
Head First Kotlin


[image: Image]





Dawn Griffiths


David Griffiths




 


Head First Kotlin


by Dawn Griffiths and David Griffiths


Copyright © 2019 Dawn Griffiths and David Griffiths. All rights reserved.


Printed in the United States of America.


Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.


O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.



	
		
				Series Creators:
				Kathy Sierra, Bert Bates
		

		
				Editor:
				Jeff Bleiel
		

		
				Cover Designer:
				Randy Comer
		

		
				Production Editor:
				Kristen Brown
		

		
				Production Services:
				Jasmine Kwityn
		

		
				Indexer:
				Lucie Haskins
		

		
				Head First logo:
				Eric Freeman
		

		
				Page Viewers:
				Mum and Dad, Laura and Aisha
		

	



Printing History:


February 2019: First Edition.


[image: image]
Figure -1.  




The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First Kotlin, and related trade dress are trademarks of O’Reilly Media, Inc.


Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.


While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.


No Duck objects were harmed in the making of this book.


ISBN: 978-1-491-99669-0



[LSI] [2021-01-22]



 

To the brains behind Kotlin for creating such a great programming language.



Authors of Head First Kotlin


[image: image]




Dawn Griffiths has over 20 years experience working in the IT industry, working as a senior developer and senior software architect. She has written various books in the Head First series, including Head First Android Development. She also developed the animated video course The Agile Sketchpad with her husband, David, as a way of teaching key concepts and techniques in a way that keeps your brain active and engaged.

When Dawn’s not writing books or creating videos, you’ll find her honing her Tai Chi skills, reading, running, making bobbin lace, or cooking. She particularly enjoys spending time with her wonderful husband, David.

David Griffiths has worked as an Agile coach, a developer and a garage attendant, but not in that order. He began programming at age 12 when he saw a documentary on the work of Seymour Papert, and when he was 15, he wrote an implementation of Papert’s computer language LOGO. Before writing Head First Kotlin, David wrote various other Head First books, including Head First Android Development, and created The Agile Sketchpad video course with Dawn.

When David’s not writing, coding, or coaching, he spends much of his spare time traveling with his lovely wife—and coauthor—Dawn.

You can follow Dawn and David on Twitter at https://twitter.com/HeadFirstKotlin.



how to use this book: Intro


[image: image]




Note

In this section, we answer the burning question: “So why DID they put that in a book on Kotlin?”




Who is this book for?

If you can answer “yes” to all of these:


	Have you done some programming?


	Do you want to learn Kotlin?


	Do you prefer actually doing things and applying the stuff you learn over listening to someone in a lecture rattle on for hours on end?




this book is for you.

Note

This is NOT a reference book. Head First Kotlin is a book designed for learning, not an encyclopedia of Kotlin facts.




Who should probably back away from this book?

If you can answer “yes” to any of these:


	Is your programming background limited to HTML only, with no scripting language experience?

(If you’ve done anything with looping, or if/then logic, you’ll do fine with this book, but HTML tagging alone might not be enough.)


	Are you a kick-butt Kotlin programmer looking for a reference book?


	Would you rather have your toenails pulled out by 15 screaming monkeys than learn something new? Do you believe a Kotlin book should cover everything, especially all the obscure stuff you’ll never use, and if it bores the reader to tears in the process, then so much the better?




this book is not for you.


[image: image]




Note

[Note from Marketing: this book is for anyone with a credit card or a PayPal account]








We know what you’re thinking

“How can this be a serious Kotlin book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

“Do I smell pizza?”




We know what your brain is thinking

Your brain craves novelty. It’s always searching, scanning, waiting for something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things you encounter? Everything it can to stop them from interfering with the brain’s real job—recording things that matter. It doesn’t bother saving the boring things; they never make it past the “this is obviously not important” filter.

How does your brain know what’s important? Suppose you’re out for a day hike and a tiger jumps in front of you—what happens inside your head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…


[image: image]




This must be important! Don’t forget it!

But imagine you’re at home or in a library. It’s a safe, warm, tiger-free zone. You’re studying. Getting ready for an exam. Or trying to learn some tough technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to make sure that this obviously unimportant content doesn’t clutter up scarce resources. Resources that are better spent storing the really big things. Like tigers. Like the danger of fire. Like how you should never have posted those party photos on your Facebook page. And there’s no simple way to tell your brain, “Hey brain, thank you very much, but no matter how dull this book is, and how little I’m registering on the emotional Richter scale right now, I really do want you to keep this stuff around.”


[image: image]




Note

you are here




We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure you don’t forget it. It’s not about pushing facts into your head. Based on the latest research in cognitive science, neurobiology, and educational psychology, learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much more effective (up to 89% improvement in recall and transfer studies). It also makes things more understandable. Put the words within or near the graphics they relate to, rather than on the bottom or on another page, and learners will be up to twice as likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students performed up to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person, conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take yourself too seriously. Which would you pay more attention to: a stimulating dinner-party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons, nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges, exercises, and thought-provoking questions, and activities that involve both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this, but I can’t stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent on its emotional content. You remember what you care about. You remember when you feel something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the…?”, and the feeling of “I rule!” that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize you know something that “I’m more technical than thou” Bob from Engineering doesn’t.






Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more deeply, pay attention to how you pay attention. Think about how you think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to code in Kotlin. And you probably don’t want to spend a lot of time. If you want to use what you read in this book, you need to remember what you read. And for that, you’ve got to understand it. To get the most from this book, or any book or learning experience, take responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as Really Important. Crucial to your well-being. As important as a tiger. Otherwise, you’re in for a constant battle, with your brain doing its best to keep the new content from sticking.


[image: image]




So just how DO you get your brain to treat Kotlin like it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow way is about sheer repetition. You obviously know that you are able to learn and remember even the dullest of topics if you keep pounding the same thing into your brain. With enough repetition, your brain says, “This doesn’t feel important to him, but he keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different types of brain activity. The things on the previous page are a big part of the solution, and they’re all things that have been proven to help your brain work in your favor. For example, studies show that putting words within the pictures they describe (as opposed to somewhere else in the page, like a caption or in the body text) causes your brain to try to makes sense of how the words and picture relate, and this causes more neurons to fire. More neurons firing = more chances for your brain to get that this is something worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they perceive that they’re in a conversation, since they’re expected to follow along and hold up their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation” is between you and a book! On the other hand, if the writing style is formal and dry, your brain perceives it the same way you experience being lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…




Here’s what WE did:

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s concerned, a picture really is worth a thousand words. And when text and pictures work together, we embedded the text in the pictures because your brain works more effectively when the text is within the thing it refers to, as opposed to in a caption or buried in the body text somewhere.

We used redundancy, saying the same thing in different ways and with different media types, and multiple senses, to increase the chance that the content gets coded into more than one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty, and we used pictures and ideas with at least some emotional content, because your brain is tuned to pay attention to the biochemistry of emotions. That which causes you to feel something is more likely to be remembered, even if that feeling is nothing more than a little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more attention when it believes you’re in a conversation than if it thinks you’re passively listening to a presentation. Your brain does this even when you’re reading.

We included activities, because your brain is tuned to learn and remember more when you do things than when you read about things. And we made the exercises challenging-yet-doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while someone else wants to understand the big picture first, and someone else just wants to see an example. But regardless of your own learning preference, everyone benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you engage, the more likely you are to learn and remember, and the longer you can stay focused. Since working one side of the brain often means giving the other side a chance to rest, you can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view, because your brain is tuned to learn more deeply when it’s forced to make evaluations and judgments.

We included challenges, with exercises, and by asking questions that don’t always have a straight answer, because your brain is tuned to learn and remember when it has to work at something. Think about it—you can’t get your body in shape just by watching people at the gym. But we did our best to make sure that when you’re working hard, it’s on the right things. That you’re not spending one extra dendrite processing a hard-to-understand example, or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, you’re a person. And your brain pays more attention to people than it does to things.




Here’s what YOU can do to bend your brain into submission

So, we did our part. The rest is up to you. These tips are a starting point; listen to your brain and figure out what works for you and what doesn’t. Try new things.


[image: image]




Note

Cut this out and stick it on your refrigerator.




	Slow down. The more you understand, the less you have to memorize.

Don’t just read. Stop and think. When the book asks you a question, don’t just skip to the answer. Imagine that someone really is asking the question. The more deeply you force your brain to think, the better chance you have of learning and remembering.


	Do the exercises. Write your own notes.

We put them in, but if we did them for you, that would be like having someone else do your workouts for you. And don’t just look at the exercises. Use a pencil. There’s plenty of evidence that physical activity while learning can increase the learning.


	Read “There Are No Dumb Questions.”

That means all of them. They’re not optional sidebars, they’re part of the core content! Don’t skip them.


	Make this the last thing you read before bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to long-term memory) happens after you put the book down. Your brain needs time on its own, to do more processing. If you put in something new during that processing time, some of what you just learned will be lost.


	Talk about it. Out loud.

Speaking activates a different part of the brain. If you’re trying to understand something, or increase your chance of remembering it later, say it out loud. Better still, try to explain it out loud to someone else. You’ll learn more quickly, and you might uncover ideas you hadn’t known were there when you were reading about it.


	Drink water. Lots of it.

Your brain works best in a nice bath of fluid. Dehydration (which can happen before you ever feel thirsty) decreases cognitive function.


	Listen to your brain.

Pay attention to whether your brain is getting overloaded. If you find yourself starting to skim the surface or forget what you just read, it’s time for a break. Once you go past a certain point, you won’t learn faster by trying to shove more in, and you might even hurt the process.


	Feel something.

Your brain needs to know that this matters. Get involved with the stories. Make up your own captions for the photos. Groaning over a bad joke is still better than feeling nothing at all.


	Write a lot of code!

There’s only one way to learn Kotlin: write a lot of code. And that’s what you’re going to do throughout this book. Coding is a skill, and the only way to get good at it is to practice. We’re going to give you a lot of practice: every chapter has exercises that pose a problem for you to solve. Don’t just skip over them—a lot of the learning happens when you solve the exercises. We included a solution to each exercise—don’t be afraid to peek at the solution if you get stuck! (It’s easy to get snagged on something small.) But try to solve the problem before you look at the solution. And definitely get it working before you move on to the next part of the book.







Read me

This is a learning experience, not a reference book. We deliberately stripped out everything that might get in the way of learning whatever it is we’re working on at that point in the book. And the first time through, you need to begin at the beginning, because the book makes assumptions about what you’ve already seen and learned.

We assume you’re new to Kotlin, but not to programming.

We assume that you’ve already done some programming. Maybe not a lot, but we’ll assume you’ve already seen things like loops and variables in some other language. And unlike a lot of other Kotlin books, we don’t assume that you already know Java.

We begin by teaching some basic Kotlin concepts, and then we start putting Kotlin to work for you right away.

We cover the fundamentals of Kotlin code in Chapter 1. That way, by the time you make it all the way to Chapter 2, you are creating programs that actually do something. The rest of the book then builds on your Kotlin skills, turning you from Kotlin newbie to Kotlin ninja master in very little time.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want you to finish the book remembering what you’ve learned. Most reference books don’t have retention and recall as a goal, but this book is about learning, so you’ll see some of the same concepts come up more than once.

The code examples are as lean as possible.

We know how frustrating it is to wade through 200 lines of code looking for the two lines you need to understand. Most examples within this book are shown within the smallest possible context, so that the part you’re trying to learn is clear and simple. So don’t expect the code to be robust, or even complete. That’s your assignment for after you finish the book, and it’s all part of the learning experience.

The exercises and activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book. Some of them are to help with memory, some are for understanding, and some will help you apply what you’ve learned. So don’t skip the exercises! Your brain will thank you for it.

The Brain Power exercises don’t have answers.

Not printed in the book, anyway. For some of them, there is no right answer, and for others, part of the learning experience is for you to decide if and when your answers are right. In some of the Brain Power exercises, you will find hints to point you in the right direction.




The technical review team

Technical reviewers:


[image: image]




Ingo Krotzky is a trained health information technician who has been working as a database programmer/software developer for contract research institutes.


[image: image]




Ken Kousen is the author of the books Modern Java Recipes (O’Reilly), Gradle Recipes for Android (O’Reilly) and Making Java Groovy (Manning), as well as O’Reilly video courses in Android, Groovy, Gradle, advanced Java and Spring. He is a regular speaker on the No Fluff, Just Stuff conference tour and a 2013 and 2016 JavaOne Rock Star, and has spoken at conferences all over the world. Through his company, Kousen I.T., Inc., he has taught software development training courses to thousands of students.




Acknowledgments

Our editor:

Heartfelt thanks to our awesome editor Jeff Bleiel for all his work and help. We’ve truly valued his trust, support, and encouragement. We’ve appreciated all the times he pointed out when things were unclear or needed a rethink, as it’s led to us writing a much better book.


[image: image]




The O’Reilly team:

A big thank you goes to Brian Foster for his early help in getting Head First Kotlin off the ground; Susan Conant, Rachel Roumeliotis and Nancy Davis for their help smoothing the wheels; Randy Comer for designing the cover; the early release team for making early versions of the book available for download; and Kristen Brown, Jasmine Kwityn, Lucie Haskins and the rest of the production team for expertly steering the book through the production process, and for working so hard behind the scenes.

Friends, family and colleagues:

Writing a Head First book is always a rollercoaster, and we’ve truly valued the kindness and support of our friends, family and colleagues along the way. Special thanks go to Jacqui, Ian, Vanessa, Dawn, Matt, Andy, Simon, Mum, Dad, Rob and Lorraine.

The without-whom list:

Our awesome technical review team worked hard to give us their thoughts on the book, and we’re so grateful for their input. They made sure that what we covered was spot on, and kept us entertained along the way. We think the book is much better as a result of their feedback.

Finally, our thanks to Kathy Sierra and Bert Bates for creating this extraordinary series of books, and for letting us into their brains.




O’Reilly

For almost 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, conferences, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers.

For more information, please visit http://oreilly.com.





Table of Contents (the real thing)


	how to use this book: Intro

Your brain on Kotlin.

Here you are trying to learn something, while here your brain is, doing you a favor by making sure the learning doesn’t stick. Your brain’s thinking, “Better leave room for more important things, like which wild animals to avoid and whether naked snowboarding is a bad idea.” So how do you trick your brain into thinking that your life depends on knowing how to code in Kotlin?


	“Who is this book for?”


	“We know what you’re thinking”


	“We know what your brain is thinking”


	“Metacognition: thinking about thinking”


	“Here’s what WE did:”


	“Read me”


	“The technical review team”


	“Acknowledgments”






	Chapter 1

Kotlin is making waves.

From its first release, Kotlin has impressed programmers with its friendly syntax, conciseness, flexibility and power. In this book, we’ll teach you how to build your own Kotlin applications, and we’ll start by getting you to build a basic application and run it. Along the way, you’ll be introduced to some of Kotlin’s basic syntax, such as statements, loops and conditional branching. Your journey has just begun...


	“Welcome to Kotlinville”


	“You can use Kotlin nearly everywhere”


	“What we’ll do in this chapter”


	“Install IntelliJ IDEA (Community Edition)”


	“Let’s build a basic application”


	“You’ve just created your first Kotlin project”


	“Add a new Kotlin file to the project”


	“Anatomy of the main function”


	“Add the main function to App.kt”


	“Test drive”


	“What can you say in the main function?”


	“Loop and loop and loop...”


	“A loopy example”


	“Conditional branching”


	“Using if to return a value”


	“Update the main function”


	“Using the Kotlin interactive shell”


	“You can add multi-line code snippets to the REPL”


	“[image: image] Mixed Messages”


	“Your Kotlin Toolbox”






	Chapter 2

There’s one thing all code depends on—variables.

So in this chapter, we’re going to look under the hood, and show you how Kotlin variables really work. You’ll discover Kotlin’s basic types, such as Ints, Floats and Booleans, and learn how the Kotlin compiler can cleverly infer a variable’s type from the value it’s given. You’ll find out how to use String templates to construct complex Strings with very little code, and you’ll learn how to create arrays to hold multiple values. Finally, you’ll discover why objects are so important to life in Kotlinville.


	“Your code needs variables”


	“What happens when you declare a variable”


	“The variable holds a reference to the object”


	“Kotlin’s basic types”


	“How to explicitly declare a variable’s type”


	“Use the right value for the variable’s type”


	“Assigning a value to another variable”


	“We need to convert the value”


	“What happens when you convert a value”


	“Watch out for overspill”


	“Store multiple values in an array”


	“Create the Phrase-O-Matic application”


	“Add the code to PhraseOMatic.kt”


	“The compiler infers the array’s type from its values”


	“var means the variable can point to a different array”


	“val means the variable points to the same array forever...”


	“[image: image] Mixed References”


	“Your Kotlin Toolbox”






	Chapter 3

It’s time to take it up a notch, and learn about functions.

So far, all the code you’ve written has been inside your application’s main function. But if you want to write code that’s better organized and easier to maintain, you need to know how to split your code into separate functions. In this chapter, you’ll learn how to write functions and interact with your application by building a game. You’ll discover how to write compact single expression functions. Along the way you’ll find out how to iterate through ranges and collections using the powerful for loop.


	“Let’s build a game: Rock, Paper, Scissors”


	“A high-level design of the game”


	“Get the game to choose an option”


	“How you create functions”


	“You can send more than one thing to a function”


	“You can get things back from a function”


	“Functions with single-expression bodies”


	“Add the getGameChoice function to Game.kt”


	“The getUserChoice function”


	“How for loops work”


	“Ask the user for their choice”


	“[image: image] Mixed Messages”


	“We need to validate the user’s input”


	“Add the getUserChoice function to Game.kt”


	“Add the printResult function to Game.kt”


	“Your Kotlin Toolbox”






	Chapter 4

It’s time we looked beyond Kotlin’s basic types.

Sooner or later, you’re going to want to use something more than Kotlin’s basic types. And that’s where classes come in. Classes are templates that allow you to create your own types of objects, and define their properties and functions. Here, you’ll learn how to design and define classes, and how to use them to create new types of objects. You’ll meet constructors, initializer blocks, getters and setters, and you’ll discover how they can be used to protect your properties. Finally, you’ll learn how data hiding is built into all Kotlin code, saving you time, effort and a multitude of keystrokes.


	“Object types are defined using classes”


	“How to design your own classes”


	“Let’s define a Dog class”


	“How to create a Dog object”


	“How to access properties and functions”


	“Create a Songs application”


	“The miracle of object creation”


	“How objects are created”


	“Behind the scenes: calling the Dog constructor”


	“Going deeper into properties”


	“Flexible property initialization”


	“How to use initializer blocks”


	“You MUST initialize your properties”


	“How do you validate property values?”


	“How to write a custom getter”


	“How to write a custom setter”


	“The full code for the Dogs project”


	“Your Kotlin Toolbox”






	Chapter 5

Ever found yourself thinking that an object’s type would be perfect if you could just change a few things?

Well, that’s one of the advantages of inheritance. Here, you’ll learn how to create subclasses, and inherit the properties and functions of a superclass. You’ll discover how to override functions and properties to make your classes behave the way you want, and you’ll find out when this is (and isn’t) appropriate. Finally, you’ll see how inheritance helps you avoid duplicate code, and how to improve your flexibility with polymorphism.


	“Inheritance helps you avoid duplicate code”


	“What we’re going to do”


	“Design an animal class inheritance structure”


	“Use inheritance to avoid duplicate code in subclasses”


	“What should the subclasses override?”


	“We can group some of the animals”


	“Add Canine and Feline classes”


	“Use IS-A to test your class hierarchy”


	“The IS-A test works anywhere in the inheritance tree”


	“We’ll create some Kotlin animals”


	“Declare the superclass and its properties and functions as open”


	“How a subclass inherits from a superclass”


	“How (and when) to override properties”


	“Overriding properties lets you do more than assign default values”


	“How to override functions”


	“An overridden function or property stays open...”


	“Add the Hippo class to the Animals project”


	“Add the Canine and Wolf classes”


	“Which function is called?”


	“When you call a function on the variable, it’s the object’s version that responds”


	“You can use a supertype for a function’s parameters and return type”


	“The updated Animals code”


	“Your Kotlin Toolbox”






	Chapter 6

A superclass inheritance hierarchy is just the beginning.If you want to fully exploit polymorphism, you need to design using abstract classes and interfaces. In this chapter, you’ll discover how to use abstract classes to control which classes in your hierarchy can and can’t be instantiated. You’ll see how they can force concrete subclasses to provide their own implementations. You’ll find out how to use interfaces to share behavior between independent classes. And along the way, you’ll learn the ins and outs of is, as, and when.


	“The Animal class hierarchy revisited”


	“Some classes shouldn’t be instantiated”


	“Abstract or concrete?”


	“An abstract class can have abstract properties and functions”


	“The Animal class has two abstract functions”


	“How to implement an abstract class”


	“You MUST implement all abstract properties and functions”


	“Let’s update the Animals project”


	“Independent classes can have common behavior”


	“An interface lets you define common behavior OUTSIDE a superclass hierarchy”


	“Let’s define the Roamable interface”


	“How to define interface properties”


	“Declare that a class implements an interface...”


	“How to implement multiple interfaces”


	“How do you know whether to make a class, a subclass, an abstract class, or an interface?”


	“Update the Animals project”


	“Interfaces let you use polymorphism”


	“Where to use the is operator”


	“Use when to compare a variable against a bunch of options”


	“The is operator usually performs a smart cast”


	“Use as to perform an explicit cast”


	“Update the Animals project”


	“Your Kotlin Toolbox”






	Chapter 7

Nobody wants to spend their life reinventing the wheel.

Most applications include classes whose main purpose is to store data, so to make your coding life easier, the Kotlin developers came up with the concept of a data class. Here, you’ll learn how data classes enable you to write code that’s cleaner and more concise than you ever dreamed was possible. You’ll explore the data class utility functions, and discover how to destructure a data object into its component parts. Along the way, you’ll find out how default parameter values can make your code more flexible, and we’ll introduce you to Any, the mother of all superclasses.


	“== calls a function named equals”


	“equals is inherited from a superclass named Any”


	“The common behavior defined by Any”


	“We might want equals to check whether two objects are equivalent”


	“A data class lets you create data objects”


	“Data classes override their inherited behavior”


	“Copy data objects using the copy function”


	“Data classes define componentN functions...”


	“Create the Recipes project”


	“[image: image] Mixed Messages”


	“Generated functions only use properties defined in the constructor”


	“Initializing many properties can lead to cumbersome code”


	“How to use a constructor’s default values”


	“Functions can use default values too”


	“Overloading a function”


	“Let’s update the Recipes project”


	“The code continued...”


	“Your Kotlin Toolbox”






	Chapter 8

Everybody wants to write code that’s safe.

And the great news is that Kotlin was designed with code-safety at its heart. We’ll start by showing you how Kotlin’s use of nullable types means that you’ll hardly ever experience a NullPointerException during your entire stay in Kotlinville. You’ll discover how to make safe calls, and how Kotlin’s Elvis operator stops you being all shook up. And when we’re done with nulls, you’ll find out how to throw and catch exceptions like a pro.


	“How do you remove object references from variables?”


	“Remove an object reference using null”


	“You can use a nullable type everywhere you can use a non-nullable type”


	“How to create an array of nullable types”


	“How to access a nullable type’s functions and properties”


	“Keep things safe with safe calls”


	“You can chain safe calls together”


	“The story continues...”


	“You can use safe calls to assign values...”


	“Use let to run code if values are not null”


	“Using let with array items”


	“Instead of using an if expression...”


	“The !! operator deliberately throws a NullPointerException”


	“Create the Null Values project”


	“The code continued...”


	“An exception is thrown in exceptional circumstances”


	“Catch exceptions using a try/catch”


	“Use finally for the things you want to do no matter what”


	“An exception is an object of type Exception”


	“You can explicitly throw exceptions”


	“try and throw are both expressions”


	“Your Kotlin Toolbox”






	Chapter 9

Ever wanted something more flexible than an array?

Kotlin comes with a bunch of useful collections that give you more flexibility and greater control over how you store and manage groups of objects. Want to keep a resizeable list that you can keep adding to? Want to sort, shuffle or reverse its contents? Want to find something by name? Or do you want something that will automatically weed out duplicates without you lifting a finger? If you want any of these things, or more, keep reading. It’s all here...


	“Arrays can be useful...”


	“...but there are things an array can’t handle”


	“When in doubt, go to the Library”


	“List, Set and Map”


	“Fantastic Lists...”


	“Create a MutableList...”


	“You can remove a value...”


	“You can change the order and make bulk changes...”


	“Create the Collections project”


	“Lists allow duplicate values”


	“How to create a Set”


	“How a Set checks for duplicates”


	“Hash codes and equality”


	“Rules for overriding hashCode and equals”


	“How to use a MutableSet”


	“Update the Collections project”


	“Time for a Map”


	“How to use a Map”


	“Create a MutableMap”


	“You can remove entries from a MutableMap”


	“You can copy Maps and MutableMaps”


	“The full code for the Collections project”


	“[image: image] Mixed Messages”


	“Your Kotlin Toolbox”






	Chapter 10

Everybody likes code that’s consistent.

And one way of writing consistent code that’s less prone to problems is to use generics. In this chapter, we’ll look at how Kotlin’s collection classes use generics to stop you from putting a Cabbage into a List<Seagull>. You’ll discover when and how to write your own generic classes, interfaces and functions, and how to restrict a generic type to a specific supertype. Finally, you’ll find out how to use covariance and contravariance, putting YOU in control of your generic type’s behavior.


	“Collections use generics”


	“How a MutableList is defined”


	“Using type parameters with MutableList”


	“Things you can do with a generic class or interface”


	“Here’s what we’re going to do”


	“Create the Pet class hierarchy”


	“Define the Contest class”


	“Add the scores property”


	“Create the getWinners function”


	“Create some Contest objects”


	“Create the Generics project”


	“The Retailer hierarchy”


	“Define the Retailer interface”


	“We can create CatRetailer, DogRetailer and FishRetailer objects...”


	“Use out to make a generic type covariant”


	“Update the Generics project”


	“We need a Vet class”


	“Create Vet objects”


	“Use in to make a generic type contravariant”


	“A generic type can be locally contravariant”


	“Update the Generics project”


	“Your Kotlin Toolbox”






	Chapter 11

Want to write code that’s even more powerful and flexible?

If so, then you need lambdas. A lambda—or lambda expression—is a block of code that you can pass around just like an object. Here, you’ll discover how to define a lambda, assign it to a variable, and then execute its code. You’ll learn about function types, and how these can help you write higher-order functions that use lambdas for their parameter or return values. And along the way, you’ll find out how a little syntactic sugar can make your coding life sweeter.


	“Introducing lambdas”


	“What lambda code looks like”


	“You can assign a lambda to a variable”


	“Lambda expressions have a type”


	“The compiler can infer lambda parameter types”


	“Use the right lambda for the variable’s type”


	“Create the Lambdas project”


	“You can pass a lambda to a function”


	“Invoke the lambda in the function body”


	“What happens when you call the function”


	“You can move the lambda OUTSIDE the ()’s...”


	“Update the Lambdas project”


	“A function can return a lambda”


	“Write a function that receives AND returns lambdas”


	“How to use the combine function”


	“Use typealias to provide a different name for an existing type”


	“Update the Lambdas project”


	“Your Kotlin Toolbox”






	Chapter 12

Kotlin has an entire host of built-in higher-order functions.

And in this chapter, we’ll introduce you to some of the most useful ones. You’ll meet the flexible filter family, and discover how they can help you trim your collection down to size. You’ll learn how to transform a collection using map, loop through its items with forEach, and how to group the items in your collection using groupBy. You’ll even use fold to perform complex calculations using just one line of code. By the end of the chapter, you’ll be able to write code more powerful than you ever thought possible.


	“Kotlin has a bunch of built-in higher-order functions”


	“The min and max functions work with basic types”


	“A closer look at minBy and maxBy’s lambda parameter”


	“The sumBy and sumByDouble functions”


	“Create the Groceries project”


	“Meet the filter function”


	“Use map to apply a transform to your collection”


	“What happens when the code runs”


	“The story continues...”


	“forEach works like a for loop”


	“forEach has no return value”


	“Update the Groceries project”


	“Use groupBy to split your collection into groups”


	“You can use groupBy in function call chains”


	“How to use the fold function”


	“Behind the scenes: the fold function”


	“Some more examples of fold”


	“Update the Groceries project”


	“[image: image] Mixed Messages”


	“Your Kotlin Toolbox”


	“Leaving town...”






	Appendix A

Some tasks are best performed in the background.

If you want to read data from a slow external server, you probably don’t want the rest of your code to hang around, waiting for the job to complete. In situations such as these, coroutines are your new BFF. Coroutines let you write code that’s run asynchronously. This means less time hanging around, a better user experience, and it can also make your application more scalable. Keep reading, and you’ll learn the secret of how to talk to Bob, while simultaneously listening to Suzy.


	Appendix B

Everybody knows that good code needs to work.

But each code change that you make runs the risk of introducing fresh bugs that stop your code from working as it should. That’s why thorough testing is so important: it means you get to know about any problems in your code before it’s deployed to the live environment. In this appendix, we’ll discuss JUnit and KotlinTest, two libraries which you can use to unit test your code so that you always have a safety net.


	Appendix C

Even after all that, there’s still a little more.

There are just a few more things we think you need to know. We wouldn’t feel right about ignoring them, and we really wanted to give you a book you’d be able to lift without training at the local gym. Before you put down the book, read through these tidbits.


	“1. Packages and imports”


	“2. Visibility modifiers”


	“3. Enum classes”


	“4. Sealed classes”


	“5. Nested and inner classes”


	“6. Object declarations and expressions”


	“7. Extensions”


	“8. Return, break and continue”


	“9. More fun with functions”


	“10. Interoperability”










Chapter 1. getting started: A Quick Dip


[image: image]




Kotlin is making waves.

From its first release, Kotlin has impressed programmers with its friendly syntax, conciseness, flexibility and power . In this book, we’ll teach you how to build your own Kotlin applications, and we’ll start by getting you to build a basic application and run it. Along the way, you’ll be introduced to some of Kotlin’s basic syntax, such as statements, loops and conditional branching. Your journey has just begun...


Welcome to Kotlinville

Kotlin has been taking the programming world by storm. Despite being one of the youngest programming languages in town, many developers now view it as their language of choice. So what makes Kotlin so special?

Kotlin has many modern language features that make it attractive to developers. You’ll find out about these features in more detail later in the book, but for now, here are some of the highlights.


It’s crisp, concise and readable

Unlike some languages, Kotlin code is very concise, and you can perform powerful tasks in just one line. It provides shortcuts for common actions so that you don’t have to write lots of repetitive boilerplate code, and it has a rich library of functions that you can use. And as there’s less code to wade through, it’s quicker to read, write and understand, leaving you more time to do other things.




You can use object-oriented AND functional programming

Can’t decide whether to learn object-oriented or functional programming? Well, why not do both? Kotlin lets you create object-oriented code that uses classes, inheritance and polymorphism, just as you can in Java. But it also supports functional programming, giving you the best of both worlds.




The compiler keeps you safe

Nobody likes unsafe, buggy code, and Kotlin’s compiler puts a lot of effort into making sure your code is as clean as possible, preventing many of the errors that can occur in other programming languages. Kotlin is statically typed, for example, so you can’t perform inappropriate actions on the wrong type of variable and crash your code. And most of the time, you don’t even need to explicitly specify the type yourself as the compiler can infer it for you.


[image: image]





Kotlin virtually eliminates the kinds of errors that regularly occur in other programming languages. That means safer, more reliable code, and less time spent chasing bugs.



So Kotlin is a modern, powerful and flexible programming language that offers many advantages. But that’s not the end of the story.






You can use Kotlin nearly everywhere

Kotlin is so powerful and flexible that you can use it as a general-purpose language in many different contexts. This is because you can choose which platform to compile your Kotlin code against.


Java Virtual Machines (JVMs)

Kotlin code can be compiled to JVM (Java Virtual Machine) bytecode, so you can use Kotlin practically anywhere that you can use Java. Kotlin is 100% interoperable with Java, so you can use existing Java libraries with it. If you’re working on an application that contains a lot of old Java code, you don’t have to throw all the old code away; your new Kotlin code will work alongside it. And if you want to use the Kotlin code you’ve written from inside Java, you can do so with ease.




Android

Alongside other languages such as Java, Kotlin has first-class support for Android. Kotlin is fully supported in Android Studio, and you can make the most of Kotlin’s many advantages when you develop Android apps.




Client-side and server-side JavaScript

You can also transpile—or translate and compile—Kotlin code into JavaScript, so that you can run it in a browser. You can use it to work with both client-side and server-side technology, such as WebGL or Node.js.


[image: image]







Native apps

If you want to write code that will run quickly on less powerful devices, you can compile your Kotlin code directly to native machine code. This allows you to write code that will run, for example, on iOS or Linux.

Note

Even though we’re building applications for Java Virtual Machines, you don’t need to know Java to get the most out of this book. We’re assuming you have some general programming experience, but that’s it.



In this book, we’re going to focus on creating Kotlin applications for JVMs, as this is the most straightforward way of getting to grips with the language. Afterwards, you’ll be able to apply the knowledge you’ve gained to other platforms.

Let’s dive in.






What we’ll do in this chapter

In this chapter, we’re going to show you how to build a basic Kotlin application. There are a number of steps we’re going to go through to do this:


	Create a new Kotlin project.

We’ll start by installing IntelliJ IDEA (Community Edition), a free IDE that supports Kotlin application development. We’ll then use the IDE to build a new Kotlin project:


[image: image]






	Add a function that displays some text.

We’ll add a new Kotlin file to the project, then write a simple main function that will output the text “Pow!”



	Update the function to make it do more.

Kotlin includes basic language structures such as statements, loops and conditional branching. We’ll use these to change our function so that it does more.


	Try out code in the Kotlin interactive shell.

Finally, we’ll look at how to try out snippets of code in the Kotlin interactive shell (or REPL).




We’ll install the IDE after you’ve tried the following exercise.


[image: image] Sharpen your pencil

We know we’ve not taught you any Kotlin code yet, but see if you can guess what each line of code is doing. We’ve completed the first one to get you started.


[image: image]







[image: image] Sharpen your pencil Solution

We know we’ve not taught you any Kotlin code yet, but see if you can guess what each line of code is doing. We’ve completed the first one to get you started.


[image: image]









Install IntelliJ IDEA (Community Edition)


[image: image]




The easiest way of writing and running Kotlin code is to use IntelliJ IDEA (Community Edition). This is a free IDE from JetBrains, the people who invented Kotlin, and it comes with everything you need to develop Kotlin applications, including:


[image: image]




Note

There are many more features too, all there to make your coding life easier.



To follow along with us in this book, you need to install IntelliJ IDEA (Community Edition). You can download the IDE here:


[image: image]




Once you’ve installed the IDE, open it. You should see the IntelliJ IDEA welcome screen. You’re ready to build your first Kotlin application.


[image: image]







Let’s build a basic application


[image: image]




Now that you’ve set up your development environment, you’re ready to create your first Kotlin application. We’re going to create a very simple application that will display the text “Pow!” in the IDE.

Whenever you create a new application in IntelliJ IDEA, you need to create a new project for it. Make sure you have the IDE open, and follow along with us.


1. Create a new project

The IntelliJ IDEA welcome screen gives you a number of options for what you want to do. We want to create a new project, so click on the option for “Create New Project”.


[image: image]







2. Specify the type of project


[image: image]




Next, you need to tell IntelliJ IDEA what sort of project you want to create.

IntelliJ IDEA allows you to create projects for various languages and platforms, such as Java and Android. We’re going to create a Kotlin project, so choose the option for “Kotlin”.

You also need to specify which platform you want your Kotlin project to target. We’re going to create a Kotlin application with a JVM target, so select the Kotlin/JVM option. Then click on the Next button.

Note

There are other options too, but we’re going to focus on creating applications that run against a JVM.




[image: image]







3. Configure the project


[image: image]




You now need to configure the project by saying what you want to call it, where you want to store the files, and what files should be used by the project. This includes which version of Java should be used by the JVM, and the library for the Kotlin runtime.

Name the project “MyFirstApp”, and accept the rest of the defaults.

When you click on the Finish button, IntelliJ IDEA will create your project.


[image: image]









You’ve just created your first Kotlin project


[image: image]




After you’ve finished going through the steps to create a new project, IntelliJ IDEA sets up the project for you, then displays it. Here’s the project that the IDE created for us:


[image: image]




As you can see, the project features an explorer which you can use to navigate the files and folders that make up your project. IntelliJ IDEA creates this folder structure for you when you create the project.

The folder structure is comprised of configuration files that are used by the IDE, and some external libraries that your application will use. It also includes a src folder, which is used to hold your source code. You’ll spend most of your time in Kotlinville working with the src folder.

The src folder is currently empty as we haven’t added any Kotlin files yet. We’ll do this next.


[image: image]







Add a new Kotlin file to the project


[image: image]




Before you can write any Kotlin code, you first need to create a Kotlin file to put it in.

To add a new Kotlin file to your project, highlight the src folder in IntelliJ IDEA’s explorer, then click on the File menu and choose New → Kotlin File/Class. You will prompted for the name and type of Kotlin file you want to create. Name the file “App”, and choose File from the Kind option, like this:


[image: image]




When you click on the OK button, IntelliJ IDEA creates a new Kotlin file named App.kt, and adds it to the src folder in your project:


[image: image]




Next, let’s look at the code we need to add to App.kt to get it to do something.




Anatomy of the main function


[image: image]




We’re going to get our Kotlin code to display “Pow!” in the IDE’s output window. We’ll do this be adding a function to App.kt.

Whenever you write a Kotlin application, you must add a function to it called main, which starts your application. When you run your code, the JVM looks for this function, and executes it.

The main function looks like this:


[image: image]




The function begins with the word fun, which is used to tell the Kotlin compiler that it’s a function. You use the fun keyword for each new Kotlin function you create.

The fun keyword is followed by the name of the function, in this case main. Naming the function main means that it will be automatically executed when you run the application.

The code in the braces () after the function name tells the compiler what arguments (if any) the function takes. Here, the code args: Array<String> specifies that the function accepts an array of Strings, and this array is named args.

You put any code you want to run between the curly braces {} of the main function. We want our code to print “Pow!” in the IDE, and we can do that using code like this:

fun main(args: Array<String>) {


[image: image]




println("Pow!") prints a string of characters, or String, to the standard output. As we’re running our code in an IDE, it will print “Pow!” in the IDE’s output pane.

Now that you’ve seen what the function looks like, let’s add it to our project.


Parameterless main functions


[image: image]




If you’re using Kotlin 1.2, or an earlier version, your main function must take the following form in order for it to start your application:

fun main(args: Array<String>) {

    //Your code goes here

}

From Kotlin1.3, however, you can omit main’s parameters so that the function looks like this:

fun main() {

    //Your code goes here

}

Through most of this book, we’re going to use the longer form of the main function because this works for all versions of Kotlin.






Add the main function to App.kt


[image: image]




To add the main function to your project, open the file App.kt by double-clicking on it in IntelliJ IDEA’s explorer. This opens the code editor, which you use to view and edit files:


[image: image]




Then, update your version of App.kt so that it matches ours below:


[image: image]




Let’s try running our code to see what happens.


[image: image]





there are no Dumb Questions

Q: Do I have to add a main function to every Kotlin file I create?

A: No. A Kotlin application might use dozens (or even hundreds) of files, but you may only have one with a main function—the one that starts the application running.




Test drive


[image: image]





[image: image]




You run code in IntelliJ IDEA by going to the Run menu, and selecting the Run command. When prompted, choose the AppKt option. This builds the project, and runs the code.

After a short wait, you should see “Pow!” displayed in an output window at the bottom of the IDE like this:


[image: image]







What the Run command does

When you use the Run command, IntelliJ IDEA goes through a couple of steps before it shows you the output of your code:


	The IDE compiles your Kotlin source code into JVM bytecode.

Assuming your code has no errors, compiling the code creates one or more class files that can run in a JVM. In our case, compiling App.kt creates a class file called AppKt.class.

Note

It specifically compiles our source code into JVM bytecode because when we created the project, we selected the JVM option. Had we chosen to run it in another environment, the compiler would have compiled it into code for that environment instead.




[image: image]






	The IDE starts the JVM and runs AppKt.class.

The JVM translates the AppKt.class bytecode into something the underlying platform understands, then runs it. This displays the String “Pow!” in the IDE’s output window.


[image: image]








Now that we know our function works, let’s look at how we can update it to make it do more.






What can you say in the main function?


[image: image]




Once you’re inside the main function (or any other function, for that matter), the fun begins. You can say all the normal things that you say in most programming languages to make your application do something.

You can get your code to:


[image: image]





Syntax Up Close [image: image]

Here are some general syntax hints and tips for while you’re finding your feet in Kotlinville:

* A single-lined comment begins with two forward slashes:

//This is a comment

* Most white space doesn’t matter:

x          =          3

* Define a variable using var or val, followed by the variable’s name. Use var for variables whose value you want to change, and val for ones whose value will stay the same. You’ll learn more about variables in Chapter 2:

var x = 100

val serialNo = "AS498HG"



We’ll look at these in more detail over the next few pages.




Loop and loop and loop...


[image: image]




Kotlin has three standard looping constructs: while, do-while and for. For now we’ll just focus on while.

The syntax for while loops is relatively simple. So long as some condition is true, you do everything inside the loop block. The loop block is bounded by a pair of curly braces, and whatever you need to repeat needs to be inside that block.

Note

If you just have one line of code in the loop block, you can omit the curly braces.



The key to a well-behaved while loop is its conditional test. A conditional test is an expression that results in a boolean value—something that is either true or false. As an example, if you say something like “While isIceCreamInTub is true, keep scooping” you have a clear boolean test. There is either ice cream in the tub, or there isn’t. But if you say “While Fred, keep scooping”, you don’t have a real test. You need to change it to something like “While Fred is hungry, keep scooping” in order for it to make sense.


Simple boolean tests

You can do a simple boolean test by checking the value of a variable using a comparison operator. These include:


[image: image]




Notice the difference between the assignment operator (a single equals sign) and the equals operator (two equals signs).

Here’s some example code that uses boolean tests:

var x = 4 //Assign 4 to x

while (x > 3) {

    //The loop code will run as x is greater than 3

    println(x)

    x = x - 1

}

var z = 27

while (z == 10) {

    //The loop code will not run as z is 27

    println(z)

    z = z + 6

}






A loopy example


[image: image]




Let’s update the code in App.kt with a new version of the main function. We’ll update the main function so that it displays a message before the loop starts, each time it loops, and when the loop has ended.

Update your version of App.kt so that it matches ours below (our changes are in bold):


[image: image]




Let’s try running the code.


Test drive


[image: image]




Run the code by going to the Run menu, and selecting the Run ‘AppKt’ command. The following text should appear in the output window at the bottom of the IDE:

Before the loop. x = 1.

In the loop. x = 1.

In the loop. x = 2.

In the loop. x = 3.

After the loop. x = 4.


print vs. println


[image: image]




You’ve probably noticed us switching between print and println. What’s the difference?

println inserts a new line (think of println as print new line) while print keeps printing to the same line. If you want each thing to print out on its own line, use println. If you want everything to stick together on the same line, use print.



Now that you’ve learned how while loops and boolean tests work, let’s look at if statements.






Conditional branching


[image: image]




An if test is similar to the boolean test in a while loop except instead of saying “while there’s still ice cream...” you say “if there’s still ice cream...”

So that you can see how this works, here’s some code that prints a String if one number is greater than another:


[image: image]




The above code executes the line that prints “x is greater than y” only if the condition (x is greater than y) is true. Regardless of whether it’s true, though, the line that prints “This line runs no matter what” will run. So depending on the values of x and y, either one statement or two will print out.

We can also add an else to the condition, so that we can say somthing like, “if there’s still ice cream, keep scooping, else (otherwise) eat the ice cream then buy some more”.

Here’s an updated version of the above code that includes an else:


[image: image]




In most languages, that’s pretty much the end of the story as far as using if is concerned; you use it to execute code if conditions have been met. Kotlin, however, takes things a step further.




Using if to return a value


[image: image]




In Kotlin, you can use if as an expression, so that it returns a value. It’s like saying “if there’s ice cream in the tub, return one value, else return a different value”. You can use this form of if to write code that’s more concise.

Let’s see how this works by reworking the code you saw on the previous page. Previously, we used the following code to print a String:


When you use if as an expression, you MUST include an else clause.



if (x > y) {

    println("x is greater than y")

} else {

    println("x is not greater than y")

}

We can rewrite this using an if expression like so:

println(if (x > y) "x is greater than y" else "x is not greater than y")

The code:

if (x > y) "x is greater than y" else "x is not greater than y"

is the if expression. It first checks the if’s condition: x > y. If this condition is true, the expression returns the String “x is greater than y”. Otherwise (else) the condition is false, and the expression returns the String “x is not greater than y” instead.

The code then prints the value of the if expression using println:


[image: image]




So if x is greater than y, “x is greater than y” gets printed. If it’s not, “x is not greater than y” gets printed instead.

As you can see, using an if expression in this way has the same effect as the code you saw on the previous page, but it’s more concise.

We’ll show you the code for the entire function on the next page.




Update the main function


[image: image]




Let’s update the code in App.kt with a new version of the main function that uses an if expression. Replace the code in your version of App.kt so that it matches ours below:


[image: image]




Let’s take the code for a test drive.


Test drive


[image: image]




Run the code by going to the Run menu, and selecting the Run ‘AppKt’ command. The following text should appear in the output window at the bottom of the IDE:

x is greater than y

This line runs no matter what

Now that you’ve learned how to use if for conditional branching and expressions, have a go at the following exercise.






Code Magnets


[image: image]




Somebody used fridge magnets to write a useful new main function that prints the String “YabbaDabbaDo”. Unfortunately, a freak kitchen whirlwind has dislodged the magnets. Can you piece the code back together again?

You won’t need to use all of the magnets.


[image: image]







Using the Kotlin interactive shell


[image: image]




We’re nearly at the end of the chapter, but before we go, there’s one more thing we want to introduce you to: the Kotlin interactive shell, or REPL. The REPL allows you to quickly try out snippets of code outside your main code.

Note

REPL stands for Read-Eval-Print Loop, but nobody ever calls it that.



You open the REPL by going to the Tools menu in IntelliJ IDEA and choosing Kotlin → Kotlin REPL. This opens a new pane at the bottom of the screen like this:


[image: image]




To use the REPL, simply type the code you want to try out into the REPL window. As an example, try adding the following:

println("I like turtles!")

Once you’ve added the code, execute it by clicking on the large green Run button on the left side of the REPL window After a pause, you should see the output “I like turtles!” in the REPL window:


[image: image]







You can add multi-line code snippets to the REPL


[image: image]




As well as adding single-line code snippets to the REPL, as we did on the previous page, you can try out code segments that take up multiple lines. As an example, try adding the following lines to the REPL window:


[image: image]




When you execute the code, you should see the output 8 in the REPL like this:


[image: image]





It’s exercise time


[image: image]




Now that you’ve learned how to write Kotlin code and seen some of its basic syntax, have a go at the following exercises. Remember, if you’re unsure, you can try out any code snippets in the REPL.


BE the Compilera


[image: image]




Each of the Kotlin files on this page represents a complete source file. Your job is to play like you’re the compiler and determine whether each of these files will compile. If they won’t compile, how would you fix them?




BE the Compiler Solution


[image: image]





[image: image]




Each of the Kotlin files on this page represents a complete source file. Your job is to play like you’re the compiler and determine whether each of these files will compile. If they won’t compile, how would you fix them?


[image: image]







[image: image] Mixed Messages

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.


[image: image]







[image: image] Mixed Messages Solution

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.


[image: image]











Code Magnets Solution


[image: image]




Somebody used fridge magnets to write a useful new main function that prints the String “YabbaDabbaDo”. Unfortunately, a freak kitchen whirlwind has dislodged the magnets. Can you piece the code back together again?

You won’t need to use all of the magnets.


[image: image]







Your Kotlin Toolbox


[image: image]




You’ve got Chapter 1 under your belt and now you’ve added Kotlin basic syntax to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	Use fun to define a function.


	Every application needs a function named main.


	Use // to denote a single-lined comment.


	A String is a string of characters. You denote a String value by enclosing its characters in double quotes.


	Code blocks are defined by a pair of curly braces { }.


	The assignment operator is one equals sign =.


	The equals operator uses two equals signs ==.


	Use var to define a variable whose value may change.


	Use val to define a value whose value will stay the same.


	A while loop runs everything within its block so long as the conditional test is true.


	If the conditional test is false, the while loop code block won’t run, and execution will move down to the code immediately after the loop block.


	Put a conditional test inside parentheses ( ).


	Add conditional branches to your code using if and else. The else clause is optional.


	You can use if as an expression so that it returns a value. In this case, the else clause is mandatory.










Chapter 2. basic types and variables: Being a Variable


[image: image]




There’s one thing all code depends on—variables.

So in this chapter, we’re going to look under the hood, and show you how Kotlin variables really work . You’ll discover Kotlin’s basic types, such as Ints, Floats and Booleans, and learn how the Kotlin compiler can cleverly infer a variable’s type from the value it’s given. You’ll find out how to use String templates to construct complex Strings with very little code, and you’ll learn how to create arrays to hold multiple values. Finally, you’ll discover why objects are so important to life in Kotlinville.


Your code needs variables

So far, you’ve learned how to write basic statements, expressions, while loops and if tests. But there’s one key thing we need to look at in order to write great code: variables.

You’ve already seen how to declare variables using code like:

var x = 5

The code looks simple, but what’s going on behind the scenes?


A variable is like a cup

When you think of a variable in Kotlin, think of a cup. Cups come in many different shapes and sizes—big cups, small cups, the giant disposable cups that popcorn comes in at the movies—but they all have one thing in common: a cup holds something.


[image: image]




Declaring a variable is like ordering a drink from Starbucks. When you place your order, you tell the barista what type of drink you want, what name to shout out when it’s ready, and even whether to use a fancy reusable cup instead of one that just gets thrown away. When you declare a variable using code like:

var x = 5

you’re telling the Kotlin compiler what value the variable should have, what name to give it, and whether the variable can be reused for other values.

In order to create a variable, the compiler needs to know three things:


	* What the variable’s name is.

This is so we can use that name in our code.


	* Whether or not the variable can be reused.

If we initially set your variable to 2, for example, can we later set it to 3? Or should it remain 2 forever?


	* What type of variable it is.

Is it an integer? A String? Or something more complex?




You’ve already seen how to name a variable, and how to use the val and var keywords to specify whether it can be reused for other values. But what about a variable’s type?






What happens when you declare a variable

The compiler really cares about a variable’s type so that it can prevent bizarre or dangerous operations that might lead to bugs. It won’t let you assign the String “Fish” to an integer variable, for example, because it knows that it’s inappropriate to perform mathematical operations on a String.

For this type-safety to work, the compiler needs to know the type of the variable. And the compiler can infer the variable’s type from the value that’s assigned to it.

Let’s see how this works.


To create a variable, the compiler needs to know its name, type and whether it can be reused.




The value is transformed into an object...

When you declare a variable using code like:

var x = 5

the value you’re assigning to the variable is used to create a new object. In this example, you’re assigning the number 5 to a new variable named x. The compiler knows that 5 is an integer, and so the code creates a new Int object with a value of 5:

Note

We’re going to look at some different types in more detail a couple of pages ahead.




[image: image]







...and the compiler infers the variable’s type from that of the object

The compiler then uses the type of the object for the type of the variable. In the above example, the object’s type is Int, so the variable’s type is Int as well. The variable stays this type forever.


[image: image]




Next, the object is assigned to the variable. How does this happen?






The variable holds a reference to the object

When an object is assigned to a variable, the object itself doesn’t go into the variable. A reference to the object goes into the variable instead:


[image: image]




As the variable holds a reference to the object, this gives it access to the object.


val vs. var revisited

If you declare the variable using val, the reference to the object stays in the variable forever and can’t be replaced. But if you use the var keyword instead, you can assign another value to the variable. As an example, if we use the code:

x = 6

to assign a value of 6 to x, this creates a new Int object with a value of 6, and puts a reference to it into x. This replaces the original reference:


[image: image]




Now that you’ve seen what happens when you declare a variable, let’s look at some of Kotlin’s basic types for integers, floating points, booleans, characters and Strings.






Kotlin’s basic types



Integers

Kotlin has four basic integer types: Byte, Short, Int and Long. Each type can hold a fixed number of bits. Bytes can hold 8 bits, for example, so a Byte can hold integer values from -128 to 127. Ints, on the other hand, can hold 32 bits, so an Int can hold integer values from -2,147,483,648 to 2,147,483,647.


[image: image]




By default, if you declare a variable by assigning an integer to it using code like this:

var x = 1

you will create an object and variable of type Int. If the integer you assign is too large to fit into an Int, it will use a Long instead. You will also create a Long object and variable if you add an “L” to the end of the integer like this:

var hugeNumber = 6L

Here’s a table showing the different integer types, their bit sizes and value ranges:




	Type
	Bits
	Value range





	Byte
	8 bits
	-128 to 127



	Short
	16 bits
	-32768 to 32767



	Int
	32 bits
	-2147483648 to 2147483647



	Long
	64 bits
	-huge to (huge - 1)






Hexadecimal and Binary Numbers


[image: image]




* Assign a binary number by prefixing the number with 0b.

x = 0b10

* Assign a hexadecimal number by prefixing the number with 0x.

y = 0xAB

* Octal numbers aren’t supported.






Floating points

There are two basic floating-point types: Float and Double. Floats can hold 32 bits, whereas Doubles can hold 64 bits.

By default, if you declare a variable by assigning a floating-point number to it using code like:

var x = 123.5


[image: image]




you will create an object and variable of type Double. If you add an “F” or “f” to the end of the number, a Float will get created instead:

var x = 123.5F




Booleans

Boolean variables are used for values that can either be true or false. You create a Boolean object and variable if you declare a variable using code like this:

var isBarking = true

var isTrained = false




Characters and Strings

There are two more basic types: Char and String.

Char variables are used for single characters. You create a Char variable by assigning a character in single quotes like this:

var letter = 'D'

String variables are used to hold multiple characters strung together. You create a String variable by assigning the characters enclosed in double quotes:

var name = "Fido"


Char variables are used for single characters. String variables are used for multiple characters strung together.




[image: image]




In these situations, you need to explicitly declare the variable’s type.

We’ll look at how you do this next.






How to explicitly declare a variable’s type

So far, you’ve seen how to create a variable by assigning a value to it, and letting the compiler infer the type from the value. But there are times when you need to explicitly tell the compiler what type of variable you want to create. You may want to use Bytes or Shorts instead of Ints, for example, because they are more efficient. Or you may want to declare a variable at the start of your code, and assign a value to it later on.

You explicitly declare a variable’s type using code like this:

var smallNum: Short


[image: image]




Instead of letting the compiler infer the variable’s type from its value, you put a colon (:) after the variable’s name, followed by the type you want it to be. So the above code is like saying “create a reusable variable named smallNum, and make sure it’s a Short”.

Similarly, if you want to declare a Byte variable, you use code like this:

var tinyNum: Byte


Declaring the type AND assigning a value

The above examples create variables without assigning values to them. If you want to explicitly declare a variable’s type and assign a value to it, you can do that too. As an example, here’s how you create a Short variable named z, and assign it a value of 6:

var z: Short = 6

This example creates a variable named z with a type of Short. The variable’s value, 6, is small enough to fit into a Short, so a Short object with a value of 6 is created. A reference to the Short object is then put into the variable.


[image: image]




When you assign a value to a variable, you need to make sure that the value is compatible with the variable. We’ll look at this in more detail on the next page.


Assigning an initial value to a variable is called initialization. You MUST initialize a variable before you use it, or you’ll get a compiler error. The following code, for example, won’t compile as x hasn’t been been assigned a value: [image: image]








Use the right value for the variable’s type

As we said earlier in the chapter, the compiler really cares about a variable’s type so that it can stop you from performing inappropriate operations that may lead to bugs in your code. As an example, if you try to assign a floating-point number such as 3.12 to an integer variable, the compiler will refuse to compile your code. The following code, for example, won’t work:

var x: Int = 3.12

The compiler realizes that 3.12 won’t fit into an Int without some loss of precision (like, everything after the decimal point), so it refuses to compile the code.

Similarly, if you try put a large integer into a variable that’s too small for it, the compiler will get upset. If you try to assign a value of 500 to a Byte variable, for example, you’ll get a compiler error:

//This won't work

var tinyNum: Byte = 500

So in order to assign a literal value to a variable, you need to make sure that the value is compatible with the variable’s type. This is particularly important when you want to assign the value of one variable to another. We’ll look at this next.


The Kotlin compiler will only let you assign a value to a variable if the value and variable are compatible. If the value is too large or it’s the wrong type, the code won’t compile.




there are no Dumb Questions

Q: In Java, numbers are primitives, so a variable holds the actual number. Is that not the case with Kotlin?

A: No, it’s not. In Kotlin, numbers are objects, and the variable holds a reference to the object, not the object itself.

Q: Why does Kotlin care so much about a variable’s type?

A: Because it makes your code safer, and less prone to bugs. It might sound picky, but trust us, it’s a good thing.

Q: In Java, you can treat char primitives as numbers. Can you do the same for Chars in Kotlin?

A: No, Chars in Kotlin are characters, not numbers. Repeat after us, Kotlin isn’t Java.

Q: Can I name my variables anything I want?

A: No. The rules are a little flexible, but you can’t, say, give your variable a name that’s a reserved word. Naming your variable while, for example, is just asking for trouble. But the great news is that if you try and give a variable a name that’s illegal, IntelliJ IDEA will immediately highlight it as a problem.






Assigning a value to another variable

When you assign the value of one variable to another, you need to make sure that their types are compatible. Let’s see why by working through the following example:

var x = 5

var y = x

var z: Long = x


	var x = 5

This creates an Int variable named x, and an Int object with a value of 5. x holds a reference to that object.


[image: image]






	var y = x

The compiler sees that x is an Int object, so it knows that y must also have a type of Int. Rather than create a second Int object, the value of variable x is assigned to variable y. But what does this mean? It’s like saying “Take the bits in x, make a copy of them, and stick that copy into y.” This means that both x and y contain references to the same object.


[image: image]






	var z: Long = x

This line tells the compiler that you want to create a new Long variable, z, and assign it the value of x. But there’s a problem. The x variable contains a reference to an Int object with a value of 5, not a Long object. We know that the object has a value of 5, and we know that 5 fits into a Long object. But because the z variable is a different type to the Int object, the compiler gets upset and refuses to compile the code.


[image: image]








So how do you assign the value of one variable to another if the variables are of different types?




We need to convert the value

Suppose you want to assign the value of an Int variable to a Long. The compiler won’t let you assign the value directly as the two variables are different types; a Long variable can only hold a reference to a Long object, so the code won’t compile if you try and assign an Int to it.

In order for the code to compile, you first have to convert the value to the right type. So if you want to assign the value of an Int variable to a Long, you first have to convert its value to a Long. And you do this using the Int object’s functions.


An object has state and behavior

Being an object means that it has two things: state and behavior.


[image: image]




An object’s state refers to the data that’s associated with the object: its properties and values. A numeric object, for example, has a numeric value, such as 5, 42 or 3.12 (depending on the object’s type). A Char object has a value that’s a single character. A Boolean is either true or false.

An object’s behavior describes the things the object can do, or that can be done to it. A String can be capitalized, for example. Numeric objects know how to perform basic math, and convert their value into an object of a different numeric type. The object’s behavior is exposed through its functions.




How to convert a numeric value to another type

In our example, we want to assign the value of an Int variable to a Long. Every numeric object has a function called toLong(), which takes the object’s value, and uses it to create a new Long object. So if you want to assign the value of an Int variable to a Long, you use code like this:


[image: image]




The dot operator (.) allows you to call an object’s functions. So x.toLong() is like saying “Go to the object that variable x has a reference to, and call its toLong() function”.

We’ll walk through what the code does on the next page.


Every numeric type has the following conversion functions: toByte(), toShort(), toInt(), toLong(), toFloat() and toDouble().








What happens when you convert a value


	var x = 5

This creates an Int variable named x, and an Int object with a value of 5. x holds a reference to that object.


[image: image]






	var z: Long = x.toLong()

This creates a new Long variable, z. The toLong() function on x’s object is called, and this creates a new Long object with a value of 5. A reference to the Long object gets put into the z variable.


[image: image]








This approach works well if you want to convert a value into an object that’s larger. But what if the new object is too small to contain the value?




Watch out for overspill

Trying to put a large value into a small variable is like trying to pour a bucket-load of coffee into a tiny teacup. Some of the coffee will fit into the cup, but some will spill out.

Suppose you want to put the value of a Long into an Int. As you saw earlier in the chapter, a Long can hold larger numbers than an Int.

If the Long’s value is within the range of values that an Int will hold, converting the value from a Long to an Int isn’t a problem. As an example, converting a Long value of 42 to an Int will give you an Int with a value of 42:


[image: image]




var x = 42L

var y: Int = x.toInt()    //Value is 42

But if the Long’s value is too big for an Int, the compiler chops up the value, and you’re left with some weird (but calculable) number. As an example, if you try to convert a Long value of 1234567890123 to an Int, your Int will have a value of 1912276171:

Note

It involves signs, bits, binary and other geekery that we’re not going into here. If you’re really curious, however, search for “two’s complement”.



var x = 1234567890123

var y: Int = x.toInt()    //Value is 1912276171!

The compiler assumes this is deliberate, so the code compiles. And let’s say you have a floating-point number, and you just want the whole number part of it. If you convert the number to an Int, the compiler will chop off everything after the decimal point:

var x = 123.456

var y: Int = x.toInt()    //Value is 123

The key thing is that when you’re converting numeric values from one type to another, make sure the type is large enough for the value or you may get unexpected results in your code.

Now that you’ve seen how variables work and have some experience with Kotlin’s basic types, have a go at the following exercise.


[image: image] Sharpen your pencil

The following main function doesn’t compile. Circle the lines that are invalid, and say why they stop the code from being compiled.


[image: image]







[image: image] Sharpen your pencil Solution

The following main function doesn’t compile. Circle the lines that are invalid, and say why they stop the code from being compiled.


[image: image]









Store multiple values in an array

There’s one more type of object we want to introduce you to—the array. Suppose you wanted to store the names of fifty ice cream flavors, or the bar codes of all the books in a library. To do that with variables would quickly get awkward. Instead, you can use an array.

Arrays are great if you want a quick and dirty group of things. They’re easy to create, and you get fast access to each item in the array.

You can think of an array as being like a tray of cups, where each item in the array is a variable:


[image: image]





How to create an array

You create an array using the arrayOf() function. As an example, here’s how you use the function to create an array with three items (the Ints 1, 2 and 3), and assign the array to a variable named myArray:


[image: image]




You can get the value of an item in the array by referencing the array variable with an index. As an example, here’s how you print the value of the first item:

println(myArray[0])

And if you want to get the size of the array, use

myArray.size

On the next page, we’ll put this together to write a serious business application—the Phrase-O-Matic.






Create the Phrase-O-Matic application

We’re going to create a new application that generates useful marketing slogans.

First, create a new project in IntelliJ IDEA. To do this:


	Open IntelliJ IDEA and choose “Create New Project” from the welcome screen. This starts the wizard you saw in Chapter 1.


	When prompted, choose the options to create a Kotlin project that targets the JVM.


	Name the project “PhraseOMatic”, accept the rest of the defaults, and click on the Finish button.


	When your new project appears in the IDE, create a new Kotlin file named PhraseOMatic.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “PhraseOMatic”, and choose File from the Kind option.





[image: image]







Add the code to PhraseOMatic.kt

The Phrase-O-Matic code consists of a main function that creates three arrays of words, randomly picks one word from each, and then joins them together. Add the code below to PhraseOMatic.kt:


[image: image]




fun main(args: Array<String>) {

    val wordArray1 = arrayOf("24/7", "multi-tier", "B-to-B", "dynamic", "pervasive")

    val wordArray2 = arrayOf("empowered", "leveraged", "aligned", "targeted")

    val wordArray3 = arrayOf("process", "paradigm", "solution", "portal", "vision")



    val arraySize1 = wordArray1.size

    val arraySize2 = wordArray2.size

    val arraySize3 = wordArray3.size



    val rand1 = (Math.random() * arraySize1).toInt()

    val rand2 = (Math.random() * arraySize2).toInt()

    val rand3 = (Math.random() * arraySize3).toInt()



    val phrase = "${wordArray1[rand1]} ${wordArray2[rand2]} ${wordArray3[rand3]}"

    println(phrase)

}

You’ve already seen what most of the code does, but there are a couple of lines we want to draw your attention to.

First, the line

val rand1 = (Math.random() * arraySize1).toInt()

We need a...


	multi-tier leveraged solution


	dynamic targeted vision


	24/7 aligned paradigm


	B-to-B empowered portal




generates a random number. Math.random() returns a random number between 0 and (almost) 1, so we have to multiply it by the number of items in the array. We then use toInt() to force the result to be an integer.

Finally, the line

val phrase = "${wordArray1[rand1]} ${wordArray2[rand2]} ${wordArray3[rand3]}"

uses a String template to pick three words and put them together. We’ll look at String templates on the next page, and then we’ll show you more stuff you can do with arrays.


[image: image] String Templates Up Close

String templates provide a quick and easy way of referring to a variable from inside a String.

To include the value of a variable inside a String, you prefix the variable name with a $. To include the value of an Int variable named x inside a String, for example, you would use:

var x = 42
var value = "Value of x is $x"

You can also use String templates to refer to an object’s properties, or call its functions. In this case, you enclose the expression in curly braces. As an example, here’s how you include an array’s size in a String, and the value of its first item:

var myArray = arrayOf(1, 2, 3)

var arraySize = "myArray has ${myArray.size} items"

var firstItem = "The first item is ${myArray[0]}"

You can even use String templates to evaluate more complex expressions from inside a String. Here’s how, for example, you would use an if expression to include different text depending on the size of the array myArray:

var result = "myArray is ${if (myArray.size > 10) "large" else "small"}"

Note

Notice how {}’s enclose the expression we want to evaluate inside the String.



So String templates allow you to construct complex Strings with very little code.




there are no Dumb Questions

Q: Is Math.random() the standard way of getting a random number in Kotlin?

A: It depends which version of Kotlin you’re using.



Before version 1.3, Kotlin didn’t have a built-in way of generating its own random numbers. For applications running on a JVM, however, you could use the random() method from the Java Math library, as we have.

If you’re using version 1.3 or above, you can use Kotlin’s built-in Random functions instead. The following code, for example, uses Random’s nextInt() function to generate a random Int:

kotlin.random.Random.nextInt()

In this book, we’ve decided to continue using Math.random() to generate random numbers, as this approach works with all versions of Kotlin running on the JVM.




The compiler infers the array’s type from its values

You’ve seen how to create an array and access its items, so let’s look at how you update its values.

Suppose you have an array of Ints named myArray:

var myArray = arrayOf(1, 2, 3)

If you want to update the second item so that it has a value of 15, you use code like the following:

myArray[1] = 15

But there’s a catch: the value has to be the right type.

The compiler looks at the type of each item in the array, and infers what type of items the array should contain forever. In the above example, we’ve declared an array using Int values, so the compiler infers that the array can only hold Ints. If you try and put anything other than an Int into the array, your code won’t compile:

myArray[1] = "Fido" //This won't compile


Arrays hold items of a specific type. You can either let the compiler infer the type from the array’s values, or explicitly define the type using Array<Type>.




How to explicitly define the array’s type

Just as we did with other variables, you can explicitly define what type of items an array should hold. As an example, suppose you wanted to declare an array that holds Byte values. To do this, you would use code like the following:

var myArray: Array<Byte> = arrayOf(1, 2, 3)

The code Array<Byte> tells the compiler that you want to create an array that holds Byte variables. In general, simply specify the type of array you want to create by putting the type between the angle brackets (<>).


[image: image]









var means the variable can point to a different array

There’s one final thing we need to look at: what effect val and var have when you declare an array.

As you already know, a variable holds a reference to an object. When you declare a variable using var, you can update the variable so that it holds a reference to a different object instead. If the variable holds a reference to an array, this means that you can update the variable so that it refers to a different array of the same type. As an example, the following code is perfectly valid and will compile:


[image: image]




Let’s walk through what happens.


	var myArray = arrayOf(1, 2, 3)

This creates an array of Ints, and a variable named myArray that holds a reference to it.


[image: image]





	myArray = arrayOf(4, 5)

This creates a new array of Ints. A reference to the new array gets put into the myArray variable, replacing the previous reference.




So what happens if we use the variable using val instead?




val means the variable points to the same array forever...

When you declare an array using val, you can no longer update the variable so that it holds a reference to a different array. The following code, for example, won’t compile:


[image: image]




Once the variable is assigned an array, it holds a reference to that array forever. But even though the variable maintains a reference to the same array, the array itself can still be updated.


Declaring a variable using val means that you can’t reuse the variable for another object. You can, however, still update the object itself.




...but you can still update the variables in the array

When you declare a variable using val, you’re telling the compiler that you want to create a variable that can’t be reused for other values. But this instruction only applies to the variable itself. If the variable holds a reference to an array, the items in the array can still be updated.

As an example, suppose you have the following code:


[image: image]




This creates a variable named myArray that holds a reference to an array of Ints. It’s declared using val, so the variable must hold a reference to the same array for the duration of the program. The third item in the array is then successfully updated to 6, as the array itself can be updated:


[image: image]




Now that you know how arrays work in Kotlinville, have a go at the following exercises.


BE the Compiler

Each of the Kotlin files on this page represents a complete source file. Your job is to play like you’re the compiler and determine whether each of these files will compile and run without errors. If they won’t, how would you fix them?




[image: image]









Code Magnets


[image: image]




A working Kotlin program is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working Kotlin function that produces the following output:

Fruit = Banana

Fruit = Blueberry

Fruit = Pomegranate

Fruit = Cherry


[image: image]





[image: image] Mixed References

A short Kotlin program is listed below. When the line //Do stuff is reached, some objects and variables have been created. Your task is to determine which of the variables refer to which objects by the time the //Do stuff line is reached. Some objects may be referred to more than once. Draw lines connecting the variables to their objects.

fun main(args: Array<String>) {

    val x = arrayOf(0, 1, 2, 3, 4)

    x[3] = x[2]  //x[3] is now 2

    x[4] = x[0]  //x[4] is now 0

    x[2] = x[1]  //x[2] is now 1

    x[1] = x[0]  //x[1] is now 0

    x[0] = x[1]  //x[1] is 0, so x[0] is still 0

    x[4] = x[3]  //x[3] is 2, so x[4] is now 2

    x[3] = x[2]  //x[2] is 1, so x[3] is now 1

    x[2] = x[4]  //x[4] is 2, so x[2] is now 2

    //Do stuff

}


[image: image]







BE the Compiler Solution


[image: image]




Each of the Kotlin files on this page represents a complete source file. Your job is to play like you’re the compiler and determine whether each of these files will compile and run without errors. If they won’t, how would you fix them?


[image: image]









Code Magnets Solution


[image: image]




A working Kotlin program is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working Kotlin function that produces the following output:

Fruit = Banana

Fruit = Blueberry

Fruit = Pomegranate

Fruit = Cherry


[image: image]





[image: image] Mixed References Solution

A short Kotlin program is listed below. When the line //Do stuff is reached, some objects and variables have been created. Your task is to determine which of the variables refer to which objects by the time the //Do stuff line is reached. Some objects may be referred to more than once. Draw lines connecting the variables to their objects.

fun main(args: Array<String>) {

    val x = arrayOf(0, 1, 2, 3, 4)

    x[3] = x[2]

    x[4] = x[0]

    x[2] = x[1]

    x[1] = x[0]

    x[0] = x[1]

    x[4] = x[3]

    x[3] = x[2]

    x[2] = x[4]

    //Do stuff

}


[image: image]









Your Kotlin Toolbox


[image: image]




You’ve got Chapter 2 under your belt and now you’ve added basic types and variables to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	In order to create a variable, the compiler needs to know its name, its type, and whether it can be reused.


	If the variable’s type isn’t explicitly defined, the compiler infers it from its value.


	A variable holds a reference to an object.


	An object has state and behavior. Its behavior is exposed through its functions.


	Defining the variable with var means the variable’s object reference can be replaced. Defining the variable with val means the variable holds a reference to the same object forever.


	Kotlin has a number of basic types: Byte, Short, Int, Long, Float, Double, Boolean, Char and String.


	Explicitly define a variable’s type by putting a colon after the variable’s name, followed by the type:

var tinyNum: Byte


	You can only assign a value to a variable that has a compatible type.


	You can convert one numeric type to another. If the value won’t fit into the new type, some precision is lost.


	Create an array using the arrayOf function: var myArray = arrayOf(1, 2, 3)


	Access an array’s items using, for example, myArray[0]. The first item in an array has an index of 0.


	Get an array’s size using myArray.size.


	The compiler infers the array’s type from its items. You can explicitly define an array’s type like this:

var myArray: Array<Byte>


	If you define an array using val, you can still update the items in the array.


	String templates provide a quick and easy way of referring to a variable or evaluating an expression from inside a String.










Chapter 3. functions: Getting Out of Main


[image: image]




It’s time to take it up a notch, and learn about functions.

So far, all the code you’ve written has been inside your application’s main function. But if you want to write code that’s better organized and easier to maintain, you need to know how to split your code into separate functions. In this chapter, you’ll learn how to write functions and interact with your application by building a game. You’ll discover how to write compact single expression functions. Along the way you’ll find out how to iterate through ranges and collections using the powerful for loop.


Let’s build a game: Rock, Paper, Scissors

In all the code examples you’ve seen so far, we’ve added code to the application’s main function. As you already know, this function launches your application as it’s the function that gets executed when you run it.

This approach has worked well while we’ve been learning Kotlin’s basic syntax, but most applications in the real-world split the code across multiple functions. This is because:


[image: image]




Each function is a named section of code that performs a specific task. As an example, you could write a function named max that determines the highest value out of two values, and then call this function at various stages in your application.

In this chapter, we’re going to take a closer look at how functions work by building a game of Rock, Paper, Scissors.


How the game will work

Goal: Make a guess that beats the computer’s, and win!

Setup: When the application is launched, the game chooses Rock, Paper or Scissors at random. It then asks you to choose one of these options.

The rules: The game compares the two choices. If they are the same, the result is a draw. If the choices are different, however, the game determines the winner using the following rules:


[image: image]




The game will be run in the IDE’s output window.






A high-level design of the game

Before we start writing the code for the game, we need to draw up a plan of how it will work.

First, we need to figure out the general flow of the game. Here’s the basic idea:


[image: image]




Now that we have a clearer idea of how the application will work, let’s look at how we’ll code it.




Here’s what we’re going to do

There are a number of steps we’re going to go through to build the game:


	Get the game to choose an option.

We’ll create a new function named getGameChoice which will choose one of “Rock”, “Paper” or “Scissors” at random.


	Ask the user for their choice.

We’ll do this by writing another new function named getUserChoice, and this will ask the user to enter their choice. We’ll make sure they’ve entered a valid choice, and if they haven’t, we’ll keep asking them until they do.

Please enter one of the following: Rock Paper Scissors.

Errr... dunno

You must enter a valid choice.

Please enter one of the following: Rock Paper Scissors.

Paper


	Print the result.

We’ll write a function named printResult, which will figure out whether the user won or lost, or whether the result is a tie. The function will then print the result.

You chose Paper. I chose Rock. You win!





Get started: create the project

We’ll start by creating a project for the application. You do this in exactly the same way you did in previous chapters.

Create a new Kotlin project that targets the JVM, and name the project “Rock Paper Scissors”. Then create a new Kotlin file named Game.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “Game”, and choose File from the Kind option.

Now that you’ve created the project, let’s start writing some code.






Get the game to choose an option


[image: image]




The first thing we’ll do is get the game to choose one of the options (Rock, Paper or Scissors) at random. Here’s what we’ll do:


	Create an array that contains the Strings “Rock”, “Paper” and “Scissors”.

We’ll add this to the application’s main function.


	Create a new getGameChoice function that will choose one of the options at random.


	Call the getGameChoice function from the main function.




We’ll start by creating the array.


Create the Rock, Paper, Scissors array

We’ll create the array using the arrayOf function, just as we did in the previous chapter. We’ll add this code to the application’s main function so that it gets created when the application launches. This also means that we’ll be able to use it in the rest of the code we’ll write later in the chapter.

To create the main function and add the array, update your version of Game.kt to match ours below:


[image: image]




Now that we’ve created the array, we need to define the new getGameChoice function. Before we can do this, we need to understand more about how you create functions.






How you create functions


[image: image]




As you learned back in Chapter 1, you define new functions using the fun keyword, followed by the name of the function. As an example, if you wanted to create a new function named foo, you’d write code like this:


[image: image]




Once you’ve written the function, you can call it from elsewhere in your application:


[image: image]





You can send things to a function

Sometimes, a function needs extra information in order for it to perform a task. If you’re writing a function to determine the highest of two values, for example, the function needs to know what these two values are.

You tell the compiler what values a function can accept by specifying one or more parameters. Each parameter must have a name and type.

As an example, here’s how you specify that the foo function takes a single Int parameter named param:


[image: image]




You can then call the function and pass it an Int value:


[image: image]




Note that if a function has a parameter, you must pass it something. And that something must be a value of the appropriate type. The following function call, for instance, won’t work because the foo function accepts an Int value, not a String:


[image: image]





Parameterless main functions


[image: image]




Depending on your programming background and personal preferences, you might use the term arguments or parameters for the values passed into a function. Although there are formal computer science distinctions that people who wear lab coats make, we have bigger fish to fry. You can call them whatever you like (arguments, parameters, donuts...) but we’re doing it like this:

A function uses parameters. A caller passes it arguments.

Arguments are the things you pass into the functions. An argument (a value like 2 or “Pizza”) lands face-down into a parameter. And a parameter is nothing more than a local variable: a variable with a name and type that’s used inside the body of the function.








You can send more than one thing to a function


[image: image]




If you want your function to have multiple parameters, you separate them with commas when you declare them, and separate the arguments with commas when you pass them to the function. Most importantly, if a function has multiple parameters, you must pass arguments of the right type in the right order.


Calling a two-parameter function, and sending it two arguments


[image: image]







You can pass arguments to a function so long as the argument type matches the parameter type


[image: image]




As well as passing values to a function, you can also get things back. Let’s see how.






You can get things back from a function


[image: image]




If you want to get something back from a function, you need to declare it. As an example, here’s how you declare that a function named max returns an Int value:


[image: image]




If you declare that a function returns a value, then you must return a value of the declared type. As an example, the following code is invalid becuase it returns a String instead of an Int:


[image: image]





Functions with no return value

If you don’t want your function to return a value, you can either omit the return type from the function declaration, or specify a return type of Unit. Declaring a return type of Unit means that the function returns no value. As an example, the following two function declarations are both valid, and do the same thing:


[image: image]




If you specify that your function has no return value, then you need to make sure that it doesn’t return one. If you try to return a value in a function with no declared return type, or a return type of Unit, your code won’t compile.






Functions with single-expression bodies


[image: image]




If you have a function whose body consists of a single expression, you can simplify the code by removing the curly braces and return statement from the function declaration. As an example, on the previous page, we showed you the following function to return the higher of two values:


[image: image]




The function returns the result of a single if expression, which means that we can rewrite the function like so:


[image: image]




And because the compiler can infer the function’s return type from the if expression, we can make the code even shorter by omitting the : Int:


[image: image]





Create the getGameChoice function

Now that you’ve learned how to create functions, see if you can write the getGameChoice function for our Rock, Paper, Scissors game by having a go at the following exercise.






Code Magnets


[image: image]




The getGameChoice function will accept one parameter, an array of Strings, and return one of the array’s items. See if you can write the function using the magnets below.


[image: image]







Code Magnets Solution


[image: image]




The getGameChoice function will accept one parameter, an array of Strings, and return one of the array’s items. See if you can write the function using the magnets below.


[image: image]







Add the getGameChoice function to Game.kt

Now that we know what the getGameChoice function looks like, let’s add it to our application, and update our main function so that it calls the new function. Update your version of Game.kt so that it matches ours below (our changes are in bold):


[image: image]




Now that we’ve added the getGameChoice function to our application, let’s look at what’s going on behind the scenes when the code runs.


there are no Dumb Questions

Q: Can I return more than one value from a function?

A: A function can declare only one return value. But if you want to, say, return three Int values, then the declared type can be an array of Ints (Array<Int>). Put those Ints into the array, and pass it back.

Q: Do I have to do something with the return value of a function? Can I just ignore it?

A: Kotlin doesn’t require you to acknowledge a return value. You might want to call a function with a return type, even though you don’t care about the return value. In this case, you’re calling the function for the work it does inside the function, rather than for what it returns. You don’t have to assign or use the return value.






Behind the scenes: what happens


[image: image]




When the code runs, the following things happen:


	val options = arrayOf("Rock", "Paper", "Scissors")

This creates an array of Strings, and a variable named options that holds a reference to it.


[image: image]





	val gameChoice = getGameChoice(options)

The contents of the options variable get passed to the getGameChoice function. The options variable holds a reference to an array of Strings, so a copy of the reference gets passed to the getGameChoice function, and lands in its optionsParam parameter. This means that the options and optionsParam variables both hold a reference to the same array.


[image: image]










The story continues


[image: image]





	fun getGameChoice(optionsParam: Array<String>) = optionsParam[(Math.random() * optionsParam.size).toInt()]

The getGameChoice function selects one of the optionsParam’s items at random (for example, the “Scissors” item). The function returns a reference to this item.


[image: image]





	val gameChoice = getGameChoice(options)

This puts the reference returned by the getGameChoice function into a new variable named gameChoice. If, for example, the getGameChoice function returns a reference to the “Scissors” item of the array, this means that a reference to the “Scissors” object is put into the gameChoice variable.


[image: image]








[image: image]





[image: image]




Yes, you can.

As an example, suppose you have the following code:

fun main(args: Array<String>) {

    val options = arrayOf("Rock", "Paper", "Scissors")

    updateArray(options)

    println(options[2])

}



fun updateArray(optionsParam: Array<String>) {

    optionsParam[2] = "Fred"

}

The main function creates an array containing the Strings “Rock”, “Paper” and “Scissors”. A reference to this array is passed to the updateArray function, which updates the third item of the array to “Fred”. Finally, the main function prints the value of the array’s third item, so it prints the text “Fred”.


[image: image]





[image: image] Local Variables Up Close

As we said earlier in the chapter, a local variable is one that’s used inside the body of a function. They’re declared within a function, and they’re only visible inside that function. If you try to use a variable that’s defined in another function, you’ll get a compiler error, as in the example below:


[image: image]




Any local variables must be initialized before they can be used. If you’re using a variable for a function’s return value, for example, you must initialize that variable or the compiler will get upset:


[image: image]




Function parameters are virtually the same as local variables, as they only exist within the context of the function. They’re always initialized, however, so you’ll never get a compiler error telling you that a parameter variable might not have been initialized. This is because the compiler will give you an error message if you try to invoke a function without sending the arguments that the function needs; the compiler guarantees that functions are always called with arguments that match the parameters declared in the function, and the arguments are automatically assigned to the parameters.

Note that you can’t assign a new value to any of a function’s parameter variables. Behind the scenes, the parameter variables are created as local val variables that can’t be reused for other values. The following code, for example, won’t compile because we’re trying to assign a new value to the function’s parameter variable:


[image: image]







BE the Compiler


[image: image]




Here are three complete Kotlin functions. Your job is to play like you’re the compiler and determine whether each of these functions will compile. If they won’t compile, how would you fix them?


	fun doSomething(msg: String, i: Int): Unit {

    if (i > 0) {

        var x = 0

        while (x < i) {

            println(msg)

            x = x + 1

        }

    }

}


	fun timesThree(x: Int): Int {

    x = x * 3

    return x

}


	fun maxValue(args: Array<Int>) {

    var max = args[0]

    var x = 1

    while (x < args.size) {

        var item = args[x]

        max = if (max >= item) max else item

        x = x + 1

    }

    return max

}







BE the Compiler Solution


[image: image]




Here are three complete Kotlin functions. Your job is to play like you’re the compiler and determine whether each of these functions will compile. If they won’t compile, how would you fix them?


