, convert —y veetangle¥

the pointers to
the corvect type. .
Then, caleulate,
the areas Sint area_b = (vb->width ¥ vb->height);
Then, use the veturn area_a — area_b;

subtrattion trick.)'

OEBPS/httpatomoreillycomsourceoreillyimages2261198.png.jpg
#include <stdio.h>

display evvors vith strevvor).

Use execlO) because you have the [f exeelO) veburns I, it Faled, so
RE AR ot bo the program file e ol by look for ipconfig
{

1f(exetl('/sh

if (execlp((
fj:ﬂv(z \:“ printf(stderr, :)i
eLs i ; ing for the value - A~
the ipconfig TEEUTD 17 s e The strevror() funttion
command on } wll display any problems
the path Loryrn o;

3

OEBPS/httpatomoreillycomsourceoreillyimages2261614.png.jpg
b
You ¢an use this variable only
static int days = 365; € [y b curvent souce file

You tan call this—» gtatic void update_account(int x) {
untion only

from inside Lhis
it bis "

OEBPS/httpatomoreillycomsourceoreillyimages2261612.png.jpg
The static keyword means
int counter () s variable will keep its value
tount is still a global bebween calls to counter():
variable, but it zan
only be aceesseg > Static int count = 0;

mside this function. return ++count;

OEBPS/httpatomoreillycomsourceoreillyimages2260204.png.jpg
Nooooooolllll

Serioust
y, char dangerous[10];

don't use
o) A gets (dangerous) ;

OEBPS/httpatomoreillycomsourceoreillyimages2259966.png.jpg
T can't believe
they put thatina
€ book.

OEBPS/httpatomoreillycomsourceoreillyimages2260218.png.jpg
T car't update
that, buddy. It's in
the constant memory

block, 5o it's read-only.

OEBPS/httpatomoreillycomsourceoreillyimages2260216.png.jpg
Highest. address

h mmm WWW#% MMM%W

_ GL()BAES

/‘"?/'/‘/',’s/

] —-€ODE

T T
|—char *cards="JQK"; ———

1;

= sam T I
cards[2] = cards[1l

e

Read-onl

Lowest addvess

OEBPS/httpatomoreillycomsourceoreillyimages2261194.png.jpg
strevror() tonverts an evvor

puts (strerror (errno)) ; &—
anbev inbo:a westane

OEBPS/httpatomoreillycomsourceoreillyimages2260652.png
volid catalog(struct fish 1)

{
printf("$s is a %s with %i teeth. He is %i\n",

- teeth.. .age.

int main()
{
struct fish snappy = {"Snappy", "Piranha", 69, 4};
catalog (snappy) ;
/* We're skipping calling label for now */
return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260494.png.jpg
This line will include the
s eontents of the header
Lile ealled stdioh.

4include <stdio.h>

OEBPS/httpatomoreillycomsourceoreillyimages2260660.png
struct fish snappy = {"Snappy", "Piranha", 63, 4};
struct fish gnasher = snappy;

e And this is grasher

This i snapp

*name |*species | 69 | 4 *name |*species | 69 | 4

apasher and snappy both) N,) u] /
point to the same strings. ‘Snappy’ ‘Piranha’

OEBPS/bk01-toc.html
Head First C

Table of Contents
		Dedication

		Advance Praise for Head First C

		Praise for other Head First books

		Authors of Head First C

		How to use this Book: Intro		Who is this book for?		Who should probably back away from this book?

		We know what you’re thinking

		We know what your brain is thinking

		Metacognition: thinking about thinking

		Here’s what WE did

		Here’s what YOU can do to bend your brain into submission

		Read me

		The technical review team

		Acknowledgments

		Safari® Books Online

		1. Getting Started with C: Diving in		C is a language for small, fast programs		The way C works

		But what does a complete C program look like?

		But how do you run the program?		The program works!

		Two types of command		Do something

		Do something only if
 something is true

		Here’s the code so far

		Card counting? In C?

		There’s more to booleans than equals...		&& checks if two conditions are true

		II checks if one of two
 conditions is true

		! flips the value of a condition

		What’s the code like now?

		Pulling the ol’ switcheroo

		Sometimes once is not enough...		Using while loops in C

		Loops often follow the same structure...		...and the for loop makes this easy

		You use break to break out...		...and continue to continue

		Your C Toolbox

		2. Memory and Pointers: What are you pointing at?		C code includes pointers

		Digging into memory

		Set sail with pointers

		Set sail sou’east, Cap’n

		Try passing a pointer to the variable		Pointers make it easier to share memory

		Using memory pointers

		How do you pass a string to a function?		Honey, who shrank the string?

		Array variables are like pointers...		...so our function was passed a pointer

		What the computer thinks when it runs your code

		But array variables aren’t quite pointers

		Why arrays really start at
 0

		Why pointers have types

		Using pointers for data entry		Entering numbers with scanf()

		Be careful with scanf()		scanf() can cause buffer overflows

		fgets() is an alternative to scanf()		Using sizeof with fgets()

		Anyone for three-card monte?

		Oops...there’s a memory problem...

		String literals can never be updated

		If you’re going to change a string, make a copy

		Memory memorizer

		Your C Toolbox

		2.5. Strings: String theory		Desperately seeking Susan
 Frank

		Create an array of arrays

		Find strings containing the search text		Using string.h

		Using the strstr() function

		It’s time for a code review

		Array of arrays vs. array of pointers

		Your C Toolbox

		3. Creating Small Tools: Do one thing and do it well		Small tools can solve big problems

		Here’s how the program should work

		But you’re not using files...

		You can use redirection

		You can redirect the Standard Input with <...

		...and redirect the Standard Output with >

		But there’s a problem with some of the data...

		Introducing the Standard Error

		By default, the Standard Error is sent to the display

		fprintf() prints to a data stream

		Let’s update the code to use fprintf()

		Small tools are flexible

		Don’t change the geo2json tool

		A different task needs a different tool

		Connect your input and output with a pipe

		The bermuda tool

		But what if you want to output to more than one file?

		Roll your own data streams		The program runs, but...

		There’s more to main()

		Overheard at the Head First Pizzeria

		Let the library do the work for you

		Your C Toolbox

		4. Using Multiple Source Files: Break it down, build it up		Don’t put something big into something small

		Use casting to put floats into whole numbers

		Oh no...it’s the out-of-work actors...

		Let’s see what’s happened to the code

		Compilers don’t like surprises		Fixing function order is a pain

		In some situations, there is no correct order

		Split the declaration from the definition

		Creating your first header file

		If you have common features...		...it’s good to share code

		You can split the code into separate files

		Compilation behind the scenes

		The shared code needs its own header file		Include encrypt.h in your program

		It’s not rocket science...or is it?

		Don’t recompile every file		Save copies of the compiled code

		First, compile the source into object files		Then, link them together

		It’s hard to keep track of the files

		Automate your builds with the make tool		What does make need to know?

		How make works

		Tell make about your code with a makefile

		Your C Toolbox

		C Lab 1: Arduino		The spec: make your houseplant talk		The physical device

		The Arduino

		The Arduino IDE

		Build the physical device		Build the moisture sensor

		Connect the LED

		Connect the moisture sensor

		Here’s what your code should do		Read from the moisture sensor

		Write to the LED

		Write to the serial port

		Here’s what your C code should look like

		Here are some useful Arduino functions

		The finished product

		5. Structs, Unions, and Bitfields: Roll your own structures		Sometimes you need to hand around a lot of data

		Cubicle conversation

		Create your own structured data types with a struct

		Just give them the fish

		Read a struct’s fields with the “.” operator

		Can you put one struct inside another?

		How do you update a struct?

		The code is cloning the turtle

		You need a pointer to the struct

		(*t).age vs. *t.age

		Sometimes the same type of thing needs different types of
 data

		A union lets you reuse memory space

		How do you use a union?		C89 style for the first field

		Designated initializers set other values

		Set the value with dot notation

		unions are often used with structs

		An enum variable stores a symbol

		Sometimes you want control at the bit level

		Bitfields store a custom number of bits

		Your C Toolbox

		6. Data Structures and Dynamic Memory: Building bridges		Do you need flexible storage?

		Linked lists are like chains of data

		Linked lists allow inserts

		Create a recursive structure

		Create islands in C...		...and link them together to form a tour

		Inserting values into the list

		Use the heap for dynamic storage		First, get your memory with malloc()

		Give the memory back when you’re done		Free memory by calling the free() function

		Ask for memory with malloc()...		...and free up the memory with free()

		Oh, no! It’s the out-of-work actors...

		Let’s fix the code using the strdup() function		So does it fix the code?

		Free the memory when you’re done

		Exhibit A: the source code

		An overview of the SPIES system		The program builds a tree of suspects

		Software forensics: using valgrind		Prepare your code: add debug info

		Just the facts: interrogate your code

		Use valgrind repeatedly to gather more evidence		This time, valgrind found a memory leak

		Look at the evidence		1. Location

		2. Clues from valgrind

		The fix on trial		The leak is fixed

		Your C Toolbox

		7. Advanced Functions: Turn your functions up to 11		Looking for Mr. Right...

		Pass code to a function

		You need to tell find() the name of a function

		Every function name is a pointer to the function...

		...but there’s no function data type		Why doesn’t C have a function data type?

		How to create function pointers

		Get it sorted with the C Standard Library

		Use function pointers to set the order

		Automating the Dear John letters

		Create an array of function pointers		But how does an array help?

		Make your functions streeeeeetchy		So how can YOU do that?

		Your C Toolbox

		8. Static and Dynamic Libraries: Hot-swappable code		Code you can take to the bank

		Angle brackets are for standard
 headers

		But what if you want to share code?

		Sharing .h header files

		Share .o object files by using the full pathname

		An archive contains .o
 files

		Create an archive with the ar command...		...then store the .a in a library directory

		Finally, compile your other programs

		The Head First Gym is going global

		Calculating calories

		But things are a bit more complex...

		Programs are made out of lots of pieces...		...but once they’re linked, you can’t change them

		Dynamic linking happens at runtime

		Can you link .a at runtime?		Dynamic libraries are object files on steroids

		First, create an object file

		What you call your dynamic library depends on your
 platform		Compiling the elliptical program

		Your C Toolbox

		C Lab 2: OpenCV		The spec: turn your computer into an intruder detector		The intruder detector

		OpenCV

		Installing OpenCV

		What your code should do		Take input from your computer camera

		Grab an image from the webcam

		Detect an intruder

		Make a clean getaway

		Optional: show the current webcam output

		The finished product

		It’s time to become a C ninja...

		9. Processes and System Calls: Breaking boundaries		System calls are your hotline to the OS

		Then someone busted into the system...

		Security’s not the only problem

		The exec() functions give you more control		exec() functions replace the current process

		There are many exec() functions		The list functions: execl(), execlp(), execle()

		The array functions: execv(), execvp(), execve()

		Passing environment variables		But what if there’s a problem?

		Most system calls go wrong in the same way

		Read the news with RSS

		exec() is the end of the line for your program		fork() will clone your process

		Running a child process with fork() + exec()		1. Make a copy

		2. If you’re the child process, call exec()

		Your C Toolbox

		10. Interprocess Communication: It’s good to talk		Redirecting input and output

		A look inside a typical process

		Redirection just replaces data streams		Processes can redirect themselves

		fileno() tells you the descriptor		dup2() duplicates data streams

		Sometimes you need to wait...		The waitpid() function

		Stay in touch with your child		Reading story links from rssgossip

		Connect your processes with pipes		Piped commands are parents and children

		Case study: opening stories in a browser		pipe() opens two data streams

		In the child

		In the parent

		Opening a web page in a browser

		The death of a process		The O/S controls your program with signals

		Catching signals and running your own code		A sigaction is a function wrapper

		All handlers take signal arguments

		sigactions are registered with sigaction()

		Rewriting the code to use a signal handler

		Use kill to send
 signals		Send signals with raise()

		Sending your code a wake-up call		...the timer fires a SIGALRM signal

		Your C Toolbox

		11. Sockets and Networking: There’s no place like 127.0.0.1		The Internet knock-knock server

		Knock-knock server overview

		BLAB: how servers talk to the Internet		1. Bind to a port

		2. Listen

		3. Accept a connection

		A socket’s not your typical data stream

		Sometimes the server doesn’t start properly

		Why your mom always told you to check for errors		Bound ports are sticky

		Reading from the client

		The server can only talk to one person at a time

		You can fork() a process for each client		The parent and child use different sockets

		Writing a web client

		Clients are in charge		Remote ports and IP addresses

		Create a socket for an IP address

		getaddrinfo() gets addresses for domains		Create a socket for a domain name

		Your C Toolbox

		12. Threads: It’s a parallel world		Tasks are sequential...or not...

		...and processes are not always the answer

		Simple processes do one thing at a time

		Employ extra staff: use threads

		How do you create threads?

		Create threads with pthread_create

		The code is not thread-safe

		You need to add traffic signals

		Use a mutex as a traffic signal

		Your C Toolbox

		C Lab 3: Blasteroids		Write the arcade game Blasteroids

		Your mission: blast the asteroids without getting hit

		Allegro		Installing Allegro

		You may need CMake

		What does Allegro do for you?

		Building the game

		The spaceship		What the spaceship looks like

		Collisions

		Spaceship behavior

		Reading keypresses

		The blast		Blast appearance

		Blast behavior

		The asteroid		Asteroid appearance

		How the asteroid moves

		When the asteroid is hit by a blast

		The game status

		Use transformations to move things around

		The finished product

		Leaving town...

		It’s been great having you here in Cville!

		A. Leftovers: The top ten things (we didn’t cover)		#1. Operators		Increments and decrements

		The ternary operator

		Bit twiddling

		Commas to separate expressions

		#2. Preprocessor directives		Conditions

		#3. The static keyword		static can also make things private

		#4. How big stuff is

		#5. Automated testing

		#6. More on gcc		Optimization

		Warnings

		#7. More on make		Variables

		Using %, ^, and @

		Implicit rules

		#8. Development tools		gdb

		gprof

		gcov

		#9. Creating GUIs		Linux — GTK

		Windows

		The Mac — Carbon

		#10. Reference material		Websites

		B. C Topics: Revision roundup		Basics

		Pointers and memory

		Strings

		Data streams

		Data types

		Multiple files

		Structs

		Unions and bitfields

		Data structures

		Dynamic memory

		Advanced functions

		Static and dynamic
 libraries

		Processes and
 communication

		Sockets and networking

		Threads

		Index

		About the Authors

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages2261584.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2259970.png.jpg
Your brain g,
H

1S i oy

OEBPS/httpatomoreillycomsourceoreillyimages2260176.png.jpg
This is at
location “drinks”

This is 3t
“deinks + 2

4

2

3

This is at “dvinks + 1"

OEBPS/httpatomoreillycomsourceoreillyimages2260180.png.jpg
void skip(char *msg) £ you add b to the msg pointer,

{ you vill print From chavacter T

puts(mgtb e

char *msg_from_amy = "Don't call me";
skip (msg_from_amy) ;

The code vill display dhis.
[N | 2 -]fo
iy ek here s + b poinks Lo the leber ¢ A e

call me

>

OEBPS/httpatomoreillycomsourceoreillyimages2261060.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260178.png.jpg
YOG mEgnENay “IRgY heve to
What expression do You need heve
‘ 1 prnt from bhe seventh chavaeter?
puts(_)

) The funttion needs to print £his
message from the ‘¢’ character on

char *msg_from_amy = "Don't call me";
skip (msg_from_amy) ;

OEBPS/httpatomoreillycomsourceoreillyimages2261062.png
#include <stdio.h>
#include <hfcal.h> &— The Whcalh header file just contains 2

declavation of the display_ealories() funttion
void display calories(float weight, float distance, float coeff)
(o The weight is in pounds.
printf("Weight: $3.2f lbs\n", weight);
. &— The distance is in miles.

printf("Distance: %3.2f miles\n", distance);

printf("Calories burned: $4.2f cal\n", coeff * weight * distance);

This ¢ode will go info] hfcale
a file called hieale.

OEBPS/httpatomoreillycomsourceoreillyimages2261586.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260220.png.jpg
cards is not just
char cards(] = "IQKY; €— 3 panker. tords
is now an areay.