[image: image]









The getUserChoice function

Now that we’ve written the code to make the game choose an option, we can move onto the next step: getting the user’s choice. We’ll write a new function to do this called getUserChoice, which we’ll call from the main function. We’ll pass the options array to the getUserChoice function as a parameter, and we’ll get it to return the user’s choice (a String):

fun getUserChoice(optionsParam: Array<String>): String {

    //Code goes here

}

Let’s go through what we need the getUserChoice function to do:


	Ask the user for their choice.

We’ll loop through the items in the options array, and ask the user to type their choice into the output window.


	Read the user’s choice from the output window.

After the user’s entered their choice, we’ll assign its value to a new variable.


	Validate the user’s choice.

We’ll check that the user has entered a choice, and that it’s in the array. If the user has entered a valid choice, we’ll get the function to return it. If they haven’t, we’ll keep asking until they do.




Let’s start with the code to prompt the user for their choice.


Ask for the user’s choice

To ask the user to input their choice of option, we’ll make the getUserChoice function print the following message: “Please enter one of the following: Rock Paper Scissors.”

One way of doing this would be to hard-code the message using the println function like this:

println("Please enter one of the following: Rock Paper Scissors.")

A more flexible approach, however, is to loop through each item in the options array, and print each item. This will be useful if we ever want to change any of the options.

Note

You might want to play Rock, Paper, Scissors, Lizard, Spock instead.



Instead of using a while loop to do this, we’re going to use a new type of loop called a for loop. Let’s see how it works.






How for loops work

A for loop is useful in situations where you want to loop through a fixed range of numbers, or through every item in an array (or some other type of collection—we’ll look at collections in Chapter 9). Let’s look at how you do this.


Looping through a range of numbers

Suppose you wanted to loop through a range of numbers, from 1 to 10. You’ve already seen how to do this kind of thing using a while loop:

var x = 1

while (x < 11) {

    //Your code goes here

    x = x + 1

}

But it’s much cleaner, and requires fewer lines of code, if you use a for loop instead. Here’s the equivalent code:

for (x in 1..10) {

    //Your code goes here

}

It’s like saying “for each number between 1 and 10, assign the number to a variable named x, and run the body of the loop”.

To loop through a range of numbers, you first specify a name for the variable the loop should use. In the above case, we’ve named the variable x, but you can use any valid variable name. The variable gets created when the loop runs.

You specify the range of values using the .. operator. In the case above, we’ve used a range of 1..10, so the code loops through the numbers 1 through to 10. At the beginning of each loop, it assigns the current number to the variable (in our case x).

Just like a while loop, if the loop body consists of a single statement, you can omit the curly braces. As an example, here’s how you would use a for loop to print the numbers 1 to 100:

for (x in 1..100) println(x)

Note that the .. operator includes the end number in its range. If you wanted to exclude it, you would replace the .. operator with until. As an example, the following code prints the numbers from 1 to 99, and excludes 100:

for (x in 1 until 100) println(x)


Math Shortcuts


[image: image]




The increment operator ++ adds 1 to a variable. So:

x++

is a shortcut for:

x = x + 1

Similarly, the decrement operator -- subtracts 1 from a variable. Use:

x--

as a shortcut for:

x = x - 1

If you want to add a number other than 1 to a variable, you can use the += operator. So:

x += 2

does the same as:

x = x + 2

Similarly, you can use -=, *= and /= as shortcuts for subtraction, multiplication and division.




While loops run while a given condition is true.




For loops run over a range of values or items.






Use downTo to reverse the range

If you want to loop through a range of numbers in reverse order, you use downTo instead of .. or until. As an example, you’d use the following code to print the numbers from 15 down to 1:


[image: image]







Use step to skip numbers in the range

By default, the .. operator, until and downTo step through the range one number at a time. If you want, you can increase the size of the step using step. As an example, the following code prints alternate numbers from 1 to 100:

for (x in 1..100 step 2) println(x)




Looping through the items in an array

You can also use a for loop to iterate through the items in an array. In our case, for example, we want to loop through the items in an array named options. To do this, we can use a for loop in this format:


[image: image]




You can also loop through an array’s indices using code like this:

for (item in optionsParam) {

    println("$item is an item in the array")

}

You can even simplify the above loop by returning the array’s index and value as part of the loop:


[image: image]




Now that you know how for loops work, let’s write the code that will ask the user to enter one of “Rock, “Paper” or “Scissors”.






Ask the user for their choice

We’re going to use a for loop to print the text “Please enter one of the following: Rock Paper Scissors.” Here’s the code that will do this; we’ll update Game.kt later in the chapter when we’ve finished writing the getUserChoice function:


[image: image]





Use the readLine function to read the user’s input

After we’ve asked the user to enter their choice, we need to read their response. We’ll do this by calling the readLine() function:

val userInput = readLine()

The readLine() function reads a line of input from the standard input stream (in our case, the output window in the IDE). It returns a String value, the text entered by the user.

If the input stream for your application has been redirected to a file, the readLine() function returns null if the end of file has been reached. null means that it has no value, or that it’s missing.

Note

You’ll find out a lot more about null values in Chapter 8 but for now, this is all you need to know about them.



Here’s an updated version of the getUserChoice function (we’ll add it to our application when we’ve finished writing it):


[image: image]




Next, we need to validate the user input to make sure they’ve entered an appropriate choice. We’ll do that after you’ve had a go at the following exercise.


[image: image] Mixed Messages

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.


[image: image]







[image: image] Mixed Messages Solution

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.


[image: image]











We need to validate the user’s input

The final code we need to write for the getUserChoice function needs to validate the user’s input to make sure they’ve entered a valid option. The code needs to do the following:


	Check that the user input isn’t null.

As we said earlier, the readLine() function returns a null value if it’s reading a line from a file, and it’s at the end of the file. Even though this isn’t the case in our situation, we still need to check that the user input isn’t null in order to keep the compiler sweet.


	Check whether the user’s choice is in the options array.

We can do this using the in operator that you saw when we discussed for loops.


	Loop until the user enters a valid choice.

We want to loop until a condition is met (the user enters a valid option), so we’ll use a while loop for this.




You’re already familiar with most of the code needed to do this, but to write code that’s more concise, we’re going to use some boolean expressions that are more powerful than the ones you’ve seen before. We’ll discuss these next, and after that we’ll show you the full code for the getUserChoice function.


‘And’ and ‘Or’ operators (&& and ||)

Let’s say you’re writing code to choose a new phone, with lots of rules about which phone to select. You might, say, want to limit the price range so that it’s between $200 and $300. To do this, you use code like this:

if (price <= 10 || price >= 1000) {

    //Phone is too cheap or too expensive

}

The && means “and”. It evaluates to true if both sides of the && are true. When the code gets run, Kotlin first evaluates the left side of the expression. If this is false, Kotlin doesn’t bother evaluating the right side. As one side of the expression is false, this means that the entire expression must be false.

Note

This is sometimes referred to as short-circuiting.



If you want to use an “or” expression instead, you use the || operator:

if (price >= 200 && price <= 300) {

    //Code to choose the phone

}

This expression evaluates to true if either side of the || is true. This time, Kotlin doesn’t evaluate the right side of the expression if the left side is true.




Not equals (!= and !)

Suppose you wanted to run code for all phones except one model. To do this, you’d use code like the following:

if (model != 2000) {

   //Code that runs if model is not 2000

}

The != means “is not equal to”.

Similarly, you can use ! to indicate “not”. As an example, the following loop runs while the isBroken variable is not true:

while (!isBroken) {

    //Code that runs if the phone is not broken

}




Use parentheses to make your code clear

Boolean expressions can get really big and complicated:

if ((price <= 500 && memory >= 16) ||

    (price <= 750 && memory >= 32) ||

    (price <= 1000 && memory >= 64)) {

    //Do something appropriate

}

If you want to get really technical, you might wonder about the precedence of these operators. Instead of becoming an expert in the arcane world of precedence, we recommend that you use parentheses to make your code clearer.

Now that you’ve seen some more powerful boolean expressions, we’ll show you the remaining code for the getUserChoice function, and add it to the application.






Add the getUserChoice function to Game.kt

Below is the revised code for the application, including the complete getUserChoice function. Update your version of Game.kt so that it matches ours (our changes are in bold):


[image: image]




Let’s take the code for a test drive, and see what happens when it runs.


Test drive


[image: image]





[image: image]




Run your code by going to the Run menu, and selecting the Run ‘GameKt’ command. When the IDE’s output window opens, you’ll be asked to enter one of “Rock”, “Paper” or “Scissors”:

Please enter one of the following: Rock Paper Scissors.

When you enter an invalid option and hit the Return key, you’re asked to enter an option that’s valid. This is repeated until you enter one of “Rock”, “Paper” or “Scissors”, at which point the program ends.


[image: image]







We need to print the results


[image: image]




The final thing we need our application to do is print the results. As a reminder, if the user and the game make the same choice, the result is a tie. If the choices are different, however, the game determines the winner using the following rules:




	Choices
	Result





	Scissors, Paper
	The Scissors choice wins, as Scissors can cut Paper.



	Rock, Scissors
	The Rock choice wins, as Rock can blunt Scissors.



	Paper, Rock
	The Paper choice wins, as Paper can cover Rock.





We’ll print the results in a new function named printResult. We’ll call this function from main, and pass it two parameters: the user’s choice and the game’s choice.

Before we show you the code for the function, see if you can figure it out for yourself by having a go at the following exercise.


Pool Puzzle


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the printResult function. You may not use the same code snippet more than once, and you won’t need to use all the snippets. Your goal is to print the choices made by the user and the game, and say who won.



fun printResult(userChoice: String, gameChoice: String) {

    val result: String

    //Figure out the result

    if (userChoice...........gameChoice) result = "Tie!"

    else if ((userChoice..........."Rock"...........gameChoice..........."Scissors")

            (userChoice..........."Paper"...........gameChoice..........."Rock")

            (userChoice..........."Scissors"...........gameChoice..........."Paper")) result = "You win!"

  else result = "You lose!"

  //Print the result

  println("You chose $userChoice. I chose $gameChoice. $result")

}

Note: each thing from the pool can only be used once!


[image: image]





Pool Puzzle Solution


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the printResult function. You may not use the same code snippet more than once, and you won’t need to use all the snippets. Your goal is to print the choices made by the user and the game, and say who won.


[image: image]





[image: image]











Add the printResult function to Game.kt


[image: image]




We need to add the printResult function to Game.kt, and call it from the main function. Here’s the code: update your version of the code so that it matches ours (our changes are in bold):


[image: image]





[image: image]





[image: image]




That’s all the code we need for our application. Let’s see what happens when we run it.


Test drive


[image: image]




When we run the code, the IDE’s output window opens, enter one of “Rock”, “Paper” or “Scissors” (we’re choosing “Paper”):

Please enter one of the following: Rock Paper Scissors.

Paper

You chose Paper. I chose Rock. You win!

The application prints our choice, the option selected by the game, and the result.


there are no Dumb Questions

Q: I entered an option of “paper” but the game told me I’d entered an invalid option. Why’s that?

A: It’s because you entered a lowercase String, instead of one that starts with an initial capital letter. The game requires you to enter one of “Rock”, “Paper” or “Scissors”, and it doesn’t recognize “paper” as one of the options.

Q: Can I get Kotlin to ignore the case? Can I capitalize the user input before checking whether it’s in the array?

A: Kotlin includes toLowerCase, toUpperCase and capitalize functions to create a lowercase, uppercase or capitalized version of a String. As an example, here’s how you would use the capitalize function to capitalize the first letter of the String named userInput:



userInput = userInput.capitalize()

So you could convert the user input to an appropriate format before checking if it matches any of the values in the array.






Your Kotlin Toolbox

You’ve got Chapter 3 under your belt and now you’ve added functions to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	Use functions to organize your code and make it more reusable.


	A function can have parameters, so you can pass more than one value to it.


	The number and type of values you pass to the function must match the order and type of the parameters declared by the function.


	A function can return a value. You must define the type of value (if any) it returns.


	A Unit return type means that the function doesn’t return anything.


	Choose for loops over while loops when you know how many times you want to repeat the loop code.


	The readLine() function reads a line of input from the standard input stream. It returns a String value, the text entered by the user.


	If the input stream has been redirected to a file and the end of the file has been reached, the readLine() function returns null. null means it has no value, or it’s missing.


	&& means “and”. || means “or”. ! means “not”.










Chapter 4. classes and objects: A Bit of Class


[image: image]




It’s time we looked beyond Kotlin’s basic types.

Sooner or later, you’re going to want to use something more than Kotlin’s basic types. And that’s where classes come in. Classes are templates that allow you to create your own types of objects, and define their properties and functions. Here, you’ll learn how to design and define classes, and how to use them to create new types of objects. You’ll meet constructors, initializer blocks, getters and setters, and you’ll discover how they can be used to protect your properties. Finally, you’ll learn how data hiding is built into all Kotlin code, saving you time, effort and a multitude of keystrokes.


Object types are defined using classes

So far, you’ve learned how to create and use variables from Kotlin’s basic types, such as numbers, Strings and arrays. You know, for example, that when you write the code:

var x = 6

this creates an Int object with a value of 6, and a reference to the object is assigned to a new variable named x:


[image: image]




Behind the scenes, these types are defined using classes. A class is a template that defines what properties and functions are associated with objects of that type. When you create an Int object, for example, the compiler checks the Int class and sees that it requires an integer value, and has functions such as toLong and toString.


You can define your own classes

If you want your application to deal with types of objects that Kotlin doesn’t have, you can define your own types by writing new classes. If you’re building an application that records information about dogs, for example, you might want to define a Dog class so that you can create your own Dog objects, and record the name, weight and breed of each dog:


[image: image]




So how do you go about defining a class?






How to design your own classes

When you want to define your own class, you need to think about the objects that will be created from that class. You need to consider:


	* The things each object knows about itself.


	* The things each object can do.




The things an object knows about itself are its properties. They represent an object’s state (the data), and each object of that type can have unique values. A Dog class, for example, might have name, weight and breed properties. A Song class might have title and artist properties.


The things an object knows about itself are its properties.



The things an object can do are its functions. They determine an object’s behavior, and may use the object’s properties. The Dog class, for example, might have a bark function, and the Song class might have a play function.


The things an object can do are its functions.



Here are some examples of classes with their properties and functions:


[image: image]




When you know what properties and functions your class should have, you’re ready to write the code to create it. We’ll look at this next.




Let’s define a Dog class

We’re going to create a Dog class that we can use to create Dog objects. Each Dog will have a name, weight and breed, so we’ll use these for the class properties. We’ll also define a bark function so that the size of the Dog’s bark depends on its weight.

Here’s what our Dog class code looks like:


[image: image]




defines the name of the class (Dog), and the properties that the Dog class has. We’ll take a closer look at what’s going on behind the scenes a few pages ahead, but for now, all you need to know is that the above code defines the name, weight and breed properties—and when the Dog object is created, values are assigned to these properties.


A function that’s defined inside a class is called a member function. It’s sometimes called a method.



You define any class functions in the class body (inside the curly braces {}). We’re defining a bark function, so the code looks like this:


[image: image]




Now that you’ve seen the code for the Dog class, let’s look at how you use it to create a Dog object.




How to create a Dog object

You can think of a class as a template for an object, as it tells the compiler how to make objects of that particular type. It tells the compiler what properties each object should have, and each object made from that class can have its own values. Each Dog object, for example, would have name, weight and breed properties, with each Dog having its own values.


[image: image]




We’re going to use the Dog class to create a Dog object, and assign it to a new variable named myDog. Here’s the code:


[image: image]




When the code runs, it creates a new Dog object, and the arguments are used to assign values to the Dog’s properties. In our case, for example, we’re creating a new Dog object where the name property is “Fido”, the weight property is 70 pounds, and the breed property is “Mixed”:


[image: image]




Now that you’ve seen how to create a new Dog object, let’s look at how you access its properties and functions.




How to access properties and functions

Once you’ve created an object, you can access its properties using the dot operator (.). If you wanted to print a Dog’s name, for example, you would use code like this:


[image: image]




You can also update any properties that you have defined using the var keyword. As an example, here’s how you would update the Dog’s weight property to 75 pounds:


[image: image]




Note that the compiler won’t let you update any properties that you’ve defined using the val keyword. If you try to do so, you’ll get a compiler error.

You can also use the dot operator to call an object’s functions. If you wanted to call the Dog’s bark function, for example, you would use the following code:


[image: image]





What if the Dog is in a Dog array?

You can also add any objects you create to an array. If you wanted to create an array of Dogs, for example, you would use code like this:


[image: image]




This defines a variable named dogs, and as it’s an array that you’re populating with Dog objects, the compiler makes its type array<Dog>. Two Dog objects are then added to the array.

You can still access the properties and functions of each Dog object in the array. As an example, suppose you wanted to update the second Dog’s weight and make it bark. To do this, you would get a reference to the second item in the dogs array using dogs[1], and then use the dot operator to access the Dog’s weight property and bark function:


[image: image]




This is like saying “get the second object from the dogs array, change its weight to 15 pounds, and make it bark.”






Create a Songs application

Before we go any further into how classes work, we’re going to give you some more class practice by creating a new Songs project. We’ll add a Song class to the project, and create and use some Song objects.

Create a new Kotlin project that targets the JVM, and name the project “Songs”. Then create a new Kotlin file named Songs.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “Songs”, and choose File from the Kind option.


[image: image]




Next, add the following code to Songs.kt:


[image: image]





Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

Playing the song Going Underground by The Jam

Stopped playing Going Underground

Playing the song Make Me Smile by Steve Harley

Now that you’ve seen how to define a class and use it to create objects, let’s dive into the mysterious world of object creation.






The miracle of object creation

When you declare and assign an object, there are three main steps:


	Declare a variable.

var myDog = Dog("Fido", 70, "Mixed")


[image: image]





	Create an object.

var myDog = Dog("Fido", 70, "Mixed")


[image: image]





	Link the object to the variable by assigning a reference.

var myDog = Dog("Fido", 70, "Mixed")


[image: image]







The big miracle happens at step two—when the object is created. There’s a lot going on behind the scenes, so let’s take a closer look.




How objects are created

When we define an object using code like:


[image: image]




it looks like we’re calling a function named Dog. But even though it looks and feels a lot like a function, it’s not. Instead, we’re calling the Dog constructor.

A constructor contains the code that’s needed to initialize an object. It runs before the object can be assigned to a reference, which means that you get a chance to step in, and do things to make the object ready for use. Most people use constructors to define an object’s properties and assign values to them.

Each time you create a new object, the constructor for that object’s class is invoked. So when you run the code:

var myDog = Dog("Fido", 70, "Mixed")

the Dog class constructor gets called.


A constructor runs when you instantiate an object. It’s used to define properties and initialize them.




What the Dog constructor looks like

When we created our Dog class, we included a constructor; it’s the parentheses and the code in between in the class header:


[image: image]




The Dog constructor defines three properties—name, weight and breed. Each Dog has these properties, and when the Dog gets created, the constructor assigns a value to each property. This initializes the state of each Dog, and ensures that it’s set up correctly.

Let’s take a look at what happens behind the scenes when the Dog constructor gets called.






Behind the scenes: calling the Dog constructor

Let’s go through what happens when we run the code:

var myDog = Dog("Fido", 70, "Mixed")


	The system creates an object for each argument that’s passed to the Dog constructor.

It creates a String with a value of “Fido”, an Int with a value of 70, and a String with a value of “Mixed”.


[image: image]





	The system allocates the space for a new Dog object, and the Dog constructor gets called.


[image: image]





	The Dog constructor defines three properties: name, weight and breed.

Behine the scenes, each property is a variable. A variable of the appropriate type is created for each property, as defined in the constructor.

class Dog(val name: String,

          var weight: Int,

          val breed: String) {

}


[image: image]





	Each of the Dog’s property variables is assigned a reference to the appropriate value object.

The name property, for example, is assigned a reference to the “Fido” String object, and so on.


[image: image]





	Finally, a reference to the Dog object is assigned to a new Dog variable named myDog.


[image: image]








[image: image]




That’s right—a property is a variable that’s local to the object.

This means that everything you’ve already learned about variables applies to properties. If you define a property using the val keyword, for example, this means that you can’t assign a new value to it. You can, however, update any properties that have been defined using var.

In our example, we’re using val to define the name and breed properties, and var to define the weight:

class Dog(val name: String, var weight: Int, val breed: String) {

    ...

}

This means that we can only update the Dog’s weight property, and not the Dog’s name or breed.


there are no Dumb Questions

Q: Does the constructor allocate the memory for the object that’s being created?

A: No, the system does. The constructor initializes the object, so it makes sure that the object’s properties are created and that they’re assigned their initial values. All memory is managed by the system.

Q: Can I define a class without defining a constructor?

A: Yes, you can. You’ll find out how this works later in the chapter.




An object is sometimes known as an instance of a particular class, so its properties are sometimes called instance variables.






Code Magnets


[image: image]




Somebody used fridge magnets to write a noisy new DrumKit class, and a main function that prints the following output:

ding ding ba-da-bing!

bang bang bang!

ding ding ba-da-bing!

Unfortunately, the magnets have got scrambled. Can you piece the code back together again?


[image: image]







Code Magnets Solution


[image: image]




Somebody used fridge magnets to write a noisy new DrumKit class, and a main function that prints the following output:

ding ding ba-da-bing!

bang bang bang!

ding ding ba-da-bing!

Unfortunately, the magnets have got scrambled. Can you piece the code back together again?


[image: image]







Going deeper into properties

So far you’ve seen how to define a property by including it in the class constructor, and how doing so assigns a value to that property when the constructor is called. But what if you need to do something a little different? What if you want to validate a value before assigning it to a property? Or what if you want to initialize a property with a generic default value so that you don’t need to add it to the class constructor?

To find out how you can do this kind of thing, we need to take a closer look at constructor code.


Behind the scenes of the Dog constructor

As you already know, our current Dog constructor code defines three properties for the name, weight and breed of each Dog object, and assigns a value to each one when the Dog constructor is called:

class Dog(val name: String, var weight: Int, val breed: String) {

    ...

}

You can do this so concisely because the constructor code uses a shortcut for performing this kind of task. When the Kotlin language was developed, the brains behind it felt that defining and initializing properties was such a common action that it was worth making the syntax to do it very concise and simple.

If you were to perform the same action without using the shortcut, here’s what the code would look like:


[image: image]




Here, the three constructor parameters—name_param, weight_param and breed_param—have no val and var prefixes, which means that they no longer define properties. They are plain old parameters, just like the ones you see in function definitions. The name, weight and breed properties are instead defined in the main body of the class. Each one is assigned the value of the associated constructor parameter.

So how does this allow us to do more with our properties?






Flexible property initialization

Defining properties in the main body of the class gives you a lot more flexibility than adding them to the constructor, as it means that you no longer have to initialize each one with a parameter value.

Suppose that you wanted to assign a default value to a property without including it in the constructor. You might, for example, want to add an activities property to the Dog class, and initialize it with a default array containing a value of “Walks”. Here’s the code to do this:


[image: image]





[image: image]




Alternatively, you might want to tweak the value of a constructor parameter before assigning it to a property. You might, for example, want to record an uppercase String for the breed property instead of the value that’s passed to the constructor. To do this, you would use the toUpperCase function to create an uppercase version of the String, which you would then assign to the breed property like this:


[image: image]




Initializing a property in this way works well if you want to assign a simple value or expression to it. But what if you need to do something more complex?




How to use initializer blocks

If you need to initialize a property to something more complex than a simple expression, or if there’s extra code you want to run when each object is created, you can use one or more initializer blocks. Initializer blocks are executed when the object is initialized, immediately after the constructor is called, and they’re prefixed with the init keyword. Here’s an example of an initializer block that prints a message whenever a Dog object is initialized:


[image: image]




Your class can have multiple initializer blocks. Each one runs in the order in which it appears in the class body, interleaved with any property initializers. Here’s an example of some code with multiple initializer blocks:


[image: image]




As you’ve seen, there are various ways in which you can initialize your variables. But is it necessary?




You MUST initialize your properties

Back in Chapter 2, you learned that every variable you declare in a function must be initialized before it can be used. This also applies to any properties you define in a class: you must initialize properties before you try to use them. This is so important that if you declare a property without initializing it in either the property declaration or the initializer block, the compiler will get very upset and refuse to compile your code. The following code, for example, won’t compile because we’ve added a new property named temperament which hasn’t been initialized:


[image: image]




Nearly all of the time, you’ll be able to assign default values to your properties. In the above example, for instance, your code will compile if you initialize the temperament property to "":


[image: image]





there are no Dumb Questions

Q: In Java, you don’t have to initialize the variables that you declare inside a class. Is there a way of not initializing class properties in Kotlin?

A: If you’re completely certain that you can’t assign an initial value to a property when you call the class constructor, you can prefix it with lateinit. This tells the compiler that you’re aware that the property hasn’t been initialized yet, and you’ll handle it later. If you wanted to mark the temperament property for late initialization, for example, you’d use:

lateinit var temperament: String

Doing so allows the compiler to compile your code. In general, however, we strongly encourage you to initialize your properties.

Q: What happens if I try to use a property value before it’s been initialized?

A: If you don’t initialize a property before you try and use it, you’ll get a runtime error when you run the code.

Q: Can I use lateinit with any type of property?

A: You can only use lateinit with properties defined using var, and you can’t use it with any of the following types: Byte, Short, Int, Long, Double, Float, Char or Boolean. This is down to how these types are treated when the code runs in the JVM. This means that properties of any of these types must be initialized when the property is defined, or in an initializer block.




[image: image] Empty Constructors Up Close

If you want to be able to quickly create objects without passing values for any of its properties, you can define a class with no constructor.

Suppose, for example, that you wanted to quickly create Duck objects. To do this, you could define a Duck class without a constructor like this:


[image: image]




When you define a class with no constructor, the compiler secretly writes one for you. It adds an empty constructor (a constructor with no parameters) to your compiled code. So when you compile the above Duck class, the compiler treats it as though you’d written the following code:


[image: image]




This means that in order to create a Duck object, you use the code:


[image: image]




and not:


[image: image]




The compiler has created an empty constructor for the Duck class on your behalf, so this means that you must call the empty constructor in order to instantiate the Duck.




BE the Compiler


[image: image]




Each of the Kotlin files on this page represents a complete source file. Your job is to play like you’re the compiler and determine whether each of these files will compile. If they won’t compile, how would you fix them?


	

class TapeDeck {

    var hasRecorder = false



    fun playTape() {

        println("Tape playing")

    }



    fun recordTape() {

        if (hasRecorder) {

           println ("Tape recording")

        }

    }

}



fun main(args: Array<String>) {

    t.hasRecorder = true

    t.playTape()

    t.recordTape()

}


	

class DVDPlayer(var hasRecorder: Boolean) {



    fun recordDVD() {

        if (hasRecorder) {

            println ("DVD recording")

        }

    }

}



fun main(args: Array<String>) {

    val d = DVDPlayer(true)

    d.playDVD()

    d.recordDVD()

}









How do you validate property values?

Earlier in the chapter, you learned how to directly get or set a property’s value using the dot operator. You already know, for example, that you can print the Dog’s name using:

println(myDog.name)

and that you can set its weight to 75 pounds using:

myDog.weight = 75

But in the hands of the wrong person, allowing direct access to all our properties in this way can be quite a dangerous weapon. Because what’s to prevent someone writing the following code:


[image: image]




A Dog with negative weight would be a Bad Thing.

To stop this kind of thing from happening, we need some way of validating a value before it’s assigned to a property.


The solution: custom getters and setters

If you want to tweak a property’s return value, or validate a value before it gets assigned to a property, you can write your own getters and setters.

Getters and setters let you, well, get and set property values. A getter’s sole purpose in life is to send back a return value, the value of whatever it is that particular getter is supposed to be getting. And a setter lives and breathes for the chance to take an argument value, and use it to set the value of a property.

Note

If you’re into being all formal about it, you might prefer to call them accessors and mutators instead.



Writing custom getters and setters lets you protect your property values, and they give you more control over what values are returned or assigned. We’ll show you how they work by adding two new things to our Dog class:


	* A custom getter to return the Dog’s weight in kilograms.


	* A custom setter to validate a proposed value for the Dog’s weight before we assign it.




Let’s start by creating a custom getter to return the Dog’s weight in kilograms.






How to write a custom getter

In order to add a custom getter that will allow us to return the Dog’s weight in kilograms, we’re going to do two things: add a new property to the Dog class named weightInKgs, and write a custom getter for it which will return the appropriate value. Here’s the code to do both these things:


[image: image]




The line:

get() = weight / 2.2

defines the getter. It’s a no parameter function named get that you add to the property. You add it to the property by writing it immediately below the property declaration. Its return type must match that of the property whose value you want to return or the code won’t compile. In the above example, the weightInKgs property is a Double, so the property’s getter must also return a Double.

Note

Technically, getters and setters are optional parts of the property declaration.



Each time you ask for the value of a property using code like:

myDog.weightInKgs

the property’s getter gets called. The above code, for example, calls the getter for the weightInKgs property. The getter uses the Dog’s weight property to calculate the Dog’s weight in kilograms, and returns the result.

Note that in this example, we didn’t need to initialize the weightInKgs property because its value is derived in the getter. Each time the property’s value is required, the getter is called, which figures out the value that should be returned.

Now that you know how to add a custom getter, let’s look at how you add a custom setter by adding one to the weight property.


there are no Dumb Questions

Q: Couldn’t we have written a normal function to return the weight in kilograms?

A: We could, but sometimes it’s useful to create a new property with a getter instead. Many frameworks, for example, let you bind a GUI component to a property, so creating a new property in this sort of situation can make your coding life a lot easier.






How to write a custom setter

We’re going to add a custom setter to the weight property so that the weight can only be updated to a value greater than 0. To do this, we need to move the weight property definition from the constructor to the class body, and then add the setter to the property. Here’s the code to do that:


[image: image]




The following code defines the setter:

set(value) {

    if (value > 0) field = value

}

A setter is a function named set that’s added to the property by writing it beneath the property declaration. A setter has one parameter—usually named value—which is the proposed new value of the property.

In the above example, the value of the weight property is only updated if the value parameter is greater than 0. If you try and update the weight property to a value that’s less than or equal to 0, the setter stops the property from being updated.


A property’s setter runs each time you try to set a property’s value. The following code, for example, calls the weight property’s setter, passing it a value of 75:

myDog.weight = 75



The setter updates the value of the weight property by means of the field identifier. field refers to the property’s backing field, which you can think of as being a reference to the underlying value of the property. Using field in your getters and setters in place of the property name is important, as it stops you getting stuck in an endless loop. When the following setter code runs, for example, the system tries to update the weight property, which results in the setter being called again... and again... and again:


[image: image]





[image: image] Data Hiding Up Close

As you’ve seen over the past few pages, writing custom getters and setters means that you can protect your properties from misuse. A custom getter lets you control what value is returned when the property value is requested, and a custom setter lets you validate a value before asigning it to a property.

Behind the scenes, the compiler secretly creates getters and setters for all properties that don’t already have one. If a property is defined using val, the compiler adds a getter, and if a property is defined using var, the compiler adds both a getter and a setter. So when you write the code:

Note

A val property doesn’t need a setter because once it’s been initialized, its value can’t be updated.



var myProperty: String

the compiler secretly adds the following getters and setters when the code is compiled:

var myProperty: String

    get() = field

    set(value) {

        field = value

}

This means that whenever you use the dot operator to get or set a property’s value, behind the scenes its always the property’s getter or setter that gets called.

So why does the compiler do this?


Removing direct access to a property’s value by wrapping it in getters and setters is known as data hiding.



Adding a getter and setter to every property means that there’s a standard way of accessing that property’s value. The getter handles any requests to get the value, and the setter handles any requests to set it. So if you want to change your mind about how these requests are implemented, you can do so without breaking anybody else’s code.






The full code for the Dogs project

We’re nearly at the end of the chapter, but before we go, we thought we’d show you the entire code for the Dogs project.

Create a new Kotlin project that targets the JVM, and name the project “Dogs”. Then create a new Kotlin file named Dogs.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “Dogs”, and choose File from the Kind option.

Next, add the following code to Dogs.kt:


[image: image]





[image: image]




class Dog(val name: String,

          weight_param: Int,

          breed_param: String) {



    init {

        print("Dog $name has been created. ")

    }



    var activities = arrayOf("Walks")

    val breed = breed_param.toUpperCase()



    init {

        println("The breed is $breed.")

    }



    var weight = weight_param

        set(value) {

          if (value > 0) field = value

        }



    val weightInKgs: Double

        get() = weight / 2.2



    fun bark() {

        println(if (weight < 20) "Yip!" else "Woof!")

    }

}



fun main(args: Array<String>) {

    val myDog = Dog("Fido", 70, "Mixed")

    myDog.bark()

    myDog.weight = 75

    println("Weight in Kgs is ${myDog.weightInKgs}")

    myDog.weight = -2

    println("Weight is ${myDog.weight}")

    myDog.activities = arrayOf("Walks", "Fetching balls", "Frisbee")

    for (item in myDog.activities) {

         println("My dog enjoys $item")

 }



    val dogs = arrayOf(Dog("Kelpie", 20, "Westie"), Dog("Ripper", 10, "Poodle"))

    dogs[1].bark()

    dogs[1].weight = 15

    println("Weight for ${dogs[1].name} is ${dogs[1].weight}")

}


[image: image]





Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

Dog Fido has been created. The breed is MIXED.

Woof!

Weight in Kgs is 34.090909090909086

Weight is 75

My dog enjoys Walks

My dog enjoys Fetching balls

My dog enjoys Frisbee

Dog Kelpie has been created. The breed is WESTIE.

Dog Ripper has been created. The breed is POODLE.

Yip!

Weight for Ripper is 15


[image: image]





Pool Puzzle


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the snippets. Your goal is to create the code that will produce the output listed.


[image: image]




class Rectangle(var width: Int, var height: Int) {

    val isSquare: Boolean

        .................(width == height)



      val area: Int

          ................(width * height)

}



fun main(args: Array<String>) {

      val r = arrayOf(Rectangle(1, 1), Rectangle(1, 1),

                      Rectangle(1, 1), Rectangle(1, 1))

      for (x in 0...........) {

          ............width = (x + 1) * 3

          ............height = x + 5

          print("Rectangle $x has area ${........................}. ")

          println("It is ${if (........................) "" else "not "}a square.")

      }

}

Note: each thing from the pool can only be used once!


[image: image]







Pool Puzzle Solution


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the snippets. Your goal is to create the code that will produce the output listed.

Rectangle 0 has area 15. It is not a square.

Rectangle 1 has area 36. It is a square.

Rectangle 2 has area 63. It is not a square.

Rectangle 3 has area 96. It is not a square.


[image: image]







BE the Compiler Solution

Each of the Kotlin files on this page represents a complete source file. Your job is to play like you’re the compiler and determine whether each of these files will compile. If they won’t compile, how would you fix them?


[image: image]











Your Kotlin Toolbox


[image: image]




You’ve got Chapter 4 under your belt and now you’ve added classes and objects to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	Classes let you define your own types.


	A class is a template for an object. One class can create many objects.


	The things an object knows about itself are its properties. The things an object can do are its functions.


	A property is a variable that’s local to the class.


	The class keyword defines a class.


	Use the dot operator to access an object’s properties and functions.


	A constructor runs when you initialize an object.


	You can define a property in the primary constructor by prefixing a parameter with val or var. You can define a property outside the constructor by adding it to the class body.


	Initializer blocks run when an object is initialized.


	You must initialize each property before you use its value.


	Getters and setters let you get and set property values.


	Behind the scenes, the compiler adds a default getter and setter to every property.










Chapter 5. subclasses and superclasses: Using Your Inheritance


[image: image]




Ever found yourself thinking that an object’s type would be perfect if you could just change a few things?

Well, that’s one of the advantages of inheritance. Here, you’ll learn how to create subclasses, and inherit the properties and functions of a superclass. You’ll discover how to override functions and properties  to make your classes behave the way you want, and you’ll find out when this is (and isn’t) appropriate. Finally, you’ll see how inheritance helps you avoid duplicate code, and how to improve your flexibility with polymorphism.


Inheritance helps you avoid duplicate code

When you develop larger applications with multiple classes, you need to start thinking about inheritance. When you design with inheritance, you put common code in one class, and then allow other more specific classes to inherit this code. When you need to modify the code, you only have to update it in one place, and the changes are reflected in all the classes that inherit that behavior.

The class that contains the common code is called the superclass, and the classes that inherit from it are called subclasses.

Note

A superclass is sometimes called a base class, and a subclass is sometimes called a derived class. In this book, we’re sticking with superclass and subclass.




An inheritance example

Suppose you have two classes named Car and ConvertibleCar.

The Car class includes the properties and functions required to create a generic car, such as make and model properties, and functions named accelerate, applyBrake and changeTemperature.

The ConvertibleCar class is a subclass of the Car class, so it automatically inherits all the Car properties and functions. But the ConvertibleCar class can also add new functions and properties of its own, and override the things it inherits from the Car superclass:


[image: image]




The ConvertibleCar class adds two extra functions named openTop and closeTop. It also overrides the changeTemperature function so that if the car gets too cold when the roof is open, it closes the roof.


A superclass contains common properties and functions that are inherited by one or more subclasses.




A subclass can include extra properties and functions, and can override the things that it inherits.








What we’re going to do

In this chapter, we’re going to teach you how to design and code an inheritance class hierarchy. We’re going to do this in three stages:


	Design an animal class hierarchy.

We’ll take a bunch of animals, and design an inheritance structure for them. We’ll take you through a set of general steps for designing with inheritance which you can then apply to your own projects.


[image: image]





	Write the code for (part of) the animal class hierarchy.

Once we’ve designed the inheritance, we’ll write the code for some of the classes.


[image: image]





	Write code that uses the animal class hierarchy.

We’ll look at how to use the inheritance structure to write more flexible code.


[image: image]








We’ll start by designing the animal inheritance structure.




Design an animal class inheritance structure


[image: image]




Imagine you’ve been asked to design the class structure for an animal simulation program that lets the user add a bunch of different animals to an environment to see what happens.

Note

We’re not going to code the whole application, we’re mostly interested in the class design.



We know some of the types of animal that will be included in the application, but not all. Each animal will be represented by an object, and it will do whatever it is that each particular type of animal is programmed to do.

We want to be able to add new kinds of animals to the application later on, so it’s important that our class design is flexible enough to accommodate this.

Before we start thinking about specific animals, we need to figure out the characteristics that are common to all the animals. We can then build these characteristics into a superclass that all the animal subclasses can inherit from.


	Look for attributes and behaviors that the objects have in common.

Look at these types of animal. What do they have in common?

This helps you to abstract out attributes and behaviors that can be added to the superclass.

Note

We’re going to guide you through the general steps for designing a class inheritance hierarchy. This is the first step.




[image: image]










Use inheritance to avoid duplicate code in subclasses


[image: image]




We’re going to add some common properties and functions to an Animal superclass so that they can be inherited by each of the animal subclasses. This isn’t meant to be an exhaustive list, but it’s enough for you to get the general idea.

We’ll have four properties:

image: The file name representing an image of this animal.

food: The type of food this animal eats, such as meat or grass.

habitat: The animal’s primary habitat, such as woodland, savannah or water.

hunger : An Int representing the hunger level of the animal. It changes depending on when (and how much) the animal eats.

And four functions:

makeNoise(): Lets the animal make a noise.

eat(): What the animal does when it encounters its preferred food source.

roam(): What the animal does when it’s not eating or sleeping.

sleep(): Makes the animal take a nap.


	Design a superclass that represents the common state and behavior.

We’ll put properties and functions common to all the animals into a new superclass named Animal. All of the animal subclasses will inherit these properties and functions.





[image: image]







What should the subclasses override?


[image: image]




Next, we need to think about which properties and functions the animal subclasses should override. We’ll start with the properties.


The animals have different property values...

The Animal superclass has properties named image, food, habitat and hunger, and all of these properties are inherited by the animal subclasses.

All of our animals look different, live in different habitats, and have different dietary requirements. This means that we can override the image, food and habitat properties so that they’re initialized in a different way for each type of animal. We can initialize the Hippo habitat property with a value of “water”, for example, and set the Lion’s food property to “meat”.


	Decide if a subclass needs default property values or function implementations that are specific to that subclass.

In this example, we’ll override the image, food and habitat properties, and the makeNoise and eat functions.


[image: image]











...and different function implementations

Each animal subclass inherits functions named makeNoise, eat, roam and sleep from the Animal superclass. So which of these functions can we override?

Lions roar, wolves howl and hippos grunt. All of the animals make different noises, which means that we should override the makeNoise function in each animal subclass. Each subclass will still include a makeNoise function, but the implementation of this function will vary from animal to animal.

Similarly, each animal eats, but how it eats can vary. A hippo grazes on grass, for example, while a cheetah hunts meat. To accommodate these different eating habits, we’ll override the eat function in each animal subclass.


[image: image]









We can group some of the animals


[image: image]




The class hierarchy is starting to shape up. We have each subclass overriding a bunch of properties and functions, so that there’s no mistaking a wolf’s howl for a hippo’s grunt.

But there’s more that we can do. When you design with inheritance, you can build a whole hierarchy of classes that inherit from each other, starting with the topmost superclass and working down. In our example, we can look at the animal subclasses, and see if two or more can be grouped together in some way, and given code that’s common to only that group. A wolf and fox are both types of canine, for example, so there may be common behavior that we can abstract out into a Canine class. Similarly, a lion, cheetah and lynx are all types of feline, so it might be helpful to add a new Feline class.


	Look for more opportunities to abstract out properties and functions by finding two or more subclasses with common behavior.

When we look at our subclasses, we see that we have two canines, three felines and a hippo (which is neither).





[image: image]







Add Canine and Feline classes


[image: image]




Animals already have an organizational hierarchy, so we can reflect this in our class design at the level that makes most sense. We’ll use the biological families to organize the animals by adding Canine and Feline classes to our class hierarchy. The Canine class will contain properties and functions common to canines such as wolves and foxes, and the Feline class will contain the properties and functions that cats such as lions, cheetahs and lynx have in common.

Note

Each subclass can also define its own properties and functions, but here we’re just concentrating on the animals’ commonality.




	Complete the class hierarchy.

We’ll override the roam function in both the Canine and Feline classes because these groups of animal tend to roam in ways that are similar enough for the simulation program. We’ll let the Hippo class continue to use the generic roam function it inherits from Animal.





[image: image]







Use IS-A to test your class hierarchy


[image: image]




When you’re designing a class hierarchy, you can test if one thing should be a subclass of another by applying the IS-A test. Simply ask yourself: “Does it make sense to say type X IS-A type Y?” If it does, then both classes should probably live in the same inheritance hierarchy, as the chances are, they have the same or overlapping behaviors. If it doesn’t make sense, then you know that you need to think again.

Note

There’s more to it than this, but it’s a good guideline for now. We’ll look at more class design issues in the next chapter.



It makes sense, for example, for us to say “a Hippo IS-A Animal”. A hippo is a type of animal, so the Hippo class can sensibly be a subclass of Animal.

Keep in mind that the IS-A relationship implies that if X IS-A Y, then X can do anything that a Y can do (and possibly more), so the IS-A test works in only one direction. It doesn’t make sense, for example, to say that “an Animal IS-A Hippo” because an animal is not a type of hippo.


[image: image]





Use HAS-A to test for other relationships

If the IS-A test fails for two classes, they may still be related in some way.

Suppose, for example, that you have two classes named Fridge and Kitchen. Saying “a Fridge IS-A Kitchen” makes no sense, and neither does “a Kitchen IS-A Fridge.” But the two classes are still related, just not through inheritance.

Kitchen and Fridge are joined by a HAS-A relationship. Does it make sense to say “a Kitchen HAS-A Fridge”? If yes, then it means that the Kitchen class has a Fridge property. In other words, Kitchen includes a reference to a Fridge, but Kitchen is not a subclass of Fridge, and vice versa.


[image: image]









The IS-A test works anywhere in the inheritance tree


[image: image]




If your inheritance tree is well-designed, the IS-A test should make sense when you ask any subclass if it IS-A any of its supertypes.

If class B is a subclass of class A, class B IS-A class A. This is true anywhere in the inheritance tree. If class C is a subclass of B, class C passes the IS-A test for both B and A.

With an inheritance tree like the one shown here, you’re always allowed to say “Wolf is a subclass of Animal”, or “Wolf IS-A Animal”. It makes no difference if Animal is the superclass of the superclass of Wolf. As long as Animal is somewhere in the inheritance hierarchy above Wolf, Wolf IS-A Animal will always be true.

The structure of the Animal inheritance tree tells the world:

“Wolf IS-A Canine, so Wolf can do anything a Canine can do. And Wolf IS-A Animal, so Wolf can do anything an Animal can do.”

It makes no difference if Wolf overrides some of the functions in Animal or Canine. As far as the code is concerned, a Wolf can do those functions. How Wolf does them, or in which class they’re overridden, makes no difference. A Wolf can makeNoise, eat, roam and sleep because Wolf is a subclass of Animal.

Now that you’ve seen how to design a class hierarchy, have a go at the following exercise. After that, you’ll learn how to code the Animal class hierarchy.


[image: image]





[image: image] Watch it!

Don’t use inheritance if the IS-A test fails, just so that you can reuse code from another class.

As an example, suppose you added special voice activation code to an Alarm class, which you want to reuse in a Kettle class. A Kettle is not a specific type of Alarm, so Kettle should not be a subclass of Alarm. Instead, consider creating a separate VoiceActivation class that all voice activation objects can take advantage of using a HAS-A relationship. (You’ll see more design options in the next chapter.)




[image: image] Sharpen your pencil

Below is a table containing a list of class names. Your job is to figure out the relationships that make sense, and say what the superclasses and subclasses are for each class. Then draw an inheritance tree for the classes.




	Class
	Superclasses
	Subclasses





	Person
	
	



	Musician
	
	



	Person
	
	



	RockStar
	
	



	BassPlayer
	
	



	ConcertPianist
	
	








[image: image] Sharpen your pencil Solution

Below is a table containing a list of class names. Your job is to figure out the relationships that make sense, and say what the superclasses and subclasses are for each class. Then draw an inheritance tree for the classes.


[image: image]





[image: image] Relax

Don’t worry if your inheritance tree looks different to ours.

Any inheritance hierarchies and class designs that you come up with will depend on how you want to use them, so there’s rarely a single correct solution. An animal design hierarchy, for example, will probably be different depending on whether you want to use it for a video game, a pet store, or a museum of zoology. The key thing is that your design meets the requirements of your application.








We’ll create some Kotlin animals


[image: image]




Now that we’ve designed an animal class hierarchy, let’s write the code for it.

First, create a new Kotlin project that targets the JVM, and name the project “Animals”. Then create a new Kotlin file named Animals.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “Animals”, and choose File from the Kind option.

We’ll add a new class named Animal to the project, which will provide the default code for creating a generic animal. Here’s the code—update your version of Animals.kt to match ours:


[image: image]





[image: image]




Now that we have an Animal class, we need to tell the compiler that we want to use it as a superclass.




Declare the superclass and its properties and functions as open


[image: image]




Before a class can be used as a superclass, you have to explicitly tell the compiler that this is allowed. You do this by prefixing the name of the class—and any properties or functions you want to override—with the keyword open. This tells the compiler that you’ve designed the class to be a superclass, and that you’re happy for the properties and functions you’ve declared as open to be overridden.

In our class hierarchy, we want to be able to use Animal as a superclass, and override most of its properties and functions. Here’s the code to allow us to do that—update your version of Animals.kt to reflect our changes (in bold):


To use a class as a superclass, it must be declared as open. Everything you want to override must also be open.




[image: image]




Now that we’ve declared the Animal superclass as open, along with all the properties and functions we want to override, we can start creating animal subclasses. Let’s see how to do this by writing the code for the Hippo class.




How a subclass inherits from a superclass


[image: image]




To make a class inherit from another, you add a colon (:) to the class header followed by the name of the superclass. This makes the class a subclass, and gives it all the properties and functions of the class it inherits from.

In our case, we want the Hippo class to inherit from the Animal superclass, so we use the following code:


[image: image]




The Animal() after the : calls the Animal’s constructor. This ensures that any Animal initialization code—such as assigning values to properties—gets to run. Calling the superclass constructor is mandatory: if the superclass has a primary constructor, then you must call it in the subclass header or your code won’t compile. And even if you haven’t explicitly added a constructor to your superclass, remember that the compiler automatically creates an empty one for you when the code gets compiled.

Note

We didn’t add a constructor to our Animal class, so the compiler added an empty one when it compiled the code. This constructor is called using Animal().



If the superclass constructor includes parameters, you must pass values for these parameters when you call the constructor. As an example, suppose you have a Car class that has two parameters in its constructor named make and model:


[image: image]




To define a subclass of Car named ConvertibleCar, you would have to call the Car constructor in the ConvertibleCar class header, passing in values for the make and model parameters. In this situation, you would normally add a constructor to the subclass that asks for these values, and then pass them to the superclass constructor, as in the example below:


[image: image]




Now that you know how to declare a superclass, let’s look at how you override its properties and functions. We’ll start with the properties.




How (and when) to override properties


[image: image]




You override a property that’s been inherited from a superclass by adding the property to the subclass, and prefixing it with the override keyword.

In our example, we want to override the image, food and habitat properties that the Hippo class inherits from the Animal superclass so that they’re initialized with values that are specific to the Hippo. Here’s the code to do that:


[image: image]





[image: image]




In this example, we’ve overridden the three properties in order to initialize each with a different value to the superclass. This is because each property is defined in the Animal superclass using val.

As you learned on the previous page, when a class inherits from a superclass, you have to call the superclass constructor; this is so that it can run its initialization code, including creating its properties and initializing them. This means that if you define a property in the superclass using val, you must override it in the subclass if you want to assign a different value to it.

If a superclass property has been defined using var, you don’t need to override it in order to assign a new value to it, as var variables can be reused for other values. You can instead assign it a new value in the subclass’s initializer block, as in this example:


[image: image]







Overriding properties lets you do more than assign default values


[image: image]




So far, we’ve only discussed how you can override a property to initialize it with a different value to the superclass, but this isn’t the only way in which overriding properties can help your class design:


	* You can override a property’s getter and setter.

In the previous chapter, you learned how to add custom getters and setters to properties. If you want a property to have a different getter or setter to the one it inherits from the superclass, you can define new ones by overriding the property and adding the getter and setter to the subclass.


	* You can override a val property in the superclass with a var property in the subclass.

If a property in the superclass has been defined using val, you can override it with a var property in the subclass. To do this, simply override the property and declare it to be a var. Note that this only works one way; if you try to override a var property with a val, the compiler will get upset and refuse to compile your code.


	* You can override a property’s type with one of the superclass version’s subtypes.

When you override a property, its type must match the type of the superclass version of the property, or be one of its subtypes.




Now that you know how to override properties, and when you should do it, let’s look at how you override functions.


there are no Dumb Questions

Q: Can I override a property that’s been defined in the superclass constructor?

A: Yes. Any properties you define in the class constructor can be prefixed with open or override, so you can overide properties that have been defined in the superclass constructor.

Q: Why do I have to prefix classes, properties and functions with open if I want to override them? You don’t in Java.

A: In Kotlin, you can only inherit from superclasses and override their properties and functions if they’ve been prefixed with open. This is the opposite way round to how it works in Java.

In Java, classes are open by default, and you use final to stop other classes inheriting from them or overriding their instance variables and methods.

Q: Why does Kotlin take the opposite approach to Java?

A: Because the open prefix makes it much more explicit as to which classes have been designed to be used as superclasses, and which properties and functions can be overridden. This approach corresponds to one of the principles from Joshua Bloch’s book Effective Java: “Design and document for inheritance or else prohibit it.”






How to override functions


[image: image]




You override a function in a similar way to how you override a property: by adding the function to the subclass, prefixed with override.

In our example, we want to override the makeNoise and eat functions in the Hippo subclass so that the actions they perform are specific to the Hippo. Here’s the code to do that:


[image: image]





The rules for overriding functions

When you override a function, there are two rules that you must follow:


	* The function parameters in the subclass must match those in the superclass.

So if, for example, a function in the superclass takes three Int arguments, the overridden function in the subclass must also take three Int arguments or the code won’t compile.


	* The function return types must be compatible.

Whatever the superclass function declares as a return type, the overriding function must return either the same type, or a subclass type. A subclass type is guaranteed to do anything its superclass declares, so it’s safe to return a subclass where the superclass is expected.




Note

You’ll find out more about using a subclass in place of a superclass later in the chapter.



In our Hippo code above, the functions we’re overriding have no parameters and no return types. This matches the function definitions in the superclass, so they follow the rules for overriding functions.






An overridden function or property stays open...


[image: image]




As you learned earlier in the chapter, if you want to override a function or property, you have to declare it open in the superclass. What we didn’t tell you is that the function or property stays open in each of its subclasses, even if it’s overridden, so you don’t have to declare it as open further down the tree. The code for the following class hierarchy, for example, is valid:


[image: image]





...until it’s declared final

If you want to stop a function or property from being overridden further down the class hierarchy, you can prefix it with final. If, for example, you wanted to prevent subclasses of the Car class from overriding the lowerTemperature function, you would use the following code:


[image: image]




Now that you know how to inherit properties and functions from a superclass and override them, let’s add the Hippo code to our project.






Add the Hippo class to the Animals project


[image: image]




We want to add the Hippo class code to the Animals project, so update your code in Animals.kt so that it matches ours below (our changes are in bold):


[image: image]




Now that you’ve seen how to create the Hippo class, see if you can create the Canine and Wolf classes in the following exercise.




Code Magnets


[image: image]




See if you can rearrange the magnets below to create the Canine and Wolf classes.

The Canine class is a subclass of Animal, and overrides its roam function.

The Wolf class is a subclass of Canine, and overrides the image, food and habitat properties, and the makeNoise and eat functions, from the Animal class.

You won’t need to use all of the magnets.


[image: image]







Code Magnets Solution


[image: image]




See if you can rearrange the magnets below to create the Canine and Wolf classes.

The Canine class is a subclass of Animal, and overrides its roam function.

The Wolf class is a subclass of Canine, and overrides the image, food and habitat properties, and the makeNoise and eat functions, from the Animal class.

You won’t need to use all of the magnets.


[image: image]







Add the Canine and Wolf classes


[image: image]




Now that you’ve created the Canine and Wolf classes, let’s add them to the Animals project. Update the code in Animals.kt to add these two classes (our changes are shown below in bold):


[image: image]




Next, we’ll look at what happens when we create a Wolf object and call some of its functions.




Which function is called?


[image: image]




The Wolf class has four functions: one inherited from Animal, one inherited from Canine (which is an overridden version of a function in the Animal class), and two overridden in the Wolf class. When you create a Wolf object and assign it to a variable, you can use the dot operator on that variable to invoke each of the four functions. But which version of those functions gets called?

When you call a function on an object reference, you’re calling the most specific version of the function for that object type: the one that’s lowest on the inheritance tree.

When you call a function on a Wolf object, for example, the system first looks for the function in the Wolf class. If the system finds the function in this class, it executes the function. If the function isn’t defined in the Wolf class, however, the system walks up the inheritance tree to the Canine class. If the function is defined here, the system executes it, and if it’s not, the system continues up the tree. The system continues to walk up the class hierarchy until it finds a match for the function.

To see this in action, imagine that you decide to create a new Wolf object and call its makeNoise function. The system looks for the function in the Wolf class, and as the function has been overridden in this class, the system executes this version:


[image: image]





[image: image]




What if you then decide to call the Wolf’s roam function? This function isn’t overridden in the Wolf class, so the system looks for it in the Canine class instead. As it’s been overridden here, the system uses this version.


[image: image]




Finally, suppose you call the Wolf’s sleep function. The system looks for the function in the Wolf class, and as it hasn’t been overridden here, the system walks up the inheritance tree to the Canine class. The function hasn’t been overridden in this class either, so the system uses the version that’s in Animal.


[image: image]







Inheritance guarantees that all subclasses have the functions and properties defined in the superclass


[image: image]




When you define a set of properties and functions in a superclass, you’re guaranteeing that all its subclasses also have these properties and functions. In other words, you define a common protocol, or contract, for a set of classes that are related by inheritance.

The Animal class, for example, establishes a common protocol for all animal subtypes that says “any Animal has properties named image, food, habitat and hunger, and functions named makeNoise, eat, roam and sleep”:

Note

When we say “any Animal”, we mean the Animal class, or any subclass of Animal.




[image: image]





Any place where you can use a superclass, you can use one of its subclasses instead

When you define a supertype for a group of classes, you can use any subclass in place of the superclass it inherits from. So when you declare a variable, any object that’s a subclass of the variable’s type can be assigned to it. The following code, for example, defines an Animal variable, and assigns it a reference to a Wolf object. The compiler knows that a Wolf is a type of Animal, so the code compiles:


[image: image]









When you call a function on the variable, it’s the object’s version that responds


[image: image]




As you already know, if you assign an object to a variable, you can use the variable to access the object’s functions. This is still the case if the variable is a supertype of the object.

Suppose, for example, that you assign a Wolf object to an Animal variable and call its eat function using code like this:

val animal: Animal = Wolf()

animal.eat()

When the eat function gets called, it’s the version that’s in the Wolf class that responds. The system knows that the underlying object is a Wolf, so it gets to respond in a Wolf-like way.

You can also create an array of different types of animal, and get each one to behave in its own way. As each animal is a subclass of Animal, we can simply add each one to an array, and call functions on each item in the array:


[image: image]





[image: image]




So designing with inheritance means that you can write flexible code in the safe knowledge that each object will do the right thing when its functions are called.

But that’s not the end of the story.




You can use a supertype for a function’s parameters and return type


[image: image]




If you can declare a variable of a supertype (say, Animal), and assign a subclass object to it (say, Wolf), what do you think might happen when you use a subtype as an argument to a function?

Suppose, for example, that we create a Vet class with a function named giveShot:


[image: image]




The Animal parameter can take any Animal type as the argument. So when the Vet’s giveShot function is called, it executes the Animal’s makeNoise function, and whatever type of Animal it is will respond:


[image: image]




So if you want other types of animal to work with the Vet class, all you have to do is make sure that each one is a subclass of the Animal class. The Vet’s giveShot function will still work, even though it was written without any knowledge of any new Animal subtypes the Vet may be working on.

Being able to use one type of object in a place that explicitly expects a different type is called polymorphism. It’s the ability to provide different implementations for functions that have been inherited from somewhere else.

We’ll show you the full code for the Animals project on the next page.


Polymorphism means “many forms”. It allows different subclasses to have different implementations of the same function.






The updated Animals code


[image: image]




Here’s an updated version of Animals.kt that includes the Vet class and a main function. Update your version of the code to match ours below (our changes are in bold):


[image: image]





[image: image]





[image: image]





Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:


[image: image]






there are no Dumb Questions

Q: Why does Kotlin let me override a val property with a var?

A: Back in Chapter 4, we said that when you create a val property, the compiler secretly adds a getter for it. And when you create a var property, the compiler adds both a getter and a setter.

When you override a val property with a var, you’re effectively asking the compiler to add an extra setter to the property in the subclass. This is valid, so the code compiles.

Q: Can I override a var property with a val?

A: No. If you try to override a var property with a val, your code won’t compile.

When you define a class hierarchy, you’re guaranteeing that you can do the same things to a subclass that you can do to a superclass. And if you try to override a var property with a val, you’re telling the compiler that you no longer want to be able to update a property’s value. This breaks the common protocol between the superclass and its subtypes, so the code won’t compile.

Q: You said that when you call a function on a variable, the system walks up the inheritance hierarchy looking for a match. What happens if the system doesn’t find one?

A: You don’t have to worry about the system not finding a matching function.

The compiler guarantees that a particular function is callable for a specific variable type, but it doesn’t care from which class that function comes from at runtime. If we were to call the sleep function on a Wolf, for example, the compiler checks that the sleep function exists, but it doesn’t care that the function is defined in (and inherited from) class Animal.

Remember that if a class inherits a function, it has the function. Where the inherited function is defined makes no difference to the compiler. But at runtime, the system will always pick the right one, the most specific version of the function for that particular object.

Q: Can a subclass have more than one direct superclass?

A: No. Multiple inheritance isn’t allowed in Kotlin, so each subclass can have only one direct superclass. We’ll look at this in more detail in Chapter 6.

Q: When I override a function in a subclass, the function parameter types must be the same. Can I define a function that has the same name as the one in the superclass but with different parameter types?

A: Yes, you can. You can define multiple functions with the same name, just so long as the parameter types are different. This is called overloading (not overriding) and it has nothing to do with inheritance.

We’ll look at overloading functions in Chapter 7.

Q: Can you explain polymorphism again?

A: Sure. Polymorphism is the ability to use any subtype object in place of its supertype. As different subclasses can have different implementations of the same function, it allows each object to respond to function calls in the way that’s most appropriate for each object.

You’ll find out more ways in which you can take advantage of polymorphism in the next chapter.




BE the Compiler


[image: image]




The code on the left represents a source file. Your job is to play like you’re the compiler and say which of the A-B pairs of functions on the right would compile and produce the required output when inserted into the code on the left. The A function fits into class Monster, and the B function fits into class Vampyre.

Output:

Fancy a bite?

Fire!

Aargh!

Note

The code needs to produce this output.




[image: image]







BE the Compiler Solution


[image: image]




The code on the left represents a source file. Your job is to play like you’re the compiler and say which of the A-B pairs of functions on the right would compile and produce the required output when inserted into the code on the left. The A function fits into class Monster, and the B function fits into class Vampyre.

Output:

Fancy a bite?

Fire!

Aargh!


[image: image]











Your Kotlin Toolbox


[image: image]




You’ve got Chapter 5 under your belt and now you’ve added superclasses and subclasses to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	A superclass contains common properties and functions that are inherited by one or more subclasses.


	A subclass can include extra properties and functions that aren’t in the superclass, and can override the things it inherits.


	Use the IS-A test to verify that your inheritance is valid. If X is a subclass of Y, then X IS-A Y must make sense.


	The IS-A relationship works in only one direction. A Hippo is an Animal, but not all Animals are Hippos.


	If class B is a subclass of class A, and class C is a subclass of class B, class C passes the IS-A test for both B and A.


	Before you can use a class as a superclass, you must declare it open. You must also declare any properties and functions you want to override as open.


	Use : to specify a subclass’s superclass.


	If the superclass has a primary constructor, then you must call it in the subclass header.


	Override properties and functions in the subclass by prefixing them with override. When you override a property, its type must be compatible with that of the superclass property. When you override a function, its parameter list must stay the same, and its return type must be compatible with that of the superclass.


	Overridden functions and properties stay open until they’re declared final.


	When a function is overridden in a subclass, and that function is invoked on an instance of the subclass, the overridden version of the function is called.


	Inheritance guarantees that all subclasses have the functions and properties defined in the superclass.


	You can use a subclass in any place where the superclass type is expected.


	Polymorphism means “many forms”. It allows different subclasses to have different implementations of the same function.










Chapter 6. abstract classes and interfaces: Serious Polymorphism


[image: image]




A superclass inheritance hierarchy is just the beginning.

If you want to fully exploit polymorphism , you need to design using abstract classes and interfaces. In this chapter, you’ll discover how to use abstract classes to control which classes in your hierarchy can and can’t be instantiated . You’ll see how they can force concrete subclasses to provide their own implementations . You’ll find out how to use interfaces to share behavior between independent classes . And along the way, you’ll learn the ins and outs of is , as,  and when .


The Animal class hierarchy revisited

In the previous chapter, you learned how to design an inheritance hierarchy by creating the class structure for a bunch of animals. We abstracted out the common properties and functions into an Animal superclass, and overrode some of the properties and functions in the Animal subclasses so that we’d have subclass-specific implementations where we thought it was appropriate.

By defining the common properties and functions in the Animal superclass, we’re establishing a common protocol for all Animals, which makes the design nice and flexible. We can write code using Animal variables and parameters so that any Animal subtype (including ones we didn’t know about at the time we wrote our code) can be used at runtime.

Here’s a reminder of the class structure:


[image: image]







Some classes shouldn’t be instantiated

The class structure, however, needs some improvement. It makes sense for us to create new Wolf, Hippo or Fox objects, but the inheritance hierarchy also allows us to create generic Animal objects. This is a Bad Thing because we can’t say what an Animal looks like, what it eats, what sort of noise it makes, and so on.


[image: image]




How do we deal with this? We need an Animal class for inheritance and polymorphism, but we only want to be able to instantiate the less abstract subclasses of Animal, not Animal itself. We want to be able to create Hippo, Wolf and Fox objects, but not Animal objects.


Declare a class as abstract to stop it from being instantiated

If you want to prevent a class from being instantiated, you can mark the class as abstract by prefixing it with the abstract keyword. Here’s how, for example, you turn Animal into an abstract class:


[image: image]




Being an abstract class means that nobody can create any objects of that type, even if you’ve defined a constructor for it. You can still use that abstract class as a declared variable type, but you don’t have to worry about somebody creating objects of that type—the compiler stops it from happening:


[image: image]




Think about the Animal class hierarchy. Which classes do you think should be declared abstract? In other words, which classes do you think shouldn’t be instantiated?


If a superclass is marked as abstract, you don’t need to declare that it’s open.








Abstract or concrete?

In our Animal class hierarchy, there are three classes that need to be declared abstract: Animal, Canine and Feline. While we need these classes for inheritance, we don’t want anyone to be able to create objects of these types.

A class that’s not abstract is called concrete, so that leaves Hippo, Wolf, Fox, Lion, Cheetah and Lynx as the concrete subclasses.

In general, whether a class should be abstract or concrete depends on the context of your application. A Tree class, for example, might need to be abstract in a tree nursery application where the differences between an Oak and a Maple really matter. But if you were designing a golf simulation, Tree might be a concrete class because the application doesn’t need to distinguish between different types of tree.

Note

We’re marking the Animal, Canine and Feline classes as abstract by giving each one a gray background.




[image: image]







An abstract class can have abstract properties and functions

In an abstract class, you can choose to mark properties and functions as abstract. This is useful if the class has behaviors that don’t make sense unless they’re implemented by a more specific subclass, and you can’t think of a generic implementation that might be useful for subclasses to inherit.

Let’s see how this works by considering what properties and functions we should mark as abstract in the Animal class.


An abstract class can contain abstract and non-abstract properties and functions. It’s possible for an abstract class to have no abstract members.




We can mark three properties as abstract

When we created the Animal class, we decided to initialize the image, food and habitat properties with generic values and override them in the animal-specific subclasses. This was because there was no value we could assign to these properties that would have been useful to the subclasses.

Because these properties have generic values that must be overridden, we can mark each one as abstract by prefixing it with the abstract keyword. Here’s the code to do that:


[image: image]




Notice that in the above code, we haven’t initialized any of the abstract properties. If you try to initialize an abstract property, or define a custom getter or setter for it, the compiler will refuse to compile your code. This is because by marking a property as abstract, you’ve decided that there’s no useful initial value it can have, and no useful implementation for a custom getter or setter.

Now that we know what properties we can mark as abstract, let’s consider the functions.


Abstract properties and functions don’t need to be marked as open.








The Animal class has two abstract functions

The Animal class defines two functions—makeNoise and eat—that are overridden in every concrete subclass. As these two functions are always overridden and there’s no implementation we can provide that would help the subclasses, we can mark the makeNoise and eat functions as abstract by prefixing each one with the abstract keyword. Here’s the code to do this:


[image: image]




In the above code, neither of the abstract functions have function bodies. This is because when you mark a function as abstract, you’re telling the compiler that there’s no useful code you can write for the function body.

If you try to add a body to an abstract function, the compiler will get upset and refuse to compile your code. The following code, for example, won’t compile because there are curly braces after the function definition:


[image: image]




In order for the code to compile, you must remove the curly braces so that the code looks like this:

abstract fun makeNoise()

As the abstract function no longer has a function body, the code compiles.


[image: image] Watch it!

If you mark a property or function as abstract, you must mark the class as abstract too.

If you put even one abstract property or function in a class, you have to mark the class as abstract or your code won’t compile.




[image: image]




Abstract properties and functions define a common protocol so that you can use polymorphism.

Inheritable function implementations (functions with actual bodies) are useful to put in a superclass when it makes sense. And in an abstract class, it often doesn’t make sense because you may not be able to come up with any generic code that the subclasses would find useful.

Abstract functions are useful because even though they don’t contain any actual function code, they define the protocol for a group of subclasses which you can use for polymorphism. As you learned in the previous chapter, polymorphism means that when you define a supertype for a group of classes, you can use any subclass in place of the superclass it inherits from. It gives you the ability to use a superclass type as a variable type, function argument, return type or array type, as in the following example:


[image: image]




This means that you can add new subtypes (such as a new Animal subclass) to your application without having to rewrite or add new functions to deal with those new types.

Now that you’ve seen how (and when) to mark classes, properties and functions as abstract, let’s see how you implement them.




How to implement an abstract class

You declare that a class inherits from an abstract superclass in the same way that you say that a class inherits from a normal superclass: by adding a colon to the class header followed by the name of the abstract class. Here’s how, for example, you say that the Hippo class inherits from the abstract Animal class:


[image: image]





[image: image]




You implement abstract properties and functions by overriding each one and providing an implementation. This means that you need to initialize any abstract properties, and you need to provide a body for any abstract functions.

In our example, the Hippo class is a concrete subclass of Animal. Here’s the code for the Hippo class that implements the image, food and habitat properties, along with the makeNoise and eat functions:


[image: image]




When you implement abstract properties and functions, you must follow the same rules for overriding that you use for overriding normal properties and functions:


	* When you implement an abstract property, it must have the same name, and its type must be compatible with the type defined in the abstract superclass. In other words, it must be the same type, or one of its subtypes.


	* When you implement an abstract function, it must have the same function signature (name and arguments) as the function that’s defined in the abstract superclass. Its return type must be compatible with the declared return type.







You MUST implement all abstract properties and functions

The first concrete class in the inheritance tree below the abstract superclass must implement all abstract properties and functions. In our class hierarchy, for example, the Hippo class is a direct concrete subclass of Animal, so it must implement all the abstract properties and functions defined in the Animal class in order for the code to compile.

With abstract subclasses, you have a choice: you can either implement the abstract properties and functions, or pass the buck to its subclasses. If both Animal and Canine are abstract, for example, the Canine class can either implement the abstract properties and functions from Animal, or say nothing about them and leave them for its subclasses to implement.

Any abstract properties and functions that aren’t implemented in Canine must be implemented in its concrete subclasses, like Wolf. And if the Canine class were to define any new abstract properties and functions, the Canine subclasses would have to implement these too.

Now that you’ve learned about abstract classes, properties and functions, let’s update the code in our Animal hierarchy.


[image: image]





there are no Dumb Questions

Q: Why must the first concrete class implement all the abstract properties and functions it inherits?

A: Every property and function in a concrete class must be implemented so that the compiler knows what to do when they’re accessed.

Only abstract classes can have abstract properties or functions. If a class has any properties or functions that are marked as abstract, the entire class must be abstract.

Q: I want to define a custom getter and setter for an abstract property. Why can’t I?

A: When you mark a property as abstract, you’re telling the compiler that the property has no useful implementation that would help its subclasses. If the compiler sees that an abstract property has some sort of implementation, such as a custom getter or setter, or an initial value, the compiler gets confused and won’t compile the code.




When a subclass inherits from an abstract superclass, the subclass can still define its own functions and properties.






Let’s update the Animals project

In the previous chapter, we wrote the code for the Animal, Canine, Hippo, Wolf and Vet classes, and added these to the Animals project. We need to update this code so that we make the Animal and Canine classes abstract. We’ll also make the image, food and habitat properties in the Animal class abstract, along with its makeNoise and eat functions.

Open the Animals project that you created in the previous chapter, and then update your version of the code in file Animals.kt so that it matches ours below (our changes are in bold):


[image: image]






[image: image]






[image: image]




Let’s take the code for a test drive to see what happens.


Test drive


[image: image]




Run your code. The following text gets printed in the IDE’s output window as before, but now we’re using abstract classes to control which classes can be instantiated.

The Animal is roaming

The Hippo is eating grass

The Canine is roaming

The Wolf is eating meat

Hooooowl!

Grunt! Grunt!


Pool Puzzle


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the snippets. Your goal is to create the code that matches the class inheritance hierarchy shown below.


[image: image]




Note: each thing from the pool can only be used once!


[image: image]







Pool Puzzle Solution


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the snippets. Your goal is to create the code that matches the class inheritance hierarchy shown below.


[image: image]





[image: image]











Independent classes can have common behavior

So far, you’ve learned how to create an inheritance hierarchy using a mix of abstract superclasses and concrete subclasses. This approach helps you to avoid writing duplicate code, and it means that you can write flexible code that benefits from polymorphism. But what if you want to include classes in your application that share some of the behavior defined in the inheritance hierarchy, but not all?

Suppose, for example, that we want to add a Vehicle class to our animal simulation application that has one function: roam. This would allow us to create Vehicle objects that can roam around the animals environment.


[image: image]




It would be useful if the Vehicle class could somehow implement the Animal’s roam function, as this would mean that we could use polymorphism to create an array of objects that can roam, and call functions on each one. But the Vehicle class doesn’t belong in the Animal superclass hierarchy as it fails the IS-A test: saying “a Vehicle IS-A Animal” makes no sense, and neither does saying “an Animal IS-A Vehicle”.


[image: image]





If two classes fail the IS-A test, this indicates that they probably don’t belong in the same superclass hierarchy.



When you have independent classes that exhibit common behavior, you can model this behavior using an interface. So what’s an interface?




An interface lets you define common behavior OUTSIDE a superclass hierarchy

Interfaces are used to define a protocol for common behavior so that you can benefit from polymorphism without having to rely on a strict inheritance structure. Interfaces are similar to abstract classes in that they can’t be instantiated, and they can define abstract or concrete functions and properties, but there’s one key difference: a class can implement multiple interfaces, but can only inherit from a single direct superclass. So using interfaces can provide the same benefits as using abstract classes, but with more flexibility.

Let’s see how this works by adding an interface named Roamable to our application, which we’ll use to define roaming behavior. We’ll implement this interface in the Animal and Vehicle classes.

We’ll start by defining the Roamable interface.


[image: image]







Let’s define the Roamable interface

We’re going to create a Roamable interface that we can use to provide a common protocol for roaming behavior. We’ll define an abstract function named roam that the Animal and Vehicle classes will need to implement (you’ll see the code for these classes later).

Here’s what our Roamable interface code looks like (we’ll add it to our Animals project a few pages ahead):


[image: image]





Interface functions can be abstract or concrete

You add functions to interfaces by including them in the interface body (inside the curly braces {}). In our example, we’re defining an abstract function named roam, so the code looks like this:


[image: image]




When you add an abstract function to an interface, there’s no need to prefix the function name with the abstract keyword, as you would if you were adding an abstract function to an abstract class. With an interface, the compiler automatically infers that a function with no body must be abstract, so you don’t have to mark it as such.

You can also add concrete functions to interfaces by providing the function with a body. The following code, for example, provides a concrete implementation for the roam function:


[image: image]




As you can see, you define functions in an interface in a similar way to how you define functions in an abstract class. So what about properties?






How to define interface properties

You add a property to an interface by including it in the interface body. This is the only way in which you can define an interface property, as unlike abstract classes, interfaces can’t have constructors. Here’s how, for example, you would add an abstract Int property to the Roamable interface named velocity:


[image: image]




Unlike properties in abstract classes, properties that are defined in an interface can’t store state, and therefore can’t be initialized. You can, however, return a value for a property by defining a custom getter using code like this:


[image: image]




Another restriction is that interface properties don’t have backing fields. You learned in Chapter 4 that a backing field provides a reference to the underlying value of a property, so you can’t, say, define a custom setter that updates a property’s value like this:


[image: image]




You, however, define a setter so long as it doesn’t try and reference the property’s backing field. The following code, for example, is valid:


[image: image]




Now that you’ve learned how to define an interface, let’s see how to implement one.




Declare that a class implements an interface...

You mark that a class implements an interface in a similar way to how you mark that a class inherits from a superclass: by adding a colon to the class header followed by the name of the interface. Here’s how, for example, you declare that the Vehicle class implements the Roamable interface:


[image: image]




Unlike when you declare that a class inherits from a superclass, you don’t put parentheses after the interface name. This is because the parentheses are only needed in order to call the superclass constructor, and interfaces don’t have constructors.


...then override its properties and functions

Declaring that a class implements an interface gives the class all the properties and functions that are in that interface. You can override any of these properties and functions, and you do this in exactly the same way that you would override properties and functions inherited from a superclass. The following code, for example, overrides the roam function from the Roamable interface:


[image: image]




Just like abstract superclasses, any concrete classes that implement the interface must have a concrete implementation for any abstract properties and functions. The Vehicle class, for example, directly implements the Roamable interface, so it must implement all the abstract properties and functions defined in this interface in order for the code to compile. If the class that implements the interface is abstract, however, the class can either implement the properties and functions itself, or pass the buck to its subclasses.

Note that a class that implements an interface can still define its own properties and functions. The Vehicle class, for example, could define its own fuelType property and still implement the Roamable interface.

Earlier in the chapter, we said that a class could implement multiple interfaces. Let’s see how.


Concrete classes can’t contain abstract properties and functions, so they must implement all of the abstract properties and functions that they inherit.








How to implement multiple interfaces

You declare that a class (or interface) implements multiple interfaces by adding each one to the class header, separating each one with a comma. Suppose, for example, that you have two interfaces named A and B. You would declare that a class named X implements both interfaces using the code:


[image: image]





[image: image]




A class can also inherit from a superclass in addition to implementing one or more interfaces. Here’s how, for example, you specify that class Y implements interface A, and inherits from class C:


[image: image]




If a class inherits multiple implementations of the same function or property, the class must provide its own implementation, or specify which version of the function or property it should use. If, for example, the A and B interfaces both include a concrete function named myFunction, and the X class implements both interfaces, the X class must provide an implementation of myFunction so that the compiler knows how to handle a call to this function:


[image: image]







How do you know whether to make a class, a subclass, an abstract class, or an interface?

Unsure whether you should create a class, abstract class or interface? Then the following tips should help you out:

Note

Roses are red, Violets are blue, Inherit from one, But implement two.

A Kotlin class can have only one parent (superclass), and that parent class defines who you are. But you can implement multiple interfaces, and those interfaces define the roles that you can play.




	* Make a class with no superclass when your new class doesn’t pass the IS-A test for any other type.


	* Make a subclass that inherits from a superclass when you need to make a more specific version of a class and need to override or add new behaviors.


	* Make an abstract class when you want to define a template for a group of subclasses. Make the class abstract when you want to guarantee that nobody can make objects of that type.


	* Make an interface when you want to define common behavior, or a role that other classes can play, regardless of where these classes are in the inheritance tree.




Now that you’ve seen how to define and implement interfaces, let’s update the code for our Animals project.


there are no Dumb Questions

Q: Are there any naming conventions for interfaces?

A: Nothing is enforced, but because interfaces specify behavior, words ending in -ible or -able are often used; they give a name to what something does, rather than what it is.

Q: Why don’t interfaces and abstract classes need to be marked as open?

A: Interfaces and abstract classes live to be implemented or inherited from. The compiler knows this, so behind the scenes, every interface and abstract class is implicitly open, even if it isn’t marked as such.

Q: You said that you can override any of the properties and functions that are defined in an interface. Don’t you mean that you can override any of its abstract properties and functions?

A: No. With an interface, you can override any of its properties and functions. So even if a function in an interface has a concrete implementation, you can still override it.

Q: Can an interface inherit from a superclass?

A: No, but it can implement one or more interfaces.

Q: When should I define a concrete implementation for a function, and when should I leave it abstract?

A: You normally provide a concrete implementation if you can think of one that would be helpful to anything that inherits it.

If you can’t think of a helpful implementation, you would normally leave it abstract as this forces any concrete subclasses to provide their own implementation.






Update the Animals project

We’ll add a new Roamable interface and Vehicle class to our project. The Vehicle class will implement the Roamable interface, and so will the abstract Animal class.

Update your version of the code in file Animals.kt so that it matches ours below (our changes are in bold):


[image: image]






[image: image]






[image: image]




Let’s see what happens when we take our code for a test drive.


Test drive


[image: image]




Run your code. Text gets printed in the IDE’s output window as before, but now the Animal class uses the Roamable interface for its roaming behavior.

We still need to use Vehicle objects in our main function, but first, have a go at the following exercise.

The Animal is roaming

The Hippo is eating grass

The Canine is roaming

The Wolf is eating meat

Hooooowl!

Grunt! Grunt!


[image: image] Exercise

On the left you’ll find sets of class diagrams. Your job is to turn these into valid Kotlin declarations. We did the first one for you.


[image: image]







[image: image] Exercise Soluion

On the left you’ll find sets of class diagrams. Your job is to turn these into valid Kotlin declarations. We did the first one for you.


[image: image]











Interfaces let you use polymorphism

You already know that using interfaces means that your code can benefit from polymorphism. You can, for example, use polymorphism to create an array of Roamable objects, and call each object’s roam function:


[image: image]




But what if you don’t just want to access functions and properties defined in the Roamable interface? What if you want to call each Animal’s makeNoise function too? You can’t just use:

item.makeNoise()

because item is a variable of type Roamable, so it doesn’t recognize the makeNoise function.


Access uncommon behavior by checking an object’s type

You can access behavior that’s not defined by a variable’s type by first using the is operator to check the type of the underlying object. If the underlying object is of the appropriate type, the compiler then lets you access behavior that’s appropriate for that type. The following code, for example, checks whether the object referred to by an Animal variable is a Wolf, and if so, calls the eat function:


[image: image]




In the above code, the compiler knows that the underlying object is a Wolf, so it’s safe to run any code that’s Wolf-specific. This means that if we want to call the eat function for each Animal object in an array of Roamables, we can use the following:


[image: image]




You can use the is operator in a variety of situations. Let’s find out more.


Use the is operator to check if the underlying object is the specified type (or one of its subtypes).








Where to use the is operator

Here are some of the most common ways in which you might want to use the is operator:


As the condition for an if

As you’ve already seen, you can use the is operator as the condition for an if. The following code, for example, assigns a String of “Wolf” to variable str if the animal variable holds a reference to a Wolf object, and “not Wolf” if it doesn’t:


[image: image]







In conditions using && and ||

You can build up more complex conditions using && and ||. The following code, for instance, tests whether a Roamable variable holds a reference to an Animal object, and if so, it further tests if the Animal’s hunger property is less than 5:


[image: image]




You can also use !is to test if an object is not a particular type. The following code, for example, is like saying “if the roamable variable doesn’t hold a reference to an Animal, or if the Animal’s hunger property is greater than or equal to 5”:


[image: image]







In a while loop

If you want to use the is operator as the condition for a while loop, you can do so using code like this:

while (animal is Wolf) {

    //Code that runs while the Animal is a Wolf

}

In the above example, the code continues to loop while the animal variable holds a reference to a Wolf object.

You can also use the is operator with a when statement. Let’s find out what these are, and how to use them.






Use when to compare a variable against a bunch of options

A when statement is useful if you want to compare a variable against a set of different options. It’s like using a chain of if/else expressions, but more compact and readable.

Here’s an example of what a when statement looks like:


[image: image]




The above code takes the variable x, and checks its value against various options. It’s like saying: “when x is 0, print “x is zero”, when x is 1 or 2, print “x is 1 or 2”, otherwise print some other text”.

If you want to run different code depending on the underlying type of an object, you can use the is operator inside a when statement. The code below, for example, uses the is operator to check the type of the underlying object that’s referenced by the roamable variable. When the type is Wolf, it runs code that’s Wolf-specific, when the type is Hippo, it runs Hippo-specific code, and it runs other code if the type is some other Animal (not Wolf or Hippo):


[image: image]





Using when as an expression


[image: image]




You can also use when as an expression, which means that you can use it to return a value. The following code, for example, uses a when expression to assign a value to a variable:

var y = when (x) {

    0 -> true

    else -> false

}

When you use the when operator in this way, you must account for every value the variable you’re checking can have, usually by including an else clause.






The is operator usually performs a smart cast

In most circumstances, the is operator performs a smart cast. Casting means that the compiler treats a variable as though its type is different to the one that it’s declared as, and smart casting means that the compiler automatically performs the cast on your behalf. The code below, for example, uses the is operator to smart cast the variable named item to a Wolf, so that inside the body of the if condition, the compiler can treat the item variable as though it’s a Wolf:


[image: image]




The is operator performs a smart cast whenever the compiler can guarantee that the variable can’t change between checking the object’s type and when it’s used. In the above code, for example, the compiler knows that the item variable can’t be given a reference to a different type of variable in between the call to the is operator, and the Wolf-specific function calls.

But there are some situations in which smart casting doesn’t happen. The is operator won’t smart cast a var property in a class, for example, because the compiler can’t guarantee that some other code won’t sneak in and update the property. This means that the following code won’t compile because the compiler can’t smart cast the r variable to a Wolf:


[image: image]





[image: image] Relax

You don’t need to remember all the circumstances in which smart casting can’t be used.

If you try and use smart casting inappropriately, the compiler will tell you.



So what can you do in this sort of situation?




Use as to perform an explicit cast

If you want to access the behavior of an underlying object but the compiler can’t perform a smart cast, you can explicitly cast the object into the appropriate type.

Suppose you’re sure that a Roamable variable named r holds a reference to a Wolf object, and you want to access the object’s Wolf-specific behavior. In this situation, you can use the as operator to copy the reference that’s held in the Roamable variable, and force it into a new Wolf variable. You can then use the Wolf variable to access the Wolf behavior. Here’s the code to do this:


[image: image]




Note that the wolf and r variables each hold a reference to the same Wolf object. But whereas the r variable only knows that the object implements the Roamable interface, the wolf variable knows that the object is actually a Wolf, so it can treat the object like the Wolf it really is:


[image: image]




If you’re not sure that the underlying object is a Wolf, you can use the is operator to check before you do the cast using code like this:


[image: image]




So now that you’ve seen how casting (and smart casting) works, let’s update the code in our Animals project.




Update the Animals project

We’ve updated the code in our main function so that it includes an array of Roamable objects. Update your version of the function in file Animals.kt so that it matches ours below (our changes are in bold):


[image: image]




Now that you’ve updated your code, let’s take it for a test drive.


Test drive


[image: image]




Run your code. When the code loops through the roamables array, each item’s roam function is called, but the eat function is only called if the underlying object is an Animal.

The Animal is roaming

The Hippo is eating grass

The Canine is roaming

The Wolf is eating meat

Hooooowl!

Grunt! Grunt!

The Animal is roaming

The Hippo is eating grass

The Canine is roaming

The Wolf is eating meat

The Vehicle is roaming


BE the Compiler Solution


[image: image]




The code on the left represents a source file. Your job is to play like you’re the compiler and say which of the code segments on the right would compile and produce the required output when inserted into the code on the left.

Output:

Plane is flying

Superhero is flying

Note

The code needs to produce this output.




[image: image]







BE the Compiler Solution

The code on the left represents a source file. Your job is to play like you’re the compiler and say which of the code segments on the right would compile and produce the required output when inserted into the code on the left.

Output:

Plane is flying

Superhero is flying


[image: image]











Your Kotlin Toolbox


[image: image]




You’ve got Chapter 6 under your belt and now you’ve added abstract classes and interfaces to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	An abstract class can’t be instantiated. It can contain both abstract and non-abstract properties and functions.


	Any class that contains an abstract property or function must be declared abstract.


	A class that’s not abstract is called concrete.


	You implement abstract properties and functions by overriding them.


	All abstract properties and functions must be overridden in any concrete subclasses.


	An interface lets you define common behavior outside a superclass hierarchy so that independent classes can still benefit from polymorphism.


	Interfaces can have abstract or non-abstract functions.


	Interfaces properties can be abstract, or they can have getters and setters. They can’t be initialized, and they don’t have access to a backing field.


	A class can implement multiple interfaces.


	If a subclass inherits from a superclass (or implements an interface) named A, you can use the code:

super<A>.myFunction

to call the implementation of myFunction that’s defined in A.


	If a variable holds a reference to an object, you can use the is operator to check the type of the underlying object.


	The is operator performs a smart cast when the compiler can guarantee that the underlying object can’t have changed between the type check and its usage.


	The as operator lets you perform an explicit cast.


	A when expression lets you compare a variable against an exhaustive set of different options.










Chapter 7. data classes: Dealing with Data


[image: image]




Nobody wants to spend their life reinventing the wheel.

Most applications include classes whose main purpose is to store data, so to make your coding life easier, the Kotlin developers came up with the concept of a data class. Here, you’ll learn how data classes enable you to write code that’s cleaner and more concise than you ever dreamed was possible. You’ll explore the data class utility functions, and discover how to destructure a data object into its component parts. Along the way, you’ll find out how default parameter values can make your code more flexible, and we’ll introduce you to Any, the mother of all superclasses.


== calls a function named equals

As you already know, you can use the == operator to check for equality. Behind the scenes, each time you use the == operator, it calls a function named equals. Every object has an equals function, and the implementation of this function determines how the == operator will behave.

By default, the equals function checks for equality by checking whether two variables hold references to the same underlying object.

To see how this works, suppose that we have two Wolf variables named w1 and w2. If w1 and w2 hold references to the same Wolf object, comparing them with the == operator will evaluate to true:


[image: image]




If, however, w1 and w2 hold references to separate Wolf objects, comparing them with the == operator will evaluate to false, even if the objects hold identical property values.


[image: image]




As we said earlier, every object that you create automatically includes an equals function. But where does this function come from?




equals is inherited from a superclass named Any

Each object has a function named equals because its class inherits the function from a class named Any. Class Any is the mother of all classes: the ultimate superclass of everything. Every class you define is a subclass of Any without you ever having to say it. So if you write the code for a class named myClass that looks like this:

class MyClass {

     ...

}


Every class is a subclass of the Any class, and inherits its behavior. Every class IS-A type of Any without you having to say so.



behind the scenes, the compiler automatically turns it into this:


[image: image]





The importance of being Any

Having Any as the ultimate superclass has two key benefits:


	* It ensures that every class inherits common behavior.

The Any class defines important behavior that the system relies on, and as every class is a subclass of Any, this behavior is inherited by every object you create. The Any class defines a function named equals, for example, which means that every object automatically inherits this function.


	* It means you can use polymorphism with any object.

Every class is a subclass of Any, so every object you create has Any as its ultimate supertype. This means that you can create a function with Any parameters, or an Any return type, so that it will work with all types of object. It also means that you can create polymorphic arrays to hold objects of any type using code like this:





[image: image]




Let’s take a closer look at the common behavior inherited from the Any class.






The common behavior defined by Any

The Any class defines several functions that are inherited by every class. Here are the ones we care about most, along with an example of its default behavior:


	* equals(any: Any): Boolean

Tells you if two objects are considered “equal”. By default, it returns true if it’s used to test the same object, and false if it’s used to test separate objects. Behind the scenes, the equals function gets called each time you use the == operator.


[image: image]





[image: image]





	* hashCode(): Int

Returns a hash code value for the object. They’re often used by certain data structures to store and retrieve values more efficiently.


[image: image]





	* toString(): String

Returns a String message that represents the object. By default, this is the name of the class and some other number that we rarely care about.

val w = Wolf()

println(w.toString())

   Wolf@1f32e575




The Any class provides a default implementation for each of the above functions, and these implementations are inherited by every class. They can, however, be overridden if you want to change the default behavior of any of these functions.


By default, the equals function checks whether two objects are the same underlying object.

The equals function defines the behavior of the == operator.






We might want equals to check whether two objects are equivalent

There are some situations in which you might want to change the implementation of the equals function in order to change how the == operator behaves.

Suppose, for example, that you have a class named Recipe that lets you create objects that hold recipe data. In this situation, you might consider two Recipe objects to be equal (or equivalent) if they hold details of the same recipe. So if the Recipe class is defined as having two properties named title and isVegetarian using code like this:


[image: image]




you might want the == operator to evaluate to true if it’s used to compare two Recipe objects that have matching title and isVegetarian properties:


[image: image]




While you could change the behavior of the == operator by writing extra code to override the equals function, the Kotlin developers came up with a better approach: they came up with the concept of a data class. Let’s find out what one of these is, and how to create one.




A data class lets you create data objects

A data class is one that lets you create objects whose main purpose is to store data. It includes features that are helpful when you’re dealing with data, such as a new implementation of the equals function that checks whether two data objects hold the same property values. This is because if two objects store the same data, they can be considered equal.

You define a data class by prefixing a normal class definition with the data keyword. The following code, for example, changes the Recipe class we created earlier into a data class:


[image: image]





How to create objects from a data class

You create objects from a data class in the same way that you create objects from a normal class: by calling its constructor. The following code, for example, creates a new Recipe data object, and assigns it to a new variable named r1:


[image: image]




val r1 = Recipe("Chicken Bhuna", false)

Data classes automatically override their equals function in order to change the behavior of the == operator so that it checks for object equality based on the values of each object’s properties. If, for example, you create two Recipe objects that hold identical property values, comparing the two objects with the == operator will evaluate to true, because they hold the same data:


[image: image]




In addition to providing a new implementation of the equals function it inherits from the Any superclass, data classes also override the hashCode and toString functions. Let’s take a look at how these are implemented.






Data classes override their inherited behavior

A data class needs its objects to play well with data, so it automatically provides the following implementations for the equals, hashCode and toString functions it inherits from the Any superclass:


The equals function compares property values

When you define a data class, its equals function (and therefore the == operator) continues to return true if it’s used to test the same object. But it also returns true if the objects have identical values for the properties defined in its constructor:

val r1 = Recipe("Chicken Bhuna", false)

val r2 = Recipe("Chicken Bhuna", false)

println(r1.equals(r2))

    true


Data objects are considered equal if their properties hold the same values.






Equal objects return the same hashCode value

If two data objects are considered equal (in other words, they have identical property values), the hashCode function returns the same value for each object:

val r1 = Recipe("Chicken Bhuna", false)

val r2 = Recipe("Chicken Bhuna", false)

println(r1.hashCode())

println(r2.hashCode())

    241131113

    241131113

Note

You can think of a hash code as being like a label on a bucket. Objects that are considered equal are put in the same bucket, and the hash code tells the system where to look for them. Equal objects MUST have the same hash code value as the system depends on this. You’ll find out more about this in Chapter 9.






toString returns the value of each property

Finally, the toString function no longer returns the name of the class followed by a number. Instead, it returns a useful String that contains the value of each property that’s defined in the data class constructor:

val r1 = Recipe("Chicken Bhuna", false)

println(r1.toString())

     Recipe(title=Chicken Bhuna, isVegetarian=false)

In addition to overriding the functions it inherits from the Any superclass, a data class also provides extra features that help you deal with data more effectively, such as the ability to copy a data object. Let’s see how this works.






Copy data objects using the copy function

If you want to create a new copy of a data object, altering some of its properties but leaving the rest intact, you can do so using the copy function. To use, you call the function on the object you want to copy, passing in the names of any properties you wish to alter along with their new values.

Suppose that you have a Recipe object named r1 that’s defined using code like this:


[image: image]





The copy function lets you copy a data object, altering some of its properties. The original object remains intact.



If you wanted to create a copy of the Recipe object, altering the value of its isVegetarian property to true, you could do so using the copy function like so:


[image: image]




It’s like saying “take a copy of r1’s object, change the value of its isVegetarian property to true, and assign the new object to a variable named r2”. It creates a new copy of the object, and leaves the original object intact.

As well as the copy function, data classes also provide a set of functions that allow you to split a data object into its component property values in a process called destructuring. Let’s see how.




Data classes define componentN functions...

When you define a data class, the compiler automatically adds a set of functions to the class that you can use as an alternate way of accessing its object’s property values. These are known as componentN functions, where N represents the number of the property whose value you wish to retrieve (in order of declaration).

To see how componentN functions work, suppose that you have the following Recipe object:


[image: image]




If you wanted to retrieve the value of the object’s first property (its title property), you could do this by calling the object’s component1() function like this:


[image: image]





[image: image]




This does the same thing as the code:

val title = r.title

but it’s more generic. So why is it so useful for a data class to have generic ComponentN functions?


...that let you destructure data objects

Having generic componentN functions is useful as it provides a quick way of splitting a data object into its component property values, or destructuring it.

Suppose, for example, that you wanted to take the property values of a Recipe object, and assign each property value to a separate variable. Instead of using the code:

val title = r.title

val vegetarian = r.isVegetarian


Destructuring a data object splits it into its component parts.



to explicitly process each property in turn, you can use the following code instead:


[image: image]





[image: image]




The above code is like saying “create two variables, title and vegetarian, and assign one of r’s property values to each one.” It does the same thing as the code:

val title = r.component1()

val vegetarian = r.component2()

but it’s more concise.


[image: image]




The === operator always lets you check whether two variables refer to the same underlying object.

If you want to check whether two variables refer to the same underlying object, irrespective of their type, you should use the === operator instead of ==. This is because the === operator always evaluates to true if (and only if) the two variables hold a reference to the same underlying object. This means that if, for example, you have two variables named x and y, and the code:

x === y

evaluates to true, then you know that the x and y variables must refer to the same underlying object:


[image: image]




Unlike the == operator, the === operator doesn’t rely on the equals function for its behavior. The === operator always behaves in this way irrespective of the type of class.

Now that you’ve seen how to create and use data classes, let’s create a project for the Recipe code.


== checks for object equivalence.

=== checks for object identity.








Create the Recipes project

Create a new Kotlin project that targets the JVM, and name the project “Recipes”. Then create a new Kotlin file named Recipes.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “Recipes”, and choose File from the Kind option.

We’ll add a new data class named Recipe to the project, and create some Recipe data objects. Here’s the code—update your version of Recipes.kt to match ours:


[image: image]





Test drive


[image: image]




When you run your code, the following text gets printed in the IDE’s output window:


[image: image]





there are no Dumb Questions

Q: You said that every class is a subclass of Any. I thought that each class could only have one direct superclass?

A: Behind the scenes, the Any class sits at the root of every superclass hierarchy, so every class you create is either a direct or indirect subclass of Any. This means that every class IS-A type of Any, and inherits the functions it defines: equals, hashCode and toString.

Q: I see. And you say that data classes automatically override these functions?

A: Yes. When you define a data class, the compiler secretly overrides the equals, hashCode and toString functions the class inherits so that they’re more appropriate for objects whose main purpose is to hold data.

Q: Can I override these functions without creating a data class?

A: Yes, in exactly the same way that you override functions from any other class: by providing an implementation for the functions in the body of your class.

Q: Are there any rules I have to follow?

A: The main thing is that if you override the equals function, you should override the hashCode function as well

If two objects are considered equal, they must have the same hash code value. Some collections use hash codes as an efficient way of storing objects, and the system assumes that if two objects are equal, they also have the same hash code. You’ll find out more about this in Chapter 9.

Q: That sounds complicated.

A: It’s certainly easier to create a data class, and using a data class means that you’ll have cleaner code that’s more concise. If you want to override the equals, hashCode and toString functions yourself, however, you can get the IDE to generate most of the code for you.

To get the IDE to generate implementations for the equals, hashCode or toString functions, start by writing the basic class definition, including any properties. Next, make sure that your text cursor is in the class, go to the Code menu, and select the Generate option. Finally, choose the function you want to generate code for.

Q: I’ve noticed that you’ve only defined data class properties in the constructor using val. Can I define them using var as well?

A: You can, but we’d strongly encourage you to make your data classes immutable by only creating val properties. Doing so means that once a data object has been created, it can’t be updated, so you don’t have to worry about some other code changing any of its properties. Only having val properties is also a requirement of certain data structures.

Q: Why do data classes include a copy function?

A: Data classes are usually defined using val properties so that they’re immutable. Having a copy function is a good alternative to having data objects that can be modified as it lets you easily create another version of the object with modified property values.

Q: Can I declare that a data class is abstract? Or open?

A: No. Data classes can’t be declared abstract or open, so you can’t use a data class as a superclass. Data classes can implement interfaces, however, and from Kotlin 1.1, they can also inherit from other classes.




[image: image] Mixed Messages

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. All the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.


[image: image]







[image: image] Mixed Messages Solution

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. All the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.


[image: image]











Generated functions only use properties defined in the constructor

So far, you’ve seen how to define a data class, and add properties to its constructor. The following code, for example, defines a data class named Recipe with properties named title and isVegetarian:

data class Recipe(val title: String, val isVegetarian: Boolean) {

}


[image: image]




Just like any other sort of class, you can also add properties and functions to a data class by including them in the class body. But there’s a Big Catch.

When the compiler generates implementations for data class functions, such as overriding the equals function and creating a copy function, it only includes the properties defined in the primary constructor. So if you add properties to a data class by defining them in the class body, they won’t be included in any of the generated functions.

Suppose, for example, that you add a new mainIngredient property to the Recipe data class body like this:

data class Recipe(val title: String, val isVegetarian: Boolean) {

     var mainIngredient = ""

}


[image: image]




As the mainIngredient property has been defined in the main body of the class instead of the constructor, it’s ignored by functions such as equals. This means that if you create two Recipe objects using code like this:

val r1 = Recipe("Thai curry", false)

r1.mainIngredient = "Chicken"

val r2 = Recipe("Thai curry", false)

r2.mainIngredient = "Duck"

println(r1 == r2) // evaluates to true


[image: image]




the == operator will only look at the title and isVegetarian properties to determine if the two objects are equal because only these properties have been defined in the data class constructor. If the two objects have different values for the mainIngredient property (as in the above example), the equals function won’t look at this property when considering whether two objects are equal.

But what if your data class has many properties that you want to be included in the functions generated by the data class?




Initializing many properties can lead to cumbersome code

As you’ve just learned, any properties that you want to be included in the functions generated by a data class must be defined in its primary constructor. But if you have many such properties, your code can quickly become unwieldy. Each time you create a new object, you need to specify a value for each of its properties, so if you have a Recipe data class that looks like this:


[image: image]




your code to create a Recipe object will look like this:

val r = Recipe("Thai curry", "Chicken", false, "Easy")

This may not seem too bad if your data class has a small number of properties, but imagine if you needed to specify the values of 10, 20, or even 50 properties each time you needed to create a new object. Your code would quickly become much harder to manage.

So what can you do in this sort of situation?


Every data class must have a primary constructor, which must define at least one parameter. Each parameter must be prefixed with val or var.




Default parameter values to the rescue!

If your constructor defines many properties, you can simplify calls to it by assigning a default value or expression to one or more property definitions in the constructor. Here’s how, for example, you would assign default values to the isVegetarian and difficulty properties in the Recipe class constructor:


[image: image]




Let’s see what difference this makes to the way in which we create new Recipe objects.






How to use a constructor’s default values

When you have a constructor that uses default values, there are two main ways of calling it: by passing values in order of declaration, and by using named arguments. Let’s see how both approaches work.


1. Passing values in order of declaration

This approach is the same as the one you’ve already been using, except that you don’t need to provide values for any arguments that already have default values.

Suppose, for example, that we want to create a Spaghetti Bolognese Recipe object for a recipe that’s not vegetarian and is easy to make. We can create this object by specifying the values of the first two properties in the constructor using the following code:


[image: image]




The above code assigns values of “Spaghetti Bolognese” and “Beef” to the title and mainIngredient properties. It then uses the default values specified in the constructor for the remaining properties.

You can use this approach to override property values if you don’t want to use the default values. If you wanted to create a Recipe object for a vegetarian version of Spaghetti Bolognese, for example, you could use the following:


[image: image]




This assigns values of “Spaghetti Bolognese”, “Tofu” and true to the first three properties defined in the Recipe constructor, and uses the default value of “Easy” for the final difficulty property.

Note that in order to use this approach, you must pass values in the order in which they are declared. You can’t, say, omit the value of the isVegetarian property if you want to override the value of the difficulty property that comes after it. The following code, for example, is invalid:


[image: image]




Now that you’ve seen how passing values in order of declaration works, let’s look at how to use named arguments instead.




2. Using named arguments

Calling a constructor using named arguments lets you explicitly state which property should be assigned which value, without having to stick to the order in which properties are defined.

Suppose, for example, that we want to create a Spaghetti Bolognese Recipe object that specifies the values of the title and mainIngredient properties, just as we did earlier. To do this using named arguments, you would use the following code:


You must pass a value for every argument that doesn’t have a default value assigned to it or your code won’t compile.




[image: image]




The above code assigns values of “Spaghetti Bolognese” and “Beef” to the title and mainIngredient properties. It then uses the default values specified in the constructor for the remaining properties


[image: image]




Note that because we’re using named arguments, the order in which we specify the arguments doesn’t matter. The following code, for example, does the same thing as the code above, and is equally valid:


[image: image]




The big advantage of using named arguments is that you only need to include arguments that have no default value, or whose default value you want to override. If you wanted to override the value of the difficulty property, for example, you could do so using code like this:

val r = Recipe(title = "Spaghetti Bolognese",

               mainIngredient = "Beef",

               difficulty = "Moderate")


[image: image]




Using default parameter values and named arguments doesn’t just apply to data class constructors; you can also use them with normal class constructors or functions. We’ll show you how to use default values with functions after a small diversion.


[image: image] Secondary Constructors

Just as in other languages such as Java, classes in Kotlin let you define one or more secondary constructors. Secondary constructors are extra constructors that allow you to pass different parameter combinations to create objects. Most of the time, however, you don’t need to use them as having default parameter values is so flexible.

Here’s an example of a class named Mushroom that defines two constructors—a primary constructor defined in the class header, and a secondary constructor defined in the class body:

Note

Even though secondary constructors aren’t used all that much in Kotlinville, we thought we’d give you a quick overview so that you know what they look like.




[image: image]




Each secondary constructor starts with the constructor keyword, and is followed by the set of parameters used to call it. So in the above example, the code:

constructor(isMagic_param: Boolean)

creates a secondary constructor with a Boolean parameter.

If the class has a primary constructor, each secondary constructor must delegate to it. The following constructor, for example, calls the Mushroom class primary constructor (using the this keyword), passing it a value of 0 for the size property, and the value of the parameter isMagic_param for the isMagic parameter:


[image: image]




You can define extra code that the secondary constructor should run when it’s called in the secondary constructor’s body:

constructor(isMagic_param: Boolean) : this(0, isMagic_param) {

    //Code that runs when the secondary constructor is called

}

Finally, once you’ve defined a secondary constructor, you can use it to create objects using code like this:

val m = Mushroom(true)


[image: image]











Functions can use default values too

Suppose we have a function named findRecipes that searches for recipes based on a set of criteria:

fun findRecipes(title: String,

                ingredient: String,

                isVegetarian: Boolean,

                difficulty: String) : Array<Recipe> {

   //Code to find recipes

}

Each time we call the function, we must pass it values for all four parameters in order for the code to compile like this:

val recipes = findRecipes("Thai curry", "", false, "")

We can make the function more flexible by assigning each parameter a default value. Doing so means that we no longer have to pass all four values to the function in order for it to compile, only the ones that we want to override:


[image: image]




So if we wanted to pass the function a value of “Thai curry” for the title parameter and accept the default values for the rest, we could use the code:


[image: image]




Using default values means that you can write functions that are much more flexible. But there are times when you might want to write a new version of the function instead by overloading it.




Overloading a function

Function overloading is when you have two or more functions with the same name but with different argument lists.

Suppose you have a function named addNumbers that looks like this:

fun addNumbers(a: Int, b: Int) : Int {

    return a + b

}

The function has two Int arguments, so you can only pass Int values to it. If you wanted to use it to add together two Doubles, you would have to convert these values to Ints before passing them to the function.

You can, however, make life much easier for the caller by overloading the function with a version that takes Doubles instead, like so:


[image: image]




This means that if you call the addNumbers function using the code:


An overloaded function is just a different function that happens to have the same function name with different arguments. An overloaded function is NOT the same as an overridden function.



then the system will spot that the parameters 2 and 5 are Ints, and call the Int version of the function. If, however, you call the addNumbers function using:

addNumbers(1.6, 7.3)

then the system will call the Double version of the function instead, as the parameters are both Doubles.


Dos and don’ts for function overloading:


	* The return types can be different.

You’re free to change the return type of an overloaded function, so long as the argument lists are different.


	* You can’t change ONLY the return type.

If only the return type is different, it’s not a valid overload—the compiler will assume you’re trying to override the function. And even that won’t be legal unless the return type is a subtype of the return type declared in the superclass. To overload a function, you MUST change the argument list, although you can change the return type to anything.









Let’s update the Recipes project

Now that you’ve learned how to use default parameter values and overload functions, let’s update the code in the Recipes project.

Update your version of the code in file Recipes.kt so that it matches ours below (our changes are in bold):


[image: image]







The code continued...


[image: image]





Test drive


[image: image]




When you run your code, the following text gets printed in the IDE’s output window:

r1 hash code: 295805076

r2 hash code: 295805076

r3 hash code: 1459025056

r1 toString: Recipe(title=Thai Curry, mainIngredient=Chicken, isVegetarian=false, difficulty=Easy)

r1 == r2? true

r1 === r2? false

r1 == r3? false

title is Thai Curry and vegetarian is false

m1 size is 6 and isMagic is false

m2 size is 0 and isMagic is true

7

8.9


there are no Dumb Questions

Q: Can a data class include functions?

A: Yes. You define data class functions in exactly the same way that you define functions in a non-data class: by adding them to the class body.

Q: Default parameter values look really flexible.

A: They are! You can use them in class constructors (including data class constructors) and functions, and you can even have a default parameter value that’s an expression. This means that you can write code that’s flexible, but very concise.

Q: You said that using default parameter values mostly gets around the need for writing secondary constructors. Are there any situations where I may still need them?

A: The most common situation is if you need to extend a class in a framework (such as Android) that has multiple constructors.

You can find out more about using secondary constructors in Kotlin’s online documentation:

https://kotlinlang.org/docs/reference/classes.html

Q: I want Java programmers to be able to use my Kotlin classes, but Java has no concept of default parameter values. Can I still use default parameter values in my Kotlin classes?

A: You can. When you call a Kotlin constructor or function from Java, just make sure that the Java code specifies a value for each parameter, even if it has a default parameter value.

If you plan on making a lot of Java calls to your Kotlin constructor or function, an alternative approach is to annotate each function or constructor that uses default parameter values with @JvmOverloads. This tells the compiler to automatically create overloaded versions that can more easily be called from Java.

Here’s an example of how you use @JvmOverloads with a function:

@JvmOverloads fun myFun(str: String = ""){

    //Function code goes here

}

And here’s an example of how you use it with a class that has a primary constructor:

class Foo @JvmOverloads constructor(i: Int = 0){

    //Class code coes here

}

Note that in order to annotate the primary constructor with @JvmOverloads, you must also prefix the constructor with the constructor keyword. Most of the time, this keyword is optional.




BE the Compiler


[image: image]




Here are two complete Kotlin files. Your job is to play like you’re the compiler and determine whether each of these files will compile. If they won’t compile, how would you fix them?

data class Student(val firstName: String, val lastName: String,

                   val house: String, val year: Int = 1)



fun main(args: Array<String>) {

    val s1 = Student("Ron", "Weasley", "Gryffindor")

    val s2 = Student("Draco", "Malfoy", house = "Slytherin")

    val s3 = s1.copy(firstName = "Fred", year = 3)

    val s4 = s3.copy(firstName = "George")



    val array = arrayOf(s1, s2, s3, s4)

    for ((firstName, lastName, house, year) in array) {

        println("$firstName $lastName is in $house year $year")

    }

}

data class Student(val firstName: String, val lastName: String,

                   val house: String, val year: Int = 1)



fun main(args: Array<String>) {

     val s1 = Student("Ron", "Weasley", "Gryffindor")

     val s2 = Student(lastName = "Malfoy", firstName = "Draco", year = 1)

     val s3 = s1.copy(firstName = "Fred")

     s3.year = 3

     val s4 = s3.copy(firstName = "George")



     val array = arrayOf(s1, s2, s3, s4)

     for (s in array) {

         println("${s.firstName} ${s.lastName} is in ${s.house} year ${s.year}")

     }

}




BE the Compiler Solution

Here are two complete Kotlin files. Your job is to play like you’re the compiler and determine whether each of these files will compile. If they won’t compile, how would you fix them?


[image: image]











Your Kotlin Toolbox


[image: image]




You’ve got Chapter 7 under your belt and now you’ve added data classes and default parameter values to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	The behavior of the == operator is determined by the implementation of the equals function.


	Every class inherits an equals, hashCode and toString function from the Any class because every class is a subclass of Any. These functions can be overridden.


	The equals function tells you if two objects are considered “equal”. By default, it returns true if it’s used to test the same underlying object, and false if it’s used to test separate objects.


	The === operator lets you check whether two variables refer to the same underlying object irrespective of the object’s type.


	A data class lets you create objects whose main purpose is to store data. It automatically overrides the equals, hashCode and toString functions, and includes copy and componentN functions.


	The data class equals function checks for equality by looking at each object’s property values. If two data objects hold the same data, the equals function returns true.


	The copy function lets you create a new copy of a data object, altering some of its properties. The original object remains intact.


	componentN functions let you destructure data objects into their component property values.


	A data class generates its functions by considering the properties defined in its primary constructor.


	Constructors and functions can have default parameter values. You can call a constructor or function by passing parameter values in order of declaration or by using named arguments.


	Classes can have secondary constructors.


	An overloaded function is a different function that happens to have the same function name. An overloaded function must have different arguments, but may have a different return type.





Rules for data classes

* There must be a primary constructor.

* The primary constructor must define one or more parameters.

* Each parameter must be marked as val or var.

*Data classes must not be open or abstract.









Chapter 8. nulls and exceptions: Safe and Sound


[image: image]




Everybody wants to write code that’s safe.

And the great news is that Kotlin was designed with code-safety at its heart. We’ll start by showing you how Kotlin’s use of nullable types means that you’ll hardly ever experience a NullPointerException during your entire stay in Kotlinville. You’ll discover how to make safe calls, and how Kotlin’s Elvis operator stops you being all shook up. And when we’re done with nulls, you’ll find out how to throw and catch exceptions like a pro.


How do you remove object references from variables?

As you already know, if you want to define a new Wolf variable and assign a Wolf object reference to it, you can do so using code like this:

var w = Wolf()

The compiler spots that you want to assign a Wolf object to the w variable, so it infers that the variable must have a type of Wolf:


[image: image]




Once the compiler knows the variable’s type, it ensures that it can only hold references to Wolf objects, including any Wolf subtypes. So if the variable is defined using var, you can update its value so that it holds a reference to an entirely different Wolf object using, for example:

w = Wolf()


[image: image]




But what if you want to update the variable so that it holds a reference to no object at all? How do you remove an object reference from a variable once one has been assigned?




Remove an object reference using null

If you want to remove a reference to an object from a variable, you can do so by assigning it a value of null:

w = null

A null value means that the variable doesn’t refer to an object: the variable still exists, but it doesn’t point to anything

But there’s a Big Catch. By default, types in Kotlin won’t accept null values. If you want a variable to hold null values, you must explicitly declare that its type is nullable.


[image: image] The Meaning of Null

When you set a variable to null, it’s like deprogramming a remote control. You have a remote control (the variable), but no TV at the other end (the object).

A null reference has bits representing “null”, but we don’t know or care what those bits are. The system automatically handles this for us.




Why have nullable types?

A nullable type is one that allows null values. Unlike other programming languages, Kotlin tracks values that can be null to stop you from performing invalid actions on them. Performing invalid actions on null values is the most common cause of runtime problems in other languages such as Java, and can cause your application to crash in a heap when you least expect it. These problems, however, rarely happen in Kotlin because of its clever use of nullable types.

Note

If you try to perform an invalid operation on a null value in Java, you’ll be faced with a big fat NullPointerException. An exception is a warning that tells you something exceptionally bad has just happened. We’ll look at exceptions in more detail later in the chapter.



You declare that a type is nullable by adding a question mark (?) to the end of the type. To create a nullable Wolf variable and assign a new Wolf object to it, for example, you would use the code:


[image: image]




And if you wanted to remove the Wolf reference from the variable, you would use:


[image: image]




So where can you use nullable types?


A nullable type is one that can hold null values in addition to its base type. A Duck? variable, for example, will accept Duck objects and null.








You can use a nullable type everywhere you can use a non-nullable type

Every type you define can be turned into a nullable version of that type by simply adding a ? to the end of it. You can use nullable types in the same places that you would use plain old non-nullable types:


	* When defining variables and properties.

Any variable or property can be nullable, but you must explicitly define it as such by declaring its type, including the ?. The compiler is unable to infer when a type is nullable, and by default, it will always create a non-nullable type. So if you want to create a nullable String variable named str and instantiate it with a value of “Pizza”, you must declare that it has a type of String? like this:

var str: String? = "Pizza"

Note that variables and properties can be instantiated with null. The following code, for example, compiles and prints the text “null”:


[image: image]





	* When defining parameters.

You can declare any function or constructor parameter type as nullable. The following code, for example, defines a function named printInt which takes a parameter of type Int? (a nullable Int):

fun printInt(x: Int?) {

    println(x)

}

When you define a function (or constructor) with a nullable parameter, you must still provide a value for that parameter when you call the function, even if that value is null. Just like with non-nullable parameter types, you can’t omit a parameter unless it’s been assigned a default value.


	* When defining function return types.

A function can have a nullable return type. The following function, for example, has a return type of Long?:


[image: image]







You can also create arrays of nullable types. Let’s see how.




How to create an array of nullable types

An array of nullable types is one whose items are nullable. The following code, for example, creates an array named myArray that holds String?s (Strings that are nullable):


[image: image]




The compiler can, however, infer that the array should hold nullable types if the array is initialized with one or more null items. So when the compiler sees the following code:

var myArray = arrayOf("Hi", "Hello", null)

it spots that the array can hold a mixture of Strings and nulls, and infers that the array should have a type of Array<String?>:


[image: image]




Now that you’ve learned how to define nullable types, let’s see how to refer to its object’s functions and properties.


there are no Dumb Questions

Q: What happens if I initialize a variable with a null value, and let the compiler infer the variable’s type? For example:

var x = null

A: The compiler sees that the variable needs to be able to hold null values, but as it has no information about any other kinds of object it might need to hold, it creates a variable that can only hold a value of null. This probably isn’t what you want, so if you’re going to initialize a variable with a null value, make sure you specify its type.

Q: You said in the previous chapter that every object is a subclass of Any. Can a variable whose type is Any hold null values?

A: No. If you want a variable to hold references to any type of object and null values, its type must be Any?. For example:

var z: Any?






How to access a nullable type’s functions and properties

Suppose you have a variable whose type is nullable, and you want to access its object’s properties and functions. You can’t make function calls or refer to the properties of a null value as it doesn’t have any. To stop you from performing any operations that are invalid, the compiler insists that you check that the variable is not null before giving you access to any functions or properties.

Imagine you have a Wolf? variable which has been assigned a reference to a new Wolf object like this:

var w: Wolf? = Wolf()

To access the underlying object’s functions and properties, you first have to establish that the variable’s value is not null. One way of achieving this is to check the value of the variable inside an if. The following code, for example, checks that w’s value is not null, and then calls the object’s eat() function:


[image: image]




You can use this approach to build more complex conditions. The following code, for example, checks that the w variable’s value is not null, and then calls its eat() function when its hunger property is less than 5:


[image: image]




There are some situations, however, where this kind of code may still fail. If the w variable is used to define a var property in a class, for example, it’s possible that a null value may have been assigned to it in between the null-check and its usage, so the following code won’t compile:


[image: image]




Fortunately, there’s a safer approach that avoids this kind of problem.




Keep things safe with safe calls

If you want to access a nullable type’s properties and functions, an alternative approach is to use a safe call. A safe call lets you access functions and properties in a single operation without you having to perform a separate null-check.


?. is the safe call operator. It lets you safely access a nullable type’s functions and properties.



To see how safe calls work, imagine you have a Wolf? property (as before) that holds a reference to a Wolf object like so:

var w: Wolf? = Wolf()

To make a safe call to the Wolf’s eat function, you would use the following code:


[image: image]




This will only call the Wolf’s eat function when w is not null. It’s like saying “if w is not null, call eat”.

Similarly, the following code makes a safe call to w’s hunger property:

w?.hunger

If w is not null, the expression returns a reference to the hunger property’s value. If, however, w is null, the value of the entire expression evaluates to null. Here are the two scenarios:


	Scenario A: w is not null.

The w variable holds a reference to a Wolf object, and the value of its hunger property is 10. The code w?.hunger evaluates to 10.


[image: image]





	Scenario B: w is null.

The w variable holds a null value, not a Wolf, so the entire expression evaluates to null.


[image: image]











You can chain safe calls together

Another advantage of using safe calls is that you can chain them together to form expressions that are powerful yet concise.

Suppose you have a class named MyWolf that has a single Wolf? property named w. Here’s the class definition:

class MyWolf {

    var w: Wolf? = Wolf()

}

Suppose also that you have a MyWolf? variable named myWolf like this:

var myWolf: MyWolf? = MyWolf()

If you wanted to get the value of the hunger property for the myWolf variable’s Wolf, you could do so using code like this:


[image: image]




It’s like saying “If myWolf or w is null, return a null value. Otherwise, return the value of w’s hunger property”. The expression returns the value of the hunger property if (and only if) myWolf and w are both not null. If either myWolf or w is null, the entire expression evaluates to null.


What happens when a safe call chain gets evaluated

Let’s break down what happens when the system evaluates the safe call chain:

myWolf?.w?.hunger


	The system first checks that myWolf is not null.

If myWolf is null, the entire expression evaluates to null. If myWolf is not null (as in this example), the system continues to the next part of the expression.


[image: image]












The story continues


	The system then checks that myWolf’s w property is not null.

Provided myWolf is not null, the system moves on to the next part of the expression, the w? part. If w is null, the entire expression evaluates to null. If w is not null, as in this example, the system moves onto the next part of the expression.


[image: image]






	If w is not null, it returns the value of w’s hunger property.

So long as neither the myWolf variable nor its w property are null, the expression returns the value of w’s hunger property. In this example, the expression evaluates to 10.


[image: image]







So as you can see, safe calls can be chained together to form concise expressions that are very powerful yet safe. But that’s not the end of the story.




You can use safe calls to assign values...

As you might expect, you can use safe calls to assign a value to a variable or property. If you have a Wolf? variable named w, for example, you can assign the value of its hunger property to a new variable named x using code like this:

var x = w?.hunger

It’s like saying “If w is null, set x to null, otherwise set x to the value of w’s hunger property”. As the expression:

w?.hunger


[image: image]




can evaluate to an Int or null value, the compiler infers that x must have a type of Int?.


...and assign values to safe calls

You can also use a safe call on the left side of a variable or property assignment.

Suppose, for example, that you wanted to assign a value of 6 to w’s hunger property, so long as w is not null. You can achieve this using the code:

w?.hunger = 6


[image: image]




The code checks the value of w, and if it’s not null, the code assigns a value of 6 to the hunger property. If w is null, however, the code does nothing.

You can use chains of safe calls in this situation too. The following code, for example, only assigns a value to the hunger property if both myWolf and w are not null:

myWolf?.w?.hunger = 2

It’s like saying “if myWolf is not null, and myWolf’s w property value is not null, then assign a value of 2 to w’s hunger property”:


[image: image]




Now that you know how to make safe calls to nullable types, have a go at the following exercise.


BE the Compiler


[image: image]




Each of the Kotlin files on this page represents a complete source file. Your job is to play like you’re the compiler, and determine whether each of these files will compile and produce the output on the right. If not, why not?

Misty: Meow!

Socks: Meow!

Note

This is the required output.




[image: image]







BE the Compiler Solution


[image: image]




Each of the Kotlin files on this page represents a complete source file. Your job is to play like you’re the compiler, and determine whether each of these files will compile and produce the output on the right. If not, why not?

Misty: Meow!

Socks: Meow!

Note

This is the required output.




[image: image]











Use let to run code if values are not null

When you use nullable types, you may want to execute code if (and only if) a particular value is not null. If you have a Wolf? variable named w, for example, you might want to print the value of w’s hunger property so long as w is not null.

One option for performing this kind of task is to use the code:

if (w != null ) {

    println(w.hunger)

}

But if the compiler can’t guarantee that the w variable won’t change in between the null-check and its usage, however, the code won’t compile.

Note

This can happen if, say, w defines a var property in a class, and you want to use its hunger property in a separate function. It’s the same situation that you saw earlier in the chapter when we introduced the need for safe calls.



An alternative approach that will work in all situations is to use the code:


[image: image]




It’s like saying “if w is not null, let’s print its hunger”. Let’s walk through this.

The let keyword used in conjunction with the safe call operator ?. tells the compiler that you want to perform some action when the value it’s operating on is not null. So the following code:

w?.let {

 println(it.hunger)

}


?.let allows you to run code for a value that’s not null.



will only execute the code in its body if w is not null.

Once you’ve established that the value is not null, you can refer to it in the body of the let using it. So in the following code example, it refers to a non-nullable version of the w variable, allowing you to directly access its hunger property:


[image: image]




Let’s look at a couple more examples of when using let can be useful.




Using let with array items

let can also be used to perform actions using the non-null items of an array. You can use the following code, for example, to loop through an array of String?s, and print each item that is not null:


[image: image]





Using let to streamline expressions

let is particularly useful in situations where you want to perform actions on the return value of a function which may be null.

Suppose you have a function named getAlphaWolf that has a return type of Wolf? like this:

fun getAlphaWolf() : Wolf? {

    return Wolf()

}


[image: image] Watch it!

You must use curly braces to denote the let body.

If you omit the { }’s, your code won’t compile.



If you wanted to get a reference to the function’s return value and call its eat function if it’s not null, you could do so (in most situations) using the following code:

var alpha = getAlphaWolf()

if (alpha != null) {

    alpha.eat()

}

If you were to rewrite the code using let, however, you would no longer need to create a separate variable in which to hold the function’s return value. Instead, you could use:


[image: image]




It’s like saying “get the alpha Wolf, and if it’s not null, let it eat”.






Instead of using an if expression...

Another thing you may want to do when you have nullable types is use an if expression that specifies an alternate value for something that’s null.

Suppose that you have a Wolf? variable named w, as before, and you want to use an expression that returns the value of w’s hunger property if w is not null, but defaults to -1 if w is null. In most situations, the following expression will work:

if (w != null) w.hunger else -1

But as before, if the compiler thinks there’s a chance that the w variable may have been updated in between the null-check and its usage, the code won’t compile because the compiler considers it to be unsafe.

Fortunately there’s an alternative: the Elvis operator.

Note

[Note from editor: Elvis? Is this a joke? Return to sender.]




...you can use the safer Elvis operator

The Elvis operator ?: is a safe alternative to an if expression. It’s called the Elvis operator because when you tip it on its side, it looks a bit like Elvis.

Here’s an example of an expression that uses an Elvis operator:

w?.hunger ?: -1


[image: image]




The Elvis operator first checks the value on its left, in this case:

w?.hunger

If this value is not null, the Elvis operator returns it. If the value on the left is null, however, the Elvis operator returns the value on its right instead (in this case -1). So the code

w?.hunger ?: -1

is like saying “if w is not null and its hunger property is not null, return the value of the hunger property, otherwise return -1”. It does the same thing as the code:

if (w?.hunger != null) w.hunger else -1

but because it’s a safer alternative, you can use it anywhere.

Over the past few pages, you’ve seen how to access a nullable-type’s properties and functions using safe calls, and how to use let and the Elvis operator in place of if statements and expressions. There’s just one more option we want to mention that you can use to check for null values: the not-null assertion operator.


The Elvis operator ?: is a safe version of an if expression. It returns the value on its left if that is not null. Otherwise, it returns the value on its right.








The !! operator deliberately throws a NullPointerException

The not-null assertion operator, or !!, is different to the other methods for dealing with nulls that we’ve looked at over the past few pages. Instead of making sure that your code is safe by handling any null values, the not-null assertion operator deliberately throws a NullPointerException if something turns out to be null.

Suppose, as before, you have a Wolf? variable named w, and you want to assign the value of its hunger property to a new variable named x if w or hunger is not null. To do this using a not-null assertion, you would use the following code:


[image: image]




If w and hunger are is not null, as asserted, the value of the hunger property is assigned to x. But if w or hunger is null, a NullPointerException will get thrown, a message will be displayed in the IDE’s output window, and the application will stop running.

The message that’s displayed in the output window gives you information about the NullPointerException including a stack trace giving you the location of the not-null assertion that caused it. The following output, for example, tells you that the NullPointerException was thrown from the main function at line 45 in file App.kt:


[image: image]




The following output, on the other hand, tells you that the NullPointerException was thrown from a function named myFunction in class MyWolf at line 98 of file App.kt. This function was called from the main function at line 67 of the same file:

Exception in thread "main" kotlin.KotlinNullPointerException

	at MyWolf.myFunction(App.kt:98)

	at AppKt.main(App.kt:67)

So not-null assertions are useful if you want to test assumptions about your code, as they enable you to pinpoint problems.

As you’ve seen, the Kotlin compiler goes to great lengths to make sure that your code runs error-free, but there are still situations in which it’s useful to know how to throw exceptions, and handle any that arise. We’ll look at exceptions after we’ve shown you the full code for a new project that deals with null values.




Create the Null Values project

Create a new Kotlin project that targets the JVM, and name the project “Null Values”. Then create a new Kotlin file named App.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “App”, and choose File from the Kind option.

We’ll add various classes and functions to the project, and a main function that uses them, so that you can explore how null values work. Here’s the code—update your version of App.kt to match ours:


[image: image]







The code continued...



[image: image]





Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

The Wolf is eating meat

The value of x is 10

The value of y is 10

The value of myWolf?.wolf?.hunger is 8

Hi

Hello

The Wolf is eating meat

Exception in thread "main" kotlin.KotlinNullPointerException

	at AppKt.main(App.kt:55)


Pool Puzzle


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the code snippets. Your goal is to create two classes named Duck and MyDucks. MyDucks must contain an array of nullable Ducks, and include functions to make each Duck quack, and return the total height of all the Ducks.


[image: image]




Note: each thing from the pool can only be used once!


[image: image]







Pool Puzzle Solution


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the code snippets. Your goal is to create two classes named Duck and MyDucks. MyDucks must contain an array of nullable Ducks, and include functions to make each Duck quack, and return the total height of all the Ducks.


[image: image]





[image: image]











An exception is thrown in exceptional circumstances

As we said earlier, an exception is a type of warning about exceptional situations that pop up at runtime. It’s a way for code to say “Something bad happened, I failed”.

Suppose, for example, that you have a function named myFunction that converts a String parameter to an Int, and prints it:

fun myFunction(str: String) {

    val x = str.toInt()

    println(x)

    println("myFunction has ended")

}

If you pass a String such as “5” to myFunction, the code will successfully convert the String to an Int, and print the value 5, along with the text “myFunction has ended”. If, however, you pass the function a String that can’t be converted to an Int, like “I am a name, not a number”, the code will stop running, and display an exception message like this:


[image: image]





You can catch exceptions that are thrown

When an exception gets thrown, you have two options for dealing with it:


	* You can leave the exception alone.

This will display a message in the output window, and stop your application (as above).


	* You can catch the exception and handle it.

If you know you might get an exception when you execute particular lines of code, you can prepare for it, and possibly recover from whatever caused it.




You’ve seen what happens when you leave exceptions alone, so let’s look at how you catch them.






Catch exceptions using a try/catch

You catch exceptions by wrapping the risky code in a try/catch block. A try/catch block tells the compiler that you know an exceptional thing could happen in the code you want to execute, and that you’re prepared to handle it. The compiler doesn’t care how you handle it; it cares only that you say you’re taking care of it.

Here’s what a try/catch block looks like:


[image: image]





[image: image]




The try part of the try/catch block contains the risky code that might cause an exception. In the above example, this is the code:

try {

    val x = str.toInt()

    println(x)

}

The catch part of the block specifies the exception that you want to catch, and includes the code you want to run if it catches it. So if our risky code throws a NumberFormatException, we’ll catch it and print a meaningful message like this:


[image: image]




Any code that follows the catch block then runs, in this case the code:

println("myFunction has ended")




Use finally for the things you want to do no matter what

If you have important cleanup code that you want to run regardless of an exception, you can put it in a finally block. The finally block is optional, but it’s guaranteed to run no matter what.

To see how this works, suppose you want to bake something experimental that might go wrong.

You start by turning on the oven.

If the thing you try to cook succeeds, you have to turn off the oven.

If the thing you try is a complete failure, you have to turn off the oven.

You have to turn off the oven no matter what, so the code for turning the oven off belongs in a finally block:


[image: image]




Without finally, you have to put the turnOvenOff function call in both the try and the catch because you have to turn off the oven no matter what. A finally block lets you put all your important cleanup code in one place, instead of duplicating it like this:

try {

    turnOvenOn()

    x.bake()

   turnOvenOff()

} catch (e: BakingException) {

    println("Baking experiment failed")

   turnOvenOff()

}


[image: image] try/catch/finally flow control

* If the try block fails (an exception):

Flow control immediately moves to the catch block. When the catch block completes, the finally block runs. When the finally block completes, the rest of the code continues.

* If the try block succeeds (no exception):

Flow control skips over the catch block and moves to the finally block. When the finally block completes, the rest of the code continues.

* If the try or catch block has a return statement, finally will still run:

Flow jumps to the finally block, then back to the return.






An exception is an object of type Exception

Every exception is an object of type Exception. It’s the superclass of all exceptions, so every type of exception inherits from it. On the JVM, for example, every exception has a function named printStackTrace that you can use to print the exception’s stack trace using code like this:


[image: image]





[image: image]




There are many different types of exception, each one of which is a subtype of Exception. Some of the most common (or famous) are:


	* NullPointerException

Thrown when you try to perform operations on a null value. As you’ve seen, NullPointerExceptions are nearly extinct in Kotlinville.


	* ClassCastException

You’ll get this if you try to cast an object to an incorrect type, like casting a Wolf into a Tree.


	* IllegalArgumentException

You can throw this if an illegal argument has been passed.


	* IllegalStateException

Use this if some object has state that’s invalid.





[image: image]




You can also create your own types of exception by defining a new class with Exception as its superclass. The following code, for example, defines a new type of exception named AnimalException:

class AnimalException : Exception() { }

Defining your own types of exception can sometimes be useful if you want to deliberately throw exceptions in your own code. We’ll look at how this is done after a small diversion.


[image: image] Safe Casts Up Close

As you learned in Chapter 6, in most circumstances, the compiler will perform a smart cast each time you use the is operator. In the following code, for example, the compiler checks whether the r variable holds a Wolf object, so it can smart cast the variable from a Roamable to a Wolf:


[image: image]





[image: image]




In some situations the compiler can’t perform a smart cast as the variable may change in between you checking its type and its usage. The following code, for example, won’t compile because the compiler can’t be certain that the r property is still a Wolf after checking it:


[image: image]




You saw in Chapter 6 that you can deal with this by using the as keyword to explicitly cast r as a Wolf like this:


[image: image]




But if r is assigned a value of some other type in between the type-check and the cast, the system will throw a ClassCastException.

The safe alternative is to perform a safe cast using the as? operator using code like this:

val wolf = r as? Wolf

This casts r as a Wolf if r holds an object of that type, and returns null if it doesn’t. This saves you from getting a ClassCastException if your assumptions about the variable’s type are incorrect.


as? lets you perform a safe explicit cast. If the cast fails, it returns null.








You can explicitly throw exceptions

It can sometimes be useful to deliberately throw exceptions in your own code. If you have a function named setWorkRatePercentage, for example, you might want to throw an IllegalArgumentException if someone tries to set a percentage that’s less than 0 or greater than 100. Doing so forces the caller to address the problem, instead of relying on the function to decide what to do.

You throw an exception using the throw keyword. Here’s how, for example, you’d get the setWorkRatePercentage function to throw an IllegalArgumentException:


[image: image]




You could then catch the exception using code like this:


[image: image]





[image: image] Exception Rules

* You can’t have a catch or finally without a try.


[image: image]




* You can’t put code between the try and the catch, or the catch and the finally.


[image: image]




* A try must be followed by either a catch or a finally.


[image: image]




* A try can have multiple catch blocks.


[image: image]









try and throw are both expressions

Unlike in other languages such as Java, try and throw are expressions, so they can have return values.


How to use try as an expression

The return value of a try is either the last expression in the try, or the last expression in the catch (the finally block, if there, doesn’t affect the return value). Consider the following code, for example:


[image: image]




The code creates a variable named result of type Int?. The try block tries to convert the value of a String variable named str to an Int. If this is successful, it assigns the Int value to result. If the try block fails, however, it assigns null to result instead:




How to use throw as an expression

throw is also an expression, so you can, for example, use it with the Elvis operator using code like this:

val h = w?.hunger ?: throw AnimalException()

If w and hunger are not null, the above code assigns the value of w’s hunger property to a new variable named h. If, however, w or hunger are null, it throws an AnimalException.


there are no Dumb Questions

Q: You said that you can use throw in an expression. Does that mean throw has a type? What is it?

A: throw has a return type of Nothing. This is a special type that has no values, so a variable of type Nothing? can only hold a null value. The following code, for example, creates a variable named x of type Nothing? that can only be null:

var x = null

Q: I get it. Nothing is a type that has no values. Is there anything I might want to use that type for?

A: You can also use Nothing to denote code locations that can never be reached. You can, say, use it as the return type of a function that never returns:

fun fail(): Nothing {

    throw BadException()

}

The compiler knows that the code stops execution after fail() is called.

Q: In Java I have to declare when a method throws an exception.

A: That’s correct, but you don’t in Kotlin. Kotlin doesn’t differentiate between checked and unchecked exceptions.




[image: image] Sharpen your pencil

Look at the code on the left. What do you think the output will be when it’s run? What do you think it would be if the code on line 2 were changed to the following?:

val test: String = "Yes"

Write your answers in the boxes on the right.


[image: image]











Code Magnets


[image: image]




Some Kotlin code is all scrambled up on the fridge. See if you can reconstruct the code so that if myFunction is passed a String of “Yes”, it prints the text “thaws”, and if myFunction is passed a String of “No”, it prints the text “throws”.


[image: image]





[image: image] Sharpen your pencil Solution

Look at the code on the left. What do you think the output will be when it’s run? What do you think it would be if the code on line 2 were changed to the following?:

val test: String = "Yes"

Write your answers in the boxes on the right.


[image: image]









Code Magnets Solution


[image: image]




Some Kotlin code is all scrambled up on the fridge. See if you can reconstruct the code so that if myFunction is passed a String of “Yes”, it prints the text “thaws”, and if myFunction is passed a String of “No”, it prints the text “throws”.


[image: image]







Your Kotlin Toolbox


[image: image]




You’ve got Chapter 8 under your belt and now you’ve added nulls and exceptions to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	null is a value that means a variable doesn’t hold a reference to an object. The variable exists, but it doesn’t refer to anything.


	A nullable type can hold null values in addition to its base type. You define a type as nullable by adding a ? to the end of it.


	To access a nullable variable’s properties and functions, you must first check that it’s not null.


	If the compiler can’t guarantee that a variable is not null in between a null-check and its usage, you must access properties and functions using the safe call operator (?.).


	You can chain safe calls together.


	To execute code if (and only if) a value is not null, use ?.let.


	The Elvis operator (?:) is a safe alternative to an if expression.


	The not-null assertion operator (!!) throws a NullPointerException if the subject of your assertion is null.


	An exception is a warning that occurs in exceptional situations. It’s an object of type Exception.


	Use throw to throw an exception.


	Catch an exception using try/catch/finally.


	try and throw are expressions.


	Use a safe cast (as?) to avoid getting a ClassCastException.










Chapter 9. collections: Get Organized


[image: image]




Ever wanted something more flexible than an array?

Kotlin comes with a bunch of useful collections that give you more flexibility and greater control over how you store and manage groups of objects . Want to keep a resizeable list that you can keep adding to? Want to sort, shuffle or reverse its contents? Want to find something by name? Or do you want something that will automatically weed out duplicates without you lifting a finger? If you want any of these things, or more, keep reading. It’s all here...: Get Organized


Arrays can be useful...

So far, each time we’ve wanted to hold references to a bunch of objects in one place, we’ve used an array. Arrays are quick to create, and have many useful functions. Here are some of the things you can do with an array (depending on the type of its items):


[image: image]







...but there are things an array can’t handle

Even though an array lets you perform many useful actions, there are two important areas in which arrays fall short.


You can’t change an array’s size

When you create an array, the compiler infers its size from the number of items it’s initialized with. Its size is then fixed forever. The array won’t grow if you want to add a new item to it, and it won’t shrink if you want to remove an item.




Arrays are mutable, so they can be updated

Another limitation is that once you create an array you can’t stop it from being amended. If you create an array using code like this:

val myArray = arrayOf(1, 2, 3)

there’s nothing to stop the array being updated like so:

myArray[0] = 6

If your code relies on the array not changing, this may be a source of bugs in your application.

So what’s the alternative?


there are no Dumb Questions

Q: Can’t I remove an item from an array by setting it to null?

A: If you create an array that holds nullable types, you can set one or more of its items to null using code like this:

val a: Array<Int?> = arrayOf(1, 2, 3)  a[2] = null

This doesn’t change the size of the array, however. In the above example, the array’s size is still 3 even though one of its items has been set to null.

Q: Couldn’t I create a copy of the array that has a different size?

A: You could, and arrays even have a function named plus that makes this easier; plus copies the array, and adds a new item to the end of it. But this doesn’t change the size of the original array.

Q: Is that a problem?

A: Yes. You’ll need to write extra code, and if other variables hold references to the old version of the array, this might lead to buggy code.

There are, however, good alternatives to using an array, which we’ll look at next.








When in doubt, go to the Library

Kotlin ships with hundreds of pre-built classes and functions that you can use in your code. You’ve already met some of these, like String and Any. And the great news for us is that the Kotlin Standard Library includes classes that provide great alternatives to arrays.

Note

Standard Library

You can see what’s in the Kotlin Standard Library by browsing to:

https://kotlinlang.org/api/latest/jvm/stdlib/index.html



In the Kotlin Standard Library, classes and functions are grouped into packages. Every class belongs to a package, and each package has a name. The kotlin package, for example, holds core functions and types, and the kotlin.math package holds mathematical functions and constants.

The package we’re interested in here is the kotlin.collections package. This package includes a number of classes that let you group objects together in a collection. Let’s look at the main collection types.


[image: image]







List, Set and Map

Kotlin has three main types of collection—List, Set and Map—and each one has its own distinct purpose:


List - when sequence matters


[image: image]







Set - when uniqueness matters

A Set doesn’t allow duplicates, and doesn’t care about the order in which values are held. You can never have more than one element referencing the same object, or more than one element referencing two objects that are considered equal.


[image: image]







Map - when finding something by key matters

A Map uses key/value pairs. It knows the value associated with a given key. You can have two keys that reference the same object, but you can’t have duplicate keys. Although keys are typically String names (so that you can make name/value property lists, for example), a key can be any object.


[image: image]




Simple Lists, Sets and Maps are immutable, which means that you can’t add or remove items after the collection has been initialized. If you want to be able to add or remove items, Kotlin has mutable subtypes that you can use instead: MutableList, MutableSet and MutableMap. So if you want all the benefits of using a List and you want to be able to update its contents, use a MutableList.

Now that you’ve seen the three main types of collection that Kotlin has to offer, let’s find out how you use each one, starting with a List.






Fantastic Lists...

You create a List in a similar way to how you create an array: by calling a function named listOf, passing in the values you want the List to be initialized with. The following code, for example, creates a List, initializes it with three Strings, and assigns it to a new variable named shopping:


[image: image]




The compiler infers the type of object each List should contain by looking at the type of each value that’s passed to it when it’s created. The above List, for example, is initialized with three Strings, so the compiler creates a List of type List<String>. You can also explicitly define the List’s type using code like this:

val shopping: List<String>

shopping = listOf("Tea", "Eggs", "Milk")


...and how to use them

Once you’ve created a List, you can access the items it contains using the get function. The following code, for example, checks that the size of the List is greater than 0, then prints the item at index 0:


[image: image]




You can loop through all items in a List like so:

for (item in shopping) println (item)

And you can also check whether the List contains a reference to a particular object, and retrieve its index:

if (shopping.contains("Milk")) {

    println(shopping.indexOf("Milk"))

    //Prints 2

}

As you can see, using a List is a lot like using an array. The big difference, however, is that a List is immutable—you can’t update any of the references it stores.


Lists and other collections can hold references to any type of object: Strings, Ints, Ducks, Pizzas and so on.








Create a MutableList...

If you want a List whose values you can update, you need to use a MutableList. You define a MutableList in a similar way to how you define a List, except this time, you use the mutableListOf function instead:

val mShopping = mutableListOf("Tea", "Eggs")

MutableList is a subtype of List, so you can call the same functions on a MutableList that you can on a List. The big difference, however, is that MutableLists have extra functions that you can use to add or remove values, or update or rearrange existing ones.


[image: image]





..and add values to it

You add new values to a MutableList using the add function. If you want to add a new value to the end of the MutableList, you pass the value to the add function as a single parameter. The following code, for example, adds “Milk” to the end of mShopping:

mShopping.add("Milk")

This increases the size of the MutableList so that it now holds three values instead of two.

If you want to insert a value at a specific index instead, you can do so by passing the index value to the add function in addition to the value. If you wanted to insert a value of “Milk” at index 1 instead of adding it to the end of the MutableList, you could do so using the following code:

mShopping.add(1, "Milk")

Inserting a value at a specific index in this way forces other values to move along to make space for it. In this example, the “Eggs” value moves from index 1 to index 2 so that “Milk” can be inserted at index 1.

As well as adding values to a MutableList, you can also remove or replace them. Let’s see how.


[image: image]









You can remove a value...

There are two ways of removing a value from a MutableList.

The first way is to call the remove function, passing in the value you want to remove. The following code, for example, checks whether mShopping contains the String “Milk”, then removes it:

if (mShopping.contains("Milk")) {

   mShopping.remove("Milk")

}

The second way is to use the removeAt function to remove the value at a given index. The following code, for example, makes sure that the size of mShopping is greater than 1, then removes the value at index 1:

if (mShopping.size > 1) {

    mShopping.removeAt(1)

}

Whichever approach you use, removing a value from the MutableList causes it to shrink.


[image: image]





...and replace one value with another

If you want to update the MutableList so that the value at a particular index is replaced with another, you can do so using the set function. The following code, for instance, replaces the “Tea” value at index 0 with “Coffee”:

if (mShopping.size > 0) {

   mShopping.set(0, "Coffee")

}


[image: image]









You can change the order and make bulk changes...

MutableList also includes functions to change the order in which items are held. You can, say, sort the MutableList in a natural order using the sort function, or reverse it using reverse:


[image: image]




Or you can use the shuffle function to randomize it:

mShopping.shuffle()

And there are useful functions for making bulk changes to the MutableList too. You can, for example, use the addAll function to add all the items that are held in another collection. The following code, for instance, adds “Cookies” and “Sugar” to mShopping:

val toAdd = listOf("Cookies", "Sugar")

mShopping.addAll(toAdd)

The removeAll function removes items that are held in another collection:

val toRemove = listOf("Milk", "Sugar")

mShopping.removeAll(toRemove)

And the retainAll function retains all the items that are held in another collection and removes everything else:

val toRetain = listOf("Milk", "Sugar")

mShopping.retainAll(toRetain)

You can also use the clear function to remove every item like this:


[image: image]





...or take a copy of the entire MutableList

It can sometimes be useful to copy a List, or MutableList, so that you can save a snapshot of its state. You can do this using the toList function. The following code, for example, copies mShopping, and assigns the copy to a new variable named shoppingCopy:

val shoppingCopy = mShopping.toList()

The toList function returns a List, not a MutableList, so shoppingCopy can’t be updated. Other useful functions you can use to copy the MutableList include sorted (which returns a sorted List), reversed (which returns a List with the values in reverse order), and shuffled (which returns a List and shuffles its values).

Note

MutableList also has a toMutableList() function which returns a copy that’s a new MutableList.




there are no Dumb Questions

Q: What’s a package?

A: A package is a grouping of classes and functions. They’re useful for a couple of reasons.

First, they help organize a project or library. Rather than just having one large pile of classes, they’re all grouped into packages for specific kinds of functionality.

Second, they give you name-scoping, which means that multiple people can write classes with the same name, just so long as they’re in different packages.

You’ll find out more about structuring your code into packages in Appendix III.

Q: In Java I have to import any packages I want to use, including collections. Do I in Kotlin?

A: Kotlin automatically imports many packages from the Kotlin Standard Library, including kotlin.collections. There are still situations where you need to explicitly import packages, however, and you can find out more in Appendix III.








Create the Collections project

Now that you’ve learned about Lists and MutableLists, let’s create a project that uses them.

Create a new Kotlin project that targets the JVM, and name the project “Collections”. Then create a new Kotlin file named Collections.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “Collections”, and choose File from the Kind option.

Next, add the following code to Collections.kt:


[image: image]





Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:


[image: image]




Next, have a go at the following exercise.






Code Magnets


[image: image]




Somebody used fridge magnets to create a working main function that produces the output shown on the right. Unfortunately a freak sharknado has dislodged the magnets. See if you can reconstruct the function.

Note

The function needs to produce this output.



[Zero, Two, Four, Six]

[Two, Four, Six, Eight]

[Two, Four, Six, Eight, Ten]

[Two, Four, Six, Eight, Ten]

Note

Your code needs to go here




[image: image]







Code Magnets Solution


[image: image]




Somebody used fridge magnets to create a working main function that produces the output shown on the right. Unfortunately a freak sharknado has dislodged the magnets. See if you can reconstruct the function.

[Zero, Two, Four, Six]

[Two, Four, Six, Eight]

[Two, Four, Six, Eight, Ten]

[Two, Four, Six, Eight, Ten]


[image: image]







Lists allow duplicate values

As you’ve already learned, using a List, or MutableList, gives you more flexibility than using an array. Unlike an array, you can explicitly choose whether the collection should be immutable, or whether your code can add, remove and update its values.

There are some situations, however, where using a List (or MutableList) doesn’t quite work.

Imagine you’re arranging a meal out with a group of friends, and you need to know how many people are going so that you can book a table. You could use a List for this, but there’s a problem: a List can hold duplicate values. It’s possible, for example, to create a List of friends where some of the friends are listed twice:


[image: image]





[image: image]




But if you want to know how many distinct friends are in the List, you can’t simply use the code:

friendList.size

to find out how many people you should book a table for. The size property only sees that there are five items in the List, and it doesn’t care that two of these items are duplicates.

In this kind of situation, we need to use a collection that doesn’t allow duplicate values to be held. So what type of collection should we use?


[image: image] Brain Power

Earlier in the chapter, we discussed the different types of collection that are available in Kotlin. Which type of collection do you think would be most appropriate for this situation?

......................................................






How to create a Set

If you need a collection that doesn’t allow duplicates, you can use a Set: an unordered collection with no duplicate values.

You create a Set by calling a function named setOf, passing in the values you want the Set to be initialized with. The following code, for example, creates a Set, initializes it with three Strings, and assigns it to a new variable named friendSet:


[image: image]




A Set can’t hold duplicate values, so if you try to define one using code like this:

val friendSet = setOf("Jim",

                      "Sue",

                      "Sue",

                      "Nick",

                      "Nick")

the Set ignores the duplicate “Sue” and “Nick” values. The code creates a Set that holds three distinct Strings as before.

The compiler infers the Set’s type by looking at the values that are passed to it when it’s created. The above code, for example, initializes a Set with String values, so the compiler creates a Set of type Set<String>.


How to use a Set’s values

A Set’s values are unordered, so unlike a List, there’s no get function you can use to get the value at a specified index. You can, however, still use the contains function to check whether a Set contains a particular value using code like this:


[image: image]




And you can also loop through a Set like this:

for (item in friendSet) println(item)

A Set is immutable, so you can’t add values to it, or remove existing ones. To do this kind of thing, you’d need to use a MutableSet instead. But before we show you how to create and use one of these, there’s an Important Question we need to look at: how does a Set decide whether a value is a duplicate?


Unlike a List, a Set is unordered, and can’t contain duplicate values.








How a Set checks for duplicates

To answer this question, let’s go through the steps a Set takes when it decides whether or not a value is a duplicate.


	The Set gets the object’s hash code, and compares it with the hash codes of the objects already in the Set.

A Set uses hash codes to store its elements in a way that makes it much faster to access. It uses the hash code as a kind of label on a “bucket” where it stores elements, so all objects with a hash code of, say, 742, are stored in the bucket labeled 742.

If the Set has no matching hash codes for the new value, the Set assumes that it’s not a duplicate, and adds the new value. If, however, the Set has matching hash codes, it needs to perform extra tests, and moves on to step 2.


[image: image]






	The Set uses the === operator to compare the new value against any objects it contains with the same hash code.

As you learned in Chapter 7, the === operator is used to check whether two references refer to the same object. So if the === operator returns true for any object with the same hash code, the Set knows that the new value is a duplicate, so it rejects it. If the === operator returns false, however, the Set moves on to step 3.


[image: image]






	The Set uses the == operator to compare the new value against any objects it contains with matching hash codes.

The == operator calls the value’s equals function. If this returns true, the Set treats the new value as a duplicate, and rejects it. If the == operator returns false, however, the Set assumes that the new value is not a duplicate, and adds it.


[image: image]







So there are two situations in which a Set views a value as a duplicate: if it’s the same object, or equal to a value it already contains. Let’s look at this in more detail.




Hash codes and equality

As you learned in Chapter 7, the === operator checks whether two references point to the same object, and the == operator checks whether the references point to objects that should be considered equal. A Set, however, only uses these operators once it’s established that the two objects have matching hash code values. This means that in order for a Set to work properly, equal objects must have matching hash codes.

Let’s see how this applies to the === and == operators.


Equality using the === operator

If you have two references that refer to the same object, you’ll get the same result when you call the hashCode function on each reference. If you don’t override the hashCode function, the default behavior (which it inherits from the Any superclass) is that each object will get a unique hash code.

When the following code runs, the Set spots that a and b have the same hash code and refer to the same object, so one value gets added to the Set:

val a = "Sue"

val b = a

val set = setOf(a, b)


[image: image]







Equality using the == operator

If you want a Set to treat two different Recipe objects as equal, or equivalent, you have two options: make Recipe a data class, or override the hashCode and equals functions it inherits from Any. Making Recipe a data class is easiest as it automatically overrides the two functions.

As we said above, the default behavior (from Any) is to give each object a unique hash code value. So you must override hashCode to be sure that two equivalent objects return the same hash code. But you must also override equals so that the == operator returns true when it’s used to compare objects with matching property values.

In the following example, one value will be added to the Set if Recipe is a data class:

val a = Recipe("Thai Curry")

val b = Recipe("Thai Curry")

val set = setOf(a, b)


[image: image]









Rules for overriding hashCode and equals

If you decide to manually override the hashCode and equals functions in your class instead of using a data class, there are a number of laws you must abide by. Failure to do so will make the Kotlin universe collapse because things like Sets won’t work properly, so make sure you follow them.

Here are the rules:


	* If two objects are equal, they must have matching hash codes.


	* If two objects are equal, calling equals on either object must return true. In other words, if (a.equals(b)) then (b.equals(a)).


	* If two objects have the same hash code value, they are not required to be equal. But if they’re equal, they must have the same hash code value.


	* So, if you override equals, you must override hashCode.


	* The default behavior of the hashCode function is to generate a unique integer for each object. So if you don’t override hashCode in a non-data class, no two objects of that type can ever be considered equal.


	* The default behavior of the equals function is to do a === comparison, which tests whether the two references refer to a single object. So if you don’t override equals in a non-data class, no two objects can ever be considered equal since references to two different objects will always contain a different bit pattern.





a.equals(b) must also mean that a.hashCode() == b.hashCode()




But a.hashCode() == b.hashCode() does not have to mean that a.equals(b)




there are no Dumb Questions

Q: How can hash codes be the same even if objects aren’t equal?

A: As we said earlier, a Set uses hash codes to store its elements in a way that makes it much faster to access. If you want to find an object in a Set, it doesn’t have to start searching from the beginning, looking at each element to see if it matches. Instead, it uses the hash code as a label on a “bucket” where it stored the element. So if you say “I want to find an object in the Set that looks like this one...”, the Set gets the hash code value from the object you give it, then goes straight to the bucket for that hash code.

This isn’t the whole story, but it’s more than enough for you to use a Set effectively and understand what’s going on.

The point is that hash codes can be the same without necessarily guaranteeing that the objects are equal, because the “hashing algorithm” used in the hashCode function might happen to return the same value for multiple objects. And yes, that means that multiple objects would all land in the same bucket in the Set (because each bucket represents a separate hash code value), but that’s not the end of the world. It might mean that the Set is a little less efficient, or that it’s filled with an extremely large number of elements, but if the Set finds more than one object in the same hash code bucket, the Set will simply use the === and == operators to look for a perfect match. In other words, hash code values are sometimes used to narrow down the search, but to find the one exact match, the Set still has to take all the objects in that one bucket (the bucket for all the objects with the same hash code) and see if there’s a matching object in that bucket.






How to use a MutableSet

Now that you know about Sets, let’s look at MutableSets. A MutableSet is a subtype of Set, but with extra functions that you can use to add and remove values.

You define a MutableSet using the mutableSetOf function like this:

val mFriendSet = mutableSetOf("Jim", "Sue")

This initializes a MutableSet with two Strings, so the compiler infers that you want a MutableSet of type MutableSet<String>.

You add new values to a MutableSet using the add function. The following code, for example, adds “Nick” to mFriendSet:

mFriendSet.add("Nick")


[image: image]




The add function checks whether the object it’s passed already exists in the MutableSet. If it finds a duplicate value, it returns false. If it’s not a duplicate, however, the value gets added to the MutableSet (increasing its size by one) and the function returns true to indicate that the operation was successful.

You remove values from a MutableSet using the remove function. The following code, for example, removes “Nick” from mFriendSet:

mFriendSet.remove("Nick")

If “Nick” exists in the MutableSet, the function removes it and returns true. If there’s no matching object, however, the function simply returns false.

You can also use the addAll, removeAll and retainAll functions to make bulk changes to the MutableSet, just as you can for a MutableList. The addAll function, for example, adds all the items to the MutableSet that are held in another collection, so you can use the following code to add “Joe” and “Mia” to mFriendSet:


[image: image]




And just as you can with a MutableList, you can use the clear function to remove every item from the MutableSet:

mFriendSet.clear()




You can copy a MutableSet

If you want to take a snapshot of a MutableSet you can do so, just as you can with a MutableList. You can use the toSet function, for example, to take an immutable copy of mFriendSet, and assign the copy to a new variable named friendSetCopy:

val friendSetCopy = mFriendSet.toSet()

You can also copy a Set or MutableSet into a new List object using toList:

val friendList = mFriendSet.toList()

And if you have a MutableList or List, you can copy it into a Set using its toSet function:

Note

MutableSet also has a toMutableSet() function (which copies it to a new MutableSet), and toMutableList() (which copies it to a new MutableList).



val shoppingSet = mShopping.toSet()

Copying a collection into another type can be particularly useful when you want to perform some action that would otherwise be inefficient. You can, for example, check whether a List contains duplicate values by copying the List into a Set, and checking the size of each collection. The following code uses this technique to check whether mShopping (a MutableList) contains duplicates:


[image: image]




If mShopping contains duplicates, its size will be greater than when it’s copied into a Set, because converting the MutableList to a Set will remove the duplicate values.


[image: image]







Update the Collections project

Now that you know about Sets and MutableSets, let’s update the Collections project so that it uses them.

Update your version of Collections.kt to match ours below (our changes are in bold):


[image: image]




Let’s take the code for a test drive.


Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:


[image: image]





there are no Dumb Questions

Q: You said that I can create a List copy of a Set, and a Set copy of a List. Can I do something similar with an array?

A: Yes, you can. Arrays have a bunch of functions that you can use to copy the array to a new collection: toList(), toMutableList(), toSet() and toMutableSet(). So the following code creates an array of Ints, then copies it into a Set<Int>:

val a = arrayOf(1, 2, 3)

val s = a.toSet()

Similarly, List and Set (and therefore MutableList and MutableSet) have a function named toTypedArray() that copies the collection to a new array of the appropriate type. So the code:

val s = setOf(1, 2, 3)

val a = s.toTypedArray()

creates an array of type Array<Int>.

Q: Can I sort a Set?

A: No, a Set is an unordered collection so you can’t sort it directly. You can, however, use its toList() function to copy the Set into a List, and you can then sort the List.

Q: Can I use the == operator to compare the contents of two Sets?

A: Yes, you can. Suppose you have two Sets, a and b. If a and b contain the same values, a == b will return true, as in the following example:

val a = setOf(1, 2, 3)

val b = setOf(3, 2, 1)

//a == b is true

If the two sets compare different values, however, the result will be false.

Q: That’s clever. What if one of the Sets is a MutableSet? Do I first need to copy it to a Set?

A: You can use == without copying the MutableSet to a Set. In the following example, a == b returns true:

val a = setOf(1, 2, 3)

val b = mutableSetOf(3, 2, 1)

Q: I see. Does == work with Lists too?

A: Yes, you can use == to compare the contents of two Lists. It will return true if the Lists hold the same values against the same indexes, and false if the Lists hold different values, or hold the same values in a different order. So in the following example, a == b returns true:

val a = listOf(1, 2, 3)

val b = listOf(1, 2, 3)




BE the Set


[image: image]




Here are four Duck classes. Your job is to play like you’re the Set, and say which classes will produce a Set containing precisely one item when used with the main function on the right. Do any Ducks break the hashCode() and equals() rules? If so, how?


[image: image]





	

class Duck(val size: Int = 17) {

  override fun equals(other: Any?): Boolean {

      if (this === other) return true

      if (other is Duck && size == other.size) return true

      return false

  }



  override fun hashCode(): Int {

      return size

  }

}


	

class Duck(val size: Int = 17) {

    override fun equals(other: Any?): Boolean {

        return false

    }



  override fun hashCode(): Int {

      return 7

  }

}


	

data class Duck(val size: Int = 18)


	

class Duck(val size: Int = 17) {

    override fun equals(other: Any?): Boolean {

        return true

    }



    override fun hashCode(): Int {

        return (Math.random() * 100).toInt()

    }

}







[image: image] Sharpen your pencil

Four friends have each made a List of their pets. One item in the List represents one pet. Here are the four lists:

val petsLiam = listOf("Cat", "Dog", "Fish", "Fish")

val petsSophia = listOf("Cat", "Owl")

val petsNoah = listOf("Dog", "Dove", "Dog", "Dove")

val petsEmily = listOf("Hedgehog")

Write the code to print how many types of pet there are.


[image: image]




Write the code below to create a new collection named pets that contains each pet.


[image: image]




How would you use the pets collection to get the total number of pets?


[image: image]




How would you list the types of pet in alphabetical order?


[image: image]







BE the Set Solution


[image: image]




Here are four Duck classes. Your job is to play like you’re the Set, and say which classes will produce a Set containing precisely one item when used with the main function on the right. Do any Ducks break the hashCode() and equals() rules? If so, how?


[image: image]







[image: image] Sharpen your pencil Solution

Four friends have each made a List of their pets. One item in the List represents one pet. Here are the four lists:

val petsLiam = listOf("Cat", "Dog", "Fish", "Fish")

val petsSophia = listOf("Cat", "Owl")

val petsNoah = listOf("Dog", "Dove", "Dog", "Dove")

val petsEmily = listOf("Hedgehog")

Write the code to print how many types of pet there are.


[image: image]




Write the code below to create a new collection named pets that contains each pet.


[image: image]




How would you use the pets collection to get the total number of pets?


[image: image]




How would you list the types of pet in alphabetical order?


[image: image]











Time for a Map

Lists and Sets are great, but there’s one more type of collection we want to introduce you to: a Map. A Map is a collection that acts like a property list. You give it a key, and the Map gives you back the value associated with that key. Although keys are usually Strings, they can be any type of object.

Each entry in a Map is actually two objects—a key and a value. Each key has a single value associated with it. You can have duplicate values, but you can’t have duplicate keys.


[image: image]





How to create a Map

You create a Map by calling a function named mapOf, passing in the key/value pairs you want the Map to be initialized with. The following code, for example, creates a Map with three entries. The keys are the Strings (“Recipe1”, “Recipe2” and “Recipe3”), and the values are the Recipe objects:


[image: image]




As you might expect, the compiler infers the type of the key/value pairs by looking at the entries it’s initialized with. The above Map, for example, is initialized with String keys and Recipe values, so it creates a Map of type Map<String, Recipe>. You can also explicitly define the Map’s type using code like this:

val recipeMap: Map<String, Recipe>

In general, the Map’s type takes the form:

Map<key_type, value_type>

Now that you know how to create a Map, let’s see how to use one.


[image: image]









How to use a Map

There are three main things you might want to do with a Map: check whether it contains a specific key or value, retrieve a value for a specified key, or loop through the Map’s entries.

You check whether a Map contains a particular key or value using its containsKey and containsValue functions. The following code, for example, checks whether the Map named recipeMap contains the key “Recipe1”:

recipeMap.containsKey("Recipe1")

And you can find out whether recipeMap contains a Recipe for Chicken Soup using the containsValue function like this:


[image: image]




You can get the value for a specified key using the get and getValue functions. get returns a null value if the specified key doesn’t exist, whereas getValue throws an exception. Here’s how, for example, you would use the getValue function to get the Recipe object associated with the “Recipe1” key:


[image: image]




You can also loop through a Map’s entries. Here’s how, for example, you would use a for loop to print each key/value pair in recipeMap:

for ((key, value) in recipeMap) {

     println("Key is $key, value is $value")

}

A Map is immutable, so you can’t add or remove key/value pairs, or update the value held against a specific key. To perform this kind of action, you need to use a MutableMap instead. Let’s see how these work.




Create a MutableMap

You define a MutableMap in a similar way to how you define a Map, except that you use the mutableMapOf function instead of mapOf. The following code, for example, creates a MutableMap with three entries, as before:

val r1 = Recipe("Chicken Soup")

val r2 = Recipe("Quinoa Salad")



val mRecipeMap = mutableMapOf("Recipe1" to r1, "Recipe2" to r2)

The MutableMap is initialized with String keys and Recipe values, so the compiler infers that it must be a MutableMap of type MutableMap<String, Recipe>.

MutableMap is a subtype of Map, so you can call the same functions on a MutableMap that you can on a Map. A MutableMap, however, has extra functions that you can use to add, remove and update key/value pairs.


[image: image]





Put entries in a MutableMap

You put entries into a MutableMap using the put function. The following code, for example, puts a key named “Recipe3” into mRecipeMap, and associates it with a Recipe object for Thai Curry:


[image: image]




If the MutableMap already contains the specified key, the put function replaces the value for that key, and returns the original value.

You can put many key/value pairs into the MutableMap at once using the putAll function. This takes one argument, a Map containing the entries you want to add. The following code, for example, adds Jambalaya and Sausage Rolls Recipe objects to a Map named recipesToAdd, and then puts these entries into mRecipeMap:

val r4 = Recipe("Jambalaya")

val r5 = Recipe("Sausage Rolls")

val recipesToAdd = mapOf("Recipe4" to r4, "Recipe5" to r5)

mRecipeMap.putAll(recipesToAdd)

Next, let’s look at how you remove values.






You can remove entries from a MutableMap

You remove an entry from a MutableMap using the remove function. This function is overloaded so that there are two ways of calling it.

The first way is to pass to the remove function the key whose entry you want to remove. The following code, for example, removes the entry from mRecipeMap that has a key of “Recipe2”:


[image: image]




The second way is to pass the remove function the key name and a value. In this case, the function will only remove the entry if it finds a match for both the key and the value. So the following code only removes the entry for “Recipe2” if it is associated with a Quinoa Salad Recipe object:


[image: image]




Whichever approach you use, removing an entry from the MutableMap reduces its size.