OEBPS/httpatomoreillycomsourceoreillyimages2260650.png.jpg
species

OEBPS/httpatomoreillycomsourceoreillyimages2261494.png
finclude <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
4include <netdb.h>

void error(char *msg)
(
fprintf(stderr, "#s: $s\n", msg, strerror(errno));
exit(1);

int open_socket (char *host, char *port)
{

struct addrinfo *res;

struct addrinfo hints;

memset (shints, 0, sizeof (hints));

hints.ai_family = PF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

if (getaddrinfo(host, port, shints, ares) == -1)

error("Can't resolve the address");
int d_sock = socket(res->ai_family, res->ai_socktype,
res->ai_protocol);

if (d_sock == -1)
error("Can't open socket");
int ¢ = connect (d_sock, res->ai_addr, res->ai_addrlen);

freeaddrinfo(res);
if (c -1)
error("Can't connect to socket");

return d_sock;

OEBPS/httpatomoreillycomsourceoreillyimages2260182.png.jpg
)

Pinker variables have different
types for cach type of data.

OEBPS/httpatomoreillycomsourceoreillyimages2260214.png.jpg
char *cards = "JOK"; &— This vaviable tant modify this string,

OEBPS/httpatomoreillycomsourceoreillyimages2261056.png.jpg
#include <encrypt.h>
The #includes are using angle brackets

1
include <checksum.h> < Ty compier will need o be told where
the header files ave with a ~T statement.

OEBPS/httpatomoreillycomsourceoreillyimages2261058.png.jpg
encrypt.o: encrypt.c LW ereates the object file
from the enerypte source file

gce .. encrypt.c -o encrypt.o

This eveates the objeet file

checksun-of checksun. ¢ From the checksum sourte file.

L)

libhfsecurity.a: encrypt.o |

" (Th.s will eveate the

You need —Ihfiecurity because the
tanbevsulies badkovauitse arthive i called lbhfsecuritya
958 p o

The program’s source Vou need ~T. because the You need the -L.,
code needs 4o be lisked header files ave in the *” because the arehive is in
before the libeary code. (curvent) divectory. the eurvent. directory.

/usr/1ib ' Jusr/local/include . \:ﬂ /usr/local/lib ' res '

gce checksum.c -o checksum.o

L You tan't build the libhsecurity.a archive until
we've rested entrypto and checksumo,

OEBPS/httpatomoreillycomsourceoreillyimages2260212.png.jpg
Darn . T knew that
card shark couldr't be
trusted.

> goc monte.c -o monte && ./monte

monte.exe has stopped working

OEBPS/httpatomoreillycomsourceoreillyimages2260510.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260662.png.jpg
things our Kish likes.
struct preferences (& 1he¢ &€ "

const char *food;
float exercise hours;
Y

struct fish {
const char *name;
const char *species;
int teeth;
int age; ‘/
This is 3 new £ield \ g¢uct preferences care; &—This i talled nesting,
}i

This is 3 sbruet inside a steuet.

LS
Our new field is called “care,” but it will contain
fields defined by the “preferentes” struct.

OEBPS/httpatomoreillycomsourceoreillyimages2260506.png
(Candidate tode goes heve:

tinclude <staio.n> -

("A day on Me

rs\n", day);

return 0;

£loat me

y_in_earth days()

return 58.65;

int hours_in_an_earth_day()

return 24;

OEBPS/httpatomoreillycomsourceoreillyimages2260654.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261488.png
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>

void error(char *msg)
[
fprintf (stderr, "is: $s\n", msg, strerror(errno));
exit(1);

int open_socket (char *host, char *port)
(
struct addrinfo *res:
struct addrinfo hints;
memset (shints, 0, sizeof (hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
if (getaddrinfo(host, port, shints, &res)
error("Can't resolve the address”);
int d_sock = socket (res-ai_family, res->ai_socktype,
res->ai_protocol);

-1)

if (d_sock == -1)
error("Can't open socket");
int c = comnect (d_sock, res-ai_addr, res->ai_addrlen);
freeaddrinfo (res) s
if (e == -1
error("Can't comnect to socket");
return d_sock:

OEBPS/httpatomoreillycomsourceoreillyimages2261492.png
"GET /wiki/%s http/1.1\r\n"

Host: en.wikipedia.org\r\n\r\n"

o ' "\r\a» '

©open_socket ("en.wikipe

0y

OEBPS/httpatomoreillycomsourceoreillyimages2260174.png.jpg
AN OEANAS E = Ahpoop 088
st order: $i drinks\n", drinks[0])

*drinks)

These lines
of code ave LPPTINEE(
eqialent. N prints

drnksL0] == Kdrinks

1st order: $i drinks\

OEBPS/httpatomoreillycomsourceoreillyimages2260170.png.jpg
==

OEBPS/httpatomoreillycomsourceoreillyimages2260188.png.jpg
int age;

%i means the usev will printf ("Enter your age: ");
enter an int value. scanf ("$i", Sage) ; £— Use the ¢ operator to get the address of the int

OEBPS/httpatomoreillycomsourceoreillyimages2261068.png.jpg
Again, you need 4o tell the compiler that the headers are in /includes.

OEBPS/httpatomoreillycomsourceoreillyimages2261580.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260210.png.jpg
> gcc monte.c -o monte && ./monte
bus error

OEBPS/httpatomoreillycomsourceoreillyimages2260172.png.jpg
This will give a compile evvor. —>

OEBPS/httpatomoreillycomsourceoreillyimages2260186.png.jpg
You're going 4o store 3 ~5> char name[40];

name in thi
's dreay. printf ("Enter your name: ");
seant will vead up o 39 characters

blus the string ferminator \O.

scanf ("$39s", name) ;

OEBPS/httpatomoreillycomsourceoreillyimages2260648.png.jpg
ruct fish

printf("Name = $s snappy . name

me) 5 _~This i the mame sbixibte insarpy

gjglgsh@ -o fish This will veturn the
Name = Snappy sbring “Srapy

OEBPS/httpatomoreillycomsourceoreillyimages2261582.png.jpg
Where it is on the sereen <” tloat

Which way it's headed —=>> £1oat
Curvent votation ——~~> float
float

Speed of votation per frame — > float
Sealing factor to change its size —— £loat

struct {

sx;

syi

heading;
twist;

speed;
rot_velocity;

scale;

Has it been destroyed? —~» int gone;

ALLEGRO_COLOR color;

} Asteroid;

OEBPS/httpatomoreillycomsourceoreillyimages2261066.png.jpg
The hfeal.¢ program needs to know where the header file is

hfcale

g¢t..=T.Linelude; £eal.

Did you remember 4o add the ~T flag? —t means “just ereate the object file; don't link it”

OEBPS/httpatomoreillycomsourceoreillyimages2261500.png.jpg
Telnet 13
Simple e’
cient

Sevvers BLAB:
B = bind0

L = listen()

A= accept0)
B= Begin talking

DNs =

Domain name

Create
sotkets with
the socket()
Function,

Use forkO)

o tope with
several tlients
at onte.

OEBPS/httpatomoreillycomsourceoreillyimages2261496.png.jpg
int say(int socket, char *s)

(
int result = send(socket, s, strlen(s), 0);
AL (resull meinl]

fprintf (stderr, "&s: %s\n", "Error talking to the server",
strerror (errno));

return result;

int main(int arge, char *argv(])
{

int d_sock;

Create a string for the path

" o the pane you want

.+ argvlll);

char buf([255];

sprintf (buf,
say(d_sock, buf);

T
ost: en.wikipedi org\r\n\r\,)7 as a blank ’mewe
char rec[256];

say(d_sock,

int bytesRevd = recv(d_sock, rec, 255, 0);
while (bytesRevd) {
if (bytesRevd == -1)
error("Can't read from server");

Add 2 \O o the end of the arvay of
‘thavackers +o make it 3 proper sbring

rec[bytesRevd] =
printf("$s", rec);
bytesRevd = recv(d_sock, rec, 255, 0);

return 0;

Host: en

OEBPS/httpatomoreillycomsourceoreillyimages2261574.png.jpg
The up and down
arrows ateclevate —>
and decelevate the

spaceship. \

|kt avrow
?.:ns the spaceshi?
countertlotkuise

T pa—

DOWN

Fvel

v

The vight: arvey,

turns e cpmern
clotkyize, TP

—> |RIGHT —>

OEBPS/httpatomoreillycomsourceoreillyimages2261070.png.jpg
The library needs to be named lib....a.
ar —vts ./libs/libhfeala hfealo

7
The archive needs 4o a0 into the /libs directory.

OEBPS/httpatomoreillycomsourceoreillyimages2261316.png
int main(int argc, char *argv[])

You wight want to veplace this
! with another RSS newsfeed
char *phrase = argv[1];
char *vars[] = {"RSS_FEED=http://www.cnn.com/rss/celebs.xml", NULL};
int £d[2]; € This array will store the destriptors for your pipe.

7 d Crete your
" pipe heve.
pid_t pid = fork():
if (pid == -1) {
error("Can't fork process");
! Ave you pavent or hld? What code goes in these lnes?
if (1pid) { v

if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",

"-u", phrase, NULL, vars) == -1) {
error ("Can't run SOrTPERT Ty’ dells he seript b dplay
}Ave You in the parent or the child heve? URLs for the stories
) What do You need to do to the Fipe?

What needs

char line[255]; o0 90 here?

while (fgets(line, 255, What will you
if (1ine[0] == '\t') € I the line starts vith 2 Lab vead from?
open_url(line + 1);
i "~ T then it's a URL.
return 07 line 4 1" the string starking =
, after the tab character. =

news_opener.c

OEBPS/httpatomoreillycomsourceoreillyimages2261314.png.jpg
void open_url(char *url)
! This will open a veb page on Windows
char launch[255];

sprintf(launch, "cmd /c start #s", url);
system(launch) ;

This will open a web —> sprintf (Launch, "x-www-browser '$s' &", url);

Page on Linux. system(launch);

sprintf(launch, "open '&s'", url);

system(launch) ; N
This il open a web page on the Mac

OEBPS/httpatomoreillycomsourceoreillyimages2260664.png.jpg
This is the struct data
for the are field.

y
struct fish snappy = ("Snappy", "Piranha", 69, 4, {"Meat", 7.5}};

X
This is the v;{; This s the value For

cavetocd. cave.cxertise_hours

OEBPS/httpatomoreillycomsourceoreillyimages2260670.png.jpg
Hmmm.all these struct commands seem kind
of wordy. T have to use the struct keyword when I define
astruct, and then I have o use it again when I define a

variable. T wonder if there’s some way of simplifying this.

OEBPS/httpatomoreillycomsourceoreillyimages2260666.png
struct fish snappy

OEBPS/httpatomoreillycomsourceoreillyimages2260504.png.jpg
> ./totaller

Price of item: 1.23
Total so far: 1.30
Price of item: 4.57
Total so far: 6.15
Price of item: 11.92
Total so far: 18.78
Price of item: “D
Final total: 18.78
Number of items: 3

N

Press Ciel-D here to stop the

broaram from asking for more prices

OEBPS/httpatomoreillycomsourceoreillyimages2260508.png
Here are the code fragments.
Mark the boxes that

hink ave corvect:
float mercury day_in_earth days(): [you 8

int hours_in_an_earth_day(): D You can compile the code.

int main() D You should display a warning.

{
|:| The program will work.

float length of day = mercury day in earth days();

int hours = hours_in_an_earth_day();
float day = length of day * hours;

OEBPS/httpatomoreillycomsourceoreillyimages2261570.png.jpg
typedef struct {
float sxr} Wheve it is on

ereen
float sy;) e

The direction it's pointing “T>float heading;

float speed;
int gone; &—Is it dead?

ALLEGRO_COLOR color;

} Spaceship;

OEBPS/httpatomoreillycomsourceoreillyimages2260196.png
> . /food

Enter favorite food: liver-tangerine-raccoon-toffee
Favorite food: liver-tangerine-raccoon-toffee
Segmentation fault: 11

>

OEBPS/httpatomoreillycomsourceoreillyimages2260198.png.jpg
This is the The food arvay ends
food arvay. after five chavacters.

)i f[v]lelle][-t |la]ln
Y
lc{"{fr?“&d, om this ode is

Lhe avvay. in llegal space

OEBPS/httpatomoreillycomsourceoreillyimages2261572.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260590.png
Ihis converts
whitenmerdy.ogo

bo swing.ong

oggswing

swing.ogg:

OEBPS/httpatomoreillycomsourceoreillyimages2261174.png.jpg
OK, T'm handing over to
you now, sendmail. This is
the data you need. Dorit
let me down.

OEBPS/httpatomoreillycomsourceoreillyimages2261178.png.jpg
exetV = an arva "
VECTOR J:al":&ﬂ execv ("/home/£1lynn/clu", my_;,vrgs,,.
The avguments need 4o be stored

exetVP = an avvay/
VECTOR of arguments—>> execvp ("clu®, my_args); " ¢ ™29 string arvay.

+ searth on the PATH.

OEBPS/httpatomoreillycomsourceoreillyimages2260406.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260388.png.jpg
Remenber: i you are ruming on 1y, the ppe that

Windows, you don't need the /"
R RS ot the proseses Th s e File contaiming al the events

When you comect the &
_>(./bermuda | ./geo2json) < spooky.csv > output.json

b programs tasether

o bt thm 55

a single program. ¢ bermuda fool filters ot The geoLjson toal will convert /|
Hoduitrapsiotiruauodiiio e Ao et

OEBPS/httpatomoreillycomsourceoreillyimages2260592.png.jpg
oggswing whitennerdy.ogg Swing °99
whitennerdy .09

= =y

gee oggswing.c -o oggswing

OEBPS/httpatomoreillycomsourceoreillyimages2261312.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261016.png.jpg
A security library? Hey,
that's just what I'm looking
forl The security at our
bank is, well..kinda sloppy. £ Head of seturity 3t the
Fiest Bank of ttead First

He also cleans pols.

OEBPS/httpatomoreillycomsourceoreillyimages2261622.png.jpg
¥ you've ereating <Files, 3
then ook for <Flene, | B B:€

{4 is the dependenty 9CC $% -Wall -o $8 <~ 18 is vame of the target
T re ¢ Bl 2

OEBPS/httpatomoreillycomsourceoreillyimages2261626.png.jpg
FHORORSTUY 2y
eocdefghijkim
| Beszs

noparstuywxyz,

OEBPS/httpatomoreillycomsourceoreillyimages2261310.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260100.png.jpg
swikeh statements
efficiently theek
Sor moltiple values
of 3 vaviable:

Gmle

comple YU C
Hinclude intludes You ean am be
exkernal code et | W
° on

for khinas Command the
e imguk and i Your pr e to
o S
iles.

Yoo can s 1

and || to combi
:;:iﬁmu.b.m
ther.
gce is the
oy Yo hle vegeats
Popular (our source f|
C compiler. Should h:f: Hiles tode :xem
hame end a asd
ey ke

cownttF un.«;_‘
st | Bl
tow sbbract | e L""‘I’ﬂﬁéa
from tount. l:; of writing

—

OEBPS/httpatomoreillycomsourceoreillyimages2260500.png.jpg
Add 4) #include <stdio.h>
his include to W o
other include lnes You #include "totaller.h

ey

OEBPS/httpatomoreillycomsourceoreillyimages2260802.png
island amity = {"Amity", "09:00", "17:00", NULL};

island craggy = {"Craggy", "09:00", "17:00", NULL};

island isla_nublar = {"Isla Nublar", "09:00", "17:00", NULL};
island shutter = {"Shutter", "09:00", "17:00", NULL};

amity.next = &craggy;
craggy.next = &isla_nublar;
isla_nublar.next = &shutter;
island skull = {"Skul. 9:00", "17:00", NULL};

isla_nublar.next = &skull; tour.c -o tour & ./tour
_) Amity

skull.next = &shutter; 09:00-17:00

display (samity) ; craggy

09:00-17:00
Isla Nublar

09:00-17:00
Skull
09:00-17:00
Shutter

OEBPS/httpatomoreillycomsourceoreillyimages2260806.png.jpg
Hmmm... So far, we've used a separate variable
for each item in the list. But if we dor't know how
long the file is, how do we know how many variables

we need? T wonder if there's some way to generate
new storage when we need it.

OEBPS/httpatomoreillycomsourceoreillyimages2261196.png
#include <stdio.h>

Wit headers il you need?

This will need to vun

This vill need to vun /sbin/if¢onfi i

int main() 9 the ipeonfig command

(ame should we test for? and cheek iF it fails
if (.

if (execlp(

fprintf(stderr, "Cannot run ipconfig: %s", R

return 1;
! What do you think goes here?

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260498.png.jpg
float add_with_tax(float f);

iy

totallerh

OEBPS/httpatomoreillycomsourceoreillyimages2260586.png.jpg
You are telling make 4o e EST W

ereate the Lunch file. > [P
/ gce -c launch.c
make fivst needs to create
3 launch.o with this lne /

gce -c thruster.c
gce launch.o thruster.o -o launch

make then needs to ereate

thruster.o with this line

;

Fnally, make links the object iles
fo ereste the launch progyam.