Finally, you can use the clear function to remove every entry from the MutableMap, just as you can with MutableLists and MutableSets:


[image: image]




Now that you’ve seen how to update a MutableMap, let’s look at how you can take copies of one.




You can copy Maps and MutableMaps

Just like the other types of collection you’ve seen, you can take a snapshot of a MutableMap. You can use the toMap function, for example, to take a read-only copy of mRecipeMap, and assign the copy to a new variable:

val recipeMapCopy = mRecipeMap.toMap()

You can copy a Map or MutableMap into a new List object containing all the key/value pairs using toList like this:

Note

A MutableMap also has toMutableMap() and toMutableList() functions.



val RecipeList = mRecipeMap.toList()

And you can also get direct access to the key/value pairs using the Map’s entries property. The entries property returns a Set if it’s used with a Map, and returns a MutableSet if it’s used with a MutableMap. The following code, for example, returns a MutableSet of mRecipeMap’s key/value pairs:

val recipeEntries = mRecipeMap.entries

Other useful properties are keys (which returns a Set, or MutableSet, of the Map’s keys), and values (which returns a generic collection of the Map’s values). You can use these properties to, say, check whether a Map contains duplicate values using code like this:

Note

Note that the entries, keys and values properties are the actual contents of the Map, or MutableMap. They’re not copies. And if you’re using a MutableMap, these properties are updatable.



if (mRecipeMap.size > mRecipeMap.values.toSet().size) {

    println("mRecipeMap contains duplicates values")

}

This is because the code:

mRecipeMap.values.toSet()

copies the Map’s values into a Set, which removes any duplicate values.

Now that you’ve learned how to use Maps and MutableMaps, let’s add some to our Collections project.




The full code for the Collections project

Update your version of Collections.kt to match ours below (our changes are in bold):


[image: image]




Let’s take the code for a test drive.


Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:


[image: image]





there are no Dumb Questions

Q: Why does Kotlin have mutable and immutable versions of the same type of collection? Why not just have mutable versions?

A: Because it forces you to explicitly choose whether your collection should be mutable or immutable. This means that you can prevent collections from being updated if you don’t want them to be.

Q: Can’t I do that using val and var?

A: No. val and var specify whether or not the reference held by the variable can be replaced with another one after it’s been initialized. If a variable defined using val holds a reference to a mutable collection, the collection can still be updated. val just means that the variable can only ever refer to that collection.

Q: Is it possible to create a non-updateable view of a mutable collection?

A: Suppose you have a MutableSet of Ints that’s assigned to a variable named x:

val x = mutableSetOf(1, 2)

You can assign x to a Set variable named y using the following code:

val y: Set<Int> = x

As y is a Set variable, it can’t update the underlying object without you first casting it to a MutableSet.

Q: Is that different to using toSet?

A: Yes. toSet copies a collection, so if changes are made to the original collection, these won’t be picked up.

Q: Can I explicitly create and use Java collections using Kotlin?

A: Yes. Kotlin includes various functions that let you explicitly create Java collections. You can, for example, create an ArrayList using the arrayListOf function, and a HashMap using the hashMapOf function. These functions, however, create mutable objects.

We recommend that you stick with using the Kotlin collections we’ve discussed in this chapter unless there’s a good reason why you shouldn’t.




Pool Puzzle


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the code snippets. Your goal is to print the entries of a Map named glossary that provides definitions of all the collection types you’ve learned about.

fun main(args: Array<String>) {

    val term1 = "Array"

    val term2 = "List"

    val term3 = "Map"

    val term4 = ...............

    val term5 = "MutableMap"

    val term6 = "MutableSet"

    val term7 = "Set"



    val def1 = "Holds values in no particular order."

    val def2 = "Holds key/value pairs."

    val def3 = "Holds values in a sequence."

    val def4 = "Can be updated."

    val def5 = "Can't be updated."

    val def6 = "Can be resized."

    val def7 = "Can't be resized."



    val glossary = ...........(...........to "$def3 $def4 $def6",

            ...........to "$def1 $def5 $def7",

            ...........to "$def3 $def4 $def7",

            ...........to "$def2 $def4 $def6",

            ...........to "$def3 $def5 $def7",

            ...........to "$def1 $def4 $def6",

            ...........to "$def2 $def5 $def7")

    for ((key, value) in glossary) println("$key: $value")

}

Note: each thing from the pool can only be used once!


[image: image]







Pool Puzzle Solution


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the code snippets. Your goal is to print the entries of a Map named glossary that provides definitions of all the collection types you’ve learned about.


[image: image]





[image: image]







[image: image] Mixed Messages

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.


[image: image]







[image: image] Mixed Messages Solution

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.


[image: image]











Your Kotlin Toolbox


[image: image]




You’ve got Chapter 9 under your belt and now you’ve added collections to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	Create an array initialized with null values using the arrayOfNulls function.


	Useful array functions include: sort, reverse, contains, min, max, sum, average.


	The Kotlin Standard Library contains pre-built classes and functions grouped into packages.


	A List is a collection that knows and cares about index position. It can contain duplicate values.


	A Set is an unordered collection that doesn’t allow duplicate values.


	A Map is a collection that uses key/value pairs. It can contain duplicate values, but not duplicate keys.


	List, Set and Map are immutable. MutableList, MutableSet and MutableMap are mutable subtypes of these collections.


	Create a List using the listOf function.


	Create a MutableList using mutableListOf.


	Create a Set using the setOf function.


	Create a MutableSet using mutableSetOf.


	A Set checks for duplicates by first looking for matching hash code values. It then uses the === and == operators to check for referential or object equality.


	Create a Map using the mapOf function, passing in key/value pairs.


	Create a MutableMap using mutableMapOf.










Chapter 10. generics: Know Your Ins from Your Outs


[image: image]




Everybody likes code that’s consistent.

And one way of writing consistent code that’s less prone to problems is to use generics . In this chapter, we’ll look at how Kotlin’s collection classes use generics to stop you from putting a Cabbage into a List<Seagull>. You’ll discover when and how to write your own generic classes, interfaces and functions , and how to restrict a generic type to a specific supertype. Finally, you’ll find out how to use covariance and contravariance,  putting YOU in control of your generic type’s behavior.


Collections use generics

As you learned in the previous chapter, each time you explicitly declare a collection’s type, you must specify both the kind of collection you want to use, and the type of element it contains. The following code, for example, defines a variable that can hold a reference to a MutableList of Strings:

val x: MutableList< String>

The element type is defined inside angle brackets <>, which means that it uses generics. Generics lets you write code that’s type-safe. It’s what makes the compiler stop you from putting a Volkswagen into a list of Ducks. The compiler knows that you can only put Duck objects into a MutableList<Duck>, which means that more problems are caught at compile-time.

WITHOUT generics, objects would go IN as a reference to Duck, Fish, Guitar and Car objects...


[image: image]




...and come OUT as a reference of type Any.

WITH generics, objects go IN as a reference to only Duck objects...


[image: image]




...and come OUT as a reference of type Duck.




How a MutableList is defined

Let’s look at the online documentation to see how MutableList is defined, and how it uses generics. There are two key areas we’ll consider: the interface declaration, and how the add function is defined.


Understanding collection documentation (Or, what’s the meaning of “E”?)

Here’s a simplified version of the MutableList definition:


[image: image]




MutableList uses “E” as a stand-in for the type of element you want the collection to hold and return. When you see an “E” in the documentation, you can do a mental find/replace to exchange it for whatever type you want it to hold.

MutableList<String>, for example, means that “E” becomes “String” in any function or variable declaration that uses “E”. And MutableList<Duck> means that all instances of “E” become “Duck” instead.

Let’s look at this in more detail.


there are no Dumb Questions

Q: So MutableList isn’t a class?

A: No, it’s an interface. When you create a MutableList using the mutableListOf function, the system creates an implementation of this interface. All you care about when you’re using it, however, is that it has all the properties and functions defined in the MutableList interface.








Using type parameters with MutableList

When you write this code:


[image: image]




is treated by the compiler as:

interface MutableList<String> : List<String>, MutableCollection<String> {



   fun add(index: Int, element: String): Unit

  //More code

}

In other words, the “E” is replaced by the real type (also called the type parameter) that you use when you define the MutableList. And that’s why the add function won’t let you add anything except objects with a type that’s compatible with the type of “E”. So if you make a MutableList<String>, the add function suddenly lets you add Strings. And if you make the MutableList of type Duck, suddenly the add function lets you add Ducks.




Things you can do with a generic class or interface

Here’s a summary of some of the key things you can do when you’re using a class or interface that has generic types:


	* Create an instance of a generified class.

When you create a collection such as a MutableList, you have to tell it the type of objects you’ll allow it to hold, or let the compiler infer it:

val duckList: MutableList<Duck>

duckList = mutableListOf(Duck("Donald"), Duck("Daisy"), Duck("Daffy"))



val list = mutableListOf("Fee", "Fi", "Fum")


	* Create a function that takes a generic type.

You can create a function with a generic parameter by specifying its type, just as you would any other sort of parameter:

fun quack(ducks: MutableList<Duck>) {

    //Code to make the Ducks quack

}


	* Create a function that returns a generic type.

A function can return a generic type too. The following code, for example, returns a MutableList of Ducks:

fun getDucks(breed: String): MutableList<Duck> {

   //Code to get Ducks for the specified breed

}




But there are still important questions that need answering about generics, such as how do you define your own generic classes and interfaces? And how does polymorphism work with generic types? If you have a MutableList<Animal>, what happens if you try to assign a MutableList<Dog> to it?

To answer these questions and more, we’re going to create an application that uses generic types.




Here’s what we’re going to do

We’re going to create an application that deals with pets. We’ll create some pets, hold pet contests for them, and create pet retailers that can sell specific types of pet. And as we’re using generics, we’ll ensure that each contest and retailer we create can only deal with a specific type of pet.

Here are the steps that we’ll follow:


	Create the Pet hierarchy.

We’ll create a hierarchy of pets that will allow us to create three types of pet: cats, dogs and fish.


[image: image]





	Create the Contest class.

The Contest class will let us create contests for different types of pet. We’ll use it to manage the contestant scores so that we can determine the winner. And as we want each contest to be limited to a specific type of pet, we’ll define the Contest class using generics.


[image: image]





	Create the Retailer hierarchy.

We’ll create a Retailer interface, and concrete implementations of this interface named CatRetailer, DogRetailer and FishRetailer. We’ll use generics to ensure that each type of Retailer can only sell a specific type of pet, so that you can’t buy a Cat from a FishRetailer.


	Create a Vet class.

Finally, we’ll create a Vet class, so that we can assign a vet to each contest. We’ll define the Vet class using generics to reflect the type of Pet each Vet specializes in treating.


[image: image]







We’ll start by creating the pet class hierarchy.




Create the Pet class hierarchy


[image: image]




Our pet class hierarchy will comprise of four classes: a Pet class that we’ll mark as abstract, and concrete subclasses named Cat, Dog and Fish. We’ll add a name property to the Pet class, which its concrete subclasses will inherit.

We’re marking Pet as abstract because we only want to be able to create objects that are a subtype of Pet, such as Cat or Dog, and as you learned in Chapter 6, marking a class as abstract prevents that class from being instantiated.

Here’s the class hierarchy:


[image: image]




The code for the class hierarchy looks like this:


[image: image]




Next, let’s create the Contest class so that we can hold contests for different kinds of pet.




Define the Contest class


[image: image]




We’ll use the Contest class to help us manage the scores for a pet contest, and determine the winner. The class will have one property named scores, and two functions named addScore and getWinners.

We want each contest to be limited to a particular type of pet. A cat contest, for example, only has cat contestants, and only fish can take part in a fish contest. We’ll enforce this rule using generics.


Declare that Contest uses a generic type

You specify that a class uses a generic type by putting the type name in angle brackets immediately after the class name. Here, we’ll use “T” to denote the generic type. You can think of “T” as being a stand-in for the real type that each Contest object will deal with.

Here’s the code:


[image: image]




The generic type name can be anything that’s a legal identifier, but the convention (which you should follow) is to use “T”. The exception is if you’re writing a collection class or interface, in which case the convention is to use “E” instead (for “Element”), or “K” and “V” (for “Key” and “Value”) if it’s a map.




You can restrict T to a specific supertype

In the above example, T can be replaced by any real type when the class is instantiated. You can, however, place restrictions on T by specifying that it has a type. The following code, for example, tells the compiler that T must be a type of Pet:


[image: image]




So the above code means that you can create Contest objects that deal with Cats, Fish or Pets, but not Bicycles or Begonias.

Next, let’s add the scores property to the Contest class.






Add the scores property


[image: image]




The scores property needs to keep track of which contestant receives which score. We’ll therefore use a MutableMap, with contestants as keys, and their scores as values. As each contestant is an object of type T and each score is an Int, the scores property will have a type of MutableMap<T, Int>. If we create a Contest<Cat> that deals with Cat contestants, the scores property’s type will become MutableMap<Cat, Int>, but if we create a Contest<Pet> object, scores type will automatically become MutableMap<Pet, Int> instead.

Here’s the updated code for the Contest class:


[image: image]




Now that we’ve added the scores property, let’s add the addScore and getWinners functions.


Create the addScore function

We want the addScore function to add a contestant’s score to the scores MutableMap. We’ll pass the contestant and score to the function as parameter values; so long as the score is 0 or above, the function will add them to the MutableMap as a key/value pair.

Here’s the code for the function:


[image: image]




Finally, let’s add the getWinners function.






Create the getWinners function


[image: image]




The getWinners function needs to return the contestants with the highest score. We’ll get the value of the highest score from the scores property, and we’ll return all contestants with this score in a MutableSet. As each contestant has a generic type of T, the function must have a return type of MutableSet<T>.

Here’s the code for the getWinners function:


[image: image]




And here’s the code for the complete Contest class:


[image: image]




Now that we’ve written the Contest class, let’s use it to create some objects.




Create some Contest objects


[image: image]




You create Contest objects by specifying what type of objects it should deal with, and calling its constructor. The following code, for example, creates a Contest<Cat> object named catContest that deals with Cat objects:


[image: image]




This means that you can add Cat objects to its scores property, and use its getWinners function to return a MutableSet of Cats:


[image: image]




And as Contest uses generics, the compiler prevents you from passing any non-Cat references to it. The following code, for example, won’t compile:


[image: image]




A Contest<Pet>, however, will accept any type of Pet, like this:


[image: image]





The compiler can infer the generic type

In some circumstances, the compiler can infer the generic type from the available information. If, say, you create a variable of type Contest<Dog>, the compiler will automatically infer that any Contest object you pass to it is a Contest<Dog> (unless you tell it otherwise). The following code, for example, creates a Contest<Dog> object and assigns it to dogContest:


[image: image]




Where appropriate, the compiler can also infer the generic type from its constructor parameters. If, for example, we’d used a generic type parameter in the Contest class primary constructor like this:

class Contest<T: Pet>(t: T) {...}

The compiler would be able to infer that the following code creates a Contest<Fish>:


[image: image]





[image: image] Generic Functions Up Close

So far, you’ve seen how to define a function that uses a generic type inside a class definition. But what if you want to define a function with a generic type outside a class? Or what if you want a function inside a class to use a generic type that’s not included in the class definition?

If you want to define a function with its own generic type, you can do so by declaring the generic type as part of the function definition. The following code, for example, defines a function named listPet with a generic type, T, that’s limited to types of Pet. The function accepts a T parameter, and returns a reference to a MutableList<T> object:


[image: image]




Notice that when you declare a generic function in this way, the type must be declared in angle brackets before the function name, like this:

fun <T: Pet> listPet...

To call the function, you must specify the type of object the function should deal with. The following code, for example, calls the listPet function, using angle brackets to specify that we’re using it with Cat objects:


[image: image]











Create the Generics project


[image: image]




Now that you’ve seen how to create a class that uses generics, let’s add it to a new application.

Create a new Kotlin project that targets the JVM, and name the project “Generics”. Then create a new Kotlin file named Pets.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “Pets”, and choose File from the Kind option.

Next, update your version of Pets.kt to match ours below:


[image: image]






[image: image]





[image: image]





Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

Cat contest winner is Fuzz Lightyear

Pet contest winner is Finny McGraw

After you’ve had a go at the following exercise, we’ll look at the Retailer hierarchy.


there are no Dumb Questions

Q: Can a generic type be nullable?

A: Yes. If you have a function that returns a generic type, and you want this type to be nullable, simply add a ? after the generic return type like this:

class MyClass<T> {

    fun myFun(): T?

}

Q: Can a class have more than one generic type?

A: Yes. You define multiple generic types by specifying them inside angle brackets, separated by a comma. If you wanted to define a class named MyMap with K and V generic types, you would define it using code like this:

class MyMap<K, V> {

   //Code goes here

}




Pool Puzzle


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the code snippets. Your goal is to create a class named PetOwner that accepts generic Pet types, which you must then use to create a new PetOwner<Cat> that holds references to two Cat objects.


[image: image]




Note: each thing from the pool can only be used once!


[image: image]







Pool Puzzle Solution


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the code snippets. Your goal is to create a class named PetOwner that accepts generic Pet types, which you must then use to create a new PetOwner<Cat> that holds references to two Cat objects.


[image: image]





[image: image]











The Retailer hierarchy


[image: image]




We’re going to use the Pet classes we created earlier to define a hierarchy of retailers that can sell different types of pet. To do this, we’ll define a Retailer interface with a sell function, and three concrete classes named CatRetailer, DogRetailer and FishRetailer that implement the interface.

Each type of retailer should be able to sell a particular type of object. A CatRetailer, for example, can only sell Cats, and a DogRetailer can only sell Dogs. To enforce this, we’ll use generics to specify the type of object that each class deals with. We’ll add a generic type T to the Retailer interface, and specify that the sell function must return objects of this type. As the CatRetailer, DogRetailer and FishRetailer classes all implement this interface, each one will have to substitute the “real” type of object they deal with for the generic type T.

Here’s the class hierarchy that we’ll use:


there are no Dumb Questions

Q: Why aren’t you using a PetRetailer concrete class?

A: In the real world, it’s quite likely that you’d want to include a PetRetailer which sells all types of Pet. Here, we’re differentiating between the different types of Retailer so that we can teach you more important details about generics.




[image: image]




Now that you’ve seen the class hierarchy let’s write the code for it, starting with the Retailer interface.




Define the Retailer interface


[image: image]




The Retailer interface needs to specify that it uses a generic type T, which is used as the return type for the sell function.

Here’s the code for the interface:

interface Retailer<T> {

       fun sell(): T

}


[image: image]




The CatRetailer, DogRetailer and FishRetailer classes need to implement the Retailer interface, specifying the type of object each one deals with. The CatRetailer class, for example, only deals with Cats, so we’ll define it using code like this:


[image: image]




Similarly, the DogRetailer class deals with Dogs, so we can define it like this:


[image: image]




Each implementation of the Retailer interface must specify the type of object it deals with by replacing the “T” defined in the interface with the real type. The CatRetailer implementation, for example, replaces “T” with “Cat”, so its sell function must return a Cat. If you try and use anything other than Cat (or a subtype of Cat) for sell’s return type, the code won’t compile:


[image: image]




So using generics means that you can place limits on how a class uses its types, making your code much more consistent and robust.

Now that we have the code for our retailers, let’s create some objects.




We can create CatRetailer, DogRetailer and FishRetailer objects...


[image: image]




As you might expect, you can create a CatRetailer, DogRetailer or FishRetailer object and assign it to a variable by explicitly declaring the variable’s type, or letting the compiler infer it from the value that’s assigned to it. The following code uses these techniques to create two CatRetailer variables and assign a CatRetailer object to each one:

val catRetailer1 = CatRetailer()

val catRetailer2: CatRetailer = CatRetailer()


...but what about polymorphism?

As CatRetailer, DogRetailer and FishRetailer implement the Retailer interface, we should be able to create a variable of type Retailer (with a compatible type parameter), and assign one of its subtypes to it. And this works if we assign a CatRetailer object to a Retailer<Cat> variable, or assign a DogRetailer to a Retailer<Dog>:


[image: image]




But if we try to assign one of these objects to a Retailer<Pet>, the code won’t compile:


[image: image]




Even though CatRetailer is a type of Retailer, and Cat is a type of Pet, our current code won’t let us assign a Retailer<Cat> object to a Retailer<Pet> variable. A Retailer<Pet> variable will only accept a Retailer<Pet> object. Not a Retailer<Cat>, nor a Retailer<Dog>, but only a Retailer<Pet>.

This behavior appears to violate the whole point of polymorphism. The great news, however, is that we can adjust the generic type in the Retailer interface to control which types of objects a Retailer<Pet> variable can accept.






Use out to make a generic type covariant


[image: image]




If you want to be able to use a generic subtype object in a place of a generic supertype, you can do so by prefixing the generic type with out. In our example, we want to be able to assign a Retailer<Cat> (a subtype) to a Retailer<Pet> (a supertype) so we’ll prefix the generic type T in the Retailer interface with out like so:


[image: image]





If a generic type is covariant, it means that you can use a subtype in place of a supertype.



When we prefix a generic type with out, we say that the generic type is covariant. In other words, it means that a subtype can be used in place of a supertype.

Making the above change means that a Retailer<Pet> variable can now be assigned Retailer objects that deal with Pet subtypes. The following code, for example, now compiles:


[image: image]




In general, a class or interface generic type may be prefixed with out if the class has functions that use it as a return type, or if the class has val properties of that type. You can’t, however, use out if the class has function parameters or var properties of that generic type.

Note

Another way of thinking about this is that a generic type that’s prefixed with out can only be used in an “out” position, such as a function return type. It can’t, however, be used in an “in” position, so a function can’t receive a covariant type as a parameter value.




Collections are defined using covariant types

The out prefix isn’t just used by generic classes and interfaces that you define yourself. They’re also heavily used by Kotlin’s built-in code, such as collections.

The List collection, for example, is defined using code like this:

public interface List<out E> ... { ... }

This means that you can, say, assign a List of Cats to a List of Pets, and the code will compile:

Now that you’ve seen how to make generic types covariant using out, let’s add the code we’ve written to our project.

val catList: List<Cat> = listOf(Cat(""), Cat(""))

val petList: List<Pet> = catList

Now that you’ve seen how to make generic types covariant using the out prefix, have a go at the following exercise.






Update the Generics project


[image: image]




Update your version of Pets.kt in the Generics project so that it matches ours below (our changes are in bold):


[image: image]






[image: image]





[image: image]





Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

Cat contest winner is Fuzz Lightyear

Pet contest winner is Finny McGraw

Sell Cat

Now that you’ve seen how to make generic types covariant using the out prefix, have a go at the following exercise.


BE the Compiler


[image: image]




Here are five classes and interfaces that use generics. Your job is to play like you’re the Compiler, and determine whether each one will compile. If it won’t compile, why not?


	

interface A<out T> {

   fun myFunction(t: T)

}


	

interface B<out T> {

   val x: T

   fun myFunction(): T

}


	

interface C<out T> {

   var y: T

   fun myFunction(): T

}


	

interface D<out T> {

   fun myFunction(str: String): T

}


	

abstract class E<out T>(t: T) {

   val x = t

}







BE the Compiler Solution


[image: image]




Here are five classes and interfaces that use generics. Your job is to play like you’re the Compiler, and determine whether each one will compile. If it won’t compile, why not?


[image: image]











We need a Vet class


[image: image]




As we said earlier in the chapter, we want to be able to assign a vet to each contest in case there’s a medical emergency with any of the contestants. As vets can specialize in treating different types of pet, we’ll create a Vet class with a generic type T, and specify that it has a treat function that accepts an argument of this type. We’ll also say that T must be a type of Pet so that you can’t create a Vet that treats, say, Planet or Broccoli objects.

Here’s the Vet class


[image: image]




Next, let’s change the Contest class so that it accepts a Vet.


Assign a Vet to a Contest

We want to make sure that each Contest has a Vet, so we’ll add a Vet property to the Contest constructor. Here’s the updated Contest code:


[image: image]




Let’s create some Vet objects, and assign them to Contests.






Create Vet objects


[image: image]




We can create Vet objects in the same way that we created Contest objects: by specifying the type of object each Vet object should deal with. The following code, for example, creates three objects—one each of type Vet<Cat>, Vet<Fish> and Vet<Pet>:

val catVet = Vet<Cat>()

val fishVet = Vet<Fish>()

val petVet = Vet<Pet>()

Each Vet can deal with a specific type of Pet. The Vet<Cat>, for example, can treat Cats, while a Vet<Pet> can treat any Pet, including both Cats and Fish. A Vet<Cat>, however, can’t treat anything that’s not a Cat, such as a Fish:


[image: image]




Let’s see what happens when we try passing Vet objects to Contests.


Pass a Vet to the Contest constructor

The Contest class has one parameter, a Vet, which must be able to treat the type of Pet that the Contest is for. This means that we can pass a Vet<Cat> to a Contest<Cat>, and a Vet<Pet> to a Contest<Pet> like this:

val catContest = Contest<Cat>(catVet)

val petContest = Contest<Pet>(petVet)

But there’s a problem. A Vet<Pet> can treat all types of Pet, including Cats, but we can’t assign a Vet<Pet> to a Contest<Cat> as the code won’t compile:


[image: image]




So what should we do in this situation?






Use in to make a generic type contravariant


[image: image]




In our example, we want to be able to pass a Pet<Vet> to a Contest<Cat> in place of a Pet<Cat>. In other words, we want to be able to use a generic supertype in place of a generic subtype.

In this situation, we can solve the problem by prefixing the generic type used by the Vet class with in. in is the polar opposite of out. While out allows you to use a generic subtype in place of a supertype (like assigning a Retailer<Cat> to a Retailer<Pet>), in lets you use a generic supertype in place of a subtype. So prefixing the Vet class generic type with in like this:


[image: image]





If a generic type is contravariant, it means that you can use a supertype in place of a subtype. This is the opposite of covariance.



means that we can use a Vet<Pet> in place of a Vet<Cat>. The following code now compiles:


[image: image]




When we prefix a generic type with in, we say that the generic type is contravariant. In other words, it means that a supertype can be used in place of a subtype.

In general, a class or interface generic type may be prefixed with in if the class has functions that use it as a parameter type. You can’t, however, use in if any of the class functions use it as a return type, or if that type is used by any properties, irrespective of whether they’re defined using val or var.

Note

In other words, a generic type that’s prefixed with “in” can only be used in an “in” position, such as a function parameter value. It can’t be used in “out” positions.




Should a Vet<Cat> ALWAYS accept a Vet<Pet>?

Before prefixing a class or interface generic type with in, you need to consider whether you want the generic subtype parameter to accept a supertype in every situation. in allows you, for example, to assign a Vet<Pet> object to Vet<Cat> variable, which may not be something that you always want to happen:


[image: image]




The great news is that in situations like this, you can tailor the circumstances in which a generic type is contravariant. Let’s see how.






A generic type can be locally contravariant


[image: image]




As you’ve seen, prefixing a generic type with in as part of the class or interface declaration makes the generic type globally contravariant. You can, however, restrict this behavior to specific properties or functions.

Suppose, for example, that we want to be able to use a Vet<Pet> reference in place of a Vet<Cat>, but only where it’s being passed to a Contest<Cat> in its constructor. We can achieve this by removing the in prefix from the generic type in the Vet class, and adding it to the vet property in the Contest constructor instead.

Here’s the code to do this:


[image: image]





When a generic type has no in or out prefix, we say that the type is invariant. An invariant type can only accept references of that specific type.



These changes mean that you can still pass a Vet<Pet> to a Contest<Cat> like this:


[image: image]




The compiler won’t, however, let you assign a Vet<Pet> object to a Vet<Cat> variable as Vet’s generic type is not globally contravariant:


[image: image]




Now that you’ve learned how to use contravariance, let’s add the Vet code to our Generics project.




Update the Generics project


[image: image]




Update your version of Pets.kt in the Generics project so that it matches ours below (our changes are in bold):


[image: image]






[image: image]





[image: image]






[image: image]





[image: image]





Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

Treat Pet Fuzz Lightyear

Treat Pet Katsu

Treat Pet Finny McGraw

Cat contest winner is Fuzz Lightyear

Pet contest winner is Finny McGraw

Sell Cat


there are no Dumb Questions

Q: Couldn’t I have just made Contest’s vet property a Vet<Pet>?

A: No. This would mean that the vet property could only accept a Vet<Pet>. And while you could make the vet property locally covariant using:

var vet: Vet<out Pet>

it would mean that you could assign a Vet<Fish> to a Contest<Cat>, which is unlikely to end well.

Q: Kotlin’s approach to generics seems different to Java’s. Is that right?

A: Yes, it is. With Java, generic types are always invariant, but you can use wildcards to get around some of the problems this creates. Kotlin, however, gives you far greater control as you can make generic types covariant, contravariant, or leave them as invariant.




BE the Compiler


[image: image]




Here are four classes and interfaces that use generics. Your job is to play like you’re the Compiler, and determine whether each one will compile. If it won’t compile, why not?


	

class A<in T>(t: T) {

    fun myFunction(t: T) { }

}


	

class B<in T>(t: T) {

    val x = t

    fun myFunction(t: T) { }

}


	

abstract class C<in T> {

    fun myFunction(): T { }

}


	

class E<in T>(t: T) {

    var y = t

    fun myFunction(t: T) { }

}







[image: image] Sharpen your pencil

Below is a complete Kotlin file listing. The code, however, won’t compile. Which lines won’t compile? What changes do you need to make to the class and interface definitions to make them compile?

Note: You may not amend the main function.

//Food types

open class Food



class VeganFood: Food()



//Sellers

interface Seller<T>



class FoodSeller: Seller<Food>



class VeganFoodSeller: Seller<VeganFood>



//Consumers

interface Consumer<T>



class Person: Consumer<Food>



class Vegan: Consumer<VeganFood>



fun main(args: Array<String>) {

    var foodSeller: Seller<Food>

    foodSeller = FoodSeller()

    foodSeller = VeganFoodSeller()



    var veganFoodConsumer: Consumer<VeganFood>

    veganFoodConsumer = Vegan()

    veganFoodConsumer = Person()

}




BE the Compiler Solution


[image: image]




Here are four classes and interfaces that use generics. Your job is to play like you’re the Compiler, and determine whether each one will compile. If it won’t compile, why not?


[image: image]







[image: image] Sharpen your pencil Solution

Below is a complete Kotlin file listing. The code, however, won’t compile. Which lines won’t compile? What changes do you need to make to the class and interface definitions to make them compile?

Note: You may not amend the main function.


[image: image]











Your Kotlin Toolbox


[image: image]




You’ve got Chapter 10 under your belt and now you’ve added generics to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	Generics let you write consistent code that’s type-safe. Collections such as MutableList use generics.


	The generic type is defined inside angle brackets <>, for example:

class Contest<T>


	You can restrict the generic type to a specific supertype, for example:

class Contest<T: Pet>


	You create an instance of a class with a generic type by specifying the “real” type in angle brackets, for example:

Contest<Cat>


	Where possible, the compiler will infer the generic type.


	You can define a function that uses a generic type outside a class declaration, or one that uses a different generic type, for example:

fun <T> listPet(): List<T>{

    ...

}


	A generic type is invariant if it can only accept references of that specific type. Generic types are invariant by default.


	A generic type is covariant if you can use a subtype in place of a supertype. You specify that a type is covariant by prefixing it with out.


	A generic type is contravariant if you can use a supertype in place of a subtype. You specify that a type is contravariant by prefixing it with in.










Chapter 11. lambdas and higher-order functions: Treating Code Like Data


[image: image]




Want to write code that’s even more powerful and flexible?

If so, then you need lambdas. A lambda—or lambda expression—is a block of code that you can pass around just like an object. Here, you’ll discover how to define a lambda , assign it to a variable , and then execute its code . You’ll learn about function types, and how these can help you write higher-order functions that use lambdas for their parameter or return values. And along the way, you’ll find out how a little syntactic sugar can make your coding life sweeter .: Treating Code Like Data


Introducing lambdas

Throughout this book, you’ve seen how to use Kotlin’s built-in functions, and create your own. But even though we’ve covered a lot of ground, we’re still just scratching the surface. Kotlin has a pile of functions that are even more powerful than the ones you’ve already encountered, but in order to use them, there’s one more thing you need to learn: how to create and use lambda expressions.

A lambda expression, or lambda, is a type of object that holds a block of code. You can assign a lambda to a variable, just as you can any other sort of object, or pass a lambda to a function which can then execute the code it holds. This means that you can use lambdas to pass specific behavior to a more generalized function.

Using lambdas in this way is particularly useful when it comes to collections. The collections package has a built-in sortBy function, for example, that provides a generic implementation for sorting a MutableList; you specify how the function should sort the collection by passing it a lambda that describes the criteria:


[image: image]





What we’re going to do

Before introducing you to the built-in functions that use lambdas, we want you to get to grips with how lambdas work, so in this chapter, you’re going to learn how to do the following:


	Define a lambda.

You’ll discover what a lambda looks like, how to assign it to a variable, what its type is, and how to invoke the code that it contains.


	Create a higher-order function.

You’ll find out how to create a function that has a lambda parameter, and how to use a lambda as a function’s return value.




Let’s start by examining what a lambda looks like.






What lambda code looks like

We’re going to write a simple lambda that adds 5 to an Int parameter value. Here’s what the lambda for this looks like:


[image: image]




The lambda starts and ends with curly braces {}. All lambdas are defined within curly braces, so they can’t be omitted.

Inside the curly braces, the lambda defines a single Int parameter named x using x: Int. Lambdas can have single parameters (as is the case here), multiple parameters, or none at all.

The parameter definition is followed by ->. -> is used to separate any parameters from the body. It’s like saying “Hey, parameters, do this!”

Finally, the -> is followed by the lambda body—in this case, x + 5. This is the code that you want to be executed when the lambda runs. The body can have multiple lines, and the last evaluated expression in the body is used as the lambda’s return value.


[image: image]




In the example above, the lambda takes the value of x, and returns x + 5. It’s like writing the function:

fun addFive(x: Int) = x + 5

except that lambdas have no name, so they’re anonymous.

As we mentioned above, lambdas can have multiple parameters. The following lambda, for example, takes two Int parameters, x and y, and returns the result of x + y:

{ x: Int, y: Int -> x + y }


[image: image]




If the lambda has no parameters, you can omit the ->. The following lambda, for example, has no parameters, and simply returns the String “Pow!”:


[image: image]




Now that you know what a lambda looks like, let’s see how you assign one to a variable.




You can assign a lambda to a variable

You assign a lambda to a variable in the same way that you assign any other sort of object to a variable: by defining the variable using val or var, then assigning the lambda to it. The following code, for example, assigns a lambda to a new variable named addFive:

val addFive = { x: Int -> x + 5 }

We’ve defined the addFive variable using val, so it can’t be updated to hold a different lambda. To update the variable, it must be defined using var like this:


[image: image]





[image: image]




When you assign a lambda to a variable, you’re assigning a block of code to it, not the result of the code being run. To run the code in a lambda, you need to explicitly invoke it.


Execute a lambda’s code by invoking it

You invoke a lambda by calling its invoke function, passing in the values for any parameters. The following code, for example, defines a variable named addInts, and assigns a lambda to it that adds together two Int parameters. The code then invokes the lambda, passing it parameter values of 6 and 7, and assigns the result to a new variable named result:


[image: image] Relax

Don’t worry if lambda expressions seem a litle strange at first.

Take your time, and work through this chapter at a gentle pace, and you’ll be fine.



val addInts = { x: Int, y: Int -> x + y }
val result = addInts.invoke(6, 7)

You can also invoke the lambda using the following shortcut:

val result = addInts(6, 7)

This does the same thing as:

val result = addInts.invoke(6, 7)


[image: image]




but with slightly less code. It’s like saying “run the lambda expression held in variable addInts using parameter values of 6 and 7”.

Let’s go behind the scenes, and see what happens when you invoke a lambda.






What happens when you invoke a lambda

When you run the code:

val addInts = { x: Int, y: Int -> x + y }
val result = addInts(6, 7)

The following things happen:


	val addInts = { x: Int, y: Int -> x + y }

This creates a lambda with a value of { x: Int, y: Int -> x + y }. A reference to the lambda is assigned to a new variable named addInts.


[image: image]





	val result = addInts(6, 7)

This invokes the lambda referenced by addInts, passing it values of 6 and 7. The 6 lands in the lambda’s x parameter, and the 7 lands in the lambda’s y parameter.


[image: image]





	val addInts = { x: Int, y: Int -> x + y }

The lambda body executes, and calculates x + y. The lambda creates an Int object with a value of 13, and returns a reference to it.


[image: image]





	val result = addInts(6, 7)

The value returned by the lambda is assigned to a new Int variable named result.


[image: image]







Now that you know what happens when you invoke a lambda, let’s look at lambda types.




Lambda expressions have a type

Just like any other sort of object, a lambda has a type. The difference with a lambda’s type, however, is that it doesn’t specify a class name that the lambda implements. Instead, it specifies the type of the lambda’s parameters and return value.


A lambda’s type is also known as a function type.



A lambda’s type takes the form:

(parameters) -> return_type

So if you have a lambda with a single Int parameter that returns a String like this:

val msg = { x: Int -> "The value is $x" }

its type is:

(Int) -> String

When you assign a lambda to a variable, the compiler infers the variable’s type from the lambda that’s assigned to it, as in the above example. Just like any other type of object, however, you can explicitly define the variable’s type. The following code, for example, defines a variable named add that can hold a reference to a lambda which has two Int parameters, and returns an Int:

val add: (Int, Int) -> Int

add = { x: Int, y: Int -> x + y }

Similarly, the following code defines a variable named greeting that can hold a reference to a lambda with no parameters, and a String return value:

val greeting: () -> String = { "Hello!" }

val greeting: () -> String

Just like with any other type of variable declaration, you can explicitly declare a variable’s type and assign a value to it in a single line of code. This means that you can rewrite the above code as:


[image: image]





[image: image]







The compiler can infer lambda parameter types

When you explicitly declare a variable’s type, you can leave out any type declarations from the lambda that the compiler can infer.

Suppose that you have the following code, which assigns a lambda to a variable named addFive:


[image: image]




The compiler already knows from addFive’s type definition that any lambda that’s assigned to the variable must have an Int parameter. This means that you can omit the Int type declaration from the lambda parameter definition because the compiler can infer its type:


[image: image]





[image: image]





You can replace a single parameter with it

If you have a lambda which has a single parameter, and the compiler can infer its type, you can omit the parameter, and refer to it in the lambda body using the keyword it.

To see how this works, suppose, as above, that you have a lambda that’s assigned to a variable using the code:

val addFive: (Int) -> Int = { x: Int -> x + 5 }

As the lambda has a single parameter, x, and the compiler can infer that x is an Int, we can omit the x parameter from the lambda, and replace it with it in the lambda body like this:

val addFive: (Int) -> Int = { it + 5 }


[image: image]




In the above code, { it + 5 } is equivalent to { x -> x + 5 }, but it’s much more concise.

Note that you can only use the it syntax in situations where the compiler can infer the type of the parameter. The following code, for example, won’t compile because the compiler can’t tell what type it should be:


[image: image]









Use the right lambda for the variable’s type

As you already know, the compiler deeply cares about a variable’s type. This applies to lambda types, as well as plain object types, which means that the compiler will only let you assign a lambda to a variable that is compatible with that variable’s type.

Suppose you have a variable named calculation that can hold references to lambdas with two Int parameters and an Int return value like this:

val calculation: (Int, Int) -> Int


[image: image]




If you try to assign a lambda to calculation whose type doesn’t match that of the variable, the compiler will get upset. The following code, for example, won’t compile because the lambda explicitly uses Doubles:


[image: image]





Use Unit to say a lambda has no return value

If you want to specify that a lambda has no return value, you can do so by declaring that its return type is Unit. The following lambda, for example, has no return value, and prints the text “Hi!” when it is invoked:

val myLambda: () -> Unit = { println("Hi!") }


[image: image]




You can also use Unit to explicitly specify that you don’t want to access the result of a lambda’s calculation. The following code, for example, will compile, but you won’t be able to access the result of x + y:

val calculation: (Int, Int) -> Unit = { x, y -> x + y }


there are no Dumb Questions

Q: Does the code

val x = { "Pow!" }

assign the text “Pow!” to x?

A: No. The above assigns a lambda to x, and not a String. The lambda, however, returns “Pow!” when it is executed.

Q: Can I assign a lambda to a variable of type Any?

A: Yes. An Any variable can accept a reference to any type of object, including lambdas.

Q: That it syntax looks familiar. Have I seen it before?

A: Yes! Back in Chapter 8 we used it with let. We didn’t tell you at the time because we wanted you to focus on null values, but let is actually a function that accepts a lambda as a parameter.








Create the Lambdas project

Now that you’ve seen how to create lambdas, let’s add some to a new application.

Create a new Kotlin project that targets the JVM, and name the project “Lambdas”. Then create a new Kotlin file named Lambdas.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “Lambdas”, and choose File from the Kind option.

Next, update your version of Lambdas.kt to match ours below:


[image: image]





Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

Pass 6 to addFive: 11

Pass 6, 7 to addInts: 13

Pass 10, 11 to intLambda: 110

Pass 12 to addSeven: 19

Hi!


[image: image] Mixed Messages

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.




[image: image]





[image: image] Mixed Messages Solution

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.




[image: image]





What’s My Type?

Here is a list of variable definitions, and a list of lambdas. Which lambdas can be assigned to which variables? Draw lines connecting the lambdas with their matching variables.


[image: image]







What’s My Type? Solution

Here is a list of variable definitions, and a list of lambdas. Which lambdas can be assigned to which variables? Draw lines connecting the lambdas with their matching variables.


[image: image]











You can pass a lambda to a function

As well as assigning a lambda to a variable, you can also use one or more as function parameters. Doing so allows you to pass specific behavior to a more generalized function.

To see how this works, we’re going to write a function named convert that converts a Double using some formula that’s passed to it via a lambda, prints the result, and returns it. This will allow us to, say, convert a temperature from Centigrade to Fahrenheit, or convert a weight from kilograms to pounds, depending on the formula that we pass to it in the lambda argument.

We’ll start by defining the function parameters.


A function that uses a lambda as a parameter or return value is known as a higher-order function.




Add a lambda parameter to a function by specifying its name and type

We need to tell the convert function two things in order for it to convert one Double to another: the Double we want to convert, and the lambda that specifies how it should be converted. We’ll therefore use two parameters for the convert function: a Double and a lambda.

You define a lambda parameter in the same way that you define any other sort of function parameter: by specifying the parameter’s type, and giving it a name. We’ll name our lambda converter, and as we want the lambda to convert a Double to a Double, its type needs to be (Double) -> Double (a lambda that accepts a Double parameter, and returns a Double).

The function definition (excluding the function body) is below. As you can see, it specifies two parameters—a Double named x, and a lambda named converter—and returns a Double:


[image: image]




Next, we’ll write the code for the function body.






Invoke the lambda in the function body

We want the convert function to convert the value of the x parameter using the formula that’s passed to it via the converter parameter (a lambda). We’ll therefore invoke the converter lambda in the function body, passing it the value of x, and then print and return the result.

Here’s the full code for the convert function:


[image: image]




Now that we’ve written the function, let’s try calling it.


Call the function by passing it parameter values

You call a function with a lambda parameter in the same way that you call any other sort of function: by passing it a value for each argument—in this case, a Double and a lambda.

Let’s use the convert function to convert 20.0 degrees Centigrade to Fahrenheit. To do this, we’ll pass values of 20.0 and { c: Double -> c * 1.8 + 32 } to the function:


[image: image]




When the above code runs, it returns a value of 68.0 (the value of 20.0 degrees Centigrade when it’s converted to Fahrenheit).

Let’s go behind the scenes, and break down what happens when the code runs.






What happens when you call the function

The following things happen when you call the convert function using the code:

val fahrenheit = convert(20.0, { c: Double -> c * 1.8 + 32 })


	val fahrenheit = convert(20.0, { c: Double -> c * 1.8 + 32 })

This creates a Double object with a value of 20.0, and a lambda with a value of { c: Double -> c * 1.8 + 32 }.


[image: image]





	fun convert(x: Double, converter: (Double) -> Double) : Double {

   val result = converter(x)

   println("$x is converted to $result")

   return result

}

The code passes references to the objects it’s created to the convert function. The Double lands in the convert function’s x parameter, and the lambda lands in its converter parameter. The code then invokes the converter lambda, using x as the lambda’s parameter.


[image: image]





	

fun convert(x: Double, converter: (Double) -> Double) : Double {

   val result = converter(x)

   println("$x is converted to $result")

   return result

}

The lambda’s body executes, and its result (a Double with a value of 68.0) is assigned to a new variable named result. The function prints the values of the x and result variables, and returns a reference to the result object.


[image: image]





	val fahrenheit = convert(20.0, { c: Double -> c * 1.8 + 32 })

A new fahrenheit variable gets created. It’s assigned a reference to the object returned by the convert function.


[image: image]







Now that you’ve seen what happens when you call a function with a lambda parameter, let’s look at some shortcuts you can take when you call this kind of function.




You can move the lambda OUTSIDE the ()’s...

So far, you’ve seen how to call a function with a lambda parameter by passing arguments to the function inside the function’s parentheses. We called the convert function, for example, using the following code:

convert(20.0, { c: Double -> c * 1.8 + 32 })

If the final parameter of a function you want to call is a lambda, as is the case with our convert function, you can move the lambda argument outside the function call’s parentheses. The following code, for example, does the same thing as the code above, but we’ve moved the lambda outside the parentheses:


[image: image]





...or remove the ()’s entirely

If you have a function that has just one parameter, and that parameter is a lambda, you can omit the parentheses entirely when you call the function.

To see how this works, suppose you have the following function named convertFive that converts the Int 5 to a Double using a conversion formula that’s passed to it via a lambda. Here’s the code for the function:

fun convertFive(converter: (Int) -> Double) : Double {

   val result = converter(5)

   println("5 is converted to $result")

   return result

}

As the convertFive function has a single parameter, a lambda, you can call the function like this:


[image: image]




This does the same thing as:

convertFive { it * 1.8 + 32 }

but we’ve removed the parentheses.

Now that you’ve learned how to write a function that uses a lambda parameter, let’s update our project code.






Update the Lambdas project

We’ll add the convert and convertFive functions to our Lambdas project. Update your version of Lambdas.kt in the project so that it matches ours below (our changes are in bold):


[image: image]




Let’s take the code for a test drive.


Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

20.0 is converted to 68.0

5 is converted to 41.0

Before we look at what else you can do with lambdas, have a go at the next exercise.


[image: image] Lambda Formatting Up Close

As we said earlier in the chapter, a lambda body can include multiple lines of code. The following lambda, for example, prints the value of its parameter, and then uses it in a calculation:

{ c: Double -> println(c)

               c * 1.8 + 32 }

When you have a lambda whose body has multiple lines, the last evaluated expression is used as the lambda’s return value. So in the above example, the return value is defined using the line:

c * 1.8 + 32

A lambda can also be formatted so that it looks like a code block, with its surrounding curly braces on different lines to the lambda’s contents. The following code uses this technique to pass the lambda { it * 1.8 + 32 } to the convertFive function:

convertFive {

    it * 1.8 + 32

}




there are no Dumb Questions

Q: It looks like there are quite a few shortcuts you can take when you use lambdas. Do I really need to know about them all?

A: It’s useful to know about these shortcuts because once you get used to them, they can make your code more concise and readable. Alternative syntax that’s designed to make your code easier to read is sometimes referred to as syntactic sugar, as it can make the language “sweeter” for humans. But even if you don’t want to use the shortcuts we’ve discussed in your own code, they’re still worth knowing about because you may encounter them in third-party code.

Q: Why are lambdas called lambdas?

A: It’s because they come from an area of mathematics and computer science called Lambda Calculus, where small, anonymous functions are represented by the Greek letter λ (a lambda).

Q: Why aren’t lambdas called functions?

A: A lambda is a type of function, but in most languages, functions always have names. As you’ve already seen, a lambda doesn’t need to have a name.




Pool Puzzle


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the code snippets. Your goal is to create a function named unless that’s called by the main function below. The unless function should have two parameters, a Boolean named condition, and a lambda named code. The function should invoke the code lambda when condition is false.


[image: image]




Note: each thing from the pool can only be used once!


[image: image]











A function can return a lambda

As well as using a lambda as a parameter, a function can also return one by specifying the lambda’s type as its return type. The following code, for example, defines a function named getConversionLambda that returns a lambda of type (Double) -> Double. The exact lambda that’s returned by the function depends on the value of the String that’s passed to it.


[image: image]




You can invoke the lambda returned by a function, or use it as an argument for another function. The following code, for example, invokes getConversionLambda’s return value to get the value of 2.5 kilograms in pounds, and assigns it to a variable named pounds:


[image: image]




And the following example uses getConversionLambda to get a lambda that converts a temperature from Centigrade to Fahrenheit, and then passes it to the convert function:

You can even define a function that both receives and returns a lambda. We’ll look at this next.




Write a function that receives AND returns lambdas

We’re going to create a function named combine that takes two lambda parameters, combines them, and returns the result (another lambda). If the function is given lambdas for converting a value from kilograms to pounds, and converting a value from pounds to tons, it will return a lambda that converts a value from kilograms to US tons. We’ll then be able to use this lambda elsewhere in our code.

We’ll start by defining the function’s parameters and return type.


[image: image]





Define the parameters and return type

All of the lambdas used by the combine function need to convert one Double value to another Double value, so each one has a type of (Double) -> Double. Our function definition therefore needs to look like this:


[image: image]




Next, let’s look at the function body.




Define the function body

The function body needs to return a lambda, and this lambda must have the following characteristics:


	* It must take one parameter, a Double. We’ll name this parameter x.


	* The lambda’s body should invoke lambda1, passing it the value of x. The result of this invocation should then be passed to lambda2.




We can achieve this using the following code:


[image: image]




Let’s write some code that uses the function.






How to use the combine function

The combine function we’ve just created takes two lambdas, and combines them to form a third. This means that if we pass the function one lambda to convert a value from kilograms to pounds, and another to convert a value from pounds to US tons, the function will return a lambda that converts a value from kilograms to US tons.

Here’s the code to do this:


[image: image]




Let’s go behind the scenes, and see what happens when the code runs.


What happens when the code runs


	

val kgsToPounds = { x: Double -> x * 2.204623 }

val poundsToUSTons = { x: Double -> x / 2000.0 }

val kgsToUSTons = combine(kgsToPounds, poundsToUSTons)

This creates two variables, and assigns a lambda to each one. A reference to each lambda is then passed to the combine function.


[image: image]





	

fun combine(lambda1: (Double) -> Double,

               lambda2: (Double) -> Double): (Double) -> Double {

    return { x: Double -> lambda2(lambda1(x)) }

}

The kgsToPounds lambda lands in the combine function’s lambda1 parameter, and the poundsToUSTons lambda lands in its lambda2 parameter.


[image: image]





	

fun combine(lambda1: (Double) -> Double,

             lambda2: (Double) -> Double): (Double) -> Double {

  return { x: Double -> lambda2(lambda1(x)) }

}

lambda1(x) runs. As lambda1’s body is x * 2.204623, where x is a Double, this creates a Double object with a value of x * 2.204623.


[image: image]





	

fun combine(lambda1: (Double) -> Double,

             lambda2: (Double) -> Double): (Double) -> Double {

 return { x: Double -> lambda2(lambda1(x))}

}

The Double object with a value of x * 2.204623 is then passed to lambda2. As lambda2’s body is x / 2000.0, this means that x * 2.204623 is substituted for x. This creates a Double with a value of (x * 2.204623) / 2000.0, or x * 0.0011023115.


[image: image]





	
fun combine(lambda1: (Double) -> Double,

             lambda2: (Double) -> Double): (Double) -> Double {

 return { x: Double -> lambda2(lambda1(x)) }

}

This creates the lambda { x: Double -> x * 0.0011023115 }, and a reference to this lambda is returned by the function.


[image: image]





	

val kgsToUSTons = combine(kgsToPounds, poundsToUSTons)

val usTons = kgsToUSTons(1000.0)

The lambda returned by the combine function is assigned to a variable named kgsToUSTons. It’s invoked using an argument of 1000.0, which returns a value of 1.1023115. This is assigned to a new variable named usTons.


[image: image]










You can make lambda code more readable

We’re nearly at the end of the chapter, but before we go, there’s one more thing we want to show you: how to make your lambda code more readable.

When you use function types (the kind of type that’s used to define a lambda), it can make your code cumbersome and less readable. The combine function, for instance, contains multiple references to the function type (Double) -> Double:


[image: image]




You can, however, make your code more readable by replacing the function type with a type alias. Let’s see what this is, and how to use one.






Use typealias to provide a different name for an existing type

A type alias lets you provide an alternative name for an existing type, which you can then use in your code. This means that if your code uses a function type such as (Double) -> Double, you can define a type alias that’s used in its place, making your code more readable.

You define a type alias using the typealias keyword. Here’s how, for example, you use it to define a type alias named DoubleConversion that we can use in place of the function type (Double) -> Double:


[image: image]




This means that our convert and combine functions can now become:


[image: image]




Each time the compiler sees the type DoubleConversion, it knows that it’s a placeholder for the type (Double) -> Double. The convert and combine functions above do the same things as before, but the code is more readable.

You can use typealias to provide an alternative name for any type, not just function types. You can, say, use:

typealias DuckArray = Array<Duck>

so that you can refer to the type DuckArray in place of Array<Duck>.

Let’s update the code in our project.




Update the Lambdas project

We’ll add the DoubleConversion type alias, and the getConversionLambda and combine functions, to our Lambdas project, along with some code that uses them. Update your version of Lambdas.kt in the project so that it matches ours below (our changes are in bold):


[image: image]






[image: image]




Let’s take the code for a test drive.


Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

Convert 2.5kg to Pounds: 5.5115575

17.4 is converted to 0.0191802201

17.4 kgs is 0.0191802201 US tons

You’ve now learned how to use lambdas to create higher-order functions. Have a go at the following exercises, and in the next chapter, we’ll introduce you to some of Kotlin’s built-in higher-order functions, and show you how powerful and flexible they can be.


there are no Dumb Questions

Q: I’ve heard of functional programming. What’s that?

A: Lambdas are an important part of functional programming. While non-functional programming reads data input and generates data output, functional programs can read functions as input, and generate functions as output. If your code includes higher-order functions, you are doing functional programming.

Q: Is functional programming very different from object-oriented programming?

A: They are both ways of factoring your code. In object-oriented programming you combine data with functions, and in functional programming you combine functions with functions. The two styles of programming are not incompatible; they are just different ways of looking at the world.








Code Magnets


[image: image]




Somebody used fridge magnets to create a search function that prints the names of items in a List<Grocery> that meet some criteria. Unfortunately, some of the magnets fell off. See if you can reconstruct the function.


[image: image]





[image: image]





BE the Compiler


[image: image]




Here are five functions. Your job is to play like you’re the Compiler, and determine whether each one will compile. If it won’t compile, why not?


	

fun myFun1(x: Int = 6, y: (Int) -> Int = 7): Int {

    return y(x)

}


	

fun myFun2(x: Int = 6, y: (Int) -> Int = { it }) {

    return y(x)

}


	

fun myFun3(x: Int = 6, y: (Int) -> Int = { x: Int -> x + 6 }): Int {

    return y(x)

}


	

fun myFun4(x: Int, y: Int,

         z: (Int, Int) -> Int = {

             x: Int, y: Int -> x + y

        }) {

    z(x, y)

}


	

fun myFun5(x: (Int) -> Int = {

    println(it)

    it + 7

}) {

    x(4)

}









Code Magnets Solution


[image: image]




Somebody used fridge magnets to create a search function that prints the names of items in a List<Grocery> that meet some criteria. Unfortunately, some of the magnets fell off. See if you can reconstruct the function.


[image: image]




data class Grocery(val name: String, val category: String,

                   val unit: String, val unitPrice: Double)



 fun main(args: Array<String>) {

     val groceries = listOf(Grocery("Tomatoes", "Vegetable", "lb", 3.0),

             Grocery("Mushrooms", "Vegetable", "lb", 4.0),

             Grocery("Bagels", "Bakery", "Pack", 1.5),

             Grocery("Olive oil", "Pantry", "Bottle", 6.0),

             Grocery("Ice cream", "Frozen", "Pack", 3.0))

     println("Expensive ingredients:")

     search(groceries) {i: Grocery -> i.unitPrice > 5.0}

     println("All vegetables:")

     search(groceries) {i: Grocery -> i.category == "Vegetable"}

     println("All packs:")

     search(groceries) {i: Grocery -> i.unit == "Pack"}

}


BE the Compiler Solution


[image: image]




Here are five functions. Your job is to play like you’re the Compiler, and determine whether each one will compile. If it won’t compile, why not?




[image: image]





Pool Puzzle Solution


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the code snippets. Your goal is to create a function named unless that’s called by the main function below. The unless function should have two parameters, a Boolean named condition, and a lambda named code. The function should invoke the code lambda when condition is false.




[image: image]







Your Kotlin Toolbox


[image: image]




You’ve got Chapter 11 under your belt and now you’ve added lambdas and higher-order functions to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	A lambda expression, or lambda, takes the form:

{ x: Int -> x + 5 }

The lambda is defined within curly braces, and can include parameters, and a body.


	A lambda can have multiple lines. The last evaluated expression in the body is used as the lambda’s return value.


	You can assign a lambda to a variable. The variable’s type must be compatible with the type of the lambda.


	A lambda’s type has the format:

(parameters) -> return_type


	Where possible, the compiler can infer the lambda’s parameter types.


	If the lambda has a single parameter, you can replace it with it.


	You execute a lambda by invoking it. You do this by passing the lambda any parameters in parentheses, or by calling its invoke function.


	You can pass a lambda to a function as a parameter, or use one as a function’s return value. A function that uses a lambda in this way is known as a higher-order function.


	If the final parameter of a function is a lambda, you can move the lambda outside the function’s parentheses when you call the function.


	If a function has a single parameter that’s a lambda, you can omit the parentheses when you call the function.


	A type alias lets you provide an alternative name for an existing type. You define a type alias using typealias.










Chapter 12. built-in higher-order functions: Power Up Your Code


[image: image]




Kotlin has an entire host of built-in higher-order functions.

And in this chapter, we’ll introduce you to some of the most useful ones. You’ll meet the flexible filter family , and discover how they can help you trim your collection down to size. You’ll learn how to transform a collection using map , loop through its items with forEach , and how to group the items in your collection using groupBy . You’ll even use fold  to perform complex calculations using just one line of code. By the end of the chapter, you’ll be able to write code more powerful than you ever thought possible.


Kotlin has a bunch of built-in higher-order functions

As we said at the beginning of the previous chapter, Kotlin comes with a bunch of built-in higher-order functions that take a lambda parameter, many of which deal with collections. They enable you to filter a collection based on some criteria, for example, or group the items in a collection by a particular property value.

Each higher-order function has a generalized implementation, and its specific behavior is defined by the lambda that you pass to it. So if you want to filter a collection using the built-in filter function, you can specify the criteria that should be used by passing the function a lambda that defines it.

As many of Kotlin’s higher-order functions are designed to work with collections, we’re going to introduce you to some of the most useful higher-order functions defined in Kotlin’s collections package. We’ll explore these functions using a Grocery data class, and a List of Grocery items named groceries. Here’s the code to define them:


[image: image]




We’ll start by looking at how to find the lowest or highest value in a collection of objects.




The min and max functions work with basic types

As you already know, if you have a collection of basic types, you can use the min and max functions to find the lowest or highest value. If you want to find the highest value in a List<Int>, for example, you can use the following code:

val ints = listOf(1, 2, 3, 4)

val maxInt = ints.max() //maxInt == 4

The min and max functions work with Kotlin’s basic types because they have a natural order. Ints can be arranged in numerical order, for example, which makes it easy to find out which Int has the highest value, and Strings can be arranged in alphabetical order.


[image: image]





The minBy and maxBy functions work with ALL types

The min and max functions, however, can’t be used with types with no natural order. You can’t use them, for example, with a List<Grocery> or a Set<Duck>, as the functions don’t automatically know how Grocery items or Duck objects should be ordered. This means that for more complex types, you need a different approach.


[image: image]




If you want to find the lowest or highest value of a type that’s more complex, you can use the minBy and maxBy functions. These functions work in a similar way to min and max, except that you can pass them criteria. You can use them, for example, to find the Grocery item with the lowest unitPrice or the Duck with the greatest size.

The minBy and maxBy functions each take one parameter: a lambda that tells the function which property it should use in order to determine which item has the lowest or highest value. If, for example, you wanted to find the item in a List<Grocery> with the highest unitPrice, you could do so using the maxBy function like this:


[image: image]




And if you wanted to find the item with the lowest quantity value, you would use minBy:


[image: image]




The lambda expression that you pass to the minBy or maxBy function must take a specific form in order for the code to compile and work correctly. We’ll look at this next.






A closer look at minBy and maxBy’s lambda parameter

When you call the minBy or maxBy function, you must provide it with a lambda which takes the following form:

{ i: item_type -> criteria }

The lambda must have one parameter, which we’ve denoted above using i: item_type. The parameter’s type must match the type of item that the collection deals with, so if you want to use either function with a List<Grocery>, the lambda’s parameter must have a type of Grocery:

{ i: Grocery -> criteria }

As each lambda has a single parameter of a known type, we can omit the parameter declaration entirely, and refer to the parameter in the lambda body using it.

The lambda body specifies the criteria that should be used to determine the lowest—or highest—value in the collection. This criteria is normally the name of a property—for example, { it.unitPrice }. It can be any type, just so long as the function can use it to determine which item has the lowest or highest property value.


minBy and maxBy work with collections that hold any type of object, making them much more flexible than min and max.




What about minBy and maxBy’s return type?

When you call the minBy or maxBy function, its return type matches the type of the items held in the collection. If you use minBy with a List<Grocery>, for example, the function will return a Grocery. And if you use maxBy with a Set<Duck>, it will return a Duck.


If you call minBy or maxBy on a collection that contains no items, the function will return a null value.



Now that you know how to use minBy and maxBy, let’s look at two of their close relatives: sumBy and sumByDouble.


there are no Dumb Questions

Q: Do the min and max functions only work with Kotlin’s basic types, such as numbers and Strings?

A: min and max work with types where you can compare two values, and say whether one value is greater than another, which is the case for Kotlin’s basic types. These types work in this way because behind the scenes, each one implements the Comparable interface, which defines how instances of that type should be ordered and compared.

In practice, min and max work with any type that implements Comparable. Instead of implementing Comparable in your own classes, however, we think that using the minBy and maxBy functions is a better approach as they give you more flexibility.








The sumBy and sumByDouble functions

As you may expect, the sumBy and sumByDouble functions return a sum of the items in a collection according to some criteria which you pass to it via a lambda. You can use these functions to, say, add together the quantity values for each item in a List<Grocery>, or return the sum of each unitPrice multiplied by the quantity.


sumBy adds Ints together, and returns an Int.



The sumBy and sumByDouble functions are almost identical, except that sumBy works with Ints, and sumByDouble works with Doubles. To return the sum of a Grocery’s quantity values, for example, you would use the sumBy function, as quantity is an Int:


sumByDouble adds Doubles, and returns a Double.




[image: image]




And to return the sum of each unitPrice multiplied by the quantity value, you would use sumByDouble, as unitPrice * quantity is a Double:

val totalPrice = groceries.sumByDouble { it.quantity * it.unitPrice }


sumBy and sumByDouble’s lambda parameter

Just like minBy and maxBy, you must provide sumBy and sumByDouble with a lambda that takes this form:

{ i: item_type -> criteria }

As before, item_type must match the type of item that the collection deals with. In the above examples, we’re using the functions with a List<Grocery>, so the lambda’s parameter must have a type of Grocery. As the compiler can infer this, we can omit the lambda parameter declaration, and refer to the parameter in the lambda body using it.

The lambda body tells the function what you want it to sum. As we said above, this must be an Int if you’re using the sumBy function, and a Double if you’re using sumByDouble. sumBy returns an Int value, and sumByDouble returns a Double.

Now that you know how to use minBy, maxBy, sumBy and sumByDouble, let’s create a new project and add some code to it that uses these functions.


[image: image] Watch it!

You can’t use sumBy or sumByDouble directly on a Map.

You can, however, use them on a Map’s keys, values or entries properties. The following code, for example, returns the sum of a Map’s values:

myMap.values.sumBy { it }








Create the Groceries project

Create a new Kotlin project that targets the JVM, and name the project “Groceries”. Then create a new Kotlin file named Groceries.kt by highlighting the src folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “Groceries”, and choose File from the Kind option.

Next, update your version of Groceries.kt to match ours below:


[image: image]





Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

highestUnitPrice: Grocery(name=Olive oil, category=Pantry, unit=Bottle, unitPrice=6.0, quantity=1)

lowestQuantity: Grocery(name=Mushrooms, category=Vegetable, unit=lb, unitPrice=4.0, quantity=1)

sumQuantity: 9

totalPrice: 28.0


BE the Compiler


[image: image]




Below is a complete Kotlin source file. Your job is to play like you’re the Compiler, and determine whether the file will compile. If it won’t compile, why not? How would you correct it?

data class Pizza(val name: String, val pricePerSlice: Double, val quantity: Int)



fun main(args: Array<String>) {

    val ints = listOf(1, 2, 3, 4, 5)



    val pizzas = listOf(Pizza("Sunny Chicken", 4.5, 4),

            Pizza("Goat and Nut", 4.0, 1),

            Pizza("Tropical", 3.0, 2),

            Pizza("The Garden", 3.5, 3))



   val minInt = ints.minBy({ it.value })

   val minInt2 = ints.minBy({ int: Int -> int })

   val sumInts = ints.sum()

   val sumInts2 = ints.sumBy { it }

   val sumInts3 = ints.sumByDouble({ number: Double -> number })

   val sumInts4 = ints.sumByDouble { int: Int -> int.toDouble() }



   val lowPrice = pizzas.min()

   val lowPrice2 = pizzas.minBy({ it.pricePerSlice })

   val highQuantity = pizzas.maxBy { p: Pizza -> p.quantity }

   val highQuantity3 = pizzas.maxBy { it.quantity }

   val totalPrice = pizzas.sumBy { it.pricePerSlice * it.quantity }

   val totalPrice2 = pizzas.sumByDouble { it.pricePerSlice * it.quantity }

}




BE the Compiler Solution


[image: image]




Below is a complete Kotlin source file. Your job is to play like you’re the Compiler, and determine whether the file will compile. If it won’t compile, why not? How would you correct it?


[image: image]











Meet the filter function

The next stop on our tour of Kotlin’s higher-order functions is filter. This function lets you search, or filter, a collection according to some criteria that you pass to it using a lambda.

For most collections, filter returns a List that includes all the items that match your criteria, which you can then use elsewhere in your code. If it’s being used with a Map, however, it returns a Map. The following code, for example, uses the filter function to get a List of all the items in groceries whose category value is “Vegetable”:


[image: image]




Just like the other functions you’ve seen in this chapter, the lambda that you pass to the filter function takes one parameter, whose type must match that of the items in the collection. As the lambda’s parameter has a known type, you can omit the parameter declaration, and refer to it in the lambda body using it.

The lambda’s body must return a Boolean, which is used for the filter function’s criteria. The function returns a reference to all items from the original collection where the lambda body evaluates to true. The following code, for example, returns a List of Grocery items whose unitPrice is greater than 3.0:

val unitPriceOver3 = groceries.filter { it.unitPrice > 3.0 }


There’s a whole FAMILY of filter functions

Kotlin has several variations of the filter function that can sometimes be useful. The filterTo function, for example, works like the filter function, except that it appends the items that match the specified criteria to another collection. The filterIsInstance function returns a List of all the items which are instances of a given class. And the filterNot function returns those items in a collection which don’t match the criteria you pass to it. Here’s how, for example, you would use the filterNot function to return a List of all Grocery items whose category value is not “Frozen”:

Note

You can find out more about Kotlin’s filter family in the online documentation:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/index.html




[image: image]




Now that you’ve seen how the filter function works, let’s look at another of Kotlin’s higher-order functions: the map function.






Use map to apply a transform to your collection

The map function takes the items in a collection, and transforms each one according to some formula that you specify. It returns the results of this transformation as a new List.

Note

Yes! The map function returns a List, and not a Map.



To see how this works, suppose you have a List<Int> that looks like this:

val ints = listOf(1, 2, 3, 4)

If you wanted to create a new List<Int> that contains the same items multiplied by two, you could do so using the map function like this:


[image: image]




And you can also use map to create a new List containing the name of each Grocery item in groceries:


[image: image]




In each case, the map function returns a new List, and leaves the original collection intact. If, say, you use map to create a List of each unitPrice multiplied by 0.5 using the following code, the unitPrice of each Grocery item in the original collection stays the same:


[image: image]




Just as before, the lambda that you pass to the map function has a single parameter whose type matches that of the items in the collection. You can use this parameter (usually referred to using it) to specify how you want each item in the collection to be transformed.


You can chain function calls together

As the filter and map functions each return a collection, you can chain higher-order function calls together to concisely perform more complex operations. If you wanted to create a List of each unitPrice multiplied by two, where the original unitPrice is greater than 3.0, you can do so by first calling the filter function on the original collection, and then using map to transform the result:


[image: image]




Let’s go behind the scenes and see what happens when this code runs.






What happens when the code runs


	

val newPrices = groceries.filter { it.unitPrice > 3.0 }

                          .map { it.unitPrice * 2 }

The filter function is called on groceries, a List<Grocery>. It creates a new List that holds references to those Grocery items whose unitPrice is greater than 3.0.


[image: image]





	

val newPrices = groceries.filter { it.unitPrice > 3.0 }

                         .map { it.unitPrice * 2 }

The map function is called on the new List. As the lambda { it.unitPrice * 2 } returns a Double, the function creates a List<Double> containing a reference to each unitPrice multiplied by 2.


[image: image]










The story continues...


	

val newPrices = groceries.filter { it.unitPrice > 3.0 }

                        .map { it.unitPrice * 2 }

A new variable, newPrices, gets created, and the reference to the List<Double> returned by the map function is assigned to it.


[image: image]







Now that you’ve seen what happens when higher-order functions are chained together, let’s have a look at our next function: forEach.


there are no Dumb Questions

Q: You said earlier that the filter function has a number of variations, like filterTo and filterNot. What about map? Are there variations of that function too?

A: Yes! Variations include mapTo (which appends the results of the transformation to an existing collection), mapNotNull (which omits any null values) and mapValues (which works with and returns a Map). You can find more details here:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/index.html

Q: For the higher-order functions we’ve looked at so far, you’ve said that the lambda’s parameter type must match that of the items in the collection. How is that enforced?

A: Using generics.

As you may recall from Chapter 10, generics let you write code that uses types consistently. It stops you from adding a Cabbage reference to a List<Duck>. Kotlin’s built-in higher-order functions use generics to make sure that they only accept and return values whose type is appropriate for the collection they’re being used with.






forEach works like a for loop

The forEach function works in a similar way to a for loop, as it allows you to perform one or more actions against each item in a collection. You specify these actions using a lambda.

To see how forEach works, suppose you wanted to loop through each item in the groceries List, and print the name of each one. Here’s how you could do this using a for loop:

for (item in groceries) {

     println(item.name)

}

And here’s the equivalent code using the forEach function:


[image: image]





You can use forEach with arrays, Lists, Sets, and on a Map’s entries, keys and values properties.



Both code examples do the same thing, but using forEach is slightly more concise.


[image: image]




As forEach is a function, you can use it in function call chains.

Imagine that you want to print the name of each item in groceries whose unitPrice is greater than 3.0. To do this using a for loop, you could use the code:

for (item in groceries) {

    if (item.unitPrice > 3.0) println(item.name)

}

But you can do this more concisely using:

groceries.filter { it.unitPrice > 3.0 }

          .forEach { println(it.name) }

So forEach lets you chain function calls together to perform powerful tasks in a way that’s concise.

Let’s take a closer look at forEach.




forEach has no return value

Just like the other functions that you’ve seen in this chapter, the lambda that you pass to the forEach function has a single parameter whose type matches that of the items in the collection. And as this parameter has a known type, you can omit the parameter declaration, and refer to the parameter in the lambda body using it.

Unlike other functions, however, the lambda’s body has a Unit return value. This means that you can’t use forEach to return the result of some calculation as you won’t be able to access it. There is, however, a workaround.


Lambdas have access to variables

As you already know, a for loop’s body has access to variables that have been defined outside the loop. The following code, for example, defines a String variable named itemNames, which is then updated in a for loop’s body:


[image: image]




When you pass a lambda to a higher-order function such as forEach, the lambda has access to these same variables, even though they’ve been defined outside the lambda. This means that instead of using the forEach function’s return value to get the result of some calculation, you can update a variable from inside the lambda body. The following code, for example, is valid:


[image: image]




The variables defined outside the lambda which the lambda can access are sometimes referred to as the lambda’s closure. In clever words, we say that the lambda can access its closure. And as the lambda uses the itemNames variable in its body, we say that the lambda’s closure has captured the variable.

Now that you’ve learned how to use the forEach function, let’s update our project code.


Closure means that a lambda can access any local variables that it captures.








Update the Groceries project

We’ll add some code to our Groceries project that uses the filter, map and forEach functions. Update your version of Groceries.kt in the project so that it matches ours below (our changes are in bold):


[image: image]






[image: image]




Let’s take the code for a test drive.


Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

vegetables: [Grocery(name=Tomatoes, category=Vegetable, unit=lb, unitPrice=3.0, quantity=3),

Grocery(name=Mushrooms, category=Vegetable, unit=lb, unitPrice=4.0, quantity=1)]

notFrozen: [Grocery(name=Tomatoes, category=Vegetable, unit=lb, unitPrice=3.0, quantity=3),

Grocery(name=Mushrooms, category=Vegetable, unit=lb, unitPrice=4.0, quantity=1),

Grocery(name=Bagels, category=Bakery, unit=Pack, unitPrice=1.5, quantity=2),

Grocery(name=Olive oil, category=Pantry, unit=Bottle, unitPrice=6.0, quantity=1)]

groceryNames: [Tomatoes, Mushrooms, Bagels, Olive oil, Ice cream]

halfUnitPrice: [1.5, 2.0, 0.75, 3.0, 1.5]

newPrices: [8.0, 12.0]

Grocery names:

Tomatoes

Mushrooms

Bagels

Olive oil

Ice cream

Groceries with unitPrice > 3.0:

Mushrooms

Olive oil

itemNames: Tomatoes Mushrooms Bagels Olive oil Ice cream

Now that you’ve updated your project code, have a go at the following exercise, and then we’ll look at our next higher-order function.


Pool Puzzle


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the code snippets. Your goal is to complete the getWinners function in the Contest class so that it returns a Set<T> of contestants with the highest score, and prints the name of each winner.

Note

If this code looks familiar, it’s because we wrote a different version of it in Chapter 10.



abstract class Pet(var name: String)



class Cat(name: String) : Pet(name)



class Dog(name: String) : Pet(name)



class Fish(name: String) : Pet(name)



class Contest<T: Pet>() {

    var scores: MutableMap<T, Int> = mutableMapOf()



    fun addScore(t: T, score: Int = 0) {

        if (score >= 0) scores.put(t, score)

 }



    fun getWinners(): Set<T> {

        val highScore = .....................

        val winners = scores......... {......... == highScore }.........

        winners......... { println("Winner: ${.........}") }

        return winners

    }

}

Note: each thing from the pool can only be used once!


[image: image]







Pool Puzzle Solution


[image: image]




Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same code snippet more than once, and you won’t need to use all the code snippets. Your goal is to complete the getWinners function in the Contest class so that it returns a Set<T> of contestants with the highest score, and prints the name of each winner.


[image: image]





[image: image]











Use groupBy to split your collection into groups

The next function that we’ll look at is groupBy. This function lets you group the items in your collection according to some criteria, such as the value of one of its properties. You can use it (in conjunction with other function calls) to, say, print the name of Grocery items grouped by category value:

Note

Note that you can’t use groupBy on a Map directly, but you can call it on its keys, values or entries properties.




[image: image]




The groupBy function accepts one parameter, a lambda, which you use to specify how the function should group the items in the collection. The following code, for example, groups the items in groceries (a List<Grocery>) by the category value:


[image: image]




groupBy returns a Map. It uses the criteria passed via the lambda body for the keys, and each associated value is a List of items from the original collection. The above code, for example, creates a Map whose keys are the Grocery item category values, and each value is a List<Grocery>:


[image: image]







You can use groupBy in function call chains

As the groupBy function returns a Map with List values, you can make further higher-order function calls on its return value, just as you can with the filter and map functions.

Imagine that you want to print the value of each category for a List<Grocery>, along with the name of each Grocery item whose category property has that value. To do this, you can use the groupBy function to group the Grocery items by each category value, and then use the forEach function to loop through the resulting Map:


[image: image]




As the groupBy function uses the Grocery category values for its keys, we can print them by passing the code println(it.key) to the forEach function in its lambda:


[image: image]




And as each of the Map’s values is a List<Grocery>, we can make a further call to forEach in order to print the name of each grocery item:


[image: image]




So when you run the above code, it produces the following output:

Vegetable

      Tomatoes

      Mushrooms

Bakery

      Bagels

Pantry

      Olive oil

Frozen

      Ice cream

Now that you know how to use groupBy, let’s look at the final function on our road trip: the fold function.




How to use the fold function

The fold function is arguably Kotlin’s most flexible higher-order function. With fold, you can specify an initial value, and perform some operation on it for each item in a collection. You can use it to, say, multiply together each item in a List<Int> and return the result, or concatenate together the name of each item in a List<Grocery>, all in a single line of code.

Unlike the other functions we’ve seen in this chapter, fold takes two parameters: the initial value, and the operation that you want to perform on it, specified by a lambda. So if you have the following List<Int>:

val ints = listOf(1, 2, 3)

you can use fold to add each of its items to an initial value of 0 using the following code:


[image: image]




The fold function’s first parameter is the initial value—in this case, 0. This parameter can be any type, but it’s usually one of Kotlin’s basic types such as a number or String.

The second parameter is a lambda which describes the operation that you want to perform on the initial value for each item in the collection. In the above example, we want to add each item to the initial value, so we’re using the lambda:


[image: image]




The lambda that you pass to fold has two parameters, which in this example we’ve named runningSum and item.

The first lambda parameter, runningSum, gets its type from the initial value that you specify. It’s initialized with this initial value, so in the above example, runningSum is an Int that’s initialized with 0.

The second lambda parameter, item, has the same type as the items in the collection. In the example above, we’re calling fold on a List<Int>, so item’s type is Int.

The lambda body specifies the operation you want to perform for each item in the collection, the result of which is then assigned to the lambda’s first parameter variable. In the above example, the function takes the value of runningSum, adds it to the value of the current item, and assigns this new value to runningSum. When the function has looped through all items in the collection, fold returns the final value of this variable.

Let’s break down what happens when we call the fold function.




Behind the scenes: the fold function

Here’s what happens when we run the code:

val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

where ints is defined as:

val ints = listOf(1, 2, 3)


	val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

This creates an Int variable named runningSum which is initialized with 0. This variable is local to the fold function.


[image: image]





	val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

The function takes the value of the first item in the collection (an Int with a value of 1) and adds it to the value of runningSum. This new value, 1, is assigned to runningSum.


[image: image]





	val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

The function moves to the second item in the collection, which is an Int with a value of 2. It adds this to runningSum, so that runningSum’s value becomes 3.


[image: image]





	val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

The function moves to the third and final item in the collection: an Int with a value of 3. This value is added to runningSum, so that runningSum’s value becomes 6.


[image: image]





	val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

As there are no more items in the collection, the function returns the final value of runningSum. This value is assigned to a new variable named sumOfInts.


[image: image]










Some more examples of fold

Now that you’ve seen how to use the fold function to add together the values in a List<Int>, let’s look at a few more examples.


Find the product of a List<Int>

If you want to multiply together all the numbers in a List<Int> and return the result, you can do so by passing the fold function an initial value of 1, and a lambda whose body performs the multiplication:


[image: image]







Concatenate together the name of each item in a List<Grocery>

To return a String that contains the name of each Grocery item in a List<Grocery>, you can pass the fold function an initial value of "", and a lambda whose body performs the concatenation:


[image: image]







Subtract the total price of items from an initial value

You can also use fold to work out how much change you’d have left if you were to buy all the items in a List<Grocery>. To do this, you’d set the initial value as the amount of money you have available, and use the lambda body to subtract the unitPrice of each item multiplied by the quantity:


[image: image]




Now that you know how to use the groupBy and fold functions, let’s update our project code.






Update the Groceries project

We’ll add some code to our Groceries project that uses the groupBy and fold functions. Update your version of Groceries.kt in the project so that it matches ours below (our changes are in bold):


[image: image]






[image: image]




Let’s take the code for a test drive.


Test drive


[image: image]




When we run the code, the following text gets printed in the IDE’s output window:

Vegetable

  Tomatoes

  Mushrooms

Bakery

 Bagels

Pantry

 Olive oil

Frozen

 Ice cream

sumOfInts: 6

productOfInts: 6

names: Tomatoes Mushrooms Bagels Olive oil Ice cream

changeFrom50: 22.0


there are no Dumb Questions

Q: You said that some of the higher-order functions in this chapter can’t be used directly with a Map. Why is that?

A: It’s because Map is defined a little differently to List and Set, and this affects which functions will work with it.

Behind the scenes, List and Set inherit behavior from an interface named Collection, which in turn inherits behavior defined in the Iterable interface. Map, however, does not inherit from either of these interfaces. This means that List and Set are both types of Iterable, while Map isn’t.

This distinction is important because functions such as fold, forEach and groupBy are designed to work with Iterables. And because Map isn’t an Iterable, you’ll get a compiler error if you try to directly use any of these functions with a Map.

The great news, however, is that Map’s entries, keys and values properties are all types of Iterable: entries and keys are both Sets, and values inherits from the Collection interface. This means that while you can’t call functions such as groupBy and fold on a Map directly, you can still use them with the Map’s properties.

Q: Do I always need to provide the fold function with an initial value? Can’t I just use the first item in the collection as the initial value?

A: When you use the fold function, you must specify the initial value. This parameter is mandatory, and can’t be omitted.

If you want to use the first item in the collection as the initial value, however, an alternative approach is to use the reduce function. This function works in a similar way to fold, except that you don’t have to specify the initial value. It automatically uses the first item in the collection as the initial value.

Q: Does fold iterate through the collection in a specific order? Can I reverse this order?

A: The fold and reduce functions work through items in a collection from left to right, starting with the first item in the collection.

If you want to reverse this order, you can use the  foldRight and reduceRight functions. These functions works on arrays and Lists, but not on Sets or Maps.

Q: Can I update the variables in a lambda’s closure?

A: Yes. As you may recall, a lambda’s closure refers to those variables defined outside the lambda body which the lambda has access to. Unlike some languages such as Java, you can update these variables in the lambda’s body so long as they have been defined using var.

Q: Does Kotlin have many more higher-order functions?

A: Yes. Kotlin has far too many higher-order functions for us to cover in one chapter, so we decided to focus on just some of them: the ones which we think are the most useful or important. Now that you know how to use these functions, however, we’re confident that you’ll be able to take your knowledge, and apply it elsewhere.

You can find a full list of Kotlin’s functions (including its higher-order functions) in the online documentation:

https://kotlinlang.org/api/latest/jvm/stdlib/index.html




[image: image] Sharpen your pencil

The following code defines the Grocery data class, and a List<Grocery> named groceries:

data class Grocery(val name: String, val category: String,

                   val unit: String, val unitPrice: Double,

                   val quantity: Int)



val groceries = listOf(Grocery("Tomatoes", "Vegetable", "lb", 3.0, 3),

                       Grocery("Mushrooms", "Vegetable", "lb", 4.0, 1),

                       Grocery("Bagels", "Bakery", "Pack", 1.5, 2),

                       Grocery("Olive oil", "Pantry", "Bottle", 6.0, 1),

                       Grocery("Ice cream", "Frozen", "Pack", 3.0, 2))

Write the code below to find out how much will be spent on vegetables.


[image: image]




Create a List containing the name of each item whose total price is less than 5.0


[image: image]




Print the total cost of each category.


[image: image]




Print the name of each item that doesn’t come in a bottle, grouped by unit.


[image: image]







[image: image] Mixed Messages

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.


[image: image]







[image: image] Sharpen your pencil Solution



[image: image]







[image: image] Mixed Messages Solution

A short Kotlin program is listed below. One block of the program is missing. Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some lines of output may be used more than once. Draw lines connecting the candidate blocks of code with their matching output.


[image: image]











Your Kotlin Toolbox

You’ve got Chapter 12 under your belt and now you’ve added built-in higher-order functions to your toolbox.

Note

You can download the full code for the chapter from https://tinyurl.com/HFKotlin.




[image: image] Bullet Points


	Use minBy and maxBy to find the lowest or highest value in a collection. These functions take one parameter, a lambda whose body specifies the function criteria. The return type matches the type of items in the collection.


	Use sumBy or sumByDouble to return the sum of items in a collection. Its parameter, a lambda, specifies the thing you want to sum. If this is an Int, use sumBy, and if it’s a Double, use sumByDouble.


	The filter function lets you search, or filter, a collection according to some criteria. You specify this criteria using a lambda, whose lambda body must return a Boolean. filter usually returns a List . If the function is being used with a Map, however, it returns a Map instead.


	The map function transforms the items in a collection according to some criteria that you specify using a lambda. It returns a List.


	forEach works like a for loop. It allows you to perform one or more actions for each item in a collection.


	Use groupBy to divide a collection into groups. It takes one parameter, a lambda, which defines how the function should group the items. The function returns a Map, which uses the lambda criteria for the keys, and a List for each value.


	The fold function lets you specify an initial value, and perform some operation for each item in a collection. It takes two parameters: the initial value and a lambda that specifies the operation you want to perform.









Leaving town...


[image: image]





It’s been great having you here in Kotlinville

We’re sad to see you leave, but there’s nothing like taking what you’ve learned and putting it to use. There are still a few more gems for you in the back of the book and a handy index, and then it’s time to take all these new ideas and put them into practice. Bon voyage!







Appendix A. coroutines: Running Code in Parallel


[image: image]




  Some tasks are best performed in the background.

If you want to read data from a slow external server, you probably don’t want the rest of your code to hang around, waiting for the job to complete. In situations such as these, coroutines are your new BFF. Coroutines let you write code that’s run asynchronously . This means less time hanging around, a better user experience, and it can also make your application more scalable. Keep reading, and you’ll learn the secret of how to talk to Bob, while simultaneously listening to Suzy.


Let’s build a drum machine

Coroutines allow you to create multiple pieces of code that can run asynchronously. Instead of running pieces of code in sequence, one after the other, coroutines let you run them side-by-side.

Using coroutines means that you can launch a background job, such as reading data from an external server, without the rest of your code having to wait for the job to complete before doing anything else. This gives your user a more fluid experience, and it also makes your application more scalable.

To see the difference that using coroutines can make to your code, suppose you want to build a drum machine based on some code that plays a drum beat sequence. Let’s start by creating the Drum Machine project by going through the following steps.


The code in this appendix applies to Kotlin 1.3 and above. In earlier versions, coroutines were marked as experimental.




1. Create a new GRADLE project

To write code that uses coroutines, we need to create a new Gradle project so that we can configure it to use coroutines. To do this, create a new project, select the Gradle option, check the Kotlin (Java) option, and make sure all the other options for additional ibraries and framworks are unchecked. Then click on the Next button.

Note

Gradle is a build tool that lets you compile and deploy code, and include any third-party libraries that your code needs. We’re using Gradle here so that we can add coroutines to our project a few pages ahead.




[image: image]







2. Enter an artifact ID

When you create a Gradle project, you need to specify an artifact ID. This is the basically the name of the project, except that, by convention, it should be lowercase. Enter an artifact ID of “drummachine”, then click on the Next button.


[image: image]







3. Specify configuration details

Next, you need to specify any changes to the default project configuration. Click on the Next button to accept the default values.


[image: image]







4. Specify the project name

Finally, we need to specify a project name. Name the project “Drum Machine”, then click on the Finish button. IntelliJ IDEA will create your project.


[image: image]







Add the audio files

Now that you’ve created the Drum Machine project, you need to add a couple of audio files to it. Download the files crash_cymbal.aiff and toms.aiff from https://tinyurl.com/HFKotlin, then drag them to your project. When prompted, confirm that you want to move them to the Drum Machine folder.


[image: image]









Add the code to the project

We’ve been given some code that plays a drum sequence, which we need to add to the project. Create a new Kotlin file named Beats.kt by highlighting the src/main/kotlin folder, clicking on the File menu and choosing New → Kotlin File/Class. When prompted, name the file “Beats”, and choose File from the Kind option. Then update your version of Beats.kt to match ours below:


[image: image]




Let’s see what happens when the code runs.


Test drive


[image: image]




When we run the code, it plays the toms first (toms.aiff), followed by the cymbals (crash_cymbal.aiff). It does this in sequence, so once the toms have finished, the cymbals start playing:


[image: image]




But what if we want to play the toms and cymbals in parallel?




Use coroutines to make beats play in parallel

As we said earlier, coroutines allow you to run multiple pieces of code asynchronously. In our example, this means that we can add our tom drum code to a coroutine so that it plays at the same time as the cymbals.

There are two things we need to do to achieve this:


	Add coroutines to the project as a dependency.

Coroutines are in a separate Kotlin library, which we need to add to our project before we can use them.


	Launch a coroutine.

The coroutine will include the code that plays the toms.




Let’s do this now.






1. Add a coroutines dependency

If you want to use coroutines in your project, you first need to add it to your project as a dependency. To do this, open build.gradle with a double-click on the file name, and update the dependencies section like so:


[image: image]




Then click on the Import Changes prompt to make the change take effect:


[image: image]




Next, we’ll update our main function so that it uses a coroutine.


2. Launch a coroutine

We’ll make our code play the toms sound file in a separate coroutine in the background by enclosing the code that plays it in a call to GlobalScope.launch from the kotlinx.coroutines library. Behind the scenes, this makes the code that plays the toms sound file run in the background so that the two sounds play in parallel.

Here’s the new version of our main function—update your code with our changes (in bold):


[image: image]




Let’s see this in action by taking the code for a test drive.




Test drive


[image: image]




When we run the code, it plays the toms and cymbals in parallel. The toms sound plays in a separate coroutine in the background.


[image: image]




Now that you’ve seen how to launch a coroutine in the background, and the effect that this has, let’s dive into coroutines a little deeper.




A coroutine is like a lightweight thread

Behind the scenes, launching a coroutine is like starting a separate thread of execution, or thread. Threads are really common in other languages such as Java, and both coroutines and threads can run in parallel and communicate with each other. The key difference, however, is that it’s more efficient to use coroutines in your code than it is to use threads.

Starting a thread and keeping it running is quite expensive in terms of performance. The processor can usually only run a limited number of threads at the same time, and its more efficient to run as few threads as possible. Coroutines, on the other hand, run on a shared pool of threads by default, and the same thread can run many coroutines. As fewer threads are used, this makes it more efficient to use coroutines when you want to run tasks asynchronously.

In our code, we’re using GlobalScope.launch to run a new coroutine in the background. Behind the scenes, this creates a new thread which the coroutine runs in, so that toms.aiff and crash_cymbal.aiff are played in separate threads. As it’s more efficient to use as few threads as possible, let’s find how we can use play the sound files in separate coroutines, but in the same thread.






Use runBlocking to run coroutines in the same scope

If you want your code to run in the same thread but in separate coroutines, you can use the runBlocking function. This is a higher-order function which blocks the current thread until the code that’s passed to it finishes running. The runBlocking function defines a scope which is inherited by the code that’s passed to it; in our example, we can use this scope to run separate coroutines in the same thread.

Here’s a new version of our main function that does this—update your version of the code to include our changes (in bold):


[image: image]




Notice that we’re now starting a new coroutine using launch instead of GlobalScope.launch. This is because we want to launch a coroutine that runs in the same thread, instead of in a separate background thread, and omitting the reference to GlobalScope allows the coroutine to use the same scope as runBlocking.

Let’s see what happens when we run the code.


Test drive


[image: image]




When we run the code, the sound files play, but in sequence, not in parallel.


[image: image]




So what went wrong?






Thread.sleep pauses the current THREAD

As you may have noticed, when we added the playBeats function to our project, we included the following line:

Thread.sleep(100 * (part.length + 1L))

This uses a Java library to pause the current thread so that the sound file it’s playing has time to run, and blocks the thread from doing anything else. As we’re now playing the sound files in the same thread, they can no longer be played in parallel, even though they’re in separate coroutines.


The delay function pauses the current COROUTINE

A better approach in this situation is to use the coroutines delay function instead. This has a similar effect to Thread.sleep, except that instead of pausing the current thread, it pauses the current coroutine. It suspends the coroutine for a specified length of time and this allows other code on the same thread to run instead. The following code, for example, delays the coroutine for 1 second:


[image: image]




The delay function may be used in these two situations:


	* From inside a coroutine.

The following code, for example, calls the delay function inside a coroutine:


[image: image]





	* From inside a function that the compiler knows may pause, or suspend.





When you call a suspendable function (such as delay) from another function, that function must be marked with suspend.



In our example, we want to use the delay function inside the playBeats function, which means that we need to tell the compiler that playBeats—and the main function which calls it—may suspend. To do this, we’ll prefix both functions with the suspend prefix using code like this:


[image: image]




We’ll show you the full code for the project on the next page.






The full project code

Here’s the full code for the Drum Machine project—update your version of Beats.kt to include our changes (in bold):


[image: image]




Let’s see what happens when the code runs.


Test drive


[image: image]




When we run the code, it plays the toms and cymbals in parallel as before. This time, however, the sound files run in separate coroutines in the same thread.


[image: image]




You can find out more about using coroutines here:

https://kotlinlang.org/docs/reference/coroutines-overview.html


[image: image] Bullet Points


	Coroutines let you run code asynchronously. They are useful for running background tasks.


	A coroutine is like a lightweight thread. Coroutines run on a shared pool of threads by default, and the same thread can run many coroutines.


	To use coroutines, create a Gradle project and add the coroutines library to build.gradle  as a dependency.


	Use the launch function to launch a new coroutine.


	The runBlocking function blocks the current thread until the code it contains has finished running.


	The delay function suspends the code for a specified length of time. It can be used inside a coroutine, or inside a function that’s marked using suspend.




Note

You can download the full code for this appendix from https://tinyurl.com/HFKotlin.











Appendix B. testing: Hold Your Code to Account


[image: image]




Everybody knows that good code needs to work.

But each code change that you make runs the risk of introducing fresh bugs that stop your code from working as it should. That’s why thorough testing is so important: it means you get to know about any problems in your code before it’s deployed to the live environment. In this appendix, we’ll discuss JUnit and KotlinTest, two libraries which you can use to unit test your code so that you always have a safety net.


Kotlin can use existing testing libraries

As you already know, Kotlin code can be compiled down to Java, JavaScript or native code, so you can use existing libraries on its target platform. When it comes to testing, this means that you can test Kotlin code using the most popular testing libraries in Java and JavaScript.

Let’s see how to use JUnit to unit test your Kotlin code.


Add the JUnit library

The JUnit library (https://junit.org) is the most frequently used Java testing library.

To use JUnit in your Kotlin project, you first need to add the JUnit libraries to your project. You can add libraries to your project by going to the File menu and choosing Project Structure → Libraries, or, if you have a Gradle project, you can add these lines to your build.gradle file:


[image: image]





Unit testing is used to test individual units of source code, such as classes or functions.



Once the code is compiled, you can then run the tests by right-clicking the class or function name, and then selecting the Run option.

To see how to use JUnit with Kotlin, we’re going to write a test for the following class named Totaller: the class is initialized with an Int value, and it keeps a running total of the values which are added to it using its add function:

class Totaller(var total: Int = 0) {

    fun add(num: Int): Int {

        total += num

        return total

    }

}

Let’s see what a JUnit test might look like for this class.






Create a JUnit test class

Here’s an example JUnit test class named TotallerTest that’s used to test Totaller:


[image: image]




Each test is held in a function, prefixed with the annotation @Test. Annotations are used to add programmatic information about your code, and the @Test annotation is a way of telling tools “This is a test function”.

Tests are made up of actions and assertions. Actions are pieces of code that do stuff, while assertions are pieces of code that check stuff. In the above code, we’re using an assertion named assertEquals which checks that the two values it’s given are equal. If they’re not, assertEquals will throw an exception and the test will fail.

Note

You can find out more about using JUnit here: https://junit.org



In the above example, we’ve named our test function shouldBeAbleToAdd3And4. We can, however, use a rarely used feature of Kotlin which allows us to wrap function names in back-ticks (`), and then add spaces and other symbols to the function name to make it more descriptive. Here’s an example:


[image: image]




For the most part, you use JUnit on Kotlin in almost the same way you might use it with a Java project. But if you want something a bit more Kotliny, there’s another library you can use, named KotlinTest.




Using KotlinTest

The KotlinTest library (https://github.com/kotlintest/kotlintest) has been designed to use the full breadth of the Kotlin language to write tests in a more expressive way. Just like JUnit, it’s a separate library which needs to be added to your project if you want to use it.

KotlinTest is pretty vast, and it allows you to write tests in many different styles, but here’s one way of writing a KotlinTest version of the JUnit code we wrote earlier:


[image: image]




The above test looks similar to the JUnit test you saw earlier, except that the test function is replaced with a String, and the calls to assertEquals have been rewritten as shouldBe expressions. This is an example of KotlinTest’s String Specification—or StringSpec—style. There are several testing styles available in KotlinTest, and you should choose the one which is best suited to your code.

But KotlinTest isn’t just a rewrite of JUnit (in fact, KotlinTest uses JUnit under the hood). KotlinTest has many more features that can allow you to create tests more easily, and with less code, than you can do with a simple Java library. You can, for example, use rows to test your code against entire sets of data. Let’s look at an example.




Use rows to test against sets of data

Here’s an example of a second test which uses rows to add lots of different numbers together (our changes are in bold):


[image: image]




You can also use KotlinTest to:


	* Run tests in parallel.


	* Create tests with generated properties.


	* Enable/disable tests dynamically. You may, for example, want some tests to run only on Linux, and others to run on Mac.


	* Put tests in groups.




and lots, lots more. If you’re planning on writing a lot of Kotlin code, then KotlinTest is definitely worth a look.

You can find out more about KotlinTest here:

https://github.com/kotlintest/kotlintest





Appendix C. leftovers: The Top Ten Things: (We Didn’t Cover)


[image: image]




Even after all that, there’s still a little more.

There are just a few more things we think you need to know. We wouldn’t feel right about ignoring them, and we really wanted to give you a book you’d be able to lift without training at the local gym. Before you put down the book, read through these tidbits.


1. Packages and imports

As we said in Chapter 9, classes and functions in the Kotlin Standard Library are grouped into packages. What we didn’t say is that you can group your own code into packages.

Putting your code into packages is useful for two main reasons:


	* It lets you organize your code.

You can use packages to group your code into specific kinds of functionality, like data structures or database stuff.


	* It prevents name conflicts.

If you write a class named Duck, putting it into a package lets you differentiate it from any other Duck class that may have been added to your project.





How to add a package

You add a package to your Kotlin project by highlighting the src folder, and choosing File→New→Package. When prompted, enter the package name (for example, com.hfkotlin.mypackage), then click on OK.


[image: image]







Package declarations

When you add a Kotlin file to a package (by highlighting the package name and choosing File→New→Kotlin File/Class), a package declaration is automatically added to the beginning of the source file like this:

package com.hfkotlin.mypackage

The package declaration tells the compiler that everything in the source file belongs in that package. The following code, for example, specifes that com.hfkotlin.mypackage contains the Duck class and the doStuff function:


[image: image]




If the source file has no package declaration, the code is added to a nameless default package.


Your project can contain multiple packages, and each package can have multiple source files. Each source file, however, can only have one package declaration.








The fully qualified name

When you add a class to a package, it’s full—or fully qualified—name is the name of the class prefixed with the name of the package. So if com.hfkotlin.mypackage contains a class named Duck, the fully qualified name of the Duck class is com.hfkotlin.mypackage.Duck. You can still refer to it as Duck in any code within the same package, but if you want to use the class in another package, you have to provide the compiler with its full name.

There are two ways of providing a fully qualified class name: by using its full name everywhere in your code, or by importing it.


Default Imports


[image: image]




The following packages are automatically imported into each Kotlin file by default:

kotlin.*

kotlin.annotation.*

kotlin.collections.*

kotlin.comparisons.*

kotlin.io.*

kotlin.ranges.*

kotlin.sequences.*

kotlin.text.*

If your target platform is the JVM, the following are also imported:

java.lang.*

kotlin.jvm.*

And if you’re targeting JavaScript, the following gets imported instead:

kotlin.js.*




Type the fully qualified name...

The first option is to type the full class name each time you use it outside its package, for example:


[image: image]




This approach, however, can be cumbersome if you need to refer to the class many times, or refer to multiple items in the same package.




...or import it

An alternative approach is to import the class or package so that you can refer to the Duck class without typing the fully qualified name each time. Here’s an example:


[image: image]




You can also use the following code to import an entire package:


[image: image]




And if there’s a class name conflict, you can use the as keyword:


[image: image]









2. Visibility modifiers

Visibility modifiers let you set the visibility of any code that you create, such as classes and functions. You can declare, for example, that a class can only be used by the code in its source file, or that a member function can only be used inside its class.

Kotlin has four visibility modifiers: public, private, protected and internal. Let’s see how these work.


Visibility modifiers and top level code

As you already know, code such as classes, variables and functions can be declared directly inside a source file or package. By default, all of this code is publicly visible, and it can be used in any package that imports it. You can change this behavior, however, by prefixing declarations with one of the following visibility modifiers:

Note

Remember: if you don’t specify a package, the code is automatically added to a nameless package by default.






	Modifier:
	What it does:





	public
	Makes the declaration visible everywhere. This is applied by default, so it can be omitted.



	private
	Makes the declaration visible to code inside its source file, but invisible elsewhere.



	internal
	Makes the declaration visible inside the same module, but invisible elsewhere. A module is a set of Kotlin files that are compiled together, such as an IntelliJ IDEA module.





Note

Note that protected isn’t available for declarations at the top level of a source file or package.



The following code, for example, specifies that the Duck class is public and can be seen anywhere, while the doStuff function is private, and is only visible inside its source file:


[image: image]




Visibility modifiers can also be applied to members of classes and interfaces. Let’s see how these work.






Visibility modifiers and classes/interfaces

The following visibility modifiers can be applied to the properties, functions and other members that belong to a class or interface:




	Modifier:
	What it does:





	public
	Makes the member visible everywhere that the class is visible. This is applied by default, so it can be omitted.



	private
	Makes the member visible inside the class, and invisible elsewhere.



	protected
	Makes the member visible inside the class, and any of its subclasses.



	internal
	Makes the member visible to anything in the module that can see the class.





Here’s an example of a class with visibility modifiers on its properties, and a subclass which overrides it:


[image: image]




Note that if you override a protected member, as in the above example, the subclass version of that member will also be protected by default. You can, however, change its visibility, as in this example:


[image: image]




By default, class constructors are public, so they are visible everywhere that the class is visible. You can, however, change a constructor’s visibility by specifying a visibility modifier, and prefixing the constructor with the constructor keyword. If, for example, you have a class defined as:


[image: image]




you can make its constructor private using the following code:


[image: image]







3. Enum classes

An enum class lets you create a set of values that represent the only valid values for a variable.

Suppose you want to create an application for a band, and you want to make sure that a variable, selectedBandMember, can only be assigned a value for a valid band member. To perform this kind of task, we can create an enum class named BandMember that contains the valid values:


[image: image]





Each value in an enum class is a constant.



We can then restrict the selectedBandMember variable to one of these values by specifying its type as BandMember like so:


[image: image]





Each enum constant exists as a single instance of that enum class.




Enum constructors

An enum class can have a constructor, used to initialize each enum value. This works because each value defined by the enum class is an instance of that class.

To see how this works, suppose that we want to specify the instrument played by each band member. To do this, we can add a String variable named instrument to the BandMember constructor, and initialize each value in the class with an appropriate value. Here’s the code:


[image: image]




We can then find out which instrument the selected band member plays by accessing its instrument property like this:


[image: image]









enum properties and functions

In the previous example, we added a property to the BandMember class by including it in the enum class constructor. You can also add properties and functions to the main body of the class. The following code, for example, adds a sings function to the BandMember enum class:


[image: image]




Each value defined in an enum class can override the properties and functions it inherits from the class definition. Here’s how, for example, you can override the sings function for JERRY and BOBBY:


[image: image]




We can then find out how the selected band member sings by calling its sings function like this:


[image: image]







4. Sealed classes

You’ve already seen that enum classes let you create a restricted set of values, but there are some situations where you need a little more flexibility.

Suppose that you want to be able to use two different message types in your application: one for “success”, and another for “failure”. You want to be able to restrict messages to these two types.

If you were to model this using an enum class, your code might look like this:


[image: image]




But there are a couple of problems with this approach:


	* Each value is a constant which only exists as a single instance.

You can’t, say, change the msg property of the SUCCESS value in one situation, as this change will be seen everywhere else in your application.


	* Each value must have the same properties and functions.

It might be useful to add an Exception property to the FAILURE value so that you can examine what went wrong, but an enum class won’t let you.




So what’s the solution?


Sealed classes to the rescue!

A solution to this kind of problem is to use a sealed class. A sealed class is like a souped-up version of an enum class. It lets you restrict your class hierarchy to a specific set of subtypes, each one of which can define its own properties and functions. And unlike an enum class, you can create multiple instances of each type.

You create a sealed class by prefixing the class name with sealed. The following code, for example, creates a sealed class named MessageType, with two subtypes named MessageSuccess and MessageFailure. Each subtype has a String property named msg, and the MessageFailure subtype has an extra Exception property named e:


[image: image]









How to use sealed classes

As we said, a sealed class lets you create multiple instances of each subtype. The following code, for example, creates two instances of MessageSuccess, and a single instance of MessageFailure:

fun main(args: Array<String>) {

   val messageSuccess = MessageSuccess("Yay!")

   val messageSuccess2 = MessageSuccess("It worked!")

   val messageFailure = MessageFailure("Boo!", Exception("Gone wrong."))

}

You can then create a MessageType variable, and assign one of these messages to it:


[image: image]




And as MessageType is a sealed class with a limited set of subtypes, you can use when to check for each subtype without requiring an extra else clause using code like this:


[image: image]




You can find out more about creating and using sealed classes here:

https://kotlinlang.org/docs/reference/sealed-classes.html




5. Nested and inner classes

A nested class is a class that’s defined inside another class. This can be useful if you want to provide the outer class with extra functionality that’s outside its main purpose, or bring code closer to where it’s being used.

You define a nested class by putting it inside the curly braces of the outer class. The following code, for example, defines a class named Outer which has a nested class named Nested:


[image: image]





A nested class in Kotlin is like a static nested class in Java.



You can then refer to the Nested class, and its properties and functions, using code like this:


[image: image]




Note that you can’t access a nested class from an instance of the outer class without first creating a property of that type inside the outer class. The following code, for example, won’t compile:


[image: image]




Another restriction is that a nested class doesn’t have access to an instance of the outer class, so it can’t access its members. You can’t access Outer’s x property from the Nested class, for example, so the following code won’t compile:


[image: image]







An inner class can access the outer class members

If you want a nested class to be able to access the properties and functions defined by its outer class, you can do so by making it an inner class. You do this by prefixing the nested class with inner. Here’s an example:


[image: image]




You can access an inner class by creating an instance of the outer class, and then using this to create an instance of the inner class. Here’s an example, using the Outer and Inner classes defined above:


[image: image]




Alternatively, you can access the inner class by instantiating a property of that type in the outer class, as in this example:


[image: image]





[image: image]




The key thing is that an inner class instance is always tied to a specific instance of the outer class, so you can’t create an Inner object without first creating an Outer object.




6. Object declarations and expressions

There are times where you want to make sure that only a single instance of a given type can be created, such as if you want to use a single object to coordinate actions across an entire application. In these situations, you can use the object keyword to make an object declaration.

Note

If you’re familiar with design patterns, an object declaration is the Kotlin equivalent of a Singleton.



An object declaration defines a class declaration and creates an instance of it in a single statement. And when you include it in the top level of a source file or package, only one instance of that type will ever be created.

Here’s what an object declaration looks like:


[image: image]





An object declaration defines a class and creates an instance of it in a single statement.



As you can can see, an object declaration looks like a class definition except that it’s prefixed with object, not class. Just like a class, it can have properties, functions and initializer blocks, and it can inherit from classes or interfaces. You can’t, however, add a constructor to an object declaration. This is because the object is automatically created as soon as it’s accessed, so having a constructor would be redundant.

You refer to an object that’s created using an object declaration by calling its name directly, and this allows you to access its members. If you wanted to call the DuckManager’s herdDucks function, for example, you could do so using code like this:

DuckManager.herdDucks()

As well as adding an object declaration to the top level of a source file or package, you can also add one to a class. Let’s see how.




Class objects...

The following code adds an object declaration—DuckFactory—to a class named Duck:


[image: image]





Add an object declaration to a class to create a single instance of that type which belongs to the class.



When you add an object declaration to a class, it creates an object that belongs to that class. One instance of the object is created per class, and it’s shared by all instances of that class.

Once you’ve added an object declaration, you can access the object from the class using the dot notation. The following code, for example, calls the DuckFactory’s create function, and assigns the result to a new variable named newDuck:


[image: image]





...and companion objects

One object per class can be marked as a companion object using the companion prefix. A companion object is like a class object, except that you can omit the object’s name. The following code, for example, turns above DuckFactory object into an unnamed companion object:


[image: image]




When you create a companion object, you access it by simply referring to the class name. The following code, for example, calls the create() function that’s defined by Duck’s companion object:

val newDuck = Duck.create()


A companion object can be used as the Kotlin equivalent to static methods in Java.



To get a reference to a nameless companion object, you use the Companion keyword. The following code, for example, creates a new variable named x, and assigns to it a reference to Duck’s companion object:

val x = Duck.Companion


Any functions you add to a companion object are shared by all class instances.



Now that you’ve learned about object declarations and companion objects, let’s look at object expressions.






Object expressions

An object expression is an expression that creates an anonymous object on the fly with no predefined type.

Suppose that you want to create an object that holds an initial value for x and y coordinates. Instead of defining a Coordinate class and creating an instance of it, you could instead create an object that uses properties to hold the values of the x and y coordinates. The following code, for example, creates a new variable named startingPoint, and assigns such an object to it:


[image: image]




You can then refer to the object’s members using code like this:

println("starting point is ${startingPoint.x}, ${startingPoint.y}")

Object expressions are mainly used as the equivalent of anonymous inner classes in Java. If you’re writing some GUI code, and you suddenly realize that you need an instance of a class that implements a MouseAdapter abstract class, you can use an object expression to create that instance on the fly. The following code, for example, passes an object to a function named addMouseListener; the object implements MouseAdapter, and overrides its mouseClicked and mouseReleased functions:


[image: image]




You can find out more about object declarations and expressions here:

https://kotlinlang.org/docs/reference/object-declarations.html




7. Extensions

Extensions let you add new functions and properties to an existing type without you having to create a whole new subtype.

Note

There are also Kotlin extension libraries you can use to make your coding life easier, such as Anko and Android KTX for Android app development.



Imagine you’re writing an application where you frequently need to prefix a Double with “$” in order to format it as dollars. Instead of performing the same action over and over again, you can write an extension function named toDollar that you can use with Doubles. Here’s the code to do this:


[image: image]




The above code specifies that a function named toDollar, which returns a String, can be used with Double values. The function takes the current object (referred to using this), prefixes it with “$”, and returns the result.

Once you’ve created an extension function, you can use it in the same way that you’d use any other function. The following code, for example, calls the toDollar function on a Double variable that has a value of 45.25:

var dbl = 45.25

println(dbl.toDollar())      //prints $45.25

You can create extension properties in a similar way to how you create extension functions. The following code, for example, creates an extension property for Strings named halfLength which returns the length of the current String divided by 2.0:


[image: image]




And here’s some example code that uses the new property:

val test = "This is a test"

println(test.halfLength) //prints 7.0

You can find out more about how to use extensions—including how to add them to companion objects—here:

https://kotlinlang.org/docs/reference/extensions.html

And you can find out more about using this here:

https://kotlinlang.org/docs/reference/this-expressions.html


[image: image] Design Patterns

Design patterns are general-purpose solutions to common problems, and Kotlin offers you easy ways to implement some of these patterns.

Object declarations provide a way of implementing the Singleton pattern, as each declaration creates a single instance of that object. Extensions may be used in place of the Decorator pattern as they allow you to extend the behavior of classes and objects. And if you’re interested in using the Delegation pattern as an alternative to inheritance, you can find out more here:

https://kotlinlang.org/docs/reference/delegation.html






8. Return, break and continue

Kotlin has three ways of jumping out of a loop. These are:


	* return

As you already know, this returns from the enclosing function.


	* break

This terminates (or jumps to the end of) the enclosing loop, for example:


[image: image]





	* continue

This moves to the next iteration of the enclosing loop, for example:


[image: image]








Using labels with break and continue

If you have nested loops, you can explicitly specify which loop you want to jump out of by prefixing it with a label. A label is comprised of a name, followed by the @ symbol. The following code, for example, features two loops, where one loop is nested inside another. The outer loop has a label named myloop@, which is used by a break expression:


[image: image]




When you use break with a label, it jumps to the end of the enclosing loop with this label, so in the above example, it terminates the outer loop. When you use continue with a label, it jumps to the next iteration of that loop.






Using labels with return

You can also use labels to control your code’s behavior in nested functions, including higher order functions.

Suppose you have the following function, which includes a call to forEach, which is a built-in higher order function that accepts a lambda:


[image: image]




In this example, the code exits the myFun function when it reaches the return expression, so the line:

println("Finished myFun()")

never runs.

If you want to exit the lambda but continue running myFun, you can add a label to the lambda, which the return can then reference. Here’s an example:


[image: image]




This can be replaced with an implicit label, whose name matches the function to which the lambda is passed:


[image: image]




You can find out more about how to use labels to control your code jumps here:

https://kotlinlang.org/docs/reference/returns.html




9. More fun with functions

You’ve learned a lot about functions over the course of the book, but there are just a few more things that we thought you should know about.


vararg

If you want a function to accept multiple arguments of the same type but you don’t know how many, you can prefix the parameter with vararg. This tells the compiler that the parameter can accept a variable number of arguments. Here’s an example:


[image: image]





Only one parameter can be marked with vararg. This parameter is usually the last.



You call a function with a vararg parameter by passing values to it, just as you would any other sort of function. The following code, for example, passes five Int values to the valuesToList function:

val mList = valuesToList(1, 2, 3, 4, 5)

If you have an existing array of values, you can pass these to the function by prefixing the array name with *. This is known as the spread operator, and here are a couple of examples of it in use:


[image: image]







infix

If you prefix a function with infix, you can call it without using the dot notation. Here’s an example of an infix function:


[image: image]




As the function has been marked using infix, you can call it using:


[image: image]




A function can be marked with infix if it’s a member or extension function, and has a single parameter which has no default value, and isn’t marked with vararg.




inline

Higher order functions can sometimes be slightly slower to run, but a lot of the time, you can improve their performance by prefixing the function with inline, for example:


[image: image]




When you inline a function in this way, the generated code removes the function call, and replaces it with the contents of the function. It removes the overhead of calling the function, which will often make the code run faster, but behind the scenes, it generates more code.

You can find additional information about using these techniques, and more, here:

https://kotlinlang.org/docs/reference/functions.html






10. Interoperability

As we said at the beginning of the book, Kotlin is interoperable with Java, and Kotlin code can be transpiled into JavaScript. If you plan to use your Kotlin code with other languages, we recommend that you read the interoperability sections of Kotlin’s online documentation.


Interoperability with Java

You can call nearly all Java code from Kotlin without any problems. Simply import any libraries that haven’t been imported automatically, and use them. You can read about any extra considerations—such as how Kotlin deals with null values coming from Java—here:

https://kotlinlang.org/docs/reference/java-interop.html

Similarly, you can find out more about using your Kotlin code from inside Java here:

https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html




Using Kotlin with JavaScript

The online documentation also includes a wealth of information on using Kotlin with JavaScript. If your application targets JavaScript, for example, you can use Kotlin’s dynamic type which effectively switches off Kotlin’s type checker:

val myDynamicVariable: dynamic = ...

You can find out more about the dynamic type here:

https://kotlinlang.org/docs/reference/dynamic-type.html

Similarly, the following page gives you information about using JavaScript from Kotlin:

https://kotlinlang.org/docs/reference/js-interop.html

And you can find out about accessing your Kotlin code from JavaScript here:

https://kotlinlang.org/docs/reference/js-to-kotlin-interop.html




Writing native code with Kotlin

You can also use Kotlin/Native to compile Kotlin code to native binaries. To find out more about how to do this, see here:

https://kotlinlang.org/docs/reference/native-overview.html

Note

If you want to be able to share your code across multiple target platforms, we suggest you look at Kotlin’s support for multiplatform projects. You can find out more about multiplatform projects here:



https://kotlinlang.org/docs/reference/multiplatform.html






Index
Symbols
	! (not operator), Not equals (!= and !), Where to use the is operator
	!! (not-null assertion operator), The !! operator deliberately throws a NullPointerException
	!= (not equals operator), Not equals (!= and !), How to access a nullable type’s functions and properties
	$ (String template), Add the code to PhraseOMatic.kt
	&& (and operator), We need to validate the user’s input, Where to use the is operator, How to access a nullable type’s functions and properties
	() (parentheses)	arguments and, Anatomy of the main function
	Boolean expressions and, Not equals (!= and !)
	lambda parameters and, You can move the lambda OUTSIDE the ()’s...
	superclass constructors and, Declare that a class implements an interface...


	* (spread operator), 9. More fun with functions
	++ (increment operator), How for loops work, 8. Return, break and continue
	, (separator), You can send more than one thing to a function
	-- (decrement operator), How for loops work
	-> (separator), What lambda code looks like
	. (dot operator), We need to convert the value, How to access properties and functions, How to write a custom setter, Which function is called?
	.. (range operator), How for loops work
	// (comment), Anatomy of the main function, What can you say in the main function?
	: (name/type separator), How to explicitly declare a variable’s type, How a subclass inherits from a superclass, How to implement an abstract class, Declare that a class implements an interface...
	< (less than operator), Loop and loop and loop...
	<= (less than or equal to operator), Loop and loop and loop...
	<> (generics), The compiler infers the array’s type from its values, Collections use generics
	= (equals operator), Loop and loop and loop...
	== (equality operator)	about, Loop and loop and loop..., ...that let you destructure data objects, Rules for overriding hashCode and equals, Test drive
	equals() function and, == calls a function named equals, The common behavior defined by Any, How a Set checks for duplicates
	generated functions and, Generated functions only use properties defined in the constructor


	=== (referential equality operator), ...that let you destructure data objects, How a Set checks for duplicates
	> (greater than operator), Loop and loop and loop...
	>= (greater than or equal to operator), Loop and loop and loop...
	? (nullable type), You can use a nullable type everywhere you can use a non-nullable type
	?. (safe call operator), Keep things safe with safe calls, Use let to run code if values are not null
	?: (Elvis operator), Instead of using an if expression...
	@ (annotation/label), Create a JUnit test class, 8. Return, break and continue
	@JvmOverloads annotation, Test drive
	@Test annotation, Create a JUnit test class
	{} (curly braces)	class body and, Let’s define a Dog class
	empty function body and, The Animal class has two abstract functions
	interfaces and, Let’s define the Roamable interface
	lambdas and, What lambda code looks like
	let body and, Using let with array items
	main function and, Anatomy of the main function
	nested classes and, 5. Nested and inner classes
	String templates and, Add the code to PhraseOMatic.kt


	|| (or operator), We need to validate the user’s input, Where to use the is operator


A
	abstract classes	about, Abstract or concrete?
	declaring, Some classes shouldn’t be instantiated
	implementing, How to implement an abstract class
	inheritance and, How to implement an abstract class
	instantiation and, Some classes shouldn’t be instantiated
	tips when creating, How do you know whether to make a class, a subclass, an abstract class, or an interface?


	abstract functions	about, An abstract class can have abstract properties and functions, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	concrete classes and, Declare that a class implements an interface...
	implementing, How to implement an abstract class
	interfaces and, Let’s define the Roamable interface
	polymorphism and, The Animal class has two abstract functions


	abstract keyword, Some classes shouldn’t be instantiated, An abstract class can have abstract properties and functions, Let’s define the Roamable interface
	abstract properties	about, An abstract class can have abstract properties and functions
	concrete classes and, Declare that a class implements an interface...
	implementing, How to implement an abstract class
	initialization and, An abstract class can have abstract properties and functions, How to implement an abstract class
	polymorphism and, The Animal class has two abstract functions


	abstract superclasses, Some classes shouldn’t be instantiated, How to implement an abstract class
	accessors (getters), How do you validate property values?, Overriding properties lets you do more than assign default values, You MUST implement all abstract properties and functions, How to define interface properties
	actions, Create a JUnit test class
	add() function	MutableList interface, Create a MutableList...
	MutableSet interface, How to use a MutableSet


	addAll() function	MutableList interface, You can change the order and make bulk changes...
	MutableSet interface, How to use a MutableSet


	and operator (&&), We need to validate the user’s input, Where to use the is operator, How to access a nullable type’s functions and properties
	Android devices, It’s crisp, concise and readable
	angle brackets <>, The compiler infers the array’s type from its values, Collections use generics
	annotations/labels (@), Create a JUnit test class, 8. Return, break and continue
	Any superclass, equals is inherited from a superclass named Any, A data class lets you create data objects, Test drive, How to create an array of nullable types
	applications, building (see building applications)
	arguments	about, Anatomy of the main function, How you create functions
	and order of parameters, You can send more than one thing to a function
	named, 2. Using named arguments
	overloading functions, Overloading a function


	Array class, Store multiple values in an array, Use downTo to reverse the range, Arrays can be useful..., Test drive
	Array<Type> type, The compiler infers the array’s type from its values
	arrayListOf() function, Test drive
	arrayOf() function, Store multiple values in an array, Get the game to choose an option, When you call a function on the variable, it’s the object’s version that responds, Arrays can be useful...
	arrayOfNulls() function, Arrays can be useful...
	arrays	building applications using, Create the Phrase-O-Matic application
	creating, Store multiple values in an array, Get the game to choose an option
	declaring, var means the variable can point to a different array
	evaluating, Add the code to PhraseOMatic.kt
	explicitly defining type, The compiler infers the array’s type from its values
	inferring type from values, The compiler infers the array’s type from its values
	limitations of, ...but there are things an array can’t handle
	looping through items in, Use downTo to reverse the range
	object references and, Store multiple values in an array, The compiler infers the array’s type from its values, Behind the scenes: what happens
	of nullable types, How to create an array of nullable types, ...but there are things an array can’t handle
	starting index value, Store multiple values in an array
	storing values in, Store multiple values in an array
	ways to use, Arrays can be useful...


	as operator, Use as to perform an explicit cast, An exception is an object of type Exception, The fully qualified name
	assertEquals assertion, Create a JUnit test class
	assertion operators, The !! operator deliberately throws a NullPointerException
	assertions, Create a JUnit test class
	assignment operators, Loop and loop and loop...
	asynchronous execution, Test drive
	attributes (objects) (see properties)
	average() function (Array), Arrays can be useful...


B
	backing fields, How to write a custom setter, How to define interface properties
	base classes (see superclasses)
	behavior (objects), We need to convert the value, Use inheritance to avoid duplicate code in subclasses, We can group some of the animals	(see also functions)


	binary numbers, Integers
	Boolean expressions, We need to validate the user’s input
	Boolean tests, simple, Loop and loop and loop...
	Boolean type, Booleans
	break statement, 8. Return, break and continue
	building applications	adding files to projects, You’ve just created your first Kotlin project
	adding functions, Anatomy of the main function
	basic overview, Java Virtual Machines (JVMs)
	build tools, Install IntelliJ IDEA (Community Edition)
	creating projects, Let’s build a basic application
	installing IDE, Install IntelliJ IDEA (Community Edition)
	testing code with REPL, Java Virtual Machines (JVMs), Using the Kotlin interactive shell
	updating functions, Loop and loop and loop...


	built-in higher-order functions	about, built-in higher-order functions: Power Up Your Code
	filter() function, Kotlin has a bunch of built-in higher-order functions, Meet the filter function
	filterIsInstance() function, Meet the filter function
	filterNot() function, Meet the filter function, The story continues...
	filterTo() function, Meet the filter function, The story continues...
	fold() function, How to use the fold function, Test drive
	foldRight() function, Test drive
	forEach() function, forEach works like a for loop, You can use groupBy in function call chains, Test drive
	groupBy() function, Use groupBy to split your collection into groups
	map() function, Use map to apply a transform to your collection
	max() function, The min and max functions work with basic types
	maxBy() function, The min and max functions work with basic types
	min() function, The min and max functions work with basic types
	minBy() function, The min and max functions work with basic types
	reduceRight() function, Test drive
	sumBy() function, The sumBy and sumByDouble functions
	sumByDouble() function, The sumBy and sumByDouble functions


	Byte type, Integers


C
	capitalize() function, Add the printResult function to Game.kt
	casting, The is operator usually performs a smart cast, An exception is an object of type Exception
	catch block (try/catch), Catch exceptions using a try/catch, You can explicitly throw exceptions
	catching exceptions, An exception is thrown in exceptional circumstances
	Char type, Booleans
	characteristics (objects) (see properties)
	characters (type), Booleans
	class keyword, Let’s define a Dog class
	ClassCastException, An exception is an object of type Exception
	classes	about, classes and objects: A Bit of Class
	abstract, Some classes shouldn’t be instantiated
	adding to projects, We’ll create some Kotlin animals, Add the Canine and Wolf classes
	as templates, classes and objects: A Bit of Class, How to create a Dog object, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	building, We’ll create some Kotlin animals
	common protocols for, Inheritance guarantees that all subclasses have the functions and properties defined in the superclass, Test drive, The Animal class hierarchy revisited, The Animal class has two abstract functions, Let’s define the Roamable interface
	concrete, Abstract or concrete?, You MUST implement all abstract properties and functions, Declare that a class implements an interface..., The compiler can infer the generic type
	data (see data classes)
	defining, Object types are defined using classes
	defining properties in main body, Flexible property initialization
	defining without constructors, You MUST initialize your properties
	designing, How to design your own classes
	enum, 3. Enum classes
	generics and, Things you can do with a generic class or interface, Test drive, Use out to make a generic type covariant, We need a Vet class, Use in to make a generic type contravariant
	inheritance (see inheritance)
	inner, An inner class can access the outer class members
	member functions and, Let’s define a Dog class, How to access properties and functions
	nested, 5. Nested and inner classes
	outer, 5. Nested and inner classes
	prefixing with open, Declare the superclass and its properties and functions as open, Overriding properties lets you do more than assign default values
	sealed, 4. Sealed classes
	subclasses (see subclasses)
	superclasses (see superclasses)
	tips when creating, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	visibility modifiers and, Visibility modifiers and classes/interfaces


	clear() function	MutableList interface, You can change the order and make bulk changes...
	MutableMap interface, You can remove entries from a MutableMap
	MutableSet interface, How to use a MutableSet


	closure (lambdas), forEach has no return value, Test drive
	code editors, Install IntelliJ IDEA (Community Edition), Add the main function to App.kt
	Collection interface, Test drive
	collections	about, Test drive
	arrays and, Arrays can be useful...
	generics and, Collections use generics, Add the scores property
	higher-order functions and, Kotlin has a bunch of built-in higher-order functions, Meet the filter function, Use groupBy to split your collection into groups, Test drive
	Kotlin Standard Library, When in doubt, go to the Library
	List interface, List, Set and Map, Lists allow duplicate values, Test drive
	Map interface, List, Set and Map, Time for a Map
	MutableList interface, List, Set and Map, Create a MutableList..., Lists allow duplicate values, How a MutableList is defined, The compiler can infer the generic type
	MutableMap interface, List, Set and Map, Create a MutableMap, Add the scores property
	MutableSet interface, List, Set and Map, How to create a Set, How to use a MutableSet, Create the getWinners function
	Set interface, List, Set and Map, How to create a Set, Test drive, Test drive


	colon (:), How to explicitly declare a variable’s type, How a subclass inherits from a superclass, How to implement an abstract class, Declare that a class implements an interface...
	comma (,), You can send more than one thing to a function
	comments, forward slash and, Anatomy of the main function, What can you say in the main function?
	companion keyword, Class objects...
	Comparable interface, A closer look at minBy and maxBy’s lambda parameter
	comparison operators, Loop and loop and loop..., == calls a function named equals, The common behavior defined by Any, ...that let you destructure data objects
	componentN functions, Data classes define componentN functions...
	concrete classes, Abstract or concrete?, You MUST implement all abstract properties and functions, Declare that a class implements an interface..., The Retailer hierarchy
	concrete functions, Let’s define the Roamable interface
	conditional branching	if expression, Using if to return a value, Add the code to PhraseOMatic.kt, Functions with single-expression bodies, Instead of using an if expression...
	if statement, Loop and loop and loop...
	main function using, What can you say in the main function?


	conditional tests, Loop and loop and loop...
	configuring projects, 3. Configure the project
	constants	enum classes and, 3. Enum classes
	sealed classes and, 4. Sealed classes


	constructor keyword, 2. Using named arguments
	constructors	@JvmOverloads annotation, Test drive
	about, How objects are created
	defining classes without, You MUST initialize your properties
	defining properties, Behind the scenes: calling the Dog constructor, Behind the scenes: calling the Dog constructor, Generated functions only use properties defined in the constructor
	empty, You MUST initialize your properties
	enum classes and, 3. Enum classes
	generics and, Create Vet objects
	primary (see primary constructors)
	secondary, 2. Using named arguments, Test drive
	visibility modifiers, Visibility modifiers and classes/interfaces
	with default values, How to use a constructor’s default values


	contains() function	Array class, Arrays can be useful...
	List interface, Fantastic Lists...
	Set interface, How to create a Set


	containsKey() function (Map), How to use a Map
	containsValue() function (Map), How to use a Map
	continue statement, 8. Return, break and continue
	contravariant generic types, Use in to make a generic type contravariant, Test drive
	conversion functions, We need to convert the value
	converting values, We need to convert the value
	copy() function, Copy data objects using the copy function, Test drive
	coroutines	adding dependencies, Test drive
	asynchronous execution, Test drive
	drum machine application, Let’s build a drum machine
	launching, Test drive
	runBlocking() function, Use runBlocking to run coroutines in the same scope
	threads and, Test drive


	covariant generic types, Use out to make a generic type covariant, Test drive
	creating	abstract classes, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	arrays, Store multiple values in an array, Get the game to choose an option
	exceptions, An exception is an object of type Exception
	functions, How you create functions
	interfaces, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	objects, How to create a Dog object, The miracle of object creation, A data class lets you create data objects
	projects, Java Virtual Machines (JVMs), Let’s build a basic application, Here’s what we’re going to do
	subclasses, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	variables, Your code needs variables


	curly braces {}	class body and, Let’s define a Dog class
	empty function body and, The Animal class has two abstract functions
	interfaces and, Let’s define the Roamable interface
	lambdas and, What lambda code looks like
	let body and, Using let with array items
	main function and, Anatomy of the main function
	nested classes and, 5. Nested and inner classes
	String templates and, Add the code to PhraseOMatic.kt


	custom getters/setters, How to write a custom getter


D
	data classes, A data class lets you create data objects	about, A data class lets you create data objects, ...that let you destructure data objects, Test drive
	componentN functions and, Data classes define componentN functions...
	constructors with default values, How to use a constructor’s default values
	copying data objects, Copy data objects using the copy function
	creating objects from, A data class lets you create data objects
	defining, A data class lets you create data objects, Generated functions only use properties defined in the constructor
	generated functions and, Generated functions only use properties defined in the constructor
	initializing many properties, Initializing many properties can lead to cumbersome code
	overloading functions, Overloading a function
	overriding inherited behavior, Data classes override their inherited behavior, Test drive
	parameters with default values, Functions can use default values too, Test drive
	primary constructors, Generated functions only use properties defined in the constructor
	rules for, Your Kotlin Toolbox
	secondary constructors, 2. Using named arguments


	data hiding, How to write a custom setter
	data keyword, A data class lets you create data objects
	data objects	copying, Copy data objects using the copy function
	creating, A data class lets you create data objects
	destructuring, Data classes define componentN functions...
	properties and, Data classes override their inherited behavior


	declarations	abstract classes, Some classes shouldn’t be instantiated
	arrays, var means the variable can point to a different array
	classes, Declare the superclass and its properties and functions as open
	functions, You can get things back from a function
	object, The miracle of object creation, 6. Object declarations and expressions, 7. Extensions
	packages, 1. Packages and imports
	passing values in order of, How to use a constructor’s default values
	properties, How to write a custom getter
	superclasses, Declare the superclass and its properties and functions as open, An overridden function or property stays open...
	variables, Your code needs variables, The miracle of object creation, Lambda expressions have a type


	Decorator pattern, 7. Extensions
	decrement operator (--), How for loops work
	default values	constructors with, How to use a constructor’s default values
	parameters with, Functions can use default values too, Test drive
	properties with, Initializing many properties can lead to cumbersome code


	delay() function, Thread.sleep pauses the current THREAD
	Delegation pattern, 7. Extensions
	derived classes (see subclasses)
	design patterns, 7. Extensions
	destructuring data objects, Data classes define componentN functions...
	do-while loops, Loop and loop and loop...
	dollar sign ($), Add the code to PhraseOMatic.kt
	dot operator (.), We need to convert the value, How to access properties and functions, How to write a custom setter, Which function is called?
	Double type, Integers
	downTo() function, Use downTo to reverse the range
	duplicate code, avoiding, Inheritance helps you avoid duplicate code, Use inheritance to avoid duplicate code in subclasses
	duplicate values	List interface and, Lists allow duplicate values
	Map interface and, Time for a Map, You can copy Maps and MutableMaps
	Set interface and, List, Set and Map, How a Set checks for duplicates, You can copy a MutableSet




E
	else clause	if expression, Using if to return a value
	if statement, Conditional branching
	when statement, Use when to compare a variable against a bunch of options


	Elvis operator (?:), Instead of using an if expression...
	empty constructors, You MUST initialize your properties
	empty function body, The Animal class has two abstract functions
	entries property	Map interface, You can copy Maps and MutableMaps, Test drive
	MutableMap interface, You can copy Maps and MutableMaps


	enum classes, 3. Enum classes
	equality operator (==)	about, Loop and loop and loop..., ...that let you destructure data objects, Rules for overriding hashCode and equals, Test drive
	data class and, Generated functions only use properties defined in the constructor
	equals() function and, == calls a function named equals, The common behavior defined by Any, How a Set checks for duplicates


	equals operator (=), Loop and loop and loop...
	equals() function	about, == calls a function named equals
	data class and, Generated functions only use properties defined in the constructor
	overriding, A data class lets you create data objects, Test drive, Rules for overriding hashCode and equals
	Set interface and, How a Set checks for duplicates


	Exception type, An exception is an object of type Exception
	exceptions	about, Remove an object reference using null, An exception is thrown in exceptional circumstances, An exception is an object of type Exception, try and throw are both expressions
	catching, An exception is thrown in exceptional circumstances
	ClassCastException, An exception is an object of type Exception
	creating, An exception is an object of type Exception
	defining, An exception is an object of type Exception
	finally block, Catch exceptions using a try/catch
	IllegalArgumentException, An exception is an object of type Exception, You can explicitly throw exceptions
	IllegalStateException, An exception is an object of type Exception
	NullPointerException, Remove an object reference using null, The !! operator deliberately throws a NullPointerException
	rules for, You can explicitly throw exceptions
	throwing, The !! operator deliberately throws a NullPointerException, An exception is thrown in exceptional circumstances, You can explicitly throw exceptions
	try/catch block, Catch exceptions using a try/catch


	explicit casting, Use as to perform an explicit cast, An exception is an object of type Exception
	explicitly declaring variables, How to explicitly declare a variable’s type
	explicitly defining array type, The compiler infers the array’s type from its values
	explicitly throwing exceptions, You can explicitly throw exceptions
	expressions	Boolean, We need to validate the user’s input
	chaining safe calls together, You can chain safe calls together
	if, Using if to return a value, Add the code to PhraseOMatic.kt, Functions with single-expression bodies, Instead of using an if expression...
	lambda (see lambdas)
	object, Object expressions
	return values and, try and throw are both expressions
	shouldBe, Using KotlinTest
	streamlining with let, Using let with array items
	String templates evaluating, Add the code to PhraseOMatic.kt


	extensions, 7. Extensions


F
	field, backing, How to write a custom setter, How to define interface properties
	file management, You’ve just created your first Kotlin project, Add the main function to App.kt
	filter() function, Kotlin has a bunch of built-in higher-order functions, Meet the filter function
	filterIsInstance() function, Meet the filter function
	filterNot() function, Meet the filter function, The story continues...
	filterTo() function, Meet the filter function, The story continues...
	final keyword, An overridden function or property stays open...
	finally block, Use finally for the things you want to do no matter what, You can explicitly throw exceptions
	Float type, Integers
	fold() function, How to use the fold function, Test drive
	foldRight() function, Test drive
	for loops	about, What can you say in the main function?, How for loops work
	println command in, The getUserChoice function
	until clause, How for loops work


	forall() function, Use rows to test against sets of data
	forEach() function, forEach works like a for loop, You can use groupBy in function call chains, Test drive
	forward slash (//), Anatomy of the main function, What can you say in the main function?
	fully qualified names, The fully qualified name
	fun keyword, Anatomy of the main function
	function types, Lambda expressions have a type, What happens when the code runs
	functional programming, Welcome to Kotlinville, Update the Lambdas project
	functions, Define the Contest class	(see also specific functions)
	about, Let’s build a game: Rock, Paper, Scissors
	abstract, An abstract class can have abstract properties and functions, Let’s define the Roamable interface, Declare that a class implements an interface..., How do you know whether to make a class, a subclass, an abstract class, or an interface?
	accessing for nullable types, How to access a nullable type’s functions and properties
	arguments and, Anatomy of the main function, How you create functions
	calling on object references, Which function is called?
	componentN functions, Data classes define componentN functions...
	concrete, Let’s define the Roamable interface
	conversion, We need to convert the value
	creating, How you create functions
	declaring, You can get things back from a function
	enum classes and, enum properties and functions
	extensions adding, 7. Extensions
	generated, Generated functions only use properties defined in the constructor
	generics and, Things you can do with a generic class or interface, Add the scores property, The compiler can infer the generic type
	higher-order, You can pass a lambda to a function, Update the Lambdas project, infix
	infix, infix
	inheritance and, Inheritance helps you avoid duplicate code, Use inheritance to avoid duplicate code in subclasses, Which function is called?
	interface, Let’s define the Roamable interface, Declare that a class implements an interface..., How do you know whether to make a class, a subclass, an abstract class, or an interface?
	lambdas and, You can pass a lambda to a function, Test drive, A function can return a lambda
	main function, Anatomy of the main function, What can you say in the main function?, Update the main function
	member, Let’s define a Dog class, How to access properties and functions
	object behavior and, We need to convert the value
	of objects, How to design your own classes
	overloading, Test drive, Overloading a function
	overriding (see overriddden functions)
	parameters and, How you create functions, You can use a supertype for a function’s parameters and return type, Test drive, Functions can use default values too, Test drive, Use out to make a generic type covariant
	passing arguments and, How you create functions
	polymorphism and, You can use a supertype for a function’s parameters and return type
	prefixing with final, An overridden function or property stays open...
	prefixing with open, Overriding properties lets you do more than assign default values
	return types and, You can get things back from a function, You can use a supertype for a function’s parameters and return type, Overloading a function, You can use a nullable type everywhere you can use a non-nullable type
	single expression, You can get things back from a function
	String templates calling, Add the code to PhraseOMatic.kt
	suspendable, Thread.sleep pauses the current THREAD
	updating, Java Virtual Machines (JVMs), Loop and loop and loop...
	with default values, Functions can use default values too
	with return values, You can get things back from a function, Code Magnets Solution
	without return values, You can get things back from a function, forEach has no return value




G
	generated functions, properties and, Generated functions only use properties defined in the constructor
	generics and generic types	about, Collections use generics, Define the Retailer interface, The story continues...
	classes and, Things you can do with a generic class or interface, Test drive, Use out to make a generic type covariant, We need a Vet class, Use in to make a generic type contravariant
	collections and, Collections use generics, Add the scores property
	compiler inferring, Create some Contest objects
	constructors and, Create Vet objects
	contravariant, Use in to make a generic type contravariant, Test drive
	covariant, Use out to make a generic type covariant, Test drive
	functions and, Things you can do with a generic class or interface, Add the scores property, The compiler can infer the generic type
	interfaces and, Things you can do with a generic class or interface, The Retailer hierarchy, Use in to make a generic type contravariant
	invariant, A generic type can be locally contravariant, Test drive
	Java versus Kotlin approach, Test drive
	nullable, Test drive
	objects and, Create some Contest objects, We can create CatRetailer, DogRetailer and FishRetailer objects..., Create Vet objects
	polymorphism and, Things you can do with a generic class or interface, We can create CatRetailer, DogRetailer and FishRetailer objects...
	prefixing with in, Collections use generics, Use in to make a generic type contravariant
	prefixing with out, Collections use generics, Use out to make a generic type covariant, Use in to make a generic type contravariant
	properties and, Add the scores property
	restricting to specific types, Define the Contest class
	subtypes and, Use out to make a generic type covariant, Use in to make a generic type contravariant
	supertypes and, Define the Contest class, Use out to make a generic type covariant, Use in to make a generic type contravariant
	type parameters and, Using type parameters with MutableList
	ways to use, Things you can do with a generic class or interface


	get() function	List interface, Fantastic Lists...
	Map interface, How to use a Map


	getters (accessors), How do you validate property values?, Overriding properties lets you do more than assign default values, You MUST implement all abstract properties and functions, How to define interface properties
	getValue() function (Map), How to use a Map
	GlobalScope.launch, 1. Add a coroutines dependency
	Gradle build tool, Let’s build a drum machine
	greater than operator (>), Loop and loop and loop...
	greater than or equal to operator (>=), Loop and loop and loop...
	groupBy() function, Use groupBy to split your collection into groups


H
	HAS-A test, Use IS-A to test your class hierarchy
	hash codes, How a Set checks for duplicates
	hashCode() function, The common behavior defined by Any, A data class lets you create data objects, Test drive, Hash codes and equality
	hashMapOf() function, Test drive
	hexadecimal numbers, Integers
	higher-order functions	about, You can pass a lambda to a function, Test drive
	built-in, built-in higher-order functions: Power Up Your Code
	collections and, Kotlin has a bunch of built-in higher-order functions
	functional programming and, Update the Lambdas project
	inline prefix, infix
	lambdas and, You can pass a lambda to a function




I
	if expression	about, Using if to return a value
	else clause, Using if to return a value
	nullable types and, Instead of using an if expression...
	single, Functions with single-expression bodies
	String templates evaluating arrays, Add the code to PhraseOMatic.kt


	if statement	about, Conditional branching
	else clause, Conditional branching
	is operator and, Where to use the is operator


	IllegalArgumentException, An exception is an object of type Exception, You can explicitly throw exceptions
	IllegalStateException, An exception is an object of type Exception
	immutability	of classes, Test drive
	of collection types, List, Set and Map, Lists allow duplicate values, Test drive


	implicit labels, Using labels with return
	import statement, Add the code to the project, The fully qualified name
	in keyword, Collections use generics, Use in to make a generic type contravariant
	in operator, We need to validate the user’s input
	increment operator (++), How for loops work, 8. Return, break and continue
	index (indices), Store multiple values in an array, Your Kotlin Toolbox, Use downTo to reverse the range, List, Set and Map
	indexOf() function (List), Fantastic Lists...
	infix keyword, infix
	inheritance	about, Inheritance helps you avoid duplicate code
	abstract classes and, How to implement an abstract class
	Any superclass and, equals is inherited from a superclass named Any, A data class lets you create data objects
	avoiding duplicate code with, Inheritance helps you avoid duplicate code, Use inheritance to avoid duplicate code in subclasses
	building class hierarchy, We’ll create some Kotlin animals
	class hierarchy using, Which function is called?
	designing class structure, What we’re going to do
	functions and, Inheritance helps you avoid duplicate code, Use inheritance to avoid duplicate code in subclasses, Which function is called?
	HAS-A test, Use IS-A to test your class hierarchy
	interfaces and, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	IS-A test, Use IS-A to test your class hierarchy, Independent classes can have common behavior, equals is inherited from a superclass named Any
	polymorphism and, You can use a supertype for a function’s parameters and return type
	properties and, Inheritance helps you avoid duplicate code, Use inheritance to avoid duplicate code in subclasses, Inheritance guarantees that all subclasses have the functions and properties defined in the superclass
	subtypes and, Inheritance guarantees that all subclasses have the functions and properties defined in the superclass


	init keyword, How to use initializer blocks
	initialization	abstract properties and, An abstract class can have abstract properties and functions, How to implement an abstract class
	interface properties and, How to define interface properties
	objects and, How objects are created, How to use initializer blocks
	properties and, How objects are created, Flexible property initialization, You MUST initialize your properties
	property, Initializing many properties can lead to cumbersome code
	superclasses and, How (and when) to override properties
	variables and, How to explicitly declare a variable’s type


	initializer blocks, How to use initializer blocks, How (and when) to override properties
	inline keyword, infix
	inner classes, An inner class can access the outer class members
	installing IntelliJ IDEA IDE, Java Virtual Machines (JVMs), Install IntelliJ IDEA (Community Edition)
	instance variables (see properties)
	instances (see objects)
	instantiation	abstract classes and, Some classes shouldn’t be instantiated
	interfaces and, An interface lets you define common behavior OUTSIDE a superclass hierarchy


	Int type, Integers
	IntelliJ IDEA IDE	installing, Java Virtual Machines (JVMs), Install IntelliJ IDEA (Community Edition)
	processing Run command, Test drive
	Tools menu, Using the Kotlin interactive shell


	interactive shell (see REPL)
	interfaces	about, An interface lets you define common behavior OUTSIDE a superclass hierarchy
	defining, Let’s define the Roamable interface
	functions in, Let’s define the Roamable interface, Declare that a class implements an interface..., How do you know whether to make a class, a subclass, an abstract class, or an interface?
	generics and, Things you can do with a generic class or interface, The Retailer hierarchy, Use in to make a generic type contravariant
	implementing, How to implement multiple interfaces
	inheritance and, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	instantiation and, An interface lets you define common behavior OUTSIDE a superclass hierarchy
	naming conventions, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	polymorphism and, An interface lets you define common behavior OUTSIDE a superclass hierarchy, Interfaces let you use polymorphism
	properties in, Let’s define the Roamable interface
	tips when creating, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	visibility modifiers and, Visibility modifiers and classes/interfaces


	internal modifier, 2. Visibility modifiers
	interoperability, 10. Interoperability
	invariant generic types, A generic type can be locally contravariant, Test drive
	invoke() function, You can assign a lambda to a variable
	is operator, Interfaces let you use polymorphism, An exception is an object of type Exception
	IS-A test, Use IS-A to test your class hierarchy, Independent classes can have common behavior, equals is inherited from a superclass named Any
	it keyword, Use let to run code if values are not null, The compiler can infer lambda parameter types, Invoke the lambda in the function body, forEach has no return value
	Iterable interface, Test drive


J
	Java libraries, Add the code to the project
	Java programming language, Test drive, 10. Interoperability
	Java Virtual Machines (JVMs), It’s crisp, concise and readable
	JavaScript, It’s crisp, concise and readable, 10. Interoperability
	JUnit library, Kotlin can use existing testing libraries
	JVMs (Java Virtual Machines), It’s crisp, concise and readable


K
	key/value pairs, Time for a Map, You can copy Maps and MutableMaps, Add the scores property
	keys property (Map), You can copy Maps and MutableMaps, Test drive
	Kotlin extension libraries, 7. Extensions
	kotlin package, When in doubt, go to the Library
	Kotlin programming language, Welcome to Kotlinville
	Kotlin Standard Library, When in doubt, go to the Library
	kotlin.collections package, When in doubt, go to the Library
	KotlinTest library, Using KotlinTest
	kt file extension, Add a new Kotlin file to the project


L
	labels/annotations (@), Create a JUnit test class, 8. Return, break and continue
	lambdas	about, lambdas and higher-order functions: Treating Code Like Data, Test drive
	closure and, forEach has no return value, Test drive
	functional programming and, Update the Lambdas project
	functions and, You can pass a lambda to a function, Test drive, A function can return a lambda
	invoking, You can assign a lambda to a variable
	labeling, Using labels with return
	parameters and, What lambda code looks like, Lambda expressions have a type, You can pass a lambda to a function
	shortcuts for, You can assign a lambda to a variable, What happens when you call the function, Test drive
	variables and, You can assign a lambda to a variable, Lambda expressions have a type, forEach has no return value


	lateinit keyword, You MUST initialize your properties
	launch function, 1. Add a coroutines dependency
	less than operator (<), Loop and loop and loop...
	less than or equal to operator (<=), Loop and loop and loop...
	let keyword, Use let to run code if values are not null, Use the right lambda for the variable’s type
	linking variables to objects (see object references)
	List interface, List, Set and Map, Lists allow duplicate values, Test drive, Meet the filter function, Some more examples of fold, Test drive
	listOf() function (List), Fantastic Lists..., Lists allow duplicate values
	local variables, How you create functions, The story continues
	locally contravariant generic type, A generic type can be locally contravariant
	locally covariant generic type, Test drive
	Long type, Integers
	looping constructs	do-while, Loop and loop and loop...
	for, What can you say in the main function?, The getUserChoice function
	labeling, 8. Return, break and continue
	main function using, What can you say in the main function?
	while, Loop and loop and loop...




M
	main function	about, Anatomy of the main function
	adding to application, Add the main function to App.kt
	conditional branching in, What can you say in the main function?
	loops in, What can you say in the main function?
	parameterless, Anatomy of the main function
	statements in, What can you say in the main function?
	updating, Update the main function


	Map interface, List, Set and Map, Time for a Map, The sumBy and sumByDouble functions, Meet the filter function, Use groupBy to split your collection into groups, Test drive
	map() function, Use map to apply a transform to your collection
	mapOf() function (Map), Time for a Map
	Math.random() function, Add the code to PhraseOMatic.kt
	max() function, Arrays can be useful..., The min and max functions work with basic types
	maxBy() function, The min and max functions work with basic types
	member functions (methods), Let’s define a Dog class, How to access properties and functions
	min() function, Arrays can be useful..., The min and max functions work with basic types
	minBy() function, The min and max functions work with basic types
	modifiers, visibility, 2. Visibility modifiers
	mutability	of arrays, ...but there are things an array can’t handle
	of collection types, List, Set and Map, Test drive


	MutableList interface, List, Set and Map, Create a MutableList..., Lists allow duplicate values, How a MutableList is defined, The compiler can infer the generic type
	mutableListOf() function (MutableList), Create a MutableList..., How a MutableList is defined, The compiler can infer the generic type
	MutableMap interface, List, Set and Map, Create a MutableMap, Add the scores property
	mutableMapOf() function (Map), Create a MutableMap
	MutableSet interface, List, Set and Map, How to create a Set, How to use a MutableSet, Create the getWinners function
	mutableSetOf() function (MutableSet), How to use a MutableSet
	mutators (setters), How do you validate property values?, Overriding properties lets you do more than assign default values, You MUST implement all abstract properties and functions, How to define interface properties


N
	named arguments, 2. Using named arguments
	naming conventions for interfaces, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	naming variables, What can you say in the main function?, Your code needs variables, Use the right value for the variable’s type
	native code, It’s crisp, concise and readable, 10. Interoperability
	nested classes, 5. Nested and inner classes
	nextInt() function (Random), Add the code to PhraseOMatic.kt
	not equals operator (!=), Not equals (!= and !), How to access a nullable type’s functions and properties
	not operator (!), Not equals (!= and !), Where to use the is operator
	not-null assertion operator (!!), The !! operator deliberately throws a NullPointerException
	Nothing type, try and throw are both expressions
	null value	about, Ask the user for their choice
	checking for, We need to validate the user’s input
	nullable types and, Remove an object reference using null
	safe calls and, Keep things safe with safe calls


	nullable types	accessing functions, How to access a nullable type’s functions and properties
	accessing properties, How to access a nullable type’s functions and properties
	arrays of, How to create an array of nullable types, ...but there are things an array can’t handle
	executing code conditionally, Use let to run code if values are not null
	generics and, Test drive
	safe calls and, Keep things safe with safe calls
	ways to use, You can use a nullable type everywhere you can use a non-nullable type


	NullPointerException, Remove an object reference using null, The !! operator deliberately throws a NullPointerException, An exception is an object of type Exception


O
	object declarations, The miracle of object creation, 6. Object declarations and expressions, 7. Extensions
	object expressions, Object expressions
	object keyword, 6. Object declarations and expressions
	object references, Store multiple values in an array	arrays and, Store multiple values in an array, The compiler infers the array’s type from its values, Behind the scenes: what happens
	assigning, What happens when you declare a variable, Use the right value for the variable’s type, The miracle of object creation
	functions calling on, Which function is called?
	removing from variables, How do you remove object references from variables?
	removing using null, Remove an object reference using null


	objects	abstract classes and, Some classes shouldn’t be instantiated
	constructors and, How objects are created
	creating, How to create a Dog object, The miracle of object creation
	creating from data classes, A data class lets you create data objects
	defining types, Object types are defined using classes
	equals function and, == calls a function named equals
	functions of, How to design your own classes
	generics and, Create some Contest objects, We can create CatRetailer, DogRetailer and FishRetailer objects..., Create Vet objects
	initializing, How objects are created, How to use initializer blocks
	properties of (see properties)


	open keyword, Declare the superclass and its properties and functions as open, Overriding properties lets you do more than assign default values, An overridden function or property stays open..., An abstract class can have abstract properties and functions
	opening REPL, Using the Kotlin interactive shell
	or operator (||), We need to validate the user’s input, Where to use the is operator
	out keyword, Collections use generics, Use out to make a generic type covariant, Use in to make a generic type contravariant
	outer classes, 5. Nested and inner classes
	overloading functions, Test drive, Overloading a function
	overridden functions	data classes and, Data classes override their inherited behavior
	interfaces and, Declare that a class implements an interface...
	open keyword and, Declare the superclass and its properties and functions as open, An overridden function or property stays open...
	overloaded functions versus, Overloading a function
	rules for, How to override functions, Rules for overriding hashCode and equals
	subclasses and, Inheritance helps you avoid duplicate code, What should the subclasses override?, Test drive
	ways to use, How to override functions


	overridden properties	interfaces and, Declare that a class implements an interface...
	open keyword and, Declare the superclass and its properties and functions as open, An overridden function or property stays open...
	subclasses and, Inheritance helps you avoid duplicate code, What should the subclasses override?
	val and var keywords, Overriding properties lets you do more than assign default values, Test drive
	ways to use, How (and when) to override properties


	override keyword, How (and when) to override properties


P
	packages, When in doubt, go to the Library, You can change the order and make bulk changes..., 1. Packages and imports
	parallel execution, Test drive
	parameters	about, How you create functions
	empty constructors and, You MUST initialize your properties
	functions and, How you create functions, You can use a supertype for a function’s parameters and return type, Test drive, Functions can use default values too, Test drive, Use out to make a generic type covariant
	lambdas and, What lambda code looks like, Lambda expressions have a type, You can pass a lambda to a function
	local variables and, The story continues
	nullable types, You can use a nullable type everywhere you can use a non-nullable type
	order of arguments and, You can send more than one thing to a function
	prefixing with val/var, Going deeper into properties, Your Kotlin Toolbox, Initializing many properties can lead to cumbersome code
	properties as, Going deeper into properties
	separating multiple, You can send more than one thing to a function
	superclass constructors and, How a subclass inherits from a superclass
	type, Using type parameters with MutableList
	variable types matching, You can send more than one thing to a function
	with default values, Functions can use default values too, Test drive


	parentheses ()	arguments and, Anatomy of the main function
	Boolean expressions and, Not equals (!= and !)
	lambda parameters and, You can move the lambda OUTSIDE the ()’s...
	superclass constructors and, Declare that a class implements an interface...


	passing values	for arguments without default values, 2. Using named arguments
	in order of declaration, How to use a constructor’s default values


	platforms	specifying for projects, 2. Specify the type of project
	supporting Kotlin, It’s crisp, concise and readable


	plus() function (Array), ...but there are things an array can’t handle
	polymorphism	about, You can use a supertype for a function’s parameters and return type, Test drive, The Animal class has two abstract functions
	abstract functions and, The Animal class has two abstract functions
	abstract properties and, The Animal class has two abstract functions
	Any superclass and, equals is inherited from a superclass named Any
	generics and, Things you can do with a generic class or interface, We can create CatRetailer, DogRetailer and FishRetailer objects...
	independent classes and, Independent classes can have common behavior
	interfaces and, An interface lets you define common behavior OUTSIDE a superclass hierarchy, Interfaces let you use polymorphism


	primary constructors	about, How objects are created, Test drive
	data classes and, Generated functions only use properties defined in the constructor
	private modifier, Visibility modifiers and classes/interfaces
	superclasses and, How a subclass inherits from a superclass, Declare that a class implements an interface...


	print command, A loopy example
	println command	about, Anatomy of the main function
	in for loop, The getUserChoice function
	print versus, A loopy example


	printStackTrace() function, An exception is an object of type Exception
	private modifier, 2. Visibility modifiers
	projects	adding classes to, We’ll create some Kotlin animals, Add the Canine and Wolf classes
	adding files to, You’ve just created your first Kotlin project
	configuring, 3. Configure the project
	creating, Java Virtual Machines (JVMs), Let’s build a basic application, Here’s what we’re going to do
	specifying types of, 2. Specify the type of project
	src folder and, You’ve just created your first Kotlin project


	properties, We need to convert the value	about, We need to convert the value, How to design your own classes, Behind the scenes: calling the Dog constructor
	abstract, An abstract class can have abstract properties and functions, Declare that a class implements an interface...
	accessing, How to access properties and functions
	as parameters, Going deeper into properties
	assigning default values to, Initializing many properties can lead to cumbersome code
	constructors defining, Behind the scenes: calling the Dog constructor, Behind the scenes: calling the Dog constructor, Generated functions only use properties defined in the constructor
	data hiding values, How to write a custom setter
	data objects and, Data classes override their inherited behavior
	declaring, How to write a custom getter
	defining in main body of class, Flexible property initialization
	enum classes and, enum properties and functions
	extensions adding, 7. Extensions
	flexible initialization, Flexible property initialization
	generated functions and, Generated functions only use properties defined in the constructor
	generics and, Add the scores property
	inheritance and, Inheritance helps you avoid duplicate code, Use inheritance to avoid duplicate code in subclasses, Inheritance guarantees that all subclasses have the functions and properties defined in the superclass
	initializing, How objects are created, Flexible property initialization, You MUST initialize your properties, Initializing many properties can lead to cumbersome code
	interface, Let’s define the Roamable interface
	nullable types, You can use a nullable type everywhere you can use a non-nullable type, How to access a nullable type’s functions and properties
	overriding (see overridden properties)
	prefixing with final, An overridden function or property stays open...
	prefixing with open, Overriding properties lets you do more than assign default values
	String templates referencing, Add the code to PhraseOMatic.kt
	validating values, How do you validate property values?


	protected modifier, Visibility modifiers and classes/interfaces
	public modifier, 2. Visibility modifiers
	put() function (Map), Create a MutableMap
	putAll() function (Map), Create a MutableMap


Q
	question mark (?), You can use a nullable type everywhere you can use a non-nullable type


R
	random number generation, Add the code to PhraseOMatic.kt
	Random.nextInt() function, Add the code to PhraseOMatic.kt
	range of numbers	looping in reverse order, Use downTo to reverse the range
	looping through, How for loops work
	skipping numbers, Use downTo to reverse the range


	range operator (..), How for loops work
	reading user input, Ask the user for their choice
	readLine() function, Ask the user for their choice, We need to validate the user’s input
	reduce() function, Test drive
	reduceRight() function, Test drive
	referential equality operator (===), ...that let you destructure data objects, How a Set checks for duplicates
	remove() function	MutableList interface, You can remove a value...
	MutableMap interface, You can remove entries from a MutableMap
	MutableSet interface, How to use a MutableSet


	removeAll() function	MutableList interface, You can change the order and make bulk changes...
	MutableSet interface, How to use a MutableSet


	removeAt() function (MutableList), You can remove a value...
	REPL (interactive shell), Install IntelliJ IDEA (Community Edition)	about, Install IntelliJ IDEA (Community Edition)
	opening, Using the Kotlin interactive shell
	testing code in, Java Virtual Machines (JVMs), Using the Kotlin interactive shell


	retainAll() function	MutableList interface, You can change the order and make bulk changes...
	MutableSet interface, How to use a MutableSet


	return statement, 8. Return, break and continue
	return type	functions and, You can get things back from a function, You can use a supertype for a function’s parameters and return type, Overloading a function
	generic types and, Use in to make a generic type contravariant
	higher-order functions and, A closer look at minBy and maxBy’s lambda parameter
	lambdas and, A function can return a lambda
	nullable types, You can use a nullable type everywhere you can use a non-nullable type
	Unit, You can get things back from a function, Use the right lambda for the variable’s type


	return values	expressions and, Using if to return a value, Use when to compare a variable against a bunch of options, try and throw are both expressions
	functions with, You can get things back from a function, Code Magnets Solution
	functions without, You can get things back from a function, forEach has no return value
	interface properties and, How to define interface properties
	lambdas and, Lambda expressions have a type
	null value, Ask the user for their choice, We need to validate the user’s input


	reverse() function	Array class, Arrays can be useful...
	MutableList subtype, You can change the order and make bulk changes...


	reversed() function, You can change the order and make bulk changes...
	Rock, Paper, Scissors game	game choice, Get the game to choose an option
	high-level design, A high-level design of the game
	result, Add the printResult function to Game.kt
	rules of, Let’s build a game: Rock, Paper, Scissors
	user choice, The getUserChoice function, We need to validate the user’s input


	row() function, Use rows to test against sets of data
	rules	for data classes, Your Kotlin Toolbox
	for exceptions, You can explicitly throw exceptions
	for overridden functions, How to override functions, Rules for overriding hashCode and equals


	Run command, Test drive
	runBlocking() function, Use runBlocking to run coroutines in the same scope


S
	safe call operator (?.), Keep things safe with safe calls, Use let to run code if values are not null
	safe calls	about, Keep things safe with safe calls
	assigning values with, You can use safe calls to assign values...
	chaining together, You can chain safe calls together
	evaluating chains, You can chain safe calls together


	safe explicit casts, An exception is an object of type Exception
	sealed classes, 4. Sealed classes
	secondary constructors, 2. Using named arguments, Test drive
	Set interface, List, Set and Map, How to create a Set, Test drive, Test drive, Test drive
	set() function (MutableList), You can remove a value...
	setOf() function (Set), How to create a Set
	setters (mutators), How do you validate property values?, Overriding properties lets you do more than assign default values, You MUST implement all abstract properties and functions, How to define interface properties
	Short type, Integers
	short-circuiting, We need to validate the user’s input
	shouldBe expression, Using KotlinTest
	shuffle() function (MutableList), You can change the order and make bulk changes...
	shuffled() function (MutableList), You can change the order and make bulk changes...
	single expression functions, Functions with single-expression bodies
	Singleton pattern, 7. Extensions
	size property	Array class, Store multiple values in an array, Arrays can be useful...
	List interface, Fantastic Lists..., Lists allow duplicate values
	MutableSet interface, You can copy a MutableSet


	sleep() function, Thread.sleep pauses the current THREAD
	smart casts, The is operator usually performs a smart cast, An exception is an object of type Exception
	sort() function	Array class, Arrays can be useful...
	MutableList subtype, You can change the order and make bulk changes...


	sortBy() function (MutableList), Introducing lambdas
	sorted() function (MutableList), You can change the order and make bulk changes...
	spread operator (*), 9. More fun with functions
	src folder	adding files to project, You’ve just created your first Kotlin project
	source code files in, You’ve just created your first Kotlin project


	state (objects), We need to convert the value, Design an animal class inheritance structure	(see also properties)


	statements	if, Loop and loop and loop..., Where to use the is operator
	import, Add the code to the project, The fully qualified name
	main function using, What can you say in the main function?
	when, Where to use the is operator


	storing values in arrays, Store multiple values in an array
	String templates, Add the code to PhraseOMatic.kt
	string type, Anatomy of the main function, Booleans
	subclasses	about, Inheritance helps you avoid duplicate code
	adding constructors to, How a subclass inherits from a superclass
	defining, How a subclass inherits from a superclass
	functions and, Inheritance helps you avoid duplicate code, Use inheritance to avoid duplicate code in subclasses, How to override functions, Which function is called?
	inheritance (see inheritance)
	initializer blocks in, How (and when) to override properties
	polymorphism and, You can use a supertype for a function’s parameters and return type, The Animal class has two abstract functions
	properties and, Inheritance helps you avoid duplicate code, Use inheritance to avoid duplicate code in subclasses, Overriding properties lets you do more than assign default values, Inheritance guarantees that all subclasses have the functions and properties defined in the superclass
	tips when creating, How do you know whether to make a class, a subclass, an abstract class, or an interface?


	subtypes	about, Overriding properties lets you do more than assign default values
	abstract properties and, How to implement an abstract class
	adding, The Animal class has two abstract functions
	generic, Use out to make a generic type covariant, Use in to make a generic type contravariant
	inheritance and, Inheritance guarantees that all subclasses have the functions and properties defined in the superclass
	polymorphism and, Test drive, The Animal class has two abstract functions
	sealed classes and, 4. Sealed classes


	sum() function (Array), Arrays can be useful...
	sumBy() function, The sumBy and sumByDouble functions
	sumByDouble() function, The sumBy and sumByDouble functions
	superclasses, Inheritance helps you avoid duplicate code	about, Inheritance helps you avoid duplicate code
	abstract, Some classes shouldn’t be instantiated, How to implement an abstract class
	declaring, Declare the superclass and its properties and functions as open, An overridden function or property stays open...
	functions and, Inheritance helps you avoid duplicate code, Use inheritance to avoid duplicate code in subclasses, How to override functions, Which function is called?
	inheritance (see inheritance)
	polymorphism and, The Animal class has two abstract functions
	primary constructors, How a subclass inherits from a superclass, Declare that a class implements an interface...
	properties and, Inheritance helps you avoid duplicate code, Use inheritance to avoid duplicate code in subclasses, How (and when) to override properties, An overridden function or property stays open..., Inheritance guarantees that all subclasses have the functions and properties defined in the superclass


	supertypes, Define the Contest class	generic, Define the Contest class, Use out to make a generic type covariant, Use in to make a generic type contravariant
	inheritance and, Inheritance guarantees that all subclasses have the functions and properties defined in the superclass
	polymorphism and, The Animal class has two abstract functions


	suspendable functions, Thread.sleep pauses the current THREAD


T
	templates	classes as, classes and objects: A Bit of Class, How to create a Dog object, How do you know whether to make a class, a subclass, an abstract class, or an interface?
	String, Add the code to PhraseOMatic.kt


	test-intro, Who should probably back away from this book?
	tests and testing	HAS-A test, Use IS-A to test your class hierarchy
	IS-A test, Use IS-A to test your class hierarchy, Independent classes can have common behavior, equals is inherited from a superclass named Any
	JUnit library, Kotlin can use existing testing libraries
	KotlinTest library, Using KotlinTest
	Run command and, Test drive


	threads, Test drive
	throw keyword, You can explicitly throw exceptions
	throwing exceptions, The !! operator deliberately throws a NullPointerException, An exception is thrown in exceptional circumstances, You can explicitly throw exceptions
	toByte() function, We need to convert the value
	toDouble() function, We need to convert the value
	toFloat() function, We need to convert the value
	toInt() function, We need to convert the value, Add the code to PhraseOMatic.kt
	toList() function	Array class, Test drive
	Map interface, You can copy Maps and MutableMaps
	MutableList interface, You can change the order and make bulk changes...
	MutableMap interface, You can copy Maps and MutableMaps
	Set interface, You can copy a MutableSet


	toLong() function, We need to convert the value
	toLowerCase() function, Add the printResult function to Game.kt
	toMap() function (MutableMap), You can copy Maps and MutableMaps
	toMutableList() function	Array class, Test drive
	MutableList interface, You can change the order and make bulk changes..., Test drive
	MutableMap interface, You can copy Maps and MutableMaps


	toMutableMap() function (MutableMap), You can copy Maps and MutableMaps
	toMutableSet() function (Array), Test drive
	Tools menu (IntelliJ IDEA), Using the Kotlin interactive shell
	toSet() function	about, Test drive
	Array class, Test drive
	Map interface, You can copy Maps and MutableMaps
	MutableSet interface, You can copy a MutableSet


	toShort() function, We need to convert the value
	toString() function, The common behavior defined by Any, A data class lets you create data objects, Test drive
	toTypedArray() function	List interface, Test drive
	Set interface, Test drive


	toUpperCase() function, Add the printResult function to Game.kt, Flexible property initialization
	try block (try/catch), How to override functions, Catch exceptions using a try/catch, You can explicitly throw exceptions
	two’s complement, Watch out for overspill
	type parameters, Using type parameters with MutableList
	typealias keyword, Use typealias to provide a different name for an existing type
	types	converting values of, We need to convert the value
	function, Lambda expressions have a type, What happens when the code runs
	generic (see generics and generic types)
	inferring for arrays, The compiler infers the array’s type from its values
	nullable, How to create an array of nullable types, Use let to run code if values are not null, ...but there are things an array can’t handle, Test drive
	of collections, List, Set and Map, Lists allow duplicate values, Test drive
	return, You can get things back from a function, You can use a supertype for a function’s parameters and return type, Overloading a function, You can use a nullable type everywhere you can use a non-nullable type, Use in to make a generic type contravariant
	subtypes (see subtypes)
	supertypes (see supertypes)
	variable, Your code needs variables




U
	Unit return type, You can get things back from a function, Use the right lambda for the variable’s type
	unit testing, Kotlin can use existing testing libraries
	until clause (for), How for loops work
	updating functions, Java Virtual Machines (JVMs), Loop and loop and loop...
	user input, Ask the user for their choice, We need to validate the user’s input


V
	val keyword	about, What can you say in the main function?, Test drive
	assigning lambdas to variables, You can assign a lambda to a variable
	declaring arrays using, val means the variable points to the same array forever...
	defining properties and, Behind the scenes: calling the Dog constructor
	getters and setters, How to write a custom setter
	overriding properties and, Overriding properties lets you do more than assign default values, Test drive
	parameter variables and, The story continues
	prefixing parameters with, Going deeper into properties, Your Kotlin Toolbox, Initializing many properties can lead to cumbersome code
	var versus, What can you say in the main function?, The variable holds a reference to the object, Behind the scenes: calling the Dog constructor


	validating	property values, How do you validate property values?
	user input, We need to validate the user’s input


	values	assigning, Your code needs variables, How to explicitly declare a variable’s type
	assigning to safe calls, You can use safe calls to assign values...
	converting, We need to convert the value
	data hiding property, How to write a custom setter
	duplicate, List, Set and Map, Lists allow duplicate values, How a Set checks for duplicates, You can copy a MutableSet
	enum classes, 3. Enum classes
	inferring array type from, The compiler infers the array’s type from its values
	initializing for variables, How to explicitly declare a variable’s type
	object state and, How to create a Dog object, Design an animal class inheritance structure
	return, Using if to return a value, You can get things back from a function
	reusability of, What can you say in the main function?, Your code needs variables, The variable holds a reference to the object, var means the variable can point to a different array
	storing in arrays, Store multiple values in an array
	validating property, How do you validate property values?


	values property (Map), You can copy Maps and MutableMaps, Test drive
	var keyword	about, What can you say in the main function?, Test drive
	assigning lambdas to variables, You can assign a lambda to a variable
	declaring arrays using, var means the variable can point to a different array
	defining properties and, Behind the scenes: calling the Dog constructor
	getters and setters, How to write a custom setter
	lateinit keyword and, You MUST initialize your properties
	overriding properties and, Overriding properties lets you do more than assign default values, Test drive
	prefixing parameters with, Going deeper into properties, Your Kotlin Toolbox, Initializing many properties can lead to cumbersome code
	smart casting and, The is operator usually performs a smart cast
	updating properties and, How to access properties and functions
	val versus, What can you say in the main function?, The variable holds a reference to the object, Behind the scenes: calling the Dog constructor


	vararg keyword, 9. More fun with functions
	variables	about, Your code needs variables, The variable holds a reference to the object
	assigning values, Your code needs variables, How to explicitly declare a variable’s type
	Boolean tests on, Loop and loop and loop...
	comparing options for, Use when to compare a variable against a bunch of options
	converting values, We need to convert the value
	creating, Your code needs variables
	declaring, Your code needs variables, The miracle of object creation, Lambda expressions have a type
	initializing, How to explicitly declare a variable’s type
	instance, Behind the scenes: calling the Dog constructor
	lambdas and, You can assign a lambda to a variable, Lambda expressions have a type, forEach has no return value
	local, How you create functions, The story continues
	matching parameter type, You can send more than one thing to a function
	naming, What can you say in the main function?, Your code needs variables, Use the right value for the variable’s type
	object references and (see object references)
	prefixing with $, Add the code to PhraseOMatic.kt
	reusability of, What can you say in the main function?, Your code needs variables, The variable holds a reference to the object, var means the variable can point to a different array
	types of, Your code needs variables


	version control, IntelliJ IDEA and, Install IntelliJ IDEA (Community Edition)
	visibility modifiers, 2. Visibility modifiers


W
	when expression, Use when to compare a variable against a bunch of options
	when statement, Where to use the is operator
	while loops	about, What can you say in the main function?, How for loops work, We need to validate the user’s input
	conditional tests, Loop and loop and loop...
	is operator and, Where to use the is operator


	white space, What can you say in the main function?
	withIndex() function (Array), Use downTo to reverse the range
	writing custom getters/setters, How to write a custom getter




OEBPS/assets/f0407-01.png
import java.io.rFile
import javax.sound.sampled.AudioSystem

import kotlinx.coroutines.*

/>suspend fun playBeats (beats: String, file: String) {
val parts = beats.split("x")

Mark playBeats var count = 0

with suspend so

that it ean call

the delay Lunttion.

for (part in parts) {
count += part.length + 1

if (part == "") {
playSound (file)
} else {
Replace Thread sleep —> @rsad—sleas-delay (100 * (part.length + 1L))
with delay. if (count < beats.length) {
playSound (file)
i Drumch' .
¥
}
, src/main/kotlin
fun playSound (file: String) { Beats.kt

val clip = AudioSystem.getClip()
val audioInputStream = AudioSystem.getAudioInputStream(
File(
file

)
clip.open (audioInputStream)
clip.start ()

+

Mark m3in — suspend fun main() |
with suspend so

that it can call
the playBeats

unetion.

runBlocking {
launch { playBeats ("x-x-x-x-x-x-", "toms.aiff") }
playBeats ("x----- x-----", "crash_cymbal.aiff")






OEBPS/assets/f0098-03.png
$ <™ name: “Fido”
Q$> ‘weight: 70
breed: “Mixed”
myDog
Dog

var Dog





OEBPS/assets/f0284-02.png
You didn't need £o
use Lhese snippets

"MutableArray"





OEBPS/assets/f0335-01.png
fun main(args: Array<String>) {
val x = 20

al y = 2.3
The candidate e

tode goes heve. .