OEBPS/httpatomoreillycomsourceoreillyimages2260598.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261576.png
ALLEGRO_EVENT QUEUE *queue;
like Ehis-
queue = al_create_event_gueue () ; You treate an event aueue

ALLEGRO_EVENT event;

al_wait_for_event (queue, &event); This waits £or an event from the queue

OEBPS/httpatomoreillycomsourceoreillyimages2261008.png.jpg
Funttion gointers

Function painters are e
lek you pass gon
funttions around dont wud the ¥
as if they vere nd £ opeedters
data.
'bf‘f You ean
il e them i
T e vame oF PR
L‘w&bm
T oker o s
Lhe Funekion Tin
an “'"Y-
Eath sort
Sfunetion needs
T Funthions vith 3
;ﬂ: Javiable number
S oot of acguments art
Arvays of funch Fonthions detide oalled “variadie
Pointers can hel - how to order
vun different P o pieces of e stdargh lets
Lunttions for data. el
variadie

diffe
d;h.mﬁ e

funtions

OEBPS/httpatomoreillycomsourceoreillyimages2260800.png.jpg
vold display(island *start)
You don't ¢ You need o keep looting until the At the end of each loop,
need any feland *i = start: turvent island has mo next value. skip to the next island.
extra

code at
the start’
of the

loop. l:]
Printf("Name: ¥s open: $s-%s\n", | i->name . , | i>opens |, | i->closes '1;

OEBPS/httpatomoreillycomsourceoreillyimages2260496.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260502.png.jpg
> gee totaller.c —o

No evvor
messages

bhis Lime.

OEBPS/httpatomoreillycomsourceoreillyimages2260812.png.jpg
53 bytes of
dataat location
4,304,852 on the.
heap

/

s

I

The mallocQ) funttion will give you

pinker Lo the space in the beat

\

OEBPS/httpatomoreillycomsourceoreillyimages2260804.png.jpg
There will
be some
more lines

alber this.

Delfino Isle

Angel Island

Wild Cat Island
Neri's Island
Great Todday

OEBPS/httpatomoreillycomsourceoreillyimages2261064.png.jpg
The LCD display will captuve
e the Standard Output

#include <hfcal.h>
The test user weighs 1/5.2.
Pounds and has done 11.3

int main()

; miles on the elliptical WeiGHT: 115.20 1BS
display_calories(115.2, 11.3, 0.79); Distance: 11.30 MiLes
return 0; For s mathive, e 7 CAL9RIES RURNED: 1022.39 CAL
' coekficient is 017 ==
liptical. This is wh i
This is the fest code. SHiess loos m Eﬁ(tt;d&fy

Program.

OEBPS/httpatomoreillycomsourceoreillyimages2260152.png
The quote variable will
vepresent the address

of the first charatter
in-the string,

(0]

[©)

e

(,char quote[] = "Cookies make you fat";

\0

OEBPS/httpatomoreillycomsourceoreillyimages2261590.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260150.png
void fortune cookie(char msg([])

{
printf ("Message reads: $s\n", msg);
printf("msg occupies %i bytes\n", sizeof(msg));

i o W e TR
PO WIRINN > /<o tune_cookie

R liessage reads: Cookies make you fat
mathines, this msg occupies 8 bytes

might even say 4/ |
What gives?

OEBPS/httpatomoreillycomsourceoreillyimages2259976.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260226.png.jpg
void stack deck({char cards(])
‘ ~

o tards is a thar pointer
)

void stack_deck(char *cards)
{

1

These fwo funttions are equivalent.

OEBPS/httpatomoreillycomsourceoreillyimages2261054.png.jpg
checksum, -1hfsecurity - >
1ihh£secnzity~i' b“k~"a“1"°' I\n, D s

/usx/lih' /usx/local/include. D -xes .

OEBPS/httpatomoreillycomsourceoreillyimages2261592.png.jpg
Oh my, look at all
the tasty treats we
have left.

OEBPS/httpatomoreillycomsourceoreillyimages2260238.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261006.png.jpg
Yeah, baby! T could
remember these even
after one too many
Monkey Glands.

OEBPS/httpatomoreillycomsourceoreillyimages2261052.png.jpg
T means “Text,” whith means this is a function

0000000000000000 T _yywrap &—The name of the funttion is yywrap()

OEBPS/httpatomoreillycomsourceoreillyimages2260828.png.jpg
Create an arvay to store an island mame. ~3, 2> name (801

o the name of anislnd. —3>fgets (name, 80, stdin);
island *p_island0 = create(name);

Ack the user &

Atlantis

OEBPS/httpatomoreillycomsourceoreillyimages2260830.png.jpg
sk the user to enter the name

“ :
of the second island fgets (name, 80, stdin);

island *p_islandl = create (name); <Thi ercates the

cond island.
_—>p_island0->next = p_islandl; e
land p_is .
This connects the fiest is

4o the setond island

OEBPS/httpatomoreillycomsourceoreillyimages2261048.png.jpg
hisecurity Lells the compiler 4o look

Remember to list your source an archive ealled libhfsecurity.a

Files before your —| libraries. N

gcc test_code.c -lhfsecurity -o test code £~ Do you need a =T option?
T — [t depends on where you
eveval archives, put your headers.

16 you've wing
Jou can st several | options

OEBPS/httpatomoreillycomsourceoreillyimages2261228.png.jpg
for (1 = 0; 1 < times; 1++) {

Put your

Nal:; char var[255];

in this sprintf (var, "RSS_FEED=%s", feeds[i]):
space;

char *vars(] = {var, NULL};

OEBPS/httpatomoreillycomsourceoreillyimages2261624.png.jpg
et i

be ;‘gtf““”Y > make fred

= er cc fred.c -o fred
me o e) =

This compile command vas This is 3 im
tresked by make, vithovt mpleit rde

us 4elling it how.

OEBPS/httpatomoreillycomsourceoreillyimages2261498.png
You'll have o veplace any spaces with undevseore () tharacters.

> gce wiki_client.c -o wiki_client

> ./wiki_client "O'Reilly Madia" <&

ggg/ 131?086055“ e «— AL the beginning, you'll get the response HEADERS. These
e P & ell You things about the server and the web page

Connection: close
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http: //waw.w3.org/TR/xhtml1/DTD/xhtml1-transitional .dtd">

<html lang="en" dir="ltr" class="client-nojs" xmlns="http://www.w3.o0rg/1999/xhtml">
<head>

<title>0'Reilly Media - Wikipedia, the free encyclopedia</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

Then You get. the contents of the web page From Wikipedia.

OEBPS/httpatomoreillycomsourceoreillyimages2261588.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261050.png.jpg
So, I need to look for
libhfsecurity.a starting in
the /my_lib directory.

o0

OEBPS/httpatomoreillycomsourceoreillyimages2261502.png.jpg
Johnny told me he
got his heap variables
locked in a mutex.

OEBPS/httpatomoreillycomsourceoreillyimages2261594.png.jpg
Inevease i by I, th
vebion B a0+

nevease i by |, then
veburn the old value — ;

Deevease i by I, 4h
b b v e > "
Deevease i bx 1, then
veburn the old value. —\
.

OEBPS/httpatomoreillycomsourceoreillyimages2260582.png.jpg
The launch

Program is made from (100l
the luntho and thrusters Fler > fo
launch
rd [e is compiled feom
o is compiled from launche and - fua o thruster.o is compi
e nd ALSO Teom thrsterh = [l oo <) ctor and thrusterc
launch.o thruster.o

launch.c launch h thruster h thrusterc

OEBPS/httpatomoreillycomsourceoreillyimages2261318.png
int main(int argc, char *argv[])

{
char *phrase = argv[1];

char *vars[] = {"RSS_FEED=http://www.cnn.com/rss/celebs.xml", NULL};
int £d[2]; L~ This will treate the pipe and store its destriptors in £d[0J and £dC1]
(ripe(kd)

3y, £ Need 4o check that veburn code,
" in case e an't ereate the pipe

error("Can't fork process");
3 s You've in the thild process here.

This will set the Standard Output to the write end of the pipe.
e ¢hild won't vead from the pipe, so we'll close the vead end

if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",
"-u", phrase, NULL, vars) == -1) {
error("Can't run script");

. | Yolve n the pavent protess down heve
}

dup2(£dC03, 0); & This vill vedivect the Standard Input to the vead end of the ipe

elose(£dL11); € This ill elose the write end of the pire,
char line(255]; because the parent won't write to it

while (fgets(line, 255,_" {
Sif (line[0] == "\t')
open_url(Line + 107 Yave veading from the You could also
) Standard Input, because & have put £dL0]
return 0; that's cometted 4o the —
i pipe =

news_opener.c

OEBPS/httpatomoreillycomsourceoreillyimages2260234.png.jpg
Masked raider is DEAD!, Jimmy is DEAD

OEBPS/httpatomoreillycomsourceoreillyimages2260588.png.jpg
make no longer needs
o tompile launch.c. > make launch
gce -c thruster.c
PRI VAP 0°c 12unch-o thruster.o -o launch

aun

OEBPS/httpatomoreillycomsourceoreillyimages2260524.png.jpg
So for this "if"
statement T need
to begin by adding
onto the stack

OEBPS/httpatomoreillycomsourceoreillyimages2259974.png.jpg
T wonder how
T can trick my brain
into remermbering
this stuff.

OEBPS/httpatomoreillycomsourceoreillyimages2259990.png.jpg
Te EdT Window Felp Comple

> gee rocks.c -o rocks
>

Compile

You run your source
code through a compiler.
The compiler checks
for errors, and once it’s
happy, it compiles the
source code.

OEBPS/httpatomoreillycomsourceoreillyimages2260834.png
char *s = "MONA LISA";

\o

OEBPS/httpatomoreillycomsourceoreillyimages2261224.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260826.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261226.png.jpg
The ¢hild process ealls exee().
This is the child protess.

) X~ The child process is

This is he pavent protess. —y, veplaced by visgossi.py.

OEBPS/httpatomoreillycomsourceoreillyimages2259972.png.jpg
Great. Only 600
more dull, dry,
boring pages.

OEBPS/httpatomoreillycomsourceoreillyimages2259978.png.jpg
Dave Kitabjian

OEBPS/httpatomoreillycomsourceoreillyimages2260138.png.jpg
The arguments will store pointers
50 they need to be int, ¥

void go_south_east(lat, . . lon)
- -m _ 1 ¥t con vead the old e
- = and et the new value

#include <stdio.h>

int main()
(You need 4o find the address
of the latitude and longitude

int latitude = 32; variables ith ¢
int longitude = -64; A
’

printf("Avast! Now at: [%i, $i]\n", latitude, longitude);

go_south_east (_

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260822.png.jpg
free (p) ; &— I his means, "Release the memory you
L allotated from heap addvess p.”

OEBPS/httpatomoreillycomsourceoreillyimages2261110.png
¢ This is the code for the UK gym.

#include <stdio.h>

#include <hfcal.h>

void display calories(float weight, float distance, float coeff)

{ This code displ
isplays the
printf("Weight: $3.2f kg\n", weight / 2.2046); (?m&maﬁw in kf; and kgs.

printf("Distance: %3.2f km\n", distance * 1.609344);

printf("Calories burned: %4.2f call\n", coeff * weight * distance);

This file is in the /home/ebrown divettory.

OEBPS/httpatomoreillycomsourceoreillyimages2261308.png.jpg
+d[0] is the vead end of the pipe
The pavent comnetts —> dqup2 (£d[0], 0) ;
the vead end to the the write end of the pipe
Standard Outpet close (£d[1]) ; < This will tlose the write en ip

S—

BipEMatMpL Read-end of the pipe

The pavent.
Standard output will vead

from the
Fipe..

but won't

write

Read-end of the pipe

OEBPS/httpatomoreillycomsourceoreillyimages2260136.png.jpg
#include <stdio.h> What kinds of arguments will store
memory addresses for ints?

VAN

void go_south_east (lat, ... lon
{

int main()

{
int latitude = 32;

Remember: you've g 4o pass the
int longitude = -64; addresses DZB:ihaHug V

ey

go_south_east (|

printf("Avast! Now at: [%i, $i]\n", latitude, longitude);

return 0;

e [aonsscase |
=
o]) =

el e

OEBPS/httpatomoreillycomsourceoreillyimages2260762.png.jpg
typedef struct

unsigned int low_pass_vef:l;

Each field shoulg] UR8i9med int £iltes coupler:lig .. o the field il
be an unsigned int,) UMSigned int reverb:l; anly wse | bit of storage.

unsigned int sequential:1l;

} synth;

By using bitfields, you an make sure
ach Field takes up only one bit.

OEBPS/httpatomoreillycomsourceoreillyimages2260760.png.jpg
0x54

NI WAL
0101 0100

This is 5.

OEBPS/httpatomoreillycomsourceoreillyimages2261210.png.jpg
To save space, this listing doesnt
show the FFintlude lines-

These are RSS feeds the editor wants
(you might want. £o thoose your own).

int main(int argc, char *argv([])
{
char *feeds[] = {"http://www.cnn.com/rss/celebs.xml",
"http://www.rollingstone.com/rock.xml",
"http://eonline.com/gossip.xml"};

inttines = 3; L Well pass the seareh berms in as an argument,
char *phrase = argv[1l];
s g Loop through eath of the feeds
for (i = 0; i < times; i++) {

char var[255];
This is an sprintf(var, "RSS_FEED=%s", feeds[il]):

snvvommentl—char *vars(] = (var, NOLL}; ,On the edtor's Mae, Pybhon is nstalled here
Y-

Y e if (("/usr/bin/python", "/usr/bin/python",
nee
bomm{/—] LSS
fhe fprintf (stderr;\"Can't run script: %s\n", strerror(errno});
unction 5
e TELUIR 17 yo need o insert the other
here. } pavameters to the function heve.
)
return 0; .
¥ ==

newshound.c

OEBPS/httpatomoreillycomsourceoreillyimages2260764.png
% N2
V Aquarium Questionnaire

Yugry0®

Is this your first visit?

Will you come again?

Number of fingers lost in the piranha tank:

Did you lose a child in the shark exhibit?

How many days a week would you visit if you could?

OEBPS/httpatomoreillycomsourceoreillyimages2261202.png
o Mateh each candidate with
Candidates: one of the possble outpets

if (execle("./coffee", "./coffee", "donuts", NULL, my_env) == -1){

char *my env[] = {"FOOD=coffee", NULL};

fprintf (stderr,"Can't run process 0: $s\n", strerror(errno));
return 1;

}

char *my_env[] = {"FOOD=donuts", NULL};

if (execle("./coffee", "./coffee", "cream", NULL, my_env) == -1){
fprintf (stderr,"Can't run process 0: %s\n", strerror(errno));
return 1;

}

if (execl ("./coffee", "coffee", NULL) == -1){
£printf (stderr,"Can't run process 0: %s\n", strerror(errno));
return 1;

b

char *my_env[] = {"FOOD=donuts", NULL};
if (execle("./coffee", "coffee", NULL, my_env) == -1){
fprint (stderr,"Can't run process 0: $s\n", strerror(errno));

return 1;

—> Possible output:

coffee with donuts

cream with donuts

donuts with coffee

coffee with coffee

OEBPS/httpatomoreillycomsourceoreillyimages2260526.png.jpg
This is a veally
dirty joke in "T=10010101 00100101 11010101 01011100
macthine tode.

OEBPS/httpatomoreillycomsourceoreillyimages2260132.png.jpg
=1 3R
Vs
% 4,100,000 o

OEBPS/httpatomoreillycomsourceoreillyimages2260792.png.jpg
7 IslaNublar T~
Ao N

OEBPS/httpatomoreillycomsourceoreillyimages2260786.png.jpg
This is a recursive

structure for an island. — Another Island

but You also need 4o give the
You need 4o vecord all of the island a link to the next island.
nal debaile Bov e iulaicl.

OEBPS/httpatomoreillycomsourceoreillyimages2260766.png.jpg
You need to detide
typedef struct { V" how many bits 4o use

unsigned int first visit:

unsigned int come_again:

unsigned int fingers_lost

unsigned int shark_attack

unsigned int days_a_week:

¢ SETvey;

OEBPS/httpatomoreillycomsourceoreillyimages2260126.png.jpg
Only the local eopy The original variable
aets changed. Keeps its original vaue.

OEBPS/httpatomoreillycomsourceoreillyimages2260534.png.jpg
Youll intlude enerypth so thac
#include <stdio.h>

e ey bas e declratir
funcieds tenerpe e eyt function

int main()
{
char msg[80];
while (fgets(msg, 80, stdin)) {
encrypt (msg) ;
printf("$s", msg);
¥

message_hider.c

OEBPS/httpatomoreillycomsourceoreillyimages2260128.png.jpg
=

¢ latitude
| S

The latitu
woriale i%” = l
ooses | B2

-

) HETETY
< 4100,000 o

—

OEBPS/httpatomoreillycomsourceoreillyimages2260124.png.jpg
This is @ new variable
Containing 3 copy o
the lojbude value

OEBPS/httpatomoreillycomsourceoreillyimages2260046.png.jpg
if (cupcakes_in fridge || chips_on_table)

. KA
eat_food ()i con o be brue.

OEBPS/httpatomoreillycomsourceoreillyimages2261100.png.jpg
You need 1o make sure
the variable is exported.

On Linux, you need 4o set

the LD_LIBRARY PATH Fie EGT Vindow Felp Tl
variable so the wo§3» Bd > export LD _LIBRARY PATH=SLD LIBRARY PATH:/libs

> ./elliptical
an find the library. Weight: 115.20 1bs

Distance: 11.30 miles

Cal b d: 1028.39 a8
There's no need o do this [Nt o2
if the library is somewhere

standard, like Zuse/lib.

Limaat

OEBPS/httpatomoreillycomsourceoreillyimages2261258.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261262.png.jpg
void error(char *msg)
{
fprintf(stders, "$s: ¥s\n", msg, strerror(errno))

exit(1); €— exit(]) will tevminate your program with ;ub.s | IMMEDIATELY!

OEBPS/httpatomoreillycomsourceoreillyimages2261102.png.jpg
Flle Edt_Window Help_TmCygwan
> PATH="$PATH:/libs Windows using Cygwi
> ./elliptical & Windows using Cyo)
Weight: 115.20 1lbs
Distance: 11.30 miles

Calories burned: 1028.39 cal
>

OEBPS/httpatomoreillycomsourceoreillyimages2260512.png
#include <stdio.h>

printf("A day on Mercury is %f hours\n", day);

return 0;

float mercury day_in_earth_days ()

{
return 58.65;

int hours_in_an_earth_day ()

{

return 24;

OEBPS/httpatomoreillycomsourceoreillyimages2260782.png.jpg
flight.

You needed to
eveate 3 vew

Cragdy

from
» ol

You needed to
vemove the flight
from Cragay to
Isla Nublar-

You needed to
treate a mew
Hlight From
Skl 4o [sla
Nublar.

Isla Nublar

OEBPS/httpatomoreillycomsourceoreillyimages2260314.png.jpg
i
The program veceives data
hrough the Standard Input

/_\

The program outputs data
through the Standard Output.

OEBPS/httpatomoreillycomsourceoreillyimages2261486.png.jpg
ves—>ai_addrlen is the size

of the address in memory-

reseoiiadi e e v This will comett 4o

Connect (s, res->ai_addr, res->ai_addrlen); £
sdde : = = the remote sotkek

the vemote £rogaddrinfo (res) ;
host. and. port. L T You'e comnected, you tan delebe
the address data with freeaddvinfO0).

OEBPS/httpatomoreillycomsourceoreillyimages2260846.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260318.png.jpg
=L [:
Em D
gpsdata.csv v

OEBPS/httpatomoreillycomsourceoreillyimages2260850.png.jpg
> ./tour < tripl.txt

Name:

Open:

Name:

Open:

Name:

Open:

Name:

Open:

Name:

Open:

Name:

Open:

Name :

Open:

Name:

Open:

Name:

Open:

Name:

Open:

Name:

Open:

Name:

Open:

Name :

Open:

Delfino Isle
09:00-17:00
Angel Island
09:00-17:00
Wild Cat Island
09:00-17:00
Neri's Island
09:00-17:00
Great Todday
09:00-17:00
Ramita de la Baya
09:00-17:00
Island of the Blue Dolphins
09:00-17:00
Fantasy Island
09:00-17:00
Farne
09:00-17:00
Isla de Muert
09:00-17:00
Tabor Island
09:00-17:00
Haunted Isle
09:00-17:00
Sheena Island
09:00-17:00

OEBPS/httpatomoreillycomsourceoreillyimages2261098.png.jpg
> ./elliptical
Weight: 115.20 lbs
Distance: 11.30 miles
Calories burned: 1028.39 cal
>

OEBPS/httpatomoreillycomsourceoreillyimages2260974.png.jpg
They told me a
coder forgot a set of
break statements, and
that meant I ended up
with this guy.

OEBPS/httpatomoreillycomsourceoreillyimages2260306.png.jpg
This is the data you type in. The input and the output ave mixed uy
~N / i

Q :2.363400,-71.098465, Spasd = 21 &=
P> (latitude: 42.363400, longitude: -71.098465, : 21'}42.363327,-71.097588, Speed = 23

{latitude: 42.363327, longitude: -71.097588, : 23'142.363255,~71.096710, Speed = 17

{latitude: 42.363255, longitude: -71.096710, : 17'142.363182,-71.095833, Speed = 22

{latitude: 42.363182, longitude: -71.095833, 22°142.362385,-71.086182, Speed = 21

{latitude: 42.362385, longitude: -71.086182, = 21'}D

; N

>

™ Several more hours’ worth of typing In the end, you need to
press Chel-D just 4o stop
the program.

OEBPS/httpatomoreillycomsourceoreillyimages2260784.png.jpg
1£ you wanted to insert an extra value
after Cragay Island, you'd have to move
£he other values along one space.

This is an aray. —»| Amity | Craggy | IslaNublar | Shutter

And betause an array is fixed
length, you'd lose Shutter [sland.

OEBPS/httpatomoreillycomsourceoreillyimages2260972.png
./send _dear_johns

Dear Mike,

Unfortunately your last date contacted us to
say that they will not be seeing you again
Dear Luis,

Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear Matt,

Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear William,

Congratulations! Your last date has contacted
us with a proposal of marriage.

>

OEBPS/httpatomoreillycomsourceoreillyimages2260780.png.jpg
You are storing a piece of
data for cach island.

This is a link to the
next piece of data

OEBPS/httpatomoreillycomsourceoreillyimages2260982.png.jpg
This whole thing is 3 funttion
like “dump” or “marviage”

(e e

This s your aveay of Thisis 3 vae ke Youe callg the
Cunchion names. O Bt ke etion and pasim
for MARRIAGE. the vesponse data vLi]

OEBPS/httpatomoreillycomsourceoreillyimages2261254.png.jpg
int descriptor = fileno(my file);
This will veburn Ehe valug 4=

OEBPS/httpatomoreillycomsourceoreillyimages2260778.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261490.png
int say(int socket, char *s)
[
int result = send(socket, s, strlen(s), 0);
if (result = -1)

fprintf (stderr, "is: $s\n", "Error talking to the server",
strerror(errno));

return result;

int main(int arge, char *argv(])
[
int d_sock;

a_sock = ;
char buf (25517

sprintf(baf, L argv(1]);
say(d_sock, buf);

say(d_sock,
char recl2561;
int bytesRovd = recv(d_sock, rec, 255, 0);
while (bytesRova) |
if (byteskova == -1)
error("Can't read from server”);

rec[bytesRovdl = :
printf("is", rec);
bytesRevd = recv(d_sock, rec, 255, 0);

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2261484.png.jpg
Now you can eveate the socket

wing the naming vesource

v

int s = socket(res->ai_family, res->ai_socktype,
res->ai protocol) ;

OEBPS/httpatomoreillycomsourceoreillyimages2261476.png.jpg
struct sockaddr_in si;

These lines memset (&si, 0, sizeof(si));

ereate a soeket —,) _. Ea K

vt si.sin_family = PF_INET;

208201239100 | si.sin_addr.s_addr = inet_addr("208.201.239.100");
on port 60 si.sin_port = htons (80) ;

connect (s, (struct sockaddr *) &si, sizeof(si)); {/st:y:é ”
onm

sotket to the

vemoke port

Client > D & Server 108201239100
==

OEBPS/httpatomoreillycomsourceoreillyimages2260522.png.jpg
Hmmmm.
compile

into a program? Let's see
what T can cook up...

.50 I need to
he source files

The first thing the compiler needs to do is fix the source. It needs to add in

any extra header files it's been told about using the #include directive
Tt might also need to expand or skip over some sections of the program.
Once it’s done, the source code will be ready for the actual compilation.

z/t:” '.i; f:“ ;'ﬂ" First, Tl just add
mands like #4ef, :
and #ifdef %u'uei:c some extra ingredients

how £ use Lhem later into the source.
in the book

R “dwtﬁtl\lc” is
ot s by
word or
“command.”

OEBPS/httpatomoreillycomsourceoreillyimages2260304.png.jpg
#include <s’
int main()

float latitude;

flomt longitader L ekl ek
char inf018015 & 4, 0, which means faie
sk ganad w0 .

Did You remember the “¢”s on the number
variables? stanf() needs pointers.

longitude

puts ("data

while (scanf("st,f,s790"\n)", flatitude

if (start

Youll dislay 2 comma anly i youre
prince ", \nt) £ alveady displayed 3 previss g
oo rhed, you tan
One the loop has stared, You
started = L. ST sek starked” 4o |, which i rue
printf("(latitude: 3¢, longitude: S, info: 'as')*, latibude ., loibude, b1
¥

puts ("\n]");

You don't need ¢ here because
printf0 i using the values, not
roturn 0; the addvesses of the mumbers.

OEBPS/httpatomoreillycomsourceoreillyimages2261256.png
dup2 (4, 3):\

Datrbasetoneection File guitar.mp3

Data Stream
0 The keyboard
1 The screen

2 The screen

3

4

File guitar.mp3

OEBPS/httpatomoreillycomsourceoreillyimages2260518.png.jpg
void means don't
redurn anything, —void encrypt(char *message)

Pass a painker o an
areay into the Function

Loop threugh the s

aveay and update each while (*message) { /Th»; means
character with an +message = *message ~ 31; You'll XOR each
entrypted vevsion message++; 7 character with

the number 3/

Doing math vith 3
chavatker? You tan because
ehav is 3 numevit data type

OEBPS/httpatomoreillycomsourceoreillyimages2261114.png.jpg
- lusrlocallinclude
—- python2.7
—- pythond.2

_@ fluxcap.h

_g hfcal.h ¢— This is the hfcal header file.

This is the /use/lotal/intlude folder

| [mrfusion.nh

There are lots of othe =
Fles in beve oo TN _B bwanalyze.h

OEBPS/httpatomoreillycomsourceoreillyimages2260776.png.jpg
Cotonut fivways flies
C planes bebueen the
1slands.

OEBPS/httpatomoreillycomsourceoreillyimages2261260.png.jpg
pid t pid = fork():
if (pid ~1] {
fprintf (stderr, "Can't fork process: %s\n", strerror(errno));

e N Duplicated eode can be the eause
= of unwarvanted coding stress:

if (execle(...) 1
fprintf (stderr, "Can't run script: $s\n", strerror(errno));
return 1;

OEBPS/httpatomoreillycomsourceoreillyimages2260088.png
#include <stdio.h>
#include <stdlib.h>
int main()
{
char card_name[3];
int count = 0;
do {
puts ("Enter the card name: ");
scanf ("%2s", card_name);
int val = 0;
switch(card name([0]) {
case 'K':
case 'Q':
case 'J':
val = 10;
break;
case 'A':
val = 11;
break;
case 'X': v What will you do here?

defaul
You need 4o display an evvor if val
the val is not in the vange | to — .
10. You should also skip the vest X
of the loop body and try again

atoi (card_name) ;

}
if ((val > 2) && (val < 7)) {
Add | to count. — count++;
} else if (val
Subkract | from tount, ——> count--;
}
printf ("Current count: %i\n", count);
} while (..
return 0;

10) {

)
IS, o need o stop if she enters X

OEBPS/httpatomoreillycomsourceoreillyimages2261478.png.jpg
Hello? T dorft want
to know how to connect a
socket o an IP address.
T'm actually human. T

want to connect to a real
domain name.

OEBPS/httpatomoreillycomsourceoreillyimages2260050.png.jpg
There are a few

ways of

witing

this condition.

nt main()

char card_name(3];
puts ("Ent

scanf ("s2s", card_name);
int val = 07

U

} else if (card_name(0]
val = 10;

) else if (card_name(0]
val = 10;

} else if (card_name[0]

val = 11;
} else {
val = atoi (card_name);

}
/* Check if the value is 3 to 6 */
if

puts ("Count has gone up"

/* Otherwise check if the card was 10, J, Q, or K */

D.aymwttmvw e it el == 10)
jusk needed 3 single

umd\bm

for this?

puts ("Count has gone down

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260516.png.jpg
Sile_hider

:&ead the contents
afile and creat
an en =4
usiny Crypted version
'3 XOR encryption.

—
message_hxdex

Qead 3 seres of skring®
Sromn Ane <aandard:
npuUt and. display 3
eﬁuﬂp\w yersion on
e Standard output
using XOR encryption

OEBPS/httpatomoreillycomsourceoreillyimages2260514.png
float mercury day_in_earth_days():

int hours_in_an_earth_day();

int main()

{
float length_of_day = mercury_day_in_earth_days();
int hours = hours_in_an_earth day();

float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

float mercury day_in_earth days();

int main()

{
float length of day = mercury day_in_earth days():
int hours = hours_in_an_earth_day();
float day = length_of day * hours;

int main()

The Fresgam van't conpile, because Zw"r{ calling
0

a noaf\buntbcn vithout declaring it fivst

float length of day = mercury day_in_earth_days();

int hours = hours_in_an_earth_day();

float day = length_of_day * hours;

Theve vill be varning, beause You haven't

detlaved the hours_in_an_carth_dayO
before calling it The program will still
work bezause it vill guess the fonction

vekuens an int.

KJ] Youcan compile the code.

[RJ] Youshould display a warning.

J] The program will work.

You can compile the code.

[J] Youshould display a warning.

The program will work.

float mercury day_in_earth_days();

int hours_in_an_earth _day();

int main()

The length_of_day variable should be a float.
((

int length of_day = mercury_day_in earth days();

int hours = hours_in_an_earth_day():

float day = length_of_day * hours;

The progeam will eompile withaut
warring, but it wor't work
bezause here vill be a rounding
problem

You can compile the code.

You should display a warning.

The program will work.

OEBPS/httpatomoreillycomsourceoreillyimages2260060.png
'd_name[0] == A

wval = 10;

} else if (card_name[0] == 'Q')
val = 10;

} (card_name[0] == 'J')
val = 10;

} else if (card_name[0] == 'A'}
val = 11;

} else {

val = atoi(card_name];

int val
switth(card_namel0D) {
ease K-

debault:

atoileard_name);

OEBPS/httpatomoreillycomsourceoreillyimages2261104.png.jpg
File Edt_Window Hel
C:\code> PATH="%PATH%;C:\libs
C:\code> ./elliptical
Weight: 115.20 1bs

Distance: 11.30 miles
Calories burned: 1028.39 cal
C:\code>

€~ Windows wsing MinGW

OEBPS/httpatomoreillycomsourceoreillyimages2261112.png.jpg
ﬂ - lusrflocalllib
I J——

- python2.7
. pythond.2

— site_ruby

[l iibfluxcap.a

This is the /use/lotal/lib folder

[fisd tibfluxcap.ia

This is wheve the hfca

e ohreatso Sy s stalled

Theve are lots of other =
N

) |—|ueeq libmrfusion.so
iles in here as well

OEBPS/httpatomoreillycomsourceoreillyimages2261002.png
double total({int args, ...)

{

Dorft wervy i€ double total

your code doesn't
look exactly like ist. ap;
this. Tnmlym I it
a few vays of va_start(ap, args);
witing it -

1
o

\a_end(ar

return total;

OEBPS/httpatomoreillycomsourceoreillyimages2261108.png.jpg
- lusrlocallinclude
—- python2.7
—- pythond.2

_@ fluxcap.h

_g hfcal.h ¢— This is the hfcal header file.

This is the /use/lotal/intlude folder

| [mrfusion.nh

There are lots of othe =
Fles in beve oo TN _B bwanalyze.h

OEBPS/httpatomoreillycomsourceoreillyimages2260774.png.jpg
T heard that
Ted left Judy
on the heap.