Mateh eath
eandidate with
one of the
possible oubputs }

Candidates: Possible output:

val laml = { x: Int > x }
println(lanl(x + 6))

22.3
26
val lam2: (Double) -> Double
lam2 = { (it * 2) + 5} 9.6
println(lam2 (y))
8.3
val lam3: (Double, Double) -> Unit 1.1513.3
lam3 = { x, y -> println(x + y) }
lam3.invoke(y, y) 9.3
10.013.3
var lamd = { y: Int -> (y/2).toDouble() }
print (lamd (x) ) 4.6

lamd = { it + 6.3 }
print (lamé (7))





OEBPS/assets/f0342-01.png
20.0 My return value is
200*18+32=680
[
Double o
val Double ém {c: Double > ¢ * 18+5 )
¢ A

1 /_\._&
converter (Double) -> Double <

68.0
| ] <
val (Double) -> Double .
result Double
—
val Double The function prints

his value, and veturns
3 vebevente to it





OEBPS/assets/f000i-01.png
Wouldn't it be dreamy if there
were a book on Kotlin that was
easier to understand than the
space shuttle flight manual? T
guess it's just a fantasy...





OEBPS/assets/f0368-01.png
data class Grocery(val name: String, val category: String,
val unit: String, val unitPrice: Double,

val quantity: Int)

fun main(args: Array<String>) {

val groceries = listOf (Grocery ("

omatoes", "Vegetable", "lb", 3.0, 3),

Grocery ("Mushrooms", "Vegetable", "1b", 4.0, 1),
Grocery ("Bagels", "Bakery", "Pack", 1.5, 2),
Grocery ("Olive oil", "Pantry", "Bottle", 6.0, 1),
Grocery ("Ice cream", "Frozen", "Pack", 3.0, 2))

val highestUnitPrice = groceries.maxBy { it.unitPrice * 5 } i

println("highestUnitPrice: $highestUnitPrice") Groceries

val lowestQuantity = groceries.minBy { it.quantity }

g

println("lowestQuantity: $lowestQuantity")

val sumQuantity = groceries.sumBy { it.quantity }

println("sumQuantity: $sumQuantity")
val totalPrice = groceries.sumByDouble { it.quantity * it.unitPrice }

println("totalPrice: $totalPrice")





OEBPS/assets/f0033-02.png
| <—The tompiler knows that you need 3
vaviable with a type of Int so that
it matthes the type of the object

var Int





OEBPS/assets/f0068-02.png
fun main(args: Array<sString>) {

val options = arrayOf ("Rock", "Paper", "Scissors") (gresd
val gameChoice = getGameChoice (options) Rock Paper Scissors
’ Call the 5ct$a»~cc}ﬁzc funckion, pasing i the options aveay. -
L7
fun getGameChoice (optionsParam: Array<String>) =
optionsParam[ (Math.random() * optionsParam.size).toInt()] Game.kt

You need to add the function





OEBPS/assets/f0040-02.png
I have state and
behavior: my value is
5, and I know how fo
do basic sums.

Int





OEBPS/assets/common28.png
Game choice
User choice
Result





OEBPS/assets/f0209-01.png
Primary construttor.
—_ ¢

class Mushroom(val siz Int, val isMagic: Boolean)' {

Seconda constructor (isMagic_param: Boolean) : this(0, isMagic param) ({
econdar
ms{m&L. //Code that runs when the secondary constructor is called





OEBPS/assets/f0094-02.png
class Dog(val name: String, var weight: Int, val breed:
fun bark() {

String) {

This is just like the functions you
Println(if (weight < 20) "Yip!" else "Woof!") S sy in The previcus hapter. The
) only diffevence is that it's defined
inside the Dog ¢lass body.





OEBPS/assets/f0220-01.png
) L P you've assigning a Wolf object to 3
Qg? variable, the compiler infers that the
variable’s type should also be Wolf.

Wolf

var Wolf





OEBPS/assets/f0328-01.png
Q/_\Jx ) (xInt->x+5)
&§
3 A

add
Five "
. B

Lambda

—_—
val Lambda





OEBPS/assets/f0370-01.png
data class Pizza(val name: String, val pricePerSlice: Double, val quantity: Int)

fun main(args: Array<String>) {

val

val

val
val
val
val
val

val

ints = listOf(1, 2, 3, 4, 5)

pizzas = 1istOf (Pizza("Sunny Chicken”, 4.5, 4),

Pizza("Goat and Nut", 4.0, 1),

Pizza("Tropical”, 3.0, 2),

Pizza("The Garden", 3.5, 3)) As ints is a List<Int>, it is an

\—Int and has no value property.
minInt = ints.minBy ({ it-watse-}) L) .
This line won't compile, as the lambda's

parameter needs to be an [nt. We can
veplace the lambda with { it-toDouble() 1.

minInt2 = ints.minBy({ int: Int -> int })
sumInts = ints.sum()

sumInts2 = ints.sumBy { it }

sumInts3 = ints.sumByDouble ({ usmses+—beubie—s number ittoDouble() 1)

sumInts4 = ints.sumByDouble { int: Int -> int.toDouble() }

rei~loubrice—pirzasTmitri_<— The min function won't work with a List<Pizza>.

val
val
val
val

val

lowPrice2 = pizzas.minBy({ it.pricePerSlice })

highQuantity = pizzas.maxBy { p: Pizza -> p.quantity }
highQuantity3 = pizzas.maxBy { it.quantity }

totalPrice = pizzas.sumByDouble { it.pricePerSlice * it.quantity }

totalPrice2 = pizzas.sumByDouble { it.pricePerSlice * it.quantity }

{ itpricePerSlice * it.quantity } vetuens a Double, so the sumBy
Lunttion won't work. We need 4o use sumByDouble instead.





OEBPS/assets/f0351-02.png
A

(Double) -> Double

{ x: Double -> x / 0.0011023115 }





OEBPS/assets/f0230-01.png
e class Cat(var name: String? = "") {
fun Meow() { println("Meow!") }

fun main(args: Array<String>) {
var myCats = arrayOf (Cat ("Misty"),
null,
Cat ("Socks"))
for (cat in myCats) {
if (cat != null) {
print ("${cat.name}:
cat.Meow ()

This compiles and produces
) the corvett output.

0 class Cat(var name: String? = null) {

fun Meow() { println("Meow!") }
}

fun main(args: Array<string>) {
var myCats = arrayOf (Cat ("Misty"),
Cat (null),
Cat ("Socks"))
for (cat in myCats) {
print ("${cat.name}: ")
cat.Meow ()

This compiles, but the output is
intorvect (the second Cat with
a null name also Meows).

G Class Cat (var name: String? = null) {

fun Meow() { println("Meow!") }
}

fun main(args: Array<String>) {
var myCats = arrayOf (Cat ("Misty"),
null,
Cat ("Socks"))
for (cat in myCats) {
print ("${cat?.name}:
cat?.Meow ()

, This compiles, but the output is

incorvect (null gets printed for the
setond item in the myCats arvay).

class Cat(var name: String = "") {
fun Meow() { println("Meow!") }

fun main(args: Array<string>) {
var myCats = arrayOf (Cat ("Misty"),
Cat (null),
Cat ("Socks"))
for (cat in myCats) {
if (cat != null) {
print ("${cat?.name}: ")
cat?.Meow ()

} This doesn't compile because a

} Cat ¢an't have a null name.





OEBPS/assets/f0113-02.png
var welght = welight param
set (value) {
if (value > 0) weight = value

) &Dm'{: do this! You'll get stuck in
an endless loop. Use f?cld instead.





OEBPS/assets/f0135-01.png
Animal

class Hippo : Animal() { < Ihis is like saying “elass Hippo
is a subype of class Animal”

} We'll add the Hippo class to
our tode a few pages ahead-

//Hippo code goes here

Hippo






OEBPS/assets/f0383-02.png
Heve, we've detided to name the lambda parameters

( runningSum, item -> runningSum + item ) &— rumingSum and item 3s we've adding the value
eath item to 3 vunning sum. You tan, however, give

he pavameters any valid variable name.





OEBPS/assets/f0064-04.png
foo LéJK-\We've passing ‘b’ to the foo function





OEBPS/assets/f0152-01.png
@ open fun frighten(): Boolean {

1 M t t1ln ("A: h!" . .
open class Monster { println("Aargh!™) i, 4 comples
return true

Q ; and produtes the
corvett output
@ override fun frighten(): Boolean {

class Vampyre : Monster() { println("Fancy a bite?")

(8] }

return false

}
@ fun frighten(): Boolean {  This code won't
println("Aargh!") )
class Dragon : Monster() { N . tompile because the
return true
override fun frighten(): Boolean { , Lrighten() function in the
println("Fire!") Monster ¢lass isn't open.
return true @ override fun frighten(): Boolean {

} println("Fancy a bite?")

} return true

fun main(args: Array<sString>) {

val m = arrayOf (Vampyre (), @ open fun frighten(): Boolean {
Dragon (), println("Aargh!") This tomfiles bt it F\rod
Monster () return false .
_ , intorvect output as Vampyve
for (item in m) { ) N N
doesn't override frighten().

item.frighten()
@ fun beScary(): Boolean {

println("Fancy a bite?")
return true





OEBPS/assets/f0123-03.png





OEBPS/assets/f0316-03.png
This line, however, won't compile as You ean't
val catVet: Vet<Cat> = Vet<Pet>() <— olobally use a Vet<Pet> in place of a Vet<Cats.





OEBPS/assets/f0398-01.png
806 New Project

&Java Project SDK: | P 1.8 (java version "1.8.0_102") New...
% Java FX B
# Android Kotlin DSL build script

Intelli) Platform Plugin Additional Libraries and Frameworks:

2Java
@ Groovy
Intelli) Platform Plugin

M Maven

® Groovy

K Kotlin Ch‘oosc the Kotlin (Java) option, as

2 Empty Praject we've using Kotlin to Larget the JUM.
Ztlaejli {o:i;q,., A Kotlin library or application targeting the JVM

2 Cancel Pretiots





OEBPS/assets/f0049-01.png
@’,/\

my
rra
Byte
var Array<Byte> The variable has a 4ype of

Avvay<Byte>, so the avvay
eontains veferentes to Byte

objects.





OEBPS/assets/f0023-01.png
Run: « Kotlin REPL (in module MyFirstApp) & —
et E¥  /Library/Java/JavaVirtualMachines/jdk1. 102. jdk/Contents/Home/bin/java ...
1.

* 2: Favorites

4 Welcone to Kotlin version 1.3.0-rc-146 (. 102-b14)
> Type :help for help, :quit for quit
x
3 <—Type any ¢ode you want to try out into the REPL heve. Ours

is showing hint text Lelling us what keys 4o press to execute
the code in the REPL, but you Just overwrite this text.

. Z: Structure

Terminal = 0:Messages | I, 4:Run. : € EventLog
IC] Compilation completed successfully in 12 s 161 ms (2 minutes ago) 32 nja UTF-8: W &






OEBPS/assets/f0227-02.png
myWolf?. w’? . hunger

w

-
yWo varWolf?

var MyWoIf’) MyWolf

° hunger: 10

Wolf





OEBPS/assets/f0196-03.png
title: “Chicken Bhuna”
isVegetarian: false

Ve

&
u Qﬁ)
val rl = Recipe("Chicken Bhuna", false) Y1
r
val r2 = Recipe("Chicken Bhuna", false)
//rl == r2 is true val Recipe

vl and ¥2 ave
o
tonsideved “equal” as

Ve
Hhe 4wo Recipe abjects &
hold the same data. @ Recipe

val Recipe

title: “Chicken Bhuna”
isVegetarian: false






OEBPS/assets/f0136-01.png
We'll add the Hippo tlass to
This overvides class Hippo : Animal() { = our Vro)ed: a few pages ahead
the image, food override val image = "hippo.jpg"
and habitat
properties from
the Animal elass

override val food = "grass"

override val habitat = "water"





OEBPS/assets/f0122-01.png
accelerate()
applyBrake()
changeTemperature()

ConvertibleCar

changeTemperature()
openTop()
closeTop()

We've using this Lype of
arvow to indicate an
inheritante velationship-





OEBPS/assets/f0092-02.png
fj““ »
myDog
\ Dog

var Dog

name: “Fido”
weight: 70
breed: “Mixed”

\{

This is the Dog elass. [t
kells the compler that 3
Dog has a name, weight and

\; breed, and a bark function

name
weight
breed

bark()

Dog






OEBPS/assets/f0430-01.png
var x = 0

var y = 0

while (x < 10) {
o This code intrements %, then tecminates the
preak loop without exetu{im;, +the line y++. % has 3
v Linal value of I, and y's value vemains O-





OEBPS/assets/common33.png
N Design classes
> | Build classes
[ ] Use classes





OEBPS/assets/f0192-01.png
val wl = Wolf ())&—wl and w2 vefer to

al W — the same obiect, so
a1 == wz 1o true == W true.
&
wi Wolf
val Wolf 934?%

val Wolf





OEBPS/assets/f0348-03.png
fun combine(lambdal: (Double) -> Double,
lambda2: (Double) -> Double): (Double) -> Double {
return { x: Double -> lambda2(lambdal(x)) }

) * is passed o lambdal, whith
A mbdal, ateepts and
The lambda vetumed by combine a Double. The vesult is then Fassc:t;p ";ME:?;:”

Lakes a Dovble pavameter mamed x. which also actepts and veturns 3 Double.





OEBPS/assets/f0269-02.png
This is a List. ~ |0
It has three
elements, so
its size is 3.

OKT%"

String

&
“Coffee”
>

String

When the

List is copied —\
o a Set, the
duplicate
“Coffee” value
is vemoved.
The size of
the Set is 2

O“Tea'”

String

/\O“Gofﬂee"

String





OEBPS/assets/f0392-01.png
data class Grocery(val name: String, val category: String,
val unit: String, val unitPrice: Double,

val quantity: Int)

val groceries = listOf (Grocery("Tomatoes", "Vegetable", "lb", 3.0, 3),
Grocery ("Mushrooms", "Vegetable", "1b", 4.0, 1),

(
(
Grocery ("Bagels", "Bakery", "Pack", 1.5, 2),
(
(

Grocery("Olive oil", "Pantry", "Bottle", 6.0, 1),
Grocery("Ice cream", "Frozen", "Pack", 3.0, 2))
. ) i Filter by category, ther
Write the code below to find out how much will be spent on vegetables. sum the total price.

groteries filter {

tPrice * it quantity }

Create a List containing the name of each item whose total price is less than 5.0
Filter by
name } S unitPrice * quantity,

‘then use map to
transform the vesult.

unitPrice * it.quan

Print the name of each item that doesn't come in a bottle, grouped by unit. ¢ o 41 vesults by wit.

Eath value in the Map is a List<Grotery>,
S0’ wie .ca".“,se."wgach.{b.lo..av.{:ﬁ;‘;’.‘.sv‘.c.a.cu ..........................
List, and print the name of each item.






OEBPS/assets/f0105-01.png
The tonstruetor parameters no
longer have val and var prefixes
so the eonstruttor no longer
ereates properties for them.

class Dog (name_param: String, weight param: Int, breed param: String) {

val name = name_param

var weight = weight_param | | N Properties are defined

val breed = breed_param in the class body instead

Dog

name
weight
breed

bark()






OEBPS/assets/common32.png
Design classes
Build classes
Use classes





OEBPS/assets/f0169-02.png
Animal Vehicle
image
food
habitat
hunger @
makeNoise() .
eat() Animal and Vehicle each have

sleep(

a voam() function, but neither
elass is a subelass of the other





OEBPS/assets/f0383-01.png
1 i - i + item )}
val sumOfInts = ints.fold(0) { runningSum, item ->,runningSum

This is the initial value. A This tells the funttion that You
want £o add the value of each iben
in the collection £o the initial value.





OEBPS/assets/f0157-02.png
abstract class Rnimal { < Prefix class with “abstract” 4o
make it an abstract ¢lass.





OEBPS/assets/f0224-03.png
class MyWoll {
var w: Wolf? = Wolf()

fun myFunction() {
if (w != null){
.eat(
y S SN Thi ot comple because the compiler can't guarante
that some other code won't update the w property in
! betueen cheeking it's not null, and its usage.





OEBPS/assets/f0163-01.png
image
food

habitat
hunger

makeNoise()
eat()

roam()
sleep()

Canine

roam()

Wolf

image
food
habitat

makeNoise()
eat()






OEBPS/assets/common24.png
T KK

Build application
Add function
Update function
Use REPL





OEBPS/assets/f0278-02.png
val r3 = Recipe("Thai Curry") SF“""" the key
MRecipelap. put ("Recipe3", r3)S— Lirst then the value.





OEBPS/assets/f0096-01.png
var mybDog = Dog("Fido®, /U, "Mixed™)

println(myDog.name) S— . Dogname is like saying “30 o myDog, and aet is name”





OEBPS/assets/f0134-01.png
We want to —> open class Animal {

use the class
as a superelass,
so we need to
declave it open.

We've detlared the
makeNoise, eat and
voam Functions as
open because we'll
override them in
our subtlasses.

open val image = ""

open val food = ""
open val habitat = ""
var hunger = 10

open fun makeNoise() {

println("The Animal

open fun eat() {
println("The Animal

open fun roam() {
println("The Animal

fun sleep() {
println("The Animal

is

is

is

is

We want to overvide the image,
food and habitat properties, so
we've prefixed eath one with open.

making a noise")

eating")

roaming")

sleeping")

Animals

Animal

image
food
habitat
hunger

makeNoise()
eat()

roam()
sleep()

src

Animals.kt






OEBPS/assets/fxxxi-01.png
Je£f Bleiel






OEBPS/assets/f0327-02.png
I take one Int
parameter named

x. T add 5 to x, and
return the result.

{x:Int->x+5}

Lambda





OEBPS/assets/f0286-01.png
fun main(args: Array<String>) {
val mList = mutableListOf ("Football", "Baseball", "Basketball")
The tandidate
tode goes heve.— D
}
Candidates: Possible output:

mList.sort()
println (mList)

[Netball]

[Baseball, Basketball, Football]
val mMap = mutableMapOf ("0" to "Netball")

\ /

var x = 0 [Basketball]
for (item in mList) {
mMap.put (x. toString (), item) [Football, Basketball, Baseball]
}
{Basketball}

println (mMap.values)
[Basketball, Baseball, Football]
mList.addAll (mList)
nList.reverse () {Netball}
val set = mlist.toSet()

println(set) [Football]

{Basketball, Baseball, Football}
nlist.sort ()

mList.reverse () [Football, Baseball, Basketball]
println(mList)





OEBPS/assets/f0262-01.png
fun main(args: Array<String>) {

var a: MutableList<String> = mutableListOf ()

a.add(2, "Four")

a.add(3,

nSix")

println(a)

if (a.contains("Zero") ) a.add("Eight")

a.removeAt (0)

println(a) .
1f (a.indexOf ("Four") != 4) a.add("Ten") '
println(a) .
if (a.contains("Zero")) a.add("Twelve") '

println(a) '






OEBPS/assets/f0039-03.png
I'msorry, you're
Just not my type.

var Long

Int





OEBPS/assets/f0095-02.png
name: “Fido”

‘weight: 70
breed: “Mixed” "

Dog






OEBPS/assets/f0403-02.png
© Gradle srojects need to be imported

Cliek on [mport Changes »—\} Enable Auto-Import
i€ prompted to do so {






OEBPS/assets/f0024-01a.png
Build application
Add function
Update function
Use REPL

We've completed all the
skeps for this chaper.





OEBPS/assets/f0109-02.png
This is an emply construttor: a constructor with no parameters.
Behind the stenes, whenever you define a class with no constructor
the compiler adds an empty construttor to your tompiled code.

class Duck() {

fun quack() {

println("Quack! Quack! Quack!™)





OEBPS/assets/f0420-02.png
fun main(args: Array<String>) { The variahl:; type
var selectedBandMember: BandMember-<— is BandMember.
selectedBandMember = BandMember . JERRY

++S0 We £an assign one

of BandMember's
values 4o it.





OEBPS/assets/f0096-05.png
dogs(1].weight = 15 ) The tompiler knows that dogsll] is a Dog object, so You
dogs [1] .bark () tan access the Dog’s properties and call its Functions.





OEBPS/assets/f0128-01.png
Feline
roam()
Lion
image
food
habitat
makeNoise()
eat()
Cheetah
image
food
habitat

makeNoise()
eat()

Lynx

image
food
habitat

makeNoise()
eat()

Animal

image
food
habitat
hunger

makeNoise()
eat()

roam()
sleep()

Canine

Hippo

image
food
habitat

makeNoise()
eat()

image
food
habitat

makeNoise()
eat()

image
food
habitat

makeNoise()
eat()






OEBPS/assets/f0143-01.png
open class Ammal {

} We've not. thanged the code for
/ the Animal or Hlippo classes.

class Hippo : Animal() {

~hdd the Carine elass..
open class Canine : Animal() {
override fun roam() {

println("The Canine is roaming")

« and also the Wolf class.

class Wolf

Canine() {

override val image = "wolf.jpg"
override val food = "meat"
override val habitat = "forests"

override fun makeNoise() {

println ("Hooooowl!")

override fun eat() {

println("The Wolf is eating $food")

Animals

Animals.kt

Animal

image
food

habitat
hunger

makeNoise()
eat()

roam()
sleep()

Hippo

Canine

image
food
habitat

makeNoise()
eat()

image
food
habitat

makeNoise()
eat()






OEBPS/assets/f0018-01.png
fun main(args: Array<String>) {
~prioemnpeursg— <— Delete this line, as it's no longer needed
var x = 1
\

println("Before the loop. x = $x.") MyFirstApp
while (x < 4) {

println("In the loop. x = $x.") src

x=x+1

, This prints out. the value of x.

println("After the loop. x = $x.")






OEBPS/assets/f0051-01.png
val myArray = arrayOt(l, 2, 3)
nyArray = arrayof(4, 5, 6) 1£ you detlare an arvay variable using val, you
S La}z get it to vefer to a different array.





OEBPS/assets/f0069-02.png
@ "Paper”
String
@ "Scissors"

String
val Array<String>
The optionsParam Q‘§
variable is a The opti ble i i
" Ptions variable in the main function
Falaa:et:crhv: :‘\t’“} par:" and the optionsParam variable in the
2: meCho

i 5=§5ame0hoice funetion each hold a
unttion.
val Array<String> vekevente to the same arvay.





OEBPS/assets/f0212-01.png
data class Recipe(val title: String,

Add new mainlwaredient val mainIngredient: String, Assion default
and difficults £ val isvegetarian: Boolean = false,) ‘ales to the
e ATHCARY properties . | isVegetarian
val difficulty: String = "Basy") (] i 'uifliulty
' This is an example of a ¢lass with a secondary properties.

\[ consvuttor, ")us{', so that you tan see one in attion.
class Mushroom(val size: Int, val isMagic: Boolean) {
constructor (isMagic_param: Boolean) : this(0, isMagic_param) {

//Code that runs when the secondary constructor is called

) This is an example of a function
\[{ha{ uses default pavameter values.

fun findRecipes (title: String = "",
ingredient: String = ",
isVegetarian: Boolean = false,
difficulty: String = "") : Array<Recipe> {
//Code to find recipes

return arrayOf (Recipe (title, ingredient, isVegetarian, difficulty))

return a + b

]
fun addNumbers(a: Int, b: Int) : Int { Recipes

) These ave overloaded funttions. src
fun addNumbers (a: Double, b: Double) : Double { Recipes.kt

return a + b

(Data)
Recipe

title
mainingredient
isVegetarian
difficulty

Mushroom

size
isMagic






OEBPS/assets/f0365-01.png
Numbers and Strings have
a natural order, which
means that you can use
the min and max functions
vith them to determine
4he lowest or highest value.

1,2,3,4,5.
"A"’ "B", "CH.“





OEBPS/assets/f0144-01.png
Animal

image
food

habitat
hunger

makeNoise()
eat()

roam()
sleep()

Canine

roam()

Wolf

image
food
habitat

makeNoise()
eat()






OEBPS/UbuntuMono-BoldItalic.otf


OEBPS/UbuntuMono-Italic.otf


OEBPS/UbuntuMono-Regular.otf


OEBPS/css_assets/beaver_epub.png





OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo





OEBPS/assets/f0191-01.png
That copy() function
worked perfectly. I'm
Jjust like you but taller.






OEBPS/DejaVuSans-Bold.otf


OEBPS/assets/f0365-02.png
These items have no natural order.

To £ind the highest or lowest value,

L—ve need to specify some eritevia,
such as unitPrice or quantity.






OEBPS/DejaVuSerif.otf


OEBPS/UbuntuMono-Bold.otf


OEBPS/assets/f0224-02.png
1L (w != null && w.hunger < 35) {

w.eat () The vight side of the ¢¢ is only executed if the left side is true, so heve,
the compiler knows that w an't be mull, and it allows you to call w.hunger-.





OEBPS/assets/f0205-01.png
(Data)
Recipe

title

isVegetarian






OEBPS/assets/f0007-04.png
This is the

Intelli) [DEA —

weleome sveen.

600

Welcome to Intellj IDEA

IntelliJ IDEA

+ Create New Poject
1 Import roject
= Open

1# Check out from Version Control +

© Configure ~ Get Help ~






OEBPS/assets/f0351-01.png
Q/—\-—\ — ) (x: Double>x/2000.0 }

e [

lambda2 (Double) -> Double X * 0.0011023115
)
[
val (Double) -> Double
Double





OEBPS/assets/f0275-01.png
Don't worvy

if your answers
looks different
o ours. There
ave diffevent
ways of getting
the same vesult-






OEBPS/assets/f0409-01.png
I don't care who

you are, or how fough
you look. If you don't
know the password,
you're not getting in.






OEBPS/assets/f0095-01.png
One class

Dog

name
weight
breed

bark()






OEBPS/assets/f0210-01.png
This is the same function as the
fun findRecipes (title: String = "0, one above, but this time, we've given
each parameter a default value:

ingredient: String

isVegetarian: Boolean = false,

difficulty: String ) : Array<Recipe> {

//Code to find recipes





OEBPS/assets/f0296-01.png
The <T> after the class
class Contest<T> { name Lells the compiler Contest<T>
//More code here  that T is a generic type:






OEBPS/assets/f0379-01.png
scores
map

values

filter ey

max()
values forEach

name maxBy()

value





OEBPS/assets/f0424-03.png
val nested = Outer().Nested() <<— This won't tompile as we've using Outer(), not Outer.





OEBPS/assets/f0257-02.png
O“Tea"

String

“Milk”
‘ J
ing
ms{‘."PP' ¢ String
val
MutableList<String>

O“Eggs”

String

1£ you add “Milk” to/

index |, “Eqgs” moves
o index 2 fo make
way for the new value.





OEBPS/assets/f0037-01.png
By explicitly declaving 3
¢ vaviable's type, you give

+the compiler just enough

information Lo treate the

vaviable: its name, its type
var Short and whether it tan be veused

var Byte





OEBPS/assets/f0098-01.png





OEBPS/assets/f0231-01.png
w?.let {

println(it.hunger) <—[F wis not null, let's print its hunger





OEBPS/assets/f0012-01.png
8.06 New Kotlin File/Class
Name the £ile “App”—|

Name: | App |

Choose a file kind of “File”. —pKind: [ iy File






OEBPS/assets/f0306-03.png
class CatRetailer : Retaller<Cat> { This code won't compile because

. ): Dog = Dog("") &—— CatRetailer’s sell) function must veturn
} override fun sell(): Dog 5 Caby and 3 Doy s nok 3 yre of ot





OEBPS/assets/f0034-01.png
varx=5

var Int





OEBPS/assets/f0314-02.png
1 N
val catContest = Contest<Cat> (petvet) € Even though a Vet<Pet> can treat
Cats, a Conbest<Cat> won't actept 3

Vek<Peb>, so bhis line wor't compile.





OEBPS/assets/f0301-01.png
abstract class Pet(var name: String)

class Cat(name: String) Pet (name)
Add the Pet hiecarthy.
class Dog(name: String) : Pet (name)
class Fish(name: String) : Pet (name)
4—hdd the Contest elass.

class Contest<T: Pet> {

val

fun

fun

scores: MutableMap<T, Int> = mutableMapOf ()
addscore(t: T, score: Int = 0) {

if (score >= 0) scores.put(t, score)

getWinners () : MutableSet<T> {
val winners: MutableSet<T> = mutableSetOf ()
val highScore = scores.values.max ()
for ((t, score) in scores) {

if (score == highScore) winners.add(t)
}

return winners

Generics

‘=

src

-

Pets.kt

The tode ontinues 7 D
on the next page.





OEBPS/assets/f0315-03.png
vaL catvet: vetstats = Vet<rPet>{) < This line tompiles as the Vet class uses an in prefix for T





OEBPS/assets/f0400-02.png
8006 Move

Move specified files

To directory: | /Users/dawng/IdeaProjects/Drum Machine & ' -
Use ~Space fo path completion
Search for references We've adding the files 4o the
voot diveetory of our project.

Open moved files in editor

2 cancel | ([NCISNN






OEBPS/assets/f0294-01.png
EAm





OEBPS/assets/f0381-01.png
Vegetable

Tomatoes
- Mushrooms
n E:e ave {:Ihe Bakery The Grotery
9ory values. Bagels names are
Pantry d b
o grouped by
Olive oil eategory value
Frozen

Ice cream





OEBPS/assets/f0099-02.png
class Dog(val name: String, var weight: Int, val breed: String)
_ s T T
) KTHS tode (including the Parentheses)

ls‘{he elass consteuctor. Technically,
it's called the Primary construttor.





OEBPS/assets/f0219-01.png
' Oh, Elvis! T know my

code is safe with you.






OEBPS/assets/f0429-02.png
val String.nalflength T=— Defines a halfLength property
get() = length / 2.0 that ¢an be used with Strings.





OEBPS/assets/f0403-01.png
Drum Machine
compile "org.jetbrains.kotlin:kotlin-stdlib-jdk8" Ly

dependencies {

implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.0.1'
build gradle

Add this line to build.gradle
to add the coroutines
library $o your project.





OEBPS/assets/f0263-01.png
val friendList = listOf("Jim",

Here, there are three {Sue“'
viends named Jim, Sue {'Sue"s
and Niek, but Sue and {"Nick",
Nick are listed twice.. Qmyicin)






OEBPS/assets/f0365-04.png
This line veturns a veference
to the item in grotevies
with the lowest quantity.

val lowestQuantity = groceries.minBy { it.quantity } <<





OEBPS/assets/f0024-02.png
These look like
small versions
of the exetute
button, but
they've not.
They indicate
which blocks

of tode you've
exetuted.

Run: ,Kotlin REPL (in module MyFirstApp) - o -

¢ [ /Library/Java/JavaVirtualMachines/jdkl.8.0_102. jdk/Contents/Home/bin/java ...
o Welcome to Kotlin version 1.3.0-rc-146 (JRE 1.8.0_162-b14)

> Type :help for help, :quit for quit
8| x_,»  println("I like turtles!")

s /l I like turtles!

Sl

a\.ﬁ > valx=6

* val y

puntln(lf (x> y) x else y)

§l 5t T o This s the outpud of our
g setond code seqment.
4
B Terminal = 0 Messages | b, 4:Run @ Event Log

ID_ Compilation completed successfully in 12 s 161 ms (7 minutes ago) 11 n/a UTF-8: W &






OEBPS/assets/star.png





OEBPS/assets/f0360-01.png
1§ condition is false, invoke the code lambda.

fun main(args: Array<String>) {

val options = arrayOf ("Red", "Amber",
var crossWalk

"Green")

options[(Math.random() * options.size).tolInt()]

if (crossWalk == "Green") {
println("walk!")

}

unless (crossWalk == "Green") {

println("Stop!") ,
This s formathed like a ode block, but it's actually

! 2 lambda. The lambda is passed to the unless function,
and it vuns if evossWalk is not “Green’-

You didn’t need to
use these snippets

condition





OEBPS/assets/f0266-01.png
val String

¢ “Sue’
" hashCode: 83491
j’ String
&

&

Here, a and b vefer
4o the same object, so
the Set knows that b

val String is a duplieate of a





OEBPS/assets/f0406-03.png
B 1 : String)
suspend fun playBeats (beats: String, rfile: String

+ -+ The suspend prefix tells the tompiler that
! the function is allowed 4o suspend.





OEBPS/assets/f0433-01.png
Weve class Dog {
marked —x\ jneiy fun bark(x: Int): string {

the bark()

function

with infix.
v

//Code to make the Dog bark x times





OEBPS/assets/f0044-01.png
fun mainlargs: Array<String=>) {

65.2 isn't a valid [nt value.

var isPunk = true

Single quotes ave used to define Chars,

which hold single chavactevs.

var y = 7
var z: Int = y

y =y + 50

var s: Short

var bighum: Long = y.toLong ()
var b: Byte = 2

var smallNum = b.toShort ()

amallNum is 3 Shorb, so ks value can't be assigned 4o a Byte varizble

isPunk = "false") isPunk is  Boolean vaviable, so false shouldn’t be enclosed in double quotes

var k = y.toDouble()

3
[

k.toByte ()

0b10001

w
[





OEBPS/assets/f0254-01.png
000/ K koun-sta - xawinproc

€ = C |8 hitps: kotlinlang.org/api/latest/jvm/stdlib/ index.html WO e =

Apps 3k Bookmarks

You ean use
these filters

» Overview
» Getting Started

» Classes and Objects

» Functions and Lambdas

» Multiplatform Programming.
»Other

« Core Uibraries

- Standard Library
- Kotlin test

» Reference
> Java nterop
»Javascript

> Native

> Coroutines
> Tools

» Evolution

»rAQ

to display only
+those collections
+that are relevant
o a particular
platform or

Kotlin version.

Kotlin Standard Library

The Kotlin Standard Library provides Iving essentias for everyday work with Kotli. These include:

— Higher-order functions Implementing idiomaic patterns (et apply, use, synchronized, et
‘— Extension functions providing querying operations for colections (eager) and sequences (lazy)
— Various utiites for working with strings and char sequences.

— Extensions for JOK classes making it convenient to work with files, 10, and threading.

Packages

ceee
kotlin
Core functions and types,

ceee
kotlin.annotation
Library support for the Kotin annotaion aciity

. u

kotlin.browser

‘Access to top-level properties ( document , window etc. in the browser environment

&g~ Here's the kotlin.
eollections package
in the Kotlin
Standard Library.

kotlin.collections

Collection types, such as Iterabie, Collection, List, Set, Map and related top-level and extension
functions.






OEBPS/assets/f0026-01.png
Q fun main(args: Array<String>) {
var x = 1

This will compile and vun with no output, but
without a line added to the program, it will
vun forever in an infinite “while” loop.

while (x < 10) {
x=x+l
if (x> 3) (
println("big x")

G fun main(args: Array<String>) {

Lvarx = 10 This won't compile. x has been defined
while (x > 1) { using val, which means that its value
x=x-1 can't thange. The tode thevefore can't
if (x < 3) println("small x") update the value of x inside the “while”

loop. To fix, thange val to var.

o fun main(args: Array<String>) {
var x = 10
while (x > 1) { This won't compile as it uses an if
x=x -1 expression with no else ¢lause. To
print (if (x < 3) "small x" else "big x") fix, add the else elause.





OEBPS/assets/f0277-02.png
1t (recipeMap.containsKey ("Recipel™) )

1£ vecipeMap doesn’t contain
val recipe = recipeMap.getValue ("Recipel™ <— 3 ‘Recipel” key, this line will

//Code to use the Recipe object throw an exception.





OEBPS/assets/f0185-02.png
v holds a veference to a Wolf
objeet, but because v is a : Q“;é,

Roamable variable
" ) You a
use it to access an\;,‘;(“oam:l:l:ly

properties and funttions that
the underlying objeet has.
var Roamable et

The wolf variable holds a vefecente \ ~|
4o the same Wal§ objech but as this |
waviable has a type of Wlf, you tan —7

wse it 4o access any Wolf properties
and funttions. var Wolf






OEBPS/assets/f0382-02.png
groceries.groupBy { 1t.category }.forEach {

println(it.key) ——This prints the Map keys (the
//More code goes here  Grotery eategory values).





OEBPS/assets/f0077-02.png
for (item in optionsParam) { & This loops through each item in an array named optionsParam.

println("$item is an item in the array")





OEBPS/assets/f0310-01.png
class FishRetailer : Retailer<Fish> { <
override fun sell(): Fish {
println("Sell Fish")
return Fish("")

Add the FishRetailer ¢lass.

fun main(args: Array<String>) {
val catFuzz = Cat("Fuzz Lightyear")
val catKatsu = Cat ("Katsu")
val fishFinny = Fish("Finny McGraw")

val catContest = Contest<Cat>()
catContest.addScore (catFuzz, 50)
catContest.addScore (catKatsu, 45)

val topCat = catContest.getWinners().first()
println("Cat contest winner is ${topCat.name}")

val petContest = Contest<Pet>()
petContest.addScore (catFuzz, 50)
petContest.addScore (£ishFinny, 56)
val topPet = petContest.getWinners().first()
println("Pet contest winner is $(topPet.name}")
4 Create some Retailer objects.
val dogRetailer: Retailer<Dog> = DogRetailer ()
val catRetailer: Retailer<Cat> = CatRetailer()
val petRetailer: Retailer<Pet> = CatRetailer()
petRetailer.sell()






OEBPS/assets/f0115-02.png
@ :i
g

Dogs.kt





OEBPS/assets/f0014-03.png
Db Ouestions





OEBPS/assets/f0300-02.png
val catList = listPet<Cat>(Cat("Zazzles"))

The generic type, however, can be omitted if the compiler can\

infer it from the function’s arguments. The following code, These two funttion calls do
for example, is legal because the compiler can infer that the the same thing, as the compiler
listPet function is being used with Cats: ean infer that you want the

— funttion to deal with Cats.

val catList = listPet (Cat("Zazzles"))





OEBPS/assets/f0308-02.png
The out prefix in the Retailer

val petRetailer: Retailer<Pet> = CatRetailer() & intevface means that we ean
now assign a Retailer<Cat> to

3 Retailer<Pet> variable.





OEBPS/assets/f0376-01.png
var ltemNames
for (item in groceries) {

itemNames += "${item.name} "

" S~ You tan update the itemNames variable
) inside the body of a for loop.

println("itemNames: $itemNames")





OEBPS/assets/f0101-02.png
&

'myDog

var Dog






OEBPS/assets/common18.png





OEBPS/assets/f0308-01.png
interface Retailer<out T> {

fun sell(): T Kﬂeve's the out prefix





OEBPS/assets/f0332-03.png
This lambda adds % to an [nt named x.

e

val addFive: (Int) -> Int = { x: Int -> x + 5 }





OEBPS/assets/f0371-01.png
This veturns a List containing
those items from groteries whose

category value is “Vegetable”.

val vegetables = groceries.filter { it.category == "Vegetable" }





OEBPS/assets/f0425-03.png
class Outer {
val myInner = I‘“‘“"«oum’s m\/!nncr Fropev{\/

holds a vefevence to an
inner class Inner { instance of its nnev ¢lass

fun main(args: Array<String>) {
val inner = Outer() .myInner





OEBPS/assets/f0421-02.png
enum class BandMember (val instrument: String) {
JERRY ("lead guitar") {

override fun sings() = "plaintively"
b ) JERRY and BOBBY have their
BOBBY ("rhythm guitar™) { oun imylm:n{aﬁm of 5"“5‘()'
override fun sings() = "hoarsely"

b
PHIL("bass") ;

open fun sings() = "occasionally™

SAs we've overriding sings() for two
! values, we need to mavk it as open.





OEBPS/assets/common21.png
Build application
Add function
Update function
Use REPL





OEBPS/assets/f0080-01.png
fun main(args: Array<String>
var x = 0
var y = 20

for (outer in 1..3) {

{

Q_/Thz ceandidate
tode goes heve

for (inner in 4 downTo 2) {
v+
x += 3

}

y =2

println("$x Sy")

Candidates:
X += 6
p—
Yy=x+y
y=17
XxX=x+y
=x-7
x=y
v+

Possible output:
3728 3826

18 23
27 6
81 23
27 131
27 23
35 32

4286 4275





OEBPS/assets/f0047-01.png
PhraseOMatic






OEBPS/assets/f0147-02.png
val vet = Vet()
val wolf = Wolf()

val hippo = HIPPO() 11t 1 d Hippo ave both types of Animal,

vet.giveShot (wolf) 50 you ean pass Wolf and Hippo objects
vet.giveShot (nippo) |  as arguments 4o the giveShot Lunttion.





OEBPS/assets/common31.png
Design classes
Build classes
Use classes





OEBPS/assets/f0334-01.png
fun main(args: Array<String>) {

var addFive = { x: Int -> x + 5 } Lai

mbdas
println("Pass 6 to addFive: ${addFive(6)}") Li
src
val addInts = { x: Int, y: Int -> x + y } I—‘g
val result = addInts.invoke (6, 7) Lambdas.kt

println("Pass 6, 7 to addInts: $result")

val intlLambda: (Int, Int) -> Int = { %, y -> x * y }
println("Pass 10, 11 to intlLambda: ${intLambda (10, 11)}")

val addSeven: (Int) -> Int = { it + 7 }
println("Pass 12 to addSeven: ${addSeven(12)}")

val myLambda: () -> Unit = { println("Hi!") }
myLambda ()





OEBPS/assets/f0427-01.png
class Duck { The object detlaration goes in
object DuckFactory { <— the main body of the class
fun create(): Duck = Duck()





OEBPS/assets/f0193-01.png
class MyClass ,: Any() {

/tThz compiler secretly makes
] each class a subtlass of Any.

MyClass






OEBPS/assets/f0326-01.png
Here's a MutableList
of Grocery items that ~3

need sorting

groceries
\

val
MutableList<Grocery>

Please sort them
by unitPrice.

How should
I sort these
Grocery items?

[}

Q
.SOrtBy()

The sortBy() funttion knows Lambda
how to sort in general..
and the lambda tells it
what to specifically sort
by i this situation





OEBPS/assets/f0173-01.png
(interface)
Roamable

lass Vehicle : Roamable { <—This is like saying “The Vehicle class
implements the Roamable interface”.

Vehicle

roam()






OEBPS/assets/f0188-01.png
interface Flyable { o when (£[x]) {
val x: String is Bird -> { This tode tompiles

X+ and produces the

fun fly() { £1x1.E17 00 corveet output.

println("$x is flying") }

is Plane, is Superhero ->
f£ix]1.£f1y()

class Bird : Flyable {

override val x = U
, This won't ompile as % is an Int,

and tan't be a Plane or Superhero.
class Plane : Flyable { e if (x is Plane || x is Superhero) {
override val x = "Plane” ety 0

class Superhero : Flyable { ,
override val x = "Superhero" This won't compile because the is operator is

} vequired in order to theek the type of £[x.

e when (£[x]) {
{

fun main(args: Array<String>) Plane, Superhero -> f[x].fly()

val f = arrayOf (Bird(), Plane(), Superhero())
var x = 0

while (x in 0..2) {

@ ol v - when (£1x)) ( Thiscode
is Bird -> false tompiles and
. = else -> true produtes the
) ! torvett output

if (y) {f(x].flyv()}





OEBPS/assets/f0086-02.png
You didn't need £o
use Lhese snippets





OEBPS/assets/f0242-02.png
by printStackTrace() is a function that's available to
//Do risky thing all exteptions vunning on the JVM- 1£ you ean't

vetover from an exteption, use printStackTrace)

£ help You track down the cause of the problem

} catch (e: Exception) {
e.printStackTrace ()

//Other code that runs when you get an exception





OEBPS/assets/f0155-01.png
Great news! Sam just
implemented all his
abstract functions!






OEBPS/assets/f0421-03.png
fun main{args: Array<string>) {
var selectedBandMember: BandMember
selectedBandMember = BandMember.JERRY
println(selectedBandMember. instrument)

println(selectedBandMember . sings () €— This line calls JERRY's sings() Rnt{’:’on,
} and produtes the output “plaintively





OEBPS/assets/f0364-01.png
data class Grocery(val name: String, val category: String
This is the Grotery val unit: String, val unitPrice: Double,
data class. val quantity: Int)

fun main(args: Array<String>) {
val groceries = listOf (Grocery("Tomatoes", "Vegetable", "lb", 3.0, 3),

Mushrooms", "Vegetable", "1b", 4.0, 1),

Grocery
The grotevies List contains
five Grotery items.

Grocery ("Bagels", "Bakery", "Pack", 1.5, 2),

Olive oil", "Pantry", "Bottle", 6.0, 1),

Grocery

Grocery("Ice cream", "Frozen", "Pack", 3.0, 2))





OEBPS/assets/f0431-02.png
fun mykFun() {
1istOf ("a", "B"

"C", "D").forEach myloope@
if (it = g ,
lri;zl it ) returnemyloop € The lambda that we've passing to the forEath
e ) Sunttion is labeled myloop@. The lambda's veturn
. expression uses this label, so when it's veathed,
println("Finished myFun()")

it exits lambda, and veturns to its caller (the
forEath loop).





OEBPS/assets/f0092-01.png





OEBPS/assets/f0158-01.png
Abstract
Feline
roam()
Lion
image
food
habitat
makeNoise()
eat()
Cheetah
image
food
habitat
makeNoise()
eat()

Lynx

image
food
habitat

makeNoise()
eat()

Animal

image

food

habitat

hunger <= Abstract

makeNoise()
eat()

roam()
sleep()

Abstract

{

Canine

Hippo

image
food
habitat

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()






OEBPS/assets/fxxiii-01.png





OEBPS/assets/f0233-01.png
Thank you
very much.

This is the Elvis operator-





OEBPS/assets/f0199-01.png
title: “Chicken Bhuna’
isVegetarian: false
&

T Recipe
val r = Recipe ("Chicken Bhuna", false)
val Recipe





OEBPS/assets/f0340-02.png
fun convert(x: Double,
converter: (Double) -> Double) : Double {

Invokes the lambda

named tonverter —> val result = converter (x)
and assigns its println("$x is converted to $resultm) &— Print the vesult

return value 4o
return result
esult. S Return the vesult.





OEBPS/assets/f0299-01.png
val catContest = Contest<Cat>() & lhis treates a Contest that will aceept Cats.





OEBPS/assets/f0045-01.png
\NAN AN N Ly P——






OEBPS/assets/f0420-04.png
tun mainfargs: Array<string>) {

var selectedBandMember: BandMember

selectedBandMember

BandMember . JERRY

println (selectedBandMenber . instrument) & This produtes the output “lead quitar”
b





OEBPS/assets/f0033-01.png





OEBPS/assets/f0273-04.png





OEBPS/assets/f0210-01a.png
val recipes = findRecipes("Thai curry")~s=— Both of these call the findRecipes
Sunction, using a value of “Thai
eurvy” for the title argument.

And if we wanted to pass the parameter value using named
arguments, we could use the following instead:

val recipes = findRecipes (title

Thai curry"





OEBPS/assets/f0294-02.png





OEBPS/assets/f0347-02.png
val pounds = getConversionLambda (TKgsToFounds™) (< .5)
AN :
This ¢alls the getConversionLambda Lunttion... ~-and this invokes the lambda
veturned by the function.
Heve, we've passing getConversionlambda’s
veburn value to the convert funttion.

convert (20.0, getConversionLambda ("CentigradeToFahrenheit"))





OEBPS/assets/f0054-01.png
Variables: Objects:






OEBPS/assets/f0378-01.png
‘K—Add hese lines to the main funttion

println("Grocery names: ")
groceries.forEach { println(it.name) }

println("Groceries with unitPrice > 3.0: ")
groceries.filter { it.unitPrice > 3.0 }
.forEach { println(it.name) }

var itemNames = ""
groceries.forEach({ itemNames += "${it.name} " })
println("itemNames: $itemNames") Groceries.kt





OEBPS/assets/f0077-01.png
. 5 &< Using downTo instead of . loops
for (x in 15 downTo 1) printin (x) through the numbers in veverse order.





OEBPS/assets/f0303-02.png
T: Pet
T: Pet
«( T: Pet T

catFuzz
fishFinny





OEBPS/assets/f0382-01.png
X i groupBy veturns a Map, whith
groceries.groupBy { it.category }.forBach { €— means that we can call the forEach
Lunttion on its veturn value.

//More code goes here





OEBPS/assets/common25.png
Build application
Add function
Update function
Use REPL





OEBPS/assets/f0425-04.png
Inner

The Inner and Outer objects shave a
special bond. The Inner an use the
Outer’s vaviables, and vice versa.





OEBPS/assets/f0172-04.png
interrace Roamable {
var velocity: Int
get() = 20

set (value) { € you try to write code ike this in an intecfate,
field = value &— it won't compile. This is betause you ean't use
¥ the “field” keyword in an interface, so you can't

} update the underlying value of the property





OEBPS/assets/f0343-01.png
convert (20.0) { c: Double => c * 1.8 + 32 } ¢
The lambda is no lon
ger entlosed by

Heve's the funttion's elosing parenthesis. the function's closing parenthesis.
g P





OEBPS/assets/f0385-03.png
6 & vunningSum’s Final value is b, so
the function veturns this value
It gets assigned to sumOFnts.





OEBPS/assets/f0401-01.png
We've using two Java libraries, so we need
import java.io.File £o impork them. You can Find out more
import javax.sound.sampled.AudioSysten ) sbout import statements in Appendic Il

fun playBeats (beats: String, file: String) { —The beats parameter specifies the
val parts = beats.split("x") pattern ogbeab. The file Pparameter
var count = 0 specifies the sound file to play.

for (part in parts) {
count += part.length + 1

if (part == "") {
playSound(file)

} else { Pauses the curvent thread
Thread.sleep (100 * (part.length + 1L)) <c— of exetution so that the

Call playSound once

oune if (count < beats.length) { sound file has Lime to vun.
for eath ‘%" in the

T playSound(file)

beats parameter. ,
) Drum Machine
}
} src/main/kof

Plays the specified audio file.
fun playSound(file: String) {
val clip = AudioSystem.getClip ()
val audioInputStream = AudioSystem.getAudioInputStream(
File(
file

Beats.kt

)
clip.open (audioInputStream)
clip.start ()

fun main() {

ymbals sound files
playBeats ("x-x-x-x-x-x-", "toms.aiff") Play the toms and ¢ym
playBeats ("x-- , "crash_cymbal.aif






OEBPS/assets/f0194-02.png
equals returns val wl = Wolf ()

false because val w2 = Wolf()

Wl and w2 hold  onirn (i1 equals (w2))
vefeventes to

diffevent objeets. ——false

val wl = Wolt ()

val w2 = wl

println(wl.equals (w2))

true S

equals veturns true because
wl and w2 hold veferences
to the same object. [¢'s the
same as testing if wl == w2






OEBPS/assets/f0086-01.png
fun printResult(userChoice: String, gameChoice: String) {

val result: String I£ £he usev and the game chose the
//Figure out the result L2 came option, the veslt is a bie
gameChoice) result = "Tie!™

1£ any

of these if (userChoic

tombos (else if ((userChoice Rock” "Scissors

_gameChoice,

1I...

are true, (userChoice Paper" g& gameChoice == "Rock") ||
the user (userChoice "Scissors" gameChoice Paper")) result = "You win!"
wins. -

else result = "You lose!"
//Print the result

println("You chose $userChoice. I chose $gameChoice. $result")





OEBPS/assets/f0332-01.png
7N

$ ) (x>x+5)
=
add',’
Five‘
N ’

(Int) > Int

val
(Int) -> Int





OEBPS/assets/f0083-01.png
fun

fun

fun

main(args: Array<sString>) {

val options = arrayOf ("Rock", "Paper", "Scissors")
\

val gameChoice = getGameChoice (options) Rock Paper S

val userChoice = getUserChoice (options)

Call the getUserChoite funttion

getGameChoice (optionsParam: Array<String>) =

optionsParam[ (Math.random() * optionsParam.size).toInt()]

getUserChoice (optionsParam: Array<String>): String {

var isValidChoice = false S—— Wl use the isValidChoice variable o indicabe
var userChoice = "" whether the user has enteved a valid choice.
//Loop until the user enters a valid choice

while (!isValidChoice) { <—————— Keep looping until isValidChoite is Hrue

//Bsk the user for their choice

print("Please enter one of the following:")

for (item in optionsParam) print(" $item")

println(".")

//Read the user input

val userInput = readLine () Check that the user input isn't null,
and {ha&‘ it's in the options areay.

//Validate the user input

if (userInput != null && userInput in optionsParam) {

isvalidChoice = true < |f {he user input is OK, we can stop looping:

userChoice = userInput

}

//If the choice is invalid, inform the user

if (lisValidChoice) println("You must enter a valid choice.")
}

return userChoice

£ the user input is invalid, we'll keep looping.

issors.

src

Game .kt





OEBPS/assets/f0225-02.png
w?.hunger

//Returns 10 @/\
o> hunger: 10
w

var Wolf? ‘Wolf





OEBPS/assets/f0234-01.png
var x = w!!.hunger <=— Heve, the /| makes the assertion that w is not null





OEBPS/assets/f0065-02.png
fun main{args: Array<String>) {
val x: Int =7
val y: Int = 8
printSum(x, y)

, Each argument you pass must be the
same type as the pavameter it lands in

fun printSum(intl: Int, int2: Int) {
val result = intl + int2

println(result)





OEBPS/assets/f0116-02.png





OEBPS/assets/f0385-02.png
— 1
&

Finally U Int ,%/ﬁ@ °
the fold & 2 &
e efshf:d & Int £ The &mt::; add} l
Lo the fina
item in the =g 2 3 var Int fd\e value
eollection. E @ item 4o the value of

. )

vunningSum. vunningSum's
i b

i IS nOW

List<Int> new value is ne





OEBPS/assets/f0432-01.png
The vararg prekix means that we ¢an
pass mulbiple values for ints parameter.

fun <T> valuesToList (vararg vals: T): MutableList<T> {

val list: MutableList<T> = mutableListOf ()

for (i in vals) {
list.add(i)

vararg values ave passed to the function as an
array, so we tan loop through each value. Heve,
return list we've adding each value to a MutableList.





OEBPS/assets/f0171-01.png
The name of the interrate

“Ztc.;fa.ﬁe :}:iy.s$ f r Opening brace of the interfate
e.
i
I (interface)

The voam function. Roamable
pE= |

Closing brate ot
the interface

= roam()






OEBPS/assets/f0344-01.png
fun convert(x: Double,
converter: (Double) -> Double) : Double {
val result = converter (x)
println("$x is converted to $result")
return result

} Add these two Functions

fun convertFive(converter: (Int) -> Double) : Double {
val result = converter (5)
println("5 is converted to $result")

return result r-'
} Lambdas
fun main(args: Array<String>) { src
AT TS sk 5
" — "
Lambdas.kt
ralmdedints - IRt
ol eesmi = dGTTITE . IOVORETE
Orimeimp to_addinte: 1o
We no
longer need
hese lines, TR
S0 You tan ETTT T PaSS— 6T To Trtbanbda i inthambaert TO—7T
delete them
—wal-sdiSevens (Int Int = ( —
Pt IT PES ST to—ar +—rtaith 1o
- wgiin
—aphmmdat—

convert(20.0) { it * 1.8 + 32 } ) Add these lines. Noke we can use “it”
convertFive { it * 1.8 + 32 } because each lambda uses a single parameter
, whose type the compiler ean infer-





OEBPS/assets/f0097-01.png
Song

title
artist

play()
stop()






OEBPS/assets/f0405-01.png
fun main() { Wrap the tode we want to
runBlocking {<— Vun in a eall to vunBlocking.
Remove the Grebalsceperlaunch { playBeats ("x-x-x-x-x-x-", "toms.aiff") }

vefevente 4o - wvee '
GlobalSeope. playBeats ("x----- K== , "crash_cymbal.aiff")
}

}





OEBPS/assets/f0298-02.png
class Contest<T:

val

fun

fun

pet>
scores: MutableMap<T, Int> = mutableMapOf ()
addScore (t: T, score: Int = 0) {
if (score >= 0) scores.put(t, score)
getWinners () : MutableSet<T> {

val highScore scores.values.max ()

val winners: MutableSet<T> = mutableSetOf ()
for ((t, score) in scores) {
if (score == highScore) winners.add(t)

}

return winners

v

We'll add this elass to @ new
application a few pages ahead





OEBPS/assets/f0205-02.png
title

isVegetarian
mainingredient






OEBPS/assets/f0139-02.png
Detlaring the open class Car : Vehicle() {
funetion as final in——S final override fun lowerTemperature() |
the Car elass means

that it ¢an no longer

be overridden in any

of Car's subtlasses. }

println("Turn on air conditioning")





OEBPS/assets/f0140-01.png
. e—The Animal ¢lass hasn't changed-

Animals

open class Animal
open val image =
open val food
open val habitat =

var hunger = 10

open fun makeNoise() {

println("The Animal is making a noise")
) Animals.kt

open fun eat() {
println("The Animal is eating")

image
food

habitat
hunger

open fun roam() |
println("The Animal is roaming")

makeNoise()
eat()

roam()
sleep()

fun sleep() {
println("The Animal is sleeping”

) The HEPPZAIass is a subelass of Animal.

class Hippo : Animal() {
override val image = "hippo.jpg" image
override val food = "grass" fomf

The Hippo | Override val habitat = "water" habitat

subelass i
overvides override fun makeNoise() { makeNoise(
these println("Grunt! Grunt!") et
properties }

and

functions. | override fun eat() {

println("The Hippo is eating $food")






OEBPS/assets/f0266-02.png
“Thai Curry”

/—9 hashCode: 64
&

W Recipe

val Recipe “Thai Curry”

/—9 hashCode: 64

S

Qg} Recipe

Here, a and b vefer to

val Recipe separate objects The Set
sees b as a duplicate only i
a and b have the same hash
¢ode value, and 3 == b. This
will be the case if Reeipe is
3 data elass.





OEBPS/assets/f0085-01.png





OEBPS/assets/common20.png





OEBPS/assets/f0061-01.png
A tivtle vepresents
the start or end

Start of the protess.

o You start the game. A A vectangle

The application randomly chooses one of the Get computer choice | < epresents

options: Rock, Paper or Scissors. an action

v

e The application asks for your choice. e i

You type your choice in the IDE’s output Get user choice [+

window.

5]

The application validates your choice.
I you haven’t chosen a valid option, it goes

Is
choice
valid?

back to step 2, and asks you for another (3)
choice. The game does this repeatedly until
you enter a valid option.

S~ A diamond vepresents
a detision point.

Yes
o The game displays the result.
It tells you what choices you and the o Display result
application have made, and whether you've
won, lost, or the result is a draw.
Game
over

A legit flowthart.





OEBPS/assets/f0050-02.png
&7

S
my ‘
Arra 4 5

—_—
var Array<Int> Int Int






OEBPS/assets/f0100-02.png
Dog





OEBPS/assets/f0419-02.png
class Child: Parent() {

public override var ¢ = 6 <— The ¢ property tan now be seen
anywhere that the Child ¢lass is visible





OEBPS/assets/f0177-01.png
Vet (interface)

class Hippo : Animal() { We've not Roamable
override val image = "hippo.ipg" updated any -
override val food = "grass" of the tode giveShot()
override val habitat = "water" on this page

override fun makeNoise() {

println("Grunt! Grunt!") Vehicle Animal
} image
food
habitat
override fun eat() { hunger

println("The Hippo is eating $food") el i)

} eat()
roam()
sleep()

apstract class Canine : Animal() {

override fun roam() f{

Hippo Canine

println("The Canine is roaming")
) image
food

4 habitat

makeNoise()

class Wolf : Canine() { eat()
override val image = "wolf.jpg"
override val food = "meat" image
override val habitat = "forests" food
habitat
override fun makeNoise() { makeNoise()
println("Hooooowl!™) LE eat(
src
}
Animals.kt

override fun eat() {
println("The Wolf is eating $food")

The tode tontinues D
on the next page.





OEBPS/assets/common11.png





OEBPS/assets/f0432-02.png
val myArray = arrayOf(l, 2, 3, 4, 5)  This passes the values held in myArvay
val mList = valuesToList (*myArray) <<—to the valuesToList function
val mList? = valuesToList(0, *myArray,.6, 7)

Pass O o bhe function. o A by kolloved by b and 7.

the contents
of myAvvay..





OEBPS/assets/f0007-01a.png
You are here.
Build application
Add function
Update function
Use REPL





OEBPS/assets/f0259-02.png
mShopping.clear () <—This empties mShopping so its size is O.





OEBPS/assets/f0283-01.png





OEBPS/assets/f0295-01.png





OEBPS/assets/f0174-03.png
class ¥ : C(), A {
TS Class Y inhevits from ¢lass C,
and implements interface A





OEBPS/assets/f0123-01.png





OEBPS/assets/f0136-03.png
open class Animal {

var image = "" éﬂm, imagc is dC‘Fihcd usin5
var, and initialized with ““

class Hippo : Animal() {
it We've using the Hippo's
image = "hippo.jpg" < initializer blotk to assign
a new value to the image
property. In this case,
Lhere was no need to
b overvide the property.





OEBPS/assets/f0183-01.png
Cheek the value When % is O, vun this code.

of variable ».

i
when (x) {
0 -> println("x is zero")

1, 2 -> println("x is 1 or 2")<<— Run this tode when x is | or 2.
else —> {

when statements an—""  printin("x is neither 0, 1 nor 27)
have an else ¢lause.

Run his block of code

println("x is some other value") when % is some other value





OEBPS/assets/f0430-03.png
myloop@ while (x < 20) {
while (y < 20) {
X++
break@myloop<—This is like saying “break out of the
} loop labeled myloop@ (the outer loop)”





OEBPS/assets/f0302-01a.png
Pets
Contest
Retailers
Vet





OEBPS/assets/f0244-06.png
Legal because  try { callRiskyCode() }
a try can have (catch (e: BadException) { }

more than one \ catch (e: ScaryException) { |
tateh.





OEBPS/assets/f0095-01a.png
var myDog = Dog("Fido", 70, "Mixed") You eveate a Doy by
passing it arguments for

the three properties.

The code passes three arguments to the Dog object. These match the
properties we defined in the Dog class: the Dog’s name, weight and
breed:

class Dog(val name: String, var weight: Int, val breed: String) |





OEBPS/assets/f0317-01.png
abstract class Pet(var name: String)

class Cat(name: String) : Pet (name)
. Generics

class Dog(name: String) : Pet (name)

class Fish(name: String) : Pet (name)

) i
class Vet<T: Pet> { KM" the Vet class

fun treat(t: T) { Pets.kt
println("Treat Pet ${t.name}")

e Add a tonstruttor to the Contest class.

class Contest<T: Pet>(var vet: Vet<in T>) {
val scores: MutableMap<T, Int> = mutableMapOf ()

fun addScore(t: T, score: Int = 0) {

if (score >= 0) scores.put(t, score)

fun getWinners(): MutableSet<T> {
val winners: MutableSet<T> = mutableSetOf ()
val highScore = scores.values.max ()
for ((t, score) in scores) {
if (score == highScore) winners.add(t)
3

return winners

interface Retailer<out T> {
fun sell(): T

class CatRetailer : Retailer<Cat> {
override fun sell(): Cat {
println("Sell Cat")
return Cat("")
) The tode continues =
} on the next page.





OEBPS/assets/f0246-01.png
fun main(args: Array<String>)

val test: String = "No"

try {
println("Start try")
riskyCode (test)

println("End try"

} catch (e: BadException)

} finally {
println("Finally")

println("End of main")

class BadException : Exception()

fun riskyCode (test: String) {

println("Start risky code")

if (test == "Yes") {
throw BadException ()

println("End risky code")

{

{
println("Bad Exception")

Output when test = "No™

Output when test = "Yes™






OEBPS/assets/f0007-03.png
s/ Fwnsjatbrains.com fidea! download findex. hmt <— M2Ke, sure you ehoose the option to download
he fvee Community Edition of Intelli) [DEA





OEBPS/assets/f0174-01.png
(interface) (interface)
A B

(interface)
A






OEBPS/assets/f0269-01.png
This ereates a Set version of
= mShopping, and gets its size.
if (mShopping.size > mShopping.toSet().size) {
//mShopping has duplicate values





OEBPS/assets/f0052-01.png
Q fun main(args: Array<String>) {

val hobbits = arrayOf ("Frodo", "Sam", "Merry", "Pippin")

var x = 0

We want 1o print a line for

each name in the hobbits arvay.
while (x < 5) {

println("${hobbits[x]} is a good Hobbit name")

Xx =x +1

e fun main(args: Array<String>) {

val firemen = arrayOf ("Pugh", "Pugh", "Barney McGrew", "Cuthbert", "Dibble", "Grub")
var firemanNo = 0

while (firemanNo < 6) {

println ("Fireman number $firemanNo is $firemen[firemanNo]")
firemanNo = firemanNo + 1 /‘\

: We want to print a line for eath
Liveman in the Livemen arvay.





OEBPS/assets/f0162-03.png
class Hippo : Animal() {

override val image = "hippo.Jpg"
override val food = "grass"
override val habitat = "water"

override fun makeNoise() {
println("Grunt! Grunt!

override fun eat() {

You implement abstract
properties and functions
by overriding them. This
is the same as if the
supevelass was contrete

println("The Hippo is eating $food")





OEBPS/assets/f0381-03.png
OTomatoes

Grocery

OMushrooms

Grocery

List<Grocery>
List<Grocery>

Each value in
t}":kMaF e The tategory values are
crotery <= used for the Map's keys,

Map<String, List<Grocery>> so each Key is a String.





OEBPS/assets/f0035-02.png
Float Double





OEBPS/assets/f0402-01.png
Bam! Bam! Bam! Bam! Ban! Bam! Tish! Tish!

The tode plays the toms [£ then plays the
sound file six times. eymbals sound file
twice.





OEBPS/assets/f0172-05.png
interface Roamable {
var velocity: Int
get() = 20
set (value) { This code compiles because you've not using
println("Unable to update velocity") <— the field keyword. But it won't update
) the underlying value of the property.





OEBPS/assets/f0304-01.png
PetOwner<T: Pet>

pets: MutableList<T>

add(t:T)
remove(t:T)

Specify the genevie {yyzv\ (T}.g tonstruttor.

class PetOwner <T:Pet>(t:T) {

val pets = mutableListOf(,

This treates a

fun add MikableList<T>.

pets.add(,

} Add/Remove T values.

fun remove ( t:

pets.remove (t )

fun main(args: Array<String>) {
val catFuzz = Cat("Fuzz Lightyear")
val catKatsu = Cat ("Katsu")
val fishFinny = Fish("Finny McGraw")

val catOwner = PetOwner (i

catOwner.add (catKatsu)

Creates a PetOwner<Cat>,
and initializes pets with a
vefevente to tatFuzz





OEBPS/assets/f0356-02.png
println(1.name) ' 1 in list '
criteria(l) '
List<Grocery> '

D for ( . (g: Grocery) -> Boolean 'D






OEBPS/assets/f0144-02.png
val w = Woll{) Calls the makeNoise() function
w.makeNoise () €—— defined in the Wolf ¢lass.





OEBPS/assets/f0228-01.png
[£ W's hunger property is 10,
var % = wehun

ereates an [nt? variable with
a value of 10.

5

var Int? Int

10





OEBPS/assets/common35.png
Design classes
Build classes
Use classes





OEBPS/assets/f0337-02.png
Variable definitions:

var

var

var

var

var

lambdal:

lambda2:

lambda3:

lambdad :

lambda5s

(Double)

(Int) ->

(Int) ->

(Double)

-> Int

Double

Int

-> Unit

Lambdas:

(it + 7.1}

{ (it > 3) -4}

{ox:

Int -> x + 56 }

{ println("Hello!") }

{ x:

Double -> x + 75 )





OEBPS/assets/f0243-02.png
val r: Roamable = WolL ()
if (r is Wolf) {

r.eat ()€ — Here, v has been smart cast to a Wolf.





OEBPS/assets/f0339-01.png
This is the % pavameter, a Double.

g

fun convert(x: Double,

s s  owbda parameber  \CORVeTter: (owble) -> Double)) : Double |
1S 1S m m

named Converter. [ts Jc\/?c—d—y\
is (Doublc) -> Doublc-

//Code to convert the Doubl

The funetion veturns a Double.






OEBPS/assets/fxxii-01.png





OEBPS/assets/f0327-01.png
ﬁening brace

the lambda.gm Closing brate of the lambda

<

The lambda's aramefm»j R )

Here, the Iam{da must. Separates the The lambda's body. Here,

b . & and B arameters the body takes %, adds
e gjven an [nt, and the vom the body. 5, and veturns it.

[nt is named *.





OEBPS/assets/f0126-02.png
We'll overvide

the image, food —)|
and habitat
properties, and

the makeNoise

and eat functions.

Animal

image
food
habitat
hunger

makeNoise()

sleep()

For now, we'll keep the
hunger property and
+the sleep and voam
Lunctions genevic.





OEBPS/assets/f0264-01.png
val friendSet

The tode treates a
Set eontaining the
three String values.

s, o, @umv

String

val Set<String>

The values in a Set have "9
no order, and duplicate
values aren’t allowed.





OEBPS/assets/f0300-01.png
abstract class Pet(var name: String)

class Cat(name: String) Pet (name)
Add the Pet hiecarthy.
class Dog(name: String) : Pet (name)
class Fish(name: String) : Pet (name)
4—hdd the Contest elass.

class Contest<T: Pet> {

val

fun

fun

scores: MutableMap<T, Int> = mutableMapOf ()
addscore(t: T, score: Int = 0) {

if (score >= 0) scores.put(t, score)

getWinners () : MutableSet<T> {
val winners: MutableSet<T> = mutableSetOf ()
val highScore = scores.values.max ()
for ((t, score) in scores) {

if (score == highScore) winners.add(t)
}

return winners

Generics

‘=

src

-

Pets.kt

The tode ontinues 7 D
on the next page.





OEBPS/assets/f0096-04.png
var dogs = arrayOf (Dog("Fido", /0, "Mixed"), Dog("Ripper", 10, "Poodle"))

This tode treates two Doy
objects, and adds them o an
arvay<Doy> arvay named dogs





OEBPS/assets/f0395-01.png





OEBPS/assets/f0040-01.png
var X = o

var z: Long = x.tolong() This is the dot operator





OEBPS/assets/f0276-02.png
val
val

val

val

"
!
1

= Recipe ("Chicken Soup™)

Eath entry takes the Lorm Key
o Value. The keys ave normally
Strings, as in this example.

r2 = Recipe ("Quinoa Salad")

r3 = Recipe ("Thai Curry")

recipeMap = mapOf ("Recipel” to rl, "Recipe2" to r2, "Recipe3" to r3)





OEBPS/assets/f0365-03.png
This tode is like saying
“Find the item in groteries

val highestUnitPrice = groceries.maxBy { it.unitPrice }
< itk the highest onitPrice”





OEBPS/assets/f0168-01.png
Appliance

pluggedin
color

consumePower()

CoffeeMaker

color
coffeeleft

consumePower()
fillwithWater()
makeCoffee()

Mavk the Appliance ¢lass as abstract,
along with the color property and the

tonsumePower() function.

t class Appliance {

var pluggedIn = true

_abstract val color: String

_abstract fun consumePower()

} CoffeeMaker ‘mbcn(-; £rom Appliance.

class CoffeeMaker ;_ Appliance() [

Overvide the — override
color propecty.

_val color

var coffeeleft = false

fun

Overvide the —>. 0
tonsumePower()
Lunttion )

println("Consuming power

fun fillWithWater() {

println("Fill with water")

fun makeCoffee() {

println("Make the coffee")





OEBPS/assets/f0133-01.png
image
food
habitat

hunger

makeNoise()
eat()

roam()
sleep()






OEBPS/assets/f0330-02.png
m ) (xIntyInt>x+y)

$
< A
1
f:; Lambda
|L bd: m 13
val Lambda {
&
1|
result Int
-





OEBPS/assets/f0067-01.png
fun max(a: Int, b: Int): Int { The max funttion has a
val maxvValue = if (a > b) a else b<— single expression in iks body,
which we then veturn.

return maxValue





OEBPS/assets/f0256-01.png
val shopping

1istOf ("Tea",

The tode ereates a List

containing String values of

“Tea”, “Eggs” and “Milk”

"Milk")

shopping
%
val List<String>

The variable

has a type of
List<String>, so
+the List contains
vefeventes to
String objects.

“Tea”

“Eggs’

O:0

String

“MiTk”

O

String





OEBPS/assets/f0431-03.png
tun myrun() 1{

1istOf ("A", "B", "C", "D").forEach {

if (it == "C") return@forEach - Heve, we've using an implicit label 4o tell

println(it) the code to exit the lambda, and veturn
) to its caller (the forEath loop).
println("Finished myFun()")





OEBPS/assets/f0078-01.png
fun getUserCholce(optionsParam: Array<String>): String {
//Ask the user for their choice
print ("Please enter one of the following:")
for (item in optionsParam) print(" $item") STy prints the value of

println(".") eath item in the arvay.





OEBPS/assets/f0377-01.png
data class Grocery(val name: String, val category: String,

val unit: String, val unitPrice: Double,

val quantity: Int)

fun main(args: Array<String>) {

val groceries = listOf (Grocery("Tomatoes", "Vegetable", "lb", 3.0, 3),
Grocery ("Mushrooms", "Vegetable", "1b", 4.0, 1),
Grocery ("Bagels"”, "Bakery", "Pack", 1.5, 2),
Grocery ("Olive oil", "Pantry", "Bottle", 6.0, 1),
Grocery ("Ice cream”, "Frozen", "Pack", 3.0, 2))

1 T Syt 5 Groceries.kt
Pttt STmSreRtty TS S TR T
kTt PTiee e cie=TSUNBYDOUb1E | TTrOuar oyt i e PriTe——

[#\dd all these lines.

val vegetables = groceries.filter { it.category == "Vegetable" }
println("vegetables: $vegetables")
val notFrozen = groceries.filterNot { it.category == "Frozen" }

println("notFrozen: $notFrozen")

val groceryNames = groceries.map { it.name }
println("groceryNames: $groceryNames")

val halfUnitPrice = groceries.map { it.unitPrice * 0.5 }
println("halfUnitPrice: $halfUnitPrice")

val newPrices = groceries.filter { it.unitPrice > 3.0 }
;mep | it.uniterice * 2 } The code continues ™=
println("newPrices: $newPrices") on Lhe next page.





OEBPS/assets/f0350-02.png
m { x: Double -> x * 2.204623 }

Q
< A
L]
lambda1 (Double) -> Double
i X * 2.304633

[
val (Double) -> Double

Double





OEBPS/assets/f0223-02.png
@«Hin

String

S
‘g‘/\

null
my
rra The thivd ibem has been initialized with
a value of null. As the avvay contains
var Array<String?>

both Strings and null values, it ereates
an array that can hold String?s.





OEBPS/assets/f0207-03.png
This code won't compile,
as the compiler expetts
the third argument 4o

be a Boolean.

val r = Recipe ("Spaghetti Bolognese", "Beef", "Moderate") <&





OEBPS/assets/f0428-02.png
This

statement..

~ends
down
heve.

window.addMouseListener (object : MouseAdapter() {
override fun mouseClicked(e: MouseEvent) {

//Code that runs when the mouse is clicked

override fun mouseReleased(e: MouseEvent) {

//Code that runs when the mouse is released





OEBPS/assets/f0309-01.png
abstract class Pet(var name: String)

class Cat(name: String) : Pet(name)
class Dog(name: String) : Pet (name)
class Fish(name: String) : Pet (name)

class Contest<T: Pet> {
val scores: MutableMap<T, Int> = mutableMapOf ()

fun addScore(t: T, score: Int = 0) {
if (score >= 0) scores.put(t, score)

fun getWinners(): MutableSet<T> {
val winners: MutableSet<T> = mutableSetOf ()
val highScore = scores.values.max ()
for ((t, score) in scores) {
if (score == highScore) winners.add(t)
+

return winners

} Add the Retailer interfate.
“

interface Retailer<out T> {
fun sell(): T

class CatRetailer : Retailer<Cat> {
override fun sell(): Cat {
println("Sell Cat")
return Cat(

, Add the CatRetailer
and DogRetailer elasses

class DogRetailer : Retailer<Dog> {
override fun sell(): Dog {
println("Sell Dog")

return Dog ("")

The tode coninues >
on the next page-





OEBPS/assets/f0145-02.png
val animal: Animal = Wolf()

Animal and V\L‘VEM are
explicitly different types,
but betause Wolf Is—myre
of Animal, the code compiles.