OEBPS/httpatomoreillycomsourceoreillyimages2261106.png.jpg
ﬂ - lusrflocalllib
I J——

- python2.7
. pythond.2

— site_ruby

[l iibfluxcap.a

This is the /use/lotal/lib folder

[fisd tibfluxcap.ia

This is wheve the hfca

e ohreatso Sy s stalled

Theve are lots of other =
N

) |—|ueeq libmrfusion.so
iles in here as well

OEBPS/httpatomoreillycomsourceoreillyimages2260118.png.jpg
Pass in the latitude
and longitude
v

void go_south_east(int lat, int lon)
(
lat

#include <stdio.h>

lat - 1; & Deerease the
latitude.

lon = lon + 1;

VM:C:: the longitude

int main()

(
int latitude = 32;
int longitude = -64;
go_south_east (latitude, longitude);
printf("Avast! Now at: [$i, $il\n", latitude,

return 0;

Longitude) ;

OEBPS/httpatomoreillycomsourceoreillyimages2260772.png.jpg
shruek

P:M\z\us f::t"u

e 24
You ean

e itialice
struets with
{array, like,
notation}.

unions ¢an hold
different data

ypes in one
location.

You tan vead

struet fields

with dot

notation.
—> notation
lets you easil
update fieldsy
using 8 sbruct
pointer.

Designated
initializers let
You set struet
and union Fields
by name.

enums \eb YO
eveate 2
of s\1..‘\;9\&
BitFields give
T o contrel
over the exatt
bits stoved in 3

struet.

OEBPS/httpatomoreillycomsourceoreillyimages2260330.png.jpg
T dropped the
6PS unit onaride a
couple of times, and now

the map wor't display.

OEBPS/httpatomoreillycomsourceoreillyimages2260280.png.jpg
size_t s just an integer used

for storing the sizes of {hings—> size_t len = strlen(s];

void print_reverse(char

{

char *t =

while (.
printf ("sc",

*t);

puts (") ;

*s)

L= This works out the length ofa

i 50 strenABC") == 3.

OEBPS/httpatomoreillycomsourceoreillyimages2260910.png.jpg
T want someone into
sports, but definitely
not into Bieber...

OEBPS/httpatomoreillycomsourceoreillyimages2260296.png.jpg
An arva

oF strings
an arvay of
hiy:,

T — 3073Y of 3V3Y

strstr(a, b) steehe() finds
will veturn the +the lotation
address of of a tharatter

inside a string,

string b in string
a

reat0
o shrin®

OEBPS/httpatomoreillycomsourceoreillyimages2261128.png.jpg
This is an English —N
treadmill

OEBPS/httpatomoreillycomsourceoreillyimages2260116.png.jpg
g0_south_east()

latitude
will
decrease.

—_—
The longitude

will inerease.

OEBPS/httpatomoreillycomsourceoreillyimages2260248.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260344.png
C:\> echo $ERRORLEVEL$
2

OEBPS/httpatomoreillycomsourceoreillyimages2261000.png.jpg
printf("Price is %.2f\n", total(3, MONKEY GLAND, MUDSLIDE, FUZZY NAVEL));

S
This will print “Price is 16.9".

OEBPS/httpatomoreillycomsourceoreillyimages2261430.png.jpg
et connection Srom client

ay, “knock! knock!”

Check that they say, ‘who's there?

v

Check that they say, “‘Oscar who?

say, “oscar silly question,
you getasilly answer”

OEBPS/httpatomoreillycomsourceoreillyimages2260768.png
¢‘&‘ae\ Fi,.d}
v- Aquarium Questionnaire

Yyugpav

]

Is this your first visit?

Will you come again?

Number of fingers lost in the piranha tank:

Did you lose a child in the shark exhibit?

How many days a week would you visit if you could?

OEBPS/httpatomoreillycomsourceoreillyimages2260906.png.jpg
Hey, wait! Clone? Clone the
function???? That's dumb. Each version
would only vary by, like, one line.

OEBPS/httpatomoreillycomsourceoreillyimages2260334.png
¥include <stdio.h>

main()

float latitude;
float longitude;
char infol80];

int started =

puts("data=(") ;

while (scanf("%f,%f,579("\n]", slatitude, slongitude, info)

if (started)
printf(",\n");

L 1£ the lbitude is < 90 or > 90, then evvor
g with status 2. 1€ Ehe longitude i < ~180 or
i L 5 180, then evvor with shatus 2

printf("(latitude: %f, lomgitude: $f, info: 'ss'}", latitude, longitude, info);

}
puts("n]");

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260918.png.jpg
int *a; — This detlaves an int pointer.

function *f; &— .but this won't detlave a function pointer

OEBPS/httpatomoreillycomsourceoreillyimages2261004.png
This is the test code

main () {
printf("Price is %.2f\n",
printf("Price is %.2f\n", total(3, MONKEY GLAND, MUDSLIDE, FUZZY_NAVEL));
printf("Price is %.2f\n", total(l, ZOMBIE));

total(2, MONKEY_GLAND, MUDSLIDE));

return 0;

> ./price_drinks
Price is 11.61

Padrrice is 16.92
PRI Price is 5.89

atpt >

OEBPS/httpatomoreillycomsourceoreillyimages2260340.png
v This is the outputjson file.

latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'},
latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},
latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},
Invalid latitude:

Oh, the ervor message was also vedivected to the output file.

OEBPS/httpatomoreillycomsourceoreillyimages2260996.png
Include the stdarg.h header.
All the code to handle variadic functions is in stdargh, so you

need to make sure you include it.

Tell your function there's more to come..
Remember those books where the heroine drags the guy .
through the bedroom and then the chapter ends “...”> Well, & No, we don't vead
that *...” is called an elfpsis, and it tells you that something those books either
else is going to follow. In C, an ellipsis after the argument of a

tion means there are more arguments (o come.

Create a va_list.
Ava_1ist will be used to store the extra arguments that
are passed to your funetion.

Say where the variable arguments start.
Cnceds (o be told the name of the last fixed argument. In the
case of our function, thacl be the args parametcr

Then read off the variable arguments, one at a time.
Now your arguments are all stored in the va_11st, you can read
them with va_arg. va_axg takes two valucs: the va_list and
the type of the next argument. In your case, all of the arguments

are ints

Finally..end the list.
After you've finished reading all of the arguments, you need to tell
C that you're finished. You do that with the va_end macro.

Now you can call your function.
Once the function is complete, you can call it

print_ints(3, 79, 101, 32);

This will print out 79, 101, and 32 values.

OEBPS/httpatomoreillycomsourceoreillyimages2260338.png.jpg
This line will vecompile ez :

o " =
the prosram > gCC ge02}8on.C -0 geozjson

You'll save the output
in the ouputjson file
> ./geo2json < gpsdata.csv > output.json ©
Then vun the £

vogram 3gain 5
2.& the bad data

(e messee

This means
Weleome To And where did all g
Firland." the points 907

OEBPS/httpatomoreillycomsourceoreillyimages2260282.png.jpg
8]

&
H

g @ Bg

OEBPS/httpatomoreillycomsourceoreillyimages2261130.png.jpg
This is exaetly —\
the same
treadmill program.

This version is linked
the UK version of the
heal lborary. =\

OEBPS/httpatomoreillycomsourceoreillyimages2260098.png.jpg
By betting big when
the count was high, T
made a fortune!

OEBPS/httpatomoreillycomsourceoreillyimages2260994.png.jpg
The variable arguments

The variable avauments vill start
will follow heve

after the avgs pavameter.

This is 3 normal, ordinary
arqument that vill ahways
be passed

(
va_start says where the

L T R —
int 1;
This will loop through al : .
of the other avgu-?gnb/—)f"‘ (i=0; i< args; i++) {

aras contains 3 count — T
of how many variables
there are.

#include <stdarg.h>

void print_ints(int args,

printf("argument: $i\n", va_arg(ap, int));

Gt

va_list ap;

© 00 O

}

va_end(ap) ;

(@)

OEBPS/httpatomoreillycomsourceoreillyimages2260278.png.jpg
Hey, hey, heyl That eode’s 3

votkin’ success. The cats in the

bar ave grooin’ on down t02

whele heap of Sinatra goodress!
N

¥

OEBPS/httpatomoreillycomsourceoreillyimages2260328.png.jpg
Great! Now I can
publish my jourreys
on the Web!

OEBPS/httpatomoreillycomsourceoreillyimages2260114.png.jpg
=)

=)

ve_one_seqvel.

OEBPS/httpatomoreillycomsourceoreillyimages2260326.png.jpg
-F'

=& This is the
L I=

=] vebraue trat
=) contains the map
map.htm|

—\ &—This is the file
L=

eishing
=) coted
output.json

OEBPS/httpatomoreillycomsourceoreillyimages2260530.png.jpg
Finally, I need to put
everything together
for the final result

OEBPS/httpatomoreillycomsourceoreillyimages2261424.png.jpg
o You've used this ervor function
a LOT in this book

pay the ervor- Dert call this funchion i you
wank, the prgram 4o keep vunring

void error(char *msg)

{ 4

fprintf (stderr, "$s: %s\n", msg, strerror(errno));

it (1) 5 <~..then stop the program

}

int open_listener_socket ()

{

int s = socket (PF_INET, SOCK_STREAM, 0);
if (s -1)
error ("Can't open socket");

Create an Internet streaming sotket

Yes, veuse the sotket (o you an return s;

vestart the server without problems).

void bind_to_port (int socket, int port)
{
struct sockaddr_in name;
name.sin_family = PF_INET;
name.sin_port = (in_port_t)htons (port);
name.sin_addr.s_addr = htonl (INADDR_ANY) ;
int reuse = 1;
if (setsockopt (socket, SOL_SOCKET, SO_REUSEADDR, (char *)sreuse, sizeof(int))
error("Can't set the reuse option on the socket");
int ¢ = bind (socket, (struct sockaddr *) &name, sizeof(name));
if (c == -1)
error("Can't bind to socket");

—Grab port.

int say(int socket, char *s)&— Send a string to a client

: Don't ¢all evvor() if there's a problem
int result = send(socket, s, strlen(s), 0); You von't want. 4o stop the sevver if
if (result == -1) ¢ Eheve's just a problem with one client.

fprintf(stderr, "%s: %s\n", "Error talking to the client", strerror(errno));
return result;

OEBPS/httpatomoreillycomsourceoreillyimages2260336.png
#include <stdio.h>

int main()

{
float latitude;
float longitude;
char info(801;

int started

puts ("data=[");

while (scanf("$f,%f,379("\n]", slatitude, slongitude, info)
if (started)

started =

; These lines check that 4h
These if Uabitade < ~90.0) Il abitade > 9000 { S/ lsbtde snd longitue ave
feei il prink§Clnlid ltitude: B0V, ot i She o v
feom ——> rebim 33

the
wain()
function
with an
ervor
status
of 2.

These lines display
imple ervor messages

tf("{latitude: f, longitude: 3£, info: '$s'}", latitude, longitude,

puts (M\nl")

return 0;

info) ;

OEBPS/httpatomoreillycomsourceoreillyimages2260990.png.jpg
The number of drinks

£ Not so
NAVEL
Easy — price (ZOMBIE) total(3, ZOMBIE, MONKEY GLAND, FUZZY !}) ey

A
A list of the drinks in +the order

OEBPS/httpatomoreillycomsourceoreillyimages2260332.png.jpg
42.363255, longitude: -71.096710, info
423.63182, longitude: -71.095833, info:

The detimal point: is in the wrong place in this number.

OEBPS/httpatomoreillycomsourceoreillyimages2260908.png.jpg
ks for peaple
This esting machine lo
whe ke arks, Eheater, or dining

Find. someone
who likes the
arts, theater,
or dininoy

This besting mathine looks for pego,

vho like sports or working out, fere=>
Find. someone
who likes
Sports or

working out.

OEBPS/httpatomoreillycomsourceoreillyimages2261122.png.jpg
o

o e Z : /‘

OEBPS/httpatomoreillycomsourceoreillyimages2260998.png
printf ("Price 1s %.2f\n", total(3, MONKEY GLAND, MUDSLIDE, FUZZY NAVEL));

Ly
This will print “Price is 16.9”.

OEBPS/httpatomoreillycomsourceoreillyimages2261134.png.jpg
The ar
tommand
ereates a
library archive
of object files.

~L<names adds

a dim_\g,,y
to the list of
#Jndard library
l<name> links directories.
o a file in
standard
divectories such
as /use/lib.

_T<name> adds
a diveetory
4o the list of
standard include
diveetories:

Library

9ee —shared arthives have

converts names like

object files libsomething,a.

into dynamic. ——

libravies. Dynamic "“:;:l are

T fearies ave ey
l’.»k:i at \inked-
vuntime.

Dymamic

5 libraries have
Dyami different names
Woraries have on different

,s;:\.\ .tﬂh dla opevating systems.

exkensions:

OEBPS/httpatomoreillycomsourceoreillyimages2261428.png.jpg
This will
store the

main listener —2>int listener_d;

socket for
the sevver.

void handle_shutdown(int sig)
{

,‘ £ someone hits Ctrl-C when the sevver
4k (stensnd) is voming, this funckion vill Close the

close (listener_d); sotket before the program ends.

fprintf(stderr, "Bye!\n");

exit (0);

OEBPS/httpatomoreillycomsourceoreillyimages2261320.png.jpg
s :
e —
> ./news_opener 'pajama d

The Program apens il
the news shories it 13
find in the browser.

OEBPS/httpatomoreillycomsourceoreillyimages2260456.png.jpg
long

v
int

XAHL N .
il
I

‘_—1 —_—
N

The contents
of 3 short il
ahays £it in an
int or 3 long

The tontents of 2 long
may be too large to it

in 3 short or an int.

OEBPS/httpatomoreillycomsourceoreillyimages2260818.png.jpg
#include <stdli £ You need 4o include the stdlibh header tile
stdlib.h> €7 L0 the mallocO) and freel) functiors

malloc (sizaof (island)) ; & |15 neans “Give me enough spate
& 4o store an island sbruet. i

OEBPS/httpatomoreillycomsourceoreillyimages2260450.png.jpg
The total number of
components in the rocket

The amount of fuel the
rocket will need (gallons)

OEBPS/httpatomoreillycomsourceoreillyimages2260452.png.jpg
+
My
+
GO, v
The distance from the .
launch pad to the star "
Proxima Centauri (light
years) o N
g &
b i M
AR
The numbers of stars oV Mo S &
in the universe that we 1 o4
won't be visiting UTACTIRE) o B . 5
minutes to launch d

Each letter on the
countdown display

Let’s see why..

OEBPS/httpatomoreillycomsourceoreillyimages2260986.png
You tan add
vew bypes and

MARR: AW £— Funckions like this
enum response_type {DUMP, SECOND_CHANCE, TAGE, (surm);

void (*replies[]) (response) = {dump, second chance, marriage, law Suit);

OEBPS/httpatomoreillycomsourceoreillyimages2261416.png
need an int variable £o store the option
L \g‘{{t; h ko | means “es, vesse the pork

int reuse =
if (setsockopt(listener_d, SOL_SOCKET, SO_REUSEADDR, (char *)&reuse, sizeof (int)) == -1)
error("Can't set the reuse option on the socket”);
This makes the sotket veuse the port.

OEBPS/httpatomoreillycomsourceoreillyimages2260904.png.jpg
lle Edit_Window Help FindersKeepers

> gce find.c -o find &&
Search results

William: SBM GSOH likes sports, TV, dining

Josh: SIM likes sports, movies and theater

Vwant anon-
SMoKer who
e dsomg,one ‘ liKes the.
Y
;mo \wes theater.
oporks O
Ww\%w\v Find. someone
who likes the

o4 eater, Of

Ainingy

OEBPS/httpatomoreillycomsourceoreillyimages2260992.png.jpg
print_ints{d, 79, 101, 3J2);

Number of ints 4o ‘m»ef The inks that need 4o be printed

OEBPS/httpatomoreillycomsourceoreillyimages2261408.png.jpg
T E o T TrTeSeer
% st lcaTses rar Clnt consle
Waiting for connection %

Pl B Vo i T TRaCTa

> telnet 127.0.0.1 30000
» Trying 127.0.0.1...
The sevver's started. Corynnegted to localhost.

Escape character is '*]'.

The server sends back a vesponse. ——> [RUS X HEERRN ST EN
Connection closed by foreign host.
>

OEBPS/httpatomoreillycomsourceoreillyimages2260102.png.jpg
and of course, Mommy

rever lets me stay out
after 6 pm.

Thark heavers my
boyfriend variable isrit
i read-orly memory.

OEBPS/httpatomoreillycomsourceoreillyimages2260520.png.jpg
This is the
shared tode

v

Read a file,
rewrite a file.

Read Standard
Input, display text.

The eompiler will compile the
shared code into each program

SN Vi e o v 3 0y o7

file_hider of elling the compiler to
eveate the program from
multiple sourte files

message_hider

OEBPS/httpatomoreillycomsourceoreillyimages2260250.png.jpg
This first set of brackets is

for th The second set of brackets is
52y of all trigs ook o eaeh il . o know that brack
names vill never get. longer
DT B omes ereckatlTa0] = ¢ hoic et
x{rmﬁ’:ﬁxo\fw don't need "I left my heart in Harvard Med School", the value to 80.
a rumber bebween these "Newark, Newark - a wonderful town",
brackets

"Dancing with a Dork",
Eath string is an 7 "Fron here to maternity"
avvay, so this is an
Sevay of arvays

"The girl from Iwo Jima",
}:

OEBPS/httpatomoreillycomsourceoreillyimages2261132.png.jpg
The weight
is displayed
|
The distance
is displayed]

‘WeiGHT: 53.25 K6
> Distance: 15.13 KM
Cararies RURNGD: 750.12 CAL <

The calories are still

in kms.
displayed in ealories

OEBPS/httpatomoreillycomsourceoreillyimages2260446.png.jpg
The total number of
components in the rocket

The amount of fuel the

OEBPS/httpatomoreillycomsourceoreillyimages2260706.png.jpg
A inteser

Floting point
Al of these describe a quantity

OEBPS/httpatomoreillycomsourceoreillyimages2261010.png.jpg
The toe bone's statically
linked to the foot bone, and
the foot bone's statically
linked to the ankle bone.

OEBPS/httpatomoreillycomsourceoreillyimages2261426.png.jpg
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <arpa/inet.h>

#include <unistd.h>

#include <signal.h>

— The ready-bake funttions Srom the previous page g0 heve

OEBPS/httpatomoreillycomsourceoreillyimages2260898.png.jpg
I want someone into

sports, but definitely
not into Bieber..

OEBPS/httpatomoreillycomsourceoreillyimages2260448.png.jpg
The distance from the 4
launch pad to the star
Proxima Centauri (light
)

The numbers of stars
in the universe that we
won’t be visiting

Each letter on the

countdown display

These ave mambers

conto dui || FLOTEINE Poits

ponks.

The number of A
minutes to launch

90:00

.

That's vight! In C,
chars are achually
stored using their
chavacker tod
That mears they're

st mambers

OEBPS/httpatomoreillycomsourceoreillyimages2260416.png.jpg
26.304390, 74575195, Type-UF0__Ig
26.224447,-71.477051, Type=UFO {ie==|

aliens.csv

30.685163, -68.137207, Ty;
.132971,-71.136475, Typ

hip

,-68.005371, Type=Goatsucker

22.705256,
166695, -87

elvises.csv

OEBPS/httpatomoreillycomsourceoreillyimages2260902.png.jpg
vold find()
{
int i;

puts("Search results:

el
|spores" l
strstr '

"bieber" ' N

printf("$s\n", ADS[i]);

}
puts ("

OEBPS/httpatomoreillycomsourceoreillyimages2261412.png
From this.

v Ao this
- Temer—d;- o sotkadd tsmer—ersant (memel i v
if (bind (listener d, (struct sockaddr *) &name, sizeof (name)) == -1)

error("Can't bind the POTE"): € Tiisi calling the ervor function you wrote a whle
back. [will splay the cause of the ervor and exit

OEBPS/httpatomoreillycomsourceoreillyimages2261422.png.jpg
int read_in(int socket, char *buf, int len)&

{
char *s = buf;
int slen = len;
int ¢ = recv(socket, s, slen, 0);
while ((c > 0) && (s[c-1] != "\n'))
s += c; slen -= ¢;
¢ = recv(socket, s, slen,
}
if

0);
(c <0
return c;
else if (c == 0) Nothing vead; send

buf[0] '\0':ébukanmyty:{nw,
else o
sle-1]=1\0"; & Replate the
return len - slen; chavatter vith

_ In case there's an evvor

2\

This veads all the c'harad:zvs
wntil it veathes \w

Keep veading until there are no more
| Charackeesor Yo vesch .

{

OEBPS/httpatomoreillycomsourceoreillyimages2260702.png.jpg
#include <stdio.h>

typedef struct {
const char *description;
float value;

} swag;

typedef struct {

swag *swag;

const char *sequence;
) combination;

typedef struct {
combination numbers;

const char *make;
} safe;

OEBPS/httpatomoreillycomsourceoreillyimages2260014.png.jpg
Wait, T don't get it. When

we ask the user what the name
of the card is, we're using an
array of characters. An array of
characters?22? Why? Car't we use
a string or something???

OEBPS/httpatomoreillycomsourceoreillyimages2260350.png.jpg
e is no second €ar

(- Ther

\ ‘J
~. & This s the Standard Evvor.

This is the Standard Output ~7 o=

This is the
Standard nput
One car cnly. 7

OEBPS/httpatomoreillycomsourceoreillyimages2260352.png.jpg
Standard Evvor
g0es 4o the display.

Standard Input comes
From the keyboard \
§
Standavd Output

qoes to the display

>
—
R ——

OEBPS/httpatomoreillycomsourceoreillyimages2260700.png.jpg
wag

I => I value I = Idescription

OEBPS/httpatomoreillycomsourceoreillyimages2261120.png
You don't need to set the LD_LIBRARY_PATH
variable because the library is in a standard diveetory.

Did You spot that the library and headers had been installed in standard
divettories? That meant you didn’t have 4o use a ~T flag when you were
compiling the tode, and you didn't have 4o set the LD_LIBRARY_PATH
variable when You were vunning the code.

OEBPS/httpatomoreillycomsourceoreillyimages2260980.png
void (*replies[]) (response) = {dump, second chance, marriage};

int main()
{
response rl] = {
{"Mike", DUMP}, {"Luis", SECOND_CHANCE},
{"Matt", SECOND_CHANCE}, {"William", MARRIAGE}
bi
int i;
for (i = 0; i < 4; i++) {

[l bype DL

[1€ You vanted, you could have added a %

return 0; after the opening parenthesis, but it would
) work the same way.

OEBPS/httpatomoreillycomsourceoreillyimages2260012.png.jpg
This line compiles the code and tan tombine

¢reates the cavds Program.

Remember: You .
the tompile and vun skep:

k2 page
> goc cards.c -o cards & Loaether (turn ba)

This line vuns the progeam. < ‘_? 7 &5“‘ e

€ you're on Windows, don't~" [N SN UG

e the / o
The card value is: 10
Rurning the program again —> EURSRSE
Enter the card name:
A
The card value is: 11
> /cards
Enter the card name:
<E s

The user enters the
name from 3 cavd,

and the progeam displa

W] The caxd value is: 7
the corresponding value: /

OEBPS/httpatomoreillycomsourceoreillyimages2260984.png
> ./dear_johns

Dear Mike,

Unfortunately your last date contacted us to
say that they will not be seeing you again
Dear Luis,

Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear Matt,

Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear William,

Congratulations! Your last date has contacted
us with a proposal of marriage.

>

OEBPS/httpatomoreillycomsourceoreillyimages2261414.png.jpg
e Edil

G . S e ——
> ./advice_server
Waiting for connection
oc

> ./advice_server

Can't bind the port: Address already in use
>

The bind fails!

OEBPS/httpatomoreillycomsourceoreillyimages2260958.png.jpg
int compare areas_desc(const void* a, comst void* b)

sort the .

rectangles

o araa%(de(, _return compare_aveas(b, a);
largest Sirst.) A

Or you eauld have used —tompare_aveas(, b).

Sort a list o int compare_names_desc(const void* a, const void* b)
names in reverse {

alphabetical retuen comp:

order. Case~

sensitive. !

O You could have used
—tompare_names(a, b)

OEBPS/httpatomoreillycomsourceoreillyimages2260938.png.jpg
This is a pointer

+o an array.
gsort (void *array, &

This is the length 2 This is the size of €ath Remember, a void ¥ pointer
of the avay. TYeizec lengen, L clement in the a3f. o paint o anything

size_t item size,

int (*compar) (const void ¥, const void *)) ;

This is a pointer 40 a #unLt.zéhae ¢ompares two items in the array.

OEBPS/httpatomoreillycomsourceoreillyimages2260020.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260010.png.jpg
fhere mans and dhen i s sucteshl, do t,” Yoy S T 2
i

gee zork.c -o zork && ./zork &, 3 Windows mathine.

OEBPS/httpatomoreillycomsourceoreillyimages2260346.png.jpg
Wouldrit it be dreamy if there
were a special output for errors so
that T didn't have o mix my errors
in with Standard Output? But T know
it's just a fantasy.

OEBPS/httpatomoreillycomsourceoreillyimages2260348.png.jpg
s another ear.
This is one ear. — This s @

Single mouth. Maliple uses.

OEBPS/httpatomoreillycomsourceoreillyimages2260968.png.jpg
int main()
{
response r[] = {
{"Mike", DUMP}, {"Luis", SECOND_CHANCE},
{"Matt", SECOND_CHANCE}, {"William", MARRIAGE}
Vi
int i;
for (i = 0; i < d; i++) { &— Looping through the arvay
switch(. r{iltype.) { = Testing the type field cach time
case
dump
break;
case SECOND_CHANCE
second_chance (
break;
default:
marriage(

)i

Call the method for
eath matehing type

}
¥

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260054.png.jpg
The computer says the
card was low. The count

went up! Raise the bet!
Raise the bet!

B "< Stealthy communication deviee

AT TERRE WORSISS

OEBPS/httpatomoreillycomsourceoreillyimages2260058.png.jpg
switch (train) {
case 37:

winnings
break;

case 65:

puts ("Jackpot!") ;

winnings
case 12:

winnings
break;
default:

winnings

winnings + 50;

winnings + 80;

winnings + 20;

.

6 4he brain == 51, 34 50 o the S8 T
1 vinvings and then skip o the end

£ the train == 65, add @0 to the
wimnings AND THEN also add 20 4
the vimnings; then, <kip to the end.

—ep

1§ the brain == 12, just —>
3dd 20 to the vinnings

For any other value of 4rain,

ey set the vimings —,

OEBPS/httpatomoreillycomsourceoreillyimages2260976.png.jpg
The variable will be find it's not just a function pointer;

Eah funch: called “veplies” it's a whole array of them.
ion in

v
the array vill be ~) void (*replies[]) (response) = {dump, second_chance, marriage};

3 void function /\ 7 T l\ ’\%Jdmmmm

with type vesponse.”

Return type Pointer variable :)(: Param types

T 2
Declaring a function Now You're done naming the variable, and it's time to
cointer (array) say what pavameters each function will 4ake.

OEBPS/httpatomoreillycomsourceoreillyimages2260276.png.jpg
R Cs Toxt Scarch C O ot seaTch o jtontcearon
Search for: town

Track 1: 'Newark, Newark - a wonderful town'
>

OEBPS/httpatomoreillycomsourceoreillyimages2260322.png.jpg
.g‘eo.?.j son
\’f

output.json

OEBPS/httpatomoreillycomsourceoreillyimages2260272.png
is Version isn't using the
Hull length of the arvay.
The coder has subtracted

int main() .) one from the length, like
. int main () You would with seanf0).

{
char search_for([80]; char search for(80];
printf ("Search for: "); orintf ("search for: "
fgets (search_for, 80, stdin); fgets (search_for, 79, stdin);

search_for[strlen(search_for) - 1] = search_for[strlen(search_ for)
A -1 = o' B
find_track(); ~&_ Lind_track() is being find_track(search_for);
return 0; called without passing return 0;
) Lhe seaveh teem. !
}
This version is using
fot main() Thisis the corvect seanf() and would ;l,\ow
i . to enter
(main) funetion. int main () J:::,::;ﬁ ,:2,, the areay.

char search for([80]; {

printf ("Search for: "); char search_for([80];

fgets (search_for, 80, stdin); printf ("Search for: "

search_for [strlen(search_for)
- 1] = "\o';
find_track (search_for) ;

scanf ("%80s", search_for);
find_track (search_for) ;

return 0;
return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260528.png.jpg
Time to bake that
assembly into
something edible.

40

OEBPS/httpatomoreillycomsourceoreillyimages2260912.png
void find(funttion—name matth)
(R ateh would s;y:uﬁy the

int i name of the function
containing the test

puts ("Search result

for (i = 0; i < NUM_ADS; i++) {
if (call-the-mateh—funetion (ADS[11)) (

Printf("Es\n", ADS[i]); ™ Here, You'd need some way of calling

, the function whose name was given by
the matzh parameter.

OEBPS/httpatomoreillycomsourceoreillyimages2261406.png.jpg
If I start the server,
then run the client
one time, it works...

OEBPS/httpatomoreillycomsourceoreillyimages2261118.png.jpg
You don't need to set a -1

Vou need o conpile the —. gpe ¢ FPIC heal UK e, L b, becase the header il
e ode o o ke B 1.1 M o bl e o dveciory

Then you need 4o convert the 2,964 =shared ealo —o fuse/local/lib/libhfealso
object file to a shared object.

OEBPS/httpatomoreillycomsourceoreillyimages2260094.png
#include <stdio.h>
#include <stdlib.h>
int main()
{
char card_name[3];
int count = 0;
do {

puts ("Enter the card name:

scanf ("%$2s", card_name);

int val = 0;

switch(card_name[0]) {

case 'K':

o

case 'J':

val = 10;

break;
'A':

val =

break;

case 'X':

default:

val =

case

case
11;

This is just one way of

eed another continue here _—7...tontinue;
f:‘t:usc You want to kee? \oopindy:
}
if ((val >2) && (val < 7))
count++;
} else if (val == 10) {

count--;
}

printf ("Current c?unt'
«

return 0;

atoi (card name) ;

)
writing this condition. — i (vl < 1) || val > TO)) {

")

e incide
break wouldr't break us out of the loop, because weve insi
afingr&;\ﬁmenk. We need a tontinue Lo 90 back and check

£ the loop tondition again-

{

%i\n", count);

KYm need 4o cheek if the Fist chavacter was an X

OEBPS/httpatomoreillycomsourceoreillyimages2260096.png.jpg
Remember: you don't need */
if you've on Windows

el e PR ¥
FSMRRAAEE > gcc card counter.c -o card_counter & ./card_counter

Program Enter the Gard name:
4
Current count: 1
Enter the card name:
K
Current count: 0
Enter the card_name:
3
Current count: 1
Enter the card name:
5
Current count: 2
We vow chetk Enter the card name:
. 23
ARSI © con' - undrstand that value!
lhe 3 correct <7 [N O
card value 6
Current count: 3
Enter the card name:
5
Current count: 4
Enter the card name:
3
The ‘"“”{,‘ Y current count: 5
increasing| Enter the card_name:
x

OEBPS/httpatomoreillycomsourceoreillyimages2260082.png.jpg
The ssipmert i also set to 4.
*=4"has oy = (x = q);

beaket "

OEBPS/httpatomoreillycomsourceoreillyimages2259955.png.jpg
Mum and Dad —>

OEBPS/httpatomoreillycomsourceoreillyimages2260354.png.jpg
Standard —y ﬂ/-% 0

Input comes

from a file

N
L tiies ®

qocs bo a Bl

Standard Ervor skl
g0 to the display.

OEBPS/httpatomoreillycomsourceoreillyimages2260018.png.jpg
N

S @
S & W

OEBPS/httpatomoreillycomsourceoreillyimages2260358.png
#include <stdio.h>

int main()
{
float latitude;
float longitude;
char info(801;

int started = 0;

puts ("dat.
while (scanf("$f,%£,%79("\n

&latitude, &longitude, info)

if (started)
SN

if ((latitude < -90.0) || (latitude > 90.0)) {

fprintf (stderr, "Invalid latitude: $£\n", latitude);

return 2; O\ Instead of printf0,

, ve e nt

< -180.0) || (longitude > 180.0)) {

fprintf (stderr, "Invalid longitude: $£\n", longitude);
TS\ We need 4o specify stderr as the First pavameter.

return 2;

1
printf("{latitude

#f, longitude: 3f, '8s'}", latitude, longitude, info);
}
puts (M\nl")

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260922.png.jpg
This will ereate a variable called

the
warp, Bn dhat an store
wazp_fn = go_to_warp_speed; & addves of the go_to varp_speedO)

function.

int (*warp_fn) (int) ;
warp_fn (4) ;

This is just like calling 90 b warp_speed(4h).

char** (*names_fn) (char*,int) ;
names_fn = album names;
F char** results = names_fn("Sacha Distel", 1972);

This will ereate a variable called
rames_fn that can store the addvess
of the album names() funebion.

OEBPS/httpatomoreillycomsourceoreillyimages2260942.png.jpg
You need bo tast the void ©~ 1ne = o 2¢

Poirker o o g pter, 0 7 tintidscore 8,
int b = *(int¥)score b;

This first % then gets the int A =

doved at addvess store_b.

OEBPS/httpatomoreillycomsourceoreillyimages2261136.png.jpg
£— Intruder

Aha, an intruder
making off with the

coffee supplies! T must
record this

Webcam

L [

®

D
DpenCV

_—\ 6 |m7a\ge file

it wikes what it sees o
b L"’"’“‘" an image file
spots movement
throuah its webeam.