The code ereates a ivﬁ
g object, and assigns it to a
< wniable of ype Animal.

Wolf

val Animal





OEBPS/assets/f0400-01.png
600 New Project

Project name: | Drum Machine| <<— ]

Project location:

~/IdeaProjects/Drum Machine

We've named our project “Drum Machine”-

» More Settings

2| Cancel previous | [EEEN






OEBPS/assets/f0240-02.png
fun myFunction(str: String) {

Heve's the try.. Sery ¢
val x = str.toInt()
println(x)
and heve's—7} catch (e: NumberFormatException) {
the eateh. println ("Bummer™)

println("myFunction has ended")





OEBPS/assets/f0423-02.png
fun main{args: Array<String>) {

val
val

val

var

val

}

messageSuccess = MessageSuccess ("Yay!")
messageSuccess2 = MessageSuccess ("It worked!™)
messageFailure = MessageFailure("Boo!", Exception("Gone wrong."))

myMessageType: MessageType = messageFailure MessageType an only have 3 {?yy:
myMessage = when (myMessageType) { oz MessageSuttess or MessageFailure, so

is MessageSuccess -> myMessageType.msg heve's no need for an extra else elause.

is MessageFailure -> myMessageType.msg + " " + myMessageType.e.message

println (myMessage)





OEBPS/assets/toolbox.png





OEBPS/assets/f0148-01.png
open class Animal {
open val image

open val food = " We've not changed any Animals
open val habitat = " of the code on this page.
var hunger = 10 P
open fun makeNoise() {
println("The Animal is making a noise") Animals.kt

open fun eat() { Animal

println("The Animal is eating") image
food
habitat

hunger

giveShot()

open fun roam() |
println("The Animal is roaming”)

makeNoise()
eat()
roam()

fun sleep() { sleep()

println("The Animal is sleeping")

}
b
. Hippo
class Hippo: Animal() {
override val image = "hippo.jpg" image
override val food = "grass" food roam0)
override val habitat = "water" habitat
makeNoise()
override fun makeNoise() { eat()
println("Grunt! Grunt!")
) Wolf
image
override fun eat() { food
println("The Hippo is eating $food") habitat
}
) makeNoise()
eat()

open class Canine: Animal() {
override fun roam() {
println("The Canine is roaming")

} The tode tontinues D
b on the next page.





OEBPS/assets/f0290-02.png
O

Duck

|

MutableList<Duck>

)

!

l

Duck

|
{

With generies, you ean make
sure that your collection
only contains objects of
he corveet type. You
don't have to worry about
someone stitking a Pumpkin
into a MutableList<Duck>,
or that what you get out
won't be a Duek





OEBPS/assets/f0213-01.png
We've thanged the Retipe primary tonstruttor, so we need
4o thange how it’s called so that the code compiles.

fun main(args: Array<String>) {
val rl = Recipe("Thai Curry", "Chicken"-fziss)
Recipe (title = "Thai Curry", mainIngredient = "Chicken"~f=ise)
val r3 = rl.copy(title = "Chicken Bhuna")
("rl hash code: ${rl.hashCode()}")
println("r2 hash code: ${r2.hashCode ()
("r3 hash code: ${r3.hashCode ()
(
(
(

val r2

println

println("rl toString: ${rl.toString()}")

println("rl == r2? ${rl == r2}") , .

wpl —ee 127 $(rl === 2}y Include Retipe’s new properties
when we destrutture vl.

Recipes.kt

println("rl == r3? ${rl == r3}") >
val (title, mainIngredient, vegetarian, difficulty) = rl

println("title is $title and vegetarian is $vegetarian®)

Mashzoom(6, false) <—— Create a Mushroom by calling its primary eonstruttor.

val ml =
println("ml size is ${ml.size} and isMagic is ${ml.isMagic}")

val m2 = Mushroom(true) < Create a Mushroom by calling its setondary construetor.
println("m2 size is ${m2.size} and isMagic is ${m2.isMagic}")

println (addNumbers (2, 5) )kCall the Int version of addNumbers.

printin(addiunbers (1.6, 7-3)) <~ (al| the Double version of addNumbers.





OEBPS/assets/f0307-01.png
i ; These lines ave legal because DogRetailer
val dogRetailer: Retailer<Dog> = DogRetailer() e r<beg

val catRetailer: Retailer<Cat> = CatRetailer() | (iRetsiler implements Retailer<Cat>.





OEBPS/assets/f0338-02.png
Variable definitions:

var

var

var

var

var

lambdal:

lambda2:

lambdad :

lambda5s

(Double)

(Int) ->

(Double)

-> Int

Double

Int

-> Unit

Lambdas:

(it + 7.1}

{ (it > 3) -4}

{ox:

Int -> x + 56 }

{ println("Hello!") }

{ x:

Double -> x + 75 )





OEBPS/assets/f0417-02.png
package com.htkotlin.myotherpackage

import com.hfkotlin.mypackage.Duck &— | his line imports
+the Duck class..

fun main(args: Array<String>) {

val duck = Duck 0K~ .50 we ean vefer 4o it without
typing its \tu”‘/ qualified name.





OEBPS/assets/f0144-04.png
w.sleep () S Calls the funttion in the Animal elass.





OEBPS/assets/f0341-01.png
0.0 { c: Double ->¢ * 1.8 + 3R )

A

Double (Double) -> Double





OEBPS/assets/f0157-03.png
var animal: Animal

animal = Wolf () This line won't tompile because
() 4—You can't ereate Animal objects

animal = Animal





OEBPS/assets/f0316-02.png
This line compiles, as you tan use 3
val catContest = Contest<Cat>(Vet<Pet>()) <—— Vet<Pet> in place of a Vet<Cat>
in the Contest<Cat> tonstruttor.





OEBPS/assets/f0164-01.png
Mark the Animal elass as abstract instead of open-

v

abstract «epes class Animal {
Mark these [abstract spsa val image: String ™=
properties as |abstract <spes val food: String—"
abstract..  |abstract epes val habitat: String~—""

var hunger = 10

abstract <eg=s- fun makeNoise ()

.and also

these two
Lunctions.
N abstract wepen- fun eat () <~

-+

open fun roam()

println("The Animal is roaming")

fun sleep() {

println("The Animal is sleeping")

Animals

src

Animals.kt

giveShot()

Animal

image
food

habitat
hunger

makeNoise()
eat()

roam()
sleep()

Hippo

Canine

image
food
habitat

makeNoise()
eat()

image
food
habitat

makeNoise()
eat()

The tode continues 7>
on the next page.





OEBPS/assets/f0042-01.png





OEBPS/assets/f0135-02.png
open class Car(val make: String, val model: String)

//Code for the Car class The Car construetor defines two properties: make and model.





OEBPS/assets/f0277-01.png
Heve, we've assuming that Retipe is
2 data elass, so the Map ean spot
( &——when +wo Retipe objects are equal

val recipeToCheck = Recipe("Chicken Soup")
if (recipeMap.containsValue (recipeToCheck))

//Code that runs if the Map contains the value





OEBPS/assets/f0333-01.png
&

L
add

val
(Int, Int) -> Int





OEBPS/assets/f0053-01.png
fun main(args: Array<String>) { [Thc magnets need to go in This space.

val index = arrayOf(1, 3, 4, 2) .

val fruit = arrayOf ("Appl

println("Fruit = ${fruitlyl}")

"Pomegranate"





OEBPS/assets/f0276-01.png
These are the Map's values.

d/ “

O“Va.luel" O ValueR”

These ave the Map's keys.





OEBPS/assets/f0332-04.png
val addFive: (Int) -> Int = { x => x + 5 }

The compiler knows that x needs to
be an Int, so we can omit its type.





OEBPS/assets/f0325-01.png
ie = cook { it.pastry()
velpe oo ilf.filling()
it.bake() }






OEBPS/assets/f0433-02.png
Dog() bark 6&— This ereates a Doy and calls its bark()
Lunttion, passing the function a value of b.





OEBPS/assets/f0034-02.png
x=6

We tan veplate the
cefevence held by the
vaviable because it's been
detlaved using var. This
wouldn't be possible if
we'd detlaced the variable
using val-

g\






OEBPS/assets/f0353-01.png
typealias DoubleConversion = (Double) -> Double

A

This {YP‘ alias (Double) -> Double

means that we tan use
DaubleConversion in place
of (Double) > Double.

DoubleConversion





OEBPS/assets/f0117-01a.png
The tode needs to
produte this output

Rectangle O has area 15. It is not a square.
Rectangle 1 has area 36. It is a square.

Rectangle R has area 63. It is not a square.
Rectangle 3 has area 96. It is not a square.





OEBPS/assets/f0372-01.png
val doublelnts = ints.map { it * 2 )KRE-‘E&"{ z&l,i:;“:ams
&, 3





OEBPS/assets/f0136-02.png
image
food

habitat
hunger

image
food
habitat






OEBPS/assets/f0002-01.png
A language that's
designed for computers
AND humans? Awesome!






OEBPS/assets/f0355-01.png
Lambdas
fun main(args: Array<String>) {
Remove these lines.

src

Lambdas.kt
//Convert 2.5kg to Pounds

println("Convert 2.5kg to Pounds: ${getConversionLambda ("KgsToPounds") (2.5)}")
J/pefine two conversion lambdas ( Use getConversionlambda to get two lambdas.
val kgsToPoundsLambda = getConversionLambda ("KgsToPounds")
val poundsToUSTonsLambda = getConversionLambda ("PoundsToUSTons"

Create a lambda that converts a
//Combine the two lambdas to create a new one Yﬁ—DwHC £rom kilograms to US tons.
val kgsToUSTonsLambda = combine (kgsToPoundsLambda, poundsToUSTonsLambda)

//Use the new lambda to convert 17.4 to US tons Use the lambda to convert
val value = 17.4 v 174 Kilograms 4o US tons.
println("$value kgs is ${convert(value, kgsToUSTonsLambda)} US tons")





OEBPS/assets/f0243-04.png
if (r is Wolf) { This will compile, but i v no longer
val Wolf = r as Wolf & holdsa vefevente 4o a Wolf objeet,
wolf.eat () you'll get an exteption at vuntime.





OEBPS/assets/f0016-01.png
o Do something (statements)

var x = 3

val name = "Cormoran"
x =x * 10

print ("x is $x.")

//This is a comment

o Do something again and again (loops)

while (x > 20) {
x=x-1
print (" x is now $x.")

}

for (i in 1..10) {
x=x+1

print(" x is now $x.")

o Do something under a condition (branching)

if (x == 20) (
println(" x must be 20.")
} else {
println(" x isn't 20.")
}
if (name.equals("Cormoran”)) {

println("$name Strike")





OEBPS/assets/f0406-02.png
srobatbcope. faunch 1 < Heve, we've launching the eovoutine

delay(1000) then delaying its code for | second.
//code that runs after 1 second





OEBPS/assets/f0426-01.png
package com.hfkotlin.mypackage
y——— DuckManager is an object
object DuckManager {
val allDucks = mutableListOf<Duck>()
It has a property named allDucks,
fun herdbucks() {  and a function named herdDucks()
//Code to herd the Ducks





OEBPS/assets/f0037-02.png
&

Short
var Short





OEBPS/assets/f0173-03.png
class Vehlcle : Roamable {

This tode overrides the
voam() function that the
Vehicle class inherits £rom
the Roamable interface.

override fun roam() {

println("The Vehicle is roaming")





OEBPS/assets/f0372-02.png
This treates a new List, and

val groceryNames = groceries.map { it.name } <— Populates it with the name of
eath Grotery item in groteries.





OEBPS/assets/f0410-01.png
dependencies {

1) version 53 of the
testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.3.1' / Jiknit libraries to

test { useJUnitPlatform() } the projeet. Change
the mumbers if

You want to use a
different version.

These lines add
testImplementation 'org.junit.jupiter:junit-jupiter-api:5.3. )





OEBPS/assets/f0331-02.png
Vi Y.

$ {x:Int->
& A “The value is $x” )
|
msg|. (Int) -> String
val The lambda’s ~ The lambda’s
(Int) -> String  parameter vebuen type
type.

&

{x:Int,y:Int >x+y}

‘
(Int, Int) -> Int
——
Sa This type has two Int parameters
(int, |:8 >int and an [nt veturn value:
g%/_\ ) { “Hello!” )
2 A
i
9’\”""9 () -> String
val Even if the lambda
() -> String has no parameters,

its type definition
still ineludes the ()<





OEBPS/assets/f0208-03.png
With named arquments, the order in

h eciby the value of eath

val r = Recipe(mainIngredient = "Beef", —





OEBPS/assets/f0181-02.png
val animal: Animal = Wolf()
if (animal is Wolf) {

animal.eat () S—The compiler knows that the ol {L{
} is a Wolf, so calls its eat() fune

eat()

Wolf

val Animal





OEBPS/assets/f0389-01.png





OEBPS/assets/f0393-01.png
fun main(args: Array<String>) {
val myMap = mapOf ("A" to 4, "B" to 3, "C" to 2, "D" to 1, "E" to 2)
var x1 = ""

The eandidate var x2 = 0

tode goes here. D

println("$x1$x2")

Candidates: Possible output:

x1 = myMap.keys.fold("") { x, y => x + y}

10

%2 = myMap.entries.fold(0) { x, y -> x * y.value }

ABCDEO
X2 = myMap.values.groupBy { it }.keys.sumBy { it }

ABCDE48
x1 = "ABCDE"
x2 = .values. fold (12 > x -

myMap.values.fold(12) { x, y => x - y } 43210

X2 = myMap.entries.fold(1) { x, y > x * y.value } 432120
x1 = myMap.values.fold("") { x, y > x +y } 48

%1 = myMap.values.£0ld(0) { x, y —> x + y } 125
. toString () /

x2 = myMap.keys.groupBy { it }.size






OEBPS/assets/f0078-02.png
We'll update the getUserChoice

unetion a few Pages ahead.
fun getUserChoice (optionsParam: Array<String>): String {

//Bsk the user for their choice

print ("Please enter one of the following:")
for (item in optionsParam) print(" $item")
)

//Read the user input

val userInput = readLine ()~ This veads the user’s input from the standard input
} stream. [n our ease, this is the output window in the [DE.

println(





OEBPS/assets/f0198-01.png
val rl = Recipe("Thai Curry”, false)

title: “Thai Curry”
@ isVegetarian: false

Recipe
val Recipe





OEBPS/assets/f0171-02.png
interface Roamable {

fun roam () S— This is how You define an abstract function in an interface





OEBPS/assets/f0022-01.png
fun main{arg:

Array<string>)

(1f (x == ) "Yab" else "Dab")

"hat)

) println("Do")






OEBPS/assets/f0296-02.png
‘lass Contest<T: Pet> ( Tisa generic type Contest<T: Pet>
//More code here that must be Pet, or
one of its subtypes.






OEBPS/assets/f0172-01.png
interface Roamable { Just as with abstract funetions, (interface)
val velocity: Int <— there’s no need to prefix an abstract Roamable
) property with the abstract keyword.

velocity






OEBPS/assets/f0281-01.png
data class Recipe(var name: String) <— Add the Recipe data class

fun main(args: Array<String>) {

Add this
tode.

var mShoppingList = mutableListOf ("Tea", "Eggs", "Milk")
println("mShoppingList original: $mShoppingList")
val extraShopping = 1istOf ("Cookies", "Sugar", "Eggs")

mShoppingList.addAll (extraShopping)
println("mShoppingList items added: $mShoppingList")
if (mShoppingList.contains("Tea™)) {

mShoppingList.set (mShoppingList.indexOf ("Tea"), "Coffee")

}

mShoppingList.sort ()

println("mShoppingList sorted: $mShoppingList")
mShoppingList.reverse ()

println("mShoppingList reversed: $mShoppingList")

val mShoppingSet = mShoppingList.toMutableSet ()
println("mShoppingSet: $mShoppingSet")

val moreShopping = setOf ("Chives", "Spinach", "Milk")
mShoppingSet.addAll (moreShopping)
println("mShoppingSet items added: $mShoppingSet")
mShoppingList = mShoppingSet.toMutableList ()
println("mShoppingList new version: $mShoppingList")

Val rl = Recipe("Chicken Soup")
val r2 = Recipe("Quinoa Salad")
val r3 = Recipe("Thai Curry")
val r4 = Recipe("Jambalaya")
val r5 = Recipe("Sausage Rolls")

Collections

src

[

Collections.kt

val mRecipeMap = mutableMapOf ("Recipel” to rl, "Recipe2" to r2, "Recipe3" to r3)

println("mRecipeMap original: $mRecipeMap")

val recipesToAdd = mapOf ("Reciped” to rd, "Recipe5" to rS5)

mRecipeMap .putAll (recipesToAdd)
println("mRecipeMap updated: $mRecipeMap")
if (mRecipeMap.containsKey ("Recipel™)) {

println("Recipel is: ${mRecipeMap.getValue ("Recipel")}")





OEBPS/assets/f0417-01.png
package com.hfkotlin.myotherpackage
This is a different package.
fun main(args: Array<string>) (
val duck = .com.hfkotlin.mypackage.Duck,)
This is the fully qualified name.





OEBPS/assets/f0299-02.png
catContest.addScore (Cat ("Fuzz Lightyear™), oU)
catContest.addScore (Cat ("Katsu"), 45)
val topCat = catContest.getWinners().first() €—

getWinners() vetuens @ MutableSet<Cat>
because we've specified that eatContest
must deal with Cats.





OEBPS/assets/f0255-01.png
X
E String
&

AN

ﬁ String

List

“Tea”

“Coffee”

SSA List allows
duplicate values.





OEBPS/assets/f0060-02.png
Choices

Result

Scissors, Paper

The Scissors choice wins, as Scissors can cut Paper.

Rock, Scissors

=
The Rock choice wins, as Rock can blunt Scissors.— >

Paper, Rock

The Paper choice wins, as Paper can cover Rock.






OEBPS/assets/f0313-02.png
We've adding a Vet<T> to the Contest
consbruthor so that you can't ereate 3

L Conbest vithout assigring 3 Vet to it

class Contest<T: Pet>(var vet: Vet<T>) {
val scores: MutableMap<T, Int> = mutableMapOf ()

fun addScore(t: T, score: Int = 0) {
if (score >= 0) scores.put(t, score)

fun getWinners(): MutableSet<T> {
val winners: MutableSet<T> = mutableSetOf ()
val highScore = scores.values.max ()
for ((t, score) in scores) {
if (score == highScore) winners.add(t)
}

return winners





OEBPS/assets/f0416-02.png
package com.hfkotlin.mypackage

class Duck
This is a single souree File, so Duck

and doStuk are added to the
package comhfkotlinmypackage

fun doStuff() {






OEBPS/assets/f0380-02.png
You didn't need £o
use these snippets

values

maxBy()






OEBPS/assets/f0071-01.png
So when you pass a value to a function,
you're really passing it a reference to

an object. Does this mean you can make
changes to the underlying object?






OEBPS/assets/f0346-02.png
fun unless(

fun

if |

main(args: Array<String>) {
val options = arrayOf ("Red”, "Amber", "Green")
var crossWalk

options|[ (Math.random() * options.size).toInt()]
Green") {
println("walk!")

if (crosswWalk

)
) ,
unless (crossialk == "Green®) (&— Peint ‘Stopl” unless erosshalk
println("Stop!")

“Geen'






OEBPS/assets/f0423-01.png
tun mainfargs: Array<sString>) {

val messageSuccess = MessageSuccess ("Yay!")

val messageSuccess2 MessageSuccess ("It worked!")

val messageFailure = MessageFailure ("Boo!", Exception("Gone wrong."))

) messageFailure is a subtype of
var myMessageType: MessageType = messageFailure &MessascTypc, s0 we La»Y::sngn
it to myMessage Type





OEBPS/assets/f0101-01.png
= “Fido”

<
&
name String
m 70
Int
& /_\,\e“mxed"

breed String

val String





OEBPS/assets/f0298-01.png
fun getWinners() : MutableSet<T> {

et the highest value from stoves.

val highScore = scores.values.max () Contest<T: Pet>
val winners: MutableSet<T> = mutableSetOf () scores
for ((t, score) in scores) {
if (score == highScore) winners.add(t) ;ifvsﬁ:r:e's
} NAdd any eontestants with the
return winners €\ highest score to a MutableSet.

b Reburn the MukableSet of winners.





OEBPS/assets/f0067-04.png
fun getGameChoice ( )=

optionsParam[ ]

Array<string> ' optionsParam: ' tolnt()
Math. random () optionsParam D ]






OEBPS/assets/f0115-01.png
name
weight
breed

activities
weightinKgs






OEBPS/assets/f0399-02.png
New Project

8006

~| Use auto-import

Group modules: () using explicit module groups @ using gualified names

[ Create separate module per source set
(O Use default gradle wrapper (recommended)
Use local gradle distribution

Gradle home:
2 Use Project JDK (java version "1.8.0_102", path: /Library/Java/JavaVirtual...k1.8.0_102.jdk/Contents/Home)

Gradle JVM:

Pecept the default values by
clieking on the Next button-

7 | Cancel






OEBPS/assets/f0100-01.png
“Fido”
° ° 70 “Mixed”

String
Int String





OEBPS/assets/f0323-01.png
//Food types

open class Food

class VeganFood: Food ()

//sellers
interface Seller<out T>

class FoodSeller: Seller<Food>

class VeganFoodSeller: Seller<VeganFood>

//Consumers

interface Consumer<in T>

class Person: Consumer<Food>

class Vegan: Consumer<VeganFood>

fun main(args: Array<String>) {
var foodSeller: Seller<Food> This line won't tompile, as it’s assigning
foodSeller = FoodSeller () a S¢]|"<V¢93nFood) toa Se“cr; o%d>»
foodSeller = VeganFoodSeller () &—To make it ompile, we must previx

with out in the Seller interkace.

var veganFoodConsumer: Consumer<vVeganFood>
veganFoodConsumer = Vegan ()
veganFoodConsumer = Person ()

This line won't eompile, as it's assigning a Consumer<Food>

1o a Consumer<VeganFood>. To make it compile, we must
prefix T with in in the Consumer inkev-fae.





OEBPS/assets/f0359-01.png
fun myFunl(x: Int = 6, y: (Int) -> Int = 7): Int { This won't compile, as it assigns a

e default Int value of 7 4o a lambda.
R '

fun myFun2(x: Int = 6, y: (Int) -> Int = { it }) { This won't compile because

return y(x

) ~This line veburns an Int.

the function veturns an
Int which isn't declared.

fun myFun3(x: Int = 6, y: (Int) -> Int = { x: Int => x + 6 }): Int {
return y (x) This ode tompiles. [ts parameters have default values of
! the corveet type, and its vetun type is corvectly declared.
fun myFund (x: Int, y: Int, This code compiles. The =
z: (Int, Int) -> Int = {
veoTnt, yi Tt o x4y vaviable is assigned a valid
bt lambda as its default value.
z (%, y)
}
fun myFun5 (x: (Int) -> Int = { This code compiles. The x

println(it)
it + 7

x(4)

variable is assigned a valid
lambda as its default value, and
this lambda spans multiple lines.





OEBPS/assets/f0244-04.png
Not legal as you  try { callRiskyCode() }
can't put code—y

::jwé::g‘étyy catch (e: BadException) { }

x =1





OEBPS/assets/f0356-01.png
The funttion

goes heve.
“

data class Grocery(val name: String, val category: String, & This is the Grotery
val unit: String, val unitPrice: Double) data elass.

fun main(args: Array<String>) {

val groceries = listOf (Grocery ("Tomatoes", "Vegetable", "lb", 3.0),
P‘r_a‘“ Grocery ("Mushrooms", "Vegetable", "lb", 4.0),

v:::,c':: Grocery ("Bagels”, "Bakery", "Pack”, 1.5),

searth Grocery("Olive oil", "Pantry", "Bottle", 6.0),

Lunttion.

Grocery ("Ice cream”, "Frozen", "Pack", 3.0))
println("Expensive ingredients:")
search (groceries) {i: Grocery -> i.unitPrice > 5.0}

println("All vegetables:")

search(groceries) {i: Grocery -> i.category == "Vegetable"}

println("All packs:")

search (groceries) {i: Grocery -> i.unit

"Pack"}





OEBPS/assets/f0129-01.png
Animal

Hippo

[t makes sense 4o
say “a Hippo [S—A
Animal”, so Hippo
¢an sensibly be a
subtlass of Animal.





OEBPS/assets/f0376-02.png
You ¢an also update the itemNames
variable inside £he body of the
lambda that's passed to forEath.

var itemNames = ""
groceries.forEach({ itemNames += "${it.name} " })

println("itemNames: $itemNames")





OEBPS/assets/f0098-02.png
name: “Fido”
‘weight: 70
breed: “Mixed”

Dog





OEBPS/assets/f0305-01a.png
(TKK

Pets
Contest
Retailers
Vet





OEBPS/assets/f0023-02.png
Click
on this—3
button to
exetute
tode in

the REPL.

/Library/Java/JavaVirtualMachines/jdk1.8.0_102. jdk/Contents/Home/bin/java ...
Welcome to Kotlin version 1.3.0-rc-146 (JRE 1.8.0_102-b14)
Type :help for help, :quit for quit

W Run: . Kotlin REPL (in module MyFirstApp) - o —

2
x
v

printin("I like turtles!")
I like turtles!

2| S Here's our avtput

Onte you've exetuted the code you want to
try out, the REPL's veady for You to add
a new snippet. We'll do that next.

B Terminal = 0:Messages I, 4:Run : TODO € Event Log

Compilation completed successfully in 12 s 161 ms (4 minutes ago) 11 n/a UTF-8: W &






OEBPS/assets/f0244-02.png
try {
LW
setWorkRatePercentage (110) The scborkRatePertentane) function
can't make anyone work at 110%, so the

} catch(e: IllegalArgumentException) {<—
caller has 4o deal with the problem.

//Code to handle the exception





OEBPS/assets/f0297-03.png
class Contest<T: Pet> {

val scores: MutableMap<T,

Int> = mutableMapOf ()

fun addScore(t: T, score: Int = 0) {

if (score >= 0) scores.put(t, score)

//More code goes here

Put the contestant and its
seore in the MutableMap,
so long as the store is
greater than or equal to O.

Contest<T: Pet>

scores

addScore






OEBPS/assets/f0419-03.png
class MyClass (x: Int)<&— By default, the MyClass primary constructor is public





OEBPS/assets/common10.png





OEBPS/assets/f0117-01.png
rix] area 4

r[x] isSquare 3

rix] get()=  set() =

get)=  set()=





OEBPS/assets/f0xxx-02.png





OEBPS/assets/f0014-01.png
600 MyFirstApp [~/IdeaProjects/MyFirstApp] - .../src/App.kt [MyFirstApp] Fa
14 MyFirstApp | 1 src [ N | Add Configuration... Q x
Project ~ B T & — Ak m
= MyFirstApp ~/IdeaProjects/MyFirsiApp vE
idea This shows you which H
e file You're editing—in =
] o this ca: >
£ % MyFirstApp.iml se, Appkt z
3> Il External Libraries 5
& P Scratches and Consoles
* This is Inkell) [DEA's code
H editor pane. [t's curvently
g empty as our version of Appkt
2 doesn't contain any tode yet-
&
B Terminal Q Event Log
[ Configure Kotlin: Added fUsers/dawng/Library/Application Support/IdealC2018.... (12 minutes ago) 1:1 n/a UTF-8 ¢ 4spaces : ‘W &






OEBPS/assets/f0299-03.png
The tompiler prevents you from adding non—Cats
catContest.addScore (Dog ("Fido"), 23) K—fp a Contest<Cat>, so this line won't Ctompile.






OEBPS/assets/f0199-03.png
“Chicken Bhuna”

7

] String
title

val String >
&
£

vegetarian
ot

false
Boolean

val Boolean





OEBPS/assets/f0385-01.png
O

The fold A s

unetion Int N

moves to . y

iy d o mnninig Int

ke nt foumy The Funetion adds the

tollection. nt value of the setond item

’ v o the value of vunningSum.
This new value is assigned
Int 4o vunningSum.

List<int>





OEBPS/assets/f0291-01.png
MutableList inherits from the Li

MutableCollettion interfaces. Whaii:d
The “E” is a placeholder for Eype (the value of “E”) you specify for the
the REAL type you use when MutableList is automatically used for the
Yoo dedlare 3 WakableL ist. type of the List and MutableCollection.

interface MutableList<E> : List<E>, MutableCollection<E> {

fun add(index: Int, element: E): Unit

Whatever “E” is determines what
/Hore code Kind of things you've allowed to

add to the MutableList





OEBPS/assets/f0041-02.png
) The toLong() unttior
treates a new Long

i toLong() & object with the same

value as the [nt-

Long






OEBPS/assets/f0206-01.png
(Data)

data class Recipe(val title: String, Recipe
val mainIngredient: String, title

mainingredient

isVegetarian
val difficulty: String) { difficulty

val isVegetarian: Boolean,






OEBPS/assets/common22.png
T TK

Build application
Add function
Update function
Use REPL





OEBPS/assets/f0207-01.png
We've not spetified values Yor the
isVegebarian and diffieulty property values,
so the dbject uses their default values.

val r = Recipe ("Spaghetti Bolognese", "Beef")
title: “Spaghetti Bolognese”

mainingredient: "Beef"
isVegetarian: false
difficulty: “Easy”

val Recipe





OEBPS/assets/f0258-02.png
X string

m— The set() function sets
Q@“/\) uQoffee” & the veferente held at a

‘ ? particular index to that

of a different object

String

o“Eggs"

String

mShopping
!

val
MutableList<String>






OEBPS/assets/f0303-01.png
class PetOwner

val pets = mutableListOf(__)

fun add(,

fun remove (

pets. remove ()
pets holds a veference
%p{caith pet owned. [ts
initialized with a value — :
prioyeed vin . £ pets: MutableList<T>
PetOuner constructor. | addET) N
remove(t:T))

PetOwner<T: Pet>

fun main(args: Array<String>) {

val catFuzz = Cat("Fuzz Lightyear")

val catKatsu

Cat ("Katsu")
The add and vemove functions are Vel FlemFiany = LR (T HeGra)
used to update the pets property.

val catOwner
The add funttion adds a ve#r:maz,

catOwner.add (catKatsu)
and the vemove function vemoves one

PetOwner






OEBPS/assets/f0243-01.png
(interface)
Roamable

Animal

hunger






OEBPS/assets/f0429-01.png
Defines a funttion named toDollar(), which extends Double.
fun Double.toDollar () : String {

zatuzn "$8this"S—Reburn the current value, prefixed with £





OEBPS/assets/f0256-02.png
. . [¥'s 2 g00d idea to thetk the size ok
£ (shopping.size > 0) ( ST e Lot Bivst betause ge£0) will thvow
println(shopping.get(0)) an Away|hd¢x0uw‘(:BwndsE*c:yﬁm

//Prints "Tea" if it's passed an invalid index.





OEBPS/assets/f0091-01.png
My love life got much
better after I wrote
myself a new Boyfriend class.






OEBPS/assets/f0193-02.png
) The tompiler spots that
val myhrray = arrayOf (Car(), Guitar(), Giraffe()) <— eath abject in the aredy

has a tommon supertype
of Any, so it eveates an

aveay of type Avvay<hny>






OEBPS/assets/f0244-03.png
Not legal as
)
callRiskyCode()  there’s no try
catch (e: BadException) {





OEBPS/assets/f0252-01.png
© 0 06 06 0 0 0 o

Q

Make an array:

var array = arrayOf(l, 3, 2) —

Make an array initialized with nulls: Creates an arvay of size 2 iihialized
vith null values. [£s like saying:

var nullArray: Array<String?> = arrayOfNulls(2) arvay0§Goul, mlD

Find out the size of the array:

4 avray has space for three 2 3
val size = array.size items, so its size is 3.

Reverse the order of the items in the array:

1

& Flips the order of the items in the array.

array.reverse ()

Find out if it contains something:
val isIn = array.contains (1) <— 7ay tontains |, so this veturns true

Calculate the sum of its items (if they're numeric):

val sum = array.sum()<— [his vebwnsbas2+3+1 =6

Calculate the average of its items (if they're numeric):

val average = array.average() <<—This veturns a Double—in this tase, (2 + 3 + 1)/3 = 2.0.

Find out the minimum or maximum item (works for numbers,
Strings, Chars and Booleans):

min() vetuens |, as this is the lowest value in the
array.min()}

array. max() veburns 3 as this is the highest

array.max ()

Sort the array in a natural order (works for numbers,
Strings, Chars and Booleans):
Changes the order of the items in arvay so

array.sort() they 9o from the lowest value o the highest,
or from false to true.






OEBPS/assets/f0107-01.png
class Dog(val name: String, var weight: Int, breed param: String)

var activities = arrayOf ("Walks")

val breed = breed_param.toUpperCase ()

This is an
initializer block. [t
tontains the code
that you want to
vuns when the Doy

println("Dog $name has been created.")

object is initialized-

Dog

name
weight
breed
activities

bark()






OEBPS/assets/f0342-02.png
ﬂ

fahrenheit

val Double

Double

68.0





OEBPS/assets/f0107-02.png
class Dog(val name: String, var weight: Int, breed param: String) {

The properties defined in the constructor are eveated first

init {

println("Dog $name has been created.") ) This initializer block vuns next.

arrayOf ("Walks") These properties are eveated after the

var activities Fivst imitializer block has Linished.

val breed = breed_param.toUpperCase ()

init {
println("The breed is §breed.™ The second initializer blotk vuns after
, the properties have been ereated.





OEBPS/assets/f0341-02.png
20.0

T will plug x into
my body's formula.
Double

P o
0
val Double m
& \
These are the convert —> 1

funttions pavameters. onverter (Double) -> Double

{ ¢: Double > ¢ * 1.8 + 32 )

—
val (Double) -> Double





OEBPS/assets/f0420-01.png
The enum tlass has three values:
enum class BandMember { JERRY, BOBBY, PHIL }<— JERRY, BOBBY and PHIL.





OEBPS/assets/f0195-01.png
Recipe
class Recipe(val title: String, val isVegetarian: Boolean) { title
) isVegetarian






OEBPS/assets/f0011-02.png
172 MyFirstApp
[ Project ~
v W MyFirstApp ~/IdeaProjects/MyFirstApp
> Buidea
st

a MyFirstApp.iml
» 1l External Libraries
T Scratches and Consoles

This is a folder
explover. Use it to
navigate the Files and
foldevs in your project-

The eontents of any
Kotlin files you open
vill be displayed heve.

F
;
K

1. Z:Structure

B Terminal : TODO QeventLog
I0_Configure Kotlin: Added /Users/dawng/ Library/Appication Support/IdealC2018.3 /Kotlin/ kotlinc/lib/kotlin-: minutes ago) &






OEBPS/assets/f0375-01.png
groceries.forEach { printin(it.name) }<—— Note that { println(itname) } is a lambda

which we've passing to the forEath function
The lambda body ean have multiple lines.





OEBPS/assets/f0273-03.png





OEBPS/assets/f0079-01.png
Mateh eath
candidate
with one
fhe possible
outputs

fun main(args: Array<String>
var x = 0
var y = 20

for (outer in 1..3) {

for (inner in 4 downTo 2) {

{

&+ The candidate
tode goes heve.

println("$x $y")

Candidates:
X += 6
x—
y=x+y
vy=1

=x+y

=x -7
x=y
y++

Possible output:
4286 4275
27 23

27 6

81 23

27 131

18 23

35 32

3728 3826





OEBPS/assets/f0424-04.png
class Outer {

val x = "This is in the Outer class"

class Nested {

fun getX() = "Value of x is: $x"—Nested can't see % as it's defined in the
) Outer ¢lass, so this line won't compile.





OEBPS/assets/f0290-01.png
Without generics,
thered be no vay
to declare what
type of objects the
MutableList should
¢ontain.





OEBPS/assets/f0024-01.png
val x = 6

val y = 8
) &— This prints the larger of two numbers, x and Y.

println(if (x > y) x else y.





OEBPS/assets/f0234-02.png
Here's the NullPointexException, vith 3
stack trate Lelling you wheve it occurred

Exception in thread "main" kotlin. KotlinNullPointerException
at AppKt.main(Aj 2
(APP.Kt:48) S The exteption happened ot line 45.





OEBPS/assets/f0198-02.png
val rl

val r2

&

val Recipe

Reclpe ("Thai Curry”, false)

rl.copy (isVegetarian = true) < — of

Recipe

title: “Thai Curry”
isVegetarian: false

This ¢eof
&£

val Recipe

Recipe

pies vl’s object, changing the val
the isVegetarian \wofer{?/ {?p ‘(::u:- -

title: “Thai Curry”
isVegetarian: true





OEBPS/assets/f0299-05.png
val dogContest: Contest<Dog>
Heve, you tan use Contest() instead of Contest<Dog>() as the
4 _ ) Y 09
ogContest = Contest () & compiler ¢an infer the object Lype from the variable type.





OEBPS/assets/f0096-02.png
myDog.weight = 75 <— Go to myDog, and set its weight 1o 5.





OEBPS/assets/f0419-01.png
open class Parent { .
var a = 1 As b is private, it can only be used inside this .
ivate b = 2 &— tlass. [t can't be seen by any subtlasses of Paren
private var b =

protected open var ¢ = 3

internal var d = 4

The Child class can see the a and ¢ properties, and
. =— tan also attess the d property if Parent and Child are
class Child: parent( defined in the same module. Child tan't, however, see
override var ¢ = 6

the b property as it's visibility modifier is private.
Y





OEBPS/assets/f0315-01.png
Here’s the in prefix
class Vet<in T: Pet> {

fun treat(t: T) {

println("Treat Pet ${t.name






OEBPS/assets/f0380-01.png
abstract class Pet(var name: String)

class Cat(name: String) : Pet (name)
class Dog(name: String) : Pet (name)
class Fish(name: String) : Pet (name)

class Contest<T: Pet>() {

var scores: MutableMap<T, Int> = mutableMapOf ()
fun addScore(t: T, score: Int = 0) {
if (score >= 0) scores.put(t, score)
The stores are held as Int values in a MutableMap
named scores, so this gets the highest store value.
fun getWinners(): Set<T> { \L Filter stoves 4o aet
val highScore =

the entries whose

val winners = scores_ 7é~value is hi.tSCmrc.

winners { println("Winner: ${ i } Then use Cr
. property to ge

zetumn winners N Use the forEach function '(;a-B the winners.

print the name of each winner.





OEBPS/assets/f0238-02.png
You didn't need £o
use Lhese snippets





OEBPS/assets/f0248-01.png
fun main(args: Array<String>) {
Output when test =

val test: String = "No"
oy { Start try
println("Start try") Start \—isky tode
riskyCode (test)
isl
println("End try") End vi ky tode
} catch (e: BadException) { End tey
println("Bad Exception") )
Finally
} finally {
println("Finally") End of main
3
println("End of main")
, Output when test = "Yes™
class BadException : Exception () Start try
Start visky code
fun riskyCode (test: String) {
println("Start risky code") Bad Exception
Finally
if (test == "Yes") {
throw BadException () End of main
+
println("End risky code")






OEBPS/assets/f0064-02.png
fun main(args: Array<String>) {

£ :
00 0 ™~ This vuns a funttion named ‘Foo






OEBPS/assets/f0149-01.png
class Wolf: Canine() {

b

override val image = "wolf.jpg"
override val food = "meat"
override val habitat = "forests"

override fun makeNoise() {
println("Hooooowl!")
b

override fun eat() (
println("The Wolf is eating $food")
3

v Add the Vet class.

class Vet {

}

fun giveShot(animal: Animal) {
//Code to do something medical
animal.makeNoise ()

Ve

Add the main funttion

fun main(args: Array<String>) {

val animals = arrayOf (Hippo() , Wolf())

for (item in animals) {
item.roam()
item.eat()

Loop through an
array of Animals.

val vet = Vet()

val wolf = Wolf ()

val hippo = Hippo() )

vet.giveshot (wolf)~, Call the Vet's giveShot

vet.giveShot (hippo) ) funttion, passing in two
Animal subtypes.

Animals
src
L
Animals .kt
Animal
Vet image
food
hunger
giveShot() habitat
makeNoise()
eat()
roam()
sleep()
Hippo Canine
image
food
habitat roam()
makeNoise()
eat()

Wolf
image
food
habitat
makeNoise()
eat()






OEBPS/assets/f0373-02.png
groceries
\

val
List<Grocery>

List<Grocery>

O

Grocery

@)

Grocery

@)

Grocery

@)

Grocery

“Tomatoes”
3.0

“Mushrooms’
4.0

“Bagels”
15

“Olive oil”
6.0

List<Double>

The eall to the map function
ereates 3 new List tontaining
veferentes to two Doubles





OEBPS/assets/f0235-01.png
We've using 8 tut—down version
of the Wolf class we used in
cavlier thaptevs in order to

Create the Wolf elass. Keep the tode simple-

class Wolf {

Wolf
var hunger = 10

hunger
food

val food = "meat"

myFunction()

fun eat () {

println("The Wolf is eating $food")

Create the MyWolf elass.
v i
class MyWolf (

var wolf: Wolf? = Wolf()

Null Values
fun myFunction() {
wolf?.eat () src
+
' Crca{:z{hg 9etAlphaWolf funetion Appkt

fun getAlphaWolf () : Wolf? {
return Wolf ()





OEBPS/toc01.html
		Authors of Head First Kotlin

		how to use this book: Intro



		Who is this book for?





		Who should probably back away from this book?







		We know what you’re thinking


		We know what your brain is thinking


		Metacognition: thinking about thinking


		Here’s what WE did:


		Here’s what YOU can do to bend your brain into submission


		Read me


		The technical review team


		Acknowledgments


		O’Reilly






		Table of Contents (the real thing)

		1. getting started: A Quick Dip




		Welcome to Kotlinville



		It’s crisp, concise and readable


		You can use object-oriented AND functional programming


		The compiler keeps you safe







		You can use Kotlin nearly everywhere


		Java Virtual Machines (JVMs)


		Android


		Client-side and server-side JavaScript


		Native apps







		What we’ll do in this chapter


		Install IntelliJ IDEA (Community Edition)


		Let’s build a basic application




		1. Create a new project


		2. Specify the type of project


		3. Configure the project







		You’ve just created your first Kotlin project


		Add a new Kotlin file to the project


		Anatomy of the main function


		Add the main function to App.kt









		Test drive


		What the Run command does







		What can you say in the main function?


		Loop and loop and loop...






		Simple boolean tests







		A loopy example






		Test drive







		Conditional branching


		Using if to return a value


		Update the main function





		Test drive







		Code Magnets


		Using the Kotlin interactive shell


		You can add multi-line code snippets to the REPL






		It’s exercise time







		Code Magnets Solution


		Your Kotlin Toolbox






		2. basic types and variables: Being a Variable




		Your code needs variables





		A variable is like a cup







		What happens when you declare a variable





		The value is transformed into an object...


		...and the compiler infers the variable’s type from that of the object







		The variable holds a reference to the object




		val vs. var revisited







		Kotlin’s basic types


		Integers


		Floating points


		Booleans


		Characters and Strings







		How to explicitly declare a variable’s type








		Declaring the type AND assigning a value







		Use the right value for the variable’s type


		Assigning a value to another variable


		We need to convert the value



		An object has state and behavior


		How to convert a numeric value to another type







		What happens when you convert a value


		Watch out for overspill


		Store multiple values in an array





		How to create an array







		Create the Phrase-O-Matic application


		Add the code to PhraseOMatic.kt


		The compiler infers the array’s type from its values










		How to explicitly define the array’s type







		var means the variable can point to a different array


		val means the variable points to the same array forever...





		...but you can still update the variables in the array







		Code Magnets


		Code Magnets Solution


		Your Kotlin Toolbox






		3. functions: Getting Out of Main




		Let’s build a game: Rock, Paper, Scissors






		How the game will work







		A high-level design of the game


		Here’s what we’re going to do



		Get started: create the project







		Get the game to choose an option





		Create the Rock, Paper, Scissors array







		How you create functions






		You can send things to a function







		You can send more than one thing to a function



		Calling a two-parameter function, and sending it two arguments


		You can pass arguments to a function so long as the argument type matches the parameter type







		You can get things back from a function






		Functions with no return value







		Functions with single-expression bodies








		Create the getGameChoice function







		Code Magnets


		Code Magnets Solution


		Add the getGameChoice function to Game.kt


		Behind the scenes: what happens


		The story continues


		The getUserChoice function






		Ask for the user’s choice







		How for loops work


		Looping through a range of numbers


		Use downTo to reverse the range


		Use step to skip numbers in the range


		Looping through the items in an array







		Ask the user for their choice



		Use the readLine function to read the user’s input







		We need to validate the user’s input




		‘And’ and ‘Or’ operators (&& and ||)


		Not equals (!= and !)


		Use parentheses to make your code clear







		Add the getUserChoice function to Game.kt




		Test drive


		We need to print the results







		Add the printResult function to Game.kt







		Test drive







		Your Kotlin Toolbox






		4. classes and objects: A Bit of Class




		Object types are defined using classes






		You can define your own classes







		How to design your own classes


		Let’s define a Dog class


		How to create a Dog object


		How to access properties and functions








		What if the Dog is in a Dog array?







		Create a Songs application






		Test drive







		The miracle of object creation


		How objects are created









		What the Dog constructor looks like







		Behind the scenes: calling the Dog constructor


		Code Magnets


		Code Magnets Solution


		Going deeper into properties



		Behind the scenes of the Dog constructor







		Flexible property initialization


		How to use initializer blocks


		You MUST initialize your properties


		How do you validate property values?









		The solution: custom getters and setters







		How to write a custom getter


		How to write a custom setter


		The full code for the Dogs project








		Test drive







		Your Kotlin Toolbox






		5. subclasses and superclasses: Using Your Inheritance




		Inheritance helps you avoid duplicate code




		An inheritance example







		What we’re going to do


		Design an animal class inheritance structure


		Use inheritance to avoid duplicate code in subclasses


		What should the subclasses override?



		The animals have different property values...


		...and different function implementations







		We can group some of the animals


		Add Canine and Feline classes


		Use IS-A to test your class hierarchy







		Use HAS-A to test for other relationships







		The IS-A test works anywhere in the inheritance tree


		We’ll create some Kotlin animals


		Declare the superclass and its properties and functions as open


		How a subclass inherits from a superclass


		How (and when) to override properties


		Overriding properties lets you do more than assign default values


		How to override functions





		The rules for overriding functions







		An overridden function or property stays open...




		...until it’s declared final







		Add the Hippo class to the Animals project


		Code Magnets


		Code Magnets Solution


		Add the Canine and Wolf classes


		Which function is called?


		Inheritance guarantees that all subclasses have the functions and properties defined in the superclass






		Any place where you can use a superclass, you can use one of its subclasses instead







		When you call a function on the variable, it’s the object’s version that responds


		You can use a supertype for a function’s parameters and return type


		The updated Animals code






		Test drive







		Your Kotlin Toolbox






		6. abstract classes and interfaces: Serious Polymorphism




		The Animal class hierarchy revisited


		Some classes shouldn’t be instantiated




		Declare a class as abstract to stop it from being instantiated







		Abstract or concrete?


		An abstract class can have abstract properties and functions




		We can mark three properties as abstract







		The Animal class has two abstract functions


		How to implement an abstract class


		You MUST implement all abstract properties and functions


		Let’s update the Animals project









		Test drive







		Independent classes can have common behavior


		An interface lets you define common behavior OUTSIDE a superclass hierarchy


		Let’s define the Roamable interface




		Interface functions can be abstract or concrete







		How to define interface properties


		Declare that a class implements an interface...




		...then override its properties and functions







		How to implement multiple interfaces


		How do you know whether to make a class, a subclass, an abstract class, or an interface?


		Update the Animals project









		Test drive







		Interfaces let you use polymorphism






		Access uncommon behavior by checking an object’s type







		Where to use the is operator


		As the condition for an if


		In conditions using && and ||


		In a while loop







		Use when to compare a variable against a bunch of options


		The is operator usually performs a smart cast


		Use as to perform an explicit cast


		Update the Animals project




		Test drive







		Your Kotlin Toolbox






		7. data classes: Dealing with Data




		== calls a function named equals


		equals is inherited from a superclass named Any






		The importance of being Any







		The common behavior defined by Any


		We might want equals to check whether two objects are equivalent


		A data class lets you create data objects




		How to create objects from a data class







		Data classes override their inherited behavior


		The equals function compares property values


		Equal objects return the same hashCode value


		toString returns the value of each property







		Copy data objects using the copy function


		Data classes define componentN functions...










		...that let you destructure data objects







		Create the Recipes project




		Test drive







		Generated functions only use properties defined in the constructor


		Initializing many properties can lead to cumbersome code








		Default parameter values to the rescue!







		How to use a constructor’s default values


		1. Passing values in order of declaration


		2. Using named arguments







		Functions can use default values too


		Overloading a function












		Dos and don’ts for function overloading:







		Let’s update the Recipes project


		The code continued...


		Test drive







		Your Kotlin Toolbox






		8. nulls and exceptions: Safe and Sound




		How do you remove object references from variables?


		Remove an object reference using null






		Why have nullable types?







		You can use a nullable type everywhere you can use a non-nullable type


		How to create an array of nullable types


		How to access a nullable type’s functions and properties


		Keep things safe with safe calls


		You can chain safe calls together









		What happens when a safe call chain gets evaluated







		The story continues


		You can use safe calls to assign values...







		...and assign values to safe calls







		Use let to run code if values are not null


		Using let with array items



		Using let to streamline expressions







		Instead of using an if expression...







		...you can use the safer Elvis operator







		The !! operator deliberately throws a NullPointerException


		Create the Null Values project


		The code continued...



		Test drive







		An exception is thrown in exceptional circumstances






		You can catch exceptions that are thrown







		Catch exceptions using a try/catch


		Use finally for the things you want to do no matter what


		An exception is an object of type Exception


		You can explicitly throw exceptions


		try and throw are both expressions


		How to use try as an expression


		How to use throw as an expression







		Code Magnets


		Code Magnets Solution


		Your Kotlin Toolbox






		9. collections: Get Organized




		Arrays can be useful...


		...but there are things an array can’t handle


		You can’t change an array’s size


		Arrays are mutable, so they can be updated







		When in doubt, go to the Library


		List, Set and Map


		List - when sequence matters


		Set - when uniqueness matters


		Map - when finding something by key matters







		Fantastic Lists...





		...and how to use them







		Create a MutableList...





		..and add values to it







		You can remove a value...








		...and replace one value with another







		You can change the order and make bulk changes...













		...or take a copy of the entire MutableList







		Create the Collections project





		Test drive







		Code Magnets


		Code Magnets Solution


		Lists allow duplicate values


		How to create a Set








		How to use a Set’s values







		How a Set checks for duplicates


		Hash codes and equality



		Equality using the === operator


		Equality using the == operator







		Rules for overriding hashCode and equals


		How to use a MutableSet


		You can copy a MutableSet


		Update the Collections project





		Test drive







		Time for a Map




		How to create a Map







		How to use a Map


		Create a MutableMap






		Put entries in a MutableMap







		You can remove entries from a MutableMap


		You can copy Maps and MutableMaps


		The full code for the Collections project




		Test drive







		Your Kotlin Toolbox






		10. generics: Know Your Ins from Your Outs




		Collections use generics


		How a MutableList is defined


		Understanding collection documentation (Or, what’s the meaning of “E”?)







		Using type parameters with MutableList


		Things you can do with a generic class or interface


		Here’s what we’re going to do


		Create the Pet class hierarchy


		Define the Contest class




		Declare that Contest uses a generic type


		You can restrict T to a specific supertype







		Add the scores property






		Create the addScore function







		Create the getWinners function


		Create some Contest objects










		The compiler can infer the generic type







		Create the Generics project









		Test drive







		The Retailer hierarchy


		Define the Retailer interface


		We can create CatRetailer, DogRetailer and FishRetailer objects...




		...but what about polymorphism?







		Use out to make a generic type covariant










		Collections are defined using covariant types







		Update the Generics project







		Test drive







		We need a Vet class






		Assign a Vet to a Contest







		Create Vet objects







		Pass a Vet to the Contest constructor







		Use in to make a generic type contravariant











		Should a Vet<Cat> ALWAYS accept a Vet<Pet>?







		A generic type can be locally contravariant


		Update the Generics project










		Test drive







		Your Kotlin Toolbox






		11. lambdas and higher-order functions: Treating Code Like Data




		Introducing lambdas





		What we’re going to do







		What lambda code looks like


		You can assign a lambda to a variable







		Execute a lambda’s code by invoking it







		What happens when you invoke a lambda


		Lambda expressions have a type


		The compiler can infer lambda parameter types







		You can replace a single parameter with it







		Use the right lambda for the variable’s type







		Use Unit to say a lambda has no return value







		Create the Lambdas project





		Test drive







		You can pass a lambda to a function





		Add a lambda parameter to a function by specifying its name and type







		Invoke the lambda in the function body





		Call the function by passing it parameter values







		What happens when you call the function


		You can move the lambda OUTSIDE the ()’s...





		...or remove the ()’s entirely







		Update the Lambdas project




		Test drive







		A function can return a lambda


		Write a function that receives AND returns lambdas




		Define the parameters and return type


		Define the function body







		How to use the combine function





		What happens when the code runs


		You can make lambda code more readable







		Use typealias to provide a different name for an existing type


		Update the Lambdas project






		Test drive







		Code Magnets


		Code Magnets Solution


		Your Kotlin Toolbox






		12. built-in higher-order functions: Power Up Your Code




		Kotlin has a bunch of built-in higher-order functions


		The min and max functions work with basic types





		The minBy and maxBy functions work with ALL types







		A closer look at minBy and maxBy’s lambda parameter








		What about minBy and maxBy’s return type?







		The sumBy and sumByDouble functions








		sumBy and sumByDouble’s lambda parameter







		Create the Groceries project




		Test drive







		Meet the filter function







		There’s a whole FAMILY of filter functions







		Use map to apply a transform to your collection












		You can chain function calls together







		What happens when the code runs


		The story continues...


		forEach works like a for loop


		forEach has no return value



		Lambdas have access to variables







		Update the Groceries project






		Test drive







		Use groupBy to split your collection into groups


		You can use groupBy in function call chains


		How to use the fold function


		Behind the scenes: the fold function


		Some more examples of fold


		Find the product of a List<Int>


		Concatenate together the name of each item in a List<Grocery>


		Subtract the total price of items from an initial value







		Update the Groceries project






		Test drive







		Your Kotlin Toolbox


		Leaving town...


		It’s been great having you here in Kotlinville











		A. coroutines: Running Code in Parallel




		Let’s build a drum machine





		1. Create a new GRADLE project


		2. Enter an artifact ID


		3. Specify configuration details


		4. Specify the project name


		Add the audio files







		Add the code to the project




		Test drive


		Use coroutines to make beats play in parallel







		1. Add a coroutines dependency






		2. Launch a coroutine


		Test drive


		A coroutine is like a lightweight thread







		Use runBlocking to run coroutines in the same scope






		Test drive







		Thread.sleep pauses the current THREAD




		The delay function pauses the current COROUTINE







		The full project code




		Test drive











		B. testing: Hold Your Code to Account




		Kotlin can use existing testing libraries



		Add the JUnit library







		Create a JUnit test class


		Using KotlinTest


		Use rows to test against sets of data






		C. leftovers: The Top Ten Things: (We Didn’t Cover)




		1. Packages and imports




		How to add a package


		Package declarations







		The fully qualified name




		Type the fully qualified name...


		...or import it







		2. Visibility modifiers



		Visibility modifiers and top level code







		Visibility modifiers and classes/interfaces


		3. Enum classes








		Enum constructors







		enum properties and functions


		4. Sealed classes








		Sealed classes to the rescue!







		How to use sealed classes


		5. Nested and inner classes


		An inner class can access the outer class members


		6. Object declarations and expressions


		Class objects...







		...and companion objects







		Object expressions


		7. Extensions


		8. Return, break and continue



		Using labels with break and continue







		Using labels with return


		9. More fun with functions


		vararg


		infix


		inline







		10. Interoperability


		Interoperability with Java


		Using Kotlin with JavaScript


		Writing native code with Kotlin











		Index





OEBPS/assets/f0109-03.png
$ 7N
var myDuck = Duck () <— (reates a Dutk variable named QB
m\/Duck, and assigns it a nﬁcmn&cdﬁ
to a Dutk ob\‘)ct:{:- myDuck

Duck

var Duck





OEBPS/assets/f0352-02.png
The tombine funttion has three
instances of the funttion type

(Double) —> Double.
fun combine (lambdal: (Double) -> Double,%

lambda2: (Double) -> Double): (Double) -> Double {
return { x: Double -> lambda2 (lambdal(x)) }





OEBPS/assets/f0133-02.png
class Animal {

val
val
val

var

fun

fun

fun

fun

image = )
food = " The Animal ¢lass has properties named

imaoe, food, habitat and hunger-
habitat

hunger = 10

makeNoise ()

(
println("The Animal is making a noise")

Animals.kt
eat() {

println("The Animal is eating”)
We've defined default
implementations of the makeNoise

eat, voam and sleep funttions.
roam() {

println("The Animal is roaming")

sleep() {

println("The Animal is sleeping")





OEBPS/assets/f0070-01.png
O "Paper”
String
O "Seissors"

String

O "Rock"

String

The getGameChoice
Sunckion selects the
“Cpissovs item.





OEBPS/assets/f0207-02.png
Assigns isVegetarian a value ot
Lrue, and uses the default value

1/ Tov bhe difficulty property.

val r = Recipe ("Spaghetti Bolognese", "Tofu", true) e “Spagett Bologasse”
mainIngredient: "Tofu"
isVegetarian: true
difficulty: “Basy”

& O
w Recipe

val Recipe






OEBPS/assets/f0205-03.png
title: “Thai Curry™
> isVegetarian: false

3 mainingredient: “Chicken”
<
— Recipe
r

Recipe title: “Thai Curry”
val Recip isVegetarian: false
mainIngredient: “Duck”

Vad
&
< Recipe
r2 vl == 2 is true because vl

and v2 have matching title
and isVegetarian properties.
The == operator ignores
the mainfngredient property
because it hasn’t been
defined in the tonstructor.

val Recipe





OEBPS/assets/f0330-01.png
I need to return x +y.
xis6andyis7,so Tl
return an Int of 13.

]

‘l {x:Int,y:Int >x+y}
$

O






OEBPS/assets/f0371-02.png
val notlkrozen = groceries.filterNot { it.category

FilberNot veturns those items where
the lambda body evaluates to false.





OEBPS/assets/f0223-01.png
An Awa\/d{nng?) tan

var myArray: Array<String?> = arrayOf ("Hi", "Eello") < Told Shrings and nulls.





OEBPS/assets/f0200-01.png
Data classes sound great, but T was
wondering... Is there a definitive way of
checking whether two variables refer to the same
underlying object? It sounds like you can't rely on
the == operator because its behavior depends on

how the equals function has been implemented,
and this may vary from class to class.






OEBPS/assets/f0258-01.png
Removing an
element from a

MutableList

~tauses the
MutableList

bosheink, S

e/\
£
ms{wppi ng

val
MutableList<String>

As “Milk” has been
V‘CMOVCd, “EBSS“ moves

Lrom index 2 to index |.





OEBPS/assets/f0363-01.png
The collection was going crazy,
items everywhere, so I hit it
with a map(), gave it the old
foldRight(), then BAM! All that
was left was an Int of 42.





OEBPS/assets/f0297-01a.png
Pets
Contest
Retailers
Vet





OEBPS/assets/f0229-01.png
o class Cat(var name: String? = "") {
fun Meow() { println("Meow!") }

fun main(args: Array<string>) {
var myCats = arrayOf (Cat ("Misty"),
null,
Cat ("Socks™") )
for (cat in myCats) {
if (cat != null) {
print ("${cat.name}: ")

0 class Cat (var name: String? = null) {
fun Meow() { println("Meow!") }
}

fun main(args: Array<string>) (
var myCats = arrayOf (Cat ("Misty"),
Cat (null),
cat ("Socks™) )
for (cat in myCats) {
print ("${cat.name}: ")

cat.Meow ()
cat.Meow () }
} }
}
}
O class Cat(var name: String? = null) { o class Cat(var name: String = "") {
fun Meow() { println("Meow!") } fun Meow() { println("Meow!") }

b

fun main(args: Array<String>) {
var myCats = arrayOf (Cat ("Misty"),
null,
Cat ("Socks™") )
for (cat in myCats) {
print ("${cat?.name}: ")
cat?.Meow ()

}

fun main(args: Array<String>) {
var myCats = arrayOf (Cat ("Misty"),
Cat (null),
Cat ("Socks"))
for (cat in myCats) {
if (cat != null) {
print ("${cat?.name}: ")
cat?.Meow ()





OEBPS/assets/f0221-02.png
Setting w to null
W = null vemoves the vefevente

X 4o the Wolf object.

var Wolf? ‘Wolf





OEBPS/assets/f0037-03.png
var x: Iﬂt * hasn't been
assigned a value,

vary = x + 6 o the compiler
y aets upset.





OEBPS/assets/f0381-02.png
This is like saying “group
val groupByCategory = groceries.groupBy { it.category }<— each item in grotevies
by its eategory value”.





OEBPS/assets/f0011-03.png
Project v & -
v W MyFirstApp ~/ideaProjects/MyFIrsiApp

?n\/ Kotlin source E

iles you eveate. &

need to be addm

to the sre folder. aMyFirstApp.iml

>l External Lbraries
7 Scratches and Consoles

% Z Structore

B Terminal = 6:T0D0
Configure Kotigadded /Us:

5]






OEBPS/assets/f0xxv-01.png
T wonder how
T can trick my brain
into remembering
this stuff...





OEBPS/assets/f0431-01.png
fun myFun() {

1istOf ("A", "B", "C", "D").forEach {

if (At == CY) return S— | L, using veturn inside a lambda. When we
println(it) veach the veturn, it exits the myFunQ) function.
}

println("Finished myFun()")





OEBPS/assets/f0236-01.png
fun main(args: Array<String>) { Worr
var w: Wolf? = Wolf() -
hunger
if (W 1= null) { ; food
myFunction()
w.eat ()

var x = w?.hunger
println("The value of x is $x")

Use the Elis opevator to set y to

of hunger if w is not null
println("The value of y is $y") fz‘wvllh:u“ '.{u::i;y’w—L
3

var y = w?.hunger ?: -1

var myWolf = MyWolf ()
myWolf?.wolf?.hunger = 8
println("The value of myWolf?.wolf?.hunger is ${myWolf?.wolf?.hunger}")

var myArray = arrayOf ("Hi", "Hello", null) -l

for (item in myArray) ( Null Values
item?.let { println(it) }<E—This prints the non—null
J items in the array. src
getAlphaWolf ()?.let { it.eat() } LQ
App.kt
w = null

&— This will throw 3 NullPointerExeeption as w is null

var z = w!!.hunger





OEBPS/assets/f0211-01.png
fun addNumbers(a: Double, b: Double) : Double {

return a + b This is an overloaded version of the same
funttion that uses Doubles instead of [






OEBPS/assets/f0427-03.png
class Duck {

companion object Busksesssy ( <— If Yo prefi an object detlaration with comparion,
You no longer need i,o provide an object name. You

fun create(): Duck = Duck()
¢an, however, intlude the name it you want to.





OEBPS/assets/f0419-04.png
class MyClass,private constructor (x: Int)
This code makes the primary tonstruttor private.





OEBPS/assets/f0422-01.png
enum class MessageType(var msg: String) {
e
SUCCESS ("aYE") 1) The MessaneType emam class has buo
values: SUCCESS and FAILURE.

FAILURE ("Boo!






OEBPS/assets/f0264-02.png
N This veturns teue if kriendSet has 3
edGoing = friendSet.contains ("Fred") <— ‘Fred” value, and £alse if it doesn't:





OEBPS/assets/f0135-03.png
The ConvertibleCar construetor has two
pavameters: make_param and model_pavam.
& passes the values of these parameters to
the Cav tonstruttor, whith initializes the

make and model properties.
class ConvertibleCar (make param: String, K?

model_param: String)

: Car(make_param, model param) {
//Code for the ConvertibleCar class





OEBPS/assets/car.png





OEBPS/assets/fxxvii-01.png





OEBPS/assets/f0004-01.png
B MyFiratApp B A | AddConfiguration...| » & § B Q B
= Project o= & - e
v Iy MyFirstApp ~/ideaProjects/MyFirstApp
> b idea
s
4 MyFirstApp.iml
» il External Libraries
T Scratches and Consoles.

This is the project we'll
eveate vith the [DE-

i
H
k]
*

2 Structure.

B Termnal = 6:T0DO
Configure Kotlin: Added /Users/dawng Library/Apphcavon Support/IdealC2018.3/Kotlin/kotlinc/ib/kotlin-stdlib-Jok7 ar o ibrary c.. (2 minutes ago)






OEBPS/assets/f0xxx-01.png





OEBPS/assets/f0012-02.png
A new file called Appkt has
been added to our sre folder.

© O O Bl MyFirstApp [~/IdeaProjects/MyFirstApp] - .../:

5 MyFirstApp [ src 1 “\ | Add Config,
Project O T & — | ixAed

%v % MyFirstApp ~/IdeaProjects/MyFirstApp

- > .idea

-

—

£ & MyFirstApp.iml

E » Il External Libraries

2 % Scratches and Consoles

B Terminal

I0J_ Configure Kotlin:






OEBPS/assets/f0019-01.png
fun main(args: Array<String>) {

1£ you Jjust have val x = 3

one line of code _

in the if block, velv =L

jou ¢an leave out if (x >y (

he curly braces. println("x is greater than y") < [his line is only exetuted
) if % is greater than y.

println("This line runs no matter what")





OEBPS/assets/f0112-01.png
class Doglval name: String, var weigh

var activities = arrayOf ("Walks")
val breed = breed_param.toUpperCase ()
val weightInKgs: Double

get() = weight / 2.2

This eode adds a new weight[nK.

95 propert:
vith a ustom getter. The getber Lakes {Ze
value of the weight pavameter, and divides it
by 2.2 4o get the weight in kilograms.

Int, breed param: String) {

Dog

name
weight
breed
activities
weightinKgs

bark()






OEBPS/assets/f0328-03.png





OEBPS/assets/f0372-03.png
This vetuens a L

val halfUnitPrice — groceries.map { it.unitPrice * 0.5 }<— tontaining eath wnitPrice
multiplied by 0.5





OEBPS/assets/f0108-02.png
zes the temperament property with an empty String

var temperament





OEBPS/assets/f0255-02.png
“Jim”

7 T et docsr't allon
String duplicate values:

O“Sue”

String






OEBPS/assets/f0276-03.png
“Quinoa “Thai
Salad” .
O“Chioken CSurry’

Soup” Recipe Recipe

Recipe

ﬂ “Recipel”  “Recipe2” “Reciped”
$
S
—
recipe
Map|
al

Map<String, Recipe>
The Key type is first... Lollowed by the Value type





OEBPS/assets/common01.png





OEBPS/assets/f0346-01.png
1 -
condition Icondition

condition Boolean





OEBPS/assets/f0006-01.png
val name =

val height = 9 Detlare a vaiable named ‘height’ and give it 3 value of 9.

println("Hello") ... Prints ‘Hello” to the standard output.

println("My cat is called $name")

println("My cat is $height inches tall")

val a = 6___ Detlare a variable named ‘a’ and ajve it a value of b.

val b = 7
val ¢ = a + b + 10____Detlave a vaviable named ‘¢’ and aive it a value of 23
val str = c.tostring() ___ Detlare a variable named ‘str’ and give it a text value of 23",

val numlist = arrayOf(l, 2, 3) . Create an aveay containing values of |, 2 and 3

var x = 0.

while (x < 3)

{

println("Ttem $x is ${numList [x]}")__ Print the index and value of each
x=x +1__Add| tox

Declave a variable named ‘myCat’ and eveate a Cat object.

val myCat = Cat(name, height)

val y = height - 3

is less than 5, the Cat should midow 4~ times.

if (y < 5) myCat.miaow(4)

while (y < 8) {

ing,.

myCat.play() . Make the Cat pla

y=y +1






OEBPS/assets/f0422-02.png
MessageSuecess and MessageFailure
inherit from Message Type, and

define their own properties in

sealed class MessageType <— MessageType is sealed: their constructors

class MessageSuccess(var msg: String) : MessageType()

i . i . y
class MessageFailure (var msg: String, var e: Exception) : MessageType (





OEBPS/assets/f0020-01.png
println(if (x > y) "x is greater than y" else "x is not greater than y")

£ x is greater than y, {:he"Lodc »
prints “x is greater than Y- 1€ xis
not greater than Y, the tode prints
“ is not greater than y instead.





OEBPS/assets/f0069-01.png
O "Paper”
String
O "Scissors'

String

The options @‘55/\
variable is S
eveated in the —>

main funetion.






OEBPS/assets/f0051-02.png
val myArray = arrayOot(l, 2, 3)

myArray (2] = 6 <—Tpig u\?daks the third item in the arvay





OEBPS/assets/f0159-01.png
abstract class Animal {
abstract val image: String
abstract val food: String
abstract val habitat: String

var hunger = 10

Heve, we've marked the
image, food and habitat——>;
properties as abstract

Animal
image
food
habitat
hunger






OEBPS/assets/f0109-04.png
var myDuck = Duck <—This tode won't compile.





OEBPS/assets/f0192-02.png
val wl = Wolf() ol and w2 vefer 4o
val w2 = Wolf() diffevent objects, so

w is false.

//wl == w2 is false wl

val Wolf val Wolf





OEBPS/assets/f0160-01.png
abstract class Animal { Animal

X image
abstract fun makeNoise () food
habitat
hunger

abstract fun eat()
_\§makeNoise()

open fun roam() e
roam()
println("The Animal is roaming") sleep()

fun sleep() {
println("The Animal is sleeping”)





OEBPS/assets/f0015-03.png
AppKt.class





OEBPS/assets/f0145-01.png
hat

ve telling the world 4
@Z‘:\; ‘—A:nimalnl?as these properties
makeNoise() and ¢an do these things.

eat()
roam()
sleep()






OEBPS/assets/f0194-01.png
equals()
hashCode()
toString()

YourClassHere






OEBPS/assets/f0237-01.png





OEBPS/assets/f0299-06.png
This is the same as eveating a Contest
. ) g Conbest<Fish>(Fish(“Finny McGraw’).
Contest (Fish("Finny McGraw")) You tan omit. the <Fish> as the comiler
< Lors it Lrom the construttor argument.

val contest =





OEBPS/assets/f0096-03.png
myPog-bartl) S—Go to myDog, and ¢all its bark function





OEBPS/assets/f0238-01.png
This is Int?, not Int, as it
must actept a null value.

class Duck(val height: [nt2 = null) {

fun quack() {

println("Quack! Quack!")

:ZDuLks is an arvay
nullable Dutks.

N

class MyDucks (var myDucks: Array<|

k2>
fun quack() {
for (duck in myDucks) {

d
Heve, we've using let to make each duck quack,—7 ¢
bk we could have used dutk?.quack() instead.

i

fun totalDuckHeight (): Int {
totalDuckHeight() veturns an Int, —Svar n:
s0 h must be an Int, not an [nt2. for (duck in myDucks) {

i the )
£ the duck and iks height are not ull, add the —u 4 4 Guck 7, height % 0
duek's height to h. Othervise, add O to h instead. |

return h





OEBPS/assets/f0418-01.png
package com.htkotlin.mypackage

class Duck &— Dutk has no visibility modifier, which means that it's public.

private fun doStuff() {<C— doStuff() is marked as private, so it can only be
println("hello") used inside the source file wheve it's defined.

}





OEBPS/assets/f0333-02.png
{ printIn(“Hil") ]





OEBPS/assets/f0035-01.png
QQ@





OEBPS/assets/f0270-01.png
Tun mainf{args: Array<sString>) {

Update mShoppinalL-ist
to a var so that we can
veplae it with another
MutableList<String>
later in the tode:

Add this code.

‘=t var mShoppingList = mutableListOf ("Tea", "Eggs", "Milk")
println("mShoppingList original: $mShoppingList")

val extraShopping = listOf ("Cookies", "Sugar", "Eggs")
mShoppingList.addAll (extraShopping)

println("mShoppingList items added: $mShoppingList")

if (mShoppingList.contains("Tea")) {

mShoppingList.set (mShoppingList. indexOf ("Tea"), "Coffee")

3

mShoppingList.sort () -
Collections

println("mShoppingList sorted: $mShoppingList")
mShoppingList.reverse ()

println("mShoppingList reversed: $mShoppingList™)

Collections kt
val mShoppingSet = mShoppingList.toMutableSet ()

println("mShoppingSet: $mShoppingSet")

val moreShopping = setOf ("Chives", "Spinach", "Milk")
mShoppingSet . addAll (moreShopping)
println("mShoppingSet items added: $mShoppingSet")
mShoppingList = mShoppingSet.toMutableList ()
println("mShoppingList new version: $mShoppingList")





OEBPS/assets/f0064-05.png
A=
foo("Freddie”) | ¢an't pass a String to foo
as it only atcepts an Int.





OEBPS/assets/f0312-01.png
interface A<out T> {

fun myFunction (t:

This code won't compile because the covariant type
T ean't be used as a function pavameter.

interface B<out T> {

val x: T

fun myFunction():

This code compiles successfully.

interface C<out T> {

var y: T

fun myFunction () :

This tode won't compile because the covariant type
T ¢an't be used as the type of a var property.

interface D<out T> {

fun myFunction(str:

This tode compiles successully.

String): T

abstract class E<out T>(t

val x = t

This code compiles successfully.





OEBPS/assets/f0319-01.png
Assign a Vid’eb to the Contest<Pets.

val petContest = Contest<Pet> (petVet)
petContest.addScore (catFuzz, 50)
petContest.addScore (fishFinny, 56)

val topPet = petContest.getWinners().first()

println("Pet contest winner is ${topPet.name}")

Mssign a Vet<Pet>

val fishContest = Contest<Fish> tVet) .
(pe & %o a Contest<Fish>

val dogRetailer: Retailer<Dog> = DogRetailer ()
val catRetailer: Retailer<Cat> = CatRetailer ()
val petRetailer: Retailer<Pet> = CatRetailer()
petRetailer.sell()





OEBPS/assets/f00xi-01.png
I can't believe they
put that in a Kotlin
book.






OEBPS/assets/f0174-04.png
interface A { (interface)

(interface)
fun myFunction() { println("from A") } A

B

myFunction myFunction

interface B { X
£ Functi ntln("from B" i
un myFunction() { pri ( >} myFunction
}

class X : A, B { (or interfate)
override fun myFunction() { spev<p> veers bo the superclase for v

jon() calls the
i d A So super<p>myFunttion!
super<A>.myFunction() < :‘:::Oh of myFunction that's defined in A
super<B>.myFunction ()

//Extra code specific to class X

} This code ¢alls the version of myFunetion defined in A, then the
version defined in B. £ then vuns tode that's specific 4o elass X.





OEBPS/assets/f0247-01.png
| =

The magnets need to 9o in this space.

}

fun riskyCode (test:String) {

print("h") ' } finally { '

class BadException : Exception()

fun myFunction (test: String) {

if (test Ye {
throw BadException ()

print ("w") riskyCode (test) '

e
o)

} catch (e: BadException) { '






OEBPS/assets/f0146-02.png
val animals = arrayOf (Hippo (),
Wolf (),

i hese are
Lion(), The eompiler spots tha'(.: t
Cheetan(), | all types of Animal, so |£‘ ereates an
Lynx (), arvay of type Aveay<hnimal>.

Fox())

for (item in animals) {

item.roam()

This loops through the animals, and calls the voam() and
€at() functions of each one. Each animal vesponds in a
way that's appropriate to its type.

item.eat ()





OEBPS/assets/f0348-01.png
(] A

I Kgs to Pounds  Pounds to US Tons |

We'll ereate a
function that ~ combine()
tombines two
lambdas into a
single lambda

[2]

Kgs to US Tons






OEBPS/assets/f0184-02.png
class MyRoamable {

var r: Roamable = Wolf ()

fun myFunction() {
if (r is Wolf) {

%8350 S—The compler can’t smart east the Roamable property v 4o a

! Wolf. This is because the compiler ean’t quarantee that some

) other code won't update the property in between checking
its type and its usage. The code thevefore won't compile.





OEBPS/assets/f0271-01.png
mshoppingList original: [Tea, Eggs, MilK |
mShoppingList items added: [Tea, Eggs, Milk, Cookies, Sugar, Eggs]

mShoppingList sorted: [Coffee, Cookies, Eggs, Eggs, Milk, Sugar] P"‘“JC"‘S a Set or
mShoppingList reversed: [Sugar, Milk, Eggs, Eggs, Cookies, Coffee] MutableSet prints }:Mi .
mShoppingSet: [Sugar, Milk, Eggs, Cookies, Coffee] item inside square brackets

mShoppingSet items added: [Sugar, Milk, Eggs, Cookies, Coffee, Chives, Spinach]
mShoppingList new version: [Sugar, Milk, Eggs, Cookies, Coffee, Chives, Spinach]





OEBPS/assets/f0157-01.png
Qgﬁ/\,\ We know what Wolf, Hippo and Fox object:
L— look like, but what about an Animal
object? Does it have £ur? Does it have
legs? And how does it eat and voam?

Animal
val Animal





OEBPS/assets/f0039-02.png
var Int





OEBPS/assets/f0292-01.png
val x: MutableLlist<String>

It means that MutableList:

interface MutableList<E> List<E>, MutableCollection<E> {

Unit

fun add(index: Int, element: E):

//More code





OEBPS/assets/fxxiii-02.png
Great. Only 450
more dull, dry,
boring pages.





OEBPS/assets/f0168-03.png
You didn't need £o
use these snippets

open

implements extends

implements consumePower() { }

implements

Appliance
open






OEBPS/assets/f0327-04.png
{ "Pow!" } <—This lambda has no parameters, so we tan omit the —>.





OEBPS/assets/f0307-02.png
This won't compile, even though
val petRetailer: Retailer<Pet> = CatRetailer() <— CatRetailer is a Retailer<Cats, and

Cat is a subtype of Pet.





OEBPS/assets/f0384-02.png
var Int item is added to the
value of vunningSum.
This value is then
assigned to vunningSum.

&
unttion | O ﬁ
harks /3@ !
with th T
fiest it:». & &
in the U running Int
collettion. ? e The value of the first

List<Int>





OEBPS/assets/f0389-04.png





OEBPS/assets/f0182-01.png
Note that it must be possible for
the underlying object to be the
specified type or the code wo(:n'{:
- . compile. You can't, say, test i
val str = if (animal is Wolf) "Wolf" else "not Wolf" &— A:T:;Izva\{::blehholdsya rc&rlentih
1o an Int because Animal and [nt
ave incompatible types.





OEBPS/assets/f0067-02.png
Use = to say what the funttion
veburns, and vemove the {1s

fun max(a: Int, b: Int): Int if (a > b) a else b





OEBPS/assets/f0412-01.png
import io.kotlintest.specs.StringSpec

import io.kotlintest.shouldBe We've using these functions from the KotlinTest
ibraries, so we need to import. them

class AnotherTotallerTest : StringSpec ({ The JUnit test function is veplaced with a String
"should be able to add 3 and 4 - and it mustn't go wrong"

val totaller = Totaller ()
totaller.add(3) shouldBe 3
totaller.add(4) shouldBe 7 | We'e wsing shouldBe instead of assertEquals

totaller.total shouldBe 7

})





OEBPS/assets/f0329-02.png
add
Ints

f—
val Lambda






OEBPS/assets/common26.png
Game choice
User choice
Result





OEBPS/assets/f0244-05.png
Legal betause there’s try { callRiskyCode() }
e

nally, even though— finally { }
theve's no eateh.





OEBPS/assets/f0372-04.png
This ¢alls the filter function,

and then calls map on the
.map { it.unitPrice * 2 } vesulting List.

val newPrices = groceries.filter { it.unitPrice > 3.0 }





OEBPS/assets/f0099-01.png
var mybog = Dog ("Fido" et ledks like we've calling a funttion
og ("Fido", 70, "Mixed") named Dog because of the paventheses





OEBPS/assets/f0329-01.png
{x:Int,y: Int >xX+y )
453 A
g
add
Ints ' Lambda
B #

f—
val Lambda





OEBPS/assets/f0074-01.png
Q fun doSomething (msg: String, i: Int): Unit {
if (1> 0) {

var x = 0

This will compile and vun suceessfully. The
while (x < 1) { function has a Unit veturn type, and this
printin (msg) means that it has no veturn value.

X x + 1

© un timesthree(x: Int): Int ( This won't ompile, as you've assigning a new value to the
~evaly = x %3 Lunttion's parameter. You would also need to consider the
return sy function's veturn type, as multiplying an Int by three may
) vesult in a value that’s 4oo large for an Int value.

Q fun maxValue(args: Array<Int>): [nf {

var max = args[0] This won't tompile because the
var x = 1 function needs 4o detlave that
while (x < args.size) { it veturns an [nt value.

var item = args[x]
max = if (max >= item) max else item
x=x+1

}

return max





OEBPS/assets/f0144-03.png
w. roam () <— Calls the function in the Canine tlass.





OEBPS/assets/f0050-01.png
var myArray = arrayOf(l, Zy 3

myArray = arrayOf (4, 5) —This is a brand—new array.





OEBPS/assets/f0103-01.png
class DrumKit (var hasTopHat: Boolean, var hasSnare: Boolean) {

! You need o put Ehej\

magnets in these boxes. println("ding ding ba-da-bing!")

u d.hasSnare = ' fun Plays“‘_Jre()
val d = DrumKit(true, true) '
(hasSnare) ' fun playTopHat () .

' )

d.playTopHat ()

fun main(args: Array<string>) {

d.playTopHat ()
d.playSnare ()

println("bang bang bang!") '

d.playSnare ()






OEBPS/assets/f0170-01.png
Lion

image
food
habitat

makeNoise()
eat()

Feline

roam()

Cheetah

image
food
habitat

makeNoise()
eat()

Lynx

image
food
habitat

makeNoise()
eat()

We'll add a

Roamable
interface -

A dotted arvow

indicates the elass
implements an wherface

(interface)
Roamable

Animal

Vehicle

image
food
habitat
hunger

makeNoise()
eat()

roam()
sleep()

Canine

Hippo

image
food
habitat

makeNoise()
eat()

image
food
habitat

makeNoise()
eat()

image
food
habitat

makeNoise()
eat()






OEBPS/assets/f0015-01.png
Here's the output —
text in the [DE.

T Run - AppKt
> /Library/Java/JavaVirtualMachines/jdk1.8.0_102. jdk/Contents/Home/bin/java
objc[1540]: Class JavalLaunchtielper is implemented in both /Library/Java/Ji
Pow!

5 Process finished with exit code @

- Structur)s

B Terminal 0:Messages | b 4:Run

[0 Compilation completed successfully in 6 s 852 ms (moments ago)






OEBPS/assets/f0180-01.png
Viagram: Peclaration:
1 open class Cliek { }

Tip implements the  ¢lass Clack : CliekO { }
Top abstract ¢lass.