OEBPS/httpatomoreillycomsourceoreillyimages2261404.png.jpg
Working, you
say? Hmm..I thirk
there might be a
problem

OEBPS/httpatomoreillycomsourceoreillyimages2261116.png
#include <stdio.h>
#include <hfcal.h>

void display calories(float weight, float distance, float coeff)

{
printf("Weight: $3.2f kg\n", weight / 2.2046);
printf("Distance: %3.2f km\n", distance * 1.609344);

printf("Calories burned: %4.2f cal\n", coeff * weight * distance);

OEBPS/httpatomoreillycomsourceoreillyimages2261402.png.jpg
File Edt Heip_tm
> telnet 127.0.0.1 30000

Trying 127.0.0.1...

Connected to localhost.

Escape character is 'A]'.

One word: inappropriate

Connection closed by foreign host.

> telnet 127.0.0.1 30000

Trying 127.0.0.1...

Connected to localhost.

Escape character is 'A]'.

You might want to rethink that haircut
Connection closed by foreign host.

>

OEBPS/httpatomoreillycomsourceoreillyimages2261410.png.jpg
but then, if T stop the
server and restart it real
quick, the client can't get
aresponse anymore!

Server tonsole

¥

Fle Gt Viindow Felp TmTheSever

Hitting > ./advice_server
Ctel-C Waiting for connection
il the 8
—— > . /advice_server Client consele

& Waiting for connection

> telnet 127.0.0.1 30000
rsvekinted Trying 127.0.0.1...

The server’s vestar telnet: connect to address 127.0.0.1: Connection refused

telnet: Unable to connect to remote host
>

WTFe2lzlz2

Wheve's The Feedback?222

OEBPS/httpatomoreillycomsourceoreillyimages2260284.png.jpg
void print_reverse(char *s)
{
size_t len = strlen(s);

while (\ g >= D) i

printf ("sc", *t);

}
puts (") ;

Caleulating addresses ke his s
Called “pointer avithmetic”

OEBPS/httpatomoreillycomsourceoreillyimages2260290.png
int main()

{

char “juicest) - ¢

}

char *a; Dow

ts (Suices(2])

puts (juices(6]);
int_reverse (juices[7]);

a = juices(2];

print_reverse (juices(9]);

juices[1] = juices

juices(2]

Juices[8];

outs (Juices(10])7
juices[8] = a;

puts (juices(8]);
print_reverse(juices[(18 + 7) /

00 00

print_reverse (juices(1]);

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260268.png
void find track(char search forl])
{

int i;

OEBPS/httpatomoreillycomsourceoreillyimages2260260.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260462.png.jpg
Float z = (float)x / y; d— The contiler il aetenaticdly
cast y to a float

OEBPS/httpatomoreillycomsourceoreillyimages2260572.png.jpg
Hmm...this file's OK.
And this one. And this one.
And..ch, this one's out of

date. I'd better send that
to the compiler.

OEBPS/httpatomoreillycomsourceoreillyimages2260264.png.jpg
- Hey, look: you're ereati ate functi
s You! ing a separate function
d” just means this funct; operi ok Sy l
wor't veturn a vahe. \; - - mi"ih“"‘ﬁr{""r;r)‘x -
void find_track(char search_for[])

«
Tris is the “for loop” int &7

This is wheve youre chetking to see if the
W Took 3t bhis in more —=£OF (1= 07 1 < 55 i44) (

ceanth term is contained in the track rame
dekail n a while, but for g

1§ the track
ow you just need o know . N ek name matches cur
ot Sl vom s vete pr - . (o Searth you'l display it heve.
of tode Five times. . T R R
} You've soing £ One value willThe other vill

be pinking o need o b¢

bes shing
o valeer hone. an integer. T

OEBPS/httpatomoreillycomsourceoreillyimages2260914.png.jpg
Whenever you ereate 3 funetion,
jou o cveate fonttion pointer

with £he same name:

The pointer .
onti
address of the A:ﬁf

— ‘GLOBALS

,//g/o//t/o//"/a///////ﬂﬂlvsl S
[25— rp_speed” ////////

-con,

OEBPS/httpatomoreillycomsourceoreillyimages2261458.png
while (1) {
int connect_d = accept (listener d, (struct sockaddr *)sclient_addr,

saddress_size);

if (connect d

1)
error("Can't open secondary socket");

I/—Thu ereates the child process, and you know that if
«

if (he fork() call vebuens O, you must be in the child-

& In the child, you need 4o tlose < The child will use only the connett_d

if (say(connect d, the main listener soeket. sotket 4o talk 4o the client.
"Internet Knock-Knock Erotocol Server\r\nVersion 1.0\r\nKnock! Knock!\r\n> ")
1=-1) {

read_in(connect d, buf, sizeof (buf));

if (strncasecmp("Who's there?", buf, 12))

say (connect_d, "You should say 'Who's there?'!

else (
if (say(connect_d, "Oscar\r\n> ") !=

1) {
read_in(connect d, buf, sizeof (buf));

if (strncasecmp("Oscar who?", buf, 10)
say (connect_d, "You should say 'Oscar who?'!\r\n");
else

say (connect_d, "Oscar silly question, you get a silly answer\r\n");

Onte the conversation's over, the ehild
} ¢an close the sotket to the client.
1

close(

exit(0);. — Onte the child protess has finished talking, it should exit
) That will prevent it from falling into the main sevver loop

close(. tomett d .);

OEBPS/httpatomoreillycomsourceoreillyimages2261386.png.jpg
Youll use a queve vith a length of o

if (listen(listener_d, 10) i |

error ("Can't listen");

OEBPS/httpatomoreillycomsourceoreillyimages2261388.png.jpg
The first 10 clients
will be able 4o ait.

The II4h and 12:th
vill be told the
sevver is oo busy.

OEBPS/httpatomoreillycomsourceoreillyimages2261382.png.jpg
Web: port 0.
Email: port 25.
Chat: port 5222
Jokes: port 30000,

. i,

OEBPS/httpatomoreillycomsourceoreillyimages2260676.png.jpg
This ereates a steuet—~y ¢ oy snappy = {"Snappy", "piranha", 69, 4};

This sets the value printf("Hello $s\n", snappy.name) ;< This veads the value of the name field
the teeth field snappy. teeth = 687 <— Ouch! Looks like Snappy bit something hard.

OEBPS/httpatomoreillycomsourceoreillyimages2261154.png.jpg
T want to display this on
the commard line, then play
‘this music track, then send this
message fo the network

Certainly. T shall
perform those tasks

immediately.

OEBPS/httpatomoreillycomsourceoreillyimages2261044.png.jpg
You might. not have a libl-a on your mathine, but
Kyou ¢an try the command on any other .a file

called libla. —> EEFCSRETSIEY

P 1ibl.a(libmain.o) :
00000000000003a8 s EH_frame0
U _exit »
0000000000000000 T “main &——"T _main’ means libmaino
00000000000003c0 S “main.eh contains a main() function

U “yylex

Py o1 alibyywrap o) :
0000000000000350 s EH_frame0
0000000000000000 T _yywrap
0000000000000368 S _yywrap.eh
>

libmain.o

——

OEBPS/httpatomoreillycomsourceoreillyimages2261040.png.jpg
Hmmm... That's OK if I just have
one or two object files to share, but

what if T have alot of object files? T
wonder if there's some way of telling
the compiler about a bunch of them...

OEBPS/httpatomoreillycomsourceoreillyimages2261446.png.jpg
Filo Edt_VWindow Help TmTheClent

h > telnet knockknockster.com 3
€ sevver is vunning Trying knockknockster.com.
Connected to localhost.

on 3 mathine out on

the Internet

Escape character is '"]'.

Internet Knock-Knock Protocol Server

Version 1.0

Knock! Knock!)]

Inock D mnock 1 'gh, wait oO;c:r" Oh,fI known‘

oscar is one... Oh, it's so funny... It's..

b Oscar..Oscar who? Hey, that's like...
no, wait..don't tell me...

OEBPS/orm_front_cover.jpg
A Brain-Friendly Guide

Head First

Learn how make can

change your life
= §
L€)
*> See how variadic
functions helped
Sue be more

flexible

iy ¢
Discover the secrets
of the C coding gurus

Avoid

embarrassing

pointer
mistakes

Build a retro
classic arcade
game

Fool around A
in the C &

Standard
Library | f\,

Dayvid Griffiths &
Dawn Griffiths

O'REILLY®

OEBPS/httpatomoreillycomsourceoreillyimages2260262.png
strstr("dysfunctional™

(

‘estrO) will £ind the
string “fun’” starting
here at location
4,000,005

OEBPS/httpatomoreillycomsourceoreillyimages2260570.png.jpg
d

PO S

OEBPS/httpatomoreillycomsourceoreillyimages2260574.png.jpg
thruster.c - thruster.o

OEBPS/httpatomoreillycomsourceoreillyimages2260718.png.jpg
typedef struct {

const char *color;
This will set the gears and
the height fields, but wor

o set the color field
} bike;

bike b = {.heigh

int gears;

7, .gears=21};

OEBPS/httpatomoreillycomsourceoreillyimages2260720.png
Here, you've using a double

designated identifier. [t

accesses the weight field of
[¥s amourt because that's the name of the struct quantity varizble. _the .amount union

fruit_order apples = {"apples", "England", .amount.weight=4.2};

printf("This order contains %2.2f lbs of %s\n", apples.amount.weight, apples.name);

This will print. “This order eontains 420 Ibs of apples”

OEBPS/httpatomoreillycomsourceoreillyimages2261450.png.jpg
Child —>

protess

Pavent process

Hey, great to see you! Tl
just hand you over fo someone
who can deal with you.

Client

OEBPS/httpatomoreillycomsourceoreillyimages2260730.png.jpg
Hey, wait a minute... You're setting all these
different values with all these different types
and you're storing them in the same place in

memory... How do I know if I stored a float in there
once I've stored it? What's fo stop me from
reading it as a short or something??? Hello?

OEBPS/httpatomoreillycomsourceoreillyimages2261046.png.jpg
The v means the a The s tells ar to create
file will be updated an index. at the start of *;faia:teit‘ ji:lthat wil be
if it alveady exists. \ \(w a file ¥ B e.
ar -rcs libhfsecurity.a encrypt.o checksum.o
’T
The ¢ means bhat the aichive TS is the name of
will be eveated without any the .a file 4o treate
Leedback.

OEBPS/httpatomoreillycomsourceoreillyimages2260258.png.jpg
strchr() -Concatenate two strings.

Find the location of a string inside

w0 another string

strstr() i \::{l:‘l:» location of a character inside
strepy O Find the length of a string

stelen() Gompare two strings

streat(). CGopy one string to another.

OEBPS/httpatomoreillycomsourceoreillyimages2261160.png.jpg
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

char* now ()
{
time_t t;
time (&t);
return asctime(localtime (&t));

/* Master Control Program utility.
Records guard patrol check-ins. */

int main()

{ |4 needs to stove There is voom The data will come

char comment[801; the text in the for only 80 from the Standard
comment arvay. thavacters. [npu: the keyboard

’e

)i

4
text i &
s e S
This is the comand)[the comment to a file.

char cmd[120]; v
Using £aets £
ing Foets for — ('
The formatted string will be
speintf will print—— . e :
the characters to ~skored in the tmd aveay
template.
This vuns the —> system (cmd) ;
Contents oF return 0; The omment. will The Limestamp appears second
the tmd string.) appear Fet

OEBPS/httpatomoreillycomsourceoreillyimages2261384.png
#include <arpa/inet.h> 4 You'll need this header for ereating Internet addresses.

These lines eveate a name for the

L— Fort meaning “Internet. port 30000

struct sockaddr_in name;

name.sin_family = PF_INET;
name.sin_port = (in_port_t)htons (30000) ;
name.sin_addr.s_addr = htonl (INADDR_ANY) ;
int ¢ = bind (listener_d, (struct sockaddr *) &name, sizeof (name));
-1)

error ("Can't bind to socket"):

if (c =

OEBPS/httpatomoreillycomsourceoreillyimages2261042.png.jpg
libl.a

libmain.o libyywrap.o

OEBPS/httpatomoreillycomsourceoreillyimages2260940.png.jpg
»@»@»@

I the first value is greater than the second
value, it should return a positive number.

If the first value is less than the second
value, it should return a negative number.

I the two values are equal,
it should return zero.

OEBPS/httpatomoreillycomsourceoreillyimages2260658.png.jpg
struct fish snappy = {"Snappy”, "Piranha”, 63, 4};

This is also 3 pointer 4o 3 string
By

This is 2 poinber
toastrng 3

s [ropeos [o0 [2]

RS, of eeth and a0e
‘Piranha”

Storage for the number

“Snappy” -

OEBPS/httpatomoreillycomsourceoreillyimages2260924.png.jpg
int sports_no_bieber (char *s)

Someone who likes A

sports but not Bieber

return strstr(s, "sports") && Istrstr(s, "bieber");

1

int sports_or_workout (char *s)

int ns_theater (char *s)

{

lwant a non-
Smoker who
likes the
theater,

int arts_theater_or_dining(char *s)

{

Find. someone
who likes the
arts, theater,
or din‘\r\%

OEBPS/httpatomoreillycomsourceoreillyimages2260926.png.jpg
£ind0) will need 3
funetion pointer passing
{ 4o it called mateh

int i;

puts("Search results:");

puts ("

void find(

for (i = 0; i < NUM_ADS; i++) {

if (match(ADSIL1)) (—This vill eall the mateh)
printf("%s\n", ADS[il]);

unttion that was passed in

Vi

OEBPS/httpatomoreillycomsourceoreillyimages2260052.png.jpg
This line ompiles = o T

LRIV -, cc cards.c -o cards & ./cards
Enter the card name:
2

Count has gone down

> ./cards
We vun it a Enter the card name:
8

few times to
chetk that the 23
different value Enter the card name:
vanges work 3

Count has gone up

> ./cards

>

OEBPS/httpatomoreillycomsourceoreillyimages2261020.png
> gcc test code.c encrypt.o checksum.o -o test code

test_code.c:2:21: error: encrypt.h: No such file or directory
test_code.c:3:22: error: checksum.h: No such file or directory
>

OEBPS/httpatomoreillycomsourceoreillyimages2260286.png.jpg
char *names_for_dog([] = {"Bowser", "Bonza", "Snodgrass"};
N
This is an areay that There vill be one pointer panking
shoves pointers at eath string literal

OEBPS/httpatomoreillycomsourceoreillyimages2260568.png.jpg
I the thruster.c [% the thrustev.o
il i newer, you > thruster.c ——> thruster.o £ Bl i newer, you
don't need to

need to vecompile.
vetompile.

OEBPS/httpatomoreillycomsourceoreillyimages2261378.png.jpg
Protocol demands that you
reply with *Who's there? I
shall therefore terminate

this conversation forthwith.

OEBPS/httpatomoreillycomsourceoreillyimages2260460.png.jpg
Tve been
cast a float.

OEBPS/httpatomoreillycomsourceoreillyimages2260472.png
#include <stdio.h>
ke int and char.
#include <Iimits.h> €—This contains the vaues for the inbeser ‘ypes ke

#include <float.h> €—This contains the values for Floats and doubles.

int main()
{
printf("The value of INT MAX is $i\n", INT MAX);
/gnntfl"'rhe value of INT_MIN is $i\n", INT_MIN);

This s the printf("An int takes %2U bytes\n", sizeof(int));
is is

highest value

"This is the

lowest value.

\pnntf("rhe value of FLT MAX is $f\n", FLT MAX); '!
printf("The value of FLT MIN is $.50f\n", FLT _MIN);

printf("A float takes %zubytes\n", sizeof (float));

ok veburns the rumber of
bykes a data bype oceuries

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260458.png.jpg
int x = 100000; ohis the proper code 4o

Hormat a short. value
short y = x;

print ("The value of y = $hi\n"

OEBPS/httpatomoreillycomsourceoreillyimages2261380.png.jpg
#include <sys/socket.h> ¢— Youll need this header This is a
It _d i deserphor ——— Protocol number.
the socket. R
int listener_d = socket(PF_INET, SOCK_STREAM, 0); ;/:"0“" leave it
if (listemer_d == -1)
error ("Can't open socket”);

[£'s an Internet sotket.
This is the
evvor() funttion
eveated in
75; \ast chapter.

OEBPS/httpatomoreillycomsourceoreillyimages2261368.png.jpg
Servers-R-Us,
how can T
help you?

A new client, darling?
T always knew your

BLABing would come
in useful one day.

OEBPS/httpatomoreillycomsourceoreillyimages2260646.png.jpg
1€ snappy vas a painter to an aveay, you
would actess the Fiest field like this.

You get an
ervo if you
tey tovead a

struet field >
il fish. : 5
like it an >1sh c:12: error: subscripted value is neither array nor pointe:
z

OEBPS/httpatomoreillycomsourceoreillyimages2260920.png.jpg
int go_to_warp_speed(int speed)

(
There ave many different types

e of funthions. These functions are
] different ypes betause they have
diffevent vedurn bypes and parameters

char** album names (char *artist, int year)
(

OEBPS/httpatomoreillycomsourceoreillyimages2260288.png

OEBPS/httpatomoreillycomsourceoreillyimages2260594.png.jpg
oggswing

[TAB) l gec oggswing.c -o oggswing '

e [T

oggewing whitennerdy.ogg swing o399

OEBPS/httpatomoreillycomsourceoreillyimages2260390.png.jpg
Geo-ccuar

OEBPS/httpatomoreillycomsourceoreillyimages2261022.png
#include <stdio.h>

#include Fencrypt.h>

#include\¢checksum.h>

int main()

{
char s[] = "Speak friend and enter";
encrypt (s) ;
printf ("Encrypted to '$s'\n", s);
printf ("Checksum is $i\n", checksum(s));
encrypt (s)
printf ("Decrypted back to '$s'\n", s);

printf ("Checksum is %i\n", checksum(s));

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2260202.png.jpg
1€ food wasasimple e (vEnter favorite food:
fainter, youd give an

explicit length, vather = £9ets (f00d, 5, stdin);
AN

OEBPS/httpatomoreillycomsourceoreillyimages2260916.png.jpg
int go_to_warp_speed(int speed)
{
dilithium_crystals (ENGAGE);
warp = speed;
reactor_core(c, 125000 * speed, PI);
clutch (ENGAGE) ;
brake (DISENGAGE) ;

return 0;

go_to_warp_speed (4) ;

When ou call the function, you are
using the function pointer.

OEBPS/httpatomoreillycomsourceoreillyimages2261014.png.jpg
1

#include "checksum.h"

int checksum(char *message)

This funetion veturns a number

based on the contents of a string

int checksum(char *message); f=.
int ¢ = 0;

while (*message) {

c 4= c ~ (int) (*message);

message++;

}

return c; =0
=

checksum.c

checksum.h

OEBPS/httpatomoreillycomsourceoreillyimages2260596.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260474.png
‘The value of INT MAX
The value of INT MIN
2n int takes 4 bytes
The value of FLT MAX
The value of FLTMIN
A float takes 4 bytes

is
is
is
is

2147483647
-2147483648

340282346638528859811704183484516925440. 000000
0.00000000000000000000000000000000000001175494350822

OEBPS/httpatomoreillycomsourceoreillyimages2260640.png.jpg
Name: Snappy
Species: Piranha
Teeth: 69

Age: 4 years

400

T

Y

itits

OEBPS/httpatomoreillycomsourceoreillyimages2260642.png.jpg
This is the species, This is the number ot teeth.

“struet Fish” is
the dots type, 7 struct fish snappy = ("Snappy", "Piramha', 69, 4 s Snappy's 3¢

“snappy” is the variable name: This is the natne.

OEBPS/httpatomoreillycomsourceoreillyimages2260892.png
= W
> valgrind --leak-check=full ./spies
1800== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
Does suspect have a mustache? (y/n): n
Loretta Barnsworth? (y/n): n
Who's the suspect? Hayden Fantucci
Give me a question that is TRUE for Hayden Fantucci
but not for Loretta Barnsworth? Has a facial scar
Run again? (y/n): n
800== All heap blocks were freed -- no leaks are possible

OEBPS/httpatomoreillycomsourceoreillyimages2260442.png.jpg
The Standard

andard
€ Funcbios e Outpt s e
tF0 and scanfO to the diply L
) by default. e for
e i -
i et T T Shandardeveor mes
Communicate gt e e
th:; kelbeavd by You tan print 4o
defauk the Standard
You an Change Evvor -.:.
where the fprintfistderr,..)
Standard fupyt,
Output, ang Ervor
are tonected 4,
wsing vedirezdion,

The getopt()
function makes
it casier to
vead tommand—
line options.

OEBPS/httpatomoreillycomsourceoreillyimages2260444.png.jpg
Wh's he calling
“short*>

OEBPS/httpatomoreillycomsourceoreillyimages2260464.png.jpg
unsigned char c;

Tris will probably store
T Brom 0 10 255

OEBPS/httpatomoreillycomsourceoreillyimages2260068.png.jpg
int counter =

1, & This is the loop startup eode

© KT Thisis the loop condition.
This is the loop while (counter < 11) { r)
""M‘{i‘t b‘rty printf("si green bottles, hanging on a wall\n", counter);
vuns a1 ot
the loop body to > countert; € Remember: comtert means “intrease
update a counter.

; the counter variable by one.”

OEBPS/httpatomoreillycomsourceoreillyimages2260636.png.jpg
/2
°0

OEBPS/httpatomoreillycomsourceoreillyimages2261076.png.jpg
In the US,
measurements
need o be in

pounds and
miles. Yy

¥

OEBPS/httpatomoreillycomsourceoreillyimages2261248.png.jpg
Standard Output

has bfu vedirected N\

o0 a file.

Data. Stream.
The keyboard
Freseresn File stories.txt

The screen

Database connection

OEBPS/httpatomoreillycomsourceoreillyimages2260644.png.jpg
Hey, I'm
gooooood!

OEBPS/httpatomoreillycomsourceoreillyimages2260638.png.jpg
I dor't really see the
problem. It's only four
pieces of data,

OEBPS/httpatomoreillycomsourceoreillyimages2261252.png.jpg
Hmmm...looks
like slot 4 is free;

T'll record the music
file there.

The keyboard \ —
The screen

The screen

Database connection

OEBPS/httpatomoreillycomsourceoreillyimages2260410.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260438.png.jpg
ATgC. = ApEined

argv += optind;

if (thick)
puts("Thick crust.”);

if (delivery([0])

printf("To be delivered %s.\n", delivery);

puts("Ingredients:");

Abker protesing he options, the
fivst. .mgnt s avq[O].

4
0 N
..+ count

for (count count++)

puts (argv(count] | ;

return 0;

We'll keep foop;
wee les g ?};wt

OEBPS/httpatomoreillycomsourceoreillyimages2260440.png.jpg
Program

You've ot wsing.

any options the
couple of

times you eall 1

Then try out 4h

LT Ol "o be delivered now
anargment of [ELEICTP

Then the' option
Remember: the “¢

apbion docr't take RSP

any avauments

Finally, try ;hrmf;' order_pizza: option requires an argument -- d

the argument. for
d": it treates an

ervor.

Bl > occ order pizza.c -o order_pizza
Pl > -/ozder pizza Anchovies
Ingredients:
Anchovies
> . /order_pizza Anchovies Pineapple
Ingredients:
Anchovies
Pineapple
> ./ozder pizza -d now Anchovies Pineapple

Anchovies
Pineapple

PBY > ./order pizza -d now -t Anchovies Pineapple
Thick crust.
To be delivered now.

Anchovies
Pineapple
> ./order_pizza -d

Unknown option: '(null)'
B

OEBPS/httpatomoreillycomsourceoreillyimages2260558.png.jpg
microwave.c
15:42

microwave.o
18:02

—
==
—

Ppopcorn.c
17:05

Ppopcorn.o
17:07

juicerc
16:41

OEBPS/httpatomoreillycomsourceoreillyimages2260886.png

OEBPS/httpatomoreillycomsourceoreillyimages2260064.png.jpg
This ehecks the condition before vuning the body.

while (<some condition>) {

I£ You have orly one line in the

<+ /* Do something here */ £ .y Yo do't reed the braes
The body s bebueen —> o so Fpes

}

ks

b " When it geks o the end of bhe bdsy the computer
checks i the loop condition i st true. 1 it 1y the
body code vus i

OEBPS/httpatomoreillycomsourceoreillyimages2260412.png
30.685163,-68.137207, Type=Yeti
28.304380,-74.575195, Type=UFO
29.132971,-71.136475, Type=
28.343065,-62.753906, Typ
27.868217,-68.005371, Type=Goatsucker
30.496017,-73.333740, Type=Disappearance
26.224447,-71.477051, Type=UFO
29.401320,-66.027832, Type=Ship
37.879536,-69.477539, Type=Elvis
22.705256,-68.192139, Type=Elvis
27.166695,-87.484131, Type=Elvis

[V

Spooky.OSV

OEBPS/httpatomoreillycomsourceoreillyimages2260562.png.jpg
None of the .o iles
needs +o be vetompiled.
They are all newer

{han their source files.

microwave.c
15:42

microwave.o
18:02

popcorn.o
17:07

= —
—_— —_—
—_—
p— —_—
=
popcorn.c juicer.c
17:06 1

J— The galley executable needs to
be velinked, because it's older
than the mitrowave.o file.

galley
17:09

OEBPS/httpatomoreillycomsourceoreillyimages2260062.png.jpg
Two cards???
Oh erap

OEBPS/httpatomoreillycomsourceoreillyimages2260056.png.jpg
Hrmmim..is there something we can do with
that sequence of if statements? They're all
checking the same value, card_name[0], and most

of them are setting the val variable to 10. T wonder
if there’s a more efficient way of saying that in C.

OEBPS/httpatomoreillycomsourceoreillyimages2261244.png.jpg
python ./rssgossip.py Snooki

& You tan vediveet output
stories.txt & g the > operator.
The Standard

Input: stdin

= o’
= N

The Standard
The Standard Ervor: stderv
You tan vedivect Output: stdout
the Standard
Output o 3 Lile.

OEBPS/httpatomoreillycomsourceoreillyimages2261286.png.jpg
The URL line
begins with a
tab haracter.

—u tells the seript to intlude story links.

Fie Bt Vindow Felp

> python rssgossip.py -u 'pajama death'
Pajama Death ex-drummer tells all.

http://www.rock-news.com/exclusive/24.html
New Pajama Death album due next month.

htitp://www.rolling-stone.com/pdalbum, html

This is the URL
for the story

OEBPS/httpatomoreillycomsourceoreillyimages2260820.png.jpg
his means, "Create

cxighiapace Fob 5
island *p = malloc(sizeof (island)) ;% land, and store the

addvess in variable p.”

OEBPS/httpatomoreillycomsourceoreillyimages2260634.png.jpg
int main()

You are
Passing the > CAtalog ("Snappy", "Piranha", 69, 4);

same fow _“label ("Snappy", "Piranha", 69, 4);

ieces of return 0; ,
Eétaxtw‘.« } There's only one fish, but. you've
passing four picees of data

OEBPS/httpatomoreillycomsourceoreillyimages2260824.png.jpg
This is the new function-

The name of the island is

passed as a char pointer.
N

This will eveate a
new island struet
on the my.v 7> island *i =
i i->name = name;

These lines set the A
Sields on the new sbruet, (17>0PENS = "09:007;

i->closes = "17:00";
i->next = NULL;

return i;

iy
The £unction veturns the
address of the mew struet.

island* create (char *name)

€ wsing the mallocO) function
1o ereate space on the heap:

malloc(sizeof (island));

The sizeof operator works out how
many bytes are needed

OEBPS/httpatomoreillycomsourceoreillyimages2261452.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260744.png.jpg
#include <stdio.h>

typedef enum {
COUNT, POUNDS, PINTS

} unit_of measure;

typedef union {
short count;
float weight;
float volume;

} quantity;

typedef struct {
const char *name;
const char *country;
quantity amount;
unit_of_measure units;
} fruit_order;

void display(fruit_order order)
(
printf ("This order contains ");

if(

PINTS)

printf("$2.2f pints of $s\n", order.amount.

order.name) ;

OEBPS/httpatomoreillycomsourceoreillyimages2260878.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261480.png.jpg
The DNS is a gigantic addvess book
%

en.wikipedia.org |91.198.174.225

208.201.239.100
208.201.259.10L

Some lavge sites have

several [P addresses Computers need [P

addresses o ereate
network packets.

OEBPS/httpatomoreillycomsourceoreillyimages2261538.png.jpg
Thread 2.

4

Thvead |~y Both threads are getting
beer-i the same value. Can you

beers-! ¥
o [F f see where this is goina?

OEBPS/httpatomoreillycomsourceoreillyimages2260750.png.jpg
\ | . Head First

'Ll.o fige

OEBPS/httpatomoreillycomsourceoreillyimages2261544.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2260552.png.jpg
is il the thruster.o file
This s dhe oy i 960 -0 thruster.o ¢ The il rerete

that's ehanged. gce *.0 -o launch ¢—This vill link everything 4ogether.

OEBPS/httpatomoreillycomsourceoreillyimages2260894.png.jpg
Dynami¢ data

struttures
Data ean use vetursive
be inserted struets.
easily into & o Retursive
linked list. shrutts contain
— linked one or more
liskis @ links to similar
dyramic data
deutture:
malloe()
allotates
memory on the
= Unlike the
— stack, heap
memory is not
automatically
veleased.
— e stack
strdupO) will B
ereate topy A memory leak for logal
HOige s alacated varabls
the heap. R
o longer access:
e Valarind ean
help you
tratk down

memory leaks.

OEBPS/httpatomoreillycomsourceoreillyimages2261548.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2261152.png.jpg
Tharks, Ted, Since you taught
me how to make system calls,
T haven't looked back, Ted?
Ted, are you there?

OEBPS/httpatomoreillycomsourceoreillyimages2260882.png.jpg
19 bytes in 1 blocks are definitely lost in loss record 1 of 1
at 0x4026864: malloc (vg_replace malloc.c:236)
by Ox40B3ASF: strdup (strdup.c:43)
by 0x8048587: create (spies.c:22)
by 0x804863D: main (spies.c:46)

S e oDl

OEBPS/httpatomoreillycomsourceoreillyimages2260816.png.jpg
Thanks for the
storage. T'm
done with it now.

OEBPS/httpatomoreillycomsourceoreillyimages2261246.png.jpg
Standard Iput—[0
Standard Output |1
Standard Ervor—3[2

The process might also | 3
have other open streams.

The screen
The screen
Database connection

OEBPS/httpatomoreillycomsourceoreillyimages2261290.png.jpg
The two processes are grep filters the
comected with a pipe. outpu of the seript
A}

e Edi Tlidov FEp ReaAlbomT

rssgossippy sends its — [SR T P =

output into the pipe. http://www.rock-news.com/exclusive/24 . html
http: //waw.rolling-stone. com/pdalbum. html

OEBPS/httpatomoreillycomsourceoreillyimages2261282.png.jpg
“hori > ./newshound2 'pajama death’

The shories bt > cat stories.txt

B\ Pajama Death ex-drummer tells all.
New Pajama Death album due next month.

£ile now contains
the stories
as soon as
newshound2. is vun.

OEBPS/httpatomoreillycomsourceoreillyimages2261474.png.jpg
int s = socket(PF_INET, SOCK STREAM, 0); —To save spate, the examples won't include the
= ’ evvor thetk heve. But in your tode, ahuays eheek

L srvors:

OEBPS/httpatomoreillycomsourceoreillyimages2260602.png.jpg
Feed mel Feed
me now!

OEBPS/httpatomoreillycomsourceoreillyimages2260738.png
Hinclude <stdic.h>

typedef enun [
COUNT, POUNDS, PINTS
} unit_of_measure;

typedef union {
short count;
float weight;
£loat volume;
} quantity;

typedet struct (
const char *name;
const char *country;
quantity amount;
unit_of_measure units;
} fruit_order;

woid display{fruit_order order)
0

printf("This order contains ");

if PINTS)

Printf("$2.2f pints of $s\n", order.amount.

1 order.name) ;

OEBPS/httpatomoreillycomsourceoreillyimages2260228.png.jpg
-GLOBALS

| »%////
l_¢oDE
al

cards []— QK

. T T =
cards[2] = cards[1];

—

Lowest addvess

OEBPS/httpatomoreillycomsourceoreillyimages2260742.png.jpg
order.units

OEBPS/httpatomoreillycomsourceoreillyimages2260230.png.jpg
#include <stdio.h>

- /monte
int main()

Yes! The Queen
was the first
card. T knew it.

return 0;

OEBPS/httpatomoreillycomsourceoreillyimages2261162.png.jpg
This will compile

the program. TG iy VoS
> gcec guard log.c -o ard_lo
This vuns the S [C

program. Checked in Crom - a compound interest program.
> ./guard log

Running it a Blue Leader reports breach in jet walls. g

second time >)

This is @ tomment.

Another comment