7 abstract lass Top { }
elass Tip : TopO) {

z P—

-om . Th
o A sl 8 sbstrack class Alpha { }

A
abstract elass Omega : Alpha0) { }

Bar needs 4o be .
marked 22 oper. 4 interface Foo { }

so that Baz tan — > open ¢lass Bav : Foo { }
inherit from it.
class Baz : Bar() { }

4 Fo 5 intecface Fee {
i
A

open tlass Fo : Fi { }
elass Fum : Fol), Fee { }

Fum inhevits from

0
A

the Fol) class and Key:
implements the Fee ﬁl Inherits from
’ e,
e - A
_i H Implements
.A = Class
. A
Abstract class

Fum
Interface






OEBPS/assets/f0113-01.png
class Dog(val name: String, weight param: Int, breed param: String) ({
var activities = arrayOf ("Walks")
val breed = breed_param.toUpperCase ()
var weight = weight_param
set (value) {
if (value > 0) field = value

This code adds a eustom setber o the weight property.
The setter means that the value of the weight property
will only get updated to a value greater than O.





OEBPS/assets/f0104-01.png
class DrumKit (var hasTopHat: Boolean, var hasSnare: Boolean)

fun playTopHat ()
|

println("bang bang bang!") '6\

The playToptat
Lunction prints
some text i
the hasTopHtat
property is Lrue.

The playSnare
Lfunetion prints some
[ text if the hasShare

Property is true

fun main(args: Array<String>) {

val d = DrumKit(true, true) | S Creste 3 Drum¥it variable.

d.playSnare () playTopHat and playSnare both prin

d.hasSnare =

d.playTopHat ()
d.playSnare ()

d.playTopHat () | &1 hasTopHat and hasShave are both true, so

t text.

<L Gebing the hasSnare property to false means
t:a{lzaly Lhe playTopttat funetion prints text.





OEBPS/assets/f0199-02.png
) ctomponent|() veturns

val title = r.componentl() <—— khevv?&renu held by
the fivst property
defined in the data
tlass tonstruttor.





OEBPS/assets/f0222-01.png
var str: String? = null <"—T}; ¢ d-”:un{:bsar
println(str) var str: String? =

s a String obJec{: that contains no chavacters,
whereas null is not a String object.





OEBPS/assets/f0306-02.png
class DogRetailer : Retailer<Dog> {
override fun sell(): Dog {
println("Sell Dog") DooRetailer veplaces
Refailer’s generie type with
) Doy so its sellQ) function
) must veturn a Dog,






OEBPS/assets/f0265-03.png
..Or are you equal?

O hashCode: 742
O hashCode: 742






OEBPS/assets/f0226-01.png
MYWOLE? . w?. hunger < [ myWol is not null, and w is not null, get hunger. Otherwise,

use null.





OEBPS/assets/f0108-01.png
class Dog(val name: String, var weight: Int, breed param: String)
var activities = arrayOf ("Walks")
val breed = breed_param.toUpperCase ()

var temperament: String &y, temperament. property hasn't been

initialized, so the code won't compile.





OEBPS/assets/f0162-02.png
class Hippo : Animal() {  Just like when you inherit from a normal

supevelass, You must call the abstract
) tlass eonstruttor in the subtlass header.





OEBPS/assets/f0056-01.png
fun mainfargs: Array<sString=>) {

val fruit






OEBPS/assets/f0132-02.png
Class Superclasses | Subclasses

Person Musitian, RockStar, BassPlayer, ConcertPianist
Musician Person RotkStar, BassPlayer, ContertPianist
RockStar Musitian, Person

BassPlayer Musitian, Person

ConcertPianist | Musician, Pevson

All the classes

inhevit from Person. s Pevson
paN
The Musician ¢lass is
a subtlass of Person,
and a supevelass e ici
of the RockStar, Musiin
ConcertPianist and
BassPlayer classes.
RoekStar ContertPianist BassPlayer

RotkStav, ContevtPianist and BassPlayer are
subtlasses of Musician. This means that they
pass the [S—A test for Musician and Person.





OEBPS/assets/f0405-02.png
Tish! Tish!, Bam! Bam! Bam! Bam! Bam! Bam!
N ST e T e TS

The code plays the [£ then plays the toms sound

eymbals sound file twice File six times





OEBPS/assets/f0384-01.png
/s c 0 & This i Hhe il 1ahe that wee pased

to the fold function. [¥'s assigned to a

local variable named unningSum.
runnlng

Sum

var Int





OEBPS/assets/f0221-01.png
W is & Wolf2, which means it can hold

var w: Wolf? = Wolf() <——
/\ vefeventes to Wolf objects, and null.

e

var Wolf? ‘Wolf





OEBPS/assets/f0304-03.png
You didn't need £o
use these snippets

T: Pet

T: Pet

fishFinny





OEBPS/assets/f0220-02.png
Remove the vekevente
4o this Welf object..

Wolf

var Wolf
~and assign a vefevence

o this one instead.
Wolf





OEBPS/assets/f0242-01.png
I'm
exceptionall

Exception





OEBPS/assets/f0169-01.png
Vehicle

roam()






OEBPS/assets/f0417-04.png
import com.hfkotlin.mypackage.Duck Heve, you tan veker to the Duck
import com.hfKotlin.mypackage2.Duck as Duck2 €— tlass in mypatkageZ using “Duck2”





OEBPS/assets/f0209-02.png
This ealls the primary eonstruttor of
Lhe curvent tlass. [t passes the primary
construttor a value oE 0O for the size,
and the value of isMagic_param for the
isMagie. pavameter.

constructor (isMagic param: Boolean) !: this(0, isMagic param)!





OEBPS/assets/f0244-01.png
fun setWorkRatePercentage (x: Int) { E"i‘ throws an [llegalAvgumentException
if (x lin 0..100) { s not in the vange 0.100
throw IllegalArgumentException ("

ercentage not in range 0..100: $x")
}

//More code that runs if the argument is valid





OEBPS/assets/f0425-01.png
class Outer {

val x = "This is in the Outer class”

inner class Inner {

val y = "This is in the Inner class"
fun myFun() = "This is the Inner function"
fun getX() = "The value of x is: $x"

An inner ¢lass is a nested elass that
has aceess 4o the outer tlass members.
So in this example, the [nner tlass has
aceess to Outer's  property.





OEBPS/assets/f0416-01.png
8006 New Package

Enter new package name:

| com.hfkotlin.mypackage |
T

This is the name of the
package we've ereating.






OEBPS/assets/f0367-02.png
&—This veturns the sum ot all

val sumQuantity = groceries.sumBy { it.quantity }
quantity values in groteries.





OEBPS/assets/f0322-01.png
class A<in T>(t: T) { This tode compiles suLcess(u"y because the contravariant type
fun myFunction(t: T) { } T ¢an be used as a constructor or funttion parameter type.

class Be<in T>(t: T) ( This tode won't compile because T ean't
val x = t be used as the type of a val property.

fun myFunction(t: T) { }

abstract class C<in T> { This tode won't compile because T ean't
fun myFunction(): T { } be used as a function’s veturn type.

This tode won't compile because T ean't
be used as the type of a var property.

class E<in T>(t: T) {
var y = t

fun myFunction(t: T) { }





OEBPS/assets/f0161-01.png
I don't get it. If you can't add code to an
abstract function, what's the point in having
it? I thought the whole point in having an
abstract class was to have common code that
could be inherited by subclasses.






OEBPS/assets/f0305-01.png
(interface)
Retailer<T>

sell(): T

Retailer is an intevface, while
CatRetailer, DogRetailer and
FishRekailer ave tontrete
implementations.

CatRetailer

DogRetailer

FishRetailer

sell(): Cat

sell(): Dog

sell(): Fish






OEBPS/assets/f0039-01.png
vvvvv





OEBPS/assets/f0149-02.png
The Animal is roaming <— Hippo inhevits the Animal’s voam funttion
The Hippo is eating grass

The Canine is roaming <<~ Wolf inherits the Canine’s voam function.
The Wolf is eating meat

Hooooowl! Each Animal makes its own noise when

Grunt! Grunt! N the Vet’s giveShot funttion vuns.





OEBPS/assets/f0255-03.png
O“Va.lueA" O“ValueB“

A Map allows
duplicate
values, but not
duplicate keys.

Map





OEBPS/assets/f0126-01.png
If you think I'm
eating Hippo food
you've got to be joking.






OEBPS/assets/common29.png
Game choice
User choice
Result





OEBPS/assets/f0354-01.png
— Add the typealias.

typealias DoubleConversion = (Double) -> Double

fun convert (x: Double,

Replace the function type with the type alias.
[~

converter: (Bemkle~—>~Bembiq DoubleConversion) : Double {

val result = converter (x)

println("$x is converted to $result")

return result

\;— Remove this function as we no longer need it-

= 35 Trestar: (Iee——>—Beubier TPUmbie ~
= TTE
~eetormsssuli_
<~

e Add the getConversionLambda funeion.

fun getConversionLambda (str: String): DoubleConversion {

if (str == "CentigradeToFahrenheit") {
return { it * 1.8 + 32 }

} else if (str == "KgsToPounds") { (il
return { it * 2.204623 } Lambdas

} else if (str == "PoundsToUSTons") {

return { it / 2000.0 } ste
} else {
return { it } Lambdas.kt

Add the tombine funttion.

fun combine (lambdal: DoubleConversion,
lambda2: DoubleConversion) : DoubleConversion {

return { x: Double -> lambda2 (lambdal(x)) } The tode coninues >

on the next page.





OEBPS/assets/f0045-02.png
var myArray = arrayOf(1, 2, 3) @ 2
' @

Notice that the arvay is
an objeet, and the variable
holds 3 veferente +o it.





OEBPS/assets/f0415-01.png
Oh my, look at
the tasty treats
we have left...






OEBPS/assets/f0005-01.png
val name = "Misty"

val height = 9

println("Hello")

println("My cat is called $name")

println("My cat is $height inches tall")

val a =

val b =

val ¢ = a + b + 10

val str = c.toString()

val numList = arrayOf(1, 2, 3) .

var x =

while (x < 3) {_

println("Item $x is ${numList[x]}

x=x+1,

val myCat = Cat (name,

height)

val y = height - 3
if (y < 5) myCat.miaow(4)

while (y < 8) {

myCat.play!()






OEBPS/assets/f0222-02.png
: Long? (&— The funttion must veturn a value that's a Long or null

fun result()

//Code to calculate and return a Long?





OEBPS/assets/f0203-01.png
data class Movie(val title: String, val year: String)
class Song(val title: String, val artist: String)
fun main(args: Array<String>) {
var ml = Movie ("Black Panther", "2018")
var m2 = Movie("Jurassic World", "2015")
var m3 = Movie("Jurassic World", "2015")
var sl = Song("Love Cats", "The Cure")
var s2 = Song("Wild Horses", "The Rolling Stones")
var s3 = Song("Love Cats", "The Cure")
The candidate
code goes heve — D
}
Candidates: Possible output:

println(m2 == m3)

println(sl == s3)
Mateh each

indidoke | vaz md = ml.copy() fme
with one of println(nl = nd)
fhe possible
outputs var m5 = ml.copy()
println(ml === m5) false

var mé = m2
m2 = m3

println(m3 == m6)





OEBPS/assets/f0027-01.png
Mateh each
candidate
with one
the possible
outputs.

Candidates:
y=y+
y=y+
if (y >
X =x +
y=y+
if (y <

x =

fun main(args: Array<String>)
var x = 0
var y = 0

while (x < 5) {

{

é/Thz tandidate
tode goes heve.

print ("$x$y ")

x=x+1

5) {
x + 1

if (y<3) x=x-1

Possible output:

00 11 23 36 410

00 11 22 33 44

00 11 21 32 42

03 15 27 39 411

22 57

02 14 25 36 47

03 26 39 412





OEBPS/assets/f0093-01.png
Properties ‘
Functions |

Properties

Functions ‘

Dog

name
weight
breed

bark()

Alarm

alarmTime
alarmMode
alarmSound

setAlarm()
isAlarmSet()
snooze()

Properties |
Funetions |

Properties |
Functions ‘

[sons B The proprtis o
title™) . ———— the things an object
artisa knows about itself.

[n this example, a
play()

Song knows its title
stop0 and artist

ShoppingCart The funetions
are the things an

object can do. Heve,

cartContents

addToCart() a ShoppingCart

removeFromCart() knows how to add

checkout() items, vemove items
and check out.





OEBPS/assets/f0387-01.png
data class Grocery(val name:

val unit:

val quantity:

fun main(args: Array<sString>) {

We no
longer need
these lines,
so YW tan

delete them.

val groceries =

1istOf (Grocery ("Tomatoes",

string,
String, val unitPrice: Double,
Int)

val category:

string,

"Vegetable", "1b", 3.0, 3),
"Vegetable", "lb", 4.0, 1),

(
Grocery ("Mushrooms",
Grocery ("Bagels", "Bakery", "Pack", 1.5, 2),
Grocery ("Olive oil", "Pantry", "Bottle", 6.0, 1),
Grocery ("Ice cream", "Frozen", "Pack", 3.0, 2))
[ Jetabtes—ree tieer 1T CATEUOTY == "Vegetabie—
Frozem—groTeTE ¢ fagory — u e

prineiaiug - - Nasesty—
fTe="groTert
- it
(it unitBrice *
— =
£ P T S }

it

o

(it name) "

i

Groceries.kt

The tode continues =
on the next page-





OEBPS/assets/f0424-01.png
class Outer {
val x = "This is in the Outer class"

class Nested {
val y = "This is in the Nested class"
fun myFun() = "This is the Nested function"

This is the nested ¢lass. [t's
Lully enclosed by the ouber elass





OEBPS/assets/f0067-03.png
The compiler knows that a
fun max (a: Int, b: Int) = if (a > b) a else b <—and b are Ints, so it can

work out the function’s

veturn type from the

expression.





OEBPS/assets/f0176-01.png
Add the Roamable interface with an
abstract funttion named voam()-

v

interface Roamable {
The Animal ¢lass needs

fun roam() o implement the
} Roamable interface.

abstract class Animal : Roamable {
abstract val image: String
abstract val food: String

abstract val habitat: String

var hunger = 10
.l

Animals
abstract fun makeNoise () LE
src
abstract fun eat () LD
Override Animals.kt
the voam() —> override fun roam() {
function println("The Animal is roaming")
from the
Roamable
interface.

fun sleep() {

println("The Animal is sleeping")

Vet

giveShot()

(interface)
Roamable

Vehicle

Animal

image
food
habitat
hunger

makeNoise()
eat()

roam()
sleep()

Hippo

Canine

image
food
habitat

makeNoise()
eat()

image
food
habitat

makeNoise()
eat()

The tode continues 7>
on the next page.





OEBPS/assets/f0294-03.png
Y]
"f

“y
<49





OEBPS/assets/f0130-01.png
image
food

habitat
hunger

makeNoise()
eat()

roam()
sleep()

Canine
Canine IS-A Animal

Wolf IS-A Canine

image
food

habitat Wolf IS-A Animal

makeNoise()
eat()






OEBPS/assets/f0322-02.png
: i £ Ihis won't eompile because
val adarive = LAt + 5 the compiler can't infer its type





OEBPS/assets/f0121-01.png
I inherited my
dashingGoodLooks().





OEBPS/assets/f0070-02.png
O "Rock" O "Paper"
< String String
Q5>
< O "Seissors”

String

A veferene to the
—"Seissors” String is

assigned to the new

9ameChoice variable
val String





OEBPS/assets/f0138-01.png
class Hippo : Animal() { We'll add the Hippo
elass to our project a

override val image = "hippo.ipg”

) eouple of pages ahead
override val food = "grass”
override val habitat = "water"

override fun makeNoise() {

println("Grunt! Grunt!") )
We've overviding the makeNoise
and cat funttions so that their

implementations ave Hippo—spetifie.

override fun eat() {

println("The Hippo is eating $food")

Grunt! Grunt!

o

makeNoise()
eat()

roam()
sleep()

image
food
habitat

makeNoise()
eat()






OEBPS/assets/f0408-01.png
Bam! Bam! Bam! Bam! Bam! Bam!
Tish! Tish!
N

The toms and eymbals <till play in parallel, but £his Lime
we've using a more efficient way of playing the sound Files






OEBPS/assets/f0306-04.png
(interface)
Retailer<T>

sell(:T

CatRetailer

sell(): Cat

(interface)
Retailer<T>

sell(:T

DogRetailer

sell(): Dog






OEBPS/assets/f0349-02.png
Q’/_\-—& [~ )} (x:Double->x * 2.204623 }
<& ' A

kgsTo m
Pounds (Double) -> Double < — )} (x: Double ->x/2000.0
| < A
val (Double) -> Double |
poundsTo

USTons (Double) -> Double
5 ‘|

—
val (Double) -> Double





OEBPS/assets/f0275-02.png





OEBPS/assets/f0077-03.png
for ((index, item) in optionsParam.withIndex()) (< —This loops through eath item in the
println("Index $index has item $item") arvay. [t assigns the item'’s index

to the index variable, and the item
) itself to the item variable.





OEBPS/assets/f0057-01.png
Makeh eath vaviable
to its object.

Variables:






OEBPS/assets/f0139-01.png
open class Vehicle
open fun lowerTemperature() {

println("Turn down temperature")

' &Thc Vehicle ¢lass defines an open
] lower Temperature() funetion

open class Car : Vehicle() {
override fun lowerTemperature() {

println("Turn on air conditioning")

The lower Temperature() funttion vemains open in
the Car subelass, even though we've overriding it..

class ConvertibleCar : Car() {
override fun lowerTemperature() {
println("Open roof")

} AN whith means that we ¢an overvide
) a9ain in the ConvertibleCar tlass.

Vehicle

lowerTemperature()

lowerTemperature()

ConvertibleCar

lowerTemperature()






OEBPS/assets/f0184-01.png
Treat me like the
Wolf you know I am.

(2]
Q
if (item is Wolf) { ih’:cijtmart Las&fp a Qﬁﬁ

i Wolf for the duration ¥

tem.eat

iremeatl) of this tode block.

item.makeNoise ()

//Other Wolf-specific code Wolf

} val Roamable





OEBPS/assets/f0332-02.png
{it+5)
[L
add | ¥
Flve

(Int) > Int

val
(Int) -> Int





OEBPS/assets/f0272-01.png
This is the main funttion.

fun main(args: Array<String>) {
val set = setOf (Duck(), Duck(17))
println(set)





OEBPS/assets/f0260-01.png
fun main(args: Array<String>) {
val mShoppingList = mutableListOf ("Tea", "Eggs", "Milk")
println("mShoppingList original: $mShoppingList")
val extraShopping = 1istOf ("Cookies", "Sugar", "Eggs")
mShoppingList.addAll (extraShopping)
println("mShoppingList items added: $mShoppingList")
if (mShoppingList.contains("Tea")) {
mShoppingList.set (mShoppingList.indexOf ("Tea"), "Coffee")
}
mShoppingList.sort () r‘
println("mShoppingList sorted: $mShoppingList") Collections
mShoppingList.reverse ()
println("mShoppingList reversed: $mShoppingList") sre
! |
Collections kt





OEBPS/assets/f0313-01.png
class Vet<T: Pet> {
fun treat(t: T) {
println("Treat Pet ${t.name}")

Vet<T: Pet>

treat(t: T)






OEBPS/assets/f0241-01.png
try 1
turnOvenOn ()
x.bake ()
} catch (e: BakingException) {
println("Baking experiment failed")
} finally { We always want 4o call

turnovenOf£ () <=~ turnOven0Ff0), so it
, belongs in the Final!\/ bloek.





OEBPS/assets/f0106-03.png
class Dog(val name: String, var welght: Int, breed param: String) {
var activities = arrayOf ("Walks")

val breed = breed_param.toUpperCase () )
P name: “Fido”

‘weight: 70
breed: “MIXED”
activities: “Walks”

This takes the value of breed_pavam, makes it
uppertase, and assigrs it to the breed property.






OEBPS/assets/f0195-02.png
val rl = Recipe("Chicken Bhuna", false)

val r2 = Recipe("Chicken Bhuna", false)

4;33 /\ title: “Chicken Bhuna”

isVegetarian: false

Recipe These two objects have matehing
property values, so we might vant
the == opevator to evaluate to true.

val Recipe

Qg} /_\ title: “Chicken Bhuna”

isVegetarian: false

Recipe
val Recipe





OEBPS/assets/f0066-02.png
tun max(a: Int, b: Int): Int
val maxValue = if (a > b) a else b

return "Fish"

S We've declared that the funttion veturns an Int value, so the compiler
will get upset if you try and veturn something else, like a Stving.





OEBPS/assets/f0116-01.png





OEBPS/assets/f0243-03.png
class MyRoamable {

var r: Roamable = Wolf()

fun myFunction() {
if (r is Wolf) {
¥+t () 5= This won't compile, because the

) compiler can't guarantee that v stil
} holds a veference to a Wolf object.





OEBPS/assets/f0388-01.png
rgrooex‘ies.groupEy { it.category }.forEach { Groceries
println(it.key)
it.value.forEach { println("  ${it.name}") } sre
}
Groceries.kt
val ints = listOf(l, 2, 3)
Add val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }
these | println("sumOfInts: $sumOfInts")
lines to
the main

val productOfInts = ints.fold(l) { runningProduct, item -> runningProduct * item }

unetion. println("productOfInts: $productOfInts")

val names = groceries.fold("") { string, item -> string + " ${item.name}" }
println("names: $names")

val changeFrom50 = groceries.fold(50.0) { change, item
-> change - item.unitPrice * item.quantity }
b’nntm ("changeFrom50: $changeFrom50")






OEBPS/assets/f0014-02.png
MyFirstApp
fun main(args: Array<String>) {

println("Pow!") e L You tan find Appkt in this folder
) d

App.kt





OEBPS/assets/f0420-03.png
enum class BandMember (val instrument: String)

JERRY ("lead guitar"), /tms defines a Property named instrument in

BOBBY ("rhythm guitar"), the BandMember tonstructor. Each value in
PHIL ("bass") the enum ¢lass is an instance of BandMember,
' so eath value has this property.





OEBPS/assets/f0428-01.png
val startingPoint = object {
val x = 0
This treates an objeet with

val y = 0
+two properties, % and Y-





OEBPS/assets/f0084-01.png
Fred
You must enter a valid choice.

We entered Please enter one of the following: Rock Paper Scissors.
a few invalid George
options..

“You must enter a valid choice.

Please enter one of the following: Rock Paper Scissors.
Ginny

“You must enter a valid choice.

_and then Please enter one of the following: Rock Paper Scissors.
enkered “Rotk”.~>Rock





OEBPS/assets/f0066-03.png
fun printSum(intl: Int,
val result = intl +

println(result)

fun printSum(intl: Int,
val result = intl +

println(result)

intz:

int2

int2:

int2

Int)

Int):

The : Unit heve means that the function
vebuens no value. [£'s completely optional

“—

Unit

{





OEBPS/assets/f0001-01.png
Come on, the water's great! We'll
jump right in, write some code,
and look at some basic Kotlin
syntax. You'll be coding in no time.






OEBPS/assets/f0348-02.png
The tombine funttion has two lambda
arameters of type (Dovble) —> Double.
fun combine (lambdal: (Double) -> n°ub1§f:;:2>?

lambda2: (Double) -> Double):  (Double) -> Double{
//Code to combine the two lambdas
) The funttion also veturns
a lambda of this type.





OEBPS/assets/f0343-02.png
convertFive ( it * 1.8 + 32 )} &—— Notice there are no parentheses in this
Lunekion call. This is possible beeause the

Lunttion has only one pavameter, which is 3
lambda.





OEBPS/assets/f0064-03.png
You detlare
Fun foo (param: Int)(\ parameters
inside the
funttion's
paventheses.

println("Parameter is $param”)





OEBPS/assets/common30.png
Game choice
User choice
Result





OEBPS/assets/f0289-01.png
Darling, I fear that

the T in Meat<T> may

implement the Tabby
interface.






OEBPS/assets/f0129-02.png
Kitchen

Fridge

fridge: Fridge

size: Int

Kitthen WAS—A Fridae,
so there’s a velationship
But neither class is a
subtlass of the other.

openDoor()
closeDoor()






OEBPS/assets/f0209-03.png
size: 0

Qﬁ)' isMagic: true
|
T’“ j Mushroom

val Mushroom

&





OEBPS/assets/f0072-01.png
fun main(args: Array<String>) {

var x = 6

fun myFunction() {

var y = x + 3 &— This tode won't ompile because myFunttion
| can't see the x vaviable that's declared in main.





OEBPS/assets/f0194-03.png
val w = Wolt ()
println(w.hashCode ())

523420257 This is the value
of W's hash ¢ode.





OEBPS/assets/f0025-01.png
e fun main(args: Array<String>) {
var x = 1
while (x < 10) (
if (x> 3) {
println("big x")

G fun main(args: Array<String>) {
val x = 10
while (x > 1) {
x=x -1

if (x < 3) println("small x")

o fun main(args: Array<String>) {
var x = 10
while (x > 1) {
x=x-1

print (if (x < 3) "small x")





OEBPS/assets/f0167-02.png





OEBPS/assets/f0318-01.png
class DogRetailer : Retailer<Dog> {
override fun sell(): Dog {
println("Sell Dog")

return Dog("")

class FishRetailer : Retailer<Fish> {
override fun sell(): Fish {
println("Sell Fish")

return Fish ("

fun main(args: Array<String>) {
val catFuzz = Cat("Fuzz Lightyear")
val catKatsu = Cat("Katsu")
val fishFinny = Fish("Finny McGraw")

— Create some Vet objects.

val catVet = Vet<Cat>()

val fishVet = Vet<Fish>()

val petVet = Vet<Pet>()

L Get the Vets to treat some Pets
catVet. treat (catFuzz)
petVet. treat (catKatsu)

etVet. treat (fishFinny)
F o - Asson a VebeCab> 4o the Contest<Cat>
val catContest = Contest<Cat>(catVet)

catContest.addScore (catFuzz, 50)

catContest.addScore (catKatsu, 45)

val topCat = catContest.getWinners().first()

println("Cat contest winner is S${topCat.name}")





OEBPS/assets/f0314-01.png
eat Cats.
catVet.treat (Cat ("Fuzz Lightyear™))Y) A Vet<Cat>and a Vet<Pet> tan both tr
petVet . treat (Cat ("Katsu"))

petVet.treat (Fish("Finny McGraw"))€— A Vet<Pet> can treat a Fish

catVet.treat (Fish("Finny MCGTaw")) €—This line won't compile,
)

as a Vet<Cat> tan't treat 3 Fish





OEBPS/assets/f0231-02.png
w?.let

{

You tan use “it” to diveetly

println(it.hunger) & gecess the Wolf's functions

and properties.

hunger: 6
w

var Wolf? Wolf
£ i non—nullable
<— version of w that vefers
;a the sam\é Wolf ob)gt(;
Wolf  You can vefer o
var Wol within let's body.






OEBPS/assets/f0358-01.png
println(1.name)

criteria(l)






OEBPS/assets/f0406-01.png
delay (1000) &— The dela funetion adds a pause, but it's
ay (1000) more ebficient than using Thread.sleep.





OEBPS/assets/f0208-01.png
val r = Recipe(title = "Spaghetti Bolognese",

S—This spetifies the name of each property,

mainIngredient = "Beef") and the value it should have.





OEBPS/assets/f0013-01.png
“fun” means K‘n\e name of this funttion.
it's & function.

i of the funttion
$‘fun”mai.nH(arqs: A:rray<st:ri.ng>)|KOF‘"'"5 brace e runees

The *//” denokes a R
cmmert. R e —>
tomment with an

tod want th »
Fonction o enctute. [3] 4 Closing brace of the function

The function’s parameters, enclosed
in paventheses. The funttion is given
an avvay of Strings, and the arvay is
named “args”.





OEBPS/assets/f0373-01.png
This is the original
grotevies L-s{:,‘3 >

gr?ceriés

val
List<Grocery>

List<Grocery>

Grocery

4.0

smcerny—’v

/\O“Bagsls"
1.5

Grocery
“Olive oil”
6.0
Grocery

“Mushrooms”

“Tomatoes”
3.0 The call o the filter funetion

treates a new List which holds
vekerentes to the two items vith
a wnitPrice greater than 3.0.

List<Grocery>





OEBPS/assets/bag.png





OEBPS/assets/f0349-01.png
//Define two conversion lambdas These lambdas convert a Double

val kgsToPounds = { x: Double -> x * 2.204623 } | from kilosyams{’p?ow\dsy and
val poundsToUSTons = { x: Double -> x / 2000.0 } from pounds to US Tors.

//Combine the two lambdas to create a new one Pass the lambdas to the combine

val kgsToUSTons = combine (kgsToPounds, poundsToUSTons)&f::?’:’h T‘E F'Ed“fj‘i lambda
onverts a Double £rom
kilograms to US Tons.
//Invoke the kgsToUSTons lambda
val usTons = kgsToUSTons (1000.0)  //1.1023115 S~ fuue {he reaulbing lnbda by

passing it a value of 1000.0.
This veturns 1.1023]]5.





OEBPS/assets/f0263-02.png
4&/\

val List<String>






OEBPS/assets/f0375-02.png
But if forEach does the same thing as a
for loop, isn't that just giving me one more
thing to remember? What's the point in
having yet another function?





OEBPS/assets/f0201-02.png
rl hash code: -150497891

rR hash code: -135497891

r3 hash code: 241131113

rl toString: Recipe(title=Thai Curry, isVegetarian=false)

PL==TRPIUS N | __ ) i brue because theiv objects have matzhing values

i - Pgi‘?f:;:ze Ps they vefer to separate objects, vl === vZLis false.

title is Thai Curry and vegetarian is false






OEBPS/assets/f0008-01.png
800

Welcome to Intelli) IDEA

Any projects
eeate e:ill ay‘{r::r
here. This is our
fivst project,

so this area is

turvently empty.

IntelliJ IDEA

+ Create New Project /

1 Import Project

Click on the option to
eveate a new project-

% Open

H Check out from Version Control ~

& Configure »  Get Help ~






OEBPS/assets/common23.png
Build application
Add function
Update function
Use REPL





OEBPS/assets/f0382-03.png
groceries.groupBy { 1t.category }.forEach {
println(it.key) This line gets the corresponding
$(it.name}n) }<L— value for the Ma's key. As
! this is a List<Grotery>, we tan
eall forEath on it to print the
name of the Grotery item.

it.value.forEach { println("





OEBPS/assets/f0196-01.png
(Data)
Recipe

title

isVegetarian






OEBPS/assets/f0302-01.png
fun main(args: Array<String>) { Create two Cats and 3 Fish.
val catFuzz = Cat("Fuzz Lightyear") &

val catKatsu = Cat("Katsu")
val fishFinny = Fish("Finny McGraw") -r
val catContest = Contest<Cat>() & Hold a Cat Contest (Cats—only). GemelicS

catContest.addScore (catFuzz, 50)

catContest.addScore (catKatsu, 45) src
val topCat = catContest.getWinners().first()
println("Cat contest winner is ${topCat.name}") Pets.kt

val petContest - Contest<pets() & Hold a Pet Contest, that il
petContest.addScore (catFuzz, 50) aceept all types of Pet.
petContest.addScore (£ishFinny, 56)

val topPet = petContest.getWinners().first()

println("Pet contest winner is ${topPet.name}")





OEBPS/assets/f0240-03.png
catch (e: NumberFormatException) {

println ("Bummer"

)
S This fine will only vun if an exteption is taught.





OEBPS/assets/f0399-01.png
6006 New Project

We're using an artifact [D of “drummathine’.
Groupld

Artifactid | drummachine'~ ]

Version 1.0-SNAPSHOT

7. Cancel previous | [






OEBPS/assets/f0019-02.png
fun main(args: Array<String>) {
val x = 3
val y = 1
if (x> y) (
println("x is greater than y")
} else {

println("x is not greater than y") < This line i orly exceuted if
! £he condition % > Y s not met

println("This line runs no matter what")





OEBPS/assets/f0102-01.png
T get it. The Dog constructor defines properties,
and each property is really just a variable that's local to
the object. A value is then assigned to that variable.






OEBPS/assets/f0182-02.png
The vight side of the if condition
only vuns if voamable is an Animal, so

if (roamable is Animal && roamable.hunger < 5) {&—
we tan aceess its hunger property.

//Code to deal with a hungry Animal





OEBPS/assets/f0245-01.png
This is like saying “Tey
—to assion str-tolnt() to
vesult, but if you ean't

sek vesult to null”

val result = try { str.toInt() } catch (e: Exception) { null }





OEBPS/assets/f0183-02.png
when (roamable) { € Chetk the value of roamable-
is Wolf -> {

//Wolf-specific code
3
is Hippo -> {

//Hippo-specific code
t This ¢ode vill only vun if voamable is a

is Animal -> { \[ty?e of Animal £hat's not Welf or Hippo

//Code that runs if roamable is some other Animal





OEBPS/assets/f0389-03.png





OEBPS/assets/f0088-01.png
fun printResult(userChoice: String, gameChoice: String)
val result: String

//Figure out the result You need to add this Lunttion.
if (userChoice == gameChoice) result = "Tie!"
else if ((userChoice == "Rock" && gameChoice == "Scissors") ||
(userChoice Paper" &6 gameChoice == "Rock") ||
(userChoice Scissors" && gameChoice == "Paper")) result = "You win!"

else result = "You lose!"
//Print the result

Rock Paper Scissors
println("You chose $userChoice. I chose $gameChoice. $result")

Game. kt





OEBPS/assets/f0389-02.png





OEBPS/assets/f0066-01.png
The : Int tells the compiler that

i s an [nt value
fun max(a: Int, b: Int): Int ( the function vedurns an |

val maxValue = if (a > b) a else b

return maxValue ©— o, veturn a value using the ‘veturn’ keyword,
} Lollowed by the value you've veturning.





OEBPS/assets/f0166-01.png
class Vet {

fun giveShot (animal: Animal) {

//Code to do something medical

animal.makeNoise ()

fun main(args: Array<String>) {

val

for

val
val

val

vet.

vet

animals = arrayOf (Hippo(), Wolf())

(item in animals)

item.roam()

item.eat ()

vet = Vet ()
Wwolf = Wolf()
hippo = Hippo ()
giveShot (wolf)

.giveshot (hippo)

{

We've not thanged any of
Ehe eode on this page:

Animals

src

Animals.kt

giveShot()

Animal

image
food

habitat
hunger

makeNoise()
eat()

roam()
sleep()

Hippo

Canine

image
food
habitat

makeNoise()
eat()

makeNoise()
eat()






OEBPS/assets/f0299-04.png
val petContest = Contest<Pel>()
petContest.addScore (Cat ("Fuzz Lightyear"), 50)) Asa Contest<Pet> deals with Pets,
petContest.addScore (Fish("Finny McGraw"), 56) ) tontestants can be any subtype of Pet





OEBPS/assets/f0228-03.png
T

hunger: 2
/(s

08 hunger is set to 2 only if
£ ger is se ly
w°'f? Wel myWolf and w are both

not null.

var MyWolf?





OEBPS/assets/f0132-01.png





OEBPS/assets/f0161-02.png
val animals = arrayOf (Hippo(),

Create an aveay Wolf(),

of different Lien(),

Animal objects. Cheetah (),
Lynx (),
Fox ()

for (item in animals) {

item.roam() Ea .
Stemcat ) ith Animal in the array

vesponds in its own way.





OEBPS/assets/f0273-01.png





OEBPS/assets/f0403-03.png
import kotlinx.coroutines.* $— Add this line so that we .

Drum Machine
ean use functions from the
coroutines library in our code

srolmain/kotlin
fun main() ( ]
Launth a _Siobalscope. launch ( playBeats (Moxxoxoxoxt, Mtoms.aif”) ) .
; Beats.kt
covoutine in the 7T 1 n o (me x----=", "crash_cymbal.aiff") ©

batkground.





OEBPS/assets/f0295-02.png
abstract class Pet(var name: String)

class Cat(name: String) : Pet(name)
Each subtype of Pet has a name

(whith it inherits from Pet), which
gets set in the class constructor.

class Dog(name: String) : Pet (name)

class Fish(name: String) : Pet(name)





OEBPS/assets/f0278-01.png
“Chicken “Quinoa
Soup” Salad
&

“Recipel” “Retipe2”

Recipe

C Qﬁg
mRecif)e
ap,
val MutableMap
<String, Recipe>

£ you pass String keys and Retipe values
o the m{—,abchayozo Lunction, the
compiler infers that you want an object
of type MutableMap<String, Retipe>-





OEBPS/assets/f0225-03.png
w?.hunger

I'm null, so I don't have

//Returns null access to Wolf properties.





OEBPS/assets/f0242-03.png
Throwable is Exception’s superelass.

Throwable

cause
message

Exception

OtherException

Every exteption is 3
sublass of Exeeption,
intluding all the ones
mentioned on this page.





OEBPS/assets/f0411-02.png
is looks weird, but it's 3
valid Kotlin funttion name

@Test

<
fun "should be able to add 3 and 4 - and it mustn't go wrong () {
val totaller = Totaller()






OEBPS/assets/f0179-01.png
Viagram:

Peclaration:
1 open class Cliek { }
elass Clack : Cliek() { }

Key:

Inherits from

Implements
Class
Abstract class

Interface






OEBPS/assets/f0199-02a.png
“Chicken Bhuna”

Ve

£ s
@ String

val String





OEBPS/assets/f0239-01.png
[‘{vkes

Exception in thread "main" java.lang. NumberFormatException: For input string: "I am a name, not a number"
at java.lang. NumberFormatException.forInputString(NumberFormatException java:65)

at javalang Integer parseInt(Integerjava:580) = The exception stack
at java.lang.Integer.parseInt(Integerjava:615) trate mentions Java
at AppKt.myFunction(App.kt:119) because we've vunning

4t AppKt main(App.kt:3) our tode on the JVM





OEBPS/assets/f0285-01.png
fun main(args: Array<String>) {

val mList = mutableListOf ("Football", "Baseball", "Basketball")
The candidate

¢ode goes here.—T D
Matceh each

tandidate with

one of the }

possible outputs

Candidates: Possible output:

mList.sort()
println (mList)

[Netball]

[Baseball, Basketball, Football]
val mMap = mutableMapOf ("0" to "Netball")
var x = 0 [Basketball]
for (item in mlist) {
mMap.put (x. toString () , item) [Football, Basketball, Baseball]
}

println (mMap. values)

{Basketball}

[Basketball, Baseball, Football]
nList.addAll (mList)
nList.reverse () {Netball}
val set = mList.toSet()

println(set) [Football]

(Basketball, Baseball, Football}
mList.sort ()

nlist.reverse () [Football, Baseball, Basketball]
println (nList)





OEBPS/assets/f0275-04.png
petListsort)






OEBPS/assets/f0151-01.png
These ave the pairs of functions.
This is the tode

[ @ open fun frighten(): Boolean {

open class Monster { println("Rargh!")

(&) )

@ override fun frighten(): Boolean {
println("Fancy a bite?")

return true

class Vampyre : Monster() {

(8] }

return false

}
@ fun frighten(): Boolean {
println("Aargh!")
class Dragon : Monster() { A
return true
override fun frighten(): Boolean {

println("Fire!")

return true @ override fun frighten(): Boolean {
} println("Fancy a bite?")

} return true

fun main(args: Array<sString>) {

val m = arrayOf (Vampyre (), @ open fun frighten(): Boolean {
Dragon (), println("Aargh!”)
Monster () return false

for (item inm) { }

item.frighten()
, @ fun beScary(): Boolean {

println("Fancy a bite?")
return true





OEBPS/assets/f0279-01.png
mRecipeMap. remove ("Recipe2") & Kemove the entry with a key of “Recipe2”





OEBPS/assets/f0425-02.png
fun main{args: Array<string>) {
val inner = Outer () .Inner ()€ As [nner is an inner class, ve have to use Outer(), not Outer.
println (inner.y)
println(inner.myFun())
println(inner.getX())





OEBPS/assets/f0171-03.png
interface Roamable {

fun roam() {

: " amable i ing" To add a tontrete funttion to an
println("The Roamable is roaming") %’i:{urﬁacc, e > oy





OEBPS/assets/f0386-03.png
groceries.fold(50.0) { change, item
-> change - item.unitPrice * itenhquantity}]
This subtracts the total price

(unitPrice * auantity) from
change for eath item in grotevies.

mitialize thange with 50.0-





OEBPS/assets/f0021-01.png
fun main(args: Array<String>) {
AT =
R R e e

Delete these lines

N ——
~N—

i €
val x = 3
val y = 1

println(if (x > y) "x is greater than y" else "x is not greater than y")

println("This line runs no matter what")





OEBPS/assets/f0182-03.png
Remember, the right side of an ||

condition only vuns if the left side

is false. Therefore, the vight side
= ¢an only vun if voamable is an Animal

if (roamable !is Animal || x.hunger >= 5)

//Code to deal with a non-Animal, or with a non-hungry Animal





OEBPS/assets/f0060-01.png
It makes your code more organized.
Instead of having all your code in one long ma in function, it’s split into

more manageable chunks. This makes the code much easier to read and ™ obh cons
eve are other veason:

400, but these are fwo

It makes your code more reusable. of the most important.
By splitting the code into separate functions, it elsewhere.

understand.






OEBPS/assets/f0417-03.png
import com.hfkotlin.mypackage.* S— Ty, ¥ means “import everything from this package”





OEBPS/assets/f0011-01a.png
We've tompleted this s%‘?, so we've thecked it

Build application
Add function
Update function
Use REPL





OEBPS/assets/f0308-01a.png
Pets
Contest
Retailers
Vet





OEBPS/assets/f0146-01.png
eat()

Wolf

val Animal

1£ You have an Animal that's 2
Wolf, Lelling it 4o eat will eall
the Wolf’s eat) function.





OEBPS/assets/f0007-02.png
A code editor

The code editor offers code completion
to help you write Kotlin code, and
formatting and color highlighting to

make your code casier to read. It also
gives you hints for improving your code.

Build tools /-\

You can compile and run your code
using quick and easy shortcuts.

/\Ko?l in REPL

You have easy access to the Kotlin
REPL, which lets you try out code

snippets outside your main code.

“

Version control

Tntelli] IDEA interfaces with major
version control systems such as Git,
SVN, CVS and more






OEBPS/assets/f00ii-01.png
Aisha and L aueg
Mum and Dad S






OEBPS/assets/f0427-02.png
val newDuck = Duck.DuckFactory.create () <— Note that You aceess the
object using Duek, not Duek().





OEBPS/assets/chair.png





OEBPS/assets/f0029-01.png
fun main(args: Array<String>)

var x = 1

while (x < 13) .

"Yab" else "Dab")

=)
D5 =

You didn't need to
use these magng{-;.






OEBPS/assets/f0331-01.png
val greeting: () -> String,=z { "Hello!™ }

e W
/b
Declare the vj}:riablz- 3\"?;‘7 Assign a value o i

its type.





OEBPS/assets/f0216-01.png
data class Student(val filrstName: String, val lastName: String,

val house: String, val year: Int = 1) This will compile and vu
is wil ile and vun

values for each Student.

fun main(args: Array<String>) { suecesshully. [t prints out
val sl = Student ("Ron", "Weasley", "Gryffindor") the FirstName, lastName,
val s2 = Student ("Draco”, "Malfoy", house = "Slytherin") house and year property
val 53 = sl.copy(firstName = "Fred", year = 3)
(

val s4 = s3.copy(firstName

"George")

This line destruttuves each
— Student object in the arvay:

val array = arrayOf(sl, s2, s3, sd)
for ((firstName, lastName, house, year) in array) {
println("$firstName $lastName is in $house year S$year")

data class Student (val firstName: String, val lastName: String,
val house: String, val year: Int = 1)

fun main(args: Array<String>) {

val sl = Student ("Ron", "Weasley", "Gryffindor")

val s2 = Student (lastName = "Malfoy", firstName = "Draco”, year = 1,house = "Slytherin’
val s3 = sl.copy(firstName = "Fred",year = 3
3 year——i— o, ) o K
val s = 53.copy(firstiame — "George") This won't eompile as a value is vequived for s2's
house property, and as year is defined using val,
val array = arrayof (sl, s2, s3, sd) its value can only be set when it's initialized.

for (s in array) {

println("${s.firstName} $(s.lastName} is in ${s.house} year ${s.year}")





OEBPS/assets/f0433-03.png
inline fun convert(x: Double, converter: (Double) -> Double) : Double {

val result = converter (x) This is a function we ereated

println("$x is converted to $result") in Chapter 1, but here, we've
A A

return result marked it as an inline funion.





OEBPS/assets/f0275-03.png





OEBPS/assets/f0279-03.png
mRecipelMap.clear ()

o N

Hey, where did

everybody go?

mRecigze
\ap $The clear() function vemoves
val MufableMap every entey, but the MutableMap

ey object itself still exists





OEBPS/assets/f0327-03.png
I take two Int
parameters named x and

y. T add them together,
and return the result.

{x:Int,y:Int >x+y}

Lambda





OEBPS/assets/f0174-02.png
TR T IS~ Class X implements the A and B inter-faces





OEBPS/assets/f0186-01.png
L We've only thanging the code in the main funetion

fun main(args: Array<String>) {
animals = arrayOf (Hippo(), Wolf())

val
for

val
val

val

vet.

vet

val

for

(item in animals)
item.roam()

item.eat ()

vet = vet()
wolf = Wolf()
hippo = Hippo ()
giveshot (wolf)

.giveshot (hippo)

{

Animals

g

src

0

Animals kt

Create an avray of Roamables.

roamables = arrayOf (Hippo(), Wolf(), Vehicle())
(item in roamables) {

item.roam()

if (item is Animal) {

item-at0) < Call the eatO function for

eath Animal in the avvay.

Vet

giveShot()

(interface)
Roamable

Vehicle

Animal

image
food
habitat
hunger

makeNoise()
eat()

roam()
sleep()

Hippo

image

food

habitat roam()
makeNoise()

eat()

Wolf
image
food
habitat
makeNoise()

eat()






OEBPS/assets/f0259-01.png
mShopplnq.surt()} Together, these lines sort the

mShopping. reverse () ) MutableList in veverse order.





OEBPS/assets/f0227-01.png
myWoll’?. w?.hunger

S yWoIf ‘ var.WoIf" Wolf

var MyWoIf? MyWolf





OEBPS/assets/f0181-01.png
This line eveates an avvay of Roamable objects

val roamables = arrayOf (Hippo(), Wolf(), Vehicle()) Q @é
for (item in roamables) { < —— As the voamables avray holds \
item.roam() Roamable objeets, this means that
) the ttem vavible s of type Roamable. —>~

var Roamable





OEBPS/assets/f0208-02.png
@,

]

val Recipe

L

~0O

Recipe

title: "Spaghettl Bolognese”
mainIngredient: "Beef"
isVegetarian: false
difficulty: “Easy”





OEBPS/assets/f0232-01.png
var array = arrayOf("Hi", "Hello", null)
for (item in array) {
item?.let {
println (it) <~ This line only vuns for non—null items in the array





OEBPS/assets/f0279-02.png
val recipeToRemove = Recipe ("
pe("Quinoa Salad"
= Remove the entry with a key of

mRecipedap. remove ("Recipe2"
ove ("Recipe2”, recipeToRemove) ~=— Retipel’, but orly if its value is 2
Quinoa Salad Retipe ab):t(‘,





OEBPS/assets/f0172-03.png
intertace Roamable
val velocity: Int This veturns a value of 20 whenever the property is
get() = 20 @ attessed. But you ean still override the property in
} any ¢lass that implements the interfate.





OEBPS/assets/f0028-01.png
fun main(args: Array<String>) {
var x = 0
var y = 0

while (x < 5) {

x=x+1
}
}

Candidates: Possible output:
y=x-y 00 11 23 36 410
YESIVANIE 00 11 22 33 44
y=y+3
if (y>4) y=y -1 00 11 21 32 42
B=8¢d 03 15 27 39 411
= x\
. 22 57
if (y < 5) {

x=x+1

if (y<3) x=x-1 02 14 25 36 47
} \
y=y+3 03 26 39 412





OEBPS/assets/f0313-01a.png
Pets
Contest
Retailers
Vet





OEBPS/assets/f0123-02.png
Animal

Hippo





OEBPS/assets/f0100-03.png
name

val String






OEBPS/assets/f0397-01.png
You mean I can

walk and chew gum at

the same time? How
exciting!






OEBPS/assets/f0041-01.png
var Int





OEBPS/assets/f0225-01.png
w?.eat () & The . means that eat() is only called if wis not null





OEBPS/assets/f0340-01.png
convert (20.0, Double -> c * 1.8 + 32 })

This is the value we

‘< ~-and this is the lambda that well use 4o tonvert it. Note
want to onvert..-

that ve could use “i” in place of ¢ because the lambda
uses a single parameter whose type the compiler ean infer.





OEBPS/assets/f0386-01.png
ints.fold(l) { runningProduct, item ->\runningProduct * item,}
lti i .
alize vunningProduct with . Multiply vunningSum with the value of each item






OEBPS/assets/f0201-01.png
We've omitted the {}s as
our data ¢lass has no body.

(Data)
data class Recipe(val title: String, val isVegetarian: Boolean) Q Recipe

title
isVegetarian

fun main(args: Array<String>) (

val rl = Recipe ("Thai Curry”, false)

val r2 = Recipe("Thai Curry", false) Create a M’Y"‘:'l’

val r3 = rl.copy(title = "Chicken Bhuna") €— altering its title property.
println("rl hash code: ${rl.hashCode()}")

println("r2 hash code: ${r2.hashCode()}")
println("r3 hash code: ${r3.hashCode ()}") Recipes

println("rl toString: ${rl.toString()}")
r2? ${rl == r2}")

println("rl

println("rl r2? ${rl r2
println("rl r32 ${rl == r3}")  Destrutture v| Recipes.kt
val (title, vegetarian) = rl

println("title is $title and vegetarian is $vegetarian")





OEBPS/assets/f0430-02.png
var x u
0

while (x < 10) {

var y

et This intrements x, then moves back 4o the line while (x < 10)
continue  vithout exetuting the line y++. [t keeps intrementing % until
v+t

the while's condition (x < 10) is false. % has a final value of
} 10, and ¥'s value vemains O.





OEBPS/assets/f0284-01.png
fun main{args: Array<string>) {

val
val
val
val
val
val

val

val
val
val
val
val
val

val

val

for

terml = "Array"
term2 = "List"
term3 = "Map"
termd = "MutableL]
termS = "MutableMap!
termé = "MutableSet"
term7 = "Set"
defl = "Holds values in no particular order."
def2 = "Holds key/value pairs.”
def3 = "Holds values in a sequence."
defd = "Can be updated."
def5 = "Can't be updated."
def6 = "Can be resized."
def?7 = "Can't be resized."
glossary = to "Sdef3 $Sdefd $defé",
term7 to "$defl $def5 $def7”,
terml to "$def3 $defd $def7”,
"$def2 $defd $def6”,
"$def3 $def5 $def?”,
"$defl $defd $def6",
term3 to "$def2 $def5 Sdef7")
((key, value) in glossary) println("$key: $value")





OEBPS/assets/f0072-02.png
fun myFunction(): String {

var message: String

TELUID MESSAYE S~ \i, must initialize a variable if You want to use it as
] a funttion’s vetuen value, so this code won't tompile.





OEBPS/assets/f0386-02.png
groceries.fold(

Lpering, item —>string + 7 slitem.name}’; )

Initialize string with . A This is like saying:

string = string + Flitemname}”
for each item in arocevies.





OEBPS/assets/f0017-01.png
< (less than)

> (greater than)

(equality) € You use bwo eauals signs 4o best for equality, not ene

<= (less than or equal to)

= (greater than or equal to)





OEBPS/assets/f0328-02.png
var addFive = { x: INE => X + 5} 0 (o pan assign 3 new lambda to addFive
addFive = { Int => 5 + vy } <— betause we've de?ined the vaviable using var.






OEBPS/assets/f0142-01.png
Canine is a subelass of Animal. [£'s
detlaved open so that we ean use it
as a supertlass for the Wolf ¢lass.

class Canine D Animal ()
_ fun { & Overvide the voam() funthion

Wolf is a subelass of Canine

}

Vs

Override
these

Properties. use these magnets.

val habitat - "forests"

[y R =3
println("Hooooowl!")

}

Overeide these two functions.

val image = "wolf.jpg" You didn't need to

Animal

fun eat () {

println("The Wolf is eating $food")






OEBPS/assets/f0199-04.png
) Assigns the value
val (title, vegetarian) = r < of v's first
property to title
and the value
of its second
property to
vegetarian.





OEBPS/assets/f0251-01.png
Oh, if only there was
away for me to add new
boyfriends to my collection...





OEBPS/assets/f0200-02.png





OEBPS/assets/f0156-01.png
Lion

image
food
habitat

makeNoise()
eat()

Feline

roam()

Cheetah

image
food
habitat

makeNoise()
eat()

Lynx

image
food
habitat

makeNoise()
eat()

Animal

image
food
habitat
hunger

makeNoise()
eat()

roam()
sleep()

Hippo

image
food
habitat

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()






OEBPS/assets/f0196-02.png
The data prefix — 5 4a¢a class Recipe (val title: String, val isVegetarian: Boolean) |
turns a novmal elass

into a data elass.





OEBPS/assets/f0295-01a.png
Pets
Contest
Retailers
Vet





OEBPS/assets/f0224-01.png
eatQ)
&7 N
if (w != null) { w
w.eat () &— The compiler knows that w is not null

1 so0 You ean all the eatO) function. var Wolf? Wolf





OEBPS/assets/common34.png
Design classes
Build classes
Use classes






OEBPS/assets/f0185-01.png
var wolf = r as Wolf S<——This code explicitly casts the object 4o a
wolf.eat () Wolf so that you tan call its Wolf Lunckions.





OEBPS/assets/f0032-01.png
L= h variable is like a eup.
£ holds something.





OEBPS/assets/f0206-02.png
data class Recipe(val title: String, |s\/£5d’jr\aln hii}l
e of false

val mainlngredient: String, default valu

val isVegetarian: Boolean = false,

val difficulty: String = "Easy") {
4N difficulty has

a default value
OF ‘\Easy“.

(Data)
Recipe

title
mainingredient
isVegetarian
difficulty






OEBPS/assets/f0106-02.png
class Dog(val name: 3tring, var weight: Int, val breed: String) {

var activities = arrayOf ("Walks")
name: “Fido”
Each Dog object that's reated will have an weight: 70
activities property. [t's initial value will be breed: “Mixed”
) an arvay containing a value of “Walks”. activities: “Walks’






OEBPS/assets/f00iv-01.png
pavd ekt

Dawn sr.FFyths)





OEBPS/assets/f0072-03.png
fun myFunction(message: String){

message = "Hi!"&S— Parameber vaviables are treated as local variables treated
3 using val, so You tan't veuse them for other values.





OEBPS/assets/f0125-01.png
image
food

habitat
hunger

makeNoise()
eat()

roam()
sleep()

Cheetah






OEBPS/assets/f0068-01.png
The funttion has one parameter,
g an arvay of Strings.

fun getGameChoice ( | optionsParam: ' Array<String> ' ) =

Choose one of

the array's
iLems a{\{ optionstaran| - Math. randon () ' optionsParam ' _size .D toInt () '

vandom.






OEBPS/assets/f0178-01.png
class Vehicle : Roamable { & fidd the Vehicle etlass.

override fun roam() {

println("The Vehicle is roaming")

class Vet {
fun giveshot (animal: Animal) {
//Code to do something medical

animal.makeNoise ()

fun main(args: Array<String>) {
val animals = arrayOf (Hippo(), Wolf())
for (item in animals) {
item.roam()

item.eat ()

)

Animals

val vet = Vet()

src
val wolf = Wolf() L
val hippo = Hippo()

Animals.kt

vet.giveShot (wolf)
vet.giveShot (hippo)

Vet

giveShot()

(interface)
Roamable

Vehicle

Animal

image
food
habitat
hunger

makeNoise()
eat()

roam()
sleep()

Hippo

Canine

image
food
habitat

makeNoise()
eat()

image
food
habitat

makeNoise()
eat()






OEBPS/assets/f0226-02.png
myWolt‘?.W?hu.nger

¢ @

var MyWoIf7 MyWolf





OEBPS/assets/cover.png
OREILLY®

Head First

Kotlin

A Brain-Friendly Guide

A learner’s guide to
Kotlin programmi;
Fool around prog ne
in the Kotlin
Standard

Library (f & Avoid embarrassing

| lambda mistakes

£
¥/
Uncover
the ins and
outs of generics Write out-of-this-
world higher-order
functions

Put collections under
the microscope

i See how Elvis can

change your life

Dawn Griffiths & David Griffiths





OEBPS/assets/f0015-02.png
Kotlin compller' lool
111010¢

App.kt AppKt.class





OEBPS/assets/f0353-02.png
fun convert(x: Double,

fun

converter: DoubleConversion) : Double {

val result = converter (x)

println("$x is converted to Sresult")

return result

combine (lambdal: DoubleConversion,

We ¢an use the
DoubleConversion tyre
alias in the convert and
¢ombine functions to make
the tode more veadable.

lambdaZ?: DoubleConversion): DoubleConversion {

return { x: Double -> lambda2 (lambdal (x))

}





OEBPS/assets/f0208-04.png
title: “Spaghetti Bolognese”

mainIngredient: "Beef"
Ve isVegetarian: false
&

8 difficulty: “Moderate”
T ﬂ Recipe
r






OEBPS/assets/f0111-01.png
-1 < Cripes.

myDog.weight





OEBPS/assets/f0097-02.png
class Song(val title: String, val artist: String) {<— Define title and artist properties
fun play() {
println("Playing the song Stitle by Sartist")

Add play and stop funetions.

println("Stopped playing $title"

fun stop() { Sonis

fun main(args: Array<string>) {

val songOne = Song ("The Mesopotamians", "They Might Be Giants")
val songTwo = Song("Going Underground", "The Jam")

val songThree = Song("Make Me Smile", "Steve Harley") Create three Songs.
songTwo.play ()

Play songTwo, stop i
Two. stop () Y song [wo, stop
songtne.stop then play songThree.

songThree.play ()





OEBPS/assets/f0162-01.png
image
food

habitat
hunger

makeNoise()
eat()

roam()
sleep()

image
food
habitat

makeNoise()
eat()






OEBPS/assets/f0268-02.png
val toAdd - setOf ("Joe", "Mia") addAll) adds

he values held:
. . —H
mFriendSet.addAll (toAdd) in another Set.






OEBPS/assets/f0009-01.png
800 New Project

2Java <
2 Java FX Kotlin/Js )
We'll vun our Kotlin application in a JUM,

# Android Kotlin/Native s select. the Kotlin/JVA aption.
Intelli) Platform Plugin [ Kotlin (JS Client/JVM Server)

I Kotlin (Multiplatform Library)

1 Maven
Gradle I Kotlin (Mobile Android/i0S)
I Kotlin (Mobile Shared Library)
@ Groovy

% Empty Project

We've eveating a Kotlin
project, so thoose the
Koghh option

Kotlin module for JVM target

2) [ Cance previous | (TS

Click on the Next
button to proteed
Lo the next skep





OEBPS/assets/f0187-01.png
[Thtsc ave the tode segments.
interface Flyable { © nen 1)

val x: String is Bird -> {
xtt

fun fly() { fx].£ly()

println("$x is flying") )

is Plane, is Superhero ->
flx].£1y()

class Bird : Flyable {
override val x = "Bird"

class Plane : Flyable { e if (x is Plane || x is Superhero) |

override val x = "Plane £x].£ly()

class Superhero : Flyable {
uperhero”

© when (£
{

Plane, Superhero -> £[x].fly()

override val x =

fun main(args: Array<String>)
val f = arrayOf (Bird(), Plane(), Superhero()) }
var x = 0
while (x in 0..2) {

O vl v - when (£1xD)
is Bird -> false

/tEaAh ¢ode segment goes heve. else -> true

e+t

if (y) {f(x].flyv()}





OEBPS/assets/f0315-02.png
The in prefi in the Vet class

val catContest — Contest<Cat>(Vet<Pet> (}) éx— means that we ean now use
Vek<Peb> in place of a Vet<Cat>,

<o Lhis tode now tompiles.





OEBPS/assets/f0165-01.png
class Hippo

abstract epes-class Canine

class Wolf

¢ Animal () {

override val image = "hippo.ipg"
override val food = "grass"
override val habitat = "water"

override fun makeNoise() {

println("Grunt! Grunt!")

override fun eat() {

println("The Hippo is eating $food")

Mavk the Canine elass as abstratt.

Animal() {
override fun roam() {

println("The Canine is roaming")

Canine () (

override val image = "wolf.jpg"
override val food = "meat”
override val habitat = "forests"

override fun makeNoise() {

println("Hooooowl!")

override fun eat() {

println("The Wolf is eating $food")

Animals.kt
Vet image

food
habitat

giveShot() hunger
makeNoise()
eat()
roam()
sleep()

Hippo Canine

image

food

habitat

makeNoise()
eat()

image
food
habitat

makeNoise()
eat()

The tode tontinues D
on the next page.





OEBPS/assets/f0274-01.png
€O ciass puck(val size: me = 17) ¢
override fun equals(other: Any?): Boolean {

if (this other) return true
if (other is Duck && size == other.size) return true
return false

) This follows the hashCode() and equals()

vules. The Set vecognizes that the second
ide fun hashCode(): Int . . ! .

override fun hashCode(): Int { Duck is a duplicate, so the main function
return size

) ¢treates a Set that tontains one item.

© class puckival size: Int = 17)
override fun equals(other: Any?): Boolean {
return false

, This produtes a Set with two items. The
tlass breaks the hashCode() and equals()
override fun hashCode(): Int { vules as equalsQ) always veturns false, even if
return 7

, it's used o tompare an object with itself.
}

o data class Duck(val size: Int

18) This follows the vules, but produces a Set with two items.

© ciass buck(val size: Tmt - 17) | This produces a Sek wikh bwo items. The
override fun equals(other: Any?): Boolean {

return true tlass breaks the vules as hashCode() veturns
a vandom number. The vules say that equal

override fun hashCode(): Int ( objeets should have the same hash code.
return (Math.random() * 100).toInt()

}

}





OEBPS/assets/f0106-01.png
Dog

name
weight
breed
activities

bark()






OEBPS/assets/f0059-01.png
You said you wanted something
fun, so I bought you a brand-
new set of functions.






OEBPS/assets/f0424-02.png
fun main(args: Array<String>) {

val nested = Outer.Nested() S— Crestes an instance of Nested,

println(nested.y) and assigns it to a variable
println(nested.myFun())





OEBPS/assets/f0297-01.png
class Contest<T: Pet> {

val scores: MutableMap<T, Int> = mutableMapOf ()

//More code here

R This defines a MutableMap with T keys,

and Int values, wheve T is the generie &
of Pet. that the Contest i despms ety

Contest<T: Pet>

scores






OEBPS/assets/f0013-02.png
Ihis says to
print to the — > [p:

standard

output. The {/,j:t You want £o print






OEBPS/assets/f0036-01.png
You said the compiler decides what the variable’s
type should be by looking at the type of value

that's assigned to it. So how do I create a Byte or
Short variable if the compiler assumes that small
integers are Ints? And what if I want to define a
variable before I know what value it should have?





OEBPS/assets/pencil.png





OEBPS/assets/f0119-01.png
var hasRecorder = false

class TapeDeck {

fun playTape() {

println("Tape playing”)

fun recordTape() (
if (hasRecorder) {

println ("Tape recording”)

fun main(args: Array<String>) {
val £ = TapeDeck()
t.hasRecorder = true
t.playTape ()

t.recordTape ()

This won't compile because you
need to treate a TapeDetk
object before You tan use it.

(2]

class DVDPlayer (var hasRecorder: Boolean)

fun playDVDO {
) printin("DVD playing”)

fun recorddVD() {
if (hasRecorder) {

println ("DVD recording")

fun main(args: Array<String>) {
val d = DVDPlayer (true)
d.playDVD ()
d.recorddVD ()

This won't compile because the DVDPlayer class

needs to have a playDVD funttion.

{





OEBPS/assets/common.png





OEBPS/assets/f0336-01.png
val x

ral
The candidate e

fun main(args: Array<String>) {

20
2.3

tode goes heve. .

Candidates:

val laml = { x: Int > x }
println(lanl(x + 6))

val lam2: (Double) -> Double
lam2 = { (it * 2) + 5}
println(lan2 (y))

val lam3: (Double, Double) -> Unit

lam3 = { x, y -> println(x + y) }
lam3.invoke(y, y)

Possible output:

22.3

26

8.3

1.1513.3

9.3

10.013.3

var lamd = { y: Int -> (y/2).toDouble() }

print (lamé (x))
lamd = { it + 6.3 }
print (lamé (7))





OEBPS/assets/f0265-01.png
T need fo know
if your hash code
values are the same.

O hashCode: 742
O hashCode: 742
Set

o
Q





OEBPS/assets/f0316-01.png
Remove the in prefix
from the Vet elass..

class Vet<dm T: Pet> {
fun treat(t: T) {
println("Treat Pet ${t.name}")

]
class Contest<T: Pet>(var vet: Vet<in T>) {

o ~and add it to the Contest consbructor
) instead. This means that T is contravariand,
but only in the Contest constructor.





OEBPS/assets/f0257-01.png
O“Tea"
Qﬁéﬁ /\
H String
mShopping
i O“E s
val
MutableList<String> String

£ You pass String values o the
ebableList0F0 Funtkion, the eampiler
infers that you want an object of type
MukableList<String> (3 MutableList
that holds Strings)





OEBPS/assets/f0141-01.png
class Canine

fun

println("The . is roaming")

override

_val image = "wolf.jpg" E
—
val food = "meat” Canine ()

val habitat = "forests" H '

println("Hooooowl!") open Wolf ' Animal()
} u

. fun eat() {

class Wolf

println("The Wolf is eating $food")






OEBPS/assets/f0347-01.png
|t returns a lambda whose

The funttion has one pavameter, a String, type is (Double) —> Double.
fun getConversionLambda(str: String): /(Double) -> Double { —
if (str == "CentigradeToFahrenheit") { )\

return { it * 1.8 + 32 }

} else if (str == "KgsToPounds") { (Double) -> Double

return { it * 2.204623 }

} else if (str == "PoundsToUSTons") The function veturns one of these

lambdas, depending on the value of
the String that's passed 4o it.

{
return { it / 2000.0 }
} else {

return { it }





OEBPS/assets/f0064-01.png
Lun’ tells Kotlin = > fun foo () {
that its 2 function: //Your code goes here





OEBPS/assets/f0421-01.png
enum class BandMember (val instrument: String) {
JERRY ("lead guitar"),

BOBBY ("rhythm guitar"),
PHIL ("bass™) j€— Note that we need a %" 4o separate the sings() Funetion from the enum values.

fun sings() = "0ccasionally"<— Eaeh enum value has 3 function named  sings()
} which veturns the String “oeeasionally”.





OEBPS/assets/common02.png





OEBPS/assets/f0063-01.png
Rock Paper Scissors
fun main(args: Array<String>) {

val options = arrayOf ("Rock", "Paper", "Scissors")





OEBPS/assets/f0352-01.png
Q/\ ~ ) {x: Double ->x/0.0011083115 |
&
1
U'g.?::s (Double) > Double
i
s
val (Double) -> Double
1.1023115
f
Y
\‘s““j Double
Ly





OEBPS/assets/f0181-03.png
val roamables = arrayOf (Hippol(), Wolf(), Vehicle())
for (item in roamables) {
item.roam()
if (item is Animal) {
o620 S— I£ the item is an Animal, the com iler
knows it ean call the item’s eat() funedion
b





OEBPS/assets/f0273-02.png





OEBPS/assets/f0167-01.png
class Appliance {

var pluggedIn = true

val color: String

. fun

class CoffeeMaker

Appliance

val color

pluggedin
color

var coffeelLeft = false

consumePower() fun {

println("Consuming power

CoffeeMaker
fun fillWithWater() f{

color

coffeeLeft println("Fill with water™)

consumePower()
fillwithWater()
makeCoffee()

fun makeCoffee() {

println("Make the coffee")





OEBPS/assets/f0240-01.png
I'm gonna TRY this
risky thing, and CATCH
myself if T fail.





OEBPS/assets/f0071-02.png
@ "Paper"

String
@ "Scissors"
String

The options Q$$
variable is N
ereated in the —S\)
main function ptio

val Array<String>

The optionsParam "Fred"
variable is a

parameter in ——> String

the updateArray

Lunttion.

val Array<String> Both variables hold a veferente
o the same array, so when one
of its items is updated, both
vaviables see the thange.





OEBPS/assets/f0228-02.png
1€ w is mot null,
we.hunger = b
sets w's hunger property to b

&

TN \
w @hunger: poe

var Wolf? ‘Wolf





OEBPS/assets/f0237-01a.png
class Duck(val height: null) {

fun quack() {
println("Quack! Quack!")

class MyDucks (var myDucks: Array<__

fun quack() {
for (duck in myDucks) {

fun totalDuckHeight(): Int {

var

for (duck in myDucks) {
height 0






OEBPS/assets/f0391-01.png
The candidate

tode goes here.—

Matceh each
candidate with
one of the
possible outputs

Candidates:

fun main(args
val myMap
var xl =

var x2 =

: Array<String>) {
= mapOf ("A" to 4,

0

et 3,

C

"ot

Zr

oot 1,

"E" to 2)

println("$x1$x2")

x1 = myMap.keys.fold("") { x, y => x + y}
%2 = myMap.entries.fold(0) { x, y -> x * y.value }

%2 = myMap.values.groupBy { it }.keys.sumBy { it }

x1 = "ABCDE"

X2 = myMap.values.fold(12) { x, y > x -y }

x2 = myMap.entries.fold(1) { x, y > x * y.value }

x1 = myMap.values.fold("™) { x, y > x +y }

x1 = myMap.values.fold(0) { x, y —> x + v }

. toString ()

x2 = myMap.keys.groupBy { it }.size

Possible output:

10

ABCDEO

ABCDE48

43210

432120

48

125






OEBPS/assets/f0010-01.png
Name the project “My'Firs{Ayy”

€00 New Project

Project name: | MyFirstApp

Project location: | ~/IdeaProjects/MyFirstApp

Project SDK: | P 1.8 (java version "1.8.0_102") New...
Kotlin runtime ;Amr{ the default values.
Use library: | Il KotlinjavaRuntime | Create...
Project level library KotlinJavaRuntime with 3 files will be created Configure...
» More Settings

7 | Cancel [ previous | [IGEETN

Cliek on the Fiish
button, and the IDE
will eveate your project.





OEBPS/assets/f0118-01.png
class Rectangle(var width: Int, var height: Int) {

val isSquare: Boolean

(width == height) <&—This is a getter that says
b : whether a vectangle is square

get()

val area: Int
width * height) <—This is a getter that caleulates
the vectangle’s area.

fun main(args: Array<String>) {

val r = arrayOf (Rectangle (1,
Rectangle (1, 1), Rectangle(l, 1)

) {KTT—The v avvay has & items, so we'll
loop £rom index O to index 3

o Print the vectangle’s avea.

1), Rectangle(l, 1),

for (x in 0.

Set the width ((MX]L.width = (x + 1) * 3
and height of | rx].height = x + 5
the veetangle. print ("Rectangle $x has area ${

println("It is ${if (_

X Print whether or not
the veetangle is a square.

You didn’t need to
use these snippets






OEBPS/assets/f0160-02.png
The eurly braces form ar

abstract fun makeNoise () {}<— empty function body, so
4he tode won't compile.





OEBPS/assets/f0043-01.png
fun main(args: Array<String>) {

var x: Int = 65.2

var isPunk = true

var message = 'Hello'

var z: Int =y

y =y + 50

var s: Short

var bigNum: Long = y.toLong ()

var b: Byte = 2

var smallNum = b.toShort ()

b = smallNum

isPunk = "false"

var k = y.toDouble ()

b = k.toByte()

0b10001

w
[





OEBPS/assets/f0296-01a.png
Pets
Contest
Retailers
Vet





OEBPS/assets/f0147-01.png
The Vet's giveShot tunttion has
an Animal pavameter-

class Vet { Ve

fun giveShot (animal: Animal) {
//Code to do something medical to the Animal that it won't like

animal.makeNoise ()

}
) giveShot calls the Animal's makeNoise function

giveShot()






OEBPS/assets/f0333-03.png
This won't tompile, because the caleulation

calculation = { x: Double, y: Double —> x + y }&— vaviable will only aceept a lambda with two
Int pavameters and an Int veturn type.





OEBPS/assets/f0404-01.png
Bam! Bam! Bam! Bam! Bam! Bam!
Tish! Tish!
R

This time, the toms and
ymbals play in pavallel.





OEBPS/assets/f0046-01.png
600 New Project
o
wlava FX I Kotlin/Js

" Android % Kotlin/Native

Intelli) Platform Plugin I Kotlin ()S Client/JVM Server)

M Maven
Gradle

® Groowy

% Empty Proje

(5]

I Kotlin (Multiplatform Library)

I Kotlin (Mobile Android/iOS)
[c) New Project

Project name: | PhraseOMatic ]

Project locati

| ~/IdeaProjects /PhraseOMatic
Project SDK: A= 1.8 (java version "1.8.0_102") B [ New..
Kotiin runtime

Use library: Il KotlinjavaRuntime Create...

Project level library KotlinjavaRuntime with 3 files will be created Configure...

8.0.6 New Kotlin File/Class

Name: | PhraseOMatic | 1
O Kind: | ; File

Cancel






OEBPS/assets/f0185-03.png
if (r is Wolf) {

val wolf = r as Wolf ) I vis a Wolf, cast it as a Wolf
wolf.eat () and call its eatO) funetion.





OEBPS/assets/f0282-01.png
mihoppingList original: [Tea, Eggs, Milk ]

mShoppingList items added: [Tea, Eggs, Milk, Cookies, Sugar, Eggs]

mShoppingList sorted: [Coffee, Cookies, Eggs, Eggs, Milk, Sugar]

mShoppingList reversed: [Sugar, Milk, Eggs, Eggs, Cookies, Coffee]

mShoppingSet: [Sugar, Milk, Eggs, Cookies, Coffee]

mShoppingSet items added: [Sugar, Milk, Eggs, Cookies, Coffee, Chives, Spinach]

mShoppingList new version: [Sugar, Milk, Eggs, Cookies, Coffee, Chives, Spinach]

mRecipeMap original: {Recipel=Recipe(name=Chicken Soup), RecipeR=Recipe(name=Quinoa Salad),
Recipe3=Recipe(name=Thai Curry)}

mRecipeMap updated: {Recipel=Recipe(name=Chicken Soup), RecipeR=Recipe(name=Quinoa Salad),
Recipe3=Recipe(name=Thai Curry), Recipe4=Recipe(name=Jambalaya),
Recipe5=Recipe(name=Sausage Rolls)}«_ Pm(:ina a Ma}’ o Mubbch&y Prm{';

Recipel is: Recipe(name=Chicken Soup) eath key/value pair inside turly braces





OEBPS/assets/f0249-01.png
class BadException : Exception() | €|

fun myFunction (test: String) (E+—1

print("s")
}

fun riskyCode (test:String) {

print ("h")

if (test == "Yes") {

throw BadException ()

print("zr")

| Create a subelass of Exception

[~ Create myFunttion.

L Tey to vun this code

— Run this code if a BadException is thrown

|__This code vuns no matter what.

i— Create viskyCode

| Throw a BadException if test == “Yes”






OEBPS/assets/f0413-01.png
import 1o.kotlintest.data.forall
import io.kotlintest.shouldBe

import io.kotlintest.specs.StringSpec
import io.kotlintest.tables.row

We're using these two extra funttions
from the KotlinTest libraries.

class AnotherTotallerTest : StringSpec ({
"should be able to add 3 and 4 - and it mustn't go wrong” {

val totaller = Totaller()

totaller.add(3) shouldBe 3
totaller.add(4) shouldBe 7
totaller.total shouldBe 7

' [Th\s is the second test.

"should be able to add lots of different numbers" {
£ 11 )
orall( We'll vun the test for each vow of data.
row(l, 2, 3),

row(19, 47, 66), ) o
row(ll, 21, 32) The values in eath vow will be assigne

) { x, y, expectedTotal -> <— the %Y and expectedTotal variables.

val totaller = Totaller (x) These two lines will vun for each vow
totaller.add(y) shouldBe expectedTotal





OEBPS/assets/f0306-01.png
class CatRetailer : Retailer<Cat> {
override fun sell(): Cat {
println("Sell Cat")  The CatRetailer tlass implements the

return Cat("") Retailer interface so that it deals
} with Cats. This means that the sellO
funttion must veturn a Cat





OEBPS/assets/f0051-03.png
[}
val Array<Int>

The arvay itself can still be
updated, even though the
vaviable is detlaved using val





OEBPS/assets/bullet.png





OEBPS/assets/f0124-01.png





OEBPS/assets/f0087-01.png
fun main(args: Array<String>) {
val options = arrayOf ("Rock", "Paper”, "Scissors"
val gameChoice = getGameChoice (options
val userChoice = getUserChoice (options

printResult (userChoice, gameChoice) <—(Call the printResult function from main

fun getGameChoice (optionsParam: Array<String>) =

optionsParam[ (Math.random() * optionsParam.size).toInt()]

fun getUserChoice (optionsParam: Array<String>): String {
var isValidChoice = false
var userChoice = ""
//Loop until the user enters a valid choice
while (!isValidChoice) {

//Rsk the user for their choice

print ("Please enter one of the following:")
for (item in optionsParam) print (" $item") Game.k
println(".")
//Read the user input
val userInput = readLine()
//Validate the user input
if (userInput != null && userInput in optionsParam) {
isvalidChoice = true
userChoice = userInput
}
//If the choice is invalid, inform the user
if (!isValidChoice) println("You must enter a valid choice.")

}

return userChoice





OEBPS/assets/f0109-01.png
class Duck { <*—There's no () after the name of the tlass, so the ¢lass has no defined constructor.

fun quack() {
println("Quack! Quack! Quack!")





OEBPS/assets/f0261-01.png
a.add(0, "Zero")
a.add(1, "Two")

a.add(2, "Four") '
var a: MutableList<String> = mutableListOf ()

println(a) '
:prinun(a) fun main(args: Array<String>) { '

a.add(3

println(a)

println(a)

a.removeAt (0)

if (a.indexof(“l“our") 1= 4) a.add("Ten")

if (a.contains ("Zero")) a.add ("Eight")

if (a.contains("Zero")) a. add ("Twelve")






OEBPS/assets/f0204-01.png
data class Movie(val title: String, val year: String)

class Song(val title: String, val artist: String)

fun main(args: Array<String>) {

var ml = Movie ("Black Panther", "2018")
var m2 = Movie("Jurassic World", "2015")
var m3 = Movie("Jurassic World", "2015")
var sl = Song("Love Cats", "The Cure")

var s2 = Song("Wild Horses", "The Rolling Stones")

var s3 = Song("Love Cats", "The Cure"
The ¢andidate
tode goes here. D
}
ml == m3is Candidates: Possible output:

true because
wl and w2 ace > Printin(m2 = m3)

data objects

println(sl == s3)
mh and ml
have matthing —. var md = ml.copy() true
property values, println(nl = nd)
soml == m
is true. var m5 = ml.copy ()
ol and w5 are—7  println(ml === m5)

false

sepavate cbjeL%,s,
soml === m5 var mé = m2

is false. m2 = m3

println(m3 == m6)





OEBPS/assets/f0003-01.png
Being able to thoose
which platform to compile
Your ¢ode against means
that Kotlin ode tan vun
on servers, in the tloud,
in browsers, on mobile
devices, and more

v

=






OEBPS/assets/f0094-01.png
i)Eenmg brace

“class” means The name of the elass The A\lZSS properties. the elass.

it’s a el
#*~2[class|[pog|[(val name: string, var weight: Int, val breed: String)

The bark —>[€un park 0 ¢ Dog
function println(if (weight < 20) "Yip!" else "Woof!") name
) 1 weight
breed
[ Closing brace of the class N
I> bark()

The code:

class Dog(val name: String, var weight: Int, val breed: String) {





OEBPS/assets/f0411-01.png
i it We've using tode from the JUnit packages, so
import org.junit.jupiter.api.Assertions.* ) .. ..d to -m‘mt them. You tan Find ouk
import org.junit.jupiter.api.Test more abouk import statements in Appendi 18

<—The TotallerTest elass is used to test Totaller.

class TotallerTest {

@Test<—This is an annotation that marks the following function as a test.
fun shouldBeAbleToAdd3Andd () {
{_/Crta{;c a Totaller object-

val totaller = Totaller()

assertEquals(3, totaller.add(3))<— Check that if we add 3, the veturn value is 3.
assertEquals (7, totaller.add(4))<— If we now add 4, the veburn value should be 7
tE
| ReereRmalact, rotallen otal) € Cuuk that the rebun vt matshes
the value of the total vaviable.





OEBPS/assets/f0127-01.png
image
food

habitat
hunger

makeNoise()
eat()

roam()
sleep()

makeNoise()
eat()

Hippo

Lynx Fox

image
food image image
habitat food food

habitat habitat

makeNoise()
eat()

makeNoise() makeNoise()

image
food
habitat

makeNoise()

Cheetah

makeNoise()
eat()





OEBPS/assets/f0065-01.png
fun main{args: Array<String>) {

printsun(s, 6) The avguments you pass land in the function in the
} same order You passed them. The Livst avgument
Jands in the ivst pavameter, he second argument
lands in the setond parameter, and so on-

fun printSum(intl: Int, int2: Int) {
val result = intl + int2

println(result)





OEBPS/assets/f0350-01.png
Q/\.& — ) (x Double >x * 2.204623 |

< A
f
lambdat (Double) -> Double
2 Qm — ) (x: Double->x/2000.0 ]
val (Double) -> Double Qﬁ) )\

’K 2
These are the combine ( j

funcion's parameters lambda2 (Double) > Double
-
val (Double) -> Double





OEBPS/assets/common27.png
Game choice
User choice
Result





OEBPS/assets/f0268-01.png
mFriend
\Set

val
MutableSet<String>

1€ you pass Skring values to the
mutableSet0f0 imt{:iov\, the compiler
iners that you want an object

of type MutableSet<String> (3
MukableSet that holds Strings).





OEBPS/assets/f0374-01.png
Grocery

“Tomatoes”
3.0
O 8.0

“Mushrooms”
sts;,A " @ & Yl
o ’. Grocery newr 12.0
g ? ceries “Bagels” Prices
15 —
val val Doubl
List<Grocery> Grocery List<Double> ©

O “gléve oil” Li;;‘E<Double>

The Lisk treated by the eall
4o the map funttion is assigned
Lo the newPrices variable.

List<Grocery>





OEBPS/assets/f0055-01.png
Q fun main(args: Array<String>) {

val hobbits = arrayOf ("Frodo", "Sam", "Merry", "Pippin")

=0 . .
var = The tode tompiles, but produtes an ervor when it vuns. Remember

, that arrays start with item O, and end with item (size - D).
while (x <~5~4—) {

println("${hobbits[x]} is a good Hobbit name")
x=x +1

9 fun main(args: Array<String>) {

val firemen = arrayOf ("Pugh", "Pugh", "Barney McGrew", "Cuthbert", "Dibble", "Grub")
var firemanNo = 0

while (firemanNo < 6) {
println ("Fireman number S$firemanNo is ${firemen[firemanNo]}")
firemanNo = firemanNo + 1

You need Cu\rly brates around firemenLfivemanNoJ in
order 4o print the name of each fiveman.





OEBPS/assets/f0265-02.png
Your hash codes
are the same. Are you
the same object...?

o />O hashCode: 742
O hashCode: 742
Set





OEBPS/assets/f0260-02.png
Printing a List or

mShoppingList original: [Tea, Eggs, Milk] p— MukableList prints eath
mShoppingList items added: [Tea, Eggs, Milk, Cookies, Sugar, Eggs] ikem in index order
mShoppingList sorted: [Coffee, Cookies, Eggs, Eggs, Milk, Sugar] inside square brackets.

mShoppingList reversed: [Sugar, Milk, Eggs, Eggs, Cookies, Coffee]





OEBPS/assets/f0031-01.png
I'd love to take you
out, but Mommy says T
must be home by 6pm.

I don't think
you're my type.






OEBPS/assets/f0232-02.png
getAlphaWolf()?.let { S Using let is more contise. [£'s also safe,
it.eat() 50 You €an use it in all situations.





